Are there trends towards drier hydrological conditions in Central America?
NASA Astrophysics Data System (ADS)
Hidalgo, H. G.
2013-12-01
A summary of hydrological projections at the end of the century from 30 General Circulation Models (GCMs) is presented; and several hydrometeorological parameters are analyzed to validate if there are hydroclimatological trends during the observational period (1982-2005) consistent with the GCMs results. At the end of the century the median of 30 GCM simulations projects a drier future for Tegucigalpa and San Jose, with a marked increment in evapotranspiration in the first half of the rainy season along with reductions of soil moisture. With respect to the observations (1982-2005): 1) the Normalized Difference Vegetation Index showed negative trends in the North Pacific coast of Costa Rica, the border of Honduras and Nicaragua, and especially in southern Mexico (except the Yucatan Peninsula). Positive trends were found in the several parts of Central America, 2) the Palmer Drought Severity Index showed strong and consistent trends from Nicaragua to the North of Central America and southern Mexico (not including Yucatan), consistent with the direction of GCM projections; 3) negative precipitation trends in satellite data were found in Nicaragua, with strong trends in its Caribbean coast; 4) NCEP/NCAR Reanalysis precipitation showed strong negative trends in northern Central America, the Central Valley, the Dry Pacific of Costa Rica and the South-Pacific coast of Nicaragua, all consistent with the direction of GCM projections; and 5) station data showed no significant trends however, and 6) Reanalysis' temperature showed positive trends in southern Mexico (not including Yucatan) and negative trends in El Salvador. It can be concluded that several trends in drought indexes and precipitation are consistent with the future projected by the GCMs; that is, with some exceptions some of the trends were validated towards a drier future for the region, especially in the northern part.
Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier
2010-01-01
Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations’ carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982–1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast. PMID:22205868
Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier
2010-01-01
Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations' carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982-1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast.
Gregg, Watson W; Rousseaux, Cécile S
2014-09-01
Quantifying change in ocean biology using satellites is a major scientific objective. We document trends globally for the period 1998-2012 by integrating three diverse methodologies: ocean color data from multiple satellites, bias correction methods based on in situ data, and data assimilation to provide a consistent and complete global representation free of sampling biases. The results indicated no significant trend in global pelagic ocean chlorophyll over the 15 year data record. These results were consistent with previous findings that were based on the first 6 years and first 10 years of the SeaWiFS mission. However, all of the Northern Hemisphere basins (north of 10° latitude), as well as the Equatorial Indian basin, exhibited significant declines in chlorophyll. Trend maps showed the local trends and their change in percent per year. These trend maps were compared with several other previous efforts using only a single sensor (SeaWiFS) and more limited time series, showing remarkable consistency. These results suggested the present effort provides a path forward to quantifying global ocean trends using multiple satellite missions, which is essential if we are to understand the state, variability, and possible changes in the global oceans over longer time scales.
Spatial and temporal variation of rainfall trends of Sri Lanka
NASA Astrophysics Data System (ADS)
Wickramagamage, P.
2016-08-01
This study was based on daily rainfall data of 48 stations distributed over the entire island covering a 30-year period from 1981 to 2010. Data analysis was done to identify the spatial pattern of rainfall trends. The methods employed in data analysis are linear regression and interpolation by Universal Kriging and Radial Basis function. The slope of linear regression curves of 48 stations was used in interpolation. The regression coefficients show spatially and seasonally variable positive and negative trends of annual and seasonal rainfall. About half of the mean annual pentad series show negative trends, while the rest shows positive trends. By contrast, the rainfall trends of the Southwest Monsoon (SWM) season are predominantly negative throughout the country. The first phase of the Northeast Monsoon (NEM1) displays downward trends everywhere, with the exception of the Southeastern coastal area. The strongest negative trends were found in the Northeast and in the Central Highlands. The second phase (NEM2) is mostly positive, except in the Northeast. The Inter-Monsoon (IM) periods have predominantly upward trends almost everywhere, but still the trends in some parts of the Highlands and Northeast are negative. The long-term data at Watawala Nuwara Eliya and Sandringham show a consistent decline in the rainfall over the last 100 years, particularly during the SWM. There seems to be a faster decline in the rainfall in the last 3 decades. These trends are consistent with the observations in India. It is generally accepted that there has been changes in the circulation pattern. Weakening of the SWM circulation parameters caused by global warming appears to be the main causes of recent changes. Effect of the Asian Brown Cloud may also play a role in these changes.
NASA Astrophysics Data System (ADS)
Elias, E.; Rango, A.; James, D.; Maxwell, C.; Anderson, J.; Abatzoglou, J. T.
2016-12-01
Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based upon a multimodel mean of 20 Coupled Model Intercomparison Project 5 models using a business-as-usual (Representative Concentration Pathway 8.5) trajectory, midcentury precipitation is projected to increase slightly during the monsoonal time period (July-September; 6%) and decrease slightly during the remainder of the year (October-June; -4%). We use observed long-term (1915-2015) monthly precipitation records from 16 weather stations to investigate how well measured trends corroborate climate model predictions during the monsoonal and non-monsoonal timeframe. Running trend analysis using the Mann-Kendall test for 15 to 101 year moving windows reveals that half the stations showed significant (p≤0.1), albeit small, increasing trends based on the longest term record. Trends based on shorter-term records reveal a period of significant precipitation decline at all stations representing the 1950s drought. Trends from 1930 to 2015 reveal significant annual, monsoonal and non-monsoonal increases in precipitation (Fig 1). The 1960 to 2015 time window shows no significant precipitation trends. The more recent time window (1980 to 2015) shows a slight, but not significant, increase in monsoonal precipitation and a larger, significant decline in non-monsoonal precipitation. GCM precipitation projections are consistent with more recent trends for the region. Running trends from the most recent time window (mid-1990s to 2015) at all stations show increasing monsoonal precipitation and decreasing Oct-Jun precipitation, with significant trends at 6 of 16 stations. Running trend analysis revealed that the long-term trends were not persistent throughout the series length, but depended on the period examined. Recent trends in Southwest precipitation are directionally consistent with anthropogenic climate change.
Detecting long-term growth trends using tree rings: a critical evaluation of methods.
Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A
2015-05-01
Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability analysis. Finally, we recommend SCI and RCS, as these methods showed highest reliability to detect long-term growth trends. © 2014 John Wiley & Sons Ltd.
Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves
NASA Astrophysics Data System (ADS)
Ghebreegziabher, Amanuel T.
Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.
Trends in pesticide concentrations in urban streams in the United States, 1992-2008
Ryberg, Karen R.; Vecchia, Aldo V.; Martin, Jeffrey D.; Gilliom, Robert J.
2010-01-01
Pesticide concentration trends in streams dominated by urban land use were assessed using data from 27 urban streams sampled as part of the U.S. Geological Survey National Water-Quality Assessment Program. The sites were divided into four regions, Northeast, South, Midwest, and West, to examine possible regional patterns. Three partially overlapping 9-year periods (1992-2000, 1996-2004, and 2000-2008) were examined for eight herbicides and one degradation product (simazine, prometon, atrazine, deethylatrazine, metolachlor, trifluralin, pendimethalin, tebuthiuron, and Dacthal), and five insecticides and two degradation products (chlorpyrifos, malathion, diazinon, fipronil, fipronil sulfide, desulfinylfipronil, and carbaryl). The data were analyzed for trends in concentration using a parametric regression model with seasonality, flow-related variability, and trend, called SEAWAVE-Q. The SEAWAVE-Q model also was used to generate estimated daily concentration percentiles for each analysis period to provide a summary of concentration magnitudes. For herbicides, the largest 90th percentiles of estimated concentrations for simazine were in the South, prometon at some sites in all of the regions, atrazine and deethylatrazine in the South and Midwest, metolachlor in the Midwest and a few sites in the South, pendimethalin at scattered sites in all of the regions, and tebuthiuron in the South and a few sites in the Midwest and West. For insecticides, the largest 90th percentiles of estimated concentrations for diazinon and carbaryl were distributed among various sites in all regions (especially during 1996-2004), and fipronil at isolated sites in all of the regions during 2000-2008. Trend analysis results for the herbicides indicated many significant trends, both upward and downward, with varying patterns depending on period, region, and herbicide. Overall, deethylatrazine showed the most consistent pattern of upward trends, especially in the Northeast (2000-2008), South (1996-2004 and 2000-2008), and Midwest (1996-2004 and 2000-2008). Other herbicides showed less consistent upward trends, including simazine in the South (1996-2004), prometon in the Midwest (2000-2008), and atrazine in the South (1996-2004). The most consistent downward trends were for simazine in the Northeast and Midwest (1996-2004), prometon in the Northeast and Midwest (1996-2004) and West (1996-2004 and 2000-2008), and tebuthiuron in the South (1996-2004 and 2000-2008) and West (2000-2008). Strong similarity existed between the trends for atrazine and deethylatrazine during 1996-2004. During 2000-2008, however, there were mixed upward and downward trends in atrazine and predominantly upward trends in deethylatrazine. Ten sites with a downward trend in atrazine were paired with an upward trend in deethylatrazine and for three of these sites (1 in the South and 2 in the Midwest) both opposing trends were significant. Opposing trends showing a decrease in atrazine and an increase in deethylatrazine may indicate that decreases in atrazine from surface runoff are being offset in some cases by increases in deethylatrazine from groundwater for the latter analysis period. Trend results for insecticides indicated widespread significant downward trends for chlorpyrifos (especially 1996-2004), diazinon (1996-2004 and 2000-2008), and malathion (especially 1996-2004); widespread significant upward trends for fipronil and its degradation products (2000-2008); and mostly nonsignificant trends for carbaryl (1996-2004 and 2000-2008). The downward trends for chlorpyrifos and diazinon were consistent with the regulatory phaseout of residential uses of these insecticides and the upward trends for fipronil and its degradation products were consistent with its introduction in 1996 and subsequent increasing use as a possible substitute for chlorpyrifos and diazinon. The downward trends in malathion may be caused by voluntary substitution of pyrethroids or fipronil for malathio
Rainfall trends in the Brazilian Amazon Basin in the past eight decades
NASA Astrophysics Data System (ADS)
Satyamurty, Prakki; de Castro, Aline Anderson; Tota, Julio; da Silva Gularte, Lucia Eliane; Manzi, Antonio Ocimar
2010-01-01
Rainfall series at 18 stations along the major rivers of the Brazilian Amazon Basin, having data since 1920s or 1930s, are analyzed to verify if there are appreciable long-term trends. Annual, rainy-season, and dry-season rainfalls are individually analyzed for each station and for the region as a whole. Some stations showed positive trends and some negative trends. The trends in the annual rainfall are significant at only six stations, five of which reporting increasing trends (Barcelos, Belem, Manaus, Rio Branco, and Soure stations) and just one (Itaituba station) reporting decreasing trend. The climatological values of rainfall before and after 1970 show significant differences at six stations (Barcelos, Belem, Benjamin Constant, Iaurete, Itaituba, and Soure). The region as a whole shows an insignificant and weak downward trend; therefore, we cannot affirm that the rainfall in the Brazilian Amazon basin is experiencing a significant change, except at a few individual stations. Subregions with upward and downward trends are interspersed in space from the far eastern Amazon to western Amazon. Most of the seasonal trends follow the annual trends, thus, indicating a certain consistency in the datasets and analysis.
Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation.
Agrawal, Anurag A; Salminen, Juha-Pekka; Fishbein, Mark
2009-03-01
Although plant-defense theory has long predicted patterns of chemical defense across taxa, we know remarkably little about the evolution of defense, especially in the context of directional phylogenetic trends. Here we contrast the production of phenolics and cardenolides in 35 species of milkweeds (Asclepias and Gomphocarpus). Maximum-likelihood analyses of character evolution revealed three major patterns. First, consistent with the defense-escalation hypothesis, the diversification of the milkweeds was associated with a trend for increasing phenolic production; this pattern was reversed (a declining evolutionary trend) for cardenolides, toxins sequestered by specialist herbivores. Second, phylogenetically independent correlations existed among phenolic classes across species. For example, coumaric acid derivatives showed negatively correlated evolution with caffeic acid derivatives, and this was likely driven by the fact that the former are used as precursors for the latter. In contrast, coumaric acid derivatives were positively correlated with flavonoids, consistent with competition for the precursor p-coumaric acid. Finally, of the phenolic classes, only flavonoids showed correlated evolution (positive) with cardenolides, consistent with a physiological and evolutionary link between the two via malonate. Thus, this study presents a rigorous test of the defense-escalation hypothesis and a novel phylogenetic approach to understanding the long-term persistence of physiological constraints on secondary metabolism.
Variability and trends in the Arctic Sea ice cover: Results from different techniques
NASA Astrophysics Data System (ADS)
Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert
2017-08-01
Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at -3.88%/decade and -4.37%/decade, respectively, compared to an average of -4.36%/decade and -4.57%/decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.
Global Trends in Chlorophyll Concentration Observed with the Satellite Ocean Colour Data Record
NASA Astrophysics Data System (ADS)
Melin, F.; Vantrepotte, V.; Chuprin, A.; Grant, M.; Jackson, T.; Sathyendranath, S.
2016-08-01
To detect climate change signals in the data records derived from remote sensing of ocean colour, combining data from multiple missions is required, which implies that the existence of inter-mission differences be adequately addressed prior to undertaking trend studies. Trend distributions associated with merged products are compared with those obtained from single-mission data sets in order to evaluate their suitability for climate studies. Merged products originally developed for operational applications such as near-real time distribution (GlobColour) do not appear to be proper climate data records, showing large parts of the ocean with trends significantly different from trends obtained with SeaWiFS, MODIS or MERIS. On the other hand, results obtained from the Climate Change Initiative (CCI) data are encouraging, showing a good consistency with single-mission products.
Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin
Wynn, J.G.; Harden, J.W.; Fries, T.L.
2006-01-01
Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.
Variability and Trends in the Arctic Sea Ice Cover: Results from Different Techniques
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert
2017-01-01
Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at negative 3.88 percent decade and negative 4.37 percent decade, respectively, compared to an average of negative 4.36 percent decade and negative 4.57 percent decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.
Television Viewing at Home: Age Trends in Visual Attention and Time with TV.
ERIC Educational Resources Information Center
Anderson, Daniel R.; And Others
1986-01-01
Decribes age trends in television viewing time and visual attention of children and adults videotaped in their homes for 10-day periods. Shows that the increase in visual attention to television during the preschool years is consistent with the theory that television program comprehensibility is a major determinant of attention in young children.…
NASA Astrophysics Data System (ADS)
Guignard, Pierre; Bellier, Olivier; Chardon, Dominique
2005-02-01
The southern termination of the left-lateral 'Moyenne Durance' Fault (FMD) consists in several segments, some being connected to WSW-trending south-verging reverse faults. To the south, the Aix fault is reactivated in a post-Oligocene strike-slip movement showing that these two faults might belong to the same system. This system seems to transfer, in turn, slip to the east-trending, south-verging Trévaresse reverse fault, allowing southward propagation of the Alpine deformation front in western Provence. Fault kinematics analysis shows lateral stress field change between the two faults. Strike-slip stress state is characterized by an average N150°E trending σ1 near the FMD termination, whilst strike-slip and reverse faulting stress states show north-trending σ to the south. To cite this article: P. Guignard et al., C. R. Geoscience 337 (2005).
Trends in the Vertical Distribution of Ozone: A Comparison of Two Analyses of Ozonesonde Data
NASA Technical Reports Server (NTRS)
Loogan, J. A.; Megretskaia, I. A.; Miller, A. J.; Tiao, G. C.; Choi, D.; Zhang, L.; Bishop, L.; Stolarski, R.; Labow, G. J.; Hollandsworth, S. M.;
1998-01-01
We present the results of two independent analyses of ozonesonde measurements of the vertical profile of ozone. For most of the ozonesonde stations we use data that were recently reprocessed and reevaluated to improve their quality and internal consistency. The two analyses give similar results for trends in ozone. We attribute differences in results primarily to differences in data selection criteria and in utilization of data correction factors, rather than in statistical trend models. We find significant decreases in stratospheric ozone at all stations in middle and high latitudes of the northern hemisphere from 1970 to 1996, with the largest decreases located between 12 and 21 km, and trends of -3 to -10 %/decade near 17 km. The decreases are largest at the Canadian and the most northerly Japanese station, and are smallest at the European stations, and at Wallops Island, U.S.A. The mean mid-latitude trend is largest, -7 %/decade, from 12 to 17.5 km for 1970-96. For 1980-96, the decrease is more negative by 1-2 %/decade, with a maximum trend of -9 %/decade in the lowermost stratosphere. The trends vary seasonally from about 12 to 17.5 km, with largest ozone decreases in winter and spring. Trends in tropospheric ozone are highly variable and depend on region. There are decreases or zero trends at the Canadian stations for 1970-96, and decreases of -2 to -8 %/decade for the mid-troposphere for 1980-96; the three European stations show increases for 1970-96, but trends are close to zero for two stations for 1980-96 and positive for one; there are increases in ozone for the three Japanese stations for 1970-96, but trends are either positive or zero for 1980-96; the U.S. stations show zero or slightly negative trends in tropospheric ozone after 1980. It is not possible to define reliably a mean tropospheric ozone trend for northern mid-latitudes, given the small number of stations and the large variability in trends. The integrated column trends derived from the sonde data are consistent with trends derived from both surface based and satellite measurements of the ozone column.
Temporal variability of selected air toxics in the United States
NASA Astrophysics Data System (ADS)
McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Chiou, Linda; Boone,Chris; Bernath, Peter; Mahieu, Emmanuel
2009-01-01
The first measurement of the HCFC-142b (CH3CClF2) trend near the tropopause has been derived from volume mixing ratio (VMR) measurements at northern and southern hemisphere mid-latitudes for the 2004-2008 time period from spaceborne solar occultation observations recorded at 0.02/cm resolution with the ACE (atmospheric chemistry experiment) Fourier transform spectrometer. The HCFC-142b molecule is currently the third most abundant HCFC (hydrochlorofluorocarbon) in the atmosphere and ACE measurements over this time span show a continuous rise in its volume mixing ratio. Monthly average measurements at northern and southern hemisphere midlatitudes have similar increase rates that are consistent with surface trend measurements for a similar time span. A mean northern hemisphere profile for the time span shows a near constant VMR at 8-20km altitude range, consistent on average for the same time span with in situ results. The nearly constant vertical VMR profile also agrees with model predictions of a long lifetime in the lower atmosphere.
NASA Technical Reports Server (NTRS)
Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue
2014-01-01
Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than I% in most of climate regions although it could be as large as 10%.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue
2014-05-01
Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than 1 % in most of climate regions although it could be as large as 10 %.
Trend analysis of hydro-climatic variables in the north of Iran
NASA Astrophysics Data System (ADS)
Nikzad Tehrani, E.; Sahour, H.; Booij, M. J.
2018-04-01
Trend analysis of climate variables such as streamflow, precipitation, and temperature provides useful information for understanding the hydrological changes associated with climate change. In this study, a nonparametric Mann-Kendall test was employed to evaluate annual, seasonal, and monthly trends of precipitation and streamflow for the Neka basin in the north of Iran over a 44-year period (1972 to 2015). In addition, the Inverse Distance Weight (IDW) method was used for annual seasonal, monthly, and daily precipitation trends in order to investigate the spatial correlation between precipitation and streamflow trends in the study area. Results showed a downward trend in annual and winter precipitation (Z < -1.96) and an upward trend in annual maximum daily precipitation. Annual and monthly mean flows for most of the months in the Neka basin decreased by 14% significantly, but the annual maximum daily flow increased by 118%. Results for the trend analysis of streamflow and climatic variables showed that there are statistically significant relationships between precipitation and streamflow (p value < 0.05). Correlation coefficients for Kendall, Spearman's rank and linear regression are 0.43, 0.61, and 0.67, respectively. The spatial presentation of the detected precipitation and streamflow trends showed a downward trend for the mean annual precipitation observed in the upstream part of the study area which is consistent with the streamflow trend. Also, there is a good correlation between monthly and seasonal precipitation and streamflow for all sub-basins (Sefidchah, Gelvard, Abelu). In general, from a hydro-climatic point of view, the results showed that the study area is moving towards a situation with more severe drought events.
Observed Recent Trends in Tropical Cyclone Rainfall Over Major Ocean Basins
NASA Technical Reports Server (NTRS)
Lau, K. M.; Zhou, Y. P.
2011-01-01
In this study, we use Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Climatology Project (GPCP) rainfall data together with historical storm track records to examine the trend of tropical cyclone (TC) rainfall in major ocean basins during recent decades (1980-2007). We find that accumulated total rainfall along storm tracks for all tropical cyclones shows a weak positive trend over the whole tropics. However, total rainfall associated with weak storms, and intense storms (Category 4-5) both show significant positive trends, while total rainfall associated with intermediate storms (Category1-3) show a significant negative trend. Storm intensity defined as total rain produced per unit storm also shows increasing trend for all storm types. Basin-wide, from the first half (1980-1993) to the second half (1994-2007) of the data period, the North Atlantic shows the pronounced increase in TC number and TC rainfall while the Northeast Pacific shows a significant decrease in all storm types. Except for the Northeast Pacific, all other major basins (North Atlantic, Northwest Pacific, Southern Oceans, and Northern Indian Ocean) show a significant increase in total number and rainfall amount in Category 4-5 storms. Overall, trends in TC rainfall in different ocean basins are consistent with long-term changes in the ambient large-scale environment, including SST, vertical wind shear, sea level pressure, mid-tropospheric humidity, and Maximum Potential Intensity (MPI). Notably the pronounced positive (negative) trend of TC rainfall in the North Atlantic (Northeast Pacific) appears to be related to the most (least) rapid increase in SST and MPI, and the largest decrease (increase) in vertical wind shear in the region, relative to other ocean basins.
Recent warming trend in the coastal region of Qatar
NASA Astrophysics Data System (ADS)
Cheng, Way Lee; Saleem, Ayman; Sadr, Reza
2017-04-01
The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.
21st Century Trends in the Potential for Ozone Depletion
NASA Astrophysics Data System (ADS)
Hurwitz, M. M.; Newman, P. A.
2009-05-01
We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.
NASA Astrophysics Data System (ADS)
Mishra, N. B.; Mainali, K. P.
2016-12-01
Climatic changes along with anthropogenic disturbances are causing dramatic ecological impacts in mid to high latitude mountain vegetation including in the Himalayas which are ecologically sensitive environments. Given the challenges associated with in situ vegetation monitoring in the Himalayas, remote sensing based quantification of vegetation dynamics can provide essential ecological information on changes in vegetation activity that may consist of alternative sequence of greening and/or browning periods. This study utilized a trend break analysis procedure for detection of monotonic as well as abrupt (either interruption or reversal) trend changes in smoothed normalized difference vegetation index satellite time-series data over the Himalayas. Overall, trend breaks in vegetation greenness showed high spatio-temporal variability in distribution considering elevation, ecoregion and land cover/use stratifications. Interrupted greening was spatially most dominant in all Himalayan ecoregions followed by abrupt browning. Areas showing trend reversal and monotonic trends appeared minority. Trend type distribution was strongly dependent on elevation as majority of greening (with or without interruption) occurred at lower elevation areas at higher elevation were dominantly. Ecoregion based stratification of trend types highlighted some exception to this elevational dependence as high altitude ecoregions of western Himalayas showed significantly less browning compared to the ecoregions in eastern Himalaya. Land cover/use based analysis of trend distribution showed that interrupted greening was most dominant in closed needleleafed forest following by rainfed cropland and mosaic croplands while interrupted browning most dominant in closed to open herbaceous vegetation found at higher elevation areas followed by closed needleleafed forest and closed to open broad leafed evergreen forests. Spatial analysis of trend break timing showed that for majority of areas experiencing interrupted greening, break in trend occurred later compared to areas with interrupted browning where break trend was observed much earlier. These results have significant implications for environmental management in the context of climate change and ecosystem dynamics in the Himalayas.
Regional Kendall test for trend
Helsel, D.R.; Frans, L.M.
2006-01-01
Trends in environmental variables are often investigated within a study region at more than one site. At each site, a trend analysis determines whether a trend has occurred. Yet often also of interest is whether a consistent trend is evident throughout the entire region. This paper adapts the Seasonal Kendall trend test to determine whether a consistent regional trend occurs in environmental variables.
Pielke, R.A.; Stohlgren, T.; Schell, L.; Parton, W.; Doesken, N.; Redmond, K.; Moeny, J.; McKee, T.; Kittel, T.G.F.
2002-01-01
We evaluated long-term trends in average maximum and minimum temperatures, threshold temperatures, and growing season in eastern Colorado, USA, to explore the potential shortcomings of many climate-change studies that either: (1) generalize regional patterns from single stations, single seasons, or a few parameters over short duration from averaging dissimilar stations: or (2) generalize an average regional pattern from coarse-scale general circulation models. Based on 11 weather stations, some trends were weakly regionally consistent with previous studies of night-time temperature warming. Long-term (80 + years) mean minimum temperatures increased significantly (P < 0.2) in about half the stations in winter, spring, and autumn and six stations had significant decreases in the number of days per year with temperatures ??? - 17.8 ??C (???0??F). However, spatial and temporal variation in the direction of change was enormous for all the other weather parameters tested, and, in the majority of tests, few stations showed significant trends (even at P < 0.2). In summer, four stations had significant increases and three stations had significant decreases in minimum temperatures, producing a strongly mixed regional signal. Trends in maximum temperature varied seasonally and geographically, as did trends in threshold temperature days ???32.2??C (???90??F) or days ???37.8??C (???100??F). There was evidence of a subregional cooling in autumn's maximum temperatures, with five stations showing significant decreasing trends. There were many geographic anomalies where neighbouring weather stations differed greatly in the magnitude of change or where they had significant and opposite trends. We conclude that sub-regional spatial and seasonal variation cannot be ignored when evaluating the direction and magnitude of climate change. It is unlikely that one or a few weather stations are representative of regional climate trends, and equally unlikely that regionally projected climate change from coarse-scale general circulation models will accurately portray trends at sub-regional scales. However, the assessment of a group of stations for consistent more qualitative trends (such as the number of days less than - 17.8??C, such as we found) provides a reasonably robust procedure to evaluate climate trends and variability. Copyright ?? 2002 Royal Meteorological Society.
Herbeck, Joshua T.; Müller, Viktor; Maust, Brandon S.; Ledergerber, Bruno; Torti, Carlo; Di Giambenedetto, Simona; Gras, Luuk; Günthard, Huldrych F.; Jacobson, Lisa P.; Mullins, James I.; Gottlieb, Geoffrey S.
2013-01-01
Objective The potential for changing HIV-1 virulence has significant implications for the AIDS epidemic, including changing HIV transmission rates, rapidity of disease progression, and timing of ART. Published data to date have provided conflicting results. Design We conducted a meta-analysis of changes in baseline CD4+ T-cell counts and set point plasma viral RNA load over time in order to establish whether summary trends are consistent with changing HIV-1 virulence. Methods We searched PubMed for studies of trends in HIV-1 prognostic markers of disease progression and supplemented findings with publications referenced in epidemiological or virulence studies. We identified 12 studies of trends in baseline CD4+ T-cell counts (21 052 total individuals), and eight studies of trends in set point viral loads (10 785 total individuals), spanning the years 1984–2010. Using random-effects meta-analysis, we estimated summary effect sizes for trends in HIV-1 plasma viral loads and CD4+ T-cell counts. Results Baseline CD4+ T-cell counts showed a summary trend of decreasing cell counts [effect=−4.93 cells/µl per year, 95% confidence interval (CI) −6.53 to −3.3]. Set point viral loads showed a summary trend of increasing plasma viral RNA loads (effect=0.013 log10 copies/ml per year, 95% CI −0.001 to 0.03). The trend rates decelerated in recent years for both prognostic markers. Conclusion Our results are consistent with increased virulence of HIV-1 over the course of the epidemic. Extrapolating over the 30 years since the first description of AIDS, this represents a CD4+ T cells loss of approximately 148 cells/µl and a gain of 0.39 log10 copies/ml of viral RNA measured during early infection. These effect sizes would predict increasing rates of disease progression, and need for ART as well as increasing transmission risk. PMID:22089381
Ecohydrological Index, Native Fish, and Climate Trends and Relationships in the Kansas River Basin.
Sinnathamby, Sumathy; Douglas-Mankin, Kyle R; Muche, Muluken E; Hutchinson, Stacy L; Anandhi, Aavudai
2018-01-01
This study quantified climatological and hydrological trends and relationships to presence and distribution of two native aquatic species in the Kansas River Basin over the past half-century. Trend analyses were applied to indicators of hydrologic alteration (IHAs) at 34 streamgages over a 50-year period (1962-2012). Results showed a significant negative trend in annual streamflow for 10 of 12 western streamgages (up to -7.65 mm/50 yr) and smaller negative trends for most other streamgages. Significant negative trends in western Basin streamflow were more widespread in summer (12 stations) than winter or spring (6 stations). The negative-trend magnitude and significance decreased from west to east for maximum-flow IHAs. Minimum- flow IHAs, however, significantly decreased at High Plains streamgages but significantly increased at Central Great Plains streamgages. Number of zero-flow days showed positive trends in the High Plains. Most streamgages showed negative trends in low- and high-flow pulse frequency and high-flow pulse duration, and positive trends in low-flow pulse duration. These results were consistent with increasing occurrence of drought. Shift in occurrence from present (1860-1950) to absent (2000-2012) was significantly related (p<0.10) to negative trends of 1-day maximum flows (both species) and indices associated with reduced spawning-season flows for Plains Minnow and shifting annual-flow timing and increased flow intermittency for Common Shiner. Both species were absent for all western Basin sites and had different responses to hydrological index trends at eastern Basin sites. These results demonstrate ecohydrological index changes impact distributions of native fish and suggest target factors for assessment or restoration activities.
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.
2015-12-01
High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.
Recent Short Term Global Aerosol Trends over Land and Ocean Dominated by Biomass Burning
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Koren, Ilan; Kleidman, RIchard G.; Levy, Robert C.; Martins, J. Vanderlei; Kim, Kyu-Myong; Tanre, Didier; Mattoo, Shana; Yu, Hongbin
2007-01-01
NASA's MODIS instrument on board the Terra satellite is one of the premier tools to assess aerosol over land and ocean because of its high quality calibration and consistency. We analyze Terra-MODIS's seven year record of aerosol optical depth (AOD) observations to determine whether global aerosol has increased or decreased during this period. This record shows that AOD has decreased over land and increased over ocean. Only the ocean trend is statistically significant and corresponds to an increase in AOD of 0.009, or a 15% increase from background conditions. The strongest increasing trends occur over regions and seasons noted for strong biomass burning. This suggests that biomass burning aerosol dominates the increasing trend over oceans and mitigates the otherwise mostly negative trend over the continents.
Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E
2012-01-01
The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experiencemore » temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.« less
Age-related changes in human vestibulo-ocular reflexes: Sinusoidal rotation and caloric tests
NASA Technical Reports Server (NTRS)
Peterka, R. J.; Black, F. O.; Schoenhoff, M. B.
1989-01-01
The dynamic response properties of horizontal vestibulo-ocular reflex (VOR) were characterized in 216 human subjects ranging in age from 7 to 81 years. The object of this cross-sectional study was to determine the effects of aging on VOR dynamics, and to identify the distributions of parameters which describe VOR responses to caloric and to sinusoidal rotational stimuli in a putatively normal population. Caloric test parameters showed no consistent trend with age. Rotation test parameters showed declining response amplitude and slightly less compensatory response phase with increasing age. The magnitudes of these changes were not large relative to the variability within the population. The age-related trends in VOR were not consistent with the anatomic changes in the periphery reported by others which showed an increasing rate of peripheral hair cell and nerve fiber loss in subjects over 55 years. The poor correlation between physiological and anatomical data suggest that adaptive mechanisms in the central nervous system are important in maintaining the VOR.
Spin-Down of the North Atlantic Subpolar Circulation
NASA Technical Reports Server (NTRS)
Hakkinen, S.; Rhines, P. B.
2004-01-01
Dramatic changes have occurred in the mid-to-high-latitude North Atlantic Ocean as evidenced by TOPEX/Poseidon observations of sea surface height (SSH) in the subpolar gyre and the Gulf Stream. Analysis of altimeter data shows that subpolar SSH has increased during the 1990s and the geostrophic velocity derived from altimeter data shows a decline in the gyre circulation. Direct current-meter observations in the boundary current of the Labrador Sea support the trend in the 199Os, and, together with hydrographic data show that in the mid-late 1990s the trend extends deep in the water column. We find that buoyancy forcing over the northern North Atlantic has a dynamic effect consistent with the altimeter data and hydrographic observations: a weak thermohaline forcing and the subsequent decay of the domed structure of the subpolar isopycnals would give rise to the observed anticyclonic circulation trend.
Timing of the departure of ocean biogeochemical cycles from the preindustrial state.
Christian, James R
2014-01-01
Changes in ocean chemistry and climate induced by anthropogenic CO2 affect a broad range of ocean biological and biogeochemical processes; these changes are already well underway. Direct effects of CO2 (e.g. on pH) are prominent among these, but climate model simulations with historical greenhouse gas forcing suggest that physical and biological processes only indirectly forced by CO2 (via the effect of atmospheric CO2 on climate) begin to show anthropogenically-induced trends as early as the 1920s. Dates of emergence of a number of representative ocean fields from the envelope of natural variability are calculated for global means and for spatial 'fingerprints' over a number of geographic regions. Emergence dates are consistent among these methods and insensitive to the exact choice of regions, but are generally earlier with more spatial information included. Emergence dates calculated for individual sampling stations are more variable and generally later, but means across stations are generally consistent with global emergence dates. The last sign reversal of linear trends calculated for periods of 20 or 30 years also functions as a diagnostic of emergence, and is generally consistent with other measures. The last sign reversal among 20 year trends is found to be a conservative measure (biased towards later emergence), while for 30 year trends it is found to have an early emergence bias, relative to emergence dates calculated by departure from the preindustrial mean. These results are largely independent of emission scenario, but the latest-emerging fields show a response to mitigation. A significant anthropogenic component of ocean variability has been present throughout the modern era of ocean observation.
Timing of the Departure of Ocean Biogeochemical Cycles from the Preindustrial State
Christian, James R.
2014-01-01
Changes in ocean chemistry and climate induced by anthropogenic CO2 affect a broad range of ocean biological and biogeochemical processes; these changes are already well underway. Direct effects of CO2 (e.g. on pH) are prominent among these, but climate model simulations with historical greenhouse gas forcing suggest that physical and biological processes only indirectly forced by CO2 (via the effect of atmospheric CO2 on climate) begin to show anthropogenically-induced trends as early as the 1920s. Dates of emergence of a number of representative ocean fields from the envelope of natural variability are calculated for global means and for spatial ‘fingerprints’ over a number of geographic regions. Emergence dates are consistent among these methods and insensitive to the exact choice of regions, but are generally earlier with more spatial information included. Emergence dates calculated for individual sampling stations are more variable and generally later, but means across stations are generally consistent with global emergence dates. The last sign reversal of linear trends calculated for periods of 20 or 30 years also functions as a diagnostic of emergence, and is generally consistent with other measures. The last sign reversal among 20 year trends is found to be a conservative measure (biased towards later emergence), while for 30 year trends it is found to have an early emergence bias, relative to emergence dates calculated by departure from the preindustrial mean. These results are largely independent of emission scenario, but the latest-emerging fields show a response to mitigation. A significant anthropogenic component of ocean variability has been present throughout the modern era of ocean observation. PMID:25386910
NASA Astrophysics Data System (ADS)
Bordi, I.; Fraedrich, K.; Sutera, A.
2010-06-01
The lead time dependent climates of the ECMWF weather prediction model, initialized with ERA-40 reanalysis, are analysed using 44 years of day-1 to day-10 forecasts of the northern hemispheric 500-hPa geopotential height fields. The study addresses the question whether short-term tendencies have an impact on long-term trends. Comparing climate trends of ERA-40 with those of the forecasts, it seems that the forecast model rapidly loses the memory of initial conditions creating its own climate. All forecast trends show a high degree of consistency. Comparison results suggest that: (i) Only centers characterized by an upward trend are statistical significant when increasing the lead time. (ii) In midilatitudes an upward trend larger than the one observed in the reanalysis characterizes the forecasts, while in the tropics there is a good agreement. (iii) The downward trend in reanalysis at high latitudes characterizes also the day-1 forecast which, however, increasing lead time approaches zero.
The roles of consistency and exclusivity in perceiving body ownership and agency.
Ma, Ke; Hommel, Bernhard; Chen, Hong
2018-01-23
Previous rubber/virtual hand illusion studies have established important constraints for the illusion that an artificial effector becomes part of one's own body (perceived ownership), and that its actions are being caused by oneself (perceived agency). We can take these observed constraints to establish two of three Wegner's (Trends Cogn Sci 7:65-69; Wegner, Trends in Cognitive Sciences 7:65-69, 2003) criteria for the perception of personal agency: priority and consistency, but not Wegner's third criterion-exclusivity. In this study we tested with virtual hand illusion, whether exclusivity (participant is certain who was controlling the virtual effector) can also be established. We manipulated two factors: exclusivity and consistency. Our results show that on both ownership and agency judgments, consistency and exclusivity produced main effects, and the two effects interacted in an underadditive fashion. Taken together, these findings provide support for our suggestion to extend Wegner's agency theory to explain perceived body ownership, which in turn provides an integrative framework for interpreting constraints on ownership and agency illusions.
Optical Emission Characterization of High-Power Hall Thruster Wear
NASA Technical Reports Server (NTRS)
WIlliams, George J.; Kamhawi, Hani
2013-01-01
Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power operation of the NASA 300M Hall-effect thruster. Actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, discharge current and magnetic field strength. The boron signals are shown to trend with discharge current and show weak dependence on discharge voltage. The trends are consistent with data previously collected on the NASA 300M and NASA 457M thrusters but are different from conventional wisdom.
Use of MODIS Snow-Cover Maps for Detecting Snowmelt Trends in North America
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; Riggs, George A.; Robinson, David A.; Hoon-Starr, Jody A.
2012-01-01
Research has shown that the snow season in the Northern Hemisphere has been getting shorter in recent decades, consistent with documented global temperature increases. Specifically, the snow is melting earlier in the spring allowing for a longer growing season and associated land-cover changes. Here we focus on North America. Using the Moderate-Resolution Imaging Radiometer (MODIS) cloud-gap-filled standard snow-cover data product we can detect a trend toward earlier spring snowmelt in the approx 12 years since the MODIS launch. However, not all areas in North America show earlier spring snowmelt over the study period. We show examples of springtime snowmelt over North America, beginning in March 2000 and extending through the winter of 2012 for all of North America, and for various specific areas such as the Wind River Range in Wyoming and in the Catskill Mountains in New York. We also compare our approx 12-year trends with trends derived from the Rutgers Global Snow Lab snow cover climate-data record.
NASA Astrophysics Data System (ADS)
Pandolfi, Marco; Alastuey, Andrés; Pérez, Noemi; Reche, Cristina; Castro, Iria; Shatalov, Victor; Querol, Xavier
2016-09-01
In this work for the first time data from two twin stations (Barcelona, urban background, and Montseny, regional background), located in the northeast (NE) of Spain, were used to study the trends of the concentrations of different chemical species in PM10 and PM2.5 along with the trends of the PM10 source contributions from the positive matrix factorization (PMF) model. Eleven years of chemical data (2004-2014) were used for this study. Trends of both species concentrations and source contributions were studied using the Mann-Kendall test for linear trends and a new approach based on multi-exponential fit of the data. Despite the fact that different PM fractions (PM2.5, PM10) showed linear decreasing trends at both stations, the contributions of specific sources of pollutants and of their chemical tracers showed exponential decreasing trends. The different types of trends observed reflected the different effectiveness and/or time of implementation of the measures taken to reduce the concentrations of atmospheric pollutants. Moreover, the trends of the contributions of specific sources such as those related with industrial activities and with primary energy consumption mirrored the effect of the financial crisis in Spain from 2008. The sources that showed statistically significant downward trends at both Barcelona (BCN) and Montseny (MSY) during 2004-2014 were secondary sulfate, secondary nitrate, and V-Ni-bearing source. The contributions from these sources decreased exponentially during the considered period, indicating that the observed reductions were not gradual and consistent over time. Conversely, the trends were less steep at the end of the period compared to the beginning, thus likely indicating the attainment of a lower limit. Moreover, statistically significant decreasing trends were observed for the contributions to PM from the industrial/traffic source at MSY (mixed metallurgy and road traffic) and from the industrial (metallurgy mainly) source at BCN. These sources were clearly linked with anthropogenic activities, and the observed decreasing trends confirmed the effectiveness of pollution control measures implemented at European or regional/local levels. Conversely, at regional level, the contributions from sources mostly linked with natural processes, such as aged marine and aged organics, did not show statistically significant trends. The trends observed for the PM10 source contributions reflected the trends observed for the chemical tracers of these pollutant sources well.
Searching for evidence of changes in extreme rainfall indices in the Central Rift Valley of Ethiopia
NASA Astrophysics Data System (ADS)
Muluneh, Alemayehu; Bewket, Woldeamlak; Keesstra, Saskia; Stroosnijder, Leo
2017-05-01
Extreme rainfall events have serious implications for economic sectors with a close link to climate such as agriculture and food security. This holds true in the Central Rift Valley (CRV) of Ethiopia where communities rely on highly climate-sensitive rainfed subsistence farming for livelihoods. This study investigates changes in ten extreme rainfall indices over a period of 40 years (1970-2009) using 14 meteorological stations located in the CRV. The CRV consists of three landscape units: the valley floor, the escarpments, and the highlands all of which are considered in our data analysis. The Belg (March-May) and Kiremt (June-September) seasons are also considered in the analysis. The Mann-Kendall test was used to detect trends of the rainfall indices. The results indicated that at the annual time scale, more than half (57 %) of the stations showed significant trends in total wet-day precipitation (PRCPTOT) and heavy precipitation days (R10mm). Only 7-35 % of stations showed significant trends, for the other rainfall indices. Spatially, the valley floor received increasing annual rainfall while the escarpments and the highlands received decreasing annual rainfall over the last 40 years. During Belg, 50 % of the stations showed significant increases in the maximum number of consecutive dry days (CDD) in all parts of the CRV. However, most other rainfall indices during Belg showed no significant changes. During Kiremt, considering both significant and non-significant trends, almost all rainfall indices showed an increasing trend in the valley floor and a decreasing trend in the escarpment and highlands. During Belg and Kiremt, the CDD generally showed increasing tendency in the CRV.
Climate change in the Fertile Crescent and implications of the recent Syrian drought
Kelley, Colin P.; Mohtadi, Shahrzad; Cane, Mark A.; Seager, Richard; Kushnir, Yochanan
2015-01-01
Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. We show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system. PMID:25733898
Climate change in the Fertile Crescent and implications of the recent Syrian drought.
Kelley, Colin P; Mohtadi, Shahrzad; Cane, Mark A; Seager, Richard; Kushnir, Yochanan
2015-03-17
Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. We show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system.
Climate change in the Fertile Crescent and implications of the recent Syrian drought
NASA Astrophysics Data System (ADS)
Kelley, Colin P.; Mohtadi, Shahrzad; Cane, Mark A.; Seager, Richard; Kushnir, Yochanan
2015-03-01
Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. We show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system.
NASA Astrophysics Data System (ADS)
Kuwae, Michinobu; Yamamoto, Masanobu; Sagawa, Takuya; Ikehara, Ken; Irino, Tomohisa; Takemura, Keiji; Takeoka, Hidetaka; Sugimoto, Takashige
2017-12-01
Paleorecords of pelagic fish abundance could better define the nature of fishery productivity dynamics and help understand responses of pelagic fish stocks to long-term climate changes. We report a high-resolution record of sardine and anchovy scale deposition rates (SDRs) from Beppu Bay, Southwest Japan, showing multidecadal and centennial variability in the abundance of Japanese sardine and Japanese anchovy during the last 2850 years. Variations in the sardine SDR showed periodicities at ∼50, ∼100, and ∼300 yr, while variations in the anchovy SDR showed periodicities at ∼30 and ∼260 yr. Comparisons between and correlation analyses of the time series of the sardine and anchovy SDRs demonstrate that there is not a consistent out-of-phase relationship during the last 2850 years. This indicates that the multidecadal alternations in the sardine and anchovy populations commonly seen in the 20th century did not necessarily occur during earlier periods. The Japanese sardine SDR record shows a long-term decreasing trend in the amplitudes of the multidecadal to centennial fluctuations. This decreasing trend may have resulted from an increasing trend in the winter sea surface temperature in the western North Pacific. The multicentennial variability in sardine abundance during the last millennium is consistent with the variabilities in the abnormal snow index in East Asia and the American tree ring-based Pacific Decadal Oscillation index, suggesting a basin-wide or regional climate-marine ecosystem linkage.
NASA Astrophysics Data System (ADS)
Zeng, Rongping; Badano, Aldo; Myers, Kyle J.
2017-04-01
We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.
Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey
2010-01-01
In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.
Dick, Robert B.; Lowe, Brian; Ming-Lun, Lu; Krieg, Edward F.
2015-01-01
Objective Report trends for risk of musculoskeletal disorders (MSDs). Methods Three QWL surveys examine the risk factors for MSDs. Results Findings similar for several risk factors, but differences across the reporting years may reflect economic conditions. 2010 respondent numbers were reduced, some risk factors had pattern changes and there were gender and age differences. Trend analysis showed most significant changes were for the “Work Fast” risk factor. New 2010 “Physical Effort” item showed gender differences and items reflective of total worker health showed strong associations with “Back Pain” and “Pain in Arms.” Conclusions Intervention strategies should focus on physical exposures and psychosocial risk factors (work stress, safety climate, job satisfaction, supervisor support, work fast, work freedom, work time) that have been consistently related to reports of MSDs. Economic conditions will influence some psychosocial risk factors. PMID:26247646
Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region
NASA Astrophysics Data System (ADS)
Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam
2018-01-01
We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.
How much have California winters warmed over the last century?
NASA Astrophysics Data System (ADS)
Wang, K. J.; Williams, A. P.; Lettenmaier, D. P.
2017-09-01
Extraordinarily warm 2013-2014 and 2014-2015 winter temperatures in California accompanied by drought conditions contributed to low snow accumulations and stressed water resources, giving rise to the question: how much has California's climate warmed over the last century? We examine long-term trends in maximum (
NASA Astrophysics Data System (ADS)
Sun, Bo
2018-03-01
This study investigates the variations in the tropical ascending branches (TABs) of Hadley circulations (HCs) during past decades, using a variety of reanalysis datasets. The northern tropical ascending branch (NTAB) and the southern tropical ascending branch (STAB), which are defined as the ascending branches of the Northern Hemisphere HC and Southern Hemisphere HC, respectively, are identified and analyzed regarding their trends and variability. The reanalysis datasets consistently show a persistent increase in STAB during past decades, whereas they show less consistency in NTAB regarding its decadalto multidecadal variability, which generally features a decreasing trend. These asymmetric trends in STAB and NTAB are attributed to asymmetric trends in the tropical SSTs. The relationship between STAB/NTAB and tropical SSTs is further examined regarding their interannual and decadal- to multidecadal variability. On the interannual time scale, the STAB and NTAB are essentially modulated by the eastern-Pacific type of ENSO, with a strengthened (weakened) STAB (NTAB) under an El Niño condition. On the decadal- to multidecadal time scale, the variability of STAB and NTAB is closely related to the southern tropical SSTs and the meridional asymmetry of global tropical SSTs, respectively. The tropical eastern Pacific SSTs (southern tropical SSTs) dominate the tropical SST-NTAB/STAB relationship on the interannual (decadal- to multidecadal) scale, whereas the NTAB is a passive factor in this relationship. Moreover, a cross-hemispheric relationship between the NTAB/STAB and the HC upper-level meridional winds is revealed.
Suicidal ideation and Attempts in North American School-Based Surveys
Saewyc, Elizabeth M.; Skay, Carol L.; Hynds, Patricia; Pettingell, Sandra; Bearinger, Linda H.; Resnick, Michael D.; Reis, Elizabeth
2008-01-01
This study explored the prevalence, disparity, and cohort trends in suicidality among bisexual teens vs. heterosexual and gay/lesbian peers in 9 population-based high school surveys in Canada and the U.S. Multivariate logistic regressions were used to calculate age-adjusted odds ratios separately by gender; 95% confidence intervals tested cohort trends where surveys were repeated over multiple years. Results showed remarkable consistency: bisexual youth reported higher odds of recent suicidal ideation and attempts vs. heterosexual peers, with increasing odds in most surveys over the past decade. Results compared to gay and lesbian peers were mixed, with varying gender differences in prevalence and disparity trends in the different regions. PMID:19835039
Trend Extraction in Functional Data of Amplitudes of R and T Waves in Exercise Electrocardiogram
NASA Astrophysics Data System (ADS)
Cammarota, Camillo; Curione, Mario
The amplitudes of R and T waves of the electrocardiogram (ECG) recorded during the exercise test show both large inter- and intra-individual variability in response to stress. We analyze a dataset of 65 normal subjects undergoing ambulatory test. We model the dataset of R and T series in the framework of functional data, assuming that the individual series are realizations of a non-stationary process, centered at the population trend. We test the time variability of this trend computing a simultaneous confidence band and the zero crossing of its derivative. The analysis shows that the amplitudes of the R and T waves have opposite responses to stress, consisting respectively in a bump and a dip at the early recovery stage. Our findings support the existence of a relationship between R and T wave amplitudes and respectively diastolic and systolic ventricular volumes.
Reconstruction of March-June precipitation from tree rings in central Liaoning, China
NASA Astrophysics Data System (ADS)
Wang, Yanchao; Liu, Yu
2017-11-01
A dendrochronological profile was generated from Chinese pines ( Pinus tabulaeformis Carr.) in the Qianshan Mountains in northeastern China. Based on correlation analyses, the pattern of precipitation from March to June ( P 36 ) was reconstructed using a simple linear model, which explained 42.7% of the total variance in observed precipitation from 1951 to 2012. The reconstructed P 36 series revealed a consistently increasing trend in precipitation during the twentieth century in the Qianshan Mountains. The reconstructed data showed trends that were similar to those in the variation in trends for March-June precipitation observed at the Shenyang station, the reconstructed January-May precipitation trends in Shenyang City, and the reconstructed average June-September relative humidity for Yiwulü Mountain. The reconstructed data also showed good agreement with the droughts reported in historical documents and recorded by meteorological stations in Liaoning. Spatial correlation analyses show that the reconstructed data reflect the variability in precipitation that occurs over much of northeastern China. In addition, our reconstruction showed a significant periodicity. The significant correlations between the reconstructed P 36 and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and sunspot numbers indicate that precipitation variability in the Qianshan Mountain region is probably driven by extensive atmosphere-sea interactions and solar activities.
Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.; Baumgarten, G.
2009-11-01
Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.
Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.; Baumgarten, G.
2009-01-01
Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.
Selectivity trend of gas separation through nanoporous graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hongjun; Chen, Zhongfang; Dai, Sheng
2015-04-15
By means of molecular dynamics (MD) simulations, we demonstrate that porous graphene can efficiently separate gases according to their molecular sizes. The flux sequence from the classical MD simulation is H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4}, which generally follows the trend in the kinetic diameters. This trend is also confirmed from the fluxes based on the computed free energy barriers for gas permeation using the umbrella sampling method and kinetic theory of gases. Both brute-force MD simulations and free-energy calcualtions lead to the flux trend consistent with experiments. Case studies of two compositions of CO{sub 2}/N{sub 2} mixtures further demonstrate themore » separation capability of nanoporous graphene. - Graphical abstract: Classical molecular dynamics simulations show the flux trend of H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4} for their permeation through a porous graphene, in excellent agreement with a recent experiment. - Highlights: • Classical MD simulations show the flux trend of H{sub 2}>CO{sub 2}≫N{sub 2}>Ar>CH{sub 4} for their permeation through a porous graphene. • Free energy calculations yield permeation barriers for those gases. • Selectivities for several gas pairs are estimated from the free-energy barriers and the kinetic theory of gases. • The selectivity trend is in excellent agreement with a recent experiment.« less
Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.
Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A
2017-01-01
A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.
Analysis of ground-water data for selected wells near Holloman Air Force Base, New Mexico, 1950-95
Huff, G.F.
1996-01-01
Ground-water-level, ground-water-withdrawal, and ground- water-quality data were evaluated for trends. Holloman Air Force Base is located in the west-central part of Otero County, New Mexico. Ground-water-data analyses include assembly and inspection of U.S. Geological Survey and Holloman Air Force Base data, including ground-water-level data for public-supply and observation wells and withdrawal and water-quality data for public-supply wells in the area. Well Douglas 4 shows a statistically significant decreasing trend in water levels for 1972-86 and a statistically significant increasing trend in water levels for 1986-90. Water levels in wells San Andres 5 and San Andres 6 show statistically significant decreasing trends for 1972-93 and 1981-89, respectively. A mixture of statistically significant increasing trends, statistically significant decreasing trends, and lack of statistically significant trends over periods ranging from the early 1970's to the early 1990's are indicated for the Boles wells and wells near the Boles wells. Well Boles 5 shows a statistically significant increasing trend in water levels for 1981-90. Well Boles 5 and well 17S.09E.25.343 show no statistically significant trends in water levels for 1990-93 and 1988-93, respectively. For 1986-93, well Frenchy 1 shows a statistically significant decreasing trend in water levels. Ground-water withdrawal from the San Andres and Douglas wells regularly exceeded estimated ground-water recharge from San Andres Canyon for 1963-87. For 1951-57 and 1960-86, ground-water withdrawal from the Boles wells regularly exceeded total estimated ground-water recharge from Mule, Arrow, and Lead Canyons. Ground-water withdrawal from the San Andres and Douglas wells and from the Boles wells nearly equaled estimated ground- water recharge for 1989-93 and 1986-93, respectively. For 1987- 93, ground-water withdrawal from the Escondido well regularly exceeded estimated ground-water recharge from Escondido Canyon, and ground-water withdrawal from the Frenchy wells regularly exceeded total estimated ground-water recharge from Dog and Deadman Canyons. Water-quality samples were collected from selected Douglas, San Andres, and Boles public-supply wells from December 1994 to February 1995. Concentrations of dissolved nitrate show the most consistent increases between current and historical data. Current concentrations of dissolved nitrate are greater than historical concentrations in 7 of 10 wells.
Observed Trend in Surface Wind Speed Over the Conterminous USA and CMIP5 Simulations
NASA Technical Reports Server (NTRS)
Hashimoto, Hirofumi; Nemani, Ramakrishna R.
2016-01-01
There has been no spatial surface wind map even over the conterminous USA due to the difficulty of spatial interpolation of wind field. As a result, the reanalysis data were often used to analyze the statistics of spatial pattern in surface wind speed. Unfortunately, no consistent trend in wind field was found among the available reanalysis data, and that obstructed the further analysis or projection of spatial pattern of wind speed. In this study, we developed the methodology to interpolate the observed wind speed data at weather stations using random forest algorithm. We produced the 1-km daily climate variables over the conterminous USA from 1979 to 2015. The validation using Ameriflux daily data showed that R2 is 0.59. Existing studies have found the negative trend over the Eastern US, and our study also showed same results. However, our new datasets also revealed the significant increasing trend over the southwest US especially from April to June. The trend in the southwestern US represented change or seasonal shift in North American Monsoon. Global analysis of CMIP5 data projected the decrease trend in mid-latitude, while increase trend in tropical region over the land. Most likely because of the low resolution in GCM, CMIP5 data failed to simulate the increase trend in the southwest US, even though it was qualitatively predicted that pole ward shift of anticyclone help the North American Monsoon.
Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations
Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.
2010-01-01
Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification.
Treatment of Female Sexual Dysfunction Through Symbolic Modeling
ERIC Educational Resources Information Center
Nemetz, Georgia H.; And Others
1978-01-01
Clients (N=16) were randomly assigned to two groups receiving either individual or group treatment. Treatment consisted of relaxation training followed by viewing 45 videotaped vignettes depicting graduated sexual behaviors. Improvement remained stable through a one-year follow-up. Control clients showed no improvement and trends toward…
Continuity of Treatment: Toilet Training in Multiple Community Settings.
ERIC Educational Resources Information Center
Dunlap, Glen; And Others
1984-01-01
Results showed no consistent trends toward acquisition when training for severely disabled autistic Ss (5-7 years old) was provided in only some settings. However, the continuity approach which coordinated all of the children's daily activities produced immediate and steady gains in successful toileting. (Author)
Lai, Foon Yin; O'Brien, Jake W; Thai, Phong K; Hall, Wayne; Chan, Gary; Bruno, Raimondo; Ort, Christoph; Prichard, Jeremy; Carter, Steve; Anuj, Shalona; Kirkbride, K Paul; Gartner, Coral; Humphries, Melissa; Mueller, Jochen F
2016-10-15
Wastewater analysis, or wastewater-based epidemiology, has become a common tool to monitor trends of illicit drug consumption around the world. In this study, we examined trends in cocaine, 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine consumption by measuring their residues in wastewater from two wastewater treatment plants in Australia (specifically, an urban and a rural catchment, both in South East Queensland) between 2009 and 2015. With direct injection of the samples, target analytes were identified and quantified using liquid chromatography-mass spectrometry. Cocaine and MDMA residues and metabolites were mainly quantifiable in the urban catchment while methamphetamine residues were consistently detected in both urban and rural catchments. There was no consistent trend in the population normalised mass loads observed for cocaine and MDMA at the urban site between 2009 and 2015. In contrast, there was a five-fold increase in methamphetamine consumption over this period in this catchment. For methamphetamine consumption, the rural area showed a very similar trend as the urban catchment starting at a lower baseline. The observed increase in per capita loads of methamphetamine via wastewater analysis over the past six years in South East Queensland provides objective evidence for increased methamphetamine consumption in the Australian population while the use of other illicit stimulants remained relatively stable. Copyright © 2016 Elsevier B.V. All rights reserved.
Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.
2009-01-01
Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbons, Robert D., E-mail: rdg@uchicago.edu; Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com; Prucha, Christopher P., E-mail: cprucha@wm.com
2014-09-15
Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of themore » predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.« less
Eastaugh, Chris S; Pötzelsberger, Elisabeth; Hasenauer, Hubert
2011-03-01
The aim of this paper is to determine whether a detectable impact of climate change is apparent in Austrian forests. In regions of complex terrain such as most of Austria, climatic trends over the past 50 years show marked geographic variability. As climate is one of the key drivers of forest growth, a comparison of growth characteristics between regions with different trends in temperature and precipitation can give insights into the impact of climatic change on forests. This study uses data from several hundred climate recording stations, interpolated to measurement sites of the Austrian National Forest Inventory (NFI). Austria as a whole shows a warming trend over the past 50 years and little overall change in precipitation. The warming trends, however, vary considerably across certain regions and regional precipitation trends vary widely in both directions, which cancel out on the national scale These differences allow the delineation of 'climatic change zones' with internally consistent climatic trends that differ from other zones. This study applies the species-specific adaptation of the biogeochemical model BIOME-BGC to Norway spruce (Picea abies (L.) Karst) across a range of Austrian climatic change zones, using input data from a number of national databases. The relative influence of extant climate change on forest growth is quantified, and compared with the far greater impact of non-climatic factors. At the national scale, climate change is found to have negligible effect on Norway spruce productivity, due in part to opposing effects at the regional level. The magnitudes of the modeled non-climatic influences on aboveground woody biomass increment increases are consistent with previously reported values of 20-40 kg of added stem carbon sequestration per kilogram of additional nitrogen deposition, while climate responses are of a magnitude difficult to detect in NFI data.
NASA Astrophysics Data System (ADS)
Chen, Yunlong; Shan, Xiujuan; Jin, Xianshi; Johannessen, Arne; Yang, Tao; Dai, Fangqun
2017-07-01
The central and southern Yellow Sea is an important overwintering ground for many fish species in the Bohai Sea and Yellow Sea. For better understanding the status of the fish community after years of heavy exploitation, variations in fish community structure and diversity were analyzed using data from bottom trawls during 2003-2015. Five fish assemblage indices all showed fluctuations without clear trends from 2003 to 2015, yet there were strong positive and significant correlations (P < 0.05) among them. The top-five dominant species accounted for a high weight percentage (49.7%-82.1%) in the annual fish catch. Multivariate analysis showed that two year groups could be pooled for the fish community: Group I consisted of the years 2006, 2007, 2008 and 2015, while Group II consisted of the years 2003, 2004, 2005, 2009, 2010 and 2014; the groups aggregated with 63.71% similarity, indicating a high level of similarity among all years. The multivariate dispersion values were 1.455 and 0.818 for Groups I and II, respectively, indicating greater variances in fish assemblage structure in Group I than that in Group II. Similarity of percentage analysis demonstrated that the average similarities for Group I and Group II were 71.58% and 67.51%, respectively. Size-spectra analysis revealed no consistent trend in the intercept and slope (P > 0.05); there were also no significant differences between the slope of the size-spectra and fishing effort. The catch per unit effort and mean individual weight analyses of the whole fish assemblage both showed a significantly decreasing trend over time. Overall, the results showed that the fish community structure in the central and southern Yellow Sea was relatively stable from 2003 to 2015 and the study could be used as a reference for supporting ecosystem-based fishery management.
Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration
Zhang, Ke; Kimball, John S.; Nemani, Ramakrishna R.; Running, Steven W.; Hong, Yang; Gourley, Jonathan J.; Yu, Zhongbo
2015-01-01
Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth’s climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982–2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr−2 (P < 0.001) over the 32-year period, mainly driven by vegetation greening (0.018% per year; P < 0.001) and rising atmosphere moisture demand (0.75 mm yr−2; P = 0.016). Our results indicate that reduced ET growth between 1998 and 2008 was an episodic phenomenon, with subsequent recovery of the ET growth rate after 2008. Terrestrial precipitation also shows a positive trend of 0.66 mm yr−2 (P = 0.08) over the same period consistent with expected water cycle intensification, but this trend is lower than coincident increases in evaporative demand and ET, implying a possibility of cumulative water supply constraint to ET. Continuation of these trends will likely exacerbate regional drought-induced disturbances, especially during regional dry climate phases associated with strong El Niño events. PMID:26514110
Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration.
Zhang, Ke; Kimball, John S; Nemani, Ramakrishna R; Running, Steven W; Hong, Yang; Gourley, Jonathan J; Yu, Zhongbo
2015-10-30
Recent studies showed that anomalous dry conditions and limited moisture supply roughly between 1998 and 2008, especially in the Southern Hemisphere, led to reduced vegetation productivity and ceased growth in land evapotranspiration (ET). However, natural variability of Earth's climate system can degrade capabilities for identifying climate trends. Here we produced a long-term (1982-2013) remote sensing based land ET record and investigated multidecadal changes in global ET and underlying causes. The ET record shows a significant upward global trend of 0.88 mm yr(-2) (P < 0.001) over the 32-year period, mainly driven by vegetation greening (0.018% per year; P < 0.001) and rising atmosphere moisture demand (0.75 mm yr(-2); P = 0.016). Our results indicate that reduced ET growth between 1998 and 2008 was an episodic phenomenon, with subsequent recovery of the ET growth rate after 2008. Terrestrial precipitation also shows a positive trend of 0.66 mm yr(-2) (P = 0.08) over the same period consistent with expected water cycle intensification, but this trend is lower than coincident increases in evaporative demand and ET, implying a possibility of cumulative water supply constraint to ET. Continuation of these trends will likely exacerbate regional drought-induced disturbances, especially during regional dry climate phases associated with strong El Niño events.
Climate change in the Fertile Crescent and implications of the recent Syrian drought
Kelley, Colin P.; Mohtadi, Shahrzad; Cane, Mark A.; ...
2015-03-02
Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. In this paper, we show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Easternmore » Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Finally, analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system.« less
NASA Technical Reports Server (NTRS)
Entzian, G.; Grasnick, K. H.; Taubenheim, J.
1989-01-01
The long term trends (least square linear regression with time) of ozone content at seven European, seven North American, three Japanese and two tropical stations during 21 years (1964 to 1984) are analyzed. In all regions negative trends are observed during the 1970s, but are partly compensated by limited periods of positive trends during the late 1960s and late 1970s. Solely the North American ozone data show negative trends in all 10 year periods. When the long term ozone trends are evaluated for each month of the year separately, a seasonal variation is revealed, which in Europe and North America has largest negative trends in late winter and spring. While in Europe the negative trends in winter/spring are partly compensated by positive trends in summer, in North America the summer values reach only zero, retaining the significant negative trend in annual mean values. In contrast to the antarctic ozone hole, the spring reduction of ozone in Europe and in North America is associated with stratospheric temperatures increasing in the analyzed period and therefore is consistent with the major natural ozone production and loss processes.
NASA Astrophysics Data System (ADS)
Biederman, Joel A.; Somor, Andrew J.; Harpold, Adrian A.; Gutmann, Ethan D.; Breshears, David D.; Troch, Peter A.; Gochis, David J.; Scott, Russell L.; Meddens, Arjan J. H.; Brooks, Paul D.
2015-12-01
Recent bark beetle epidemics have caused regional-scale tree mortality in many snowmelt-dominated headwater catchments of western North America. Initial expectations of increased streamflow have not been supported by observations, and the basin-scale response of annual streamflow is largely unknown. Here we quantified annual streamflow responses during the decade following tree die-off in eight infested catchments in the Colorado River headwaters and one nearby control catchment. We employed three alternative empirical methods: (i) double-mass comparison between impacted and control catchments, (ii) runoff ratio comparison before and after die-off, and (iii) time-trend analysis using climate-driven linear models. In contrast to streamflow increases predicted by historical paired catchment studies and recent modeling, we did not detect streamflow changes in most basins following die-off, while one basin consistently showed decreased streamflow. The three analysis methods produced generally consistent results, with time-trend analysis showing precipitation was the strongest predictor of streamflow variability (R2 = 74-96%). Time-trend analysis revealed post-die-off streamflow decreased in three catchments by 11-29%, with no change in the other five catchments. Although counter to initial expectations, these results are consistent with increased transpiration by surviving vegetation and the growing body of literature documenting increased snow sublimation and evaporation from the subcanopy following die-off in water-limited, snow-dominated forests. The observations presented here challenge the widespread expectation that streamflow will increase following beetle-induced forest die-off and highlight the need to better understand the processes driving hydrologic response to forest disturbance.
NASA Astrophysics Data System (ADS)
Jiang, C.; Ryu, Y.; Fang, H.
2016-12-01
Proper usage of global satellite LAI products requires comprehensive evaluation. To address this issue, the Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) subgroup proposed a four-stage validation hierarchy. During the past decade, great efforts have been made following this validation framework, mainly focused on absolute magnitude, seasonal trajectory, and spatial pattern of those global satellite LAI products. However, interannual variability and trends of global satellite LAI products have been investigated marginally. Targeting on this gap, we made an intercomparison between seven global satellite LAI datasets, including four short-term ones: MODIS C5, MODIS C6, GEOV1, MERIS, and three long-term products ones: LAI3g, GLASS, and GLOBMAP. We calculated global annual LAI time series for each dataset, among which we found substantial differences. During the overlapped period (2003 - 2011), MODIS C5, GLASS and GLOBMAP have positive correlation (r > 0.6) between each other, while MODIS C6, GEOV1, MERIS, and LAI3g are highly consistent (r > 0.7) in interannual variations. However, the previous three datasets show negative trends, all of which use MODIS C5 reflectance data, whereas the latter four show positive trends, using MODIS C6, SPOT/VGT, ENVISAT/MERIS, and NOAA/AVHRR, respectively. During the pre-MODIS era (1982 - 1999), the three AVHRR-based datasets (LAI3g, GLASS and GLOBMAP) agree well (r > 0.7), yet all of them show oscillation related with NOAA platform changes. In addition, both GLASS and GLOBMAP show clear cut-points around 2000 when they move from AVHRR to MODIS. Such inconsistency is also visible for GEOV1, which uses SPOT-4 and SPOT-5 before and after 2002. We further investigate the map-to-map deviations among these products. This study highlights that continuous sensor calibration and cross calibration are essential to obtain reliable global LAI time series.
NASA Technical Reports Server (NTRS)
Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Loyola, Diego
2018-01-01
We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (approximately 1996 globally and approximately 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 percent decade(exp. -1) that are barely statistically significant at the 2 Sigma uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 percent(exp.-1), while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.
NASA Astrophysics Data System (ADS)
Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego
2018-02-01
We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend analysis. Consequently, the retrieved trends can be only considered to be at the brink of becoming significant, but there are indications that we are about to emerge into the expected recovery phase. However, the recent trends are still considerably masked by the observed large year-to-year dynamical variability in total ozone.
Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.
Krishnaswamy, Jagdish; John, Robert; Joseph, Shijo
2014-01-01
Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture stresses. © 2013 John Wiley & Sons Ltd.
Assessing the Suitability of Historical PM(2.5) Element Measurements for Trend Analysis.
Hyslop, Nicole P; Trzepla, Krystyna; White, Warren H
2015-08-04
The IMPROVE (Interagency Monitoring of Protected Visual Environments) network has characterized fine particulate matter composition at locations throughout the United States since 1988. A main objective of the network is to evaluate long-term trends in aerosol concentrations. Measurements inevitably advance over time, but changes in measurement technique have the potential to confound the interpretation of long-term trends. Problems of interpretation typically arise from changing biases, and changes in bias can be difficult to identify without comparison data that are consistent throughout the measurement series, which rarely exist. We created a consistent measurement series for exactly this purpose by reanalyzing the 15-year archives (1995-2009) of aerosol samples from three sites - Great Smoky Mountains National Park, Mount Rainier National Park, and Point Reyes National Seashore-as single batches using consistent analytical methods. In most cases, trend estimates based on the original and reanalysis measurements are statistically different for elements that were not measured above the detection limit consistently over the years (e.g., Na, Cl, Si, Ti, V, Mn). The original trends are more reliable for elements consistently measured above the detection limit. All but one of the 23 site-element series with detection rates >80% had statistically indistinguishable original and reanalysis trends (overlapping 95% confidence intervals).
Reciprocity and Dependency Considerations in Adult Donating and Verbal Judgments.
ERIC Educational Resources Information Center
Peterson, Lizette; McCommis, Bruce
The norms of social responsibility and reciprocity govern altruistic behavior. Children and adults show a consistent developmental trend in comparisons of their responses to positive reciprocal situations and their subsequent altruism. Research indicates, however, that children, given the choice to behaviorally aid a needy individual, choose more…
NASA Astrophysics Data System (ADS)
Jacobson, Carl E.; Dawson, M. Robert
1995-08-01
The Pelona, Orocopia, and Rand Schists (POR schists) of southern California and southwesternmost Arizona are late Mesozoic or early Tertiary subduction complexes that underlie Precambrian to Mesozoic continental basement along the low-angle Vincent-Chocolate Mountains (VCM) fault system. The VCM faults are often considered to be remnants of the original subduction zone, but recent work indicates that many have undergone substantial postsubduction reactivation. In the Orocopia Mountains, for example, the Orocopia Schist exhibits an exceptionally complex structural and metamorphic history due to multiple periods of movement along the Orocopia fault. Structures in the schist include isoclinal folds with axial-planar schistosity, open-to-tight folds that fold schistosity, penetrative stretching lineations, and crenulation lineations, all of which show a nearly 360° range in trend. Folds and lineations that trend approximately NE-SW occur throughout the schist and are thought to be part of an early phase of deformation related to subduction. Folds of this orientation show no consistent vergence. Folds and lineations that trend approximately NW-SE are concentrated near the Orocopia fault and are interpreted to have formed during exhumation of the schist. The NW-SE trending folds, and shear indicators in late-stage mylonite at the top of the schist, consistently verge NE. The exhumation event culminated in emplacement of the schist against brittlely deformed upper plate. Exhumation of the Orocopia Schist was accompanied by retrograde replacement of garnet, biotite, epidote, and calcic amphibole by chlorite, calcite, and sericite. Matrix amphibole has a lower Na/Al ratio than amphibole inclusions in albite, consistent with a late-stage decrease in pressure. As NE vergence in the Orocopia Mountains is associated with exhumation of the schist, the NE movement along other segments of the VCM fault may also be late and therefore have no bearing on the facing direction of the VCM subduction zone, contrary to past interpretations.
NASA Astrophysics Data System (ADS)
Snyder, C. D.; Jastram, J. D.; Hitt, N. P.; Woffod, J.; Rice, K. C.
2012-12-01
Global climate-change models predict warmer stream temperatures, but there have been few studies that document such effects on stream communities. In Shenandoah National Park, Virginia, long-term temperature records indicate that stream temperatures show an increasing trend over the last 20 years and especially over the last 10 years. Stream temperatures have increased apparently due to atmospheric warming (i.e., stream temperatures are strongly correlated with regional air temperature patterns). Across 14 monitored stream sites, the median increase in maximum annual water temperature was 0.32oC per year for the 10-yr period between 2000 and 2009, and all 14 sites had positive trend slopes. Moreover, in contrast to water-chemistry trends, temperature trends showed no spatial structure and were consistent throughout the park. The observed warming is consistent with global warming projections, but other factors, including the North Atlantic Oscillation and forest defoliation due to gypsy moth (Lepidoptera: Lymantriidae), also may have contributed to warming trends. We summarized benthic macroinvertebrate community composition and structure from samples collected at 24 stream sites over the last 20 years and evaluated temporal patterns in the context of observed temperature trends. We found that a substantial amount of temporal variation in both taxonomic composition and community structure could be explained by temperature trends, even after accounting for water-chemistry changes. We observed significant declines in community diversity as well as a decline in the abundance of several stonefly (Plecoptera) taxa, a cold-water-dependent taxonomic group. We hypothesize that temperature-induced changes in the diversity and composition of macroinvertebrate communities could cascade to other faunal groups and other parts of the watershed. For instance, reduced abundances of stoneflies, an important component of the shredder functional group, may lead to reduced export of fine particulate organic matter from headwaters, disrupting food webs and reducing productivity to stream reaches farther downstream.
NASA Technical Reports Server (NTRS)
French, V. (Principal Investigator)
1982-01-01
An evaluation was made of Thompson-Type models which use trend terms (as a surrogate for technology), meteorological variables based on monthly average temperature, and total precipitation to forecast and estimate corn yields in Iowa, Illinois, and Indiana. Pooled and unpooled Thompson-type models were compared. Neither was found to be consistently superior to the other. Yield reliability indicators show that the models are of limited use for large area yield estimation. The models are objective and consistent with scientific knowledge. Timely yield forecasts and estimates can be made during the growing season by using normals or long range weather forecasts. The models are not costly to operate and are easy to use and understand. The model standard errors of prediction do not provide a useful current measure of modeled yield reliability.
Satellite-Based Evidence for Shrub and Graminoid Tundra Expansion in Northern Quebec from 1986-2010
NASA Technical Reports Server (NTRS)
McManus, K. M.; Morton, D. C.; Masek, J. G.; Wang, D.; Sexton, J. O.; Nagol, J.; Ropars, P.; Boudreau, S.
2012-01-01
Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air-photo studies have documented recent changes in high-latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24-year (1986-2010) Landsat time series in a latitudinal transect across the boreal forest-tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last forty years. Using a per-pixel (30 m) trend analysis, 30% of the observable (cloud-free) land area experienced a significant (p < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak-summer conditions. The average NDVI trend (0.007/yr) corresponds to a leaf-area index (LAI) increase of 0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer (MODIS). Across the entire transect, the area-averaged LAI increase was 0.2 during 1986-2010. A higher area-averaged LAI change (0.3) within the shrub-tundra portion of the transect represents a 20-60% relative increase in LAI during the last two decades. Our Landsat-based analysis subdivides the overall high-latitude greening trend into changes in peak-summer greenness by cover type. Different responses within and among shrub, graminoid, and tree-dominated cover types in this study indicate important fine-scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low-biomass vegetation types over multi-decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform.
Agriculturally Relevant Climate Extremes and Their Trends in the World's Major Growing Regions
NASA Astrophysics Data System (ADS)
Zhu, Xiao; Troy, Tara J.
2018-04-01
Climate extremes can negatively impact crop production, and climate change is expected to affect the frequency and severity of extremes. Using a combination of in situ station measurements (Global Historical Climatology Network's Daily data set) and multiple other gridded data products, a derived 1° data set of growing season climate indices and extremes is compiled over the major growing regions for maize, wheat, soybean, and rice for 1951-2006. This data set contains growing season climate indices that are agriculturally relevant, such as the number of hot days, duration of dry spells, and rainfall intensity. Before 1980, temperature-related indices had few trends; after 1980, statistically significant warming trends exist for each crop in the majority of growing regions. In particular, crops have increasingly been exposed to extreme hot temperatures, above which yields have been shown to decline. Rainfall trends are less consistent compared to temperature, with some regions receiving more rainfall and others less. Anomalous temperature and precipitation conditions are shown to often occur concurrently, with dry growing seasons more likely to be hotter, have larger drought indices, and have larger vapor pressure deficits. This leads to the confluence of a variety of climate conditions that negatively impact crop yields. These results show a consistent increase in global agricultural exposure to negative climate conditions since 1980.
NASA Astrophysics Data System (ADS)
Ancellet, G.; Gaudel, A.; Godin-Beekmann, S.
2016-12-01
Tropospheric ozone vertical profile measurements have been carried out at OHP (Observatoire de Haute Provence, 44°N, 6.7°E, 690 m) since 1991 using both UV DIAL (DIfferential Absorption Lidar) and ECC (Electrochemical Concentration Cell) ozonesondes. For the first time, ECC and lidar data measured at the same site, have been compared over a 24 year period. The comparison conducted reveals a bias between both measurement types (ECC - lidar) of the order of 0.6 ppbv. The measurements of both instruments have been however combined to decrease the impact of short-term atmospheric variability on the trend estimate. Air mass trajectories have been calculated for all the ozone observations available at OHP including ECMWF potential vorticity (PV) and humidity chnage along the trajectories. The interannual ozone variability shows a negligible trend in the mid troposphere, but a 0.36 ppbv/year significant positive ozone trend in the upper troposphere. The trends will be discussed using the variability of the meteorological parameters. Data clustering using PV and air mass trajectories is useful to identify the role of Stratosphere-Tropopshere Exchanges and long range transport of pollutants in the observed long term trends. In the lower troposphere, the interannual variability shows contrasted trends with an ozone decrease between 1998 and 2008, consistent with the NOx emission decrease, but a new period of ozone increase since 2008 which is not very well understood.
Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery
NASA Technical Reports Server (NTRS)
Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri
2011-01-01
We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.
Marital age homogamy in China: A reversal of trend in the reform era?*
Mu, Zheng; Xie, Yu
2014-01-01
This paper reports on a study of trends in marital age homogamy in China from 1960 to 2005 that uses data from the China 2005 1% Population Inter-census Survey. Instead of a consistent increase in age homogamy, as expected, results show an inverted U-shaped trend. One plausible explanation is that intensified economic pressure, rising consumerism, and a shrinking gender gap in education during the post-1990s reform era have acted to increase women's desire to marry men who are more economically established, and thus usually older, than less financially secure men. We argue that age hypergamy maintains status hypergamy, a deeply rooted norm for couples in China. An auxiliary analysis based on the human capital model for earnings supports this interpretation. A continued trend in age hypergamy implies a future “marriage squeeze” for men of low socioeconomic status. PMID:24468440
Long-term forecasting of internet backbone traffic.
Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe
2005-09-01
We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future.
No Consistent Evidence for Advancing or Delaying Trends in Spring Phenology on the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Wang, Xufeng; Xiao, Jingfeng; Li, Xin; Cheng, Guodong; Ma, Mingguo; Che, Tao; Dai, Liyun; Wang, Shaoying; Wu, Jinkui
2017-12-01
Vegetation phenology is a sensitive indicator of climate change and has significant effects on the exchange of carbon, water, and energy between the terrestrial biosphere and the atmosphere. The Tibetan Plateau, the Earth's "third pole," is a unique region for studying the long-term trends in vegetation phenology in response to climate change because of the sensitivity of its alpine ecosystems to climate and its low-level human disturbance. There has been a debate whether the trends in spring phenology over the Tibetan Plateau have been continuously advancing over the last two to three decades. In this study, we examine the trends in the start of growing season (SOS) for alpine meadow and steppe using the Global Inventory Modeling and Mapping Studies (GIMMS)3g normalized difference vegetation index (NDVI) data set (1982-2014), the GIMMS NDVI data set (1982-2006), the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data set (2001-2014), the Satellite Pour l'Observation de la Terre Vegetation (SPOT-VEG) NDVI data set (1999-2013), and the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) NDVI data set (1998-2007). Both logistic and polynomial fitting methods are used to retrieve the SOS dates from the NDVI data sets. Our results show that the trends in spring phenology over the Tibetan Plateau depend on both the NDVI data set used and the method for retrieving the SOS date. There are large discrepancies in the SOS trends among the different NDVI data sets and between the two different retrieval methods. There is no consistent evidence that spring phenology ("green-up" dates) has been advancing or delaying over the Tibetan Plateau during the last two to three decades. Ground-based budburst data also indicate no consistent trends in spring phenology. The responses of SOS to environmental factors (air temperature, precipitation, soil temperature, and snow depth) also vary among NDVI data sets and phenology retrieval methods. The increases in winter and spring temperature had offsetting effects on spring phenology.
Water quality trends in New Zealand rivers: 1989-2009.
Ballantine, Deborah J; Davies-Colley, Robert J
2014-03-01
Recent assessments of water quality in New Zealand have indicated declining trends, particularly in the 40 % of the country's area under pasture. The most comprehensive long-term and consistent water quality dataset is the National Rivers Water Quality Network (NRWQN). Since 1989, monthly samples have been collected at 77 NRWQN sites on 35 major river systems that, together, drain about 50 % of New Zealand's land area. Trend analysis of the NRWQN data shows increasing nutrient concentrations, particularly nitrogen (total nitrogen and nitrate), over 21 years (1989-2009). Total nitrogen and nitrate concentrations were increasing significantly over the first 11 years (1989-2000), but for the more recent 10-year period, only nitrate concentrations continued to increase sharply. Also, the increasing phosphorus trends over the first 11 years (1989-2000) levelled off over the later 10-year period (2000-2009). Conductivity has also increased over the 21 years (1989-2009). Visual clarity has increased over the full time period which may be the positive result of soil conservation measures and riparian fencing. NRWQN data shows that concentrations of nutrients increase, and visual clarity decreases (i.e. water quality declines), with increasing proportions of pastoral land in catchments. As such, the increasing nutrient trends may reflect increasing intensification of pastoral agriculture.
NASA Astrophysics Data System (ADS)
Gaertner, B. A.; Zegre, N.
2015-12-01
Climate change is surfacing as one of the most important environmental and social issues of the 21st century. Over the last 100 years, observations show increasing trends in global temperatures and intensity and frequency of precipitation events such as flooding, drought, and extreme storms. Global circulation models (GCM) show similar trends for historic and future climate indicators, albeit with geographic and topographic variability at regional and local scale. In order to assess the utility of GCM projections for hydrologic modeling, it is important to quantify how robust GCM outputs are compared to robust historical observations at finer spatial scales. Previous research in the United States has primarily focused on the Western and Northeastern regions due to dominance of snow melt for runoff and aquifer recharge but the impact of climate warming in the mountainous central Appalachian Region is poorly understood. In this research, we assess the performance of GCM-generated historical climate compared to historical observations primarily in the context of forcing data for macro-scale hydrologic modeling. Our results show significant spatial heterogeneity of modeled climate indices when compared to observational trends at the watershed scale. Observational data is showing considerable variability within maximum temperature and precipitation trends, with consistent increases in minimum temperature. The geographic, temperature, and complex topographic gradient throughout the central Appalachian region is likely the contributing factor in temperature and precipitation variability. Variable climate changes are leading to more severe and frequent climate events such as temperature extremes and storm events, which can have significant impacts on our drinking water supply, infrastructure, and health of all downstream communities.
Clarke, Philippa J; O'Malley, Patrick M; Johnston, Lloyd D; Schulenberg, John E; Lantz, Paula
2009-10-01
We investigated temporal patterns from 1984 to 2006 in 6 weight-related health behaviors by using longitudinal data for multiple cohorts of young adults (aged 19-26 years) from the nationally representative Monitoring the Future Study. We used growth curve models to examine historical trends in 6 health behaviors: frequency of eating breakfast, eating green vegetables, eating fruit, exercising, watching television, and sleeping 7 hours each night. Variations across gender, race/ethnicity, and socioeconomic status were investigated. Frequency of exercising was consistently lower among young adult women than young adult men over this 23-year period. Compared with White women, Hispanic women, and women from other race/ethnic groups, Black women showed declines in the frequency of exercise since 1984. In general, young adult women showed a marked increase in the frequency of eating breakfast over this period, although Black women did not show any net gains. Social disparities in body weight may increase because Black women, Hispanic women, and men with lower socioeconomic status show declining trends in positive weight-related health behaviors compared with White young adults with higher socioeconomic status.
Xu, Lilan; Zhao, Yan; Xu, Mingsheng; Yao, Yao; Nie, Xuliang; Du, Huaying; Tu, Yong-Gang
2017-01-01
In order to illuminate the forming process of salted egg, the effects of the brine solution with different salt concentrations on the physicochemical properties, textural properties, and microstructures of duck eggs were evaluated using conventional physicochemical property determination methods. The results showed that the moisture contents of both the raw and cooked egg whites and egg yolks, the springiness of the raw egg yolks and cooked egg whites exhibited a decreasing trend with the increase in the salting time and salt concentration. The salt content, oil exudation and the hardness of the raw egg yolks showed a constantly increasing trend. Viscosity of the raw egg whites showed an overall trend in which it first deceased and then increased and decreased again, which was similar to the trend of the hardness of the cooked egg whites and egg yolks. As the salting proceeded, the pH value of the raw and cooked egg whites declined remarkably and then declined slowly, whereas the pH of the raw and cooked egg yolks did not show any noticeable changes. The effect of salting on the pH value varied significantly with the salt concentration in the brine solution. Scanning electron microscopy (SEM) revealed that salted yolks consist of spherical granules and embedded flattened porosities. It was concluded that the treatment of salt induces solidification of yolk, accompanied with higher oil exudation and the development of a gritty texture. Different salt concentrations show certain differences.
Xu, Lilan; Zhao, Yan; Xu, Mingsheng; Yao, Yao; Nie, Xuliang; Du, Huaying
2017-01-01
In order to illuminate the forming process of salted egg, the effects of the brine solution with different salt concentrations on the physicochemical properties, textural properties, and microstructures of duck eggs were evaluated using conventional physicochemical property determination methods. The results showed that the moisture contents of both the raw and cooked egg whites and egg yolks, the springiness of the raw egg yolks and cooked egg whites exhibited a decreasing trend with the increase in the salting time and salt concentration. The salt content, oil exudation and the hardness of the raw egg yolks showed a constantly increasing trend. Viscosity of the raw egg whites showed an overall trend in which it first deceased and then increased and decreased again, which was similar to the trend of the hardness of the cooked egg whites and egg yolks. As the salting proceeded, the pH value of the raw and cooked egg whites declined remarkably and then declined slowly, whereas the pH of the raw and cooked egg yolks did not show any noticeable changes. The effect of salting on the pH value varied significantly with the salt concentration in the brine solution. Scanning electron microscopy (SEM) revealed that salted yolks consist of spherical granules and embedded flattened porosities. It was concluded that the treatment of salt induces solidification of yolk, accompanied with higher oil exudation and the development of a gritty texture. Different salt concentrations show certain differences. PMID:28797071
Ren, Ming-Yi; Yang, Li-Yuan; Wang, Long-Feng; Han, Xue-Mei; Dai, Jie-Rui; Pang, Xu-Gui
2018-01-01
Surface soil samples collected from Nansi Lake catchment were analyzed for mercury (Hg) to determine its spatial trends and environmental impacts. Results showed that the average soil Hg contents were 0.043 mg kg -1 . A positive correlation was shown between TOC and soil Hg contents. The main type of soil with higher TOC contents and lower pH values showed higher soil Hg contents. Soil TOC contents and CV values were both higher in the eastern catchment. The eastern part of the catchment, where the industry is developed, had relatively high soil Hg contents and a banding distribution of high Hg contents was corresponded with the southwest-northeast economic belt. Urban soils had higher Hg contents than rural soils. The urbanization pattern that soil Hg contents presented a decreasing trend from city center to suburb was shown clearly especially in the three cities. Soil Hg contents in Jining City showed a good consistency with the urban land expansion. The spatial trends of soil Hg contents in the catchment indicated that the type and the intensity of human activities have a strong influence on the distribution of Hg in soils. Calculated risk indices showed that the western part of the catchment presented moderately polluted condition and the eastern part of the catchment showed moderate to strong pollution level. The area with high ecological risk appeared mainly along the economic belt.
Seasonal to multi-decadal trends in apparent optical properties in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Allen, James G.; Nelson, Norman B.; Siegel, David A.
2017-01-01
Multi-decadal, monthly observations of optical and biogeochemical properties, made as part of the Bermuda Bio-Optics Project (BBOP) at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea, allow for the examination of temporal trends in vertical light attenuation and their potential controls. Trends in the magnitude of the diffuse attenuation coefficient, Kd(λ), and a proxy for its spectral shape reflect changes in phytoplankton and chromophoric dissolved organic matter (CDOM) characteristics. The length and methodological consistency of this time series provide an excellent opportunity to extend analyses of seasonal cycles of apparent optical properties to interannual and decadal time scales. Here, we characterize changes in the magnitude and spectral shape proxy of diffuse attenuation coefficient spectra and compare them to available biological and optical data from the BATS time series program. The time series analyses reveal a 1.01%±0.18% annual increase of the magnitude of the diffuse attenuation coefficient at 443 nm over the upper 75 m of the water column while showing no significant change in selected spectral characteristics over the study period. These and other observations indicate that changes in phytoplankton rather than changes in CDOM abundance are the primary driver for the diffuse attenuation trends on multi-year timescales for this region. Our findings are inconsistent with previous decadal-scale global ocean water clarity and global satellite ocean color analyses yet are consistent with recent analyses of the BATS time series and highlight the value of long-term consistent observation at ocean time series sites.
Madden, P; Coupland, Vh; Møller, H; Davies, Ea
2011-06-01
London has a high proportion of hospital deaths, which health policy seeks to reduce. We explore variation and trends in place of death from cancer within London between 2002 and 2007. Mortality data based on death certificates were used to define deaths from cancer at home, hospice, hospital and nursing home and examine trends over time for London. Proportions of deaths in each place were presented in maps for 31 London primary care trusts (PCTs). Funnel plots were used to identify consistent performance outside the control limits of three standard deviations. There was little overall change in place of death for London, but consistent variation between PCTs. Outer London PCTs had higher proportions of home deaths and inner London PCTs higher proportions of hospice deaths. Funnel plots identified consistent high outlying performance for home, hospice and hospital deaths. No PCT showed a change of 10% or more in home deaths, but five showed decreasing hospital deaths and three increasing hospice deaths. Maps and funnel plots appear useful for identifying areas with differing performance for home, hospital, nursing home and hospice deaths. These methods may help further investigation of how local services may successfully support deaths outside hospital. © The Author(s) 2011
Experiments in Reconstructing Twentieth-Century Sea Levels
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Douglas, Bruce C.
2011-01-01
One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.
[Health surveillance in a steel making industry with electric arc furnace: 15 years of experience].
Corti, P
2012-01-01
This paper analyzes the results of health surveillance carried out in an electric steel mill for 15 years. We have analyzed the trend of audiometry, spirometry and main indicators of exposure to chemical risk: serum lead, urinary OH-pyrene, erythrocyte ZPP, and the results of risk assessment of stress work related. The analyses of the trend of audiometry, spirometry and biological monitoring shows an important improving in the working environment due to the progressive automation of production steps in the course of several years, consistent and correct use of DPI, information and training.
ERIC Educational Resources Information Center
Skarakis-Doyle, Elizabeth; Izaryk, Kristen; Campbell, Wenonah; Terry, Alexandra
2014-01-01
This study examines preschoolers' acquisition of the maxims of the Cooperative Principle and the sociocognitive scaffolds that support this acquisition. In Study 1, 84 children between 3 and 5 years old were required to make passive judgments of violations of the Cooperative Principle. Results showed that children consistently identified…
External Scan 2000: Environmental Scan of the Greater Sacramento Area.
ERIC Educational Resources Information Center
Beachler, Judith
This document provides a summary of the social, economic, and political changes at state and national levels that affect the Los Rios Community College District (LRCCD) in California. LRCCD consists of American River College (ARC), Cosumnes River College (CRC), and Sacramento City College (SCC). Demographic trends show that Greater Sacramento is…
NASA Technical Reports Server (NTRS)
Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.
2014-01-01
We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.
Representativeness of four precipitation observational networks of China
NASA Astrophysics Data System (ADS)
Ren, Yuyu; Ren, Guoyu
2012-08-01
Four precipitation observational networks with varied station densities are maintained in China. They are: the Global Climate Observation System (GCOS) Surface Network (GSN), the national Reference Climate Network (RCN), the national Basic Meteorological Network (BMN), and the national Ordinary Meteorological Network (OMN). The GSN, RCN, BMN, and the merged network of RCN and BMN (R&B) have been widely used in climatology and climate change studies. In this paper, the impact of the usage of different networks on the precipitation climatology of China is evaluated by using the merged dataset of All Station Network (ASN) as a benchmark. The results show that all networks can capture the main features of the country average precipitation and its changing trends. The differences of average annual precipitation of the various networks from that of the ASN are less than 50 mm (⩽ 10%). All networks can successfully detect the rising trend of the average annual precipitation during 1961-2009, with the R&B exhibiting the best representativeness (only 2.90% relative difference) and the GSN the poorest (39.77%). As to the change trends of country average monthly precipitation, the networks can be ranked in descending order as R&B (1.27%), RCN (2.35%), BMN (4.17%), and GSN (7.46%), and larger relative differences appear from August to November. The networks produce quite consistent spatial patterns of annual precipitation change trends, and all show an increasing trend of precipitation in Northwest and Southeast China, and a decreasing trend in North China, Northeast China, and parts of central China. However, the representativeness of the BMN and R&B are better in annual and seasonal precipitation trends, in spite of the fact that they are still far from satisfactory. The relative differences of trends in some months and regions even reach more than 50%. The results also show that the representativeness of the RCN for country average precipitation is higher than that of the BMN because the RCN has a more homogeneous distribution of stations.
Trends of brominated diphenyl ethers in fresh and archived Great Lakes fish (1979-2005)
Batterman, Stuart; Chernyak, Sergei; Gwynn, Erica; Cantonwine, David; Jia, Chunrong; Begnoche, Linda J.; Hickey, James P.
2007-01-01
While few environmental measurements of brominated diphenyl ethers (BDEs) were completed prior to the mid-1990s, analysis of appropriately archived samples might enable the determination of contaminant trends back to the introduction of these chemicals. In this paper, we first investigate the stability of BDEs in archived frozen and extracted fish samples, and then characterize trends of these chemicals in rainbow smelt (Osmerus mordax) and lake trout (Salvelinus namaycush) in each of the Great Lakes between 1979 and 2005. We focus on the four most common congeners (BDE-47, 100, 99 and 153) and use a change-point analysis to detect shifts in trends. Analyses of archived fish samples yielded precise BDE concentration measurements with only small losses (0.8% per year in frozen fish tissues, 2.2% per year in refrigerated extracts). Trends in fish from all Great Lakes showed large increases in BDE concentrations that started in the early to mid-1980s with fairly consistent doubling times (generally 2–4 years except in Lake Erie smelt where levels increased very slowly), though concentrations and trends show differences by congener, fish species and lake. The most recent data show that accumulation rates are slowing, and concentrations of penta- and hexa-congeners in trout from Lakes Ontario and Michigan and smelt from Lake Ontario started to decrease in the mid-1990s. Trends in smelt and trout are evolving somewhat differently, and trout concentrations in the five lakes are now ranked as Michigan > Superior = Ontario > Huron = Erie, and smelt concentrations as Michigan > Ontario > Huron > Superior > Erie. The analysis of properly archived samples permits the reconstruction of historical trends, congener distributions, biomagnification and other information that can aid the understanding and management of these contaminants.
Changes in the proportion of precipitation occurring as snow in New England (1949-2000)
Huntington, T.G.; Hodgkins, G.A.; Keim, B.D.; Dudley, R.W.
2004-01-01
The ratio of snow to total precipitation (S/P) is a hydrologic indicator that is sensitive to climate variability and can be used to detect and monitor hydrologic responses to climatic change. Changes in S/P ratio over time could influence the magnitude and timing of spring runoff and recession to summer baseflow. The S/P ratio for 21 U.S. Historical Climatology Network sites in New England was examined. Eleven out of twenty-one sites in New England had significant decreasing annual S/P ratios from 1949 to 2000. Annual trends in S/P are predominantly a result of decreasing snowfall, and to a lesser extent, increasing rainfall. The most consistent trends were in northernmost New England where all four sites had decreasing ratios, and in the coastal and near-coastal areas where five out of eight sites had significantly decreasing ratios. The four sites in northernmost New England, which had the strongest and most coherent trends, showed an average decrease in annual S/P ratio from about 0.30 in 1949 to 0.23 in 2000. Trends in winter S/P ratio were less geographically consistent. Seven out of 21 sites had significantly decreasing winter S/P ratios. Most northern New England and coastal to near-coastal sites had statistically significant trends (p < 0.05) or weak, but not significant trends (p < 0.2). When trends in S/P were analyzed on a monthly basis for the northernmost sites, it was evident that decreasing S/P trends were significant for March and December only. Significant correlations were observed between winter S/P ratios in northern New England and the timing of spring runoff, the North Atlantic Oscillation (NAO) index, and the Pacific-North American (PNA) index. Significant correlations were observed between winter S/P ratios averaged for all of New England and the NAO and PNA.
NASA Technical Reports Server (NTRS)
Bleacher, Jacob E.; Glaze, Lori S.; Greeley, Ronald; Hauber, Ernst; Baloga, Stephen; Sakimoto, Susan E. H.; Williams, David A.; Glotch, Timothy D.
2009-01-01
A field of small volcanic vents south of Pavonis Mons was mapped with each vent assigned a two-dimensional data point. Nearest neighbor and two-point azimuth analyses were applied to the resulting location data. Nearest neighbor results show that vents within this field are spatially random in a Poisson sense, suggesting that the vents formed independently of each other without sharing a centralized magma source at shallow depth. Two-point azimuth results show that the vents display north-trending alignment relationships between one another. This trend corresponds to the trends of faults and fractures of the Noachian-aged Claritas Fossae, which might extend into our study area buried beneath more recently emplaced lava flows. However, individual elongate vent summit structures do not consistently display the same trend. The development of the volcanic field appears to display tectonic control from buried Noachian-aged structural patterns on small, ascending magma bodies while the surface orientations of the linear vents might reflect different, younger tectonic patterns. These results suggest a complex interaction between magma ascension through the crust, and multiple, older, buried Tharsis-related tectonic structures.
Elongate summit calderas as Neogene paleostress indicators in Antarctica
Paulsen, T.S.; Wilson, T.J.
2007-01-01
The orientations and ages of elongate summit calderas on major polygenetic volcanoes were compiled to document Miocene to Pleistocene Sh (minimum horizontal stress) directions on the western and northern flanks of the West Antarctic rift system. Miocene to Pleistocene summit calderas along the western Ross Sea show relatively consistent ENE long axis trends, which are at a high angle to the Transantarctic Mountain Front and parallel to the N77ºE Sh direction at Cape Roberts. The elongation directions of many Miocene to Pleistocene summit calderas in Marie Byrd Land parallel the alignment of polygenetic volcanoes in which they occur, except several Pleistocene calderas with consistent NNE to NE trends. The overall pattern of elongate calderas in Marie Byrd Land is probably due to a combination of structurally controlled orientations and regional stress fields in which Sh is oriented NNE to NE at a moderate to high angle to the trace of the West Antarctic rift system.
Feasibility analysis of marine ecological on-line integrated monitoring system
NASA Astrophysics Data System (ADS)
Chu, D. Z.; Cao, X.; Zhang, S. W.; Wu, N.; Ma, R.; Zhang, L.; Cao, L.
2017-08-01
The in-situ water quality sensors were susceptible to biological attachment. Moreover, sea water corrosion and wave impact damage, and many sensors scattered distribution would cause maintenance inconvenience. The paper proposed a highly integrated marine ecological on-line integrated monitoring system, which can be used inside monitoring station. All sensors were reasonably classified, the similar in series, the overall in parallel. The system composition and workflow were described. In addition, the paper proposed attention issues of the system design and corresponding solutions. Water quality multi-parameters and 5 nutrient salts as the verification index, in-situ and systematic data comparison experiment were carried out. The results showed that the data consistency of nutrient salt, PH and salinity was better. Temperature and dissolved oxygen data trend was consistent, but the data had deviation. Turbidity fluctuated greatly; the chlorophyll trend was similar with it. Aiming at the above phenomena, three points system optimization direction were proposed.
CCl4 distribution derived from MIPAS ESA v7 data: intercomparisons, trend, and lifetime estimation
NASA Astrophysics Data System (ADS)
Valeri, Massimo; Barbara, Flavio; Boone, Chris; Ceccherini, Simone; Gai, Marco; Maucher, Guido; Raspollini, Piera; Ridolfi, Marco; Sgheri, Luca; Wetzel, Gerald; Zoppetti, Nicola
2017-08-01
Atmospheric emissions of carbon tetrachloride (CCl4) are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule has been the subject of recent increased interest as a consequence of the so-called mystery of CCl4
, the discrepancy between atmospheric observations and reported production and consumption. Surface measurements of CCl4 atmospheric concentrations have declined at a rate almost 3 times lower than its lifetime-limited rate, suggesting persistent atmospheric emissions despite the ban. In this paper, we study CCl4 vertical and zonal distributions in the upper troposphere and lower stratosphere (including the photolytic loss region, 70-20 hPa), its trend, and its stratospheric lifetime using measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which operated onboard the ENVISAT satellite from 2002 to 2012. Specifically, we use the MIPAS data product generated with Version 7 of the Level 2 algorithm operated by the European Space Agency.The CCl4 zonal means show features typical of long-lived species of anthropogenic origin that are destroyed primarily in the stratosphere, with larger quantities in the troposphere and a monotonic decrease with increasing altitude in the stratosphere. MIPAS CCl4 measurements have been compared with independent measurements from other satellite and balloon-borne remote sounders, showing a good agreement between the different datasets.CCl4 trends are calculated as a function of both latitude and altitude. Negative trends of about -10 to -15 pptv decade-1 (-10 to -30 % decade-1) are found at all latitudes in the upper troposphere-lower stratosphere region, apart from a region in the southern midlatitudes between 50 and 10 hPa where the trend is positive with values around 5-10 pptv decade-1 (15-20 % decade-1). At the lowest altitudes sounded by MIPAS, we find trends consistent with those determined on the basis of long-term ground-based measurements (-10 to -13 pptv decade-1). For higher altitudes, the trend shows a pronounced asymmetry between the Northern and Southern hemispheres, and the magnitude of the decline rate increases with altitude. We use a simplified model assuming tracer-tracer linear correlations to determine CCl4 lifetime in the lower stratosphere. The calculation provides a global average lifetime of 47 (39-61) years, considering CFC-11 as the reference tracer. This value is consistent with the most recent literature result of 44 (36-58) years.
NASA Astrophysics Data System (ADS)
Aziz, F.
2015-12-01
The water resources of the Black Volta Basin in West Africa constitute a major resource for the four countries (Burkina Faso, Ghana, Côte d'Ivoire, Mali) that share it. For Burkina Faso and Ghana, the river is the main natural resource around which the development of the diverse sectors of the two economies is built. Whereas Ghana relies heavily on the river for energy, land-locked Burkina Faso continuously develops the water for agricultural purposes. Such important role of the river makes it an element around which there are potential conflicts: either among riparian countries or within the individual countries themselves. This study documents the changes in temperature and precipitation extremes in the Black Volta Basin region for the past (1981-2010) and makes projections for the mid-late 21st century (2051-2080) under two emission scenarios; RCP 2.6 and RCP 8.5. The Expert Team on Climate Change Detection and Indices (ETCCDI) temperature- and precipitation-based indices are computed with the RClimdex software. Observed daily records and downscaled CORDEX data of precipitation and maximum and minimum temperatures are used for historical and future trend analysis respectively. In general low emission scenarios show increases in the cold extremes. The region shows a consistent pattern of trends in hot extremes for the 1990's. An increasing trend in hot extremes is expected in the future under RCP 8.5 while RCP 2.5 shows reductions in hot extremes. Regardless of the emission scenario, projections show more frequent hot nights in the 21st century. Generally, the region shows variability in trends for future extreme precipitation indices with only a few of the trends being statistically significant (5% level). Results obtained provide a basic and first step to understanding how climatic extremes have been changing in the Volta Basin region and gives an idea of what to expect in the future. Such studies will also help in making informed decisions on water management in the basin. The various water users; agriculture, household, industries will be able to prepare adequately and adapt to changes when they have information of the trends of extreme events well ahead of time.
NASA Astrophysics Data System (ADS)
Watkinson, I.; Elders, C.; Hall, R.
2009-04-01
New Ar-Ar data from the strike-slip faults of Peninsular Thailand indicate rapid uplift of mid-crustal ductile shear zones during the Eocene. The cooling ages are consistent with a northwards younging pattern of Ar-Ar cooling ages from the NW-trending Three Pagodas and Mae Ping faults in Northern Thailand, to the Ailao Shan-Red River fault in Vietnam and Yunnan, taken to reflect the northwards movement of India during the Cenozoic. The peninsular structures: the Khlong Marui fault (KMF) and Ranong fault (RF), are major NNE trending strike-slip faults of respectively 220 km and 420 km length. Exposed mylonitic rocks bear consistently dextral kinematic indicators, unlike the sinistral mylonites of the NW-trending structures to the north. Brittle strike-slip and dip-slip faults overprint all the shear zones. Rocks ranging from low grade mylonites to syn-kinematic amphibolite facies migmatites from the RF and KMF yield similar biotite Ar-Ar cooling ages, suggesting that uplift from all depths in the shear zone was rapid. Retrograde shear fabrics in places show that dextral shear may have continued during uplift. While the new thermochronological data show that the peninsular mylonites cooled during the Eocene, constraint from pre- and post-kinematic granitoids strongly suggests that ductile shear occurred during the Late-Cretaceous to Paleocene. Since this is well before the onset of India-Eurasia collision, much of the ductile shear must pre-date that orogeny, and therefore cannot be related to Himalayan lateral extrusion, as has been speculated. The regional cooling pattern, however, shows that Indian indentation may have triggered progressive northward exhumation of mylonitic rocks. If the model of the peninsular faults is applied to the NW-trending faults in northern Thailand, then a pre-Himalayan history may also be recorded by those mylonites, rather than a simple, lateral extrusion-related history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasrollahi, Nasrin; AghaKouchak, Amir; Cheng, Linyin
Assessing the uncertainties and understanding the deficiencies of climate models are fundamental to developing adaptation strategies. The objective of this study is to understand how well Coupled Model Intercomparison-Phase 5 (CMIP5) climate model simulations replicate ground-based observations of continental drought areas and their trends. The CMIP5 multimodel ensemble encompasses the Climatic Research Unit (CRU) ground-based observations of area under drought at all time steps. However, most model members overestimate the areas under extreme drought, particularly in the Southern Hemisphere (SH). Furthermore, the results show that the time series of observations and CMIP5 simulations of areas under drought exhibit more variabilitymore » in the SH than in the Northern Hemisphere (NH). The trend analysis of areas under drought reveals that the observational data exhibit a significant positive trend at the significance level of 0.05 over all land areas. The observed trend is reproduced by about three-fourths of the CMIP5 models when considering total land areas in drought. While models are generally consistent with observations at a global (or hemispheric) scale, most models do not agree with observed regional drying and wetting trends. Over many regions, at most 40% of the CMIP5 models are in agreement with the trends of CRU observations. The drying/wetting trends calculated using the 3 months Standardized Precipitation Index (SPI) values show better agreement with the corresponding CRU values than with the observed annual mean precipitation rates. As a result, pixel-scale evaluation of CMIP5 models indicates that no single model demonstrates an overall superior performance relative to the other models.« less
How well do CMIP5 climate simulations replicate historical trends and patterns of droughts?
Nasrollahi, Nasrin; AghaKouchak, Amir; Cheng, Linyin; ...
2015-04-26
Assessing the uncertainties and understanding the deficiencies of climate models are fundamental to developing adaptation strategies. The objective of this study is to understand how well Coupled Model Intercomparison-Phase 5 (CMIP5) climate model simulations replicate ground-based observations of continental drought areas and their trends. The CMIP5 multimodel ensemble encompasses the Climatic Research Unit (CRU) ground-based observations of area under drought at all time steps. However, most model members overestimate the areas under extreme drought, particularly in the Southern Hemisphere (SH). Furthermore, the results show that the time series of observations and CMIP5 simulations of areas under drought exhibit more variabilitymore » in the SH than in the Northern Hemisphere (NH). The trend analysis of areas under drought reveals that the observational data exhibit a significant positive trend at the significance level of 0.05 over all land areas. The observed trend is reproduced by about three-fourths of the CMIP5 models when considering total land areas in drought. While models are generally consistent with observations at a global (or hemispheric) scale, most models do not agree with observed regional drying and wetting trends. Over many regions, at most 40% of the CMIP5 models are in agreement with the trends of CRU observations. The drying/wetting trends calculated using the 3 months Standardized Precipitation Index (SPI) values show better agreement with the corresponding CRU values than with the observed annual mean precipitation rates. As a result, pixel-scale evaluation of CMIP5 models indicates that no single model demonstrates an overall superior performance relative to the other models.« less
McCoy, Kurt J.; Yager, Richard M.; Nelms, David L.; Ladd, David E.; Monti,, Jack; Kozar, Mark D.
2015-08-13
A subset of 77 index streamgages, defined as having 60 or more years of complete record between the years 1930 and 2011 with no more than 20 percent missing data, was selected to show spatial patterns of change in the water budget. Data from the index streamgages showed that the overall trends in base flow are dependent upon the period of evaluation. Long-term (1930–2011) increases in base flow were observed throughout the study area. For two shorter periods (1930–1969 and 1970–2011) trends in base flow were largely negative. In general, spatial patterns of change in streamflow, base flow, and runoff were mixed but generally consistent with prevailing climate patterns and land-use changes.
Possible impact of global warming on the evolution of hemagglutinins from influenza a viruses.
Yan, Shaomin; Wu, Guang
2011-02-01
To determine if global warming has an impact on the evolution of hemagglutinins from influenza A viruses, because both global warming and influenza pandemics/epidemics threaten the world. 4 706 hemagglutinins from influenza A viruses sampled from 1956 to 2009 were converted to a time-series to show their evolutionary process and compared with the global, northern hemisphere and southern hemisphere temperatures, to determine if their trends run in similar or opposite directions. Point-to-point comparisons between temperature and quantified hemagglutinins were performed for all species and for the major prevailing species. The comparisons show that the trends for both hemagglutinin evolution and temperature change run in a similar direction. Global warming has a consistent and progressive impact on the hemagglutinin evolution of influenza A viruses.
Li, Bing-Kun; Wang, Xiang; Liu, Chun-Xiao; Zheng, Shao-Bo; Li, Hu-Lin; Li, Li-Ping; Xu, A-Bai
2013-01-01
Vasectomy is a simple and reliable method of male contraception. A growing number of men after vasectomy request vasectomy reversal due to various reasons. The pregnancy rate is lower than the patency rate after vasovasostomy and the pregnancy rate is time dependent. In this study, we evaluated the influence of reproductive tract obstruction on expression of epididymal proteins and their restoration after patency. Adult male Wistar rats were studied 30, 60 and 120 days after vasectomy, 30 days after vasovasostomy or after sham operations. Two-dimensional gel electrophoresis, mass-spectrometric technique, multidatabase search, Western blotting and real-time PCR were used to analyze the expression regulation of epididymal proteins. Total integrated intensity and total spot area of autoradiograms showed a consistent downward trend with time after obstruction, and this trend remained after patency. The intensity of the autoradiographic spots in three patency groups showed three trends: a downward trend, similar intensity and an upward trend compared with the correspondent obstruction group, respectively. Further verified experiments on human epididymis 2 (HE2), fertilization antigen-1 (FA-1), clusterin and PH20 demonstrated that compared with the correspondent obstruction group, the translation levels of HE2 and the mRNA transcription levels of HE2 showed an upward trend in patency groups, especially in the groups of obstruction for 60 days where the expression levels of HE2 were significantly upregulated after patency (P<0.05). Reproductive tract obstruction provokes a disregulation of gene expression in the epididymis and this disregulation remained after patency. Successful reversal may recover some proteins and the recovery is time dependent. Obstruction differentially alters mRNA transcription of different proteins and the content of proteins seemed to be easier to be influenced than the gene transcription.
Climate Change and Political Instability in Syria
NASA Astrophysics Data System (ADS)
Kelley, C. P.; Mohtadi, S.; Cane, M. A.; Seager, R.; Kushnir, Y.
2013-12-01
From 2005 to 2010, Syria experienced the most severe and persistent drought in the instrumental record, devastating the agriculture and causing widespread crop failure. A mass migration of farming families to urban peripheries followed the resulting food shortages, unemployment, and disruption of rural social structure. The addition of nearly 1.5 million drought refugees to the recent influx of Iraqi refugees greatly exacerbated conditions in the urban slums. Anger at the government's failure to respond to the drought's impacts contributed to the political unrest that began in March 2011. The recent decrease in Syrian precipitation is a combination of natural variability and long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without the trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. Compared to the natural variability alone, the trend has made the occurrence of such a severe drought eight times more likely. There has been also a long-term warming trend in Syria, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with observed increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. The severity and duration of the recent Syrian drought, implicated as a cause of the current conflict, is highly likely to be a consequence of human interference in the climate system.
Orbital and Physical Characteristics of Meter-sized Earth Impactors
NASA Astrophysics Data System (ADS)
Brown, Peter G.; Wiegert, Paul; Clark, David; Tagliaferri, Edward
2015-11-01
We have analysed the orbits and ablation characteristics in the atmosphere of more than 60 earth-impacting meteoroids of one meter in diameter or larger. Using heights at peak luminosity as a proxy for strength, we find that there is roughly an order of magnitude spread in the apparent strength of the population of meter-sized impactors at the Earth. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. We find ~10-15% of our objects have a probable cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, show evidence for the expected weaker than average structure compared to asteroidal bodies. Almost all impactors show peak brightness between 20-40 km altitude. Several events have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though all were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several NEOs in our population with the Taurid meteoroid complex. No other major meteoroid streams show linkages with the pre-atmospheric orbits of our meter-class impactors. Our events cover almost four orders of magnitude in mass, but no trend in height of peak brightness is evident, suggesting no strong trend in strength with size for small NEOs, a finding consistent with the results of Popova et al (2011).
MIPAS ESA v7 carbon tetrachloride data: distribution, trend and atmospheric lifetime estimation
NASA Astrophysics Data System (ADS)
Valeri, M.; Barbara, F.; Boone, C. D.; Ceccherini, S.; Gai, M.; Maucher, G.; Raspollini, P.; Ridolfi, M.; Sgheri, L.; Wetzel, G.; Zoppetti, N.
2017-12-01
Carbon tetrachloride (CCl4) is a strong ozone-depleting atmospheric gas regulated by the Montreal protocol. Recently it received increasing interest due to the so called "mystery of CCl4": it was found that its atmospheric concentration at the surface declines with a rate significantly smaller than its lifetime-limited rate. Indeed there is a discrepancy between atmospheric observations and the estimated distribution based on the reported production and consumption. Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements are used to estimate CCl4 distributions, its trend, and atmospheric lifetime in the upper troposphere / lower stratosphere (UTLS) region. In particular, here we use MIPAS product generated with Version 7 of the Level 2 algorithm operated by the European Space Agency. The CCl4 distribution shows features typical of long-lived species of anthropogenic origin: higher concentrations in the troposphere, decreasing with altitude due to the photolysis. We compare MIPAS CCl4 data with independent observations from Atmospheric Chemistry Experiment - Fourier Transform Spectrometer (ACE - FTS) and stratospheric balloon version of MIPAS (MIPAS-B). The comparison shows a general good agreement between the different datasets. CCl4 trends are evaluated as a function of both latitude and altitude: negative trends (-10/ -15 pptv/decade, -10/ -30 %/decade) are found at all latitudes in the UTLS, apart from a region in the Southern mid-latitudes between 50 and 10 hPa where the trend is slightly positive (5/10 pptv/decade, 15/20 %/decade). At the lowest altitudes sounded by the MIPAS scan we find trend values consistent with those determined on the basis of the Advanced Global Atmospheric Gases Experiment (AGAGE) and the National Oceanic and Atmospheric Administration / Earth System Research Laboratory / Halocarbons and other Atmospheric Trace Species (NOAA / ESRL / HATS) networks. CCl4 global average lifetime of 47(39 - 61) years has been estimated using the tracer-tracer linear correlations approach and the CFC-11 as the reference tracer. This estimation is consistent with the most recent literature result of 44(36 - 58) years.
NASA Astrophysics Data System (ADS)
Brites Martins, Helena C.; Simões, Pedro P.; Abreu, Joana
2014-09-01
In northern Portugal, large volumes of granitoids were emplaced during the last stage (D3) of the Variscan orogeny and display a wide range of petrological signatures. We studied the morphologies and internal structures of zircons from syn-, late- and post-D3 granitoids. The sin-D3 granitoids include the Ucanha-Vilar, Lamego, Felgueiras, Sameiro, and Refoios do Lima plutons, the late- and post-D3 granitoids are represented by the Vieira do Minho and the Vila Pouca de Aguiar plutons, respectively. Typological investigations after Pupin (1980) along with scanning electron microprobe imaging reveal that the external morphology of zircon changes consistently with a decrease in the crystallization temperature. Zircon populations from the Refoios do Lima and the Vieira do Minho granites show gradual changes in the internal morphologies and their typologic evolution trends are consistent with their mainly crustal origin. The Sameiro, Felgueiras, Lamego and Ucanha-Vilar granites have more complex internal and external morphology and typological evolution trends that cross the domain of the calc-alkaline to the aluminous granites compatible with a mixing process. Finally, the morphological types of the Vila Pouca de Aguiar granites are found both in calc-alkaline and sub-alkaline granites and their typological evolutionary trends follow the calc-alkaline/sub-alkaline trend, suggesting crustal sources with some mantle contribution.
Outward Motions of SiO Masers around VX Sgr
NASA Astrophysics Data System (ADS)
Su, J. B.; Shen, Z.-Q.; Chen, X.; Jiang, D. R.
2014-09-01
We report the proper motions of SiO maser features around VX Sgr from the two-epoch VLBA observations (2006 December 15 and 2007 August 19). The majority of maser feature activities show a trend of outward motions. It is consistent with our previous finding that the outflow may play an important role for SiO maser pumping.
A Study Investigating Indian Middle School Students' Ideas of Design and Designers
ERIC Educational Resources Information Center
Ara, Farhat; Chunawala, Sugra; Natarajan, Chitra
2011-01-01
This paper reports on an investigation into middle school students' naive ideas about, and attitudes towards design and designers. The sample for the survey consisted of students from Classes 7 to 9 from a school located in Mumbai. The data were analysed qualitatively and quantitatively to look for trends in students' responses. Results show that…
A State of the Art Review on the Impact of Technology on Skill Demand in OECD Countries.
ERIC Educational Resources Information Center
Kim, Young-Hwa
2002-01-01
Review of research since the 1980s shows a consistent trend toward higher skill demands in Organisation for Economic Cooperation and Development countries. There is evidence both that higher skills are needed to implement technology and that implementing technology raises skill requirements. Automation is displacing low-skilled jobs and creating…
Analysis of high-resolution foreign exchange data of USD-JPY for 13 years
NASA Astrophysics Data System (ADS)
Mizuno, Takayuki; Kurihara, Shoko; Takayasu, Misako; Takayasu, Hideki
2003-06-01
We analyze high-resolution foreign exchange data consisting of 20 million data points of USD-JPY for 13 years to report firm statistical laws in distributions and correlations of exchange rate fluctuations. A conditional probability density analysis clearly shows the existence of trend-following movements at time scale of 8-ticks, about 1 min.
Zhao, Zongshan; Jia, Jiaojiao; Wang, Jiaokai; Liu, Aifeng; Lan, Jing; Zhang, Hailong; Zhao, Meixun
2018-02-01
In order to study the pollution levels and spatiotemporal trend of Dichlorodiphenyltrichloroethanes (DDTs) in the Southern Yellow Sea (SYS), thirty-two surface sediment samples and a sediment core have been analyzed, and our results have been compared with previous reports. DDTs contents in our samples ranged from below detection limit to 5.1ng/gdry weight (d.w.), which presented lower ecological risks in the SYS. Surface sediment results show a seaward increasing trend with high values in the northern region of the central basin of the SYS. Our reconstructed core record and historical data from previous reports reveal an increasing trend from 1905 to 1955 but a decline trend since 1985 for DDTs, which is consistent of the production, usage and banning of DDTs in China. The source identification, based on (DDE+DDD)/DDTs, suggested that aged DDTs were the major contributor, though there were some inputs of fresh DDTs from the usage of 1,1-bis(p-Chlorophenyl)-2,2,2-trichloroethanol (dicofol). Copyright © 2017 Elsevier Ltd. All rights reserved.
Using generalized additive (mixed) models to analyze single case designs.
Shadish, William R; Zuur, Alain F; Sullivan, Kristynn J
2014-04-01
This article shows how to apply generalized additive models and generalized additive mixed models to single-case design data. These models excel at detecting the functional form between two variables (often called trend), that is, whether trend exists, and if it does, what its shape is (e.g., linear and nonlinear). In many respects, however, these models are also an ideal vehicle for analyzing single-case designs because they can consider level, trend, variability, overlap, immediacy of effect, and phase consistency that single-case design researchers examine when interpreting a functional relation. We show how these models can be implemented in a wide variety of ways to test whether treatment is effective, whether cases differ from each other, whether treatment effects vary over cases, and whether trend varies over cases. We illustrate diagnostic statistics and graphs, and we discuss overdispersion of data in detail, with examples of quasibinomial models for overdispersed data, including how to compute dispersion and quasi-AIC fit indices in generalized additive models. We show how generalized additive mixed models can be used to estimate autoregressive models and random effects and discuss the limitations of the mixed models compared to generalized additive models. We provide extensive annotated syntax for doing all these analyses in the free computer program R. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Murdoch, Peter S.; Shanley, James B.
2006-01-01
The effects of changes in acid deposition rates resulting from the Clean Air Act Amendments of 1990 should first appear in stream waters during rainstorms and snowmelt, when the surface of the watershed is most hydrologically connected to the stream. Early detection of improved stream water quality is possible if trends at high flow could be separately determined. Trends in concentrations of sulfate (SO42−), nitrate (NO3−), calcium plus magnesium (Ca2++Mg2+), and acid‐neutralizing capacity (ANC) in Biscuit Brook, Catskill Mountains, New York, were assessed through segmented regression analysis (SRA). The method uses annual concentration‐to‐discharge relations to predict concentrations for specific discharges, then compares those annual values to determine trends at specific discharge levels. Median‐flow trends using SRA were comparable to those predicted by the seasonal Kendall tau test and a multiple regression residual analysis. All of these methods show that stream water SO42− concentrations have decreased significantly since 1983; Ca2++Mg2+ concentrations have decreased at a steady but slower rate than SO42−; and ANC shows no trend. The new SRA method, however, reveals trends that differ at specified flow levels. ANC has increased, and NO3−concentrations have decreased at high flows, but neither has changed as significantly at low flows. The general downward trend in SO42− flattened at median flow and reversed at high flow between 1997 and 2002. The reversal of the high‐flow SO42− trend is consistent with increases in SO42− concentrations in both precipitation and soil solutions at Biscuit Brook. Separate calculation of high‐flow trends provides resource managers with an early detection system for assessing changes in water quality resulting from changes in acidic deposition.
Can MODIS detect trends in aerosol optical depth over land?
NASA Astrophysics Data System (ADS)
Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin
2018-02-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.
Daily MODIS data trends of hurricane-induced forest impact and early recovery
Ramsey, Elijah W.; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri
2011-01-01
We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near pre-hurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.
Northmore-Ball, Ksenia; Evans, Geoffrey
2016-05-01
Despite continuing for over two decades, the debate about the nature of the trends in religiosity in post-Communist Eastern Europe remains unresolved: some arguing that these countries are undergoing the same process of secularization as the West, while others insist that the entire region is experiencing a religious revival. Using national sample surveys from the early 1990s to 2007 to examine the change in demographic predictors of religiosity, we show that Catholic and Orthodox countries are experiencing different trends, the first group displaying evidence of secularization and the second of revival, and that these two different trends are likely to derive from the legacies of state repression and the differing abilities of the churches to resist such repression. We argue that the current literature has thus taken a mistakenly general approach, and that the post-Communist region consists of at least two distinct groups of societies with different trends in religiosity. Copyright © 2016. Published by Elsevier Inc.
Investigation of the Hosgri Fault, offshore Southern California, Point Sal to Point Conception
Payne, C.M.; Swanson, O.E.; Schell, B.A.
1979-01-01
A high-resolution seismic reflection survey of the inner continental shelf between Point Sal and Point Conception has revealed faults that displace post-Wisconsin strata (less than 17,000-20,000 years). These faults are the Hosgri fault, the Offshore Lompoc fault, and smaller unnamed faults. Faults trending offshore from the adjacent shoreline such as the Pezzoni, Lions Head, Honda, and Pacifico faults, do not show post-Wisconsin activity. The Hosgri fault trends directly toward the coastline between Purisima Point and Point Arguello where it appears to merge with folds and smaller faults in the western Transverse Ranges. This trend of offshore structures toward the Point Arguello-Point Conception area is consistent with a hypothesis that the regional structural fabric of the southern California Coast Ranges and its adjacent offshore area merge with the Transverse Ranges.
NASA Astrophysics Data System (ADS)
Kristoufek, Ladislav
2013-12-01
Digital currencies have emerged as a new fascinating phenomenon in the financial markets. Recent events on the most popular of the digital currencies - BitCoin - have risen crucial questions about behavior of its exchange rates and they offer a field to study dynamics of the market which consists practically only of speculative traders with no fundamentalists as there is no fundamental value to the currency. In the paper, we connect two phenomena of the latest years - digital currencies, namely BitCoin, and search queries on Google Trends and Wikipedia - and study their relationship. We show that not only are the search queries and the prices connected but there also exists a pronounced asymmetry between the effect of an increased interest in the currency while being above or below its trend value.
Kristoufek, Ladislav
2013-12-04
Digital currencies have emerged as a new fascinating phenomenon in the financial markets. Recent events on the most popular of the digital currencies--BitCoin--have risen crucial questions about behavior of its exchange rates and they offer a field to study dynamics of the market which consists practically only of speculative traders with no fundamentalists as there is no fundamental value to the currency. In the paper, we connect two phenomena of the latest years--digital currencies, namely BitCoin, and search queries on Google Trends and Wikipedia--and study their relationship. We show that not only are the search queries and the prices connected but there also exists a pronounced asymmetry between the effect of an increased interest in the currency while being above or below its trend value.
NASA Astrophysics Data System (ADS)
Li, Jing; Li, Chengcai; Zhao, Chunsheng
2018-03-01
Although the temporal changes in aerosol properties have been widely investigated, the majority of studies has focused on average conditions without much emphasis on the extremes. However, the latter can be more important in terms of human health and climate change. This study uses a previously validated, quality-controlled visibility dataset to investigate the long-term trends (expressed in terms of relative changes) in extreme surface aerosol extinction coefficient (AEC) over China and compares them with the median trends. Two methods are used to independently evaluate the trends, which arrive at consistent results. The signs of extreme and median trends are generally coherent, whereas their magnitudes show distinct spatial and temporal differences. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for northwest China and the North China Plain. In the 1990s, AEC over northeast and northwest China started to decline while the rest of the country still exhibited an increase. The extreme trends continued to dominate in the south while they yielded to the mean trend in the north. After the year 2000, the extreme trend became weaker than the mean trend overall in terms of both the magnitude and significance level. The annual trend can be primarily attributed to winter and fall trends. The results suggest that the decadal changes in pollution in China may be governed by different mechanisms. Synoptic conditions that often result in extreme air quality changes might have dominated in the 1980s, whereas emission increase might have been the main factor for the 2000s.
Abdala, Carolina; Guérit, François; Luo, Ping; Shera, Christopher A
2014-04-01
A consistent relationship between reflection-emission delay and cochlear tuning has been demonstrated in a variety of mammalian species, as predicted by filter theory and models of otoacoustic emission (OAE) generation. As a step toward the goal of studying cochlear tuning throughout the human lifespan, this paper exploits the relationship and explores two strategies for estimating delay trends-energy weighting and peak picking-both of which emphasize data at the peaks of the magnitude fine structure. Distortion product otoacoustic emissions (DPOAEs) at 2f1-f2 were recorded, and their reflection components were extracted in 184 subjects ranging in age from prematurely born neonates to elderly adults. DPOAEs were measured from 0.5-4 kHz in all age groups and extended to 8 kHz in young adults. Delay trends were effectively estimated using either energy weighting or peak picking, with the former method yielding slightly shorter delays and the latter somewhat smaller confidence intervals. Delay and tuning estimates from young adults roughly match those obtained from SFOAEs. Although the match is imperfect, reflection-component delays showed the expected bend (apical-basal transition) near 1 kHz, consistent with a break in cochlear scaling. Consistent with other measures of tuning, the term newborn group showed the longest delays and sharpest tuning over much of the frequency range.
Trends in concentrations and use of agricultural herbicides for Corn Belt rivers, 1996-2006
Vecchia, Aldo V.; Gilliom, Robert J.; Sullivan, Daniel J.; Lorenz, David L.; Martin, Jeffrey D.
2009-01-01
Trends in the concentrations and agricultural use of four herbicides (atrazine, acetochlor, metolachlor, and alachlor) were evaluated for major rivers of the Corn Belt for two partially overlapping time periods: 1996-2002 and 2000-2006. Trends were analyzed for 11 sites on the mainstems and selected tributaries in the Ohio, Upper Mississippi, and Missouri River Basins. Concentration trends were determined using a parametric regression model designed for analyzing seasonal variability, flow-related variability, and trends in pesticide concentrations(SEAWAVE-Q).TheSEAWAVE-Qmodel accounts for the effect of changing flow conditions in order to separate changes caused by hydrologic conditions from changes caused by other factors, such as pesticide use. Most of the trends in atrazine and acetochlor concentrations for both time periods were relatively small and nonsignificant, but metolachlor and alachlor were dominated by varying magnitudes of concentration downtrends. Overall, with trends expressed as a percent change per year, trends in herbicide concentrations were consistent with trends in agricultural use; 84 of 88 comparisons for different sites, herbicides, and time periods showed no significant difference between concentration trends and agricultural use trends. Results indicate that decreasing use appears to have been the primary cause for the concentration downtrends during 1996-2006 and that, while there is some evidence that nonuse management factors may have reduced concentrations in some rivers, reliably evaluating the influence of these factors on pesticides in large streams and rivers will require improved, basin-specific information on both management practices and use over time. ?? 2009 American Chemical Society.
Space-time patterns of trends in stratospheric constituents derived from UARS measurements
NASA Astrophysics Data System (ADS)
Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe
1999-02-01
The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.
Prediction of climate change in Brunei Darussalam using statistical downscaling model
NASA Astrophysics Data System (ADS)
Hasan, Dk. Siti Nurul Ain binti Pg. Ali; Ratnayake, Uditha; Shams, Shahriar; Nayan, Zuliana Binti Hj; Rahman, Ena Kartina Abdul
2017-06-01
Climate is changing and evidence suggests that the impact of climate change would influence our everyday lives, including agriculture, built environment, energy management, food security and water resources. Brunei Darussalam located within the heart of Borneo will be affected both in terms of precipitation and temperature. Therefore, it is crucial to comprehend and assess how important climate indicators like temperature and precipitation are expected to vary in the future in order to minimise its impact. This study assesses the application of a statistical downscaling model (SDSM) for downscaling General Circulation Model (GCM) results for maximum and minimum temperatures along with precipitation in Brunei Darussalam. It investigates future climate changes based on numerous scenarios using Hadley Centre Coupled Model, version 3 (HadCM3), Canadian Earth System Model (CanESM2) and third-generation Coupled Global Climate Model (CGCM3) outputs. The SDSM outputs were improved with the implementation of bias correction and also using a monthly sub-model instead of an annual sub-model. The outcomes of this assessment show that monthly sub-model performed better than the annual sub-model. This study indicates a satisfactory applicability for generation of maximum temperatures, minimum temperatures and precipitation for future periods of 2017-2046 and 2047-2076. All considered models and the scenarios were consistent in predicting increasing trend of maximum temperature, increasing trend of minimum temperature and decreasing trend of precipitations. Maximum overall trend of Tmax was also observed for CanESM2 with Representative Concentration Pathways (RCP) 8.5 scenario. The increasing trend is 0.014 °C per year. Accordingly, by 2076, the highest prediction of average maximum temperatures is that it will increase by 1.4 °C. The same model predicts an increasing trend of Tmin of 0.004 °C per year, while the highest trend is seen under CGCM3-A2 scenario which is 0.009 °C per year. The highest change predicted for the Tmin is therefore 0.9 °C by 2076. The precipitation showed a maximum trend of decrease of 12.7 mm year. It is also seen in the output using CanESM2 data that precipitation will be more chaotic with some reaching 4800 mm per year and also producing low rainfall about 1800 mm per year. All GCMs considered are consistent in predicting it is very likely that Brunei is expected to experience more warming as well as less frequent precipitation events but with a possibility of intensified and drastically high rainfalls in the future.
NASA Technical Reports Server (NTRS)
Eck, T. F.; Holben, B. N.; Reid, J. S.; Mukelabai, M. M.; Piketh, S. J.; Torres, O.; Jethva, H. T.; Hyer, E. J.; Ward, D. E.; Dubovik, O.;
2013-01-01
As a representative site of the southern African biomass-burning region, sun-sky data from the 15 year Aerosol Robotic Network (AERONET) deployment at Mongu, Zambia, was analyzed. For the biomass-burning season months (July-November), we investigate seasonal trends in aerosol single scattering albedo (SSA), aerosol size distributions, and refractive indices from almucantar sky scan retrievals. The monthly mean single scattering albedo at 440 nm in Mongu was found to increase significantly from approx.. 0.84 in July to approx. 0.93 in November (from 0.78 to 0.90 at 675 nm in these same months). There was no significant change in particle size, in either the dominant accumulation or secondary coarse modes during these months, nor any significant trend in the Angstrom exponent (440-870 nm; r(exp 2) = 0.02). A significant downward seasonal trend in imaginary refractive index (r(exp 2) = 0.43) suggests a trend of decreasing black carbon content in the aerosol composition as the burning season progresses. Similarly, burning season SSA retrievals for the Etosha Pan, Namibia AERONET site also show very similar increasing single scattering albedo values and decreasing imaginary refractive index as the season progresses. Furthermore, retrievals of SSA at 388 nm from the Ozone Monitoring Instrument satellite sensor show similar seasonal trends as observed by AERONET and suggest that this seasonal shift is widespread throughout much of southern Africa. A seasonal shift in the satellite retrieval bias of aerosol optical depth from the Moderate Resolution Imaging Spectroradiometer collection 5 dark target algorithm is consistent with this seasonal SSA trend since the algorithm assumes a constant value of SSA. Multi-angle Imaging Spectroradiometer, however, appears less sensitive to the absorption-induced bias.
Recent Acceleration of the Terrestrial Hydrologic Cycle in the U.S. Midwest
NASA Astrophysics Data System (ADS)
Yeh, Pat J.-F.; Wu, Chuanhao
2018-03-01
Most hydroclimatic trend studies considered only a subset of water budget variables; hence, the trend consistency and a holistic assessment of hydrologic changes across the entire water cycle cannot be evaluated. Here we use a unique 31 year (1983-2013) observed data set in Illinois (a representative region of the U.S. Midwest), including temperature (T), precipitation (P), evaporation (E), streamflow (R), soil moisture, and groundwater level (GWL), to estimate the trends and their sensitivity to different data periods and lengths. Both the Mann-Kendall trend test and the least squares linear method identify trends in close agreement. Despite no clear trends during 1983-2013, increasing trends are found in P (8.73-9.05 mm/year), E (6.87-7.47 mm/year), and R (1.57-3.54 mm/year) during 1992-2013, concurrently with a pronounced warming trend of 0.029-0.037 °C/year. However, terrestrial water storageis decreased by -2.0 mm/year (mainly due to declining GWL), suggesting that the increased R is caused by increased surface runoff rather than baseflow. Monthly analyses identify warming trends for all months except winter. In summer, P (E) exhibits an increasing (decreasing) trend, leading to increasing R, soil moisture, GWL, and terrestrial water storage. Most trends estimated for different subperiods are found to be sensitive to data lengths and periods. Overall, this study provides an internally consistent observed evidence on the intensification of the hydrologic cycle in response to recent climate warming in U.S. Midwest, in agreement with and well supported by several recent studies consistently reporting the increased P, R and E over the Midwest and Mississippi River basin.
ERIC Educational Resources Information Center
Bridges, Lisa J.; Moore, Kristin Anderson
Noting national survey data from the past three decades showing consistently that more than 60 percent of American high school seniors agree that religion is important to them, and in light of increased interest in faith-based initiatives, this research brief summarizes findings from recent studies that examine linkages between adolescents beliefs…
ERIC Educational Resources Information Center
Ker, H. W.
2016-01-01
Reports from the Trends in International Mathematics and Science Study (TIMSS) consistently show that there is a substantial gap in average mathematics achievement between Singapore and the USA. This study conducts an exploratory comparative investigation on the multilevel factors influencing the mathematics achievement of students from these two…
Van Buskirk, R. D.; Kantner, C. L. S.; Gerke, B. F.; ...
2014-11-14
We perform a retrospective investigation of multi-decade trends in price and life-cycle cost (LCC) for home appliances in periods with and without energy efficiency (EE) standards and labeling polices. In contrast to the classical picture of the impact of efficiency standards, the introduction and updating of appliance standards is not associated with a long-term increase in purchase price; rather, quality-adjusted prices undergo a continued or accelerated long-term decline. In addition, long term trends in appliance LCCs—which include operating costs—consistently show an accelerated long term decline with EE policies. We also show that the incremental price of efficiency improvements has declinedmore » faster than the baseline product price for selected products. These observations are inconsistent with a view of EE standards that supposes a perfectly competitive market with static supply costs. These results suggest that EE policies may be associated with other forces at play, such as innovation and learning-by-doing in appliance production and design, that can affect long term trends in quality-adjusted prices and LCCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, M. L.; McLaughlin, M. A.; Lam, M. T.
We analyze dispersion measure (DM) variations of 37 millisecond pulsars in the nine-year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show both effects. Of the four pulsars with linear trends thatmore » have line-of-sight velocity measurements, three are consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and we show that the presence of other trends and localized features or gradients in the interstellar medium is the most likely cause.« less
Spatial patterns of March and September streamflow trends in Pacific Northwest Streams, 1958-2008
Chang, Heejun; Jung, Il-Won; Steele, Madeline; Gannett, Marshall
2012-01-01
Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation, salmonid habitat, recreation, and water-related ecosystem services in the Pacific Northwest (PNW) in the United States. This study detects significant negative trends in September absolute streamflow in a majority of 68 stream-gauging stations located on unregulated streams in the PNW from 1958 to 2008. The proportion of March streamflow to annual streamflow increases in most stations over 1,000 m elevation, with a baseflow index of less than 50, while absolute March streamflow does not increase in most stations. The declining trends of September absolute streamflow are strongly associated with seven-day low flow, January–March maximum temperature trends, and the size of the basin (19–7,260 km2), while the increasing trends of the fraction of March streamflow are associated with elevation, April 1 snow water equivalent, March precipitation, center timing of streamflow, and October–December minimum temperature trends. Compared with ordinary least squares (OLS) estimated regression models, spatial error regression and geographically weighted regression (GWR) models effectively remove spatial autocorrelation in residuals. The GWR model results show spatial gradients of local R 2 values with consistently higher local R 2 values in the northern Cascades. This finding illustrates that different hydrologic landscape factors, such as geology and seasonal distribution of precipitation, also influence streamflow trends in the PNW. In addition, our spatial analysis model results show that considering various geographic factors help clarify the dynamics of streamflow trends over a large geographical area, supporting a spatial analysis approach over aspatial OLS-estimated regression models for predicting streamflow trends. Results indicate that transitional rain–snow surface water-dominated basins are likely to have reduced summer streamflow under warming scenarios. Consequently, a better understanding of the relationships among summer streamflow, precipitation, snowmelt, elevation, and geology can help water managers predict the response of regional summer streamflow to global warming.
Mast, M. Alisa; Ingersoll, George P.
2011-01-01
In 2010, the U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, began a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. The purpose of this report is to describe trends in the chemical composition of these high-elevation lakes. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) are evaluated over a similar period of record to determine likely drivers of changing lake chemistry. Sulfate concentrations in precipitation decreased over the past two decades at high-elevation monitoring stations in the Rocky Mountain region. The trend in deposition chemistry is consistent with regional declines in sulfur dioxide emissions resulting from installation of emission controls at large stationary sources. Trends in nitrogen deposition were not as widespread as those for sulfate. About one-half of monitoring stations showed increases in ammonium concentrations, but few showed significant changes in nitrate concentrations. Trends in nitrogen deposition appear to be inconsistent with available emission inventories, which indicate modest declines in nitrogen emissions in the Rocky Mountain region since the mid-1990s. This discrepancy may reflect uncertainties in emission inventories or changes in atmospheric transformations of nitrogen species that may be affecting deposition processes. Analysis of long-term climate records indicates that average annual mean air temperature minimums have increased from 0.57 to 0.75 °C per decade in mountain areas of the region with warming trends being more pronounced in Colorado. Trends in annual precipitation were not evident over the period 1990 to 2006, although wetter than average years during 1995 to 1997 and drier years during 2001 to 2004 caused a notable decline in precipitation in the middle part of the record.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Date, T.; Harazono, Y.; Ichii, K.
2007-12-01
Spatio-temporal scale up of the eddy covariance data is an important challenge especially in the northern high latitude ecosystems, since continuous ground observations are rarely conducted. In this study, we measured the carbon fluxes at a black spruce forest in interior Alaska, and then scale up the eddy covariance data to spatio- temporal variations in regional carbon budget by using satellite remote sensing data and a process based ecosystem model, Biome-BGC. At point scale, both satellite-based empirical model and Biome-BGC could reproduce seasonal and interannual variations in GPP/RE/NEE. The magnitude of GPP/RE is also consistent among the models. However, spatial patterns in GPP/RE are something different among the models; high productivity in low elevation area is estimated by the satellite-based model whereas insignificant relationship is simulated by Biome-BGC. Long- term satellite records, AVHRR and MODIS, show the gradual decline of NDVI in Alaska's black spruce forests between 1981 and 2006, resulting in a general trend of decreasing GPP/RE for Alaska's black spruce forests. These trends are consistent with the Biome-BGC simulation. The trend of carbon budget is also consistent among the models, where the carbon budget of black spruce forests did not significantly change in the period. The simulated results suggest that the carbon fluxes in black spruce forests could be more sensitive to water availability than air temperature.
Evolutionary Trends and the Salience Bias (with Apologies to Oil Tankers, Karl Marx, and Others).
ERIC Educational Resources Information Center
McShea, Daniel W.
1994-01-01
Examines evolutionary trends, specifically trends in size, complexity, and fitness. Notes that documentation of these trends consists of either long lists of cases, or descriptions of a small number of salient cases. Proposes the use of random samples to avoid this "saliency bias." (SR)
Modeling evapotranspiration over China's landmass from 1979-2012 using three surface models
NASA Astrophysics Data System (ADS)
Sun, Shaobo; Chen, Baozhang; Zhang, Huifang; Lin, Xiaofeng
2017-04-01
Land surface models (LSMs) are useful tools to estimate land evapotranspiration at a grid scale and for a long-term applications. Here, the Community Land Model 4.0 (CLM4.0), Dynamic Land Model (DLM) and Variable Infiltration Capacity (VIC) model were driven with observation-based forcing data sets, and a multiple LSM ensemble-averaged evapotranspiration (ET) product (LSMs-ET) was developed and its spatial-temporal variations were analyzed for the China landmass over the period 1979-2012. Evaluations against measurements from nine flux towers at site scale and surface water budget based ET at regional scale showed that the LSMs-ET had good performance in most areas of China's landmass. The inter-comparisons between the ET estimates and the independent ET products from remote sensing and upscaling methods suggested that there were a fairly consistent patterns between each data sets. The LSMs-ET produced a mean annual ET of 351.24±10.7 mm yr-1 over 1979-2012, and its spatial-temporal variation analyses showed that (i) there was an overall significant ET increasing trend, with a value of 0.72 mm yr-1 (p < 0.01); (ii) 36.01% of Chinese land had significant increasing trends, ranging from 1 to 9 mm yr-1, while only 6.41% of the area showed significant decreasing trends, ranging from -6.28 to -0.08 mm yr-1. Analyses of ET variations in each climate region clearly showed that the Tibetan Plateau areas were the main contributors to the overall increasing ET trends of China.
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid; Ongoma, Victor
2018-03-01
ET0 is an important hydro-meteorological phenomenon, which is influenced by changing climate like other climatic parameters. This study investigates the present and future trends of ET0 in Bangladesh using 39 years' historical and downscaled CMIP5 daily climatic data for the twenty-first century. Statistical Downscaling Model (SDSM) was used to downscale the climate data required to calculate ET0. Penman-Monteith formula was applied in ET0 calculation for both the historical and modelled data. To analyse ET0 trends and trend changing patterns, modified Mann-Kendall and Sequential Mann-Kendall tests were, respectively, done. Spatial variations of ET0 trends are presented by inverse distance weighting interpolation using ArcGIS 10.2.2. Results show that RCP8.5 (2061-2099) will experience the highest amount of ET0 totals in comparison to the historical and all other scenarios in the same time span of 39 years. Though significant positive trends were observed in the mid and last months of year from month-wise trend analysis of representative concentration pathways, significant negative trends were also found for some months using historical data in similar analysis. From long-term annual trend analysis, it was found that major part of the country represents decreasing trends using historical data, but increasing trends were observed for modelled data. Theil-Sen estimations of ET0 trends in the study depict a good consistency with the Mann-Kendall test results. The findings of the study would contribute in irrigation water management and planning of the country and also in furthering the climate change study using modelled data in the context of Bangladesh.
Barnes, Megan D.; Craigie, Ian D.; Harrison, Luke B.; Geldmann, Jonas; Collen, Ben; Whitmee, Sarah; Balmford, Andrew; Burgess, Neil D.; Brooks, Thomas; Hockings, Marc; Woodley, Stephen
2016-01-01
Ensuring that protected areas (PAs) maintain the biodiversity within their boundaries is fundamental in achieving global conservation goals. Despite this objective, wildlife abundance changes in PAs are patchily documented and poorly understood. Here, we use linear mixed effect models to explore correlates of population change in 1,902 populations of birds and mammals from 447 PAs globally. On an average, we find PAs are maintaining populations of monitored birds and mammals within their boundaries. Wildlife population trends are more positive in PAs located in countries with higher development scores, and for larger-bodied species. These results suggest that active management can consistently overcome disadvantages of lower reproductive rates and more severe threats experienced by larger species of birds and mammals. The link between wildlife trends and national development shows that the social and economic conditions supporting PAs are critical for the successful maintenance of their wildlife populations. PMID:27582180
Effects of sampling interval on spatial patterns and statistics of watershed nitrogen concentration
Wu, S.-S.D.; Usery, E.L.; Finn, M.P.; Bosch, D.D.
2009-01-01
This study investigates how spatial patterns and statistics of a 30 m resolution, model-simulated, watershed nitrogen concentration surface change with sampling intervals from 30 m to 600 m for every 30 m increase for the Little River Watershed (Georgia, USA). The results indicate that the mean, standard deviation, and variogram sills do not have consistent trends with increasing sampling intervals, whereas the variogram ranges remain constant. A sampling interval smaller than or equal to 90 m is necessary to build a representative variogram. The interpolation accuracy, clustering level, and total hot spot areas show decreasing trends approximating a logarithmic function. The trends correspond to the nitrogen variogram and start to level at a sampling interval of 360 m, which is therefore regarded as a critical spatial scale of the Little River Watershed. Copyright ?? 2009 by Bellwether Publishing, Ltd. All right reserved.
NASA Technical Reports Server (NTRS)
Prinn, R.; Cunnold, D.; Simmonds, P.; Alyea, F.; Boldi, R.; Crawford, A.; Fraser, P.; Gutzler, D.; Hartley, D.; Rosen, R.
1992-01-01
An optimal estimation inversion scheme is utilized with atmospheric data and emission estimates to determined the globally averaged CH3CCl3 tropospheric lifetime and OH concentration. The data are taken from atmospheric measurements from surface stations of 1,1,1-trichloroethane and show an annual increase of 4.4 +/- 0.2 percent. Industrial emission estimates and a small oceanic loss rate are included, and the OH concentration for the same period (1978-1990) are incorporated at 1.0 +/- 0.8 percent/yr. The positive OH trend is consistent with theories regarding OH and ozone trends with respect to land use and global warming. Attention is given to the effects of the ENSO on the CH3CCl3 data and the assumption of continuing current industrial anthropogenic emissions. A novel tropical atmospheric tracer-transport mechanism is noted with respect to the CH3CCl3 data.
NASA Astrophysics Data System (ADS)
Barnes, Megan D.; Craigie, Ian D.; Harrison, Luke B.; Geldmann, Jonas; Collen, Ben; Whitmee, Sarah; Balmford, Andrew; Burgess, Neil D.; Brooks, Thomas; Hockings, Marc; Woodley, Stephen
2016-09-01
Ensuring that protected areas (PAs) maintain the biodiversity within their boundaries is fundamental in achieving global conservation goals. Despite this objective, wildlife abundance changes in PAs are patchily documented and poorly understood. Here, we use linear mixed effect models to explore correlates of population change in 1,902 populations of birds and mammals from 447 PAs globally. On an average, we find PAs are maintaining populations of monitored birds and mammals within their boundaries. Wildlife population trends are more positive in PAs located in countries with higher development scores, and for larger-bodied species. These results suggest that active management can consistently overcome disadvantages of lower reproductive rates and more severe threats experienced by larger species of birds and mammals. The link between wildlife trends and national development shows that the social and economic conditions supporting PAs are critical for the successful maintenance of their wildlife populations.
Kristoufek, Ladislav
2013-01-01
Digital currencies have emerged as a new fascinating phenomenon in the financial markets. Recent events on the most popular of the digital currencies – BitCoin – have risen crucial questions about behavior of its exchange rates and they offer a field to study dynamics of the market which consists practically only of speculative traders with no fundamentalists as there is no fundamental value to the currency. In the paper, we connect two phenomena of the latest years – digital currencies, namely BitCoin, and search queries on Google Trends and Wikipedia – and study their relationship. We show that not only are the search queries and the prices connected but there also exists a pronounced asymmetry between the effect of an increased interest in the currency while being above or below its trend value. PMID:24301322
Northern Galápagos Corals Reveal Twentieth Century Warming in the Eastern Tropical Pacific
NASA Astrophysics Data System (ADS)
Jimenez, Gloria; Cole, Julia E.; Thompson, Diane M.; Tudhope, Alexander W.
2018-02-01
Models and observations disagree regarding sea surface temperature (SST) trends in the eastern tropical Pacific. We present a new Sr/Ca-SST record that spans 1940-2010 from two Wolf Island corals (northern Galápagos). Trend analysis of the Wolf record shows significant warming on multiple timescales, which is also present in several other records and gridded instrumental products. Together, these data sets suggest that most of the eastern tropical Pacific has warmed over the twentieth century. In contrast, recent decades have been characterized by warming during boreal spring and summer (especially north of the equator), and subtropical cooling during boreal fall and winter (especially south of the equator). These SST trends are consistent with the effects of radiative forcing, mitigated by cooling due to wind forcing during boreal winter, as well as intensified upwelling and a strengthened Equatorial Undercurrent.
Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems
Schuyler, Ronald P.; Merkel, Angelika; Raineri, Emanuele; Altucci, Lucia; Vellenga, Edo; Martens, Joost H.A.; Pourfarzad, Farzin; Kuijpers, Taco W.; Burden, Frances; Farrow, Samantha; Downes, Kate; Ouwehand, Willem H.; Clarke, Laura; Datta, Avik; Lowy, Ernesto; Flicek, Paul; Frontini, Mattia; Stunnenberg, Hendrik G.; Martín-Subero, José I.; Gut, Ivo; Heath, Simon
2018-01-01
Summary DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses. PMID:27851971
Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems.
Schuyler, Ronald P; Merkel, Angelika; Raineri, Emanuele; Altucci, Lucia; Vellenga, Edo; Martens, Joost H A; Pourfarzad, Farzin; Kuijpers, Taco W; Burden, Frances; Farrow, Samantha; Downes, Kate; Ouwehand, Willem H; Clarke, Laura; Datta, Avik; Lowy, Ernesto; Flicek, Paul; Frontini, Mattia; Stunnenberg, Hendrik G; Martín-Subero, José I; Gut, Ivo; Heath, Simon
2016-11-15
DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Cross-national time trends in bullying behaviour 1994-2006: findings from Europe and North America.
Molcho, Michal; Craig, Wendy; Due, Pernille; Pickett, William; Harel-Fisch, Yossi; Overpeck, Mary
2009-09-01
To identify trends over 12 years in the prevalence of bullying and associated victimization among adolescents in North American and European countries. Cross-sectional self-report surveys were obtained from nationally representative samples of 11-15 year old school children in 21 countries in 1993/94 and in 27 countries in each of 1997/98, 2001/02 and 2005/06. Measures included involvement in bullying as either a perpetrator and/or victim. Consistent decreases in the prevalence of bullying were reported between 1993/94 to 2005/06 in most countries. Geographic patterns show consistent decreases in bullying in Western European countries and in most Eastern European countries. An increase or no change in prevalence was evident in almost all English speaking countries participating in the study (England, Scotland, Wales, Ireland and Canada, but not in the USA). Study findings demonstrated a significant decrease in involvement in bullying behaviour in most participating countries. This is encouraging news for policy-makers and practitioners working in the field of bullying prevention.
Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters
NASA Astrophysics Data System (ADS)
Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen
2016-12-01
This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.
The Trend Odds Model for Ordinal Data‡
Capuano, Ana W.; Dawson, Jeffrey D.
2013-01-01
Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values (Peterson and Harrell, 1990). We consider a trend odds version of this constrained model, where the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc Nlmixed, and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical dataset is used to illustrate the interpretation of the trend odds model, and we apply this model to a Swine Influenza example where the proportional odds assumption appears to be violated. PMID:23225520
The trend odds model for ordinal data.
Capuano, Ana W; Dawson, Jeffrey D
2013-06-15
Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values. We consider a trend odds version of this constrained model, wherein the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc NLMIXED and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical data set is used to illustrate the interpretation of the trend odds model, and we apply this model to a swine influenza example wherein the proportional odds assumption appears to be violated. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.
2011-01-01
Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.
Trends in stratospheric ozone profiles using functional mixed models
NASA Astrophysics Data System (ADS)
Park, A. Y.; Guillas, S.; Petropavlovskikh, I.
2013-05-01
This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkher ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed as it penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data driven basis functions are obtained. Secondly we estimate the effects of covariates - month, year (trend), quasi biennial oscillation, the Solar cycle, arctic oscillation and the El Niño/Southern Oscillation cycle - on the principal component scores of ozone profiles over time using generalized additive models. The effects are smooth functions of the covariates, and are represented by knot-based regression cubic splines. Finally we employ generalized additive mixed effects models incorporating a more complex error structure that reflects the observed seasonality in the data. The analysis provides more accurate estimates of influences and trends, together with enhanced uncertainty quantification. We are able to capture fine variations in the time evolution of the profiles such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder. The strongly declining trends over 2003-2011 for altitudes of 32-64 hPa show that stratospheric ozone is not yet fully recovering.
Howell, Embry M; Pettit, Kathryn L S; Kingsley, G Thomas
2005-01-01
During the 1990s, numerous public policy changes occurred that may have affected the health of mothers and infants in low-income neighborhoods. This article examines trends in key maternal and child health indicators to determine whether disparities between high-poverty neighborhoods and other neighborhoods have declined. Using neighborhood-level vital statistics and U.S. Census data, we categorized "neighborhoods" (Census tracts) as being high poverty (greater than 30% of population below the federal poverty level in 1990) or not. We compared trends in four key indicators--births to teenagers, late prenatal care, low birth-weight; and infant mortality--over the 1990s among high-poverty and other neighborhoods in Cuyahoga County, Ohio; Denver, Colorado; Marion County, Indiana; and Oakland, California. In all four metropolitan areas, trends in high-poverty neighborhoods were more favorable than in other neighborhoods. The most consistently positive trend was the reduction in the rate of teen births. The metropolitan areas with the most intensive programs to improve maternal and child health--Cuyahoga County and Oakland-saw the most consistent improvement across all indicators. Still, great disparities between high-poverty and other neighborhoods remain, and only Oakland shows promise of achieving some of the Healthy People 2010 maternal and child health goals in its high-poverty neighborhoods. While there has been a reduction in maternal and infant health disparities between high-poverty and other neighborhoods, much work remains to eliminate disparities and achieve the 2010 goals. Small area data are useful in isolating the neighborhoods that should be targeted. Experience from the 1990s suggests that a combination of several intensive interventions can be effective at reducing disparities.
Burrows, Nilka Rios; Hora, Israel; Williams, Desmond E; Geiss, Linda S
2014-03-07
During 2010, approximately 6,091 persons aged ≥18 years in Puerto Rico were living with end-stage renal disease (ESRD) (i.e., kidney failure that requires regular dialysis or kidney transplantation for survival). This included 1,462 persons who began treatment for ESRD in 2010. Diabetes is the leading cause of ESRD in Puerto Rico, accounting for 66% of new cases in adults, followed by hypertension, which accounts for 15% of the cases. Although the number of adults initiating ESRD treatment (i.e., dialysis or kidney transplantation) in Puerto Rico each year who have diabetes listed as a primary cause (ESRD-D) has increased since 1996, ESRD-D incidence among adults with diagnosed diabetes has not shown a consistent trend. To assess recent trends in ESRD-D incidence among adults aged ≥18 years in Puerto Rico with diagnosed diabetes and to further examine trends by age group and sex, CDC analyzed 1996-2010 data from the U.S. Renal Data System (USRDS) and the Behavioral Risk Factor Surveillance System (BRFSS). After increasing in the late 1990s, ESRD-D incidence decreased during the 2000s among adult men and among persons aged 18-44 years with diagnosed diabetes in Puerto Rico. Throughout the period, ESRD-D incidence among adult women and among persons aged 45-64 and ≥75 years with diagnosed diabetes did not show a consistent trend, and ESRD-D incidence among persons aged 65-74 years with diagnosed diabetes increased. Increased awareness of the risk factors for kidney disease and implementation of effective interventions to prevent or delay kidney disease among persons with diagnosed diabetes might decrease ESRD incidence in Puerto Rico, particularly among women and older persons.
20 year long term air quality trends in Israel
NASA Astrophysics Data System (ADS)
Luria, M.
2017-12-01
The Israeli air monitoring network was established in the mid 1990's with dozens of measuring sites near most populated areas. During these past 20 years the Israel economy has increased significantly. The population grew by 30%, energy consumption and power generation by more than 40% and the number of motor vehicles increased by nearly 50%. Most of the fossil energy is consumed by the electric power industry that has changed immensely during this period. Until the early 2000's the vast majority of the electricity was generated from coal and heavy oil. However, during the last ten years natural gas has gradually becomes the major source for power generation and for most of the heavy industry. In the present study we examined the impact of these economic trends on the major criteria air pollution parameters; O3, NOx, SO2 and PM10. The analyses was based on the long term trend of median value (50th percentile) and the 90th percentile. The results revealed that SO2 levels throughout the country decreased to very low levels, with the 90th percentile near the detection limit. The levels of PM10, that are relatively high compare with other global regions, did not show any trend during the 20 year period. This is consistent with the fact that most particulate matter results from long range transport of dust from the surrounding deserts. The long term trend of NOx indicates a gradual and steady increase at most measuring sites, which is consistent with the increase of fossil fuel consumption. The increase in NOx levels is most likely the cause for the significant increase in O3 levels found at most sites in a few of them to levels that are considered as an environmental hazard.
Tropical cyclone genesis potential index over the western North Pacific simulated by CMIP5 models
NASA Astrophysics Data System (ADS)
Song, Yajuan; Wang, Lei; Lei, Xiaoyan; Wang, Xidong
2015-11-01
Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis-1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multimodel ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming.
Evolutionary trends in arvicolids and the endemic murid Mikrotia - New data and a critical overview
NASA Astrophysics Data System (ADS)
Maul, Lutz C.; Masini, Federico; Parfitt, Simon A.; Rekovets, Leonid; Savorelli, Andrea
2014-07-01
The study of evolutionary rates dates back to the work of Simpson and Haldane in the 1940s. Small mammals, especially Plio-Pleistocene arvicolids (voles and lemmings), are particularly suited for such studies because they have an unusually complete fossil record and exhibit significant evolutionary change through time. In recent decades, arvicolids have been the focus of intensive research devoted to the tempo and mode of evolutionary change and the identification of trends in dental evolution that can be used to correlate and date fossil sites. These studies have raised interesting questions about whether voles and lemmings had unique evolutionary trajectories, or show convergent evolutionary patterns with other hypsodont rodents. Here we review evolutionary patterns in selected arvicolid lineages and endemic Messinian murids (Mikrotia spp.) and discuss reasons for convergence in dental morphology in these two groups of hypsodont rodents. The results substantiate previously detected patterns, but the larger dataset shows that some trends are less regular than previous studies have suggested. With the exception of a pervasive and sustained trend towards increased hypsodonty, our results show that other features do not follow consistent patterns in all lineages, exhibiting a mosaic pattern comprising stasis, variable rate evolution and gradual unidirectional change through time. Evidence for higher evolutionary rates is found in lineages apparently undergoing adaptations to new ecological niches. In the case of Mikrotia, Microtus voles and the water vole (Mimomys-Arvicola) lineage, a shift to a fossorial lifestyle appears to have been an important driving force in their evolution. For other characters, different causes can be invoked; for example a shift to a semi-aquatic lifestyle may be responsible for the trend towards increasing size in Arvicola. Biochronological application of the data should take into account the complexity and biases of the data.
Decadal Variability and Temperature Trends in the Middle Atmosphere From Historical Rocketsonde Data
NASA Technical Reports Server (NTRS)
Dunkerton, Timothy J.
2000-01-01
Observational studies were performed using historical rocketsonde data to investigate long-term temperature trends, solar-cycle variations, and interactions between tropical and extratropical latitudes in the middle atmosphere. Evidence from tropical, subtropical, and midlatitude North American rocketsonde stations indicated a consistent downward trend over 25 years, with a solar cycle component superposed. The trend is about -1.4 to -2.0 K per decade and the amplitude of the decadal oscillation is about 1.1 K. Prior to trend derivation it was necessary for us to correct temperatures for aerodynamic heating in the early years. The empirically derived correction profile agrees well with a theoretical profile of Krumins and Lyons. A study was also performed of the correlation between equatorial winds and north polar temperatures in winter, showing that the entire stratospheric wind profile near the equator -- including the quasi-biennial oscillation (QBO) and stratopause semiannual oscillation (SAO) -- is important to the extratropical flow, not merely the QBO component as previously thought. A strong correlation was discovered between winter polar temperatures and equatorial winds in the upper stratosphere during the preceding September, suggesting a role for the second cycle of the SAO.
The magmatism and metamorphism at the Malayer area, Western Iran
NASA Astrophysics Data System (ADS)
Ahadnejad, V.; Valizadeh, M. V.; Esmaeily, D.
2009-04-01
The Malayer area is located in the NW-SE aligned Sanandaj-Sirjan metamorphic belt, western Iran and consists mainly of Mesozoic schists so-called Hamadan Phyllites, Jurassic to Tertiary intrusive rocks and related contact metamorphic aureoles, aplites and pegmatites. The Sanandj-Sirjan Zone is produced by oblique collisional event between Arabian plate and Central Iran microcontinent. Highest level of regional metamorphism in the area is greenschist facies and injection of felsic magmas is caused contact metamorphism. Magmatism is consist of a general northwest trend large felsic to intermediate intrusive bodies. The main trend of structural features i.e. faults, fractures and other structural features is NW-SE. The Malayer granitoid complex is ellipsoid in shape and has NW-SE foliation especially at the corners of the intrusions. Petrography of the magmatic rocks revealed recrystallization of quartz and feldspars, bending of biotite, and aligment of minerals paralle to the main trend of magmatic and metamorphic country rocks. These indicated that intrusion of felsic magma is coincide to the regional metamorphism and is syn-tectoinc. Non-extensive contact metamorphism aureoles and rareness of pegmatite and aplite in the area are interpreted as injection of felsic magmas into the high-strain metamorphic zone. The regional metamorphic rocks mainly consist of meta-sandstone, slate, phyllite, schist. These gray to dark metasedimentary rocks are consist of quartz, muscovite, turmaline, epidote, biotite and chlorite. Sheeted minerals form extended schistosity and study of porphyroblast-matrix relationships shows that injection of granitic magma into the country rocks is syn to post-tectonic. Syn-tectonic indicating porphyroblast growth synchronous with the development of the external fabric. The thermal contact area of the granite can be observed in the contact margin of granite and regional metamorphic rocks, where it produced hornfelses, andalusit-garnet schists and local feldspatisation. Hornfels has surrounded the Malayer intrusive body in its southern, eastern and to some extent northeastern parts. It shows a rather sharp contact with the granodiorite. According to field and microscopic investigations, an original clay-sandstone has been converted into hornfels due to contact metamorphism. Some small highly altered granitic patches are seen in the hornfels unit, especially close to its contact with the Malayer intrusive body.
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.; Sun-Mack, S.; Chen, Y.; Doelling, D. R.; Kato, S.; Rutan, D. A.
2017-12-01
Recent studies analyzing long-term measurements of surface insolation at ground sites suggest that decadal-scale trends of increasing (brightening) and decreasing (dimming) downward solar flux have occurred at various times over the last century. Regional variations have been reported that range from near 0 Wm-2/decade to as large as 9 Wm-2/decade depending on the location and time period analyzed. The more significant trends have been attributed to changes in overhead clouds and aerosols, although quantifying their relative impacts using independent observations has been difficult, owing in part to a lack of consistent long-term measurements of cloud properties. This paper examines new satellite based records of cloud properties derived from MODIS (2000-present) and AVHRR (1981- present) data to infer cloud property trends over a number of surface radiation sites across the globe. The MODIS cloud algorithm was developed for the NASA Clouds and the Earth's Radiant Energy System (CERES) project to provide a consistent record of cloud properties to help improve broadband radiation measurements and to better understand cloud radiative effects. The CERES-MODIS cloud algorithm has been modified to analyze other satellites including the AVHRR on the NOAA satellites. Compared to MODIS, obtaining consistent cloud properties over a long period from AVHRR is a much more significant challenge owing to the number of different satellites, instrument calibration uncertainties, orbital drift and other factors. Nevertheless, both the MODIS and AVHRR cloud properties will be analyzed to determine trends, and their level of consistency and correspondence with surface radiation trends derived from the ground-based radiometer data. It is anticipated that this initial study will contribute to an improved understanding of surface solar radiation trends and their relationship to clouds.
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Doelling, David R.; Wu, Aisheng; Xiong, Xiaoxiong (Jack); Scarino, Benjamin R.; Haney, Conor O.; Gopalan, Arun
2014-01-01
The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.
NASA Astrophysics Data System (ADS)
Wang, Jinfeng; Gao, Yanchuan; Wang, Sheng
2018-04-01
Climate change and human activities are the two main factors on runoff change. Quantifying the contribution of climate change and human activities on runoff change is important for water resources planning and management. In this study, the variation trend and abrupt change point of hydro-meteorological factors during 1960-2012 were detected by using the Mann-Kendall test and Pettitt change-point statistics. Then the runoff was simulated by SWAT model. The contribution of climate change and human activities on runoff change was calculated based on the SWAT model and the elasticity coefficient method. The results showed that in contrast to the increasing trend for annual temperature, the significant decreasing trends were detected for annual runoff and precipitation, with an abrupt change point in 1982. The simulated results of SWAT had good consistency with observed ones, and the values of R2 and E_{NS} all exceeded 0.75. The two methods used for assessing the contribution of climate change and human activities on runoff reduction yielded consistent results. The contribution of climate change (precipitation reduction and temperature rise) was {˜ }37.5%, while the contribution of human activities (the increase of economic forest and built-up land, hydrologic projects) was {˜ }62.5%.
Divergent responses to spring and winter warming drive community level flowering trends
Cook, Benjamin I.; Wolkovich, Elizabeth M.; Parmesan, Camille
2012-01-01
Analyses of datasets throughout the temperate midlatitude regions show a widespread tendency for species to advance their springtime phenology, consistent with warming trends over the past 20–50 y. Within these general trends toward earlier spring, however, are species that either have insignificant trends or have delayed their timing. Various explanations have been offered to explain this apparent nonresponsiveness to warming, including the influence of other abiotic cues (e.g., photoperiod) or reductions in fall/winter chilling (vernalization). Few studies, however, have explicitly attributed the historical trends of nonresponding species to any specific factor. Here, we analyzed long-term data on phenology and seasonal temperatures from 490 species on two continents and demonstrate that (i) apparent nonresponders are indeed responding to warming, but their responses to fall/winter and spring warming are opposite in sign and of similar magnitude; (ii) observed trends in first flowering date depend strongly on the magnitude of a given species’ response to fall/winter vs. spring warming; and (iii) inclusion of fall/winter temperature cues strongly improves hindcast model predictions of long-term flowering trends compared with models with spring warming only. With a few notable exceptions, climate change research has focused on the overall mean trend toward phenological advance, minimizing discussion of apparently nonresponding species. Our results illuminate an understudied source of complexity in wild species responses and support the need for models incorporating diverse environmental cues to improve predictability of community level responses to anthropogenic climate change. PMID:22615406
NASA Astrophysics Data System (ADS)
Gladden, H. J.; Proctor, M. P.
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Proctor, M. P.
1985-01-01
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
NASA Astrophysics Data System (ADS)
Melaas, Eli K.; Sulla-Menashe, Damien; Friedl, Mark A.
2018-03-01
The timing of leaf emergence is an important diagnostic of climate change impacts on ecosystems. Here we present the first continental-scale analysis of multidecadal changes in the timing of spring onset across North American temperate and boreal forests based on Landsat imagery. Our results show that leaf emergence in Eastern Temperate Forests has consistently trended earlier, with a median change of about 1 week over the 30 year study period. Changes in leaf emergence dates in boreal forests were more heterogeneous, with some sites showing trends toward later dates. Interannual variability in leaf emergence dates was strongly sensitive to springtime accumulated growing degree days across all sites, and geographic patterns of changes in onset dates were highly correlated with changes in regional springtime temperatures. These results provide a refined characterization of recent changes in springtime forest phenology and improve understanding regarding the sensitivity of North American forests to climate change.
NASA Astrophysics Data System (ADS)
Banzhaf, S.; Schaap, M.; Kranenburg, R.; Manders, A. M. M.; Segers, A. J.; Visschedijk, A. J. H.; Denier van der Gon, H. A. C.; Kuenen, J. J. P.; van Meijgaard, E.; van Ulft, L. H.; Cofala, J.; Builtjes, P. J. H.
2015-04-01
In this study we present a dynamic model evaluation of chemistry transport model LOTOS-EUROS (LOng Term Ozone Simulation - EURopean Operational Smog) to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by RACMO2 (Regional Atmospheric Climate MOdel). Observations at European rural background sites have been used as a reference for the model evaluation. To ensure the consistency of the used observational data, stringent selection criteria were applied, including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulfur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both the observations and the model show the largest part of the decline in the 1990s, while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000 and 2009. Furthermore, the results confirm former studies showing that the observed trends in sulfate and total nitrate concentrations from 1990 to 2009 are lower than the trends in precursor emissions and precursor concentrations. The model captured well these non-linear responses to the emission changes. Using the LOTOS-EUROS source apportionment module, trends in the formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20-50% more efficient sulfate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the explanation of the non-linear responses. However, we have also identified some weaknesses in the model and the input data. LOTOS-EUROS underestimates the observed nitrogen dioxide concentrations throughout the whole time period, while it overestimates the observed nitrogen dioxide concentration trends. Moreover, model results suggest that the emission information of the early 1990s used in this study needs to be improved concerning magnitude and spatial distribution.
NASA Astrophysics Data System (ADS)
Banzhaf, S.; Schaap, M.; Kranenburg, R.; Manders, A. M. M.; Segers, A. J.; Visschedijk, A. H. J.; Denier van der Gon, H. A. C.; Kuenen, J. J. P.; van Meijgaard, E.; van Ulft, L. H.; Cofala, J.; Builtjes, P. J. H.
2014-07-01
In this study we present a dynamic model evaluation of the chemistry transport model LOTOS-EUROS to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by the regional climate model RACMO2. Observations at European rural background sites have been used as reference for the model evaluation. To ensure the consistency of the used observational data stringent selection criteria were applied including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the day-to-day, seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulphur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both, the observations and the model show the largest part of the decline in the 1990's while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000-2009. Furthermore, the results confirm former studies showing that the observed trends in sulphate and total nitrate concentrations from 1990 to 2009 are significantly lower than the trends in precursor emissions and precursor concentrations. The model captured these non-linear responses to the emission changes well. Using the LOTOS-EUROS source apportionment module trends in formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20-50% more efficient sulphate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission, which added to the explanation of the non-linear responses. However, we have also identified some weaknesses to the model and the input data. LOTOS-EUROS underestimates the observed nitrogen dioxide concentrations throughout the whole time period, while it overestimates the observed nitrogen dioxide concentration trends. Moreover, model results suggest that the emission information of the early 1990's used in this study needs to be improved concerning magnitude and spatial distribution.
NASA Astrophysics Data System (ADS)
Banerjee, Subhasis; Ghosh, Sanjay
2016-07-01
Atmospheric aerosols have been shown to have profound impact on climate system and human health. Regular and systematic monitoring of ambient air is thus necessary in order to asses its impact. There are several ground based stations worldwide employed in this service but still their numbers are inadequate and it is even almost impossible to have such stations at difficult geographical terrains and take measurement throughout the year. Aerosol optical depth or AOD, which is a measure of extinction of incoming solar radiation, serves as proxy to atmospheric aerosol loading. Various sensors onboard different satellites take routine measurement of AOD throughout the year. Satellite based AOD is used in many studies due to their wide coverage and availability for a longer time period. Satellite measures reflected solar radiation at the top of the atmosphere. Column integrated value of aerosol are routinely estimated from those measurements using suitable inversion algorithms. MODIS instrument onboard Aqua and Terra satellites of Earth Observing System takes routine measurement in wide spectral range. We used those data to evaluate trend of AOD over almost fifty Indian cities having population more than a million. The cities we have chosen spread over almost entire length and breadth of the country. Few such studies have already been conducted using MODIS data. They typically used level 3 data. Since Level 3 data comes in 1x 1 degree gridded form they provide average value over a vast geographical region. We used level 2 dataset to enable us taking smaller region(1/2 x 1/2 degree here) centering the region of our interest . We used seasonal Mann-Kendall (M-K) statistics coupled with Sen's non-parametric slope estimation procedure to estimate monthwise and overall(i.e., yearly trend taking seasonality into account) AOD trend. We used median AOD for each month of every year to discard very high AOD's which we often get due to cloud contamination. Seasonal M-K test takes care of seasonality in AOD values. Moreover we here used AQUA version 6 data set to compare with Terra 5.1. To our knowledge Aqua version 6 data set has yet not been used in any study over this region. In our study quality controlled "joint land and ocean" product (for almost one decade time) "Optical_Depth_Land_And_Ocean" (0.55 micron) has been used to estimate trend and only statistically significant trend (p=0.05 level) is only reported. We observed that thirty out of fifty cities show overall increasing trend in AOD by both the sensors whereas rest of the cities show increasing trend only by Aqua. Decadal increase in AOD value as reported by Terra is 2-10% whereas by Aqua 4-18%. Aqua consistently shows higher trend than Terra in all cases. After comparing data from both the sensors, we observed, for almost all the cities (except some cities lying in the southern part of the country) trend(increasing) is highest during the month of November, even in case of some north Indian cities November is the only month when significant trend is noticed. In case of most southern cities trend(increasing) is highest for the month of May. Strikingly, for most northern cities in the Indo-Gangetic plain Aqua shows significant overall trend whereas Terra shows no overall trend. But for southern cities both the sensors show similar trend. We also used AERONET level 2 data(0.50 micron) from Kanpur station to estimate trend using same method and found overall trend as estimated using Aqua (10 %) data is pretty close to that found using AERONET(9%)data.
NASA Astrophysics Data System (ADS)
Beukema, J. J.; Dekker, R.
2011-06-01
A 40-y series of consistently collected samples (15 fixed sampling sites, constant sampled area of 15 × 0.95 m2, annual sampling only in late-winter/early-spring seasons, and consistent sieving and sorting procedures; restriction to 50 easily recognizable species) of macrozoobenthos on Balgzand, a tidal flat area in the westernmost part of the Wadden Sea (The Netherlands), revealed significantly increasing trends of species richness. Total numbers of species annually encountered increased from ~28 to ~38. Mean species density (number of species found per sampling site) increased from ~13 to ~18 per 0.95 m2. During the 40 years of the 1970-2009 period of observation, 4 exotic species invaded the area: (in order of first appearance) Ensis directus, Marenzelleria viridis, Crassostrea gigas, and Hemigrapsus takanoi. Another 5 species recently moved to Balgzand from nearby (subtidal) locations. Together, these 9 new species on the tidal flats explained by far most of the increase in total species numbers, but accounted for only one-third of the observed increase in species density (as a consequence of the restricted distribution of most of them). Species density increased particularly by a substantial number of species that showed increasing trends in the numbers of tidal flat sites they occupied. Most of these wider-spreading species were found to suffer from cold winters. During the 40-y period of observation, winter temperatures rose by about 2°C and cold winters became less frequent. The mean number of cold-sensitive species found per site significantly increased by almost 2 per 0.95 m2. Among the other species (not sensitive to low winter temperatures), 6 showed a rising and 2 a declining trend in number of occupied sites, resulting in a net long-term increase in species density amounting to another gain of 1.6 per 0.95 m2. Half of the 50 studied species did not show such long-term trend, nor were invaders. Thus, each of 3 groups (local or alien invaders/winter-sensitive species/other increasing species) contributed to a roughly similar extent to the overall increase in species density.
Chamberlain, Dan; Brambilla, Mattia; Caprio, Enrico; Pedrini, Paolo; Rolando, Antonio
2016-08-01
Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.
NASA Astrophysics Data System (ADS)
Waked, Antoine; Sauvage, Stéphane; Borbon, Agnès; Gauduin, Julie; Pallares, Cyril; Vagnot, Marie-Pierre; Léonardis, Thierry; Locoge, Nadine
2016-09-01
Measurements of 31 non-methane hydrocarbons (NMHCs) were carried out at three urban (Paris, 2003-2014, Strasbourg, 2002-2014 and Lyon, 2007-2014) sites in France over the period of a decade. A trend analysis was applied by means of the Mann-Kendall non-parametric test to annual and seasonal mean concentrations in order to point out changes in specific emission sources and to assess the impact of emission controls and reduction strategies. The trends were compared to those from three rural sites (Peyrusse-Vieille, 2002-2013, Tardière, 2003-2013 and Donon, 1997-2007). The results obtained showed a significant yearly decrease in pollutant concentrations over the study period and for the majority of species in the range of -1 to -7% in accordance with the decrease of NMHC emissions in France (-5 to -9%). Concentrations of long-lived species such as ethane and propane which are recognized as tracers of distant sources and natural gas remained constant. Compounds associated with combustion processes such as acetylene, propene, ethylene and benzene showed a significant decline in the range of -2% to -5% yr-1. These trends are consistent with those recently described at urban and background sites in the northern mid-latitudes and with emission inventories. C7-C9 aromatics such as toluene and xylenes as well as C4-C5 alkanes such as isopentane and isobutane also showed a significant decrease in the range of -3% to -7% yr-1. The decreasing trends in terms of % yr-1 observed at these French urban sites were typically higher for acetylene, ethylene and benzene than those reported for French rural sites of the national observatory of Measurement and Evaluation in Rural areas of trans-boundary Air pollution (MERA). The study also highlighted the difficult choice of a long term sampling site representative of the general trends of pollutant concentrations.
Decadal Record of Satellite Carbon Monoxide Observations
NASA Astrophysics Data System (ADS)
Worden, Helen; Deeter, Merritt; Frankenberg, Christian; George, Maya; Nichitiu, Florian; Worden, John; Aben, Ilse; Bowman, Kevin; Clerbaux, Cathy; Coheur, Pierre-Francois; de Laat, Jos; Warner, Juying; Drummond, James; Edwards, David; Gille, John; Hurtmans, Daniel; Ming, Luo; Martinez-Alonso, Sara; Massie, Steven; Pfister, Gabriele
2013-04-01
Atmospheric carbon monoxide (CO) distributions are controlled by anthropogenic emissions, biomass burning, chemical production, transport and oxidation by reaction with the hydroxyl radical (OH). Quantifying trends in CO is therefore important for understanding changes related to all of these contributions. Here we present a comprehensive record of satellite observations from 2000 through 2011 of total column CO using the available measurements from nadir-viewing thermal infrared instruments: MOPITT, AIRS, TES and IASI. We examine trends for CO in the Northern and Southern hemispheres along with regional trends for E. China, E. USA, Europe and India. Measurement and sampling methods for each of the instruments are discussed, and we show diagnostics for systematic errors in MOPITT trends. We find that all the satellite observations are consistent with a modest decreasing trend around -1%/year in total column CO over the Northern hemisphere for this time period. Decreasing trends in total CO column are observed for the United States, Europe and E. China with more than 2σ significance. For India, the trend is also decreasing, but smaller in magnitude and less significant. Decreasing trends in surface CO have also been observed from measurements in the U.S. and Europe. Although less information is available for surface CO in China, there is a decreasing trend reported for Beijing. Some of the interannual variability in the observations can be explained by global fire emissions, and there may be some evidence of the global financial crisis in late 2008 to early 2009. But the overall decrease needs further study to understand the implications for changes in anthropogenic emissions.
The health financing transition: a conceptual framework and empirical evidence.
Fan, Victoria Y; Savedoff, William D
2014-03-01
Almost every country exhibits two important health financing trends: health spending per person rises and the share of out-of-pocket spending on health services declines. We describe these trends as a "health financing transition" to provide a conceptual framework for understanding health markets and public policy. Using data over 1995-2009 from 126 countries, we examine the various explanations for changes in health spending and its composition with regressions in levels and first differences. We estimate that the income elasticity of health spending is about 0.7, consistent with recent comparable studies. Our analysis also shows a significant trend in health spending - rising about 1 per cent annually - which is associated with a combination of changing technology and medical practices, cost pressures and institutions that finance and manage healthcare. The out-of-pocket share of total health spending is not related to income, but is influenced by a country's capacity to raise general revenues. These results support the existence of a health financing transition and characterize how public policy influences these trends. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aydin, Denis; Feychting, Maria; Schüz, Joachim; Röösli, Martin
2012-05-20
The first case-control study on mobile phone use and brain tumour risk among children and adolescents (CEFALO study) has recently been published. In a commentary published in Environmental Health, Söderqvist and colleagues argued that CEFALO suggests an increased brain tumour risk in relation to wireless phone use. In this article, we respond and show why consistency checks of case-control study results with observed time trends of incidence rates are essential, given the well described limitations of case-control studies and the steep increase of mobile phone use among children and adolescents during the last decade. There is no plausible explanation of how a notably increased risk from use of wireless phones would correspond to the relatively stable incidence time trends for brain tumours among children and adolescents observed in the Nordic countries. Nevertheless, an increased risk restricted to heavy mobile phone use, to very early life exposure, or to rare subtypes of brain tumours may be compatible with stable incidence trends at this time and thus further monitoring of childhood brain tumour incidence rate time trends is warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subimal; Das, Debasish; Kao, Shih-Chieh
Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalizedmore » extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.« less
Desigualdad social y tendencias de mortalidad por diabetes.
Medina-Gómez, Oswaldo; Medina-Reyes, E Ismael Seth
2017-01-01
To identify the trend of national diabetes mortality by level of marginality at the state and municipal levels. A descriptive study was conducted with records of deaths from diabetes in over 20 years from 1990 to 2013. The national mortality rate was calculated standardized by age according to the 2000 world population and the state level 2013 saw the projected naational population by join point analysis for trend analysis was performed. For the general population, the annual percentage change between 1990 and 1996 was 2.2, from 1996 to 2005 was 4.3, and from 2005 to 2013 was 0.1. The largest increase among women occurred between 1998 and 2005 while among men occurred between 1995 and 2006. At the state level was found higher annual percentage change between the towns with the highest degree of marginalization. The mortality of diabetes in women shows a significant decrease since 2004, among men, the mortality with a continuous upward trend, consistent with the trend that the disease has had in recent years. Copyright: © 2017 SecretarÍa de Salud
Extension and statistical analysis of the GACP aerosol optical thickness record
NASA Astrophysics Data System (ADS)
Geogdzhayev, Igor V.; Mishchenko, Michael I.; Li, Jing; Rossow, William B.; Liu, Li; Cairns, Brian
2015-10-01
The primary product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans. It is based on channel-1 and -2 radiance data from the Advanced Very High Resolution Radiometer (AVHRR) instruments flown on successive National Oceanic and Atmospheric Administration (NOAA) platforms. We extend the previous GACP dataset by four years through the end of 2009 using NOAA-17 and -18 AVHRR radiances recalibrated against MODerate resolution Imaging Spectroradiometer (MODIS) radiance data, thereby making the GACP record almost three decades long. The temporal overlap of over three years of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. The temporal overlap of the NOAA-17 and -18 instruments is used to introduce a small additive adjustment to the channel-2 calibration of the latter resulting in a consistent record with increased data density. The Principal Component Analysis (PCA) of the newly extended GACP record shows that most of the volcanic AOT variability can be isolated into one mode responsible for ~ 12% of the total variance. This conclusion is confirmed by a combined PCA analysis of the GACP, MODIS, and Multi-angle Imaging SpectroRadiometer (MISR) AOTs during the volcano-free period from February 2000 to December 2009. We show that the modes responsible for the tropospheric AOT variability in the three datasets agree well in terms of correlation and spatial patterns. A previously identified negative AOT trend which started in the late 1980s and continued into the early 2000s is confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This result is consistent with the MODIS and MISR AOT records as well as with the recent gradual reversal from brightening to dimming revealed by surface flux measurements in many aerosol producing regions. Thus the robustness of the GACP record is confirmed, increasing our confidence in the validity of the negative trend. Although the nominal negative GACP AOT trend could partially be an artifact of increasing aerosol absorption, we argue that the time dependence of the GACP record, including the latest flat period, is more consistent with the actual decrease in the tropospheric AOT.
Extension and Statistical Analysis of the GACP Aerosol Optical Thickness Record.
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Mishchenko, Michael I.; Li, Jing; Rossow, William B.; Liu, Li; Cairns, Brian
2015-01-01
The primary product of the Global Aerosol Climatology Project (GACP) is a continuous record of the aerosol optical thickness (AOT) over the oceans. It is based on channel-1 and -2 radiance data from the Advanced Very High Resolution Radiometer (AVHRR) instruments flown on successive National Oceanic and Atmospheric Administration (NOAA) platforms. We extend the previous GACP dataset by four years through the end of 2009 using NOAA-17 and -18 AVHRR radiances recalibrated against MODerate resolution Imaging Spectroradiometer (MODIS) radiance data, thereby making the GACP record almost three decades long. The temporal overlap of over three years of the new NOAA-17 and the previous NOAA-16 record reveals an excellent agreement of the corresponding global monthly mean AOT values, thereby confirming the robustness of the vicarious radiance calibration used in the original GACP product. The temporal overlap of the NOAA-17 and -18 instruments is used to introduce a small additive adjustment to the channel-2 calibration of the latter resulting in a consistent record with increased data density. The Principal Component Analysis (PCA) of the newly extended GACP record shows that most of the volcanic AOT variability can be isolated into one mode responsible for 12% of the total variance. This conclusion is confirmed by a combined PCA analysis of the GACP, MODIS, andMulti-angle Imaging SpectroRadiometer (MISR) AOTs during the volcano-free period fromFebruary 2000 to December 2009.We show that the modes responsible for the tropospheric AOT variability in the three datasets agree well in terms of correlation and spatial patterns. A previously identified negative AOT trend which started in the late 1980s and continued into the early 2000s is confirmed. Its magnitude and duration indicate that it was caused by changes in tropospheric aerosols. The latest multi-satellite segment of the GACP record shows that this trend tapered off, with no noticeable AOT change after 2002. This result is consistent with the MODIS andMISR AOT records as well as with the recent gradual reversal frombrightening to dimming revealed by surface flux measurements in many aerosol producing regions. Thus the robustness of the GACP record is confirmed, increasing our confidence in the validity of the negative trend. Although the nominal negative GACP AOT trend could partially be an artifact of increasing aerosol absorption, we argue that the time dependence of the GACP record, including the latest flat period, is more consistent with the actual decrease in the tropospheric AOT.
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.; ...
2016-05-12
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
Trends in Overweight and Obesity in Czech Schoolchildren from 1998 to 2014.
Hamřík, Zdeněk; Sigmundová, Dagmar; Pavelka, Jan; Kalman, Michal; Sigmund, Erik
2017-07-01
Overweight and obesity in adolescents is associated with many health risks and considerable direct and indirect healthcare costs. The purpose of this study is to examine trends in the prevalence of overweight and obesity in 11-, 13- and 15-year-old adolescents in the Czech Republic from 1998 to 2014. Data from five self-reported survey rounds (1998, 2002, 2006, 2010, and 2014) of the Health Behaviour in School-aged Children Study (HBSC) were used to assess trends in overweight and obesity among Czech adolescents. The total sample consisted of 19,103 adolescents (51.2% girls). A logistic regression analysis was used to assess trends in different age and gender categories. From 1998 to 2014 a significant increase in the prevalence of overweight and obesity was observed among boys in all age categories (11 years old 22.2% 1998 - 28.3% 2014 ; 13 years old 17.9% 1998 - 26.7% 2014 ; 15 years old 9.8% 1998 - 20.8% 2014 ) and among 15-year-old girls (6.0% 1998 - 10.9% 2014 ). None of the age and gender categories showed an overall decrease over the 16-year period. In boys, the prevalence of overweight was significantly higher with steeper negative trends compared with girls. However, stabilization in overweight rates was observed between 2010 and 2014 in all age and gender groups. Nationally representative self-reported data show a significant increase in overweight (including obesity) prevalence among children from 1998 to 2014 in the Czech Republic. The results also suggest stabilization in overweight prevalence between 2010 and 2014. Continuing research is needed to determine future trends while interventions aimed at reducing overweight and obesity in children should be implemented on different levels of public policy. Copyright© by the National Institute of Public Health, Prague 2017
Goane, L; Casmuz, A; Salas, H; Willink, E; Mangeaud, A; Valladares, G
2015-12-01
Studies on insect natural enemies and their effects on host populations are of immense practical value in pest management. Predation and parasitism on a citrus pest, the leafminer Phyllocnistis citrella Stainton, were evaluated by sampling over 3 years in four locations within a world leading lemon producing area in Northwest Argentina. Both mortality factors showed seasonal trends consistent across locations, with predation exerting earlier and more sustained pressure than parasitism, which showed wider seasonal variations. The dominant parasitoids, native Cirrospilus neotropicus and introduced Ageniaspis citricola, showed different seasonal trends: C. neotropicus was dominant in spring whereas A. citricola superseded it in autumn and winter. Although parasitism rates were relatively low, the native C. neotropicus revealed favourable features as potential control agent, by showing density-dependence, parasitism rates comparable with those of the specific A. citricola during part of the cycle, and earlier synchronization with the host. The study provides highly relevant information for a sustainable management of this worldwide pest, for which biological control is considered the best long-term option.
Resistivity structures across the Humboldt River basin, north-central Nevada
Rodriguez, Brian D.; Williams, Jackie M.
2002-01-01
Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.
The Nanograv Nine-Year Data Set: Measurement and Analysis of Variations in Dispersion Measures
NASA Technical Reports Server (NTRS)
Jones, M. L.; McLaughlin, M. A.; Lam, M. T.; Cordes, J. M.; Levin, L.; Chatterjee, S.; Arzoumanian, Z.; Crowter, K.; Demorest, P. B.; Dolch, T.;
2017-01-01
We analyze dispersion measure(DM) variations of 37 millisecond pulsars in the nine-year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show both effects. Of the four pulsars with linear trends that have line-of-sight velocity measurements, three are consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and we show that the presence of other trends and localized features or gradients in the interstellar medium is the most likely cause.
Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies.
Chan Phooi M'ng, Jacinta; Zainudin, Rozaimah
2016-01-01
The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA') in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA'. The Efficacy Ratio adjusts the AMA' to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA' is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA' are superior to the passive buy-and-hold strategy. Specifically, AMA' outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets.
The paper trail of the 13C of atmospheric CO2 since the industrial revolution period
NASA Astrophysics Data System (ADS)
Yakir, Dan
2011-07-01
The 13C concentration in atmospheric CO2 has been declining over the past 150 years as large quantities of 13C-depleted CO2 from fossil fuel burning are added to the atmosphere. Deforestation and other land use changes have also contributed to the trend. Looking at the 13C variations in the atmosphere and in annual growth rings of trees allows us to estimate CO2 uptake by land plants and the ocean, and assess the response of plants to climate. Here I show that the effects of the declining 13C trend in atmospheric CO2 are recorded in the isotopic composition of paper used in the printing industry, which provides a well-organized archive and integrated material derived from trees' cellulose. 13C analyses of paper from two European and two American publications showed, on average, a - 1.65 ± 1.00‰ trend between 1880 and 2000, compared with - 1.45 and - 1.57‰ for air and tree-ring analyses, respectively. The greater decrease in plant-derived 13C in the paper we tested than in the air is consistent with predicted global-scale increases in plant intrinsic water-use efficiency over the 20th century. Distinct deviations from the atmospheric trend were observed in both European and American publications immediately following the World War II period.
Consistency of SAT® I: Reasoning Test Score Conversions. Research Report. ETS RR-08-67
ERIC Educational Resources Information Center
Haberman, Shelby J.; Guo, Hongwen; Liu, Jinghua; Dorans, Neil J.
2008-01-01
This study uses historical data to explore the consistency of SAT® I: Reasoning Test score conversions and to examine trends in scaled score means. During the period from April 1995 to December 2003, both Verbal (V) and Math (M) means display substantial seasonality, and a slight increasing trend for both is observed. SAT Math means increase more…
Software Classifications: Trends in Literacy Software Publication and Marketing.
ERIC Educational Resources Information Center
Balajthy, Ernest
First in a continuing series of reports on trends in marketing and publication of software for literacy education, a study explored the development of a database to track the trends and reported on trends seen in 1995. The final version of the 1995 database consisted of 1011 software titles, 165 of which had been published in 1995 and 846…
Does the market maker stabilize the market?
NASA Astrophysics Data System (ADS)
Zhu, Mei; Chiarella, Carl; He, Xue-Zhong; Wang, Duo
2009-08-01
The market maker plays an important role in price formation, but his/her behavior and stabilizing impact on the market are relatively unclear, in particular in speculative markets. This paper develops a financial market model that examines the impact on market stability of the market maker, who acts as both a liquidity provider and an active investor in a market consisting of two types of boundedly rational speculative investors-the fundamentalists and trend followers. We show that the market maker does not necessarily stabilize the market when he/she actively manages the inventory to maximize profits, and that rather the market maker’s impact depends on the behavior of the speculators. Numerical simulations show that the model is able to generate outcomes for asset returns and market inventories that are consistent with empirical findings.
Shao, Diwei; Zhan, Yu; Zhou, Wenjun; Zhu, Lizhong
2016-12-01
While the spatial distributions of heavy metals in farmland soil of China have been comprehensively delineated, their temporal trends are rarely investigated but are important for environmental risk management. In this study, the current status and temporal trends of heavy metals in the farmland soil of Yangtze River Delta (YRD) were evaluated through field survey and meta-analysis. The field survey conducted in 2014 showed that the concentrations of Cd, Pb, Cu, Zn, and Ni in the farmland topsoil were 0.23 ± 0.14, 37.63 ± 15.60, 25.83 ± 41.62, 88.38 ± 43.30, and 29.21 ± 12.41 mg kg -1 (mean ± standard deviation), respectively. The heavy metals showed relatively higher concentrations on the borders among Zhejiang, Jiangsu, and Shanghai. In the meta-analysis, we selected 68 published studies related to heavy metal pollution in farmland topsoil of YRD from 2000 to the year (2014) when the field survey was conducted. The results show an increasing trend for Cd (p < 0.05; 0.0081 mg kg -1 year -1 ), a decreasing trend for Cu (p < 0.05; -0.80 mg kg -1 year -1 ), and no significant trend for Pb (p = 0.155), Zn (p = 0.746), and Ni (p = 0.305). The increasing rate of Cd from the meta-analysis is consistent with the rate (0.0013 mg kg -1 year -1 ) derived from the mass balance calculation for Cd, where atmospheric deposition originated from intensive coal combustion is considered as the main source of Cd in the topsoil. The decreasing trend of Cu is likely due to largely reduced application of copper-based agrochemicals. Environmental regulation and soil remediation are needed to protect food safety and ecosystem from heavy metal pollution, especially Cd. Copyright © 2016 Elsevier Ltd. All rights reserved.
The readability of scientific texts is decreasing over time
2017-01-01
Clarity and accuracy of reporting are fundamental to the scientific process. Readability formulas can estimate how difficult a text is to read. Here, in a corpus consisting of 709,577 abstracts published between 1881 and 2015 from 123 scientific journals, we show that the readability of science is steadily decreasing. Our analyses show that this trend is indicative of a growing use of general scientific jargon. These results are concerning for scientists and for the wider public, as they impact both the reproducibility and accessibility of research findings. PMID:28873054
NASA Astrophysics Data System (ADS)
Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.
2011-09-01
Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.
MPLNET V3 Cloud and Planetary Boundary Layer Detection
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.
2016-01-01
The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.
Empirical analyses on the development trend of non-ferrous metal industry under China’s new normal
NASA Astrophysics Data System (ADS)
Li, C. X.; Liu, C. X.; Zhang, Q. L.
2017-08-01
The CGE model of Yunnan’s macro economy was constructed based on the input-output data of Yunnan in 2012, and the development trend of the non-ferrous metals industry (NMI) under the China’s new normal was simulated. In view of this, according to different expected economic growth, and optimized economic structure, the impact on development of Yunnan NMI was simulated. The results show that the NMI growth rate is expected to decline when the economic growth show a downward trend, but the change of the proportion is relatively small. Moreover, the structure in proportion was adjusted to realize the economic structure optimization, while the proportion of NMI in GDP will decline. In contrast, the biggest influence on the NMI is the change of economic structure. From the statistics of last two years, we can see that NMI is growing, and at the same time, its proportion is declining, which is consistent with the results of simulation. But the adjustment of economic structure will take a long time. It is need to improve the proportion of deep-processing industry, extend the industrial chain, enhance the value chain, so as to be made good use of resource advantage.
Shear-Wave Splitting and Crustal Anisotropy in the Shillong-Mikir Plateau of Northeast India
NASA Astrophysics Data System (ADS)
Bora, Dipok K.; Hazarika, Devajit; Paul, Arpita; Borah, Kajaljyoti; Borgohain, Jayanta Madhab
2018-01-01
Seismic anisotropy of crust beneath the Shillong-Mikir Plateau and the surrounding regions of northeast India have been investigated with the help of splitting analysis of S-wave of local earthquakes. We estimate a total 83 pairs of splitting parameters ( Φ and δt) from 67 local shallow focus earthquakes (depth ≤ 32 km) recorded by the 10 broadband seismological stations operated in the study region. The results show delay times ranging from 0.02 to 0.2 s, which correspond to anisotropy up to 4%, suggesting significant strength of anisotropy in the study region. Fast polarization direction ( Φ) in the Shillong Plateau shows mostly NW-SE trend in the western part and NE-SW trend in the northern part. Φs near Kopili fault (KF) follows NW-SE trend. Φ at most of the stations in the study region is consistent with the local stress orientation, suggesting that the anisotropy is mainly caused by preferentially aligned cracks responding to the stress field. On the other hand, anisotropy observed near the KF is due to aligned macroscopic fracture related to strike-slip movement in the fault zone.
Assessment of watershed ecological status and trends is challenging for managers who lack randomly or consistently sampled data, or monitoring programs developed from a watershed perspective. This study investigated analytical approaches for assessment of status and trends using ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welp, Lisa R.; Patra, Prabir K.; Rodenbeck, Christian
Warmer temperatures and elevated atmospheric CO 2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO 2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changesmore » are unclear. Here, we examine CO 2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO 2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60°N excluding Europe (10 W-63°E), neither inversion finds a significant long-term trend in annual CO 2 balance. The boreal zone, the latitude region from approximately 50–60°N, again excluding Europe, showed a trend of 8–11 TgCyr -2 over the common period of validity from 1986 to 2006, resulting in an annual CO 2 sink in 2006 that was 170–230 TgCyr -1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO 2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO 2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO 2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO 2 uptake, consistent with strong greening trends, is offset by increased fall CO 2 release, resulting in a net neutral trend in annual fluxes. Finally, the inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate–carbon feedback caused by warming temperatures on high northern latitude terrestrial CO 2 fluxes from 1985 to 2012.« less
Welp, Lisa R.; Patra, Prabir K.; Rodenbeck, Christian; ...
2016-07-25
Warmer temperatures and elevated atmospheric CO 2 concentrations over the last several decades have been credited with increasing vegetation activity and photosynthetic uptake of CO 2 from the atmosphere in the high northern latitude ecosystems: the boreal forest and arctic tundra. At the same time, soils in the region have been warming, permafrost is melting, fire frequency and severity are increasing, and some regions of the boreal forest are showing signs of stress due to drought or insect disturbance. The recent trends in net carbon balance of these ecosystems, across heterogeneous disturbance patterns, and the future implications of these changesmore » are unclear. Here, we examine CO 2 fluxes from northern boreal and tundra regions from 1985 to 2012, estimated from two atmospheric inversions (RIGC and Jena). Both used measured atmospheric CO 2 concentrations and wind fields from interannually variable climate reanalysis. In the arctic zone, the latitude region above 60°N excluding Europe (10 W-63°E), neither inversion finds a significant long-term trend in annual CO 2 balance. The boreal zone, the latitude region from approximately 50–60°N, again excluding Europe, showed a trend of 8–11 TgCyr -2 over the common period of validity from 1986 to 2006, resulting in an annual CO 2 sink in 2006 that was 170–230 TgCyr -1 larger than in 1986. This trend appears to continue through 2012 in the Jena inversion as well. In both latitudinal zones, the seasonal amplitude of monthly CO 2 fluxes increased due to increased uptake in summer, and in the arctic zone also due to increased fall CO 2 release. These findings suggest that the boreal zone has been maintaining and likely increasing CO 2 sink strength over this period, despite browning trends in some regions and changes in fire frequency and land use. Meanwhile, the arctic zone shows that increased summer CO 2 uptake, consistent with strong greening trends, is offset by increased fall CO 2 release, resulting in a net neutral trend in annual fluxes. Finally, the inversion fluxes from the arctic and boreal zones covering the permafrost regions showed no indication of a large-scale positive climate–carbon feedback caused by warming temperatures on high northern latitude terrestrial CO 2 fluxes from 1985 to 2012.« less
Sohtome, Tadahiro; Wada, Toshihiro; Mizuno, Takuji; Nemoto, Yoshiharu; Igarashi, Satoshi; Nishimune, Atsushi; Aono, Tatsuo; Ito, Yukari; Kanda, Jota; Ishimaru, Takashi
2014-12-01
Radioactive cesium ((134)Cs and (137)Cs) concentrations in invertebrates of benthic food web (10 taxonomic classes with 46 identified families) collected from wide areas off Fukushima Prefecture (3-500 m depth) were inspected from July 2011, four months after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, to August 2013 to elucidate time-series trends among taxa and areas. Cesium-137 was detected in seven classes (77% of 592 specimens). Higher (137)Cs concentrations within detected data were often found in areas near or south of the FDNPP, which is consistent with the reported spatial distribution of (137)Cs concentrations in highly contaminated seawater and sediments after the FDNPP accident. Overall (137)Cs concentrations in invertebrates, the maxima of which (290 Bq kg(-1)-wet in the sea urchin Glyptocidaris crenularis) were lower than in many demersal fishes, had decreased exponentially with time, and exhibited taxon-specific decreasing trends. Concentrations in Bivalvia and Gastropoda decreased clearly with respective ecological half-lives of 188 d and 102 d. In contrast, decreasing trends in Malacostraca and Polychaeta were more gradual, with longer respective ecological half-lives of 208 d and 487 d. Echinoidea showed no consistent trend, presumably because of effects of contaminated sediments taken into their digestive tract. Comparison of (137)Cs concentrations in the invertebrates and those in seawater and sediments suggest that contaminated sediments are the major source of continuing contamination in benthic invertebrates, especially in Malacostraca and Polychaeta. Copyright © 2014 Elsevier Ltd. All rights reserved.
Using Landsat to Diagnose Trends in Disturbance Magnitude Across the National Forest System
NASA Astrophysics Data System (ADS)
Hernandez, A. J.; Healey, S. P.; Stehman, S. V.; Ramsey, R. D.
2014-12-01
The Landsat archive is increasingly being used to detect trends in the occurrence of forest disturbance. Beyond information about the amount of area affected, forest managers need to know if and how disturbance severity is changing. For example, the United States National Forest System (NFS) has developed a comprehensive plan for carbon monitoring, which requires a detailed temporal mapping of forest disturbance magnitudes across 75 million hectares. To meet this need, we have prepared multitemporal models of percent canopy cover that were calibrated with extensive field data from the USFS Forest Inventory and Analysis Program (FIA). By applying these models to pre- and post-event Landsat images at the site of known disturbances, we develop maps showing first-order estimates of disturbance magnitude on the basis of cover removal. However, validation activities consistently show that these initial estimates under-estimate disturbance magnitude. We have developed an approach, which quantifies this under-prediction at the landscape level and uses empirical validation data to adjust change magnitude estimates derived from initial disturbance maps. In an assessment of adjusted magnitude trends of NFS' Northern Region from 1990 to the present, we observed significant declines since 1990 (p < .01) in harvest magnitude, likely related to known reduction of clearcutting practices in the region. Fire, conversely, did not show strongly significant trends in magnitude, despite an increase in the overall area affected. As Landsat is used to provide increasingly precise maps of the timing and location of historical forest disturbance, a logical next step is to use the archive to generate widely interpretable and objective estimates of disturbance magnitude.
Fasel, Jean H D; Aguiar, Diego; Kiss-Bodolay, Daniel; Montet, Xavier; Kalangos, Afksendiyos; Stimec, Bojan V; Ratib, Osman
2016-04-01
Many regions worldwide report difficulties in recruiting applicants to surgery. One strategy proposed to reverse this trend consists of early exposure of medical students to the field. Against this backdrop, the present study presents an innovative approach for anatomy teaching, integrating a surgically relevant trend: 3D printing. Whole-body computed tomography (CT) was made of two cadavers. Twelve students performed measurements and 3D reconstructions of selected anatomical structures (Osirix, Mimics). 3D printed (3DP) models were obtained (ZPrinter 310 Plus), and the students completed the analogous measurements on these replicas. Finally, classical anatomical dissection was performed and the same parameters were measured. The differences between the values obtained by the three modalities were submitted to standard statistical analysis (Wilcoxon two-tail paired test). Qualitative comparison of the digital 3D reconstructions based on the students' manual CT segmentation and the anatomical reality showed excellent correlation. Quantitatively, the values measured on the CT images and the physical models created by 3D printing differed from those measured on the cadavers by less than 2 mm. Students were highly appreciative of the approach (CT, 3DP, cadaver). Their average satisfaction score was 5.8 on a 1-6 scale. This study shows that the approach proposed can be achieved. The results obtained also show that CT-based 3D printed models are close to the authentic anatomic reality. The program allows early and interactive exposure of medical students to a surgically relevant trend-in this case 3D printing.
NASA Technical Reports Server (NTRS)
Chin, Mian; Diehl, T.; Tan, Q.; Prospero, J. M.; Kahn, R. A.; Remer, L. A.; Yu, H.; Sayer, A. M.; Bian, H.; Geogdzhayev, I. V.;
2014-01-01
Aerosol variations and trends over different land and ocean regions during 1980-2009 are analyzed with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and observations from multiple satellite sensors and ground-based networks. Excluding time periods with large volcanic influences, the tendency of aerosol optical depth (AOD) and surface concentration over polluted land regions is consistent with the anthropogenic emission changes.The largest reduction occurs over Europe, and regions in North America and Russia also exhibit reductions. On the other hand, East Asia and South Asia show AOD increases, although relatively large amount of natural aerosols in Asia makes the total changes less directly connected to the pollutant emission trends. Over major dust source regions, model analysis indicates that the dust emissions over the Sahara and Sahel respond mainly to the near-surface wind speed, but over Central Asia they are largely influenced by ground wetness. The decreasing dust trend in the tropical North Atlantic is most closely associated with the decrease of Sahel dust emission and increase of precipitation over the tropical North Atlantic, likely driven by the sea surface temperature increase. Despite significant regional trends, the model-calculated global annual average AOD shows little changes over land and ocean in the past three decades, because opposite trends in different regions cancel each other in the global average. This highlights the need for regional-scale aerosol assessment, as the global average value conceals regional changes, and thus is not sufficient for assessing changes in aerosol loading.
Teodoro, Douglas; Lovis, Christian
2013-01-01
Background Antibiotic resistance is a major worldwide public health concern. In clinical settings, timely antibiotic resistance information is key for care providers as it allows appropriate targeted treatment or improved empirical treatment when the specific results of the patient are not yet available. Objective To improve antibiotic resistance trend analysis algorithms by building a novel, fully data-driven forecasting method from the combination of trend extraction and machine learning models for enhanced biosurveillance systems. Methods We investigate a robust model for extraction and forecasting of antibiotic resistance trends using a decade of microbiology data. Our method consists of breaking down the resistance time series into independent oscillatory components via the empirical mode decomposition technique. The resulting waveforms describing intrinsic resistance trends serve as the input for the forecasting algorithm. The algorithm applies the delay coordinate embedding theorem together with the k-nearest neighbor framework to project mappings from past events into the future dimension and estimate the resistance levels. Results The algorithms that decompose the resistance time series and filter out high frequency components showed statistically significant performance improvements in comparison with a benchmark random walk model. We present further qualitative use-cases of antibiotic resistance trend extraction, where empirical mode decomposition was applied to highlight the specificities of the resistance trends. Conclusion The decomposition of the raw signal was found not only to yield valuable insight into the resistance evolution, but also to produce novel models of resistance forecasters with boosted prediction performance, which could be utilized as a complementary method in the analysis of antibiotic resistance trends. PMID:23637796
Googling trends in conservation biology.
Proulx, Raphaël; Massicotte, Philippe; Pépino, Marc
2014-02-01
Web-crawling approaches, that is, automated programs data mining the internet to obtain information about a particular process, have recently been proposed for monitoring early signs of ecosystem degradation or for establishing crop calendars. However, lack of a clear conceptual and methodological framework has prevented the development of such approaches within the field of conservation biology. Our objective was to illustrate how Google Trends, a freely accessible web-crawling engine, can be used to track changes in timing of biological processes, spatial distribution of invasive species, and level of public awareness about key conservation issues. Google Trends returns the number of internet searches that were made for a keyword in a given region of the world over a defined period. Using data retrieved online for 13 countries, we exemplify how Google Trends can be used to study the timing of biological processes, such as the seasonal recurrence of pollen release or mosquito outbreaks across a latitudinal gradient. We mapped the spatial extent of results from Google Trends for 5 invasive species in the United States and found geographic patterns in invasions that are consistent with their coarse-grained distribution at state levels. From 2004 through 2012, Google Trends showed that the level of public interest and awareness about conservation issues related to ecosystem services, biodiversity, and climate change increased, decreased, and followed both trends, respectively. Finally, to further the development of research approaches at the interface of conservation biology, collective knowledge, and environmental management, we developed an algorithm that allows the rapid retrieval of Google Trends data. © 2013 Society for Conservation Biology.
Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.
2014-01-01
We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.
Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.
NASA Astrophysics Data System (ADS)
Yang, H. W.; Ouarda, T.
2015-12-01
This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.
Lottig, Noah R.; Wagner, Tyler; Norton Henry, Emily; Spence Cheruvelil, Kendra; Webster, Katherine E.; Downing, John A.; Stow, Craig A.
2014-01-01
We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity. PMID:24788722
Decadal variability of surface solar radiation over China
NASA Astrophysics Data System (ADS)
Wang, K.
2015-12-01
Observations show that national average surface solar radiation (Rs) decreased by -8.0 W m-2 per decade from 1960 to 1990 and sharply increased from 1990 to 1993. However, none of the state-of-the-art climate models can reproduce such decrease/increase of Rs. This study shows that Rs observations over China have significant inhomogeneity. Before 1989, Rs was calculated as a sum of direct (Rsdir) and diffuse (Rsdif) solar radiation observations measured by pyrheliometers and shaded pyranometers separately. Due to technical limitations and irregular calibration, pyranometers before 1990 had a strong sensitivity drift problem, which introduced crucial spurious decreasing trends into Rsdif and Rs data. From 1990 to 1993, instruments and measurement methods were replaced and measuring stations were restructured in China, which resulted in an abrupt increase in the observed Rs. Rs calculated from Sunshine duration (SunDu) provide a reliable reference in assessing decadal variability of Rs. SunDu derived Rs have no sensitivity drift problem because of its daily changed recording material. SunDu-derived Rs averaged over China decreased by -2.9 W m-2 per decade from 1961 to 1990, and had a negligible trend afterward. During the period of 1994-2012 when Rs observations were free of inhomogeneity mentioned above, the observed and SunDu-derived Rs consistently show a negligible trend, being less than 0.1 W m-2 per decade. These trends can be reproduced by high-quality CMIP5 Earth System Models (ESM). This level of agreement is due to the incorporation of a near real emission inventory of atmospheric aerosols by CMIP5 ESMs. Rs from ERA-Interim has a good agreement with SunDu-derived Rs. However, ERA-interim does not allow aerosol loading to change annually. ERA-Interim Rs shows an unreliable increasing trend of 1.9 W m-2 per decade from 1990 to 2013 because it does not include the impact of recent increased atmospheric aerosols over China. GEWEX Rs calculated from ISCCP cloud products show a significant but erratic decreasing trend of -3.1 W m-2 per decade from 1983 to 2007 over China. The ISCCP cloud products aggregate cloud observations from polar orbit and geostationary satellites directly, which introduced to inhomogeneity to ISCCP cloud and GEWEX Rs products.
The Darkening of the Greenland Ice Sheet: Trends, Drivers and Projections (1981-2100)
NASA Technical Reports Server (NTRS)
Tedesco, Marco; Doherty, Sarah; Fettweis, Xavier; Alexander, Patrick; Jeyaratnam, Jeyavinoth; Stroeve, Julienne
2016-01-01
The surface energy balance and meltwater production of the Greenland ice sheet (GrIS) are modulated by snow and ice albedo through the amount of absorbed solar radiation. Here we show, using space-borne multispectral data collected during the 3 decades from 1981 to 2012, that summertime surface albedo over the GrIS decreased at a statistically significant (99 %) rate of 0.02 decade(sup -1) between 1996 and 2012. Over the same period, albedo modelled by the Modele Atmospherique Regionale (MAR) also shows a decrease, though at a lower rate (approximately -0.01 decade(sup -1)) than that obtained from space-borne data. We suggest that the discrepancy between modelled and measured albedo trends can be explained by the absence in the model of processes associated with the presence of light-absorbing impurities. The negative trend in observed albedo is confined to the regions of the GrIS that undergo melting in summer, with the dry snow zone showing no trend. The period 1981-1996 also showed no statistically significant trend over the whole GrIS. Analysis of MAR outputs indicates that the observed albedo decrease is attributable to the combined effects of increased near-surface air temperatures, which enhanced melt and promoted growth in snow grain size and the expansion of bare ice areas, and to trends in light-absorbing impurities (LAI) on the snow and ice surfaces. Neither aerosol models nor in situ and remote sensing observations indicate increasing trends in LAI in the atmosphere over Greenland. Similarly, an analysis of the number of fires and BC emissions from fires points to the absence of trends for such quantities. This suggests that the apparent increase of LAI in snow and ice might be related to the exposure of a "dark band" of dirty ice and to increased consolidation of LAI at the surface with melt, not to increased aerosol deposition. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening, with albedo anomalies averaged over the whole ice sheet lower by 0.08 in 2100 than in 2000, driven solely by a warming climate. Future darkening is likely underestimated because of known underestimates in modelled melting (as seen in hindcasts) and because the model albedo scheme does not currently include the effects of LAI, which have a positive feedback on albedo decline through increased melting, grain growth, and darkening.
Global Changes of the Water Cycle Intensity
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.
2003-01-01
In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the available observations. The decreasing continental trend in precipitation is located primarily over tropical land regions, with some other regions, such as North America experiencing an increasing trend. Precipitation trends are diagnosed further using the water tracers to delineate the precipitation that occurs because of continental evaporation, as opposed to oceanic evaporation. These diagnostics show that over global land areas, the recycling of continental moisture is decreasing in time. However, the recycling changes are not spatially uniform so that some regions, most notably over the United States, experience continental recycling of water that increases in time.
Accessing Recent Trend of Land Surface Temperature from Satellite Observations
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Romanov, Peter
2011-01-01
Land surface temperature (Ts) is an important element to measure the state of terrestrial ecosystems and to study surface energy budgets. In support of the land cover/land use change-related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected global monthly Ts measured by MODIS since the beginning of the missions. The MODIS Ts time series have approximately 11 years of data from Terra since 2000 and approximately 9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend. In this study, monthly climatology from two platforms are calculated and compared with that from AIRS. The spatial patterns of Ts trends are accessed, focusing on the Eurasia region. Furthermore, MODIS Ts trends are compared with those from AIRS and NASA's atmospheric assimilation model, MERRA (Modern Era Retrospective-analysis for Research and Applications). The preliminary results indicate that the recent 8-year Ts trend shows an oscillation-type spatial variation over Eurasia. The pattern is consistent for data from MODIS, AIRS, and MERRA, with the positive center over Eastern Europe, and the negative center over Central Siberia. The calculated climatology and anomaly of MODIS Ts will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy use by scientists and general public.
Robust global ocean cooling trend for the pre-industrial Common Era
NASA Astrophysics Data System (ADS)
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-09-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
Robust global ocean cooling trend for the pre-industrial Common Era
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-01-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
NASA Astrophysics Data System (ADS)
Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning
2017-12-01
North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.
NASA Astrophysics Data System (ADS)
Kelly, Paige; Clementson, Lesley; Lyne, Vincent
2015-06-01
Sixty years of oceanographic in situ data at Port Hacking (34°S) and Maria Island (42°S) and 15 years of satellite-derived chlorophyll a (chl a) in inshore and offshore waters of southeast Australia show changes in the seasonality and trend of water properties consistent with long-term intensification and southerly extensions of East Australian Current (EAC) water. Decadal analyses reveal that the EAC extension water at Maria Island increased gradually from the 1940s to 1980s, followed by a rapid increase since the 1990s. This acceleration coincided with enhanced winter nitrate, implying increased injections of subantarctic water at Maria Island. Satellite-derived chl a at six coastal sites and offshore companion sites in the western Tasman Sea showed significant inshore-offshore variations in seasonal cycle and long-term trend. After 2004-2005, the Maria Island seasonal cycle became increasingly similar to those of Bass Strait and St. Helens, suggesting that the EAC extension water was extending further southward. Comparative analyses of inshore-offshore sites showed that the presence of EAC extension water declined offshore. Seasonal cycles at Maria Island show a recent shift away from the traditional spring bloom, toward increased winter biomass, and enhanced primary productivity consistent with extensions of warm, energetic EAC extension water and more frequent injections of cooler, fresher nitrate-replete waters. Overall, we find complex temporal, latitudinal, and inshore-offshore changes in multiple water masses, particularly at Maria Island, and changes in primary productivity that will profoundly impact fisheries and ecosystems.
Nitrogen fractionation in high-mass star-forming cores across the Galaxy
NASA Astrophysics Data System (ADS)
Colzi, L.; Fontani, F.; Rivilla, V. M.; Sánchez-Monge, A.; Testi, L.; Beltrán, M. T.; Caselli, P.
2018-04-01
The fractionation of nitrogen (N) in star-forming regions is a poorly understood process. To put more stringent observational constraints on the N-fractionation, we have observed with the IRAM-30m telescope a large sample of 66 cores in massive star-forming regions. We targeted the (1-0) rotational transition of HN13C, HC15N, H13CN and HC15N, and derived the 14N/15N ratio for both HCN and HNC. We have completed this sample with that already observed by Colzi et al. (2018), and thus analysed a total sample of 87 sources. The 14N/15N ratios are distributed around the Proto-Solar Nebula value with a lower limit near the terrestrial atmosphere value (˜272). We have also derived the 14N/15N ratio as a function of the Galactocentric distance and deduced a linear trend based on unprecedented statistics. The Galactocentric dependences that we have found are consistent, in the slope, with past works but we have found a new local 14N/15N value of ˜400, i.e. closer to the Prosolar Nebula value. A second analysis was done, and a parabolic Galactocentric trend was found. Comparison with Galactic chemical evolution models shows that the slope until 8 kpc is consistent with the linear analysis, while the flattening trend above 8 kpc is well reproduced by the parabolic analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akinwande, Olaguoke K., E-mail: gokeakin@gmail.com; Philips, Prejesh, E-mail: prejesh.philips@louisville.edu; Duras, Petr, E-mail: durasp@seznam.cz
2015-04-15
PurposeTo compare the feasibility, safety, and efficacy with small and large irinotecan drug-eluting beads (DEBIRI) for treating hepatic colorectal metastases.MethodsUsing our prospectively maintained, multi-center, intra-arterial therapy registry, we identified 196 patients treated with a combination of large beads (100–300 to 500–700 μm) and patients treated with a combination of small beads (70–150 to 100–300 μm). To minimize selection bias, a propensity score analysis was performed to compare both groups.ResultsUnadjusted analysis consisted of 196 and 30 patients treated with large and small beads, respectively. The adjusted analysis consisted of 19 patients each. Unadjusted analysis showed decreased all-grade (p = <0.001) and high-grade adverse effects (p = 0.02)more » in the small bead group, with a persisting trend toward decreased overall side effects in the adjusted analysis favoring small beads (p = 0.09) The adjusted analysis showed the percentage dose delivered (delivered dose/intended dose) was significantly greater in the small bead group compared to the large bead group (96 vs 79 %; p = 0.005). There were also a lower percentage of treatments terminating in complete stasis in the adjusted analysis (0.0035). Adjusted analysis also showed increased objective response rate (ORR) at 12 months (p = 0.04), with a corresponding trend also seen in the unadjusted analysis (0.09).ConclusionSmaller beads result in increased dose delivery probably due to less propensity to reach complete stasis. It may also lead to more durable long-term efficacy. Smaller beads also demonstrate similarly low toxicity compared to large-sized beads with a trend toward less toxicity.« less
Kreaden, Usha S.; Gabbert, Jessica; Thomas, Raju
2014-01-01
Abstract Introduction: The primary aims of this study were to assess the learning curve effect of robot-assisted radical prostatectomy (RARP) in a large administrative database consisting of multiple U.S. hospitals and surgeons, and to compare the results of RARP with open radical prostatectomy (ORP) from the same settings. Materials and Methods: The patient population of study was from the Premier Perspective Database (Premier, Inc., Charlotte, NC) and consisted of 71,312 radical prostatectomies performed at more than 300 U.S. hospitals by up to 3739 surgeons by open or robotic techniques from 2004 to 2010. The key endpoints were surgery time, inpatient length of stay, and overall complications. We compared open versus robotic, results by year of procedures, results by case volume of specific surgeons, and results of open surgery in hospitals with and without a robotic system. Results: The mean surgery time was longer for RARP (4.4 hours, standard deviation [SD] 1.7) compared with ORP (3.4 hours, SD 1.5) in the same hospitals (p<0.0001). Inpatient stay was shorter for RARP (2.2 days, SD 1.9) compared with ORP (3.2 days, SD 2.7) in the same hospitals (p<0.0001). The overall complications were less for RARP (10.6%) compared with ORP (15.8%) in the same hospitals, as were transfusion rates. ORP results in hospitals without a robot were not better than ORP with a robot, and pretreatment co-morbidity profiles were similar in all cohorts. Trending of results by year of procedure showed no differences in the three cohorts, but trending of RARP results by surgeon experience showed improvements in surgery time, hospital stay, conversion rates, and complication rates. Conclusions: During the initial 7 years of RARP development, outcomes showed decreased hospital stay, complications, and transfusion rates. Learning curve trends for RARP were evident for these endpoints when grouped by surgeon experience, but not by year of surgery. PMID:24350787
NASA Astrophysics Data System (ADS)
Dawson, Phillip B.; Chouet, Bernard A.; Power, John
2011-02-01
Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.
Shen, Aihua; Lee, Sunggyu; Ra, Kongtae; Suk, Dongwoo; Moon, Hyo-Bang
2018-03-01
Information is scarce on historical trends of perfluoroalkyl substances (PFASs) in the coastal environment. In this study, four sediment cores were collected from semi-enclosed bays of Korea to investigate the pollution history, contamination profiles, and environmental burden of PFASs. The total PFAS concentrations in sediment cores ranged from 6.61 to 821 pg/g dry weight. The highest concentrations of PFASs were found in surface or sub-surface sediments, indicating on-going contamination by PFASs. Historical trends in PFASs showed a clear increase since the 1980s, which was consistent with the global PFAS consumption pattern. Concentrations of PFASs were dependent on the organic carbon content in sediment cores. PFOS and longer-chain PFASs were predominant in all of the sediment cores. In particular, a large proportion of longer-chain PFASs was observed in the upper layers of the sediment cores from industrialized coastal regions. Inventories and fluxes estimated for PFASs were similar to those for PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com
Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.
2013-01-01
of 95% or greater in parent compounds . The data also show that most rock concentrations were lowered to around 0-5...INTRODUCTION 1.1 BACKGROUND The removal of dense non-aqueous phase liquids (DNAPL) and associated dissolved phase compounds is challenging in ...trend as presented in Figure 10. Figure 10. Vapor stream VOC concentrations for the dominant compounds . The more or less consistent level of
The negations of conjunctions, conditionals, and disjunctions.
Khemlani, Sangeet; Orenes, Isabel; Johnson-Laird, P N
2014-09-01
How do reasoners understand and formulate denials of compound assertions, such as conjunctions and disjunctions? A theory based on mental models postulates that individuals enumerate models of the various possibilities consistent with the assertions. It therefore predicts a novel interaction: in affirmations, conjunctions, A and B, which refer to one possibility, should be easier to understand than disjunctions, A or B, which refer to more than one possibility; in denials, conjunctions, not(A and B), which refer to more than one possibility, should be harder to understand than disjunctions, not(A or B), which do not. Conditionals are ambiguous and they should be of intermediate difficulty. Experiment 1 corroborated this trend with a task in which the participants selected which possibilities were consistent with assertions, such as: Bob denied that he wore a yellow shirt and he wore blue pants on Tuesday. Experiment 2 likewise showed that participants' own formulations of verbal denials yielded the same trend in which denials of conjunctions were harder than denials of conditionals, which in turn were harder than denials of disjunctions. Published by Elsevier B.V.
The Future at Work. An Assessment of Changing Workplace Trends.
ERIC Educational Resources Information Center
Interstate Conference of Employment Security Agencies, Inc., Washington, DC.
Technological and demographic changes affect the nation's employment landscape. The most consistent trend of the century has been the shrinking workweek. By the year 2000, many workers will spend only 32 hours per week at work. Other workplace changes will continue the quest for more work satisfaction: technical trends (flextime/telecommuting);…
Consistency and Change in Club Drug Use by Sexual Minority Men in New York City, 2002 to 2007
Pantalone, David W.; Bimbi, David S.; Holder, Catherine A.; Golub, Sarit A.
2010-01-01
We used repeated cross-sectional data from intercept surveys conducted annually at lesbian, gay, and bisexual community events to investigate trends in club drug use in sexual minority men (N = 6489) in New York City from 2002 to 2007. Recent use of ecstasy, ketamine, and γ-hydroxybutyrate decreased significantly. Crystal methamphetamine use initially increased but then decreased. Use of cocaine and amyl nitrates remained consistent. A greater number of HIV-positive (vs HIV-negative) men reported recent drug use across years. Downward trends in drug use in this population mirror trends in other groups. PMID:20724693
Satellite-based trends of solar radiation and cloud parameters in Europe
NASA Astrophysics Data System (ADS)
Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer
2018-04-01
Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.
Terracciano, Antonio; McCrae, Robert R.; Brant, Larry J.; Costa, Paul T.
2009-01-01
We examined age trends in the five factors and 30 facets assessed by the Revised NEO Personality Inventory in Baltimore Longitudinal Study of Aging data (N = 1,944; 5,027 assessments) collected between 1989 and 2004. Consistent with cross-sectional results, Hierarchical Linear Modeling analyses showed gradual personality changes in adulthood: a decline up to age 80 in Neuroticism, stability and then decline in Extraversion, decline in Openness, increase in Agreeableness, and increase up to age 70 in Conscientiousness. Some facets showed different curves from the factor they define. Birth cohort effects were modest, and there were no consistent Gender × Age interactions. Significant non-normative changes were found for all five factors; they were not explained by attrition but might be due to genetic factors, disease, or life experience. PMID:16248708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.
The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel withmore » a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.« less
NASA Astrophysics Data System (ADS)
Stanley, F.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; Wang, L.; Aird, J. A.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; Knudsen, K. K.; Michałowski, M. J.; Valiante, E.; De Zotti, G.; Furlanetto, C.; Ivison, R.; Maddox, S.; Smith, M. W. L.
2017-12-01
We investigate the mean star formation rates (SFRs) in the host galaxies of ∼3000 optically selected quasi-stellar objects (QSOs) from the Sloan Digital Sky Survey within the Herschel-ATLAS fields, and a radio-luminous subsample covering the redshift range of z = 0.2-2.5. Using Wide-field Infrared Survey Explorer (WISE) and Herschel photometry (12-500 μm) we construct composite spectral energy distributions (SEDs) in bins of redshift and active galactic nucleus (AGN) luminosity. We perform SED fitting to measure the mean infrared luminosity due to star formation, removing the contamination from AGN emission. We find that the mean SFRs show a weak positive trend with increasing AGN luminosity. However, we demonstrate that the observed trend could be due to an increase in black hole (BH) mass (and a consequent increase of inferred stellar mass) with increasing AGN luminosity. We compare to a sample of X-ray selected AGN and find that the two populations have consistent mean SFRs when matched in AGN luminosity and redshift. On the basis of the available virial BH masses, and the evolving BH mass to stellar mass relationship, we find that the mean SFRs of our QSO sample are consistent with those of main sequence star-forming galaxies. Similarly the radio-luminous QSOs have mean SFRs that are consistent with both the overall QSO sample and with star-forming galaxies on the main sequence. In conclusion, on average QSOs reside on the main sequence of star-forming galaxies, and the observed positive trend between the mean SFRs and AGN luminosity can be attributed to BH mass and redshift dependencies.
2012-01-01
The first case–control study on mobile phone use and brain tumour risk among children and adolescents (CEFALO study) has recently been published. In a commentary published in Environmental Health, Söderqvist and colleagues argued that CEFALO suggests an increased brain tumour risk in relation to wireless phone use. In this article, we respond and show why consistency checks of case–control study results with observed time trends of incidence rates are essential, given the well described limitations of case–control studies and the steep increase of mobile phone use among children and adolescents during the last decade. There is no plausible explanation of how a notably increased risk from use of wireless phones would correspond to the relatively stable incidence time trends for brain tumours among children and adolescents observed in the Nordic countries. Nevertheless, an increased risk restricted to heavy mobile phone use, to very early life exposure, or to rare subtypes of brain tumours may be compatible with stable incidence trends at this time and thus further monitoring of childhood brain tumour incidence rate time trends is warranted. PMID:22607537
Regional Variations in Suicide and Undetermined Death Rates among Adolescents across Canada.
Renaud, Johanne; Lesage, Alain; Gagné, Mathieu; MacNeil, Sasha; Légaré, Gilles; Geoffroy, Marie-Claude; Skinner, Robin; McFaull, Steven
2018-04-01
Trends in rates of adolescent suicide and undetermined deaths in Canada from 1981 to 2012 were examined, focusing specifically on variations between Canadian regions. Exploratory hypotheses were formulated for regional variability in adolescent suicide rates over time in Canada. A descriptive time trend analysis using public domain vital statistics data was performed. All deaths from 1981 to 2012 among 15 to 19 year olds coded as suicides or undetermined intent according to the International Classification of Diseases, 9 th and 10 th Revisions were included. While there was an overall stability in adolescent suicide and undetermined death rates across Canada, regional analyses showed that Quebec experienced a 7.6% annual reduction between 2001 and 2012 while the Prairies and Atlantic provinces experienced significant annual increases since 2001. Ontario and British Columbia have had non-significant fluctuations since 2001. The trends remained similar overall when excluding undetermined deaths from the analyses. Variations in adolescent suicide trends across provinces were found. Factors such as provincial suicide action and prevention legislation contributing to these variations remain to be studied, but these regional differences point towards the need for better consistency of suicide prevention strategies across the country.
Regional Variations in Suicide and Undetermined Death Rates among Adolescents across Canada
Lesage, Alain; Gagné, Mathieu; MacNeil, Sasha; Légaré, Gilles; Geoffroy, Marie-Claude; Skinner, Robin; McFaull, Steven
2018-01-01
Objective Trends in rates of adolescent suicide and undetermined deaths in Canada from 1981 to 2012 were examined, focusing specifically on variations between Canadian regions. Exploratory hypotheses were formulated for regional variability in adolescent suicide rates over time in Canada. Methods A descriptive time trend analysis using public domain vital statistics data was performed. All deaths from 1981 to 2012 among 15 to 19 year olds coded as suicides or undetermined intent according to the International Classification of Diseases, 9th and 10th Revisions were included. Results While there was an overall stability in adolescent suicide and undetermined death rates across Canada, regional analyses showed that Quebec experienced a 7.6% annual reduction between 2001 and 2012 while the Prairies and Atlantic provinces experienced significant annual increases since 2001. Ontario and British Columbia have had non-significant fluctuations since 2001. The trends remained similar overall when excluding undetermined deaths from the analyses. Conclusions Variations in adolescent suicide trends across provinces were found. Factors such as provincial suicide action and prevention legislation contributing to these variations remain to be studied, but these regional differences point towards the need for better consistency of suicide prevention strategies across the country. PMID:29662522
Macroeconomic effects on mortality revealed by panel analysis with nonlinear trends.
Ionides, Edward L; Wang, Zhen; Tapia Granados, José A
2013-10-03
Many investigations have used panel methods to study the relationships between fluctuations in economic activity and mortality. A broad consensus has emerged on the overall procyclical nature of mortality: perhaps counter-intuitively, mortality typically rises above its trend during expansions. This consensus has been tarnished by inconsistent reports on the specific age groups and mortality causes involved. We show that these inconsistencies result, in part, from the trend specifications used in previous panel models. Standard econometric panel analysis involves fitting regression models using ordinary least squares, employing standard errors which are robust to temporal autocorrelation. The model specifications include a fixed effect, and possibly a linear trend, for each time series in the panel. We propose alternative methodology based on nonlinear detrending. Applying our methodology on data for the 50 US states from 1980 to 2006, we obtain more precise and consistent results than previous studies. We find procyclical mortality in all age groups. We find clear procyclical mortality due to respiratory disease and traffic injuries. Predominantly procyclical cardiovascular disease mortality and countercyclical suicide are subject to substantial state-to-state variation. Neither cancer nor homicide have significant macroeconomic association.
Macroeconomic effects on mortality revealed by panel analysis with nonlinear trends
Ionides, Edward L.; Wang, Zhen; Tapia Granados, José A.
2013-01-01
Many investigations have used panel methods to study the relationships between fluctuations in economic activity and mortality. A broad consensus has emerged on the overall procyclical nature of mortality: perhaps counter-intuitively, mortality typically rises above its trend during expansions. This consensus has been tarnished by inconsistent reports on the specific age groups and mortality causes involved. We show that these inconsistencies result, in part, from the trend specifications used in previous panel models. Standard econometric panel analysis involves fitting regression models using ordinary least squares, employing standard errors which are robust to temporal autocorrelation. The model specifications include a fixed effect, and possibly a linear trend, for each time series in the panel. We propose alternative methodology based on nonlinear detrending. Applying our methodology on data for the 50 US states from 1980 to 2006, we obtain more precise and consistent results than previous studies. We find procyclical mortality in all age groups. We find clear procyclical mortality due to respiratory disease and traffic injuries. Predominantly procyclical cardiovascular disease mortality and countercyclical suicide are subject to substantial state-to-state variation. Neither cancer nor homicide have significant macroeconomic association. PMID:24587843
Burns, Douglas A.; Klaus, Julian; McHale, Michael R.
2007-01-01
Climate scientists have concluded that the earth’s surface air temperature warmed by 0.6 °C during the 20th century, and that warming induced by increasing concentrations of greenhouse gases is likely to continue in the 21st century, accompanied by changes in the hydrologic cycle. Climate change has important implications in the Catskill region of southeastern New York State, because the region is a source of water supply for New York City. We used the non-parametric Mann–Kendall test to evaluate annual, monthly, and multi-month trends in air temperature, precipitation amount, stream runoff, and potential evapotranspiration (PET) in the region during 1952–2005 based on data from 9 temperature sites, 12 precipitation sites, and 8 stream gages. A general pattern of warming temperatures and increased precipitation, runoff, and PET is evident in the region. Regional annual mean air temperature increased significantly by 0.6 °C per 50 years during the period; the greatest increases and largest number of significant upward trends were in daily minimum air temperature. Daily maximum air temperature showed the greatest increase during February through April, whereas minimum air temperature showed the greatest increase during May through September. Regional mean precipitation increased significantly by 136 mm per 50 years, nearly double that of the regional mean increase in runoff, which was not significant. Regional mean PET increased significantly by 19 mm per 50 years, about one-seventh that of the increase in precipitation amount, and broadly consistent with increased runoff during 1952–2005, despite the lack of significance in the mean regional runoff trend. Peak snowmelt as approximated by the winter–spring center of volume of stream runoff generally shifted from early April at the beginning of the record to late March at the end of the record, consistent with a decreasing trend in April runoff and an increasing trend in maximum March air temperature. This change indicates an increased supply of water to reservoirs earlier in the year. Additionally, the supply of water to reservoirs at the beginning of winter is greater as indicated by the timing of the greatest increases in precipitation and runoff—both occurred during summer and fall. The future balance between changes in air temperature and changes in the timing and amount of precipitation in the region will have important implications for the available water supply in the region.
Combining satellite derived phenology with climate data for climate change impact assessment
NASA Astrophysics Data System (ADS)
Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.
2012-05-01
The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.
Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies
2016-01-01
The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA′) in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA′. The Efficacy Ratio adjusts the AMA′ to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA′ is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA′ are superior to the passive buy-and-hold strategy. Specifically, AMA′ outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets. PMID:27574972
Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James
2013-01-01
The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.
NASA Astrophysics Data System (ADS)
Lenters, J. D.; Read, J. S.; Sharma, S.; O'Reilly, C.; Hampton, S. E.; Gray, D.; McIntyre, P. B.; Hook, S. J.; Schneider, P.; Soylu, M. E.; Barabás, N.; Lofton, D. D.
2014-12-01
Global and regional changes in climate have important implications for terrestrial and aquatic ecosystems. Recent studies, for example, have revealed significant warming of inland water bodies throughout the world. To better understand the global patterns, physical mechanisms, and ecological implications of lake warming, an initiative known as the "Global Lake Temperature Collaboration" (GLTC) was started in 2010, with the objective of compiling and analyzing lake temperature data from numerous satellite and in situ records dating back at least 20-30 years. The GLTC project has now assembled data from over 300 lakes, with some in situ records extending back more than 100 years. Here, we present an analysis of the long-term warming trends, interdecadal variability, and a direct comparison between in situ and remotely sensed lake surface temperature for the 3-month summer period July-September (January-March for some lakes). The overall results show consistent, long-term trends of increasing summer-mean lake surface temperature across most but not all sites. Lakes with especially long records show accelerated warming in the most recent two to three decades, with almost half of the lakes warming at rates in excess of 0.5 °C per decade during the period 1985-2009, and a few even exceeding 1.0 °C per decade. Both satellite and in situ data show a similar distribution of warming trends, and a direct comparison at lake sites that have both types of data reveals a close correspondence in mean summer water temperature, interannual variability, and long-term trends. Finally, we examine standardized lake surface temperature anomalies across the full 100-year period (1910-2009), and in conjunction with similar timeseries of air temperature. The results reveal a close correspondence between summer air temperature and lake surface temperature on interannual and interdecadal timescales, but with many lakes warming more rapidly than the ambient air temperature over 25- to 100-year periods.
Prince, J M
1995-06-01
An unusual confluence of historical factors may be responsible for nineteenth-century Sioux being able to sustain high statures despite enduring adverse conditions during the early reservation experience. An exceptionally long span of Dakota Sioux history was examined for secular trends using a cross-sectional design. Two primary sources were used: One anthropometric data set was collected in the late nineteenth century under the direction of Franz Boas, and another set was collected by James R. Walker in the early twentieth century. Collectively, the data represent the birth years between 1820 and 1880 for adult individuals 20 years old or older. Adult heights (n = 1197) were adjusted for aging effects and regressed on age, with each data set and each sex analyzed separately. Tests for differences between the adult means of age cohorts by decade of birth (1820-1880) were also carried out. Only one sample of adults showed any convincing secular trend (p < 0.05): surprisingly, a positive linear trend for Walker's sample of adult males. This sample was also the one sample of adults that showed significant differences between age cohorts. The failure to find any negative secular trend in this population of Amerindians is remarkable, given the drastic socioeconomic changes that occurred with the coming of the reservation period (ca. 1868). Comparisons with contemporary white Americans show that the Sioux remained consistently taller than whites well into the reservation period and that Sioux children (Prince 1989) continued to grow at highly favorable rates during this time of severe conditions. A possible explanation for these findings involves the relatively favorable level of subsistence support received by most of the Sioux from the US government, as stipulated by various treaties. Conservative estimates suggest that the Sioux may have been able to sustain net levels of per capita annual meat consumption that exceeded the US average for several years before 1893.
Ronnenberg, Katrin; Strauß, Egbert; Siebert, Ursula
2016-09-09
The grey partridge (Perdix perdix) and the common pheasant (Phasianus colchicus) are galliform birds typical of arable lands in Central Europe and exhibit a partly dramatic negative population trend. In order to understand general habitat preferences we modelled grey partridge and common pheasant densities over the entire range of Lower Saxony. Spatially explicit developments in bird densities were modelled using spatially explicit trends of crop cultivation. Pheasant and grey partridge densities counted annually by over 8000 hunting district holders over 10 years in a range of 3.7 Mio ha constitute a unique dataset (wildlife survey of Lower Saxony). Data on main landscape groups, functional groups of agricultural crops (consisting of 9.5 million fields compiled by the Integrated Administration and Control System) and landscape features were aggregated to 420 municipalities. To model linear 8 or 10 year population trends (for common pheasant and grey partridge respectively) we use rho correlation coefficients of densities, but also rho coefficients of agricultural crops. All models confirm a dramatic decline in population densities. The habitat model for the grey partridge shows avoidance of municipalities with a high proportion of woodland and water areas, but a preference for areas with a high proportion of winter grains and high crop diversity. The trend model confirms these findings with a linear positive effect of diversity on grey partridge population development. Similarly, the pheasant avoids wooded areas but showed some preference for municipalities with open water. The effect of maize was found to be positive at medium densities, but negative at very high proportions. Winter grains, landscape features and high crop diversity are favorable. The positive effect of winter grains and higher crop diversity is also supported by the trend model. The results show the strong importance of diverse crop cultivation. Most incentives favor the cultivation of specific crops, which results in large areas of monocultures. The results confirm the importance of sustainable agricultural policies.
NASA Astrophysics Data System (ADS)
Passow, Christian; Donner, Reik
2017-04-01
Quantile mapping (QM) is an established concept that allows to correct systematic biases in multiple quantiles of the distribution of a climatic observable. It shows remarkable results in correcting biases in historical simulations through observational data and outperforms simpler correction methods which relate only to the mean or variance. Since it has been shown that bias correction of future predictions or scenario runs with basic QM can result in misleading trends in the projection, adjusted, trend preserving, versions of QM were introduced in the form of detrended quantile mapping (DQM) and quantile delta mapping (QDM) (Cannon, 2015, 2016). Still, all previous versions and applications of QM based bias correction rely on the assumption of time-independent quantiles over the investigated period, which can be misleading in the context of a changing climate. Here, we propose a novel combination of linear quantile regression (QR) with the classical QM method to introduce a consistent, time-dependent and trend preserving approach of bias correction for historical and future projections. Since QR is a regression method, it is possible to estimate quantiles in the same resolution as the given data and include trends or other dependencies. We demonstrate the performance of the new method of linear regression quantile mapping (RQM) in correcting biases of temperature and precipitation products from historical runs (1959 - 2005) of the COSMO model in climate mode (CCLM) from the Euro-CORDEX ensemble relative to gridded E-OBS data of the same spatial and temporal resolution. A thorough comparison with established bias correction methods highlights the strengths and potential weaknesses of the new RQM approach. References: A.J. Cannon, S.R. Sorbie, T.Q. Murdock: Bias Correction of GCM Precipitation by Quantile Mapping - How Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate, 28, 6038, 2015 A.J. Cannon: Multivariate Bias Correction of Climate Model Outputs - Matching Marginal Distributions and Inter-variable Dependence Structure. Journal of Climate, 29, 7045, 2016
Trends in sea ice cover within habitats used by bowhead whales in the western Arctic.
Moore, Sue E; Laidre, Kristin L
2006-06-01
We examined trends in sea ice cover between 1979 and 2002 in four months (March, June, September, and November) for four large (approximately 100,000 km2) and 12 small (approximately 10,000 km2) regions of the western Arctic in habitats used by bowhead whales (Balaena mysticetus). Variation in open water with year was significant in all months except March, but interactions between region and year were not. Open water increased in both large and small regions, but trends were weak with least-squares regression accounting for < or =34% of the total variation. In large regions, positive trends in open water were strongest in September. Linear fits were poor, however, even in the East Siberian, Chukchi, and Beaufort seas, where basin-scale analyses have emphasized dramatic sea ice loss. Small regions also showed weak positive trends in open water and strong interannual variability. Open water increased consistently in five small regions where bowhead whales have been observed feeding or where oceanographic models predict prey entrainment, including: (1) June, along the northern Chukotka coast, near Wrangel Island, and along the Beaufort slope; (2) September, near Wrangel Island, the Barrow Arc, and the Chukchi Borderland; and (3) November, along the Barrow Arc. Conversely, there was very little consistent change in sea ice cover in four small regions considered winter refugia for bowhead whales in the northern Bering Sea, nor in two small regions that include the primary springtime migration corridor in the Chukchi Sea. The effects of sea ice cover on bowhead whale prey availability are unknown but can be modeled via production and advection pathways. Our conceptual model suggests that reductions in sea ice cover will increase prey availability along both pathways for this population. This analysis elucidates the variability inherent in the western Arctic marine ecosystem at scales relevant to bowhead whales and contrasts basin-scale depictions of extreme sea ice retreats, thinning, and wind-driven movements.
More tornadoes in the most extreme U.S. tornado outbreaks
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Lepore, Chiara; Cohen, Joel E.
2016-12-01
Tornadoes and severe thunderstorms kill people and damage property every year. Estimated U.S. insured losses due to severe thunderstorms in the first half of 2016 were $8.5 billion (US). The largest U.S. effects of tornadoes result from tornado outbreaks, which are sequences of tornadoes that occur in close succession. Here, using extreme value analysis, we find that the frequency of U.S. outbreaks with many tornadoes is increasing and that it is increasing faster for more extreme outbreaks. We model this behavior by extreme value distributions with parameters that are linear functions of time or of some indicators of multidecadal climatic variability. Extreme meteorological environments associated with severe thunderstorms show consistent upward trends, but the trends do not resemble those currently expected to result from global warming.
Scheduling for Parallel Supercomputing: A Historical Perspective of Achievable Utilization
NASA Technical Reports Server (NTRS)
Jones, James Patton; Nitzberg, Bill
1999-01-01
The NAS facility has operated parallel supercomputers for the past 11 years, including the Intel iPSC/860, Intel Paragon, Thinking Machines CM-5, IBM SP-2, and Cray Origin 2000. Across this wide variety of machine architectures, across a span of 10 years, across a large number of different users, and through thousands of minor configuration and policy changes, the utilization of these machines shows three general trends: (1) scheduling using a naive FIFO first-fit policy results in 40-60% utilization, (2) switching to the more sophisticated dynamic backfilling scheduling algorithm improves utilization by about 15 percentage points (yielding about 70% utilization), and (3) reducing the maximum allowable job size further increases utilization. Most surprising is the consistency of these trends. Over the lifetime of the NAS parallel systems, we made hundreds, perhaps thousands, of small changes to hardware, software, and policy, yet, utilization was affected little. In particular these results show that the goal of achieving near 100% utilization while supporting a real parallel supercomputing workload is unrealistic.
Sui, Chengguang; Ma, Jianzhong; Chen, Qun; Yang, Yang
2016-07-01
The susceptibility of secreted frizzled-related protein 2 (SFRP2) methylation in colorectal cancer (CRC) has been studied previously. The aim of this study was to determine the risk sizes and variation trends of SFRP2 methylation in CRC development in Chinese populations. Subgroup meta-analysis and the least-squares curve-fitting method were carried out to analyze the risk of SFRP2 methylation in tissue, feces, and blood detection from 2221 samples, including a total of 1103 cases of CRC, 459 cases of adenoma, 257 cases of polyps, and 402 controls. The data showed that odds ratios (95% confidence intervals) between CRC and controls for tissue, feces, and blood detection were 334.01 (104.42-1068.39), 63.76 (20.62-197.63), and 133.75 (18.32-976.32), respectively. There were also significant differences between tissue and feces or blood as well as between feces and blood methylation frequency. These results showed that the risk size in tissue was much greater than that in feces and that in blood. The results pointed out that three curves in tissue, feces, and blood detection described the variation trends of methylation incidence from the control to polyp, to adenoma and to CRC, and that the variation trend of the risk size of SFRP2 methylation was synchronized with the histological evolution process of CRC. The variation trend of the risk size of SFRP2 methylation incidence is consistent with the histological evolution process of CRC. The susceptibility to SFRP2 methylation is an important biomarker in the study of early diagnosis of CRC and high-risk patients.
Racial and Ethnic Trends in Sudden Unexpected Infant Deaths: United States, 1995-2013.
Parks, Sharyn E; Erck Lambert, Alexa B; Shapiro-Mendoza, Carrie K
2017-06-01
Immediately after the 1994 Back-to-Sleep campaign, sudden unexpected infant death (SUID) rates decreased dramatically, but they have remained relatively stable (93.4 per 100 000 live births) since 2000. In this study, we examined trends in SUID rates and disparities by race/ethnicity since the Back-to-Sleep campaign. We used 1995-2013 US period-linked birth-infant death data to evaluate SUID rates per 100 000 live births by non-Hispanic white (NHW), non-Hispanic black (NHB), Hispanic, American Indian/Alaska Native, and Asian/Pacific Islander racial/ethnic groupings. To examine racial/ethnic disparities, we calculated rate ratios with NHWs as the referent group. Unadjusted linear regression was used to evaluate trends ( P < .05) in rates and rate ratios. The distribution and rates of SUID by demographic and birth characteristics were compared for 1995-1997 and 2011-2013, and χ 2 tests were used to evaluate significance. From 1995 to 2013, SUID rates were consistently highest for American Indian/Alaska Natives, followed by NHBs. The rate for NHBs decreased significantly, whereas the rate for NHWs also declined, but not significantly. As a result, the disparity between NHWs and NHBs narrowed slightly. The SUID rates for Hispanics and Asian/Pacific Islanders were lower than the rates for NHWs and showed a significant decrease, resulting in an increase in their advantage over NHWs. Each racial/ethnic group showed a unique trend in SUID rates since the Back-to-Sleep campaign. When implementing risk-reduction strategies, it is important to consider these trends in targeting populations for prevention and developing culturally appropriate approaches for racial/ethnic communities. Copyright © 2017 by the American Academy of Pediatrics.
Estimating terrestrial water storage changes in the Tarim River Basin using GRACE data
NASA Astrophysics Data System (ADS)
Zhao, Kefei; Li, Xia
2017-12-01
Terrestrial water storage (TWS) plays a fundamental role in the arid Tarim River Basin, which is mainly fed by glacier and snow melt water. However, the significant scarcity of ground-based observations, especially in the high-altitude mountain areas, limits our understanding of TWS changes in this region. In this study, TWS variations in the Tarim River Basin were estimated using monthly GRACE Level 2 Release 5 (RL05) products from 2002 to August 2015. The GRACE results were validated against outputs of Global Land Data Assimilation System (GLDAS) including spatial and temporal correlation analysis. The correlation between the regional TWS time-series of GRACE and GLDAS is 0.7777. It was found that GRACE TWS shows a slightly decreasing trend of -1.4069 ± 0.5060 mm yr-1 in the entire Tarim River Basin during the study period and a significant spatial difference over the study area. An apparent decreasing trend in Tien Shan and the Taklamakan Desert, and a significant increasing trend in the Kunlun Mountains and eastern Pamirs Plateau were also detected. Moreover, seasonal analysis of regional TWS time-series, precipitation and the 0 °C isotherm height in summer showed that detrended TWS variations were consistent with precipitation while long-term trends of TWS were contrary to that of the 0 °C isotherm height in summer. It implied that the interannual TWS variations were dominated by precipitation and the long-term trend of TWS changes was affected by changes of the 0 °C isotherm height in summer. This information could enrich our knowledge about water storage changes, including glacier mass balance and groundwater, and its response to climate change in this vast but sparse in-situ measurements area.
Racial and Ethnic Trends in Sudden Unexpected Infant Deaths: United States, 1995–2013
Parks, Sharyn E.; Erck Lambert, Alexa B.; Shapiro-Mendoza, Carrie K.
2017-01-01
BACKGROUND AND OBJECTIVES Immediately after the 1994 Back-to-Sleep campaign, sudden unexpected infant death (SUID) rates decreased dramatically, but they have remained relatively stable (93.4 per 100 000 live births) since 2000. In this study, we examined trends in SUID rates and disparities by race/ethnicity since the Back-to-Sleep campaign. METHODS We used 1995–2013 US period-linked birth-infant death data to evaluate SUID rates per 100 000 live births by non-Hispanic white (NHW), non-Hispanic black (NHB), Hispanic, American Indian/Alaska Native, and Asian/Pacific Islander racial/ethnic groupings. To examine racial/ethnic disparities, we calculated rate ratios with NHWs as the referent group. Unadjusted linear regression was used to evaluate trends (P < .05) in rates and rate ratios. The distribution and rates of SUID by demographic and birth characteristics were compared for 1995–1997 and 2011–2013, and χ2 tests were used to evaluate significance. RESULTS From 1995 to 2013, SUID rates were consistently highest for American Indian/Alaska Natives, followed by NHBs. The rate for NHBs decreased significantly, whereas the rate for NHWs also declined, but not significantly. As a result, the disparity between NHWs and NHBs narrowed slightly. The SUID rates for Hispanics and Asian/Pacific Islanders were lower than the rates for NHWs and showed a significant decrease, resulting in an increase in their advantage over NHWs. CONCLUSIONS Each racial/ethnic group showed a unique trend in SUID rates since the Back-to-Sleep campaign. When implementing risk-reduction strategies, it is important to consider these trends in targeting populations for prevention and developing culturally appropriate approaches for racial/ethnic communities. PMID:28562272
Trends in asthma mortality in the 0- to 4-year and 5- to 34-year age groups in Brazil
Graudenz, Gustavo Silveira; Carneiro, Dominique Piacenti; Vieira, Rodolfo de Paula
2017-01-01
ABSTRACT Objective: To provide an update on trends in asthma mortality in Brazil for two age groups: 0-4 years and 5-34 years. Methods: Data on mortality from asthma, as defined in the International Classification of Diseases, were obtained for the 1980-2014 period from the Mortality Database maintained by the Information Technology Department of the Brazilian Unified Health Care System. To analyze time trends in standardized asthma mortality rates, we conducted an ecological time-series study, using regression models for the 0- to 4-year and 5- to 34-year age groups. Results: There was a linear trend toward a decrease in asthma mortality in both age groups, whereas there was a third-order polynomial fit in the general population. Conclusions: Although asthma mortality showed a consistent, linear decrease in individuals ≤ 34 years of age, the rate of decline was greater in the 0- to 4-year age group. The 5- to 34-year group also showed a linear decline in mortality, and the rate of that decline increased after the year 2004, when treatment with inhaled corticosteroids became more widely available. The linear decrease in asthma mortality found in both age groups contrasts with the nonlinear trend observed in the general population of Brazil. The introduction of inhaled corticosteroid use through public policies to control asthma coincided with a significant decrease in asthma mortality rates in both subsets of individuals over 5 years of age. The causes of this decline in asthma-related mortality in younger age groups continue to constitute a matter of debate. PMID:28380185
NASA Astrophysics Data System (ADS)
Anderson, S. W.; Konrad, C. P.
2016-12-01
Understanding the connections between climate and river bed morphology is relevant both for interpreting the geologic record and understanding modern channel change. Here, we use changing stage-discharge relations at USGS stream-gage sites in western Washington State to infer local bed-elevation changes over the past 50 to 90 years. A network of gages in a large, unregulated basin with active glaciation show decadal periods of aggradation and incision that are strongly correlated when lagged. Best-fit lag times indicate the downstream propagation of single coherent signal at a slope-dependent velocity of 1-4 km/yr. This same pattern of change is observed at the outlets of regional rivers with glaciated headwaters but is absent in unglaciated river systems. Sites high in glaciated river systems also show coherency across basins, suggesting that the similarity in the downstream trends across glaciated basins is the result of the downstream propagation of a regionally coherent headwater signal. Incisional trends emanating from headwaters between 1950 and 1980 match a period when regional glaciers were stable or advancing, but assigning causation is complicated by hydroclimatic trends with similar temporal patterns. The recent trend is aggradational, though current bed elevations are generally similar to those prior to 1950, and are consistent with regional data indicating that sediment production in glaciated basins from 1950 to 1980 was anomalously low relative to conditions over the past several hundred years. Regionally, our results suggest the possibility of forecasting periods of aggradation and increased flood hazards several years to decades in advance in populated downstream settings. More broadly, the methods used in this analysis involve simple calculations on publically available data and provide a low-cost means of assessing local channel change wherever USGS stream-gages have been operated.
Youth Suicide Trends in Finland, 1969-2008
ERIC Educational Resources Information Center
Lahti, Anniina; Rasanen, Pirkko; Riala, Kaisa; Keranen, Sirpa; Hakko, Helina
2011-01-01
Background: There are only a few recent studies on secular trends in child and adolescent suicides. We examine here trends in rates and methods of suicide among young people in Finland, where suicide rates at these ages are among the highest in the world. Methods: The data, obtained from Statistics Finland, consisted of all suicides (n = 901)…
NASA Astrophysics Data System (ADS)
Ren, Wei; Tian, Hanqin; Cai, Wei-Jun; Lohrenz, Steven E.; Hopkinson, Charles S.; Huang, Wei-Jen; Yang, Jia; Tao, Bo; Pan, Shufen; He, Ruoying
2016-09-01
There has been considerable debate as to how natural forcing and anthropogenic activities alter the timing and magnitude of the delivery of dissolved organic carbon (DOC) to the coastal ocean, which has ramifications for the ocean carbon budget, land-ocean interactions, and coastal life. Here we present an analysis of DOC export from the Mississippi River to the Gulf of Mexico during 1901-2010 as influenced by changes in climate, land use and management practices, atmospheric CO2, and nitrogen deposition, through the integration of observational data with a coupled hydrologic/biogeochemical land model. Model simulations show that DOC export in the 2000s increased more than 40% since the 1900s. For the recent three decades (1981-2010), however, our simulated DOC export did not show a significant increasing trend, which is consistent with observations by U.S. Geological Survey. Our factorial analyses suggest that land use and land cover change, including land management practices (LMPs: i.e., fertilization, irrigation, tillage, etc.), were the dominant contributors to the century-scale trend of rising total riverine DOC export, followed by changes in atmospheric CO2, nitrogen deposition, and climate. Decadal and interannual variations of DOC export were largely attributed to year-to-year climatic variability and extreme flooding events, which have been exacerbated by human activity. LMPs show incremental contributions to DOC increase since the 1960s, indicating the importance of sustainable agricultural practices in coping with future environmental changes such as extreme flooding events. Compared to the observational-based estimate, the modeled DOC export was 20% higher, while DOC concentrations were slightly lower. Further refinements in model structure and input data sets should enable reductions in uncertainties in our prediction of century-long trends in DOC.
NASA Astrophysics Data System (ADS)
Silver, E. A.; Kluesner, J. W.; Gibson, J. C.; Bangs, N. L.; McIntosh, K. D.; von Huene, R.; Orange, D.; Ranero, C. R.
2012-12-01
Use of narrow, fixed swath multibeam data with high sounding densities has allowed order of magnitude improvement in image resolution with EM122 multibeam and backscatter data, as part of a 3D seismic study west of the Osa Peninsula. On the outer shelf, along the projection of the subducting Quepos Ridge, we mapped a dense array of faults cutting an arcuate, well-layered set of outcropping beds in the backscatter imagery (mosaicked at 2 m), with roughly N-S and E-W trends. The N-S trends dominate, and show inconsistent offsets, implying that the faults are normal and not strike-slip. The faults also show normal displacement in the 3D seismic data, consistent with the surface interpretation. The outcropping beds (of late Pleistocene age, based on Expedition 334 drilling), may have been truncated during the late Pleistocene low sea-level stand. The outermost shelf (edged by arcuate bathymetric contours) does not show these folded beds, as it was below wave base and buried by a thin sediment layer. However, narrow lines of small pockmarks and mounds follow the fault trends exactly, indicating that fluid flow through the faults is expressed at the surface, including a gas plume that extends to the sea-surface. The almost unprecedented increase in resolution of the EM122 data allows us to infer that the N-S, E-W grid of faults overlying the NE-trending Quepos Ridge projection (and NE directed subduction) formed by extensional arching above the ridge, not by collisional slip lines at a rigid indenter (as proposed earlier based on sandbox models). The extensional fault pattern also facilitates fluid and gas flow through the sedimentary section.
Wolleswinkel-van den Bosch, J H; Looman, C W; Van Poppel, F W; Mackenbach, J P
1997-08-01
The objective of this study is to produce a detailed yet robust description of the epidemiologic transition in The Netherlands. National mortality data on sex, age, cause of death and calendar year (1875-1992) were extracted from official publications. For the entire period, 27 causes of death could be distinguished, while 65 causes (nested within the 27) could be studied from 1901 onwards. Cluster analysis was used to determine groups of causes of death with similar trend curves over a period of time with respect to age- and sex-standardized mortality rates. With respect to the 27 causes, three important clusters were found: (1) infectious diseases which declined rapidly in the late 19th century (e.g. typhoid fever), (2) infectious diseases which showed a less precipitous decline (e.g. respiratory tuberculosis), and (3) non-infectious diseases which showed an increasing trend during most of the period 1875-1992 (e.g. cancer). The 65 causes provided more detail. Seven important clusters were found: four consisted mainly of infectious diseases, including a new cluster that declined rapidly after the Second World War (WW2) (e.g. acute bronchitis/influenza) and a new cluster showing an increasing trend in the 1920s and 1930s before declining in the years thereafter (e.g. appendicitis). Three clusters mainly contained non-infectious diseases, including a new one that declined from 1900 onwards (e.g. cancer of the stomach) and a new one that increased until WW2 but declined thereafter (e.g. chronic rheumatic heart disease). The results suggest that the conventional interpretation of the epidemiologic transition, which assumes a uniform decline of infectious diseases and a uniform increase of non-infectious diseases, needs to be modified.
Hung, Bui The; Long, Nguyen Phuoc; Hung, Le Phi; Luan, Nguyen Thien; Anh, Nguyen Hoang; Nghi, Tran Diem; Van Hieu, Mai; Trang, Nguyen Thi Huyen; Rafidinarivo, Herizo Fabien; Anh, Nguyen Ky; Hawkes, David; Huy, Nguyen Tien; Hirayama, Kenji
2015-01-01
Background Evidence-based medicine (EBM) has developed as the dominant paradigm of assessment of evidence that is used in clinical practice. Since its development, EBM has been applied to integrate the best available research into diagnosis and treatment with the purpose of improving patient care. In the EBM era, a hierarchy of evidence has been proposed, including various types of research methods, such as meta-analysis (MA), systematic review (SRV), randomized controlled trial (RCT), case report (CR), practice guideline (PGL), and so on. Although there are numerous studies examining the impact and importance of specific cases of EBM in clinical practice, there is a lack of research quantitatively measuring publication trends in the growth and development of EBM. Therefore, a bibliometric analysis was constructed to determine the scientific productivity of EBM research over decades. Methods NCBI PubMed database was used to search, retrieve and classify publications according to research method and year of publication. Joinpoint regression analysis was undertaken to analyze trends in research productivity and the prevalence of individual research methods. Findings Analysis indicates that MA and SRV, which are classified as the highest ranking of evidence in the EBM, accounted for a relatively small but auspicious number of publications. For most research methods, the annual percent change (APC) indicates a consistent increase in publication frequency. MA, SRV and RCT show the highest rate of publication growth in the past twenty years. Only controlled clinical trials (CCT) shows a non-significant reduction in publications over the past ten years. Conclusions Higher quality research methods, such as MA, SRV and RCT, are showing continuous publication growth, which suggests an acknowledgement of the value of these methods. This study provides the first quantitative assessment of research method publication trends in EBM. PMID:25849641
Andriuzzi, W S; Adams, B J; Barrett, J E; Virginia, R A; Wall, D H
2018-02-01
Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna. © 2018 by the Ecological Society of America.
On the variability of cold region flooding
NASA Astrophysics Data System (ADS)
Matti, Bettina; Dahlke, Helen E.; Lyon, Steve W.
2016-03-01
Cold region hydrological systems exhibit complex interactions with both climate and the cryosphere. Improving knowledge on that complexity is essential to determine drivers of extreme events and to predict changes under altered climate conditions. This is particularly true for cold region flooding where independent shifts in both precipitation and temperature can have significant influence on high flows. This study explores changes in the magnitude and the timing of streamflow in 18 Swedish Sub-Arctic catchments over their full record periods available and a common period (1990-2013). The Mann-Kendall trend test was used to estimate changes in several hydrological signatures (e.g. annual maximum daily flow, mean summer flow, snowmelt onset). Further, trends in the flood frequency were determined by fitting an extreme value type I (Gumbel) distribution to test selected flood percentiles for stationarity using a generalized least squares regression approach. Results highlight shifts from snowmelt-dominated to rainfall-dominated flow regimes with all significant trends (at the 5% significance level) pointing toward (1) lower magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest widespread permafrost thawing and are supported by increasing trends in annual minimum daily flows. Trends in selected flood percentiles showed an increase in extreme events over the full periods of record (significant for only four catchments), while trends were variable over the common period of data among the catchments. An uncertainty analysis emphasizes that the observed trends are highly sensitive to the period of record considered. As such, no clear overall regional hydrological response pattern could be determined suggesting that catchment response to regionally consistent changes in climatic drivers is strongly influenced by their physical characteristics.
The energetic and chemical fingerprints of persistent soil organic carbon
NASA Astrophysics Data System (ADS)
Barré, Pierre; Plante, Alain F.; Cécillon, Lauric; Lutfalla, Suzanne; Baudin, François; Bernard, Sylvain; Christensen, Bent T.; Fernandez, Jose M.; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Le Guillou, Corentin; Chenu, Claire
2016-04-01
A better understanding of soil organic carbon (SOC) persistence is needed to better predict SOC vulnerability to global change. The absence of convincing physical or chemical procedures to define, characterize or isolate relatively labile versus persistent SOC pools makes the study of persistent SOC difficult. Long-term bare fallow (LTBF) experiments, in which C inputs have been stopped for several decades, provide a unique opportunity to study persistent SOC without the inherent artefacts induced by extraction procedures, the hypothesis being that SOC is gradually enriched in persistent C with time as labile components decompose. We determined the evolution of thermal and chemical characteristics of bulk SOC in five LTBF experiments across Europe: Askov (DK), Grignon (FR), Rothamsted (UK), Ultuna (SW) and Versailles (FR), using a multi-technique approach involving Rock-Eval pyrolysis, thermogravimetry and differential scanning calorimetry (TG-DSC), mid-infrared diffuse reflectance spectroscopy (DRIFT-MIRS), and Near Edge X-Ray Absorption Fine Structure (NEXAFS). Results of Rock-Eval and TG analyses showed that the temperature needed to combust the SOC increased with bare fallow duration at all sites. Conversely, SOC energy density (in mJ mg-1 C) measured by DSC decreased with bare fallow duration. Rock-Eval pyrolysis results showed that hydrogen index (HI) tended to decrease with bare fallow duration whereas the oxygen index (OI) did not show consistent trends across sites. NEXAFS signals presented little differences and were dominated by carboxyl peak. Nonetheless, NEXAFS results showed a trend of increasing carboxyl groups and decreasing ketone and amide groups with bare fallow duration. Due to the mineral matrix, only a reduced part of the DRIFT-MIRS signals has been used. We observed that the bulk chemistry of aliphatic SOC (CH3 vs. CH2 functional groups) showed different trends for the different sites. Our results showed that in spite of the heterogeneity of the soils at the 5 LTBF sites, organic carbon that has persisted in soils for several decades have similar and defined thermal and energetic properties: persistent SOC burns at higher temperature and its combustion generates less energy. Persistent SOC in the studied temperate soils also shares some chemical properties: it has a lower HI values and is consistently enriched in carboxyl groups. Nonetheless, the chemical trends were less obvious than the results given by thermal techniques confirming that organo-mineral interactions are the key driver of long-term SOC stabilization. The increased burning temperature and lower energy density of persistent SOC suggest that SOC stability may be a function of the high energy cost and low energy gain from decomposition of this material. It also suggests that decomposition of the stable C pool should be more temperature sensitive and thus vulnerable to increased temperature as previously observed in several incubation studies.
Evaluation of air quality indicators in Alberta, Canada - An international perspective.
Bari, Md Aynul; Kindzierski, Warren B
2016-01-01
There has been an increase in oil sands development in northern Alberta, Canada and an overall increase in economic activity in the province in recent years. An evaluation of the state of air quality was conducted in four Alberta locations - urban centers of Calgary and Edmonton, and smaller communities of Fort McKay and Fort McMurray in the Athabasca Oil Sands Region (AOSR). Concentration trends, diurnal hourly and monthly average concentration profiles, and exceedances of provincial, national and international air quality guidelines were assessed for several criteria air pollutants over the period 1998 to 2014. Two methods were used to evaluate trends. Parametric analysis of annual median 1h concentrations and non-parametric analysis of annual geometric mean 1h concentrations showed consistent decreasing trends for NO2 and SO2 (<1ppb per year), CO (<0.1ppm per year) at all stations, decreasing for THC (<0.1ppm per year) and increasing for O3 (≤0.52ppb per year) at most stations and unchanged for PM2.5 at all stations in Edmonton and Calgary over a 17-year period. Little consistency in trends was observed among the methods for the same air pollutants other than for THC (increasing in Fort McKay <0.1ppm per year and no trend in Fort McMurray), PM2.5 in Fort McKay and Fort McMurray (no trend) and CO (decreasing <0.1ppm per year in Fort McMurray) over the same period. Levels of air quality indicators at the four locations were compared with other Canadian and international urban areas to judge the current state of air quality. Median and annual average concentrations for Alberta locations tended to be the smallest in Fort McKay and Fort McMurray. Other than for PM2.5, Calgary and Edmonton tended to have median and annual average concentrations comparable to and/or below that of larger populated Canadian and U.S. cities, depending upon the air pollutant. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaap, Martijn; Segers, Arjo; Curier, Lyana; Timmermans, Renske
2016-04-01
Consistent and long time series of remotely sensed trace gas levels may provide a useful tool to estimate surface emissions and emission trends. We use the OMI-NO2 product in conjunction with the LOTOS-EUROS CTM to estimate European emission trends through correction of the OMI-time series for meteorological variability as well as through assimilation using an ensemble kalman filter system (EnKF). The chemistry transport model captures a large fraction of the variability in NO2 columns at a synoptic timescale, although a seasonal signal in the bias between the modeled and retrieved column data remains. Prior to the assimilation, the OMI-NO2 data have been analyzed to establish the spatially variable temporal and spatial correlation lengths, required for the settings in the EnKF system. The assimilation run for 2005-2013 was performed using constant 2005 emissions to be able to quantify the emission change. The assimilation reduces the model-observation differences considerably. Significant negative trends of 2-3 % per year (as compared to 2005) were found in highly industrialized areas across Western Europe. The assimilation system also identifies the areas with major emission reductions in e.g. northern Spain as identified in earlier studies. Comparison of the trends derived from the assimilation and the data itself shows a high level of agreement, both the trends found in this way are smaller than those reported.
Characterization of a Boron Carbide Heterojunction Neutron Detector
2011-03-24
owing to a constant SRC in BC. As previously discussed, the BC is taken as fully depleted (2 μm) at all biases . The bias dependence noted in UMKC#1...sensitivity shown below 3.8 eV. A general trend also shows higher sensitivity at lower biases . For this reason, zero bias detection was not included... dependence consistent with semiconductor physics below ~ -7 V. The bias dependence that is evident in these parameters at > -7 V indicates that the
US Food assistance programs and trends in children's weight.
Ver Ploeg, Michele; Mancino, Lisa; Lin, Biing-Hwan; Guthrie, Joanne
2008-01-01
OBJECTIVES. High rates of overweight and obesity among low-income children have led some to question whether participation in US domestic food assistance programs contributes to this health problem. We use multiple years of data to examine trends in children's body weight and participation in the Food Stamp Program (FSP) or Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). Specifically, we assess whether a consistent relationship between program participation and body weight exists over time. METHODS. Data from multiple waves of the National Health and Nutrition Examination Surveys (NHANES) are used to examine the relationship between children's body weight and food assistance programs between 1976 and 2002. Linear regression models are used to estimate BMI and logit models are used to predict the probabilities of at-risk of overweight and overweight. Food assistance program participants (either FSP or WIC participants depending on age) are compared with income eligible non-participants and higher income children. RESULTS. Results show no systematic relationship over time between FSP participation and weight status for school-aged children (age 5-17). For children aged 2-4, no differences in weight status between WIC participants and eligible non-participants were found. However, recent data show some differences between WIC participants and higher income children. CONCLUSIONS. Our analysis does not find evidence of a consistent relationship between childhood obesity and participation in the FSP or WIC programs.
Clément, Marie-Ève; Chamberland, Claire; Bouchard, Camil
2016-03-14
In Quebec, three population-based surveys have documented the prevalence of psychological aggression, and minor and severe physical violence toward children. This paper aims to present 1) the results of the 2012 survey with regard to the frequency and annual prevalence of violence, and 2) the trends in all three forms of violence between 1999 and 2012 according to children's age. The three independent surveys were all conducted through telephone interviews in 1999, 2004 and 2012 by the Institut de la Statistique du Québec and reached a total sample of 9,646 children living with a mother figure. Psychological aggression, and minor and severe physical violence were measured using the Parent Child Conflict Tactics Scales. The results show that repeated psychological aggression, after having increased between 1999 (48%) and 2004 (53%), slightly decreased in 2012 (49%). Minor physical violence decreased steadily between 1999 and 2012, from 48% to 35%, and severe physical violence remained stable (6%). These three forms of violence varied by the age category of the children. Finally, the results show that the co-occurrence of the use of physical and psychological violence remained high in all three surveys. The results are consistent with trends in North America and are discussed in terms of services to support families.
A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space
NASA Technical Reports Server (NTRS)
Mclinden, Chris A.; Fioletov, Vitali; Krotkov, Nickolay A.; Li, Can; Boersma, K. Folkert; Adams, Cristen
2015-01-01
A decade (20052014) of observations from the Ozone Monitoring Instrument (OMI) were used to examine trends in nitrogen dioxide(NO2) and sulfur dioxide (SO2) over a large region of western Canada and the northern United States, with a focus on the Canadian oil sands. In the oil sands, primarily over an area of intensive surface mining, NO2 tropospheric vertical column densities (VCDs) are seen to be increasing by as much as 10year, with the location of the largest trends in a newly developing NO2 lobe well removed from surface monitoring stations. SO2 VCDs in the oil sands have remained approximately constant. The only other significant increase in the region was seen in NO2 over Bakken gas fields in North Dakota which showed increases of up to5yr. By contrast, other locations in the region show substantial declines in both pollutants, providing strong evidence to the efficacy of environmental pollution control measures implemented by both nations. The OMI-derived trends were found to be consistent with those from the Canadian surface monitoring network, although in the case of SO2, it was necessary to apply a correction in order to remove the residual signal from volcanic eruptions present in the OMI data.
Positron lifetime calculation for the elements of the periodic table.
Campillo Robles, J M; Ogando, E; Plazaola, F
2007-04-30
Theoretical positron lifetime values have been calculated systematically for most of the elements of the periodic table. Self-consistent and non-self-consistent schemes have been used for the calculation of the electronic structure in the solid, as well as different parametrizations for the positron enhancement factor and correlation energy. The results obtained have been studied and compared with experimental data, confirming the theoretical trends. As is known, positron lifetimes in bulk show a periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes follow the same behaviour. The effects of enhancement factors used in calculations have been commented upon. Finally, we have analysed the effects that f and d electrons have on positron lifetimes.
Tabachnick, W J
1990-01-01
Laboratory colonies and several natural populations of the biting midge Culicoides variipennis (Coquillett) were analyzed for genetic variation at 21 electrophoretic loci. The laboratory colonies maintained high levels of genetic variation measured by average expected heterozygosities (He = 0.142 +/- 0.008), although levels were lower than those observed in field collections (He = 0.198 +/- 0.009). A field population from Colorado, analyzed five times over a 1-yr period, showed a consistent trend in the change in gene frequencies at two loci. Genetic comparisons between natural populations were consistent with the existence of two subspecies. C. variipennis variipennis and C. variipennis sonorensis Wirth & Jones.
NASA Astrophysics Data System (ADS)
Kovalskyy, V.; Henebry, G.
2007-12-01
We analyzed changes in trends of land surface phenology (LSP) within two major river basins in Western Eurasia. The basins of Don and Dnieper Rivers extend over 862,000 ha and include 17% of the impounded water surface area in the former Soviet Union. Major changes in agricultural practices occurring after 1991 led to some time drastic reductions in the cultivated area receiving fertilizers and the amount of water consumed for irrigation in addition to other macro-indicators of agricultural sector land use intensity. Image time series analysis can localize the extent, direction, and intensity of changes during the 1990s. Using vegetation index data from the AVHRR PAL and GIMMS datasets from 1982-1988 (Soviet period) and 1995-2000 (post-Soviet period) coupled with contemporary land cover maps from MODIS, we identified the spatial extent of temporal trends and assess their significance using seasonal Mann-Kendall tests adjusted for first-order autocorrelation. Roughly 90% of croplands and forested land in Dnieper Basin exhibited no significant trends during the Soviet period. The Don Basin had more significant positive trends during the Soviet period than the Dnieper Basin. There was a substantial disagreement between datasets on the extent of significant positive trends in Don croplands (35% for GIMMS vs. 8% for PAL) and in Don forests during Soviet period (38% for GIMMS vs. 27% for PAL). Although very little area in either basins showed significant negative trends during the Soviet period, substantial areas fell under significant negative trends during the post-Soviet period. We also found major disagreement on extent of significant negative trends in Don forests during post-Soviet period (6% for GIMMS vs. 24% for PAL). Even though, there are some significant disagreements between the datasets, there is no evidence of a consistent bias in the change analysis. Changes in irrigation water use may account for some of the changes in trend direction.
Icehouse Effect: A Polar Autumn and Winter Cooling Trend
NASA Technical Reports Server (NTRS)
Wetzel, Peter J.
1999-01-01
The icehouse effect is a hypothesized polar climate trend toward cooling (or lack of warming) in response to greenhouse warming of adjacent lower latitudes. When greenhouse warmed air from lower latitudes moves over ice and snow, it generates a stronger, more stable, cappino, inversion than in a parallel case without greenhouse warming. Because the degree of decoupling between vertically adjacent air masses is directly dependent on the strength of the inversion, the capping inversion acts somewhat analogously to the walls and roof of the icehouse of generations past. What is inside the icehouse, namely the cold polar atmospheric boundary layer (ABL) air, is preserved by the "insulation" or decoupling, provided by the warm air aloft. Observations over the Arctic Ocean have shown an unexpected lack of any detectable surface warming trend over the past 40 years. This finding strongly contradicts climate model predictions that polar regions should show the strongest effect of greenhouse warming. It also stands in contrast to the consensus reached by the Intergovernmental Panel on Climate Change (IPCC), that human caused greenhouse warming is now detectable globally. One might ask: Are these Arctic observations wrong? Or, if right, is there a plausible physical explanation for them? The published observations mentioned above used about 50,000 soundings over the Arctic Ocean. Here I present a novel analysis of ALL available Arctic rawinsonde data north of 65N--a total of more than 1.1 million soundings. The analysis confirms the previously published result: There is indeed a slight climate-cooling trend in the vast majority of the data. Importantly, there are also select conditions (very strong and very weak stability of the ABL) which show a consistent, strong Arctic warming trend. It is the juxtaposition of these warming and cooling trends which defines a unique "icehouse signature" for which an explanation can be sought.
NASA Astrophysics Data System (ADS)
Green, Christopher; Bekins, Barbara; Kalkhoff, Stephen; Hirsch, Robert; Liao, Lixia; Barnes, Kimberlee
2015-04-01
Understanding how nitrogen fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the central United States, intensification of corn cropping in support of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low streamflow discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to streams and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile-drains limit the effective volumes for storage of N and reduce residence times, and because the glacial sediments in these basins promote denitrification. Changes in nitrogen fluxes resulting from ethanol production and other factors will likely be delayed for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.
Liao, M Z; Zhu, X Y; Huang, P X; Jiang, Z X; Zhang, X J; Zhang, N; Wang, G Y; Qian, Y S; Tao, X R; Kang, D M
2017-12-10
Objective: This study aimed to analyze the behavior change and related factors regarding HIV/STD epidemics among female sex workers (FSWs) in Qingdao city. Methods: According to the requirements set by the"National HIV/AIDS sentinel surveillance program", information on demographics, sexual and drug use behaviors, and HIV-related services among female sex workers (FSWs) was collected from ten consecutive annual cross-sectional surveys from 2006 to 2015. Blood samples were drawn for serological tests on both HIV and syphilis antibodies. Results: Data from the sampled FSWs over the ten years, a higher proportion of participants who were aged 30 or more, married or cohabited and on-call FSW were followed. The prevalence of syphilis increased significantly from 1.0% (4/420) in 2006 to 13.3% (53/400) in 2015 (trend χ (2)=54.22, P <0.001). Rates on illicit drug use were ranging from 12.0% (48/400) and 55.5% (222/400) while the rate on consistent condom use with clients in the last month showed decreasing, with trend χ (2)=170.62, P <0.001. The proportion of HIV-related knowledge score ≥6 (trend χ (2)=152.96, P <0.001), or ever been tested for HIV (trend χ (2)=114.87, P <0.001) were both significantly increased over the last ten years. Between 2009 and 2015, results from the annual stratified analysis showed that the FSWs who used drugs were more likely than the FSWs who were non-drug users less consistently using condoms with clients in last month and being syphilis positive ( P <0.05). On-call FSWs were more likely to be syphilis positive ( P <0.05) than the non on-call FSWs. Conclusions: The prevalence of syphilis among FSWs in Qingdao city had been rising over the last ten years, with synthetic drug abuse as an important risk factor. Better targeted surveillance and intervention efforts among those drug-using FSWs seemed important to reduce the epidemics.
Secular Trends in Anthropometrics and Physical Fitness of Young Portuguese School-Aged Children.
Costa, Aldo Matos; Costa, Mário Jorge; Reis, António Antunes; Ferreira, Sandra; Martins, Júlio; Pereira, Ana
2017-02-27
The purpose of this study was to analyze secular trends in anthropometrics and physical fitness of Portuguese children. A group of 1819 students (881 boys and 938 girls) between 10 and 11 years old was assessed in their 5th and 6th scholar grade throughout a 20 years' time-frame. ANCOVA models were used to analyze variations in anthropometrics (height, weight and body mass index) and physical fitness (sit and reach, curl-up, horizontal jump and sprint time) across four quinquennials (1993 - 1998; 1998 - 2003; 2003 - 2008; 2008 - 2013). Secular trends showed the presence of heavier boys and girls with higher body mass index in the 5th and 6th grade throughout the last 20 years. There was also a presence of taller girls but just until the 3rd quinquennial. Both boys and girls were able to perform better on the core strength test and sprint time but become less flexible over the years. Mean jumping performance remained unchanged for both genders. The present study provides novel data on anthropometrics and physical fitness trends over the last two decades in young Portuguese children, consistent with the results reported in other developed countries. Evidence for the start of a positive secular trend in body mass index and in some physical fitness components over the last two decades among the Portuguese youth.
NASA Astrophysics Data System (ADS)
Pidgeon, R. T.; Nemchin, A. A.; Whitehouse, M. J.
2017-01-01
We report the result of a SIMS U-Th-Pb and O-OH study of 44 ancient zircons from the Jack Hills in Western Australia with ages ranging from 4.3 Ga to 3.3 Ga. We have investigated the behaviour of oxygen isotopes and water in the grains by determining δ18O and OH values at a number of locations on the polished surfaces of each grain. We have divided the zircons into five groups on the basis of their U-Th-Pb and OH-oxygen isotopic behaviour. The first group has concordant U-Th-Pb ages, minimal common Pb, δ18O values consistent with zircons derived from mantle source rocks and no detectable OH content. U-Th-Pb systems in zircons from Groups 2, 3 and 4 vary from concordant to extremely discordant where influenced by cracks. Discordia intercepts with concordia at approximately zero Ma age are interpreted as disturbance of the zircon U-Th-Pb systems by weathering solutions during the extensive, deep weathering that has affected the Archean Yilgarn Craton of Western Australia since at least the Permian. Weathering solutions entering cracks have resulted in an influx of Th and U. δ18O values of Group 2 grains fall approximately within the "mantle" range and OH is within background levels or slightly elevated. δ18O values of Group 3 grains are characterised by an initial trend of decreasing δ18O with increasing OH content. With further increase in OH this trend reverses and δ18O becomes heavier with increasing OH. Group 4 grains have a distinct trend of increasing δ18O with increasing OH. These trends are explained in terms of the reaction of percolating water with the metamict zircon structure and appear to be independent of analytical overlap with cracks. Group five zircons are characterised by U-Pb systems that appear to consist of more than one age but show only minor U-Pb discordance. Nevertheless trends in δ18O versus OH in this group of grains resemble trends seen in the other groups. The observed trends of δ18O with OH in the Jack Hills zircons are similar to those reported in a previous study of zircons from an Archean granite from south-western Australia.
Langland, Michael; Blomquist, Joel; Moyer, Douglas; Hyer, Kenneth
2012-01-01
The U.S. Geological Survey (USGS) updates information on loads of, and trends in, nutrients and sediment annually to help the Chesapeake Bay Program (CBP) investigators assess progress toward improving water-quality conditions in the Chesapeake Bay and its watershed. CBP scientists and managers have worked since 1983 to improve water quality in the bay. In 2010, the U.S. Environmental Protection Agency (USEPA) established a Total Maximum Daily Load (TMDL) for the Chesapeake Bay. The TMDL specifies nutrient and sediment load allocations that need to be achieved in the watershed to improve dissolved oxygen, water-clarity, and chlorophyll conditions in the bay. The USEPA, USGS, and state and local jurisdictions in the watershed operate a CBP nontidal water-quality monitoring network and associated database that are used to update load and trend information to help assess progress toward reducing nutrient and sediment inputs to the bay. Data collected from the CBP nontidal network were used to estimate loads and trends for two time periods: a long-term period (1985-2010) at 31 "primary" sites (with storm sampling) and a 10-year period (2001-10) at 33 primary sites and 16 "secondary" sites (without storm sampling). In addition, loads at 64 primary sites were estimated for the period 2006 to 2010. Results indicate improving flow-adjusted trends for nitrogen and phosphorus for 1985 to 2010 at most of the sites in the network. For nitrogen, 21 of the 31 sites showed downward (improving) trends, whereas 2 sites showed upward (degrading) trends, and 8 sites showed no trends. The results for phosphorus were similar: 22 sites showed improving trends, 4 sites showed degrading trends, and 5 sites indicated no trends. For sediment, no trend was found at 40 percent of the sites, with 10 sites showing improving trends and 8 sites showing degrading trends. The USGS, working with CBP partners, developed a new water-quality indicator that combines the results of the 10-year trend analysis with results from a greater number of sites (64 primary sites) where loads and yields of total nitrogen and phosphorus and sediment could be calculated. The new indicator shows fewer significant trends for the 10-year time period than for the long-term time period (1985-2010). For 2001-10, total nitrogen trends were downward (improving) at 14 sites and upward (degrading) at 2 sites; no trend was found at 17 sites. For total phosphorus, 12 sites showed improving trends, 4 sites showed degrading trends, and 17 sites showed no trend. For total sediment, most sites (21) did not exhibit a significant trend; 3 sites showed improving trends, and 10 sites showed degrading trends. Few significant trends were seen at the 16 secondary sites: improving trends for total nitrogen at 4 sites, improving trends for total phosphorus at 2 sites, and a degrading trend for sediment at 1 site. Total streamflow to the Chesapeake Bay was 20 percent higher in 2010 than in 2009 and is considered to be within the normal range of flow, whereas annual streamflow at 28 sites was greater in 2010 than in 2009. No trends in daily streamflow were detected at the 31 long-term sites. Combined loads for the farthest downstream nontidal monitoring sites (called "River Input Monitoring sites") increased 33 percent for total nitrogen, 120 percent for total phosphorus, and 330 percent for total sediment from 2009 to 2010. The large increase in phosphorus and sediment loads in 2010 was caused in large part by two large storm events that occurred during the spring in the Potomac River Basin. Yields (load per watershed area) of total nitrogen in the Chesapeake Bay watershed decreased from north to south (New York to Virginia). No spatial patterns were discernible for total phosphorus or sediment.
ERIC Educational Resources Information Center
Brenholtz, Gerald Severn
This study was concerned with occupational trends in relation to the growth of vocational education endeavors to define the nature of the problem, assess trends, and examine major implications. The study consists primarily of an analysis of occupational data and vocational enrollment trends between 1950-51 and 1959-60. In addition, supplementary…
Edwards, Brenda K.; Ward, Elizabeth; Kohler, Betsy A.; Eheman, Christie; Zauber, Ann G.; Anderson, Robert N.; Jemal, Ahmedin; Schymura, Maria J.; Lansdorp-Vogelaar, Iris; Seeff, Laura C.; van Ballegooijen, Marjolein; Goede, S. Luuk; Ries, Lynn A. G.
2009-01-01
Background The American Cancer Society (ACS), the Centers for Disease Control and Prevention (CDC), the National Cancer Institute (NCI), and the North American Association of Central Cancer Registries (NAACCR) collaborate annually to provide updated information about cancer occurrence and trends in the United States (U.S.). This year’s report includes trends in colorectal cancer (CRC) incidence and death rates and highlights use of microsimulation modeling as a tool for interpreting past trends and projecting future trends to assist in cancer control planning and policy decisions. Methods Information on invasive cancers was obtained from the NCI, CDC, and NAACCR, and information on deaths from the CDC’s National Center for Health Statistics. Annual percentage changes in the age-standardized incidence and death rates (2000 U.S. population standard) for all cancers combined and for the top 15 cancers were estimated by joinpoint analysis of long-term (1975–2006) trends and short-term fixed interval (1997–2006) trends. All statistical tests were two-sided. Results Both incidence and death rates from all cancers combined significantly declined (P < .05) in the most recent time period for men and women overall and for most racial and ethnic populations. These decreases were driven largely by declines in both incidence and death rates for the 3 most common cancers in men (i.e., lung and prostate cancers and CRC) and for two of the 3 leading cancers in women (i.e., breast cancer and CRC). The long-term trends for lung cancer mortality in women showed smaller and smaller increases until 2003 when there was a change to a non-significant decline. Microsimulation modeling shows that declines in CRC death rates are consistent with a relatively large contribution from screening and with a smaller but demonstrable impact of risk factor reductions and improved treatments. These declines are projected to continue if risk factor modification, screening, and treatment remain at current rates, but could be further accelerated with favorable trends in risk factors and higher utilization of screening and optimal treatment. Conclusions Although the decrease in overall cancer incidence and death rates is encouraging, rising incidence and mortality for some cancers are of concern. PMID:19998273
Large-extent digital soil mapping approaches for total soil depth
NASA Astrophysics Data System (ADS)
Mulder, Titia; Lacoste, Marine; Saby, Nicolas P. A.; Arrouays, Dominique
2015-04-01
Total soil depth (SDt) plays a key role in supporting various ecosystem services and properties, including plant growth, water availability and carbon stocks. Therefore, predictive mapping of SDt has been included as one of the deliverables within the GlobalSoilMap project. In this work SDt was predicted for France following the directions of GlobalSoilMap, which requires modelling at 90m resolution. This first method, further referred to as DM, consisted of modelling the deterministic trend in SDt using data mining, followed by a bias correction and ordinary kriging of the residuals. Considering the total surface area of France, being about 540K km2, employed methods may need to be able dealing with large data sets. Therefore, a second method, multi-resolution kriging (MrK) for large datasets, was implemented. This method consisted of modelling the deterministic trend by a linear model, followed by interpolation of the residuals. For the two methods, the general trend was assumed to be explained by the biotic and abiotic environmental conditions, as described by the Soil-Landscape paradigm. The mapping accuracy was evaluated by an internal validation and its concordance with previous soil maps. In addition, the prediction interval for DM and the confidence interval for MrK were determined. Finally, the opportunities and limitations of both approaches were evaluated. The results showed consistency in mapped spatial patterns and a good prediction of the mean values. DM was better capable in predicting extreme values due to the bias correction. Also, DM was more powerful in capturing the deterministic trend than the linear model of the MrK approach. However, MrK was found to be more straightforward and flexible in delivering spatial explicit uncertainty measures. The validation indicated that DM was more accurate than MrK. Improvements for DM may be expected by predicting soil depth classes. MrK shows potential for modelling beyond the country level, at high resolution. Large-extent digital soil mapping approaches for SDt may be improved by (1) taking into account SDt observations which are censored and (2) using high-resolution biotic and abiotic environmental data. The latter may improve modelling the soil-landscape interactions influencing soil pedogenesis. Concluding, this work provided a robust and reproducible method (DM) for high-resolution soil property modelling, in accordance with the GlobalSoilMap requirements and an efficient alternative for large-extent digital soil mapping (MrK).
Climate change vulnerability for species-Assessing the assessments.
Wheatley, Christopher J; Beale, Colin M; Bradbury, Richard B; Pearce-Higgins, James W; Critchlow, Rob; Thomas, Chris D
2017-09-01
Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.e. using historical data to assign risks and more recent data for validation). Our results show that the different vulnerability assessment methods are not consistent with one another; different risk categories are assigned for both the real and simulated sets of species. Validation of the different vulnerability assessments suggests that methods incorporating historic trend data into the assessment perform best at predicting distribution trends in subsequent time periods. This study demonstrates that climate change vulnerability assessments should not be used interchangeably due to the poor overall agreement between methods when considering the same species. The results of our validation provide more support for the use of trend-based rather than purely trait-based approaches, although further validation will be required as data become available. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Trends in physical activity and participation in sports clubs among Icelandic adolescents.
Eithsdóttir, Sigríthur Th; Kristjánsson, Alfgeir L; Sigfúsdóttir, Inga D; Allegrante, John P
2008-06-01
Physical activity among adolescents and its implications for health status is of increasing concern. We examined trends in physical activity and participation in sports clubs among Icelandic adolescents. Cross-sectional survey data were used to determine levels of vigorous physical activity and participation in sports clubs (defined as engaging in moderately intensive activity four times or more a week) for cohorts of Icelandic adolescents in 1992, 1997, 2000 and 2006. There was a 6% increase in the rate of vigorous physical activity and a 15% increase in active sports club participation among 14- and 15-year old Icelandic adolescents from 1992 to 2006. The trends were consistent across genders; however, only 53% of boys actually achieved the recommended criterion for vigorous physical activity, with the percentage of girls averaging 16% lower than that for boys. Additionally, there was an overall increase in the proportion of inactive adolescents, with girls consistently reporting higher levels of inactivity than boys even though the net increase in inactivity was higher for boys. Although our results show an overall increase in vigorous physical activity and participation in sports clubs over the past decade among both genders, our data also indicate that over half of all Icelandic adolescents are not achieving the recommended level of participation in physical activity. Furthermore, less than one third of the population studied is achieving the recommended level of activity through organized clubs. Initiatives to increase physical activity among the least active of adolescents should receive high priority in public health.
Reconciling divergent trends and millennial variations in Holocene temperatures.
Marsicek, Jeremiah; Shuman, Bryan N; Bartlein, Patrick J; Shafer, Sarah L; Brewer, Simon
2018-01-31
Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in 'growing degree days'-a measure of the accumulated warmth above five degrees Celsius per year-of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that climate models can adequately simulate climates for periods other than the present-day. They also demonstrate that amplified warming in recent decades increased temperatures above the mean of any century during the past 11,000 years.
Reconciling divergent trends and millennial variations in Holocene temperatures
NASA Astrophysics Data System (ADS)
Marsicek, Jeremiah; Shuman, Bryan N.; Bartlein, Patrick J.; Shafer, Sarah L.; Brewer, Simon
2018-02-01
Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in ‘growing degree days’—a measure of the accumulated warmth above five degrees Celsius per year—of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that climate models can adequately simulate climates for periods other than the present-day. They also demonstrate that amplified warming in recent decades increased temperatures above the mean of any century during the past 11,000 years.
Niemuth, Neal D.; Fleming, Kathleen K.; Reynolds, Ronald E.
2014-01-01
The Prairie Pothole Region (PPR) is the most important waterfowl production area in North America. However, waterfowl populations there are predicted to decline because of climate-related drying of wetlands. Consequently, changes in the geographic focus of PPR waterfowl conservation have been recommended, which could have long-lasting and costly impacts. We used a 40-year dataset of pond counts collected in the PPR to test hypotheses about climate-related drying. We assessed May (1974–2013) and July (1974–2003) pond numbers in 20 waterfowl survey strata to determine if trends in pond numbers were consistent with predictions of drying. We also assessed trends in precipitation and temperature for the 20 strata and developed models describing May pond numbers from 1974 through 2010 as a function of precipitation, temperature, the previous year’s pond numbers, and location. None of the 20 strata showed significant declines in May pond numbers, although seven strata showed increases over time. July pond numbers declined significantly in one stratum, and increased in seven strata. An index to hydroperiod showed significant increasing trends in three strata, and no strata had decreasing trends. Precipitation increased significantly in two strata and decreased in two from 1974 to 2010; no strata showed significant changes in temperature. The best linear model described pond numbers within all strata as a function of precipitation, temperature, the previous year’s pond numbers, and the latitude and longitude of the stratum, and explained 62% of annual variation in pond numbers. We hypothesize that direct effects of climate change on prairie pothole wetlands and waterfowl may be overshadowed by indirect effects such as intensified land use and increased pressure to drain wetlands. We recommend that an adaptive, data-driven approach be used to resolve uncertainties regarding direct and indirect effects of climate change on prairie wetlands and waterfowl, and guide future conservation efforts. PMID:24937641
Niemuth, Neal D; Fleming, Kathleen K; Reynolds, Ronald E
2014-01-01
The Prairie Pothole Region (PPR) is the most important waterfowl production area in North America. However, waterfowl populations there are predicted to decline because of climate-related drying of wetlands. Consequently, changes in the geographic focus of PPR waterfowl conservation have been recommended, which could have long-lasting and costly impacts. We used a 40-year dataset of pond counts collected in the PPR to test hypotheses about climate-related drying. We assessed May (1974-2013) and July (1974-2003) pond numbers in 20 waterfowl survey strata to determine if trends in pond numbers were consistent with predictions of drying. We also assessed trends in precipitation and temperature for the 20 strata and developed models describing May pond numbers from 1974 through 2010 as a function of precipitation, temperature, the previous year's pond numbers, and location. None of the 20 strata showed significant declines in May pond numbers, although seven strata showed increases over time. July pond numbers declined significantly in one stratum, and increased in seven strata. An index to hydroperiod showed significant increasing trends in three strata, and no strata had decreasing trends. Precipitation increased significantly in two strata and decreased in two from 1974 to 2010; no strata showed significant changes in temperature. The best linear model described pond numbers within all strata as a function of precipitation, temperature, the previous year's pond numbers, and the latitude and longitude of the stratum, and explained 62% of annual variation in pond numbers. We hypothesize that direct effects of climate change on prairie pothole wetlands and waterfowl may be overshadowed by indirect effects such as intensified land use and increased pressure to drain wetlands. We recommend that an adaptive, data-driven approach be used to resolve uncertainties regarding direct and indirect effects of climate change on prairie wetlands and waterfowl, and guide future conservation efforts.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Hudson, Robert D.
1998-01-01
The well-known wave-one pattern seen in tropical total ozone [Shiotani, 1992; Ziemke et al., 1996, 1998] has been used to develop a modified-residual (MR) method for retrieving time-averaged stratospheric ozone and tropospheric ozone column amount from TOMS (Total Ozone Mapping Spectrometer) over the 14 complete calendar years of Nimbus 7 observations (1979-1992) and from TOMS on the Earth-Probe (1996-present) and ADEOS platforms (1996- 1997). Nine- to sixteen-day averaged tropical tropospheric ozone (TTO) maps, validated with ozonesondes, show a seasonality expected from dynamical and chemical influences. The maps may be viewed on a homepage: http://metosrv2.umd.edu/tropo. Stratospheric column ozone, which is also derived by the modified-residual method, compares well with sondes (to within 6-7 DU) and with stratospheric ozone column derived from other satellites (within 8-10 DU). Validation of the TTO time-series is presently limited to ozonesonde comparisons with Atlantic stations and sites on the adjacent continents (Ascension Island, Natal, Brazil; Brazzaville); for the sounding periods, TTO at all locations agrees with the sonde record to +/-7 DU. TTO time-series and the magnitude of the wave-one pattern show ENSO signals in the strongest El Nifio periods from 1979-1998. From 12degN and 12degS, zonally averaged tropospheric ozone shows no significant trend from 1980-1990. Trends are also not significant during this period in localized regions, e.g. from just west of South America across to southern Africa. This is consistent with the ozonesonde record at Natal, Brazil (the only tropical ozone data publicly available for the 1980's), which shows a not statistically significant increase. The lack of trend in tropospheric ozone agrees with a statistical analysis based on another method for deriving TTO from TOMS, the so-called Convective-Cloud-Differential approach of Ziemke et al. [1998].
Wu, Jian; Chen, Peng; Wen, Chao-Xiang; Fu, Shi-Feng; Chen, Qing-Hui
2014-07-01
As a novel environment management tool, ecological risk assessment has provided a new perspective for the quantitative evaluation of ecological effects of land-use change. In this study, Haitan Island in Fujian Province was taken as a case. Based on the Landsat TM obtained in 1990, SPOT5 RS images obtained in 2010, general layout planning map of Pingtan Comprehensive Experimental Zone in 2030, as well as the field investigation data, we established an ecological risk index to measure ecological endpoints. By using spatial autocorrelation and semivariance analysis of Exploratory Spatial Data Analysis (ESDA), the ecological risk of Haitan Island under different land-use situations was assessed, including the past (1990), present (2010) and future (2030), and the potential risk and its changing trend were analyzed. The results revealed that the ecological risk index showed obvious scale effect, with strong positive correlation within 3000 meters. High-high (HH) and low-low (LL) aggregations were predominant types in spatial distribution of ecological risk index. The ecological risk index showed significant isotropic characteristics, and its spatial distribution was consistent with Anselin Local Moran I (LISA) distribution during the same period. Dramatic spatial distribution change of each ecological risk area was found among 1990, 2010 and 2030, and the fluctuation trend and amplitude of different ecological risk areas were diverse. The low ecological risk area showed a rise-to-fall trend while the medium and high ecological risk areas showed a fall-to-rise trend. In the planning period, due to intensive anthropogenic disturbance, the high ecological risk area spread throughout the whole region. To reduce the ecological risk in land-use and maintain the regional ecological security, the following ecological risk control strategies could be adopted, i.e., optimizing the spatial pattern of land resources, protecting the key ecoregions and controlling the scale of construction land use.
Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng
Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.
Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity
Keller, Stefanie; Bartolino, Valerio; Hidalgo, Manuel; Bitetto, Isabella; Casciaro, Loredana; Cuccu, Danila; Esteban, Antonio; Garcia, Cristina; Garofalo, Germana; Josephides, Marios; Jadaud, Angelique; Lefkaditou, Evgenia; Maiorano, Porzia; Manfredi, Chiara; Marceta, Bojan; Massutí, Enric; Micallef, Reno; Peristeraki, Panagiota; Relini, Giulio; Sartor, Paolo; Spedicato, Maria Teresa; Tserpes, George; Quetglas, Antoni
2016-01-01
Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversity. PMID:26760965
120 Years of U.S. Residential Housing Stock and Floor Space.
Moura, Maria Cecilia P; Smith, Steven J; Belzer, David B
2015-01-01
Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891-2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891-2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.
120 years of U.S. residential housing stock and floor space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.
Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less
120 Years of U.S. Residential Housing Stock and Floor Space
Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.
2015-01-01
Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade. PMID:26263391
120 years of U.S. residential housing stock and floor space
Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; ...
2015-08-11
Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less
NASA Astrophysics Data System (ADS)
Barcelona, H.; Mena, M.; Sanchez-Bettucci, L.
2009-05-01
The Valle Chico Complex, at southeast Uruguay, is related Paraná-Etendeka Province. The study involved basaltic lavas, quarz-syenites, and rhyolitic and trachytic dikes. Samples were taken from 18 sites and the AMS of 250 specimens was analyzed. The AMS is modeled by a second order tensor K and it graphical representation is a symmetric ellipsoid. The axes relations determine parameters which describe different properties like shape, lineation, and foliation, degree of anisotropy and bulk magnetic susceptibility. Under this perspective, one lava, dike, or igneous body can be considered a mosaic of magnetic susceptibility domains (MSD). The DSM is an area with specific degree of homogeneity in the distribution of parameters values and cinematic conditions. An average tensor would weigh only one MSD, but if the site is a mosaic, subsets of specimens with similar parameters can be created. Hypothesis tests can be used to establish parameter similarities. It would be suitable considered as a MSD the subsets with statistically significant differences in at least one of its means parameters, and therefore, be treated independently. Once defined the MSDs the tensor analysis continues. The basalt-andesitic lavas present MSD with an NNW magnetic foliation, dipping 10. The K1 are sub-horizontal, oriented E-W and reprsent the magmatic flow direction. The quartz-syenites show a variable magnetic fabric or prolate ellipsoids mayor axes dispose parallel to the flow direction (10 to the SSE). Deformed syenites show N300/11 magnetic foliation, consistent with the trend of fractures. The K1 is subvertical. The MSD defined in rhyolitic dikes have magnetic foliations consistent with the structural trend. The trachytic dikes show an important indetermination in the magnetic response. However, a 62/N90 magnetic lineation was defined. The MSDs obtained are consistent with the geological structures and contribute to the knowledge of the tectonic, magmatic and kinematic events.
Validation of China-wide interpolated daily climate variables from 1960 to 2011
NASA Astrophysics Data System (ADS)
Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang
2015-02-01
Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based on the performance of these variables in estimating daily variations, interannual variability, and extreme events. Although longitude, latitude, and elevation data are included in the model, additional information, such as topography and cloud cover, should be integrated into the interpolation algorithm to improve performance in estimating wind speed, atmospheric pressure, and precipitation.
National Water Quality Laboratory - A Profile
Raese, Jon W.
2001-01-01
The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.
NASA Astrophysics Data System (ADS)
Adibekyan, V.; Delgado-Mena, E.; Figueira, P.; Sousa, S. G.; Santos, N. C.; Faria, J. P.; González Hernández, J. I.; Israelian, G.; Harutyunyan, G.; Suárez-Andrés, L.; Hakobyan, A. A.
2016-06-01
Context. Several studies have reported a correlation between the chemical abundances of stars and condensation temperature (known as Tc trend). Very recently, a strong Tc trend was reported for the ζ Reticuli binary system, which consists of two solar analogs. The observed trend in ζ2 Ret relative to its companion was explained by the presence of a debris disk around ζ2 Ret. Aims: Our goal is to re-evaluate the presence and variability of the Tc trend in the ζ Reticuli system and to understand the impact of the presence of the debris disk on a star. Methods: We used very high-quality spectra of the two stars retrieved from the HARPS archive to derive very precise stellar parameters and chemical abundances. We derived the stellar parameters with the classical (nondifferential) method, while we applied a differential line-by-line analysis to achieve the highest possible precision in abundances, which are fundamental to explore for very tiny differences in the abundances between the stars. Results: We confirm that the abundance difference between ζ2 Ret and ζ1 Ret shows a significant (~2σ) correlation with Tc. However, we also find that the Tc trends depend on the individual spectrum used (even if always of very high quality). In particular, we find significant but varying differences in the abundances of the same star from different individual high-quality spectra. Conclusions: Our results for the ζ Reticuli system show, for example, that nonphysical factors, such as the quality of spectra employed and errors that are not accounted for, can be at the root of the Tc trends for the case of individual spectra. Based on data obtained from the ESO Science Archive Facility under request number vadibekyan204818, vadibekyan204820, and vadibekyan185979.The tables with EWs of the lines and chemical abundances are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A34
NASA Astrophysics Data System (ADS)
Radaideh, Omar M. A.; Grasemann, Bernhard; Melichar, Rostislav; Mosar, Jon
2016-12-01
This study investigates the dominant orientations of morphological features and the relationship between these trends and the spatial orientation of tectonic structures in SW Jordan. Landsat 8 and hill-shaded images, constructed from 30 m-resolution ASTER-GDEM data, were used for automatically extracting and mapping geological lineaments. The ASTER-GDEM was further utilized to automatically identify and extract drainage network. Morphological features were analyzed by means of azimuth frequency and length density distributions. Tectonic controls on the land surface were evaluated using longitudinal profiles of many westerly flowing streams. The profiles were taken directly across the northerly trending faults within a strong topographic transition between the low-gradient uplands and the deeply incised mountain front on the east side of the Dead Sea Fault Zone. Streams of the area are widely divergent, and show numerous anomalies along their profiles when they transect faults and lineaments. Five types of drainage patterns were identified: dendritic, parallel, rectangular, trellis, and modified dendritic/trellis. Interpretation and analysis of the lineaments indicate the presence of four main lineament populations that trend E-W, N-S, NE-SW, and NW-SE. Azimuthal distribution analysis of both the measured structures and drainage channels shows similar trends, except for very few differences in the prevailing directions. The similarity in orientation of lineaments, drainage system, and subsurface structural trends highlights the degree of control exerted by underlying structure on the surface geomorphological features. Faults and lineaments serve as a preferential conduit for surface running waters. The extracted lineaments were divided into five populations based on the main age of host rocks outcropping in the study area to obtain information about the temporal evolution of the lineament trends through geologic time. A general consistency in lineament trends over the different lithological units was observed, most probably because repeated reactivation of tectonism along preexisting deep structural discontinuities which are apparently crustal weakness zones. The reactivation along such inherited discontinuities under the present-day stress field is the most probable explanation of the complicated pattern and style of present-day landscape features in SW Jordan.
More tornadoes in the most extreme U.S. tornado outbreaks.
Tippett, Michael K; Lepore, Chiara; Cohen, Joel E
2016-12-16
Tornadoes and severe thunderstorms kill people and damage property every year. Estimated U.S. insured losses due to severe thunderstorms in the first half of 2016 were $8.5 billion (US). The largest U.S. effects of tornadoes result from tornado outbreaks, which are sequences of tornadoes that occur in close succession. Here, using extreme value analysis, we find that the frequency of U.S. outbreaks with many tornadoes is increasing and that it is increasing faster for more extreme outbreaks. We model this behavior by extreme value distributions with parameters that are linear functions of time or of some indicators of multidecadal climatic variability. Extreme meteorological environments associated with severe thunderstorms show consistent upward trends, but the trends do not resemble those currently expected to result from global warming. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Cojocaru, Ludmila; Uchida, Satoshi; Jayaweera, Piyankarage V. V.; Kaneko, Shoji; Toyoshima, Yasutake; Nakazaki, Jotaro; Kubo, Takaya; Segawa, Hiroshi
2017-02-01
Physical modeling of hysteretic behavior in current-voltage (I-V) curves of perovskite solar cells (PSCs) is necessary for further improving their power conversion efficiencies (PCEs). The reduction of hysteresis in inverted planar structure PSCs (p-PSCs) has been achieved by using a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer. In the cases, the opposite trend of the I-V hysteresis has been observed where the forward scan shows slightly higher efficiency than the reverse scan. In this paper, an equivalent circuit model with inductance is proposed. This model consists of a Schottky diode involving a parasitic inductance focusing PCBM/Al(Ca) interface and accurately represents the opposite trend of the I-V hysteresis of the p-PSC with an inverted structure.
NASA Astrophysics Data System (ADS)
Chen, Xi; Li, Ning; Zhang, Zhengtao; Feng, Jieling; Wang, Ye
2018-05-01
Adaption for temperature should be suitable to local conditions for regional differences in temperature change features. This paper proposed to utilize nine temperature modes that joint the trend (increasing/decreasing/unchanged) with variability (intensifying/weakening/unchanged) to investigate features of temperature change in mainland China. Monthly temperature data over the period 1960-2013 were obtained from 522 national basic and reference meteorological stations. Here, temperature trend (TT) was reflected by the trend of mean annual temperature (MAT) and the uptrend (downtrend) of inter-monthly sliding standard deviation (SSD) series with a sliding length of 29 years (348 months) was used for representing the intensification (weakening) of temperature variability (TV). The Mann-Kendall method and the least squares method were applied to assess the significance and quantify the magnitude of trend in MAT and SSD time series, respectively. The results show that there is a consistent warming trend throughout the country except for only three stations in which a cooling trend is identified. Moreover, the overall increasing rate in the north of 35° N is the highest, over 0.4 °C/decade for most stations. TV is weakened for almost 98% of the stations, indicating the low instability of temperature at a national scale. Finally, temperature mode (TM), for more than 90% of the stations, is the combination of an increasing TT with a weakened TV (mode 8). So, it is more important for people to adapt to the increasing temperature in these regions. Compared to using annual temperature data to calculate SSD, monthly data can accurately reflect the inter-monthly change of temperature and reserve more initial characteristics of temperature.
Liu, Andrew; Guzman Castillo, Maria; Capewell, Simon; Lucy, John; O'Flaherty, Martin
2013-01-01
Objectives To analyse the trends and trend changes in myocardial infraction (MI) and coronary heart disease (CHD) admissions, to investigate the effects of the 2007 smoke-free legislation on these trends, and to consider the policy implications of any findings. Design setting Liverpool (city), UK. Participants Hospital episode statistics data on all 56 995 admissions for CHD in Liverpool between 2004 and 2012 (International Classification of Diseases codes I20–I25 coded as an admission diagnosis within the defined dates). Primary and secondary outcome measures Trend gradient and change points (by trend regressions analysis) in age-standardised MI admissions in Liverpool between 2004 and 2012; by sex and by socioeconomic status. Secondary analysis on CHD admissions. Results A significant and sustained reduction was seen in MI admissions in Liverpool beginning within 1 year of the smoking ban. Comparing 2005/2006 and 2010/2011, the age-adjusted rates for MI admissions fell by 42% (39–45%) (41.6% in men and by 42.6% in women). Trend analysis shows that this is significantly greater than the background trend of decreasing admissions. These reductions appeared consistent across all socioeconomic groups. Interestingly, admission rates for total CHD (including mild to severe angina) increased by 10% (8–12%). Conclusions A dramatic reduction in MI admissions in Liverpool has been observed coinciding with the smoking ban in 2007. Furthermore, the benefits were apparent across the socioeconomic spectrum. Health inequalities were not affected and may even have been reduced. The rapid effects observed with this top-down, environmental policy may further increase its value to policymakers. PMID:24282240
Trend analysis of evapotranspiration over India: Observed from long-term satellite measurements
NASA Astrophysics Data System (ADS)
Goroshi, Sheshakumar; Pradhan, Rohit; Singh, Raghavendra P.; Singh, K. K.; Parihar, Jai Singh
2017-12-01
Owing to the lack of consistent spatial time series data on actual evapotranspiration ( ET), very few studies have been conducted on the long-term trend and variability in ET at a national scale over the Indian subcontinent. The present study uses biome specific ET data derived from NOAA satellite's advanced very high resolution radiometer to investigate the trends and variability in ET over India from 1983 to 2006. Trend analysis using the non-parametric Mann-Kendall test showed that the domain average ET decreased during the period at a rate of 0.22 mm year^{-1}. A strong decreasing trend (m = -1.75 mm year^{-1}, F = 17.41, P 0.01) was observed in forest regions. Seasonal analyses indicated a decreasing trend during southwest summer monsoon (m= -0.320 mm season^{-1} year^{-1}) and post-monsoon period (m= -0.188 mm season^{-1 } year^{-1}). In contrast, an increasing trend was observed during northeast winter monsoon (m = 0.156 mm season^{-1 } year^{-1}) and pre-monsoon (m = 0.068 mm season^{-1 } year^{-1}) periods. Despite an overall net decline in the country, a considerable increase ( 4 mm year^{-1}) was observed over arid and semi-arid regions. Grid level correlation with various climatic parameters exhibited a strong positive correlation (r >0.5) of ET with soil moisture and precipitation over semi-arid and arid regions, whereas a negative correlation (r -0.5) occurred with temperature and insolation in dry regions of western India. The results of this analysis are useful for understanding regional ET dynamics and its relationship with various climatic parameters over India. Future studies on the effects of ET changes on the hydrological cycle, carbon cycle, and energy partitioning are needed to account for the feedbacks to the climate.
Hardness and compression resistance of natural rubber and synthetic rubber mixtures
NASA Astrophysics Data System (ADS)
Arguello, J. M.; Santos, A.
2016-02-01
This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.
Observations reveal external driver for Arctic sea-ice retreat
NASA Astrophysics Data System (ADS)
Notz, Dirk; Marotzke, Jochem
2012-04-01
The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.
NASA Technical Reports Server (NTRS)
Wu, Huey-Tzu Jenny; Lau, William K.-M.
2016-01-01
We investigate changes in daily precipitation extremes using Tropical Rainfall Measuring Mission (TRMM) data (1998-2013), which coincides with the "global warming hiatus." Results show a change in probability distribution functions of local precipitation events (LPEs) during this period consistent with previous global warming studies, indicating increasing contrast between wet and dry extremes, with more intense LPE, less moderate LPE, and more dry (no rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPEs over the Northern Hemisphere extratropics during the wet season but a negative global trend (-6.6% per decade, 95% c.l.) during the dry season. A significant global drying trend (3.2% per decade, 99% c.l.) over land is also found during the dry season. Regions of pronounced increased dry events include western and central U.S., northeastern Asia, and Southern Europe/Mediterranean.
[Trends of adolescent injury and poisoning mortality].
Celis, Alfredo; Gómez-Lomelí, Zoila; Armas, Jesús
2003-01-01
To describe the external causes of death and mortality trends due to injuries and poisoning in Mexican adolescents, from 1979 to 1997. This is a descriptive study of deaths occurring in Mexico from 1979 to 1997. Data were abstracted, coded, and entered in electronic format, by Instituto Nacional de Estadística, Geografía e Informática (National Institute of Statistics, Geography, and Informatics, INEGI). Data were analyzed during the second half of year 2000, in Jalisco, at the Research Unit of Epidemiologic and Adolescent Health Services, of Instituto Mexicano del Seguro Social (Mexican Institute of Social Security, IMSS). Injuries and poisoning ranked first as causes of adolescent mortality in Mexico (rate = 13.35/100,000), decreasing 41.4% from 1979 to 1997. However, an increasing trend was observed for homicides and suicides (9.5% y 104.0%, respectively). The most frequent mechanisms of injury were: motor vehicles, firearms, intoxications, suffocation, and drowning. Injuries and poisoning in developing countries show differences from those reported in developed countries. Further studies should be conducted to find preventive measures consistent with the sociocultural and environmental determinants of injuries and poisoning.
Social capital and social exclusion in England and Wales (1972-1999).
Li, Yaojun
2003-12-01
Recent research on social capital has explored trends in membership in voluntary organizations. However, there is currently little robust evidence on such trends in the UK since the 1970s, nor is there any analysis of whether participation bridges social divisions or accentuates them. This paper explores trends in participation in England and Wales since 1972 using data from the Social Mobility Inquiry of 1972 and the British Household Panel Survey of 1992 and 1999. We are concerned with social exclusion mechanisms in social capital generation in Britain over the three decades. Using binomial and multinomial models to 'unpack' the effects of socio-cultural factors on civic participation and on different types of associational membership, we test the thesis of across-the-board decline in social capital by Putnam (2000) and that of rising levels of middle-class social capital versus consistent low levels of working-class social capital by Hall (1999). The results show significant socio-cultural-gender differences, a relative stability of middle-class participation, and a rapid decline in the working-class access to social capital. We challenge the established accounts of both theses.
NASA Technical Reports Server (NTRS)
French, V. (Principal Investigator)
1982-01-01
The CEAS models evaluated use historic trend and meteorological and agroclimatic variables to forecast soybean yields in Iowa, Illinois, and Indiana. Indicators of yield reliability and current measures of modeled yield reliability were obtained from bootstrap tests on the end of season models. Indicators of yield reliability show that the state models are consistently better than the crop reporting district (CRD) models. One CRD model is especially poor. At the state level, the bias of each model is less than one half quintal/hectare. The standard deviation is between one and two quintals/hectare. The models are adequate in terms of coverage and are to a certain extent consistent with scientific knowledge. Timely yield estimates can be made during the growing season using truncated models. The models are easy to understand and use and are not costly to operate. Other than the specification of values used to determine evapotranspiration, the models are objective. Because the method of variable selection used in the model development is adequately documented, no evaluation can be made of the objectivity and cost of redevelopment of the model.
Teen pregnancy prevention: current perspectives.
Lavin, Claudia; Cox, Joanne E
2012-08-01
Teen pregnancy has been subject of public concern for many years. In the United States, despite nearly 2 decades of declining teen pregnancy and birth rates, the problem persists, with significant disparities present across racial groups and in state-specific rates. This review examines recent trends, pregnancy prevention initiatives and family planning policies that address the special needs of vulnerable youth. Unintended teen pregnancies impose potentially serious social and health burdens on teen parents and their children, as well as costs to society. Trends in teen pregnancy and birth rates show continued decline, but state and racial disparities have widened. Demographic factors and policy changes have contributed to these disparities. Research supports comprehensive pregnancy prevention initiatives that are multifaceted and promote consistent and correct use of effective methods of contraception for youth at risk of becoming pregnant. There is strong consensus that effective teen pregnancy prevention strategies should be multifaceted, focusing on delay of sexual activity especially in younger teens while promoting consistent and correct use of effective methods of contraception for those youth who are or plan to be sexually active. There is a need for further research to identify effective interventions for vulnerable populations.
NASA Astrophysics Data System (ADS)
Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Niwano, M.; Enomoto, H.
2017-12-01
A long-term Northern Hemisphere (NH) snow cover extent (SCE) product (JASMES SCE) was developed from the application of a consistent objective snow cover mapping algorithm to satellite-borne optical sensors (NOAA/AVHRR and NASA's optical sensor MODIS) from 1982 to the present. We estimated NH SCE from weekly composited snow cover maps and evaluated the accuracies of snow cover detection using in-situ snow data. As benchmark SCE product, we also evaluated the accuracy of SCE maps from the National Oceanic and Atmospheric Administration Climate Data Record (NOAA-CDR) product. The evaluation showed that JASMES SCE has more temporally stable accuracies. Seasonally averaged SCE derived from JASMES exhibited negative slopes in all seasons which is opposite to those of NOAA-CDR SCE in the fall and winter seasons. The spatial pattern of annual snow cover duration (SCD) trends exhibited noticeable asymmetric pattern between continents with the largest negative trends seen over western Eurasia. The NH SCE product will be connected to the data of the Japanese Earth Observing satellite named "Global Change Observation Mission for Climate (GCOM-C)" to be launched in late 2017.
Collective Evidence for Inverse Compton Emission from External Photons in High-Power Blazars
NASA Technical Reports Server (NTRS)
Meyer, Eileen T.; Fossati, Giovanni; Georganopoulos, Markos; Lister, Matthew L.
2012-01-01
We present the first collective evidence that Fermi-detected jets of high kinetic power (L(sub kin)) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L(sub kin) > 10(exp 45.5) erg/s) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self Compton (SSC) emission. For the lowest power jets (L(sub kin) < 10(exp 43.5) erg /s), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Pau, Stephanie
2013-01-01
Pasture ecosystems may be particularly vulnerable to land degradation due to the high risk of human disturbance (e.g., overgrazing, burning, etc.), especially when compared with natural ecosystems (non-pasture, non-cultivated) where direct human impacts are minimal. Using maximum annual leaf area index (LAImax) as a proxy for standing biomass and peak annual aboveground productivity, we analyze greening and browning trends in pasture areas from 1982-2008. Inter-annual variability in pasture productivity is strongly controlled by precipitation (positive correlation) and, to a lesser extent, temperature (negative correlation). Linear temporal trends are significant in 23% of pasture cells, with the vast majority of these areas showing positive LAImax trends. Spatially extensive productivity declines are only found in a few regions, most notably central Asia, southwest North America, and southeast Australia. Statistically removing the influence of precipitation reduces LAImax trends by only 13%, suggesting that precipitation trends are only a minor contributor to long-term greening and browning of pasture lands. No significant global relationship was found between LAImax and pasture intensity, although the magnitude of trends did vary between cells classified as natural versus pasture. In the tropics and Southern Hemisphere, the median rate of greening in pasture cells is significantly higher than for cells dominated by natural vegetation. In the Northern Hemisphere extra-tropics, conversely, greening of natural areas is 2-4 times the magnitude of greening in pasture areas. This analysis presents one of the first global assessments of greening and browning trends in global pasture lands, including a comparison with vegetation trends in regions dominated by natural ecosystems. Our results suggest that degradation of pasture lands is not a globally widespread phenomenon and, consistent with much of the terrestrial biosphere, there have been widespread increases in pasture productivity over the last 30 years.
Canadian snow and sea ice: historical trends and projections
NASA Astrophysics Data System (ADS)
Mudryk, Lawrence R.; Derksen, Chris; Howell, Stephen; Laliberté, Fred; Thackeray, Chad; Sospedra-Alfonso, Reinel; Vionnet, Vincent; Kushner, Paul J.; Brown, Ross
2018-04-01
The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state of the art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. Here, we present an assessment from the CanSISE Network on trends in the historical record of snow cover (fraction, water equivalent) and sea ice (area, concentration, type, and thickness) across Canada. We also assess projected changes in snow cover and sea ice likely to occur by mid-century, as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) suite of Earth system models. The historical datasets show that the fraction of Canadian land and marine areas covered by snow and ice is decreasing over time, with seasonal and regional variability in the trends consistent with regional differences in surface temperature trends. In particular, summer sea ice cover has decreased significantly across nearly all Canadian marine regions, and the rate of multi-year ice loss in the Beaufort Sea and Canadian Arctic Archipelago has nearly doubled over the last 8 years. The multi-model consensus over the 2020-2050 period shows reductions in fall and spring snow cover fraction and sea ice concentration of 5-10 % per decade (or 15-30 % in total), with similar reductions in winter sea ice concentration in both Hudson Bay and eastern Canadian waters. Peak pre-melt terrestrial snow water equivalent reductions of up to 10 % per decade (30 % in total) are projected across southern Canada.
Pagel, Janina; Martínez-Abraín, Alejandro; Gómez, Juan Antonio; Jiménez, Juan; Oro, Daniel
2014-01-01
We used the so called “land-bridge island” or “nested-subsets” theory to test the resilience of a highly fragmented and perturbated waterbird metacommunity, after legal protection of 18 wetlands in the western Mediterranean. Sites were monitored during 28 years and two seasons per year. The metacommunity was composed by 44 species during breeding and 67 species during wintering, including shorebirds, ducks, herons, gulls and divers (Podicipedidae). We identified a strong nested pattern. Consistent with the fact that the study system was to a large extent a spatial biogeographical continuous for thousands of years, fragmented only during the last centuries due to human activities. Non-random selective extinction was the most likely historical process creating the nested pattern, operated by the differential carrying capacity (surface-area) of the remaining sites. We also found a positive temporal trend in nestedness and a decreasing trend in species turnover among sites (β-diversity), indicating that sites are increasingly more alike to each other (i.e. increased biotic homogenization). This decreasing trend in β-diversity was explained by an increasing trend in local (α) diversity by range expansion of half the study species. Regional (γ) diversity also increased over time, indicating that colonization from outside the study system also occurred. Overall our results suggest that the study metacommunity is recovering from historical anthropogenic perturbations, showing a high long-term resilience, as expected for highly vagile waterbirds. However, not all waterbird groups contributed equally to the recovery, with most breeding shorebird species and most wintering duck species showing no geographical expansion. PMID:25133798
NASA Astrophysics Data System (ADS)
Andreani, Louis; Gattacceca, Jerôme; Rangin, Claude; Martínez-Reyes, Juventino; Demory, François
2014-12-01
We used paleomagnetic and structural data to investigate the late Eocene-Oligocene tectonic evolution of the Mesa Central area in Mexico. The Mesa Central was affected by NW-trending faults (Tepehuanes-San Luis fault system) coeval with a Late Eocene-Oligocene ignimbrite flare-up and by post-27 Ma NNE-trending grabens related to the Basin and Range. We obtained reliable paleomagnetic directions from 61 sites within the Late Eocene-Oligocene volcanic series (~ 30 to ~ 27 Ma) of the San Luis Potosí volcanic field and Sierra de Guanajuato. For each site we also measured the anisotropy of magnetic susceptibility (AMS). Tilt corrections were made using AMS data for 33 sites where in situ bedding measurements were not available. Paleomagnetic directions indicate counterclockwise rotations of about 10° with respect to stable North America after 30-25 Ma. Structural data suggest that the volcanic succession was mainly affected by normal faults. However, we also found evidences for oblique or horizontal striae showing a left-lateral component along NW-trending faults and a right lateral component along NE-trending faults. Both motions are consistent with a N-S extension oblique to the Tepehuanes-San Luis fault system. Previous paleomagnetic studies in northern and southern Mexico show the prevalence of minor left-lateral shear components along regional-scale transpressional and transtensional lineaments. Our paleomagnetic data may reflect thus small vertical-axis rotations related to a minor shear component coeval with the Oligocene intra-arc extension in central Mexico.
Exploring evapotranspiration dynamics over Sub-Sahara Africa (2000-2014).
Ndehedehe, Christopher E; Okwuashi, Onuwa; Ferreira, Vagner G; Agutu, Nathan O
2018-06-14
Monitoring changes in evapotranspiration (ET) is useful in the management of water resources in irrigated agricultural landscapes and in the assessment of crop stress and vegetation conditions of drought-vulnerable regions. Information on the impacts of climate variability on ET dynamics is profitable in developing water management adaptation strategies. Such impacts, however, are generally unreported and not conclusively determined in some regions. In this study, changes in MODIS (Moderate Resolution Imaging Spectroradiometer)-derived ET (2000-2014) over large proportions of Sub-Sahara Africa (SSA) are explored. The multivariate analyses of ET over SSA showed that four leading modes of observed dynamics in ET, accounting for about 90% of the total variability, emanated mostly from some sections of the Sudano-Sahel and Congo basin. Based on Man-Kendall's statistics, significant positive trends (α = 0.05) in ET over the Central African Republic and most parts of the Sahel region were observed. Over much of the Congo basin nonetheless, ET showed significant (α = 0.05) distributions of widespread negative trends. These trends in ET were rather found to be consistent with observed changes in model soil moisture but not in all locations, perhaps due to inconsistent trends in maximum rainfall and land surface temperature. However, the results of spatio-temporal drought analysis confirm that the extensive ET losses in the Congo basin were somewhat induced by soil moisture deficits. Amidst other prominent drivers of ET, the dynamics of ET over the terrestrial ecosystems of SSA appear to be a more complex phenomenon that may transcend natural climate variations.
Water-quality trend analysis and sampling design for streams in North Dakota, 1971-2000
Vecchia, Aldo V.
2003-01-01
This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, to analyze historical water-quality trends in selected dissolved major ions, nutrients, and dissolved trace metals for 10 streams in southwestern and eastern North Dakota and to develop an efficient sampling design to monitor future water-quality trends. A time-series model for daily streamflow and constituent concentration was used to identify significant concentration trends, separate natural hydroclimatic variability in concentration from variability that could have resulted from anthropogenic causes, and evaluate various sampling designs to monitor future water-quality trends. The interannual variability in concentration as a result of variability in streamflow, referred to as the annual concentration anomaly, generally was high for all constituents and streams used in the trend analysis and was particularly sensitive to the severe drought that occurred in the late 1980's and the very wet period that began in 1993 and has persisted to the present (2002). Although climatic conditions were similar across North Dakota during the trend-analysis period (1971-2000), significant differences occurred in the annual concentration anomalies from constituent to constituent and location to location, especially during the drought and the wet period. Numerous trends were detected in the historical constituent concentrations after the annual concentration anomalies were removed. The trends within each of the constituent groups (major ions, nutrients, and trace metals) showed general agreement among the streams. For most locations, the largest dissolved major-ion concentrations occurred during the late 1970's and concentrations in the mid- to late 1990's were smaller than concentrations during the late 1970's. However, the largest concentrations for three of the Missouri River tributaries and one of the Red River of the North tributaries occurred during the mid- to late 1990's. Concentration trends for total ammonia plus organic nitrogen showed close agreement among the streams for which that constituent was evaluated. The largest concentrations occurred during the early 1980's, and the smallest concentrations occurred during the early 1990's. Nutrient data were not available for the early 1970's or late 1990's. Although a detailed analysis of the causes of the trends was beyond the scope of this report, a preliminary analysis of cropland, livestock-inventory, and oil-production data for 1971-2000 indicated the concentration trends may be related to the livestock-inventory and oil-production activities in the basins. Dissolved iron and manganese concentrations for the southwestern North Dakota streams generally remained stable during 1971-2000. However, many of the recorded concentrations for those streams were less than the detection limit, and trends that were masked by censoring may have occurred. Several significant trends were detected in dissolved iron and manganese concentrations for the eastern North Dakota streams. Concentrations for those streams either remained stable or increased during most of the 1970's and then decreased rapidly for about 2 years beginning in the late 1970's. The concentrations were relatively stable from the early 1980's to 2000 except at two locations where dissolved iron concentrations increased during the early 1990's. The most efficient overall sampling designs for the detection of annual trends (that is, trends that occur uniformly during the entire year) consisted of balanced designs in which the sampling dates and the number of samples collected remained fixed from year to year and in which the samples were collected throughout the year rather than in a short timespan. The best overall design for the detection of annual trends consisted of three samples per year, with samples collected near the beginning of December, April, and August. That design had acceptable sensitivity for the detection of trends in most constituents at all locations. Little improvement in sensitivity was achieved by collecting more than three samples per year.The sampling designs that were first evaluated for annual trends also were evaluated with regard to their sensitivity to detect seasonal trends that occurred during three seasons--April through August, August through December, and December through April. Design results indicated that an average of one extra sample per station per year resulted in an efficient design for detecting seasonal trends. However, allocation of the extra samples varied depending on the station, month, and constituent group (major ions, nutrients, and trace metals).
Temporal trends in symptom experience predict the accuracy of recall PROs
Schneider, Stefan; Broderick, Joan E.; Junghaenel, Doerte U.; Schwartz, Joseph E.; Stone, Arthur A.
2013-01-01
Objective Patient-reported outcome measures with reporting periods of a week or more are often used to evaluate the change of symptoms over time, but the accuracy of recall in the context of change is not well understood. This study examined whether temporal trends in symptoms that occur during the reporting period impact the accuracy of 7-day recall reports. Methods Women with premenstrual symptoms (n = 95) completed daily reports of anger, depression, fatigue, and pain intensity for 4 weeks, as well as 7-day recall reports at the end of each week. Latent class growth analysis was used to categorize recall periods based on the direction and rate of change in the daily reports. Agreement (level differences and correlations) between 7-day recall and aggregated daily scores was compared for recall periods with different temporal trends. Results Recall periods with positive, negative, and flat temporal trends were identified and they varied in accordance with weeks of the menstrual cycle. Replicating previous research, 7-day recall scores were consistently higher than aggregated daily scores, but this level difference was more pronounced for recall periods involving positive and negative trends compared with flat trends. Moreover, correlations between 7-day recall and aggregated daily scores were lower in the presence of positive and negative trends compared with flat trends. These findings were largely consistent for anger, depression, fatigue, and pain intensity. Conclusion Temporal trends in symptoms can influence the accuracy of recall reports and this should be considered in research designs involving change. PMID:23915773
Chemical differences between small subsamples of Apollo 15 olivine-normative basalts
NASA Technical Reports Server (NTRS)
Shervais, J. W.; Vetter, S. K.; Lindstrom, M. M.
1990-01-01
Results are presented on the chemical and petrological characterization of nine samples of an Apollo 15 mare basalt suite. The results show that all nine samples are low-silica olivine normative basalts (ONBs) similar to those described earlier for low-silica ONBs from Apollo 15 site. The samples were found to vary in texture and grain size, from fine-grained intergranular or subophitic basalts to coarse-grained granular 'microgabbros'. Several displayed macroscopic heterogeneity. Variation diagrams show that the overall trend of the data is consistent with the fractionation of olivine (plus minor Cr-spinel) from a high-MgO parent magma.
NASA Astrophysics Data System (ADS)
Kleinen, Thomas; Brovkin, Victor; Munhoven, Guy
2016-11-01
Trends in the atmospheric concentration of CO2 during three recent interglacials - the Holocene, the Eemian and Marine Isotope Stage (MIS) 11 - are investigated using an earth system model of intermediate complexity, which we extended with process-based modules to consider two slow carbon cycle processes - peat accumulation and shallow-water CaCO3 sedimentation (coral reef formation). For all three interglacials, model simulations considering peat accumulation and shallow-water CaCO3 sedimentation substantially improve the agreement between model results and ice core CO2 reconstructions in comparison to a carbon cycle set-up neglecting these processes. This enables us to model the trends in atmospheric CO2, with modelled trends similar to the ice core data, forcing the model only with orbital and sea level changes. During the Holocene, anthropogenic CO2 emissions are required to match the observed rise in atmospheric CO2 after 3 ka BP but are not relevant before this time. Our model experiments show a considerable improvement in the modelled CO2 trends by the inclusion of the slow carbon cycle processes, allowing us to explain the CO2 evolution during the Holocene and two recent interglacials consistently using an identical model set-up.
Top-down deactivation of interference from irrelevant spatial or verbal stimulus features.
Frings, Christian; Wühr, Peter
2014-11-01
The selective-attention model of Houghton and Tipper (1994) assumes top-down deactivation of (conflicting) distractor representations as a mechanism of visual attention. Deactivation should produce an inverted-U-shaped activation function for distractor representations. In a recent study, Frings, Wentura, and Wühr (2012) tested this prediction in a variant of the flanker task in which a cue sometimes required participants to respond to the distractors rather than to the target. When reaction times and error rates were plotted as a function of the target-cue stimulus onset asynchrony, a quadratic trend emerged, consistent with the notion of distractor deactivation. However, in the flanker task, an alternative explanation for the quadratic trend in terms of attentional zooming is possible. The present experiments tested the deactivation account against the attentional-zooming account with the Stroop and the Simon task, in which attentional zooming should have minimal effects on distractor processing, because the target and distractor are presented at the same spatial location. Both experiments replicated the quadratic trend in the performance functions for responses to incongruent distractors, and additionally showed linear trends in the performance functions for responses to congruent distractors. These results provide additional support for the notion of top-down deactivation of distractor representations as a mechanism of visual selective attention.
An assessment of optical and biogeochemical multi-decadal trends in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Allen, J. G.; Siegel, D.; Nelson, N. B.
2016-02-01
Observations of optical and biogeochemical data, made as part of the Bermuda Bio-Optics Project (BBOP) at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea, allow for the examination of temporal trends in vertical light attenuation and their potential controls. Trends in both the magnitude and spectral slope of the diffuse attenuation coefficient should reflect changes in chlorophyll and chromophoric dissolved organic matter (CDOM) concentrations in the Sargasso Sea. The length and methodological consistency of this time series provides an excellent opportunity to extend analyses of seasonal cycles of apparent optical properties to interannual and multi-year time scales. Here, we characterize changes in the size and shape of diffuse attenuation coefficient spectra and compare them to temperature, chlorophyll a concentration, and to discrete measurements of phytoplankton and CDOM absorption. The time series analyses reveal up to a 1.2% annual increase of the magnitude of the diffuse attenuation coefficient over the upper 70 m of the water column while showing no significant change in the spectral slope of diffuse attenuation over the course of the study. These observations indicate that increases in phytoplankton pigment concentration rather than changes in CDOM are the primary driver for the attenuation trends on multi-year timescales for this region.
NASA Astrophysics Data System (ADS)
Pascaud, A.; Sauvage, S.; Coddeville, P.; Nicolas, M.; Croisé, L.; Mezdour, A.; Probst, A.
2016-12-01
The long-distance effect of atmospheric pollution on ecosystems has led to the conclusion of international agreements to regulate atmospheric emissions and monitor their impact. This study investigated variations in atmospheric deposition chemistry in France using data gathered from three different monitoring networks (37 stations) over the period from 1995 to 2007. Despite some methodological differences (e.g. type of collector, frequency of sampling and analysis), converging results were found in spatial variations, seasonal patterns and temporal trends. With regard to spatial variations, the mean annual pH in particular ranged from 4.9 in the north-east to 5.8 in the south-east. This gradient was related to the concentration of NO3- and non-sea-salt SO42- (maximum volume-weighted mean of 38 and 31 μeq l-1 respectively) and of acid-neutralising compounds such as non-sea-salt Ca2+ and NH4+. In terms of seasonal variations, winter and autumn pH were linked to lower acidity neutralisation than during the warm season. The temporal trends in atmospheric deposition varied depending on the chemical species and site location. The most significant and widespread trend was the decrease in non-sea-salt SO42- concentrations (significant at 65% of the stations). At the same time, many stations showed an increasing trend in annual pH (+0.3 on average for 16 stations). These two trends are probably due to the reduction in SO2 emissions that has been imposed in Europe since the 1980s. Temporal trends in inorganic N concentrations were rather moderate and not consistent with the trends reported in emission estimates. Despite the reduction in NOx emissions, NO3- concentrations in atmospheric deposition remained mostly unchanged or even increased at three stations (+0.43 μeq l-1 yr-1 on average). In contrast NH4+ concentrations in atmospheric deposition decreased at several stations located in western and northern areas, while the estimates of NH3 emissions remained fairly stable. The decrease in non-sea-salt SO42- and NH4+ concentrations was mainly due to a decrease in summer values and can in part be related to a dilution process since the precipitation amount showed an increasing trend during the summer. Furthermore, increasing trends in NO3- concentrations in the spring and, to a lesser extent, in NH4+ concentrations suggested that other atmospheric physicochemical processes should also be taken into account.
Trends in alcohol-impaired driving in Canada.
Vanlaar, Ward; Robertson, Robyn; Marcoux, Kyla; Mayhew, Daniel; Brown, Steve; Boase, Paul
2012-09-01
While a general decreasing trend in the number of persons killed in a traffic crash involving a drinking driver has occurred in Canada since the 1980s, it is evident that much of this decrease occurred in the 1990s. Since 2002, less progress has been made as the number of persons killed in crashes involving drinking drivers remains high. To better understand the current situation, this paper describes trends in drinking and driving in Canada from 1998 to 2011 using multiple indicators based on data collected for the Traffic Injury Research Foundation's (TIRF) Road Safety Monitor (RSM), the National Opinion Poll on Drinking and Driving, and trends in alcohol-related crashes based on data collected for TIRF's national Fatality Database in Canada. There has been a continued and consistent decrease in the number of fatalities involving a drinking driver in Canada. This remains true when looking at the number of fatalities involving a drinking driver per 100,000 population and per 100,000 licensed drivers. This decreasing trend is also still apparent when considering the percentage of persons killed in a traffic crash in Canada involving a drinking driver although less pronounced. Data from the RSM further show that the percentage of those who reported driving after they thought they were over the legal limit has also declined. However, regardless of the apparent decreasing trend in drinking driving fatalities and behaviour, reductions have been relatively modest, and fatalities in crashes involving drivers who have consumed alcohol remain high at unacceptable levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Low validity of Google Trends for behavioral forecasting of national suicide rates.
Tran, Ulrich S; Andel, Rita; Niederkrotenthaler, Thomas; Till, Benedikt; Ajdacic-Gross, Vladeta; Voracek, Martin
2017-01-01
Recent research suggests that search volumes of the most popular search engine worldwide, Google, provided via Google Trends, could be associated with national suicide rates in the USA, UK, and some Asian countries. However, search volumes have mostly been studied in an ad hoc fashion, without controls for spurious associations. This study evaluated the validity and utility of Google Trends search volumes for behavioral forecasting of suicide rates in the USA, Germany, Austria, and Switzerland. Suicide-related search terms were systematically collected and respective Google Trends search volumes evaluated for availability. Time spans covered 2004 to 2010 (USA, Switzerland) and 2004 to 2012 (Germany, Austria). Temporal associations of search volumes and suicide rates were investigated with time-series analyses that rigorously controlled for spurious associations. The number and reliability of analyzable search volume data increased with country size. Search volumes showed various temporal associations with suicide rates. However, associations differed both across and within countries and mostly followed no discernable patterns. The total number of significant associations roughly matched the number of expected Type I errors. These results suggest that the validity of Google Trends search volumes for behavioral forecasting of national suicide rates is low. The utility and validity of search volumes for the forecasting of suicide rates depend on two key assumptions ("the population that conducts searches consists mostly of individuals with suicidal ideation", "suicide-related search behavior is strongly linked with suicidal behavior"). We discuss strands of evidence that these two assumptions are likely not met. Implications for future research with Google Trends in the context of suicide research are also discussed.
Dubuisson, Carine; Lioret, Sandrine; Touvier, Mathilde; Dufour, Ariane; Calamassi-Tran, Gloria; Volatier, Jean-Luc; Lafay, Lionel
2010-04-01
Two independent cross-sectional dietary surveys (the Individual and National Food Consumption Surveys, INCA), performed in 1998-99 (INCA1) and in 2006-07 (INCA2) on nationally representative samples of French people, were used to analyse trends in the dietary habits and nutritional intake of French adults. Food consumption was recorded through 7-d dietary records, and nutritional intakes were assessed using the French food composition database. After exclusion of under-reporters, analyses were performed on 3267 adults, aged 18-79 years: 1345 from INCA1 and 1922 from INCA2. The trends highlighted over the 8-year period showed a decrease in consumption of dairy products, meat, bread, potatoes, pastries/croissant-like pastries/cakes/biscuits and sugar/confectionery. In contrast, the consumption of fruits and vegetables, rice, ice cream and chocolate increased. Other food groups, like fish and snacking foods, remained stable. Food choices were mostly age specific. These age differences remained consistent over the years and underlined two opposite dietary trends: a 'traditional' one mainly followed by the elderly, and a 'snacking and convenience' one mainly adopted by young adults. The overall trends in food consumption did not influence the mean energy intake, but did slightly modify the contribution of each macronutrient to energy intake. These repeated surveys highlighted the fact that trends in French food habits have moved towards an average European diet at the crossroads between Mediterranean and Northern diets, and that food consumption changes impacted, to a lesser extent, nutritional intake.
Moxnes, John F; Moen, Aina E Fossum; Leegaard, Truls Michael
2015-10-05
Study the time development of methicillin-resistant Staphylococcus aureus (MRSA) and forecast future behaviour. The major question: Is the number of MRSA isolates in Norway increasing and will it continue to increase? Time trend analysis using non-stationary γ-Poisson distributions. Two data sets were analysed. The first data set (data set I) consists of all MRSA isolates collected in Oslo County from 1997 to 2010; the study area includes the Norwegian capital of Oslo and nearby surrounding areas, covering approximately 11% of the Norwegian population. The second data set (data set II) consists of all MRSA isolates collected in Health Region East from 2002 to 2011. Health Region East consists of Oslo County and four neighbouring counties, and is the most populated area of Norway. Both data sets I and II consist of all persons in the area and time period described in the Settings, from whom MRSA have been isolated. MRSA infections have been mandatory notifiable in Norway since 1995, and MRSA colonisation since 2004. In the time period studied, all bacterial samples in Norway have been sent to a medical microbiological laboratory at the regional hospital for testing. In collaboration with the regional hospitals in five counties, we have collected all MRSA findings in the South-Eastern part of Norway over long time periods. On an average, a linear or exponential increase in MRSA numbers was observed in the data sets. A Poisson process with increasing intensity did not capture the dispersion of the time series, but a γ-Poisson process showed good agreement and captured the overdispersion. The numerical model showed numerical internal consistency. In the present study, we find that the number of MRSA isolates is increasing in the most populated area of Norway during the time period studied. We also forecast a continuous increase until the year 2017. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Honeyford, Kate; Greaves, Felix; Aylin, Paul; Bottle, Alex
2017-01-01
To examine trends in patient experience and consistency between hospital trusts and settings. Observational study of publicly available patient experience surveys of three hospital settings (inpatients (IP), accident and emergency (A&E) and outpatients (OP)) of 130 acute NHS hospital trusts in England between 2004/05 and 2014/15. Overall patient experience has been good, showing modest improvements over time across the three hospital settings. Individual questions with the biggest improvement across all three settings are cleanliness (IP: +7.1, A&E: +6.5, OP: +4.7) and information about danger signals (IP: +3.8, A&E: +3.9, OP: +4.0). Trust performance has been consistent over time: 71.5% of trusts ranked in the same cluster for more than five years. There is some consistency across settings, especially between outpatients and inpatients. The lowest-scoring questions, regarding information at discharge, are the same in all years and all settings. The greatest improvement across all three settings has been for cleanliness, which has seen national policies and targets. Information about danger signals and medication side-effects showed least consistency across settings and scores have remained low over time, despite information about danger signals showing a big increase in score. Patient experience of aspects of access and waiting have declined, as has experience of discharge delay, likely reflecting known increases in pressure on England's NHS.
Higher Education Trends (1997-1999): Administration. ERIC-HE Trends.
ERIC Educational Resources Information Center
Kezar, Adrianna J.
Several themes are prevalent in the literature on college administration. Motivating staff, planning, conflict management, ethics, power and influence, communication, strategy and decision making, vision, and financial issues are consistently discussed. However, common administrative processes such as planning, morale, and administrative climate…
Do recreational activities affect coastal biodiversity?
NASA Astrophysics Data System (ADS)
Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.
2016-09-01
Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors (;diving; and ;fishing;). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.
Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK
NASA Astrophysics Data System (ADS)
Tang, Yuk S.; Braban, Christine F.; Dragosits, Ulrike; Dore, Anthony J.; Simmons, Ivan; van Dijk, Netty; Poskitt, Janet; Dos Santos Pereira, Gloria; Keenan, Patrick O.; Conolly, Christopher; Vincent, Keith; Smith, Rognvald I.; Heal, Mathew R.; Sutton, Mark A.
2018-01-01
A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998-2014) and particulate ammonium (NH4+: 1999-2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 µg m-3) and highest in the areas with intensive agriculture (up to 22 µg m-3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 µg m-3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha-1 yr-1) and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16 % between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n = 59) show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann-Kendall (MK), -6.3 %; linear regression (LR), -3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: -22 %; LR: -21 %, annually averaged NH3) is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (-39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH3), despite the estimated decline in NH3 emissions from this sector since 1998 (-11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: +17 %; LR: +13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999-2014: MK: -47 %; LR: -49 %, p < 0.01, n = 23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3.
Climate change and observed climate trends in the fort cobb experimental watershed.
Garbrecht, J D; Zhang, X C; Steiner, J L
2014-07-01
Recurring droughts in the Southern Great Plains of the United States are stressing the landscape, increasing uncertainty and risk in agricultural production, and impeding optimal agronomic management of crop, pasture, and grazing systems. The distinct possibility that the severity of recent droughts may be related to a greenhouse-gas induced climate change introduces new challenges for water resources managers because the intensification of droughts could represent a permanent feature of the future climate. Climate records of the Fort Cobb watershed in central Oklahoma were analyzed to determine if recent decade-long trends in precipitation and air temperature were consistent with climate change projections for central Oklahoma. The historical precipitation record did not reveal any compelling evidence that the recent 20-yr-long decline in precipitation was related to climate change. Also, precipitation projections by global circulation models (GCMs) displayed a flat pattern through the end of the 21st century. Neither observed nor projected precipitation displayed a multidecadal monotonic rising or declining trend consistent with an ongoing warming climate. The recent trend in observed annual precipitation was probably a decade-scale variation not directly related to the warming climate. On the other hand, the observed monotonic warming trend of 0.34°C decade that started around 1978 is consistent with GCM projections of increasing temperature for central Oklahoma. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele
2017-04-01
In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of winter and its corresponding months (December, January, February) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal trend analyses of Tmax shows that global trend 1951-2010 was positive and significant mostly in central-western areas; from 1970 to 2010 there is less than 20% of land with significant trend. In the case of Tmin no relevant significant period is detected. • Monthly Tmax analyses show that December significant trend changed from positive (>20%) in between 1955-2010 until 1962-2010, to negative from 1976-2010. Meanwhile January does not show relevant period with significant trend; finally Tmax in February shows different periods with positive significant trend (>20% of land) 1951-2010 to 1954-2010 and 1962-2010 to 1968-2010. No significant trend is detected after this data. • Monthly Tmin trend analyses show that except exceptional period, no months present any significant trend. As conclusions, we have detected that for winter and winter-months, Tmax trends are not significant from 1970 across Spanish mainland. In the case of Tmin we conclude that no significant trend have been occurred in any temporal windows analyzed. Results differ from what traditionally has been assumed that the increase of the average annual temperature was due to the increase of trends in the winter season. And these analyses also show that seasonal trend values could hide monthly behavior. So extreme caution should be taken into account when seasonal values are offered.
Salewski, Volker; Siebenrock, Karl-Heinz; Hochachka, Wesley M; Woog, Friederike; Fiedler, Wolfgang
2014-01-01
Changes in morphology have been postulated as one of the responses of animals to global warming, with increasing ambient temperatures leading to decreasing body size. However, the results of previous studies are inconsistent. Problems related to the analyses of trends in body size may be related to the short-term nature of data sets, to the selection of surrogates for body size, to the appropriate models for data analyses, and to the interpretation as morphology may change in response to ecological drivers other than climate and irrespective of size. Using generalized additive models, we analysed trends in three morphological traits of 4529 specimens of eleven bird species collected between 1889 and 2010 in southern Germany and adjacent areas. Changes and trends in morphology over time were not consistent when all species and traits were considered. Six of the eleven species displayed a significant association of tarsus length with time but the direction of the association varied. Wing length decreased in the majority of species but there were few significant trends in wing pointedness. Few of the traits were significantly associated with mean ambient temperatures. We argue that although there are significant changes in morphology over time there is no consistent trend for decreasing body size and therefore no support for the hypothesis of decreasing body size because of climate change. Non-consistent trends of change in surrogates for size within species indicate that fluctuations are influenced by factors other than temperature, and that not all surrogates may represent size appropriately. Future analyses should carefully select measures of body size and consider alternative hypotheses for change.
Long-term variation of total ozone
NASA Astrophysics Data System (ADS)
Kane, R. P.
1988-03-01
The long-term variation of total ozone is studied for 1957 up to date for different latitude zones. The 3-year running averages show that, apart from a small portion showing parallelism with sunspot cycles, the trends in different latitude zones are dissimilar. In particular, where northern latitudes show a rising trend, the southern latitudes show an opposite (decreasing) trend. In the north-temperate group, Europe, North America and Asia show dissimilar trends. The longer data series (1932 ownards) for Arosa shows, besides a solar-cycle-dependent component, a steady level during 1932 1953 and a down-trend thereafter up to date. Very localised but long-lasting circulation patterns, different in different geographical regions, are indicated.
Detecting Trends in Tropical Rainfall Characteristics, 1979-2003
NASA Technical Reports Server (NTRS)
Lau, K. M.; Wu, H. T.
2006-01-01
From analyses of blended space-based and ground-based global rainfall data, we found increasing trends in the occurrence of extreme heavy and light rain events, coupled to a decreasing trend in moderate rain events in the tropics during 1979-2003. The trends are consistent with a shift in the large-scale circulation associated with a) a relatively uniform increase in warm rain over the tropical oceans, b) enhanced ice-phase rain over the near-equatorial oceans, and c) reduced mixed-phase rain over the tropical ocean and land regions. Due to the large compensation among different rain categories, the total tropical rainfall trend remained undetectable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.
Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less
Monitoring forest changes in the southwestern United States using multitemporal Landsat data
Vogelmann, James E.; Tolk, Brian L.; Zhu, Zhiliang
2009-01-01
Landsat time series data sets were acquired for the Santa Fe National Forest in New Mexico. This area includes the San Pedro Parks Wilderness area, which was designated as an official wilderness in 1964. Eight autumnal Landsat Thematic Mapper (TM) scenes acquired from 1988 to 2006 were analyzed to determine whether significant changes have occurred throughout the region during the past 18 years and, if so, to assess whether the changes are long-term and gradual or short-term and abrupt. It was found that, starting in about 1995, many of the conifer stands within the Wilderness area showed consistently gradual and marked increases in the Shortwave Infrared/Near Infrared Index. These trends generally imply decreases in canopy greenness or increases in mortality. Other high-elevation conifer forests located outside of the Wilderness area showed similar spectral trends, indicating that changes are potentially widespread. The spatial patterns of forest damage as inferred from the image analyses were very similar to the general patterns of insect defoliation damage mapped via aerial sketch mapping by the United States Department of Agriculture Forest Service Forest Health Monitoring Program. A field visit indicated that zones of spectral change are associated with high levels of forest damage and mortality, likely caused by a combination of insects and drought. The study demonstrates the effectiveness of using historical Landsat data for providing objective and consistent long-term assessments of the gradual ecosystem changes that are occurring within the western United States.
Wilson, Kumanan; Hawken, Steven; Ducharme, Robin; Potter, Beth K; Little, Julian; Thébaud, Bernard; Chakraborty, Pranesh
2014-02-01
Prematurity may influence the levels of amino acids, enzymes, and endocrine markers obtained through newborn screening. Identifying which analytes are the most affected by degree of prematurity could provide insight into how prematurity impacts metabolism. Analytes from blood spots assayed by Newborn Screening Ontario between March 2006 and April 2009 were used in this analysis. We examined the associations between the degree of prematurity and the levels of amino acids, enzymes, and endocrine markers in all newborns with and without adjustment for birth weight, feeding status, sample timing, transfusion, and sex. Our analysis included the following cohorts: 373,819 children born at term (>36 wk gestation), 26,483 near-term children (33-36 wk gestation), 4,354 very premature children (28-32 wk gestation), and 1,146 extremely premature children (<28 wk gestation). Of the amino acids showing consistent trends across categories of prematurity, the levels of three amino acids (arginine, leucine, and valine) were at least 50% different between the cohorts of extremely premature and term children. The levels of 17-hydroxyprogesterone increased with increasing prematurity, while thyrotropin-stimulating hormone values consistently decreased with increasing prematurity. None of the three enzyme markers we examined showed a trend in levels across categories of prematurity. This study demonstrates that children at different stages of prematurity are metabolically distinct. Future research should focus on the mechanism by which specific analytes are influenced by prematurity.
Impact of specialist care on clinical outcomes for medical emergencies.
Moore, Stuart; Gemmell, Islay; Almond, Solomon; Buchan, Iain; Osman, Isameldin; Glover, Andrew; Williams, Peter; Carroll, Nadine; Rhodes, Jonathan
2006-01-01
General hospitals have commonly involved a wide range of medical specialists in the care of unselected medical emergency admissions. In 1999, the Royal Liverpool University Hospital, a 915-bed hospital with a busy emergency service, changed its system of care for medical emergencies to allow early placement of admitted patients under the care of the most appropriate specialist team, with interim care provided by specialist acute physicians on an acute medicine unit - a system we have termed 'specialty triage'. Here we describe a retrospective study in which all 133,509 emergency medical admissions from February 1995 to January 2003 were analysed by time-series analysis with correction for the underlying downward trend from 1995 to 2003. This showed that the implementation of specialty triage in May 1999 was associated with a subsequent additional reduction in the mortality of the under-65 age group by 0.64% (95% CI 0.11 to 1.17%; P=0.021) from the 2.4% mortality rate prior to specialty triage, equivalent to approximately 51 fewer deaths per year. No significant effect was seen for those over 65 or all age groups together when corrected for the underlying trend. Length of stay and readmission rates showed a consistent downward trend that was not significantly affected by specialty triage. The data suggest that appropriate specialist management improves outcomes for medical emergencies, particularly amongst younger patients.
Theory of Partitioning of Disease Prevalence and Mortality in Observational Data
Akushevich, I.; Yashkin, A.; Kravchenko, J.; Fang, F.; Arbeev, K.; Sloan, F.; Yashin, AI
2017-01-01
In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed. PMID:28130147
Impact of Sensor Degradation on the MODIS NDVI Time Series
NASA Technical Reports Server (NTRS)
Wang, Dongdong; Morton, Douglas; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert
2011-01-01
Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, we evaluated the impact of sensor degradation on trend detection using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004/yr decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends MODIS NDVI over North America were consistent with simulated results, with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in NDVI trends over vegetation.
NASA Astrophysics Data System (ADS)
Palau, Aina; Estalella, Robert; Girart, Josep M.; Fuente, Asunción; Fontani, Francesco; Commerçon, Benoit; Busquet, Gemma; Bontemps, Sylvain; Sánchez-Monge, Álvaro; Zapata, Luis A.; Zhang, Qizhou; Hennebelle, Patrick; di Francesco, James
2014-04-01
In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific Research, and the National Research Council of Canada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr -1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Nevertheless, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska
NASA Astrophysics Data System (ADS)
Nattinger, K.; Simpson, W. R.; Huff, D.
2015-12-01
Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this study regarding primary versus possible secondary PM2.5 production processes can help in identifying effective PM2.5 control strategies.
Verb bias and verb-specific competition effects on sentence production
Thothathiri, Malathi; Evans, Daniel G.; Poudel, Sonali
2017-01-01
How do speakers choose between structural options for expressing a given meaning? Overall preference for some structures over others as well as prior statistical association between specific verbs and sentence structures (“verb bias”) are known to broadly influence language use. However, the effects of prior statistical experience on the planning and execution of utterances and the mechanisms that facilitate structural choice for verbs with different biases have not been fully explored. In this study, we manipulated verb bias for English double-object (DO) and prepositional-object (PO) dative structures: some verbs appeared solely in the DO structure (DO-only), others solely in PO (PO-only) and yet others equally in both (Equi). Structural choices during subsequent free-choice sentence production revealed the expected dispreference for DO overall but critically also a reliable linear trend in DO production that was consistent with verb bias (DO-only > Equi > PO-only). Going beyond the general verb bias effect, three results suggested that Equi verbs, which were associated equally with the two structures, engendered verb-specific competition and required additional resources for choosing the dispreferred DO structure. First, DO production with Equi verbs but not the other verbs correlated with participants’ inhibition ability. Second, utterance duration prior to the choice of a DO structure showed a quadratic trend (DO-only < Equi > PO-only) with the longest durations for Equi verbs. Third, eye movements consistent with reimagining the event also showed a quadratic trend (DO-only < Equi > PO-only) prior to choosing DO, suggesting that participants used such recall particularly for Equi verbs. Together, these analyses of structural choices, utterance durations, eye movements and individual differences in executive functions shed light on the effects of verb bias and verb-specific competition on sentence production and the role of different executive functions in choosing between sentence structures. PMID:28672009
Source Identification and Location Techniques
NASA Technical Reports Server (NTRS)
Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert
2001-01-01
Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A flight test is planned to determine if the hardware tested statically will achieve similar reductions in flight.
Estimating Terra MODIS Polarization Effect Using Ocean Data
NASA Technical Reports Server (NTRS)
Wald, Andrew E.; Brinkmann, Jake; Wu, Aisheng; Xiong, Jack
2016-01-01
Terra MODIS has been known since pre-launch to have polarization sensitivity, particularly in shortest-wavelength bands 8 and 9. On-orbit reflectance trending of pseudo-invariant sites show a variation in reflectance as a function of band and scan mirror angle of incidence consistent with time-dependent polarization effects from the rotating double-sided scan mirror. The MODIS Characterization Support Team [MCST] estimates the Mueller matrix trending from this variation as observed from a single desert site, but this effect is not included in Collection 6 [C6] calibration. Here we extend the MCSTs current polarization sensitivity monitoring to two ocean sites distributed over latitude to helpestimate the uncertainties in the derived Mueller matrix. The Mueller matrix elements derived for polarization-sensitive Band 8 for a given site are found to be fairly insensitive to surface brdf modeling. The site-to-site variation is a measure of the uncertainty in the Mueller estimation.Results for band 8 show that the polarization correction reduces mirror-side striping by up to 50% and reduces the instrument polarization effect on reflectance time series of an ocean target.
Role of volatilization in changing TBA and MTBE concentrations at MTBE-contaminated sites.
Eweis, Juana B; Labolle, Eric M; Benson, David A; Fogg, Graham E
2007-10-01
Tertiary butyl alcohol (TBA) is commonly found as an impurity in methyl tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals especially in the vadose zone, which is a source of contamination to groundwater. Here we show that volatilization, particularly through remediation by vapor extraction, can substantially affect the trends in TBA and MTBE concentrations and the respective mass available to impact groundwater aquifers, through the preferential removal of more volatile compounds, including MTBE, and the apparent enrichment of less volatile compounds like TBA. We demonstrate this phenomenon through numerical simulations of remedial-enhanced volatilization. Results show increases in TBA/MTBE concentration ratios consistent with ratios observed in groundwater at gasoline spill sites. Volatilization is an important, and potentially dominant, process that can result in concentration trends similar to those typically attributed to biodegradation.
Deforestation trend in North Sumatra over 1990-2015
NASA Astrophysics Data System (ADS)
Basyuni, M.; Sulistiyono, N.; Wati, R.; Hayati, R.
2018-02-01
Deforestation and forest degradation have been previously reported to contributing greenhouse gas emission, the primary driver of global warming. The present paper studies deforestation and reforestation trend in North Sumatra, Indonesia using land-use/land-cover change from 1990-2015. The land-use consists of three classes derived from forest land (primary and secondary dry land forest, primary and secondary swamp forest, primary and secondary mangrove forest). Non-Forest (shrub, oil palm plantation, forest plantation, settlement, barren land, swamp shrub, dry land farming, mixed dry land farming, paddy field, aquaculture, airport, transmigration, and mining), and water body (water and swamp). Results showed that from 33 regencies/city in North Sumatra, among them, 25 districts deforested, which was the highest deforestation rate in Labuhanbatu and South Labuhanbatu (2,238.08 and 1,652.55 ha/year, respectively), only one area reforested, and seven districts showed no deforestation or reforestation. During 25 years observed, the forest has been deforested 22.92%, while nonforest has been increased 11.33% of land-use. The significant increasing loss of North Sumatran forest implies conservation efforts and developing sustainable forest management.
Trends in LST over the peninsular Spain as derived from the AVHRR imagery data
NASA Astrophysics Data System (ADS)
Khorchani, Makki; Vicente-Serrano, Sergio M.; Azorin-Molina, Cesar; Garcia, Monica; Martin-Hernandez, Natalia; Peña-Gallardo, Marina; El Kenawy, Ahmed; Domínguez-Castro, Fernando
2018-07-01
This study analyzes the spatio-temporal variability and trends of land surface temperature (LST) over peninsular Spain, considering all the available historical satellite imagery data from the NOAA-AVHRR product from July 1981 to June 2015 and explores whether changes in LST are related to the observed changes in air temperature, solar radiation and land cover. We found that LST showed a significant increase between 1982 and 2014, with an average increase on the order of 0.71 °C decade-1, being stronger during summertime (1.53 °C decade-1). The results also indicate a strong spatial coherence between LST and NDVI changes. The areas that experienced an increase in the LST were spatially consistent with those areas with no changes or even a dominant decrease in vegetation coverage. In addition, the strong increase of LST is coherent with observations of the recent radiative forcing affecting Spain, particularly during summertime. The confidence of the obtained LST trends during summer is also reinforced by the spatial differences recorded in trends, in addition to the differences found between land cover types. Specifically, the magnitude of this increase was much higher in the dryland non-permanent agricultural areas, which are usually harvested during summer, when soil is dominantly nude. In contrast, in well-developed forests, the magnitude of LST was much lower. Our results on the observed LST trends and their spatial patterns can contribute to better understanding of the recent eco-hydrological processes in peninsular Spain.
Bjereld, Y; Daneback, K; Löfstedt, P; Bjarnason, T; Tynjälä, J; Välimaa, R; Petzold, M
2017-05-01
Friends are important in childhood and adolescence, especially to bullied children. Technology mediated communication (TMC) could be used both to develop and maintain friendship. The present study examined (1) trends in the use of TMC with friends between 2001 and 2010; (2) possible differences between bullied and not bullied children and (3) differences between children with few close friends and children with several close friends. Data were obtained from three waves of the serial cross-sectional Health Behaviour in School-Aged Children survey conducted in Denmark, Finland, Iceland and Sweden during 2001/2002, 2005/2006 and 2009/2010. The total sample consisted of 65 953 children aged 11, 13 and 15. Two trends were observed. The first trend showed an increased use of TMC in all countries. Children that were not bullied and/or had several close friends had increased their use of TMC with friends from 2001 to 2010. The second trend was applicable only for bullied children with few close friends; they had not as other children increased their use of TMC and thus remained at the same levels as in 2001/2002. Bullied children with few close friends were excluded from communication forums that usually allow children to maintain and develop friendships. This is a concern because friends are important during childhood and adolescence, especially for bullied children. © 2016 John Wiley & Sons Ltd.
Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada
Weiss-Penzias, Peter S.; Gay, David A.; Brigham, Mark E.; Parsons, Matthew T.; Gustin, Mae S.; ter Shure, Arnout
2016-01-01
This study examined the spatial and temporal trends of mercury (Hg) in wet deposition and air concentrations in the United States (U.S.) and Canada between 1997 and 2013. Data were obtained from the National Atmospheric Deposition Program (NADP) and Environment Canada monitoring networks, and other sources. Of the 19 sites with data records from 1997–2013, 53% had significant negative trends in Hg concentration in wet deposition, while no sites had significant positive trends, which is in general agreement with earlier studies that considered NADP data up until about 2010. However, for the time period 2007–2013 (71 sites), 17% and 13% of the sites had significant positive and negative trends, respectively, and for the time period 2008–2013 (81 sites) 30% and 6% of the sites had significant positive and negative trends, respectively. Non-significant positive tendencies were also widespread. Regional trend analyses revealed significant positive trends in Hg concentration in the Rocky Mountains, Plains, and Upper Midwest regions for the recent time periods in addition to significant positive trends in Hg deposition for the continent as a whole. Sulfate concentration trends in wet deposition were negative in all regions, suggesting a lower importance of local Hg sources. The trend in gaseous elemental Hg from short-term datasets merged as one continuous record was broadly consistent with trends in Hg concentration in wet deposition, with the early time period (1998–2007) producing a significantly negative trend (− 1.5 ± 0.2% year− 1) and the recent time period (2008–2013) displaying a flat slope (− 0.3 ± 0.1% year− 1, not significant). The observed shift to more positive or less negative trends in Hg wet deposition primarily seen in the Central-Western regions is consistent with the effects of rising Hg emissions from regions outside the U.S. and Canada and the influence of long-range transport in the free troposphere.
Hoyal Cuthill, Jennifer F.
2015-01-01
Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales. PMID:26640650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buie, Marc W.; Young, Eliot F.; Young, Leslie A.
We present new imaging of the surface of Pluto and Charon obtained during 2002-2003 with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) instrument. Using these data, we construct two-color albedo maps for the surfaces of both Pluto and Charon. Similar mapping techniques are used to re-process HST/Faint Object Camera (FOC) images taken in 1994. The FOC data provide information in the ultraviolet and blue wavelengths that show a marked trend of UV-bright material toward the sunlit pole. The ACS data are taken at two optical wavelengths and show widespread albedo and color variegation on the surface ofmore » Pluto and hint at a latitudinal albedo trend on Charon. The ACS data also provide evidence for a decreasing albedo for Pluto at blue (435 nm) wavelengths, while the green (555 nm) data are consistent with a static surface over the one-year period of data collection. We use the two maps to synthesize a true visual color map of Pluto's surface and investigate trends in color. The mid- to high-latitude region on the sunlit pole is, on average, more neutral in color and generally higher albedo than the rest of the surface. Brighter surfaces also tend to be more neutral in color and show minimal color variations. The darker regions show considerable color diversity arguing that there must be a range of compositional units in the dark regions. Color variations are weak when sorted by longitude. These data are also used to constrain astrometric corrections that enable more accurate orbit fitting, both for the heliocentric orbit of the barycenter and the orbit of Pluto and Charon about their barycenter.« less
Bexfield, Laura M.; Anderholm, Scott K.
2002-01-01
Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not well mixed, even in areas of large vertical gradients. Water levels in most piezometers respond to short-term variations in ground-water withdrawals and to the cumulative effect of long-term withdrawals throughout the area. In most piezometers screened below the water table, water levels respond clearly to seasonal variations in ground-water withdrawals. Water levels decline from about April through July and rise from about September through January. Water levels seem to be declining in most piezometers at a rate less than 1 foot per year. Water-quality data for unfiltered samples collected over a 10-year period from 93 City of Albuquerque drinking-water supply wells were examined for variability and temporal trends in 10 selected parameters. Variability generally was found to be greatest in the Western and Northeast water-quality regions of the study area. For the 10 parameters investigated, temporal trends were found in 5 to 57 wells. Dissolved-solids, sodium, sulfate, chloride, and silica concentrations showed more increasing than decreasing trends; calcium, bicarbonate, and arsenic concentrations, field pH, and water temperature showed more decreasing than increasing trends. The median magnitudes of most of these trends over a 1-year period were not particularly large (generally less than 1.0 milligram per liter), although the magnitudes for a few individual wells were significant. For the 10 parameters investigated, correlations with monthly pumpage volumes were found in 10 to 32 wells. Calcium and sulfate concentrations, field pH, and water temperature showed more positive than negative correlations with monthly pumpage; dissolved-solids, sodium, bicarbonate, chloride, silica, and arsenic concentrations showed more negative than positive correlations. An increase in pumpage in an individual well appears to increase the contribution
Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.
2014-01-01
Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate + sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen–Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate + sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.
Stets, E G; Kelly, V J; Crawford, C G
2014-08-01
Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state. Published by Elsevier B.V.
Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
Hieronymus, Tobin L
2015-02-27
Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of wing shape in basal ornithurine birds will require multiple lines of evidence, together with an understanding of clade-specific evolutionary trends within the crown.
School Desegregation Trends in Gauteng Province
ERIC Educational Resources Information Center
Amsterdam, C. E. N.; Nkomo, M.; Weber, E.
2012-01-01
This study utilized 2003 to 2006 school enrollment data from the Gauteng Department of Education (GDE) to examine school desegregation trends and interracial exposure among learners from different race groups. Descriptive analyses revealed findings consistent with the literature wherein a majority of schools served mainly homogeneous populations.…
ERIC Educational Resources Information Center
Council on Environmental Quality, Washington, DC.
This document consists of data which highlight trends in all sectors relevant to environmental policy. These data are presented in the form of charts and maps contained in 13 sections under the following headings: people and the land; critical areas (wetlands, wild areas, parks, historic places, and risk zones); human settlements; transportation;…
Eigenspace-based fuzzy c-means for sensing trending topics in Twitter
NASA Astrophysics Data System (ADS)
Muliawati, T.; Murfi, H.
2017-07-01
As the information and communication technology are developed, the fulfillment of information can be obtained through social media, like Twitter. The enormous number of internet users has triggered fast and large data flow, thus making the manual analysis is difficult or even impossible. An automated methods for data analysis is needed, one of which is the topic detection and tracking. An alternative method other than latent Dirichlet allocation (LDA) is a soft clustering approach using Fuzzy C-Means (FCM). FCM meets the assumption that a document may consist of several topics. However, FCM works well in low-dimensional data but fails in high-dimensional data. Therefore, we propose an approach where FCM works on low-dimensional data by reducing the data using singular value decomposition (SVD). Our simulations show that this approach gives better accuracies in term of topic recall than LDA for sensing trending topic in Twitter about an event.
A Bibliometric Analysis on Cancer Population Science with Topic Modeling.
Li, Ding-Cheng; Rastegar-Mojarad, Majid; Okamoto, Janet; Liu, Hongfang; Leichow, Scott
2015-01-01
Bibliometric analysis is a research method used in library and information science to evaluate research performance. It applies quantitative and statistical analyses to describe patterns observed in a set of publications and can help identify previous, current, and future research trends or focus. To better guide our institutional strategic plan in cancer population science, we conducted bibliometric analysis on publications of investigators currently funded by either Division of Cancer Preventions (DCP) or Division of Cancer Control and Population Science (DCCPS) at National Cancer Institute. We applied two topic modeling techniques: author topic modeling (AT) and dynamic topic modeling (DTM). Our initial results show that AT can address reasonably the issues related to investigators' research interests, research topic distributions and popularities. In compensation, DTM can address the evolving trend of each topic by displaying the proportion changes of key words, which is consistent with the changes of MeSH headings.
NASA Astrophysics Data System (ADS)
Arellano, L.; Fernández, P.; Fonts, R.; Rose, N. L.; Nickus, U.; Thies, H.; Stuchlík, E.; Camarero, L.; Catalan, J.; Grimalt, J. O.
2015-02-01
Bulk atmospheric deposition samples were collected between 2004 and 2007 at four high altitude European sites encompassing east (Skalnaté pleso), west (Lochnagar), central (Gossenköllesee) and south (Redòn) regions, and analysed for legacy and current-use organochlorine compounds (OCs). Polychlorobiphenyls (PCBs) generally showed the highest deposition fluxes in the four sites, between 112 and 488 ng m-2 mo-1, and hexachlorobenzene (HCB) the lowest, a few ng m-2 mo-1. Among pesticides, endosulfans were found at higher deposition fluxes (11-177 ng m-2 mo-1) than hexachlorocyclohexanes (HCHs) (17-66 ng m-2 mo-1) in all sites except Lochnagar that was characterized by very low fluxes of this insecticide. Comparison of the present measurements with previous determinations in Redòn (1997-1998 and 2001-2002) and Gossenköllesee (1996-1998) provided for the first time an assessment of the long-term temporal trends in OC atmospheric deposition in the European background areas. PCBs showed increasing deposition trends while HCB deposition fluxes remained nearly constant. Reemission of PCBs from soils or as consequence of glacier melting and subsequent precipitation and trapping of the volatilized compounds may explain the observed PCB trends. This process does not occur for HCB due to its high volatility which keeps most of this pollutant in the gas phase. A significant decline of pesticide deposition was observed during this studied decade (1996-2006) which is consistent with the restriction in the use of these compounds in most of the European countries. In any case, degassing of HCHs or endosulfans from ice melting to the atmosphere should be limited because of the low Henry's law constants of these compounds that will retain them dissolved in the melted water. Investigation of the relationship between air mass trajectories arriving at each site and OC deposition fluxes showed no correlation for PCBs, which is consistent with diffuse pollution from unspecific sources as the predominant origin of these compounds in these remote sites. In contrast, significant correlations between current-use pesticides and air masses flowing from the south were observed in Gossenköllesee, Lochnagar and Redòn. In the case of Redòn, the higher proportion of air masses from the south occurred in parallel to higher temperatures, which did not allow to discriminating between these two determinant factors of pesticide deposition. However, in Gossenköllesee and Lochnagar, the relationship between pesticide concentration and southern air masses was univocal reflecting the impact of regions with intensive agricultural activities.
First-principles study of crystal and electronic structure of rare-earth cobaltites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topsakal, M.; Leighton, C.; Wentzcovitch, R. M.
Using density functional theory plus self-consistent Hubbard U (DFT + U{sub sc}) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO{sub 3} (R = Pr – Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO{sub 3} with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (d{sub Co–O}), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (Δ{sub CF}) and band gap energy (E{sub g}). Agreement with experiment for the latter improves considerably with the use of DFT + U{sub sc}more » and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO{sub 3} where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.« less
Trends in pesticide concentrations in corn-belt streams, 1996-2006
Sullivan, Daniel J.; Vecchia, Aldo V.; Lorenz, David L.; Gilliom, Robert J.; Martin, Jeffrey D.
2009-01-01
Trends in the concentrations of commonly occurring pesticides in the Corn Belt of the United States were assessed, and the performance and application of several statistical methods for trend analysis were evaluated. Trends in the concentrations of 11 pesticides with sufficient data for trend assessment were assessed at up to 31 stream sites for two time periods: 1996–2002 and 2000–2006. Pesticides included in the trend analyses were atrazine, acetochlor, metolachlor, alachlor, cyanazine, EPTC, simazine, metribuzin, prometon, chlorpyrifos, and diazinon.The statistical methods applied and compared were (1) a modified version of the nonparametric seasonal Kendall test (SEAKEN), (2) a modified version of the Regional Kendall test, (3) a parametric regression model with seasonal wave (SEAWAVE), and (4) a version of SEAWAVE with adjustment for streamflow (SEAWAVE-Q). The SEAKEN test is a statistical hypothesis test for detecting monotonic trends in seasonal time-series data such as pesticide concentrations at a particular site. Trends across a region, represented by multiple sites, were evaluated using the regional seasonal Kendall test, which computes a test for an overall trend within a region by computing a score for each season at each site and adding the scores to compute the total for the region. The SEAWAVE model is a parametric regression model specifically designed for analyzing seasonal variability and trends in pesticide concentrations. The SEAWAVE-Q model accounts for the effect of changing flow conditions in order to separate changes caused by hydrologic trends from changes caused by other factors, such as pesticide use.There was broad, general agreement between unadjusted trends (no adjustment for streamflow effects) identified by the SEAKEN and SEAWAVE methods, including the regional seasonal Kendall test. Only about 10 percent of the paired comparisons between SEAKEN and SEAWAVE indicated a difference in the direction of trend, and none of these had differences significant at the 10-percent significance level. This consistency of results supports the validity and robustness of all three approaches as trend analysis tools. The SEAWAVE method is favored, however, because it has less restrictive data requirements, enabling analysis for more site/pesticide combinations, and can incorporate adjustment for streamflow (SEAWAVE-Q) with substantially fewer measurements than the flow-adjustment procedure used with SEAKEN.Analysis of flow-adjusted trends is preferable to analysis of non-adjusted trends for evaluating potential effects of changes in pesticide use or management practices because flow-adjusted trends account for the influence of flow-related variability.Analysis of flow-adjusted trends by SEAWAVE-Q showed that all of the pesticides assessed, except simazine and acetochlor, were dominated by varying degrees of concentration downtrends in one or both analysis periods. Atrazine, metolachlor, alachlor, cyanazine, EPTC, and metribuzin—all major corn herbicides, as well as prometon and chlorpyrifos, showed more prevalent concentration downtrends during 1996–2002 compared to 2000–2006. Diazinon had no clear trends during 1996–2002, but had predominantly downward trends during 2000–2006. Acetochlor trends were mixed during 1996–2002 and slightly upward during 2000–2006, but most of the trends were not statistically significant. Simazine concentrations trended upward at most sites during both 1996–2002 and 2000–2006.Comparison of concentration trends to agricultural-use trends indicated similarity in direction and magnitude for acetochlor, metolachlor, alachlor, cyanazine, EPTC, and metribuzin. Concentration downtrends for atrazine, chlorpyrifos, and diazinon were steeper than agricultural-use downtrends at some sites, indicating the possibility that agricultural management practices may have increasingly reduced transport to streams (particularly atrazine) or, for chlorpyrifos and diazinon, that nonagricultural uses declined substantially. Concentration uptrends for simazine generally were steeper than agricultural-use uptrends, indicating the possibility that nonagricultural uses of this herbicide increased during the study period.
Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran
NASA Astrophysics Data System (ADS)
Ahani, Hossien; Kherad, Mehrzad; Kousari, Mohammad Reza; van Roosmalen, Lieke; Aryanfar, Ramin; Hosseini, Seyyed Mashaallah
2013-05-01
Currently, an important scientific challenge that researchers are facing is to gain a better understanding of climate change at the regional scale, which can be especially challenging in an area with low and highly variable precipitation amounts such as Iran. Trend analysis of the medium-term change using ground station observations of meteorological variables can enhance our knowledge of the dominant processes in an area and contribute to the analysis of future climate projections. Generally, studies focus on the long-term variability of temperature and precipitation and to a lesser extent on other important parameters such as moisture indices. In this study the recent 50-year trends (1955-2005) of precipitation (P), potential evapotranspiration (PET), and aridity index (AI) in monthly time scale were studied over 14 synoptic stations in three large Iran basins using the Mann-Kendall non-parametric test. Additionally, an analysis of the monthly, seasonal and annual trend of each parameter was performed. Results showed no significant trends in the monthly time series. However, PET showed significant, mostly decreasing trends, for the seasonal values, which resulted in a significant negative trend in annual PET at five stations. Significant negative trends in seasonal P values were only found at a number of stations in spring and summer and no station showed significant negative trends in annual P. Due to the varied positive and negative trends in annual P and to a lesser extent PET, almost as many stations with negative as positive trends in annual AI were found, indicating that both drying and wetting trends occurred in Iran. Overall, the northern part of the study area showed an increasing trend in annual AI which meant that the region became wetter, while the south showed decreasing trends in AI.
Rosen, Michael R.
2003-01-01
Analysis of trends in nitrate and total dissolved-solids concentrations over time in Carson Valley, Nevada, indicates that 56 percent of 27 monitoring wells that have long-term records of nitrate concentrations show increasing trends, 11 percent show decreasing trends, and 33 percent have not changed. Total dissolved-solids concentrations have increased in 52 percent of these wells and are stable in 48 percent. None of these wells show decreasing trends in total dissolved-solids concentrations. The wells showing increasing trends in nitrate and total dissolved-solids concentrations were always in areas that use septic waste-disposal systems. Therefore, the primary cause of these increases is likely the increase in septic-tank usage over the past 40 years.
NASA Astrophysics Data System (ADS)
Mbow, C.; Brandt, M.; Fensholt, R.; Ouedraogo, I.; Tagesson, T.
2015-12-01
Thematic gaps in land degradation trends in the SahelTrend in land degradation has been the most contended issue for arid and semi-arid regions. In the Sahel, depending to scale of analysis and methods and data used, the trend documented have not been consistent across authors and science disciplines. The assessment of land degradation and the quantification of its effects on land productivity have been assessed for many decades, but little agreement has been gained on the magnitude and direction in the Sahel. This lack of consistency amid science outputs can be related to many methodological underpinnings and data used for various scales of analysis. Assessing biophysical trends on the ground requires long-term ground-based data collection to evaluate and better understand the mechanisms behind land dynamics. The Sahel is seen as greening by many authors? Is that greening geographically consistent? These questions enquire the importance of scale analysis and related drivers. The questions addressed are not only factors explaining loss of tree cover but also regeneration of degraded land. The picture used is the heuristic cycle model to assess loss and damages vs gain and improvements of various land use practices. The presentation will address the following aspects - How much we know from satellite data after 40 years of remote sensing analysis over the Sahel? That section discuss agreement and divergences of evidences and differentiated interpretation of land degradation in the Sahel. - The biophysical factors that are relevant for tracking land degradation in the Sahel. Aspects such detangling human to climate factors and biophysical factors behind land dynamics will be presented - Introduce some specific cases of driver of land architecture transition under the combined influence of climate and human factor. - Based on the above we will conclude with some key recommendations on how to improve land degradation assessment in the Arid region of the Sahel.
Evaluation of trends in wheat yield models
NASA Technical Reports Server (NTRS)
Ferguson, M. C.
1982-01-01
Trend terms in models for wheat yield in the U.S. Great Plains for the years 1932 to 1976 are evaluated. The subset of meteorological variables yielding the largest adjusted R(2) is selected using the method of leaps and bounds. Latent root regression is used to eliminate multicollinearities, and generalized ridge regression is used to introduce bias to provide stability in the data matrix. The regression model used provides for two trends in each of two models: a dependent model in which the trend line is piece-wise continuous, and an independent model in which the trend line is discontinuous at the year of the slope change. It was found that the trend lines best describing the wheat yields consisted of combinations of increasing, decreasing, and constant trend: four combinations for the dependent model and seven for the independent model.
Chiaraluce, L.; Ellsworth, W.L.; Chiarabba, C.; Cocco, M.
2003-01-01
Six moderate magnitude earthquakes (5 < Mw < 6) ruptured normal fault segments of the southern sector of the North Apennine belt (central Italy) in the 1997 Colfiorito earthquake sequence. We study the progressive activation of adjacent and nearby parallel faults of this complex normal fault system using ???1650 earthquake locations obtained by applying a double-difference location method, using travel time picks and waveform cross-correlation measurements. The lateral extent of the fault segments range from 5 to 10 km and make up a broad, ???45 km long, NW trending fault system. The geometry of each segment is quite simple and consists of planar faults gently dipping toward SW with an average dip of 40??-45??. The fault planes are not listric but maintain a constant dip through the entire seismogenic volume, down to 8 km depth. We observe the activation of faults on the hanging wall and the absence of seismicity in the footwall of the structure. The observed fault segmentation appears to be due to the lateral heterogeneity of the upper crust: preexisting thrusts inherited from Neogene's compressional tectonic intersect the active normal faults and control their maximum length. The stress tensor obtained by inverting the six main shock focal mechanisms of the sequence is in agreement with the tectonic stress active in the inner chain of the Apennine, revealing a clear NE trending extension direction. Aftershock focal mechanisms show a consistent extensional kinematics, 70% of which are mechanically consistent with the main shock stress field.
Nakazato, Yuichi; Kurane, Riichi; Hirose, Satoru; Watanabe, Akihisa; Shimoyama, Hiromi
2017-01-01
Several epidemiological studies have demonstrated associations between variability in a number of biological parameters and adverse outcomes. As the variability may reflect impaired homeostatic regulation, we assessed albumin variability over time in chronic hemodialysis (HD) patients. Data from 1346 subjects who received chronic HD treatment from May 2001 to February 2015 were analyzed according to three phases of HD treatment: post-HD initiation, during maintenance HD treatment, and before death. The serum albumin values were grouped according to the time interval from HD initiation or death, and the yearly trends for both the albumin levels and the intra-individual albumin variability (quantified by the residual coefficient of variation: Alb-rCV) were examined. The HD initiation and death-associated changes were also analyzed using generalized additive mixed models. Furthermore, the long-term trend throughout the maintenance treatment period was evaluated separately using linear regression models. Albumin levels and variability showed distinctive changes during each of the 3 periods. After HD initiation, albumin variability decreased and reached a nadir within a year. During the subsequent maintenance treatment period (interquartile range = 5.2-11.0 years), the log Alb-rCV showed a significant upward trend (mean slope: 0.011 ± 0.035 /year), and its overall mean was -1.49 ± 0.08 (equivalent to an Alb-rCV of 3.22%). During the 1-2 years before death, this upward trend clearly accelerated, and the mean log Alb-rCV in the last year of life was -1.36 ± 0.17. The albumin levels and variability were negatively correlated with each other and exhibited exactly opposite movements throughout the course of chronic HD treatment. Different from the albumin levels, albumin variability was not dependent on chronological age but was independently associated with an individual's aging and death process. The observed upward trend in albumin variability seems to be consistent with a presumed aging-related decline in homeostatic capacity.
Dunn, Michael J; Jackson, Jennifer A; Adlard, Stacey; Lynnes, Amanda S; Briggs, Dirk R; Fox, Derren; Waluda, Claire M
2016-01-01
We report long-term changes in population size of three species of sympatrically breeding pygoscelid penguins: Adélie (Pygoscelis adeliae), chinstrap (Pygoscelis antarctica) and gentoo (Pygoscelis papua ellsworthii) over a 38 year period at Signy Island, South Orkney Islands, based on annual counts from selected colonies and decadal all-island systematic counts of occupied nests. Comparing total numbers of breeding pairs over the whole island from 1978/79 to 2015/16 revealed varying fortunes: gentoo penguin pairs increased by 255%, (3.5% per annum), chinstrap penguins declined by 68% (-3.6% per annum) and Adélie penguins declined by 42% (-1.5% per annum). The chinstrap population has declined steadily over the last four decades. In contrast, Adélie and gentoo penguins have experienced phases of population increase and decline. Annual surveys of selected chinstrap and Adélie colonies produced similar trends from those revealed by island-wide surveys, allowing total island population trends to be inferred relatively well. However, while the annual colony counts of chinstrap and Adélie penguins showed a trend consistent in direction with the results from all-island surveys, the magnitude of estimated population change was markedly different between colony wide and all island counts. Annual population patterns suggest that pair numbers in the study areas partly reflect immigration and emigration of nesting birds between different parts of the island. Breeding success for all three species remained broadly stable over time in the annually monitored colonies. Breeding success rates in gentoo and chinstrap penguins were strongly correlated, despite the differing trends in population size. This study shows the importance of effective, standardised monitoring to accurately determine long-term population trajectories. Our results indicate significant declines in the Adélie and chinstrap penguin populations at Signy Island over the last five decades, and a gradual increase in gentoo breeding pairs.
Google Trends as a Resource for Informing Plastic Surgery Marketing Decisions.
Ward, Brittany; Ward, Max; Paskhover, Boris
2018-04-01
Celebrities have long influenced the medical decisions of the general population. By analyzing Google search data using Google Trends, we measured the impact of highly publicized plastic surgery-related events on the interest level of the general population in specific search terms. Additionally, we investigated seasonal and geographic trends around interest in rhinoplasties, which is information that physicians and small surgical centers can use to optimize marketing decisions. Google Trends was used to access search data histories for three separate areas of interest: Kylie Jenner and lip fillers, Joan Rivers and plastic surgery, and rhinoplasty, which were then analyzed using two-tailed, two-sample equal variance t-tests. The average interest level in fillers increased by 30.31 points after Kylie Jenner announced that she received Juvéderm lip injections. The interest level in plastic surgery was decreased by 21.3% the month after Joan Rivers' death. Between January 2004 and May 2017, the average interest level for rhinoplasty was significantly different in January/December (67.91 ± 20.68) and June/July (70.12 ± 18.89) from the remaining calendar months (63.58 ± 19.67). Los Angeles, New York City, and Miami showed consistently high interest levels throughout the time period, while Tulsa, OK, showed a major interest increase between 2015 to 2016 of 65 points. A noticeable impact was observed in both celebrity cases on search term volume, and a seasonal effect is apparent for rhinoplasty searches. As many surgeons already employ aggressive Internet marketing strategies, understanding and utilizing these trends could help optimize their investments, increase social engagement, and increase practice awareness by potential patients. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Dunn, Michael J.; Jackson, Jennifer A.; Adlard, Stacey; Lynnes, Amanda S.; Briggs, Dirk R.; Fox, Derren; Waluda, Claire M.
2016-01-01
We report long-term changes in population size of three species of sympatrically breeding pygoscelid penguins: Adélie (Pygoscelis adeliae), chinstrap (Pygoscelis antarctica) and gentoo (Pygoscelis papua ellsworthii) over a 38 year period at Signy Island, South Orkney Islands, based on annual counts from selected colonies and decadal all-island systematic counts of occupied nests. Comparing total numbers of breeding pairs over the whole island from 1978/79 to 2015/16 revealed varying fortunes: gentoo penguin pairs increased by 255%, (3.5% per annum), chinstrap penguins declined by 68% (-3.6% per annum) and Adélie penguins declined by 42% (-1.5% per annum). The chinstrap population has declined steadily over the last four decades. In contrast, Adélie and gentoo penguins have experienced phases of population increase and decline. Annual surveys of selected chinstrap and Adélie colonies produced similar trends from those revealed by island-wide surveys, allowing total island population trends to be inferred relatively well. However, while the annual colony counts of chinstrap and Adélie penguins showed a trend consistent in direction with the results from all-island surveys, the magnitude of estimated population change was markedly different between colony wide and all island counts. Annual population patterns suggest that pair numbers in the study areas partly reflect immigration and emigration of nesting birds between different parts of the island. Breeding success for all three species remained broadly stable over time in the annually monitored colonies. Breeding success rates in gentoo and chinstrap penguins were strongly correlated, despite the differing trends in population size. This study shows the importance of effective, standardised monitoring to accurately determine long-term population trajectories. Our results indicate significant declines in the Adélie and chinstrap penguin populations at Signy Island over the last five decades, and a gradual increase in gentoo breeding pairs. PMID:27783668
Derakhshan, Mohammad H; Arnold, Melina; Brewster, David H; Going, James J; Mitchell, David R; Forman, David; McColl, Kenneth E L
2016-02-01
The incidence of esophageal adenocarcinoma (EAC) is increasing while adenocarcinoma of the stomach is decreasing. We have investigated whether the incidences of these two cancers and their time trends might be inversely related pointing to a common environmental factor exerting opposite effects on these cancers. For cross-sectional analyses data were abstracted from "Cancer Incidence in Five Continents" (CI5) Volume X and GLOBOCAN 2012. Relevant ICD-10 codes were used to locate esophageal and gastric cancers anatomically, and ICD-O codes for the histological diagnosis of EAC. For longitudinal analyses, age standardized rates (ASRs) of EAC and total gastric cancer (TGC) were extracted from CI5C-Plus. Estimated (2012) ASRs were available for 51 countries and these showed significant negative correlations between EAC and both TGC (males: correlation coefficient (CC)=-0.38, P=0.006, females: CC=-0.41, P=0.003) and non-cardia gastric cancer rates (males: CC=-0.41, P=0.003 and females: CC=-0.43, P=0.005). Annual incidence trends were analyzed for 38 populations through 1989-2007 and showed significant decreases for TGC in 89% and increases for EAC in 66% of these, with no population showing a fall in the latter. Significant negative correlation between the incidence trends of the two cancers was observed in 27 of the 38 populations over the 19-50 years of available paired data. Super-imposition of the longitudinal and cross-sectional data indicated that populations with a current high incidence of EAC and low incidence of gastric cancer had previously resembled countries with a high incidence of gastric cancer and low incidence of EAC. The negative association between gastric cancer and EAC in both current incidences and time trends is consistent with a common environmental factor predisposing to one and protecting from the other.
Dependence of SOL widths on plasma current and density in NSTX H-mode plasmas
NASA Astrophysics Data System (ADS)
Ahn, J.-W.; Maingi, R.; Boedo, J. A.; Soukhanovskii, V.; NSTX Team
2009-06-01
The dependence of various SOL widths on the line-averaged density ( n) and plasma current ( Ip) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ( λq), measured by the IR camera, is virtually insensitive to n and has a strong negative dependence on Ip. This insensitivity of λq to n¯e is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ( λTe, λjsat, λne, and λpe, respectively) measured by the probe showed that λTe and λjsat have strong negative dependence on Ip, whereas λne and λpe revealed only a little or no dependence. The dependence of λTe on Ip is consistent with the scaling law in the literature, while λne and λpe dependence shows a different trend.
Ajemian, Matthew J.; Jose, Philip D.; Froeschke, John T.; Wildhaber, Mark L.; Stunz, Gregory W.
2016-01-01
Although current assessments of shark population trends involve both fishery-independent and fishery-dependent data, the latter are generally limited to commercial landings that may neglect nearshore coastal habitats. Texas has supported the longest organized land-based recreational shark fishery in the United States, yet no studies have used this “non-traditional” data source to characterize the catch composition or trends in this multidecadal fishery. We analyzed catch records from two distinct periods straddling heavy commercial exploitation of sharks in the Gulf of Mexico (historical period = 1973–1986; modern period = 2008–2015) to highlight and make available the current status and historical trends in Texas’ land-based shark fishery. Catch records describing large coastal species (>1,800 mm stretched total length [STL]) were examined using multivariate techniques to assess catch seasonality and potential temporal shifts in species composition. These fishery-dependent data revealed consistent seasonality that was independent of the data set examined, although distinct shark assemblages were evident between the two periods. Similarity percentage analysis suggested decreased contributions of Lemon Shark Negaprion brevirostris over time and a general shift toward the dominance of Bull Shark Carcharhinus leucas and Blacktip Shark C. limbatus. Comparisons of mean STL for species captured in historical and modern periods further identified significant decreases for both Bull Sharks and Lemon Sharks. Size structure analysis showed a distinct paucity of landed individuals over 2,000 mm STL in recent years. Although inherent biases in reporting and potential gear-related inconsistencies undoubtedly influenced this fishery-dependent data set, the patterns in our findings documented potential declines in the size and occurrence of select large coastal shark species off Texas, consistent with declines reported in the Gulf of Mexico. Future management efforts should consider the use of non-traditional fishery-dependent data sources, such as land-based records, as data streams in stock assessments.
Burns, Douglas A.
2003-01-01
The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7kgha-1yr-1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000m) sites east of the Continental Divide in the Front Range. Much of this increase is the result of increased ammonium (NH4+) concentrations in wet deposition. This suggests an increase in contributions from agricultural areas or from vehicles east of the Rocky Mountains and is consistent with the results of previous studies that have suggested a significant eastern source for atmospheric N deposition to the Front Range. The four sites with the highest NH4+ concentrations in wet deposition were among the six easternmost NADP sites, which is also consistent with a source to the east of the Rockies. This analysis found an increase in N loads in wet deposition at Niwot Ridge of only 0.013kgha-1yr-1, more than an order of magnitude less than previously reported for this site. This lower rate of increase results from application of the non-parametric Seasonal Kendall trend test to mean monthly data, which failed a test for normality, in contrast to linear regression, which was applied to mean annual data in a previous study. Current upward trends in population growth and energy use in Colorado and throughout the west suggest a need for continued monitoring of atmospheric deposition of N, and may reveal more widespread trends in N deposition in the future.
NASA Astrophysics Data System (ADS)
Dätwyler, Christoph; Neukom, Raphael; Abram, Nerilie J.; Gallant, Ailie J. E.; Grosjean, Martin; Jacques-Coper, Martín; Karoly, David J.; Villalba, Ricardo
2017-11-01
The Southern Annular Mode (SAM) is the leading mode of atmospheric interannual variability in the Southern Hemisphere (SH) extra-tropics. Here, we assess the stationarity of SAM spatial correlations with instrumental and paleoclimate proxy data for the past millennium. The instrumental period shows that temporal non-stationarities in SAM teleconnections are not consistent across the SH land areas. This suggests that the influence of the SAM index is modulated by regional effects. However, within key-regions with good proxy data coverage (South America, Tasmania, New Zealand), teleconnections are mostly stationary over the instrumental period. Using different stationarity criteria for proxy record selection, we provide new austral summer and annual mean SAM index reconstructions over the last millennium. Our summer SAM reconstructions are very robust to changes in proxy record selection and the selection of the calibration period, particularly on the multi-decadal timescale. In contrast, the weaker performance and lower agreement in the annual mean SAM reconstructions point towards changing teleconnection patterns that may be particularly important outside the summer months. Our results clearly portend that the temporal stationarity of the proxy-climate relationships should be taken into account in the design of comprehensive regional and hemispherical climate reconstructions. The summer SAM reconstructions show no significant relationship to solar, greenhouse gas and volcanic forcing, with the exception of an extremely strong negative anomaly following the AD 1257 Samalas eruption. Furthermore, reconstructed pre-industrial summer SAM trends are very similar to trends obtained by model control simulations. We find that recent trends in the summer SAM lie outside the 5-95% range of pre-industrial natural variability.
Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I and SMMR Data
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Nishio, Fumihiko
2007-01-01
Arguably, the most remarkable manifestation of change in the polar regions is the rapid decline (of about -10 %/decade) in the Arctic perennial ice cover. Changes in the global sea ice cover, however, are more modest, being slightly positive in the Southern Hemisphere and slightly negative in the Northern Hemisphere, the significance of which has not been adequately assessed because of unknown errors in the satellite historical data. We take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea ice cover, assess the accuracy of historical data, and determine the real trend. Consistently derived ice concentrations from AMSR-E, SSM/I, and SMMR data were analyzed and a slight bias is observed between AMSR-E and SSM/I data mainly because of differences in resolution. Analysis of the combine SMMR, SSM/I and AMSR-E data set, with the bias corrected, shows that the trends in extent and area of sea ice in the Arctic region is -3.4 +/- 0.2 and -4.0 +/- 0.2 % per decade, respectively, while the corresponding values for the Antarctic region is 0.9 +/- 0.2 and 1.7 .+/- 0.3 % per decade. The higher resolution of the AMSR-E provides an improved determination of the location of the ice edge while the SSM/I data show an ice edge about 6 to 12 km further away from the ice pack. Although the current record of AMSR-E is less than 5 years, the data can be utilized in combination with historical data for more accurate determination of the variability and trends in the ice cover.
Changes in the atmospheric evaporative demand in Mexico
NASA Astrophysics Data System (ADS)
Agustin Brena-Naranjo, Jose; Pedrozo-Acuña, Adrian; Laverde-Barajas, Miguel
2015-04-01
An important driver of the hydrological cycle is the atmospheric evaporative demand (AED). Previous studies using measurements of evaporation in pans have found evidence that AED has been declining over the second half of the 20th century. Such trends have been mostly attributed to a global decline in near surface wind speed (mainly driven by changes in land cover such as the terrestrial surface roughness) whereas other variables controlling AED such as the vapor pressure deficit, solar radiation and air temperature having a more limited role (such changes are driven by long-term climatic variations). The objective of this work is to assess the temporal and spatial observed changes in pan evaporation in 151 meteorological stations located across Mexico for the period 1961-2010. The stations were located on a climatic gradient, with aridity indexes ranging between 0.3 and 10. The radiative and aerodynamic controls attributed to the observed trends are analyzed with outputs by the Noah model from the Global Land Data Assimilation System (GLDAS). The results show a consistent decline in annual pan evaporation between 1961 and 1992 whereas the trend was reverted from 1992 until 2010. Statistically significant negative changes using the non-parametric Mann-Kendall test were found in 43% of the stations for the 1961-1992 and 20% for 1992-2010, respectively. Among the climatological variables extracted from GLDAS, it was the annual wind speed that gave the highest statistical correlation. This work agrees with previous studies in other regions of the world suggesting that pan evaporation has been on average declining until 1990 followed by a slightly positive trend during the last twenty years. Finally, we show that the magnitude of change in those regions dominated by wind and those dominated by radiative processes are strongly different.
Revadekar, J V; Varikoden, Hamza; Murumkar, P K; Ahmed, S A
2018-02-01
The Western Ghats (WG) of India are basically north-south oriented mountains having narrow zonal width with a steep rising western face. The summer monsoon winds during June to September passing over the Arabian Sea are obstructed by the WG and thus orographically uplift to produce moderate-to-heavy precipitation over the region. However, it is seen that characteristic features of rainfall distribution during the season vary from north to south. Also its correlation with all-India summer monsoon rainfall increases from south to north. In the present study, an attempt is also made to examine long-term as well as short-term trends and variability in summer monsoon rainfall over different subdivisions of WG using monthly rainfall data for the period 1871-2014. Konkan & Goa and Coastal Karnataka show increase in rainfall from 1871 to 2014 in all individual summer monsoon months. Short-term trend analysis based on 31-year sliding window indicates that the trends are not monotonous, but has epochal behavior. In recent epoch, magnitudes of negative trends are consistently decreasing and have changed its sign to positive during 1985-2014. It has been observed that Indian Ocean Dipole (IOD) plays a dominant positive role in rainfall over entire WG in all summer monsoon months, whereas role of Nino regions are asymmetric over WG rainfall. Indian summer monsoon is known for its negative relationship with Nino SST. Negative correlations are also seen for WG rainfall with Nino regions but only during onset and withdrawal phase. During peak monsoon months July and August subdivisions of WG mostly show positive correlation with Nino SST. Copyright © 2017 Elsevier B.V. All rights reserved.
Telenursing: Bioinformation Cornerstone in Healthcare for the 21st Century
Balenton, Nicole; Chiappelli, Francesco
2017-01-01
Bioinformation is at the very core of 21st-century healthcare. Telehealth consists of the range of healthcare-related services delivered through bioinformation-aided telecommunications across health-related disciplines, including nursing. Whereas it is clear that bedside patient-centered nursing can never be replaced, recent developments in bioinformation-aided telenursing will undoubtedly contribute to improving healthcare effectiveness and efficacy. Current trends show that as telenursing becomes increasingly timely and critical, healthcare professionals adopt new and improved evidence-based practices as a standard for patient care worldwide. PMID:29379260
MAGSAT anomaly map and continental drift
NASA Technical Reports Server (NTRS)
Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.
1981-01-01
Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.
NASA Astrophysics Data System (ADS)
Silva, Thiago Christiano; Tabak, Benjamin Miranda; Cajueiro, Daniel Oliveira; Dias, Marina Villas Boas
2017-03-01
This study investigates to which extent results produced by a single frontier model are reliable, based on the application of data envelopment analysis and stochastic frontier approach to a sample of Chinese local banks. Our findings show they produce a consistent trend on global efficiency scores over the years. However, rank correlations indicate they diverge with respect to individual performance diagnoses. Therefore, these models provide steady information on the efficiency of the banking system as a whole, but they become divergent at the individual level.
NASA Astrophysics Data System (ADS)
Staniec, Allison; Vlahos, Penny
2017-12-01
Long-term time series represent a critical part of the oceanographic community's efforts to discern natural and anthropogenically forced variations in the environment. They provide regular measurements of climate relevant indicators including temperature, oxygen concentrations, and salinity. When evaluating time series, it is essential to isolate long-term trends from autocorrelation in data and noise due to natural variability. Herein we apply a statistical approach, well-established in atmospheric time series, to key parameters in the U.S. east coast's Long Island Sound estuary (LIS). Analysis shows that the LIS time series (established in the early 1990s) is sufficiently long to detect significant trends in physical-chemical parameters including temperature (T) and dissolved oxygen (DO). Over the last two decades, overall (combined surface and deep) LIS T has increased at an average rate of 0.08 ± 0.03 °C yr-1 while overall DO has dropped at an average rate of 0.03 ± 0.01 mg L-1yr-1 since 1994 at the 95% confidence level. This trend is notably faster than the global open ocean T trend (0.01 °C yr-1), as might be expected for a shallower estuarine system. T and DO trends were always significant for the existing time series using four month data increments. Rates of change of DO and T in LIS are strongly correlated and the rate of decrease of DO concentrations is consistent with the expected reduced solubility of DO at these higher temperatures. Thus, changes in T alone, across decadal timescales can account for between 33 and 100% of the observed decrease in DO. This has significant implications for other dissolved gases and the long-term management of LIS hypoxia.
Low validity of Google Trends for behavioral forecasting of national suicide rates
Niederkrotenthaler, Thomas; Till, Benedikt; Ajdacic-Gross, Vladeta; Voracek, Martin
2017-01-01
Recent research suggests that search volumes of the most popular search engine worldwide, Google, provided via Google Trends, could be associated with national suicide rates in the USA, UK, and some Asian countries. However, search volumes have mostly been studied in an ad hoc fashion, without controls for spurious associations. This study evaluated the validity and utility of Google Trends search volumes for behavioral forecasting of suicide rates in the USA, Germany, Austria, and Switzerland. Suicide-related search terms were systematically collected and respective Google Trends search volumes evaluated for availability. Time spans covered 2004 to 2010 (USA, Switzerland) and 2004 to 2012 (Germany, Austria). Temporal associations of search volumes and suicide rates were investigated with time-series analyses that rigorously controlled for spurious associations. The number and reliability of analyzable search volume data increased with country size. Search volumes showed various temporal associations with suicide rates. However, associations differed both across and within countries and mostly followed no discernable patterns. The total number of significant associations roughly matched the number of expected Type I errors. These results suggest that the validity of Google Trends search volumes for behavioral forecasting of national suicide rates is low. The utility and validity of search volumes for the forecasting of suicide rates depend on two key assumptions (“the population that conducts searches consists mostly of individuals with suicidal ideation”, “suicide-related search behavior is strongly linked with suicidal behavior”). We discuss strands of evidence that these two assumptions are likely not met. Implications for future research with Google Trends in the context of suicide research are also discussed. PMID:28813490
Geologic evaluation of major Landsat lineaments in Nevada and their relationship to ore districts
Rowan, Lawrence C.; Wetlaufer, Pamela Heald
1979-01-01
Analysis of diverse geologic, geophysical, and geochemical data shows that eight major lineament systems delineated in Landsat images of Nevada are morphological and tonal expressions of substantially broader structural zones. Southern Nevada is dominated by the 175 km-wide northwest-trending Walker Lane, a 150 km-wide zone of east-trending lineament systems consisting of the Pancake Range, Warm Springs, and Timpahute lineament systems, and a 125 km-wide belt of northeast-trending faults termed the Pahranagat lineament system. Northern Nevada is dominated by the northeast-trending 75-200km wide Midas Trench lineament system, which is marked by northeasterly-oriented faults, broad gravity anomalies, and the Battle Mountain heat flow high; this feature appears to extend into central Montana. The Midas Trench system is transected by the Northern Nevada Rift, a relatively narrow zone of north-northwest-trending basaltic dikes that give rise to a series of prominent aeromagnetic highs. The northwest-trending Rye Patch lineament system, situated at the northeast boundary of the Walker Lane, also intersects the Midas Trench system and is characterized by stratigraphic discontinuities and alignment of aeromagnetic anomalies. Field relationships indicate that all the lineament systems except for the Northern Nevada Rift are conjugate shears formed since mid-Miocene time during extension of the Great Basin. Metallization associated with volcanism was widespread along these systems during the 17-6 m.y. period. However, these zones appear to have been established prior to this period, probably as early as Precambr-an time. These lineament systems are interpreted to be old, fundamental, structural zones that have been reactivated episodically as stress conditions !changed in the western United States. Many metal districts are localized within these zones as magma rose along the pre-existing conduits.
NASA Astrophysics Data System (ADS)
Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Fatichi, Simone
2017-04-01
Increasing atmospheric carbon dioxide concentrations stimulate photosynthesis and reduce stomatal conductance, modifying plant water use efficiency. We analyzed eddy covariance flux tower observations from 20 forested ecosystems across the Northern Hemisphere. For these sites, a previous study showed an increase in inherent water use efficiency (IWUE) five times greater than expectations. We used an updated dataset and robust uncertainty quantification to analyze these contemporary trends in IWUE. We found that IWUE increased in the last 15-20 years by roughly 1.4% yr-1, which is less than previously reported, but still 2.8 times greater than theoretical expectations. Numerical simulations by means of an ecosystem model based on temporally static plant functional traits (i.e. model parameters) do not reproduce this increase. We tested the hypothesis that the observed increase in IWUE could be attributed to changes in plant functional traits, potentially triggered by environmental changes. Simulation results accounting for trait plasticity (i.e. by changing model parameters such as specific leaf area and maximum Rubisco capacity) match the observed trends in IWUE, with an increase in both leaf internal CO2 concentration and gross ecosystem production (GEP), and with a negligible trend in evapotranspiration (ET). This supports the hypothesis that changes in plant functional traits of about 1.0% yr-1 can explain the observed IWUE trends and are consistent with observed trends of GEP and ET at larger scales. Our results highlight that at decadal or longer time scales trait plasticity can considerably influence the water, carbon and energy fluxes with implications for both the monitoring of temporal changes in plant traits and their representation in Earth system models.
Robbins, Lisa L.; Lisle, John T.
2018-01-01
Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.
Per capita alcohol consumption in Australia: will the real trend please step forward?
Chikritzhs, Tanya N; Allsop, Steve J; Moodie, A Rob; Hall, Wayne D
2010-11-15
To estimate the national trend in per capita consumption (PCC) of alcohol for Australians aged 15 years and older for the financial years 1990-91 to 2008-09. With the use of data obtained from Australian Bureau of Statistics' catalogues and World Advertising Research Centre reports, three alternative series of annual totals of PCC of alcohol for the past 20 years (1990-91 to 2008-09) were estimated based on different assumptions about the alcohol content of wine. For the "old" series, the alcohol content of wine was assumed to have been stable over time. For the "new" series, the alcohol content of wine was assumed to have increased once in 2004-05 and then to have remained stable to 2008-09. For the "adjusted" series, the alcohol content of wine was assumed to have gradually increased over time, beginning in 1998-99. Linear trend analysis was applied to identify significant trends. National trend in annual PCC of alcohol 1990-91 to 2008-09. The new and adjusted series of annual totals of PCC of alcohol showed increasing trends; the old series was stable. Until recently, official national annual totals of PCC of alcohol were underestimated and led to the mistaken impression that levels of alcohol consumption had been stable since the early 1990s. In fact, Australia's total PCC has been increasing significantly over time because of a gradual increase in the alcohol content and market share of wine and is now at one of its highest points since 1991-92. This new information is consistent with evidence of increasing alcohol-related harm and highlights the need for timely and accurate data on alcohol sales and harms across Australia.
Role of the Tropical Pacific in recent Antarctic Sea-Ice Trends
NASA Astrophysics Data System (ADS)
Codron, F.; Bardet, D.; Allouache, C.; Gastineau, G.; Friedman, A. R.; Douville, H.; Voldoire, A.
2017-12-01
The recent (up to 2016) trends in Antarctic sea-ice cover - a global increase masking a dipole between the Ross and Bellingshausen-Weddel seas - are still not well understood, and not reproduced by CMIP5 coupled climate models. We here explore the potential role of atmospheric circulation changes around the Amundsen Sea, themselves possibly forced by tropical SSTs, an explanation that has been recently advanced. As a first check on this hypothesis, we compare the atmospheric circulation trends simulated by atmospheric GCMs coupled with an ocean or with imposed SSTs (AMIP experiment from CMIP5); the latter being in theory able to reproduce changes caused by natural SST variability. While coupled models simulate in aggregate trends that project on the SAM structure, strongest in summer, the AMIP simulations add in the winter season a pronounced Amundsen Sea Low signature (and a PNA signature in the northern hemisphere) both consistent with a Niña-like trend in the tropical Pacific. We then use a specific coupled GCM setup, in which surface wind anomalies over the tropical Pacific are strongly nudged towards the observed ones, including their interannual variability, but the model is free to evolve elsewhere. The two GCMs used then simulate a deepening trend in the Amundsen-Sea Low in winter, and are able to reproduce a dipole in sea-ice cover. Further analysis shows that the sea-ice dipole is partially forced by surface heat flux anomalies in early winter - the extent varying with the region and GCM used. The turbulent heat fluxes then act to damp the anomalies in late winter, which may however be maintained by ice-albedo feedbacks.
Measuring consistent masses for 25 Milky Way globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmig, Brian; Seth, Anil; Ivans, Inese I.
2015-02-01
We present central velocity dispersions, masses, mass-to-light ratios (M/Ls ), and rotation strengths for 25 Galactic globular clusters (GCs). We derive radial velocities of 1951 stars in 12 GCs from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single-mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trendsmore » of M/L with cluster mass and metallicity. The overall values of M/L and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing M/L with cluster mass and lower than expected M/Ls for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.« less
Transition from nonresonant to resonant random lasers by the geometrical confinement of disorder.
Ghofraniha, N; Viola, I; Zacheo, A; Arima, V; Gigli, G; Conti, C
2013-12-01
We report on a transition in random lasers that is induced by the geometrical confinement of the emitting material. Different dye doped paper devices with controlled geometry are fabricated by soft lithography and show two distinguished behaviors in the stimulated emission: in the absence of boundary constraints, the energy threshold decreases for larger laser volumes showing the typical trend of diffusive nonresonant random lasers, while when the same material is lithographed into channels, the walls act as cavity and the resonant behavior typical of standard lasers is observed. The experimental results are consistent with the general theories of random and standard lasers and a clear phase diagram of the transition is reported.
NASA Astrophysics Data System (ADS)
Lopez, B.; Baran, N.; Bourgine, B.; Ratheau, D.
2009-04-01
The European Union (EU) has adopted directives requiring that Member States take measures to reach a "good" chemical status of water resources by the year 2015 (Water Framework Directive: WFD). Alongside, the Nitrates Directives (91/676/EEC) aims at controlling nitrogen pollution and requires Member States to identify groundwaters that contain more than 50 mg NO3 L-1 or could exceed this limit if preventive measures are not taken. In order to achieve these environmental objectives in the Loire-Brittany river basin, or to justify the non achievement of these objectives, a large dataset of nitrate concentrations (117.056 raw data distributed on 7.341 time-series) and water table level time-series (1.371.655 data distributed on 511 piezometers) is analysed from 1945 to 2007. The 156.700 sq km Loire-Brittany river basin shows various hydrogeological contexts, ranging from sedimentary aquifers to basement ones, with a few volcanic-rock aquifers. The knowledge of the evolution of agricultural practices is important in such a study and, even if this information is not locally available, agricultural practices have globally changed since the 1991 Nitrates Directives. The detailed dataset available for the Loire-Brittany basin aquifers is used to evaluate tools and to propose efficient methodologies for identifying and quantifying past and current trends in nitrate concentrations. Therefore, the challenge of this study is to propose a global and integrated approach which allows nitrate trend identifications for the whole Loire-Brittany river basin. The temporal piezometric behaviour of each aquifer is defined using geostatistical analyse of water table level time-series. This method requires the calculation of an experimental temporal variogram that can be fitted with a theoretical model valid for a large time range. Identification of contrasted behaviours (short term, annual or pluriannual water table fluctuations) allows a systematic classification of the Loire-Brittany superficial aquifers. The nitrate dataset shows too many irregularities to employ traditional time-series approaches such as linear regression trend tests. The non-parametric Mann-Kendall (MK) test is a robust statistical trend detection test that does not require verification of the normality of the dataset (Aguilar et al, 2007). Moreover, this test seems appropriate since it is less sensitive to missing or outlier data than a simple linear regression test. As the MK test can only detect monotonic trends, and as already done by Stuart et al., (2007) and Broers and Van der Grift (2004), the trend analyses are decennially partitioned in order to identify possible trend reversals for the studied period for each observation point. The trend identification is then spatialized by the use of the Kendall Regional (KR) test on homogenous zones characterized by their geology, their agricultural practices and their piezometric behaviour. The KR test, previously used by Frans and Helsel (2005) in the Columbia Basin Ground Water context, is quite similar to the MK test and consists of the creation of virtual regional boreholes using networks of boreholes located in the homogenous zones. This test allows the identification of regional monotonic trends, even in the zones where nitrate time-series are too small to detect significant trend per observation point. The MK test results show significant upward trends in nitrate concentrations in the Loire-Brittany superficial aquifers when the test is computed on the 1945-2007 period. However, the decennial MK test shows different behaviours at smaller time scale. Some zones are characterized by a constant and significant increase in nitrate concentrations since 1945 (North-East of Brittany, North of Beauce) whereas others show a trend reversal (South of Brittany, Callovo-Oxfordian marls between Le Mans and Alençon, under covered Jurassic limestone around Poitiers). Furthermore, some rare zones show an increase in nitrate concentrations that follow a significant downward trend period (Orléans). In the nineties, a transition period may have occurred with a higher proportion of upward than downward trends (82 % against 7 % respectively) for the 1980-1990 period and a lower proportion of upward than downward trends for the 2000-2007 period (37 % against 51 % respectively). Combined with the analyse of the current groundwater nitrate concentrations, the KR test reveals zones where trends in nitrate concentrations have been significantly raising with high nitrate current mean values (> 50 mg NO3 L-1). On the other hand, some zones show a significant regional downward trend since 1995 and low current nitrate concentrations (< 20 mg NO3 L-1). Causes of trend reversals cannot be determined by the MK and KR statistical trend analyses, but the cross analyse of nitrate and water table level time-series gives a hint of a positive correlation between these two variables. Evolution of nitrate concentrations in superficial aquifers may thus depend on a combined effect of changes in both agricultural practices and evolution of water table levels linked with climatic context. References Aguilar J.B., Orban P., Dassargues A., Brouyère S., (2007) - Identification of groundwater quality trends in a chalk aquifer threatened by intensive agriculture in Belgium. Hydrogeology journal 15: 1615-1627. Broers H.P., van der Grift B., (2004) - Regional monitoring of temporal changes in groundwater quality. Journal of hydrology 296: 192-220. Frans L.M., Helsel D.R. (2005) - Evaluating regional trends in ground water nitrate concentrations of the Columbia Basin Ground Water management Area, Washington. U.S. Geological Survey Scientific Investigations Report 2005-5078, 7p. Stuart M.E., Chilton P.J., Kiniiburgh D.G., Cooper D.M., (2007) - Screening for long-term trends in groundwater nitrate monitoring data. Quaterly Journal of Engineering Geology and Hydrogeology, 40: 361-376. Funding The study was funded by the Loire-Brittany River Basin Agency and from proper BRGM funds.
Welch, Barrett; Smit, Ellen; Cardenas, Andres; Hystad, Perry; Kile, Molly L
2018-04-01
In 2001, the United States revised the arsenic maximum contaminant level for public drinking water systems from 50µg/L to 10µg/L. This study aimed to examine temporal trends in urinary arsenic concentrations in the U.S. population from 2003 to 2014 by drinking water source among individuals aged 12 years and older who had no detectable arsenobetaine - a biomarker of arsenic exposure from seafood intake. We examined data from 6 consecutive cycles of the National Health and Nutrition Examination Survey (2003-2014; N=5848). Total urinary arsenic (TUA) was calculated by subtracting arsenobetaine's limit of detection and detectable arsenocholine from total arsenic. Additional sensitivity analyses were conducted using a second total urinary arsenic index (TUA2, calculated by adding arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid). We classified drinking water source using 24-h dietary questionnaire data as community supply (n=3427), well or rain cistern (n=506), and did not drink tap water (n=1060). Geometric means (GM) of survey cycles were calculated from multivariate regression models adjusting for age, gender, race/ethnicity, BMI, income, creatinine, water source, type of water consumed, recent smoking, and consumption of seafood, rice, poultry, and juice. Compared to 2003-2004, adjusted TUA was 35.5% lower in 2013-2014 among the general U.S. Stratified analysis by smoking status indicated that the trend in lower TUA was only consistent among non-smokers. Compared to 2003-2004, lower adjusted TUA was observed in 2013-2014 among non-smoking participants who used community water supplies (1.98 vs 1.16µg/L, p<0.001), well or rain cistern users (1.54 vs 1.28µg/L, p<0.001) and who did not drink tap water (2.24 vs 1.53µg/L, p<0.001). Sensitivity analyses showed consistent results for participants who used a community water supplier and to a lesser extent those who did not drink tap water. However, the sensitivity analysis showed overall exposure stayed the same or was higher among well or rain cistern users. Finally, the greatest decrease in TUA was among participants within the highest exposure percentiles (e.g. 95th percentile had 34% lower TUA in 2013/2014 vs 2003/2004, p<0.001). Overall, urinary arsenic levels in the U.S. population declined over a 12-year period that encompassed the adoption of the revised Arsenic Rule. The most consistent trends in declining exposure were observed among non-smoking individuals using public community water systems. These results suggest regulation and prevention strategies to reduce arsenic exposures in the U.S. may be succeeding. Copyright © 2017 Elsevier Inc. All rights reserved.
Spectral analysis of HIV seropositivity among migrant workers entering Kuwait
Akhtar, Saeed; Mohammad, Hameed GHH
2008-01-01
Background There is paucity of published data on human immunodeficiency virus (HIV) seroprevalence among migrant workers entering Middle-East particularly Kuwait. We took advantage of the routine screening of migrants for HIV infection, upon arrival in Kuwait from the areas with high HIV prevalence, to 1) estimate the HIV seroprevalence among migrant workers entering Kuwait and to 2) ascertain if any significant time trend or changes had occurred in HIV seroprevalence among these migrants over the study period. Methods The monthly aggregates of daily number of migrant workers tested and number of HIV seropositive were used to generate the monthly series of proportions of HIV seropositive (per 100,000) migrants over a period of 120 months from January 1, 1997 to December 31, 2006. We carried out spectral analysis of these time series data on monthly proportions (per 100,000) of HIV seropositive migrants. Results Overall HIV seroprevalence (per 100,000) among the migrants was 21 (494/2328582) (95% CI: 19 -23), ranging from 11 (95% CI: 8 – 16) in 2003 to 31 (95% CI: 24 -41) in 1998. There was no discernable pattern in the year-specific proportions of HIV seropositive migrants up to 2003; in subsequent years there was a slight but consistent increase in the proportions of HIV seropositive migrants. However, the Mann-Kendall test showed non-significant (P = 0.741) trend in de-seasonalized data series of proportions of HIV seropositive migrants. The spectral density had a statistically significant (P = 0.03) peak located at a frequency (radians) 2.4, which corresponds to a regular cycle of three-month duration in this study. Auto-correlation function did not show any significant seasonality (correlation coefficient at lag 12 = – 0.025, P = 0.575). Conclusion During the study period, overall a low HIV seroprevalence (0.021%) was recorded. Towards the end of the study, a slight but non-significant upward trend in the proportions of HIV seropositive migrants was recorded. A significant rhythmic cycle of three-month duration was observed in the proportions of HIV seropositive migrants. The underlying factors for a consistent upward trend towards the end of study period and for a significant quarterly cycle in the proportions of HIV seropositive migrants merit further investigations. PMID:18366744
Late-Quaternary recharge determined from chloride in shallow groundwater in the central Great Plains
Macfarlane, P.A.; Clark, J.F.; Davisson, M.L.; Hudson, G.B.; Whittemore, Donald O.
2000-01-01
An extensive suite of isotopic and geochemical tracers in groundwater has been used to provide hydrologic assessments of the hierarchy of flow systems in aquifers underlying the central Great Plains (southeastern Colorado and western Kansas) of the United States and to determine the late Pleistocene and Holocene paleotemperature and paleorecharge record. Hydrogeologic and geochemical tracer data permit classification of the samples into late Holocene, late Pleistocene-early Holocene, and much older Pleistocene groups. Paleorecharge rates calculated from the Cl concentration in the samples show that recharge rates were at least twice the late Holocene rate during late Pleistocene-early Holocene time, which is consistent with their relative depletion in 16O and D. Noble gas (Ne, Ar, Kr, Xe) temperature calculations confirm that these older samples represent a recharge environment approximately 5??C cooler than late Holocene values. These results are consistent with the global climate models that show a trend toward a warmer, more arid climate during the Holocene. (C) 2000 University of Washington.
Mercury trends in fish from rivers and lakes in the United States, 1969-2005
Chalmers, A.T.; Argue, D.M.; Gay, D.A.; Brigham, M.E.; Schmitt, C.J.; Lorenz, D.L.
2011-01-01
A national dataset on concentrations of mercury in fish, compiled mainly from state and federal monitoring programs, was used to evaluate trends in mercury (Hg) in fish from US rivers and lakes. Trends were analyzed on data aggregated by site and by state, using samples of the same fish species and tissue type, and using fish of similar lengths. Site-based trends were evaluated from 1969 to 2005, but focused on a subset of the data from 1969 to 1987. Data aggregated by state were used to evaluate trends in fish Hg concentrations from 1988 to 2005. In addition, the most recent Hg fish data (1996-2005) were compared to wet Hg deposition data from the Mercury Deposition Network (MDN) over the same period. Downward trends in Hg concentrations in fish from data collected during 1969-1987 exceeded upward trends by a ratio of 6 to 1. Declining Hg accumulation rates in sediment and peat cores reported by many studies during the 1970s and 1980s correspond with the period when the most downward trends in fish Hg concentrations occurred. Downward Hg trends in both sediment cores and fish were also consistent with the implementation of stricter regulatory controls of direct releases of Hg to the atmosphere and surface waters during the same period. The southeastern USA had more upward Hg trends in fish than other regions for both site and state aggregated data. Upward Hg trends in fish from the southeastern USA were associated with increases in wet deposition in the region and may be attributed to a greater influence of global atmospheric Hg emissions in the southeastern USA. No significant trends were found in 62% of the fish species from six states from 1996 to 2005. A lack of Hg trends in fish in the more recent data was consistent with the lack of trends in wet Hg deposition at MDN sites and with relatively constant global emissions during the same time period. Although few significant trends were observed in the more recent Hg concentrations in fish, it is anticipated that Hg concentrations in fish will respond to changes in atmospheric Hg deposition, however, the magnitude and timing of the response is uncertain. ?? 2010 The Author(s).
Mercury trends in fish from rivers and lakes in the United States, 1969-2005.
Chalmers, Ann T; Argue, Denise M; Gay, David A; Brigham, Mark E; Schmitt, Christopher J; Lorenz, David L
2011-04-01
A national dataset on concentrations of mercury in fish, compiled mainly from state and federal monitoring programs, was used to evaluate trends in mercury (Hg) in fish from US rivers and lakes. Trends were analyzed on data aggregated by site and by state, using samples of the same fish species and tissue type, and using fish of similar lengths. Site-based trends were evaluated from 1969 to 2005, but focused on a subset of the data from 1969 to 1987. Data aggregated by state were used to evaluate trends in fish Hg concentrations from 1988 to 2005. In addition, the most recent Hg fish data (1996-2005) were compared to wet Hg deposition data from the Mercury Deposition Network (MDN) over the same period. Downward trends in Hg concentrations in fish from data collected during 1969-1987 exceeded upward trends by a ratio of 6 to 1. Declining Hg accumulation rates in sediment and peat cores reported by many studies during the 1970s and 1980s correspond with the period when the most downward trends in fish Hg concentrations occurred. Downward Hg trends in both sediment cores and fish were also consistent with the implementation of stricter regulatory controls of direct releases of Hg to the atmosphere and surface waters during the same period. The southeastern USA had more upward Hg trends in fish than other regions for both site and state aggregated data. Upward Hg trends in fish from the southeastern USA were associated with increases in wet deposition in the region and may be attributed to a greater influence of global atmospheric Hg emissions in the southeastern USA. No significant trends were found in 62% of the fish species from six states from 1996 to 2005. A lack of Hg trends in fish in the more recent data was consistent with the lack of trends in wet Hg deposition at MDN sites and with relatively constant global emissions during the same time period. Although few significant trends were observed in the more recent Hg concentrations in fish, it is anticipated that Hg concentrations in fish will respond to changes in atmospheric Hg deposition, however, the magnitude and timing of the response is uncertain.
Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016
NASA Astrophysics Data System (ADS)
Zheng, Bo; Chevallier, Frederic; Ciais, Philippe; Yin, Yi; Deeter, Merritt N.; Worden, Helen M.; Wang, Yilong; Zhang, Qiang; He, Kebin
2018-04-01
Measurements of Pollution in the Troposphere (MOPITT) satellite and ground-based carbon monoxide (CO) measurements both suggest a widespread downward trend in CO concentrations over East Asia during the period 2005–2016. This negative trend is inconsistent with global bottom-up inventories of CO emissions, which show a small increase or stable emissions in this region. We try to reconcile the observed CO trend with emission inventories using an atmospheric inversion of the MOPITT CO data that estimates emissions from primary sources, secondary production, and chemical sinks of CO. The atmospheric inversion indicates a ~ ‑2% yr‑1 decrease in emissions from primary sources in East Asia from 2005–2016. The decreasing emissions are mainly caused by source reductions in China. The regional MEIC inventory for China is the only bottom up estimate consistent with the inversion-diagnosed decrease of CO emissions. According to the MEIC data, decreasing CO emissions from four main sectors (iron and steel industries, residential sources, gasoline-powered vehicles, and construction materials industries) in China explain 76% of the inversion-based trend of East Asian CO emissions. This result suggests that global inventories underestimate the recent decrease of CO emission factors in China which occurred despite increasing consumption of carbon-based fuels, and is driven by rapid technological changes with improved combustion efficiency and emission control measures.
NASA Astrophysics Data System (ADS)
Raynolds, Martha K.; Walker, Donald A.
2016-08-01
Satellite data from the circumpolar Arctic have shown increases in vegetation indices correlated to warming air temperatures (e.g. Bhatt et al 2013 Remote Sensing 5 4229-54). However, more information is needed at finer scales to relate the satellite trends to vegetation changes on the ground. We examined changes using Landsat TM and ETM+ data between 1985 and 2011 in the central Alaska North Slope region, where the vegetation and landscapes are relatively well-known and mapped. We calculated trends in the normalized difference vegetation index (NDVI) and tasseled-cap transformation indices, and related them to high-resolution aerial photographs, ground studies, and vegetation maps. Significant, mostly negative, changes in NDVI occurred in 7.3% of the area, with greater change in aquatic and barren types. Large reflectance changes due to erosion, deposition and lake drainage were evident. Oil industry-related changes such as construction of artificial islands, roads, and gravel pads were also easily identified. Regional trends showed decreases in NDVI for most vegetation types, but increases in tasseled-cap greenness (56% of study area, greatest for vegetation types with high shrub cover) and tasseled-cap wetness (11% of area), consistent with documented degradation of polygon ice wedges, indicating that increasing cover of water may be masking increases in vegetation when summarized using the water-sensitive NDVI.
Ingersoll, G.P.; Mast, M.A.; Campbell, D.H.; Clow, D.W.; Nanus, L.; Turk, J.T.
2008-01-01
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993-2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites. Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999-2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for wetfall, snowpack, and snow-telemetry data for the central and southern rockies subregions (p<0.03), while no trends were noted for the Northern Rockies subregion.
National Trends in Trace Metals Concentrations in Ambient Particulate Matter
NASA Astrophysics Data System (ADS)
McCarthy, M. C.; Hafner, H. R.; Charrier, J. G.
2007-12-01
Ambient measurements of trace metals identified as hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2006 were analyzed for long-term trends. Trace metals analyzed include lead, manganese, arsenic, chromium, nickel, cadmium, and selenium. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Trend periods were required to be at least five years. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time or spatially. In addition, routine ambient monitoring methods had method detection limits (MDLs) too high to adequately measure concentrations for trends analysis. Differences between measurement methods at urban and rural sites also confound trends analyses. Improvements in MDLs, and a better understanding of comparability between networks, are needed to better quantify trends in trace metal concentrations in the future.
CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honig, Z. N.; Reid, M. J., E-mail: mreid@cfa.harvard.edu
2015-02-10
We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiralmore » arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.« less
Performance of motor imitation in children with and without dyspraxia.
Ruttanathantong, Korrawan; Siritaratiwat, Wantana; Sriphetcharawut, Sarinya; Emasithi, Alongkot; Saengsuwan, Jiamjit; Saengsuwan, Jittima
2013-07-01
Motor imitation is truly essential for young children to learn new motor skills, social behavior and skilled acts or praxis. The present study aimed to investigate motor imitation ability between typically-developing children and dyspraxic children and to examine the development trends in both children groups. The comparison ofmotor imitation was studied in 55 typically-developing children and 59 dyspraxic children aged 5 to 8 years. The Motor Imitation subtest consisted of two sections, imitation of postures and imitation of verbal instructions. Typically-developing children and dyspraxic children were examined for developmental trends. The independent samples t-test was used to analyze the differences between both groups. Two-way analysis of variance (ANOVA) was used to analyze inter-age differences for each age group. The results revealed significant differences between dyspraxic and typically-developing children. Both typically-developing and dyspraxic children demonstrated age trends. The older children scored higher than younger children. Imitation is a primary learning strategy of young children. It is essential that children with dyspraxia receive early detection and need effective intervention. Typically-developing children and dyspraxic children showed higher mean score on the Imitation of Posture section than the Verbal Instructions section. Motor imitation competency, therefore, changes and improves with age.
Castellucci, H I; Arezes, P M; Molenbroek, J F M; Viviani, C
2015-01-01
In order to create safer schools, the Chilean authorities published a Standard regarding school furniture dimensions. The aims of this study are twofold: to verify the existence of positive secular trend within the Chilean student population and to evaluate the potential mismatch between the anthropometric characteristics and the school furniture dimensions defined by the mentioned standard. The sample consists of 3078 subjects. Eight anthropometric measures were gathered, together with six furniture dimensions from the mentioned standard. There is an average increase for some dimensions within the Chilean student population over the past two decades. Accordingly, almost 18% of the students will find the seat height to be too high. Seat depth will be considered as being too shallow for 42.8% of the students. It can be concluded that the Chilean student population has increased in stature, which supports the need to revise and update the data from the mentioned Standard. Positive secular trend resulted in high levels of mismatch if furniture is selected according to the current Chilean Standard which uses data collected more than 20 years ago. This study shows that school furniture standards need to be updated over time.
Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals
NASA Astrophysics Data System (ADS)
Liu, Lin; Larson, Kristine M.
2018-02-01
Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.
NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015.
Liu, Fei; Beirle, Steffen; Zhang, Qiang; van der A, Ronald J; Zheng, Bo; Tong, Dan; He, Kebin
2017-01-01
Satellite NO 2 observations have been widely used to evaluate emission changes. To determine trends in NO x emission over China, we used a method independent of chemical transport models to quantify the NO x emissions from 48 cities and 7 power plants over China, on the basis of Ozone Monitoring Instrument (OMI) NO 2 observations during 2005 to 2015. We found that NO x emissions over 48 Chinese cities increased by 52% from 2005 to 2011 and decreased by 21% from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e. power, industrial and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NO x emissions was consistent with the bottom-up emission inventories for all power plants (r=0.8 on average), but not for some cities (r=0.4 on average). The lack of consistency observed for cities was most probably due to the high uncertainty of bottom-up urban emissions used in this study, which were derived from downscaling the regional-based emission data to cities by using spatial distribution proxies.
NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015
NASA Astrophysics Data System (ADS)
Liu, Fei; Beirle, Steffen; Zhang, Qiang; van der A, Ronald J.; Zheng, Bo; Tong, Dan; He, Kebin
2017-08-01
Satellite nitrogen dioxide (NO2) observations have been widely used to evaluate emission changes. To determine trends in nitrogen oxides (NOx) emission over China, we used a method independent of chemical transport models to quantify the NOx emissions from 48 cities and seven power plants over China, on the basis of Ozone Monitoring Instrument (OMI) NO2 observations from 2005 to 2015. We found that NOx emissions over 48 Chinese cities increased by 52 % from 2005 to 2011 and decreased by 21 % from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e., power, industrial, and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NOx emissions was consistent with the bottom-up emission inventories for all power plants (r = 0. 8 on average), but not for some cities (r = 0. 4 on average). The lack of consistency observed for cities was most probably due to the high uncertainty of bottom-up urban emissions used in this study, which were derived from downscaling the regional-based emission data to city level by using spatial distribution proxies.
Identifying Key Drivers of Return Reversal with Dynamical Bayesian Factor Graph.
Zhao, Shuai; Tong, Yunhai; Wang, Zitian; Tan, Shaohua
2016-01-01
In the stock market, return reversal occurs when investors sell overbought stocks and buy oversold stocks, reversing the stocks' price trends. In this paper, we develop a new method to identify key drivers of return reversal by incorporating a comprehensive set of factors derived from different economic theories into one unified dynamical Bayesian factor graph. We then use the model to depict factor relationships and their dynamics, from which we make some interesting discoveries about the mechanism behind return reversals. Through extensive experiments on the US stock market, we conclude that among the various factors, the liquidity factors consistently emerge as key drivers of return reversal, which is in support of the theory of liquidity effect. Specifically, we find that stocks with high turnover rates or high Amihud illiquidity measures have a greater probability of experiencing return reversals. Apart from the consistent drivers, we find other drivers of return reversal that generally change from year to year, and they serve as important characteristics for evaluating the trends of stock returns. Besides, we also identify some seldom discussed yet enlightening inter-factor relationships, one of which shows that stocks in Finance and Insurance industry are more likely to have high Amihud illiquidity measures in comparison with those in other industries. These conclusions are robust for return reversals under different thresholds.
Kinematic Evolution of Simulated Star-Forming Galaxies
NASA Technical Reports Server (NTRS)
Kassin, Susan A.; Brooks, Alyson; Governato, Fabio; Weiner, Benjamin J.; Gardner, Jonathan P.
2014-01-01
Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last approximately 8 billion years since z = 1.2, undergoing a process of "disk settling." For the first time, we study the kinematic evolution of a suite of four state of the art "zoom in" hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking as the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (sigma(sub g)) and increase in ordered rotation (V(sub rot)) with time. The slopes of the relations between both sigma(sub g) and V(sub rot) with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling.
Ilic, M; Ilic, I
2016-09-01
Infectious diseases remain one of the leading causes of death worldwide. The aim of this descriptive epidemiological study was to analyse the trends in mortality from infectious diseases in Serbia (excluding the Autonomous Province of Kosovo & Metohia) from 1991 to 2014 using joinpoint regression analysis. The mortality rates from infectious diseases were found to have increased markedly from 1991 to 1994 (+12·4% per year), followed by a significant decline from 1994 to 2009 (-4·6% per year) and then another increase from 2009 to 2014 (+4·3% per year). Throughout the study period, mortality rates were consistently higher in men than in women. Although a substantial decline was observed for young people of both sexes, no consistent pattern was evident for the middle-aged nor the elderly. Since 1991, septicaemia has emerged as a leading cause of infectious disease mortality, particularly in older men. The Yugoslav civil wars in the 1990s and the global financial crisis in 2008 corresponded with changes in the trends in mortality from infectious diseases in Serbia, with the elderly showing particular vulnerability during those time periods. Data presented in this study might be useful to improve control of infectious diseases in Serbia.
Jackson, Tracie R.; Fenelon, Joseph M.
2018-05-31
This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.
Hierarchical mechanism of development of wealth and structure for a premodern local society
NASA Astrophysics Data System (ADS)
Matsuo, Miki Y.
2011-06-01
We propose a hierarchical model of social development composed of two associated hierarchies, each of which describes economic and noneconomic activities in society, respectively. The model is designed to explain the development of wealth distribution and social structure over 50 years in a premodern Japanese local society. Data analysis shows that the wealth distribution has a well-known universal power-law tail throughout the observed period, while the Pareto index gradually decreases with time. We further show that the noneconomic social properties, such as the household number, average family size, and number of collaterals in a household, of the local society, also have decreasing or increasing trends throughout the observed period. We show that the hierarchical model consistently demonstrates the correlations of these economic and noneconomic properties.
Alternative Scenarios of the American Future: 1980-2000.
ERIC Educational Resources Information Center
Glover, Robert
This report is a summary of the findings of the societal trends survey completed at the National Forum on Learning and The American Future, which focused on factors influencing the future of adult learning. The survey questionnaire and results consist of 120 societal trend statements organized into sixteen different content areas: demography;…
Villena Carpio, Oswaldo; Royle, J. Andrew; Weir, Linda; Foreman, Tasha M.; Gazenski, Kimberly D.; Campbell Grant, Evan H.
2016-01-01
We present the first regional trends in anuran occupancy for eight states of the southeastern United States, based on 13 y (2001–2013) of North American Amphibian Monitoring Program (NAAMP) data. The NAAMP is a longterm monitoring program in which observers collect anuran calling observation data at fixed locations along random roadside routes. We assessed occupancy trends for 14 species. We found weak evidence for a general regional pattern of decline in calling anurans within breeding habitats along roads in the southeastern USA over the last 13 y. Two species had positive regional trends with 95% posterior intervals that did not include zero (Hyla cinerea and Pseudacris crucifer). Five other species also showed an increasing trend, while eight species showed a declining trend, although 95% posterior intervals included zero. We also assessed state level trends for 107 species/state combinations. Of these, 14 showed a significant decline and 12 showed a significant increase in occupancy (i.e., credible intervals did not include zero for these 26 trends).
Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content
NASA Astrophysics Data System (ADS)
Piecuch, Christopher G.; Ponte, Rui M.; Little, Christopher M.; Buckley, Martha W.; Fukumori, Ichiro
2017-09-01
The subpolar North Atlantic (SPNA) is subject to strong decadal variability, with implications for surface climate and its predictability. In 2004-2005, SPNA decadal upper ocean and sea-surface temperature trends reversed from warming during 1994-2004 to cooling over 2005-2015. This recent decadal trend reversal in SPNA ocean heat content (OHC) is studied using a physically consistent, observationally constrained global ocean state estimate covering 1992-2015. The estimate's physical consistency facilitates quantitative causal attribution of ocean variations. Closed heat budget diagnostics reveal that the SPNA OHC trend reversal is the result of heat advection by midlatitude ocean circulation. Kinematic decompositions reveal that changes in the deep and intermediate vertical overturning circulation cannot account for the trend reversal, but rather ocean heat transports by horizontal gyre circulations render the primary contributions. The shift in horizontal gyre advection reflects anomalous circulation acting on the mean temperature gradients. Maximum covariance analysis (MCA) reveals strong covariation between the anomalous horizontal gyre circulation and variations in the local wind stress curl, suggestive of a Sverdrup response. Results have implications for decadal predictability.
El-Atwani, O.; Norris, S. A.; Ludwig, K.; ...
2015-12-16
In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends onmore » several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.« less
2010-07-22
definite trend was observed, with an approximate 3-fold increase over vehicle control values. Significant IL-6 concentra- tion increases were observed in...differences occurred. How- ever, a strong increasing trend is apparent in both the mRNA (TNF-α and IL-6) and protein data (IL-1β) that is consistent with the...CNS pathologies. Trends Neurosci 1996, 19:409-410. 17. Wang CX, Shuaib A: Involvement of inflammatory cytokines in central nervous system injury
NASA Astrophysics Data System (ADS)
Fu, D.; Su, F.; Wang, J.
2017-12-01
More accurate evaluation of the state of Arctic tundra vegetation is important for our understanding of Arctic and global systems. Arctic tundra greening has been reported, increasing vegetation cover and productivity in many regions, but browning has been also reported, based on satellite-observed Normalized Difference Vegetation Index (NDVI) from 2011 until recently. Here we demonstrate a satellite-based method of estimating tundra greenness trend. A more direct indicator of greenness (spatially downscaling solar-induced fluorescence, SIF) was used to analyze the spatial and temporal patterns of Arctic tundra greenness trends based on ordinary least square regression (2007-2013). Meanwhile, two other greenness indices were used for the comparison, which were two NDVI products: GIMMS NDVI3g, and MOD13Q1 Collection 6. Generally, the Arctic tundra was not consistently greening, browning also existed. For the spatial trends, the results showed that most parts of the Arctic tundra below 75ºN was browning (-0.0098 mW/m2/sr/nm/year) using SIF, whereas spatially heterogeneous trends (greening or browning) were obtained based on the two NDVI products. For the temporal trends, the greenness value of Eurasia Arctic tundra is higher than Northern America and the whole Arctic tundra for the three greenness indices. From 2010, the Arctic tundra was greening based on MOD13Q1, whereas is browning using GIMMS NDVI3g. However, the Arctic tundra was obviously browning using SIF data. This study demonstrates a way of investigating the variation of Arctic tundra vegetation via new satellite-observed data.
Trends and Variability in Temperature Sensitivity of Lilac Flowering Phenology
NASA Astrophysics Data System (ADS)
Wang, Huanjiong; Dai, Junhu; Rutishauser, This; Gonsamo, Alemu; Wu, Chaoyang; Ge, Quansheng
2018-03-01
The responses of plant phenology to temperature variability have many consequences for ecological processes, agriculture, forestry, and human health. Temperature sensitivity (ST) of phenology could measure how and to what degree plant could phenologically track climate change. The long-term trends and spatial patterns in ST have been well studied for vegetative phenology such as leaf unfolding, but trends to be expected for reproductive phenology in the future remain unknown. Here we investigate trends and factors driving the temporal variation of ST of first bloom date (FBD). Using the long-term FBD records during 1963-2013 for common lilac (Syringa vulgaris) from 613 stations in Europe, we compared changes in ST from the beginning to the end of the study period. The Spearman partial correlations were used to assess the importance of four influencing factors. The results showed that the temporal changes in ST of FBD varied considerably among time scales. Mean ST decreased significantly by 0.92 days °C-1 from 1963-1972 to 2004-2013 (P < 0.01), but remained stable from 1963-1987 to 1989-2013. The strength of FBD and temperature relationship, the spring temperature variance, and winter chill all impact ST in an expected way at most stations. No consistent responses of ST on photoperiod were found. Our results imply that the trends and variability in ST of flowering phenology are driving by multiple factors and impacted by time scales. Continued efforts are still needed to further examine the flowering-temperature relationship for other plant species in other climates and environments using similar methods to our study.
NASA Astrophysics Data System (ADS)
Berner, Logan T.; Beck, Pieter S. A.; Bunn, Andrew G.; Lloyd, Andrea H.; Goetz, Scott J.
2011-03-01
Vegetation in northern high latitudes affects regional and global climate through energy partitioning and carbon storage. Spaceborne observations of vegetation, largely based on the normalized difference vegetation index (NDVI), suggest decreased productivity during recent decades in many regions of the Eurasian and North American boreal forests. To improve interpretation of NDVI trends over forest regions, we examined the relationship between NDVI from the advanced very high resolution radiometers and tree ring width measurements, a proxy of tree productivity. We collected tree core samples from spruce, pine, and larch at 22 sites in northeast Russia and northwest Canada. Annual growth rings were measured and used to generate site-level ring width index (RWI) chronologies. Correlation analysis was used to assess the association between RWI and summer NDVI from 1982 to 2008, while linear regression was used to examine trends in both measurements. The correlation between NDVI and RWI was highly variable across sites, though consistently positive (r = 0.43, SD = 0.19, n = 27). We observed significant temporal autocorrelation in both NDVI and RWI measurements at sites with evergreen conifers (spruce and pine), though weak autocorrelation at sites with deciduous conifers (larch). No sites exhibited a positive trend in both NDVI and RWI, although five sites showed negative trends in both measurements. While there are technological and physiological limitations to this approach, these findings demonstrate a positive association between NDVI and tree ring measurements, as well as the importance of considering lagged effects when modeling vegetation productivity using satellite data.
Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.
2014-01-01
Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.
NASA Astrophysics Data System (ADS)
Cook, Kerry H.; Vizy, Edward K.; Sun, Xiaoming
2018-03-01
Distributions of ocean mixed layer temperature trends and trends in the net heat flux from the atmosphere differ, indicating the important role of the transport of heat within the ocean for determining temperature trends. Annual-mean, linear trends in the components of the tropical ocean mixed layer heat budget for 1980-2015 are diagnosed in 4 ocean reanalyses to improve our physical understanding of multidecadal-scale SST trends. The well-known temperature trend in the tropical Pacific, with cooling in the east and warming in the west, is reproduced in each reanalysis with high statistical significance. Cooling in the east is associated with negative trends in the net heat flux from the atmosphere and enhanced equatorial upwelling related to a strengthening of the subtropical cells. Negative trends in the net heat flux also occur in the western tropical Pacific, but advective warming associated with a strengthening and shoaling of the equatorial undercurrent overwhelms these negative trends. The strengthening of the equatorial undercurrent is consistent with enhanced easterly wind stress, which is applied to the ocean reanalyses, and differential sea level trends that enhance the negative zonal height gradient across the Pacific. The Pacific North Equatorial countercurrent is also strengthening in all 4 reanalyses in association with a strengthening of the sea level trough at 10°N in the central and eastern Pacific. All 4 ocean reanalyses produce warming of 0.1-0.3 K/decade in the North Atlantic with statistical significance levels ranging from below 90-99%. The Atlantic is similar to the Pacific in having the equatorial undercurrent strengthening, but indications of shoaling are less consistent in the reanalyses and the North Equatorial Countercurrent in the Atlantic is not strengthening. Large-scale ocean mixed layer warming trends in the Indian Ocean in the reanalyses are interrupted by some regional cooling close to the equator. Net surface heat flux trends are mostly negative, indicating increasing heat fluxes from the ocean to the atmosphere. Wind stress trends applied to the ocean reanalyses are weak, but trends in the Indian Ocean equatorial undercurrent are strong. Since the Indian monsoon climate introduces strong seasonality, the annual analysis may not be adequate for studying physical processes in this ocean basin.
Water-quality trends in the nation's rivers
Smith, R.A.; Alexander, R.B.; Wolman, M.G.
1987-01-01
Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U.S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U. S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.
Staal, Yvonne CM; van de Nobelen, Suzanne; Havermans, Anne
2018-01-01
Background A wide variety of new tobacco and tobacco-related products have emerged on the market in recent years. Objective To understand their potential implications for public health and to guide tobacco control efforts, we have used an infoveillance approach to identify new tobacco and tobacco-related products. Methods Our search for tobacco(-related) products consists of several tailored search profiles using combinations of keywords such as “e-cigarette” and “new” to extract information from almost 9000 preselected sources such as websites of online shops, tobacco manufacturers, and news sites. Results Developments in e-cigarette design characteristics show a trend toward customization by possibilities to adjust temperature and airflow, and by the large variety of flavors of e-liquids. Additionally, more e-cigarettes are equipped with personalized accessories, such as mobile phones, applications, and Bluetooth. Waterpipe products follow the trend toward electronic vaping. Various heat-not-burn products were reintroduced to the market. Conclusions Our search for tobacco(-related) products was specific and timely, though advances in product development require ongoing optimization of the search strategy. Our results show a trend toward products resembling tobacco cigarettes vaporizers that can be adapted to the consumers’ needs. Our search for tobacco(-related) products could aid in the assessment of the likelihood of new products to gain market share, as a possible health risk or as an indicator for the need on independent and reliable information of the product to the general public. PMID:29807884
Hydrographic trends in Prince William Sound, Alaska, 1960-2016
NASA Astrophysics Data System (ADS)
Campbell, Robert W.
2018-01-01
A five-decade time series of temperature and salinity profiles within Prince William Sound (PWS) and the immediately adjacent shelf was assembled from several archives and ongoing field programs, and augmented with archived SST observations. Observations matched with recent cool (2007-2013) and warm (2013-onward) periods in the region, and also showed an overall regional warming trend ( 0.1 to 0.2 °C decade-1) that matched long-term increases in heat transport to the surface ocean. A cooling and freshening trend ( - 0.2 °C decade-1 and 0.02 respectively) occurred in the near surface waters in some portions of PWS, particularly the northwestern margin, which is also the location of most of the ice mass in the region; discharge (estimated from other studies) has increased over time, suggesting that those patterns were due to increased meltwater inputs. Increases in salinity at depth were consistent with enhanced entrainment of deep water by estuarine circulations, and by enhanced deep water renewal caused by reductions in downwelling-favorable winds. As well as local-scale effects, temperature and salinity were positively cross correlated with large scale climate and lunar indexes at long lags (years to months), indicating the longer time scales of atmospheric and transport connections with the Gulf of Alaska. Estimates of mixed layer depths show a shoaling of the seasonal mixed layer over time by several meters, which may have implications for ecosystem productivity in the region.
Theory of partitioning of disease prevalence and mortality in observational data.
Akushevich, I; Yashkin, A P; Kravchenko, J; Fang, F; Arbeev, K; Sloan, F; Yashin, A I
2017-04-01
In this study, we present a new theory of partitioning of disease prevalence and incidence-based mortality and demonstrate how this theory practically works for analyses of Medicare data. In the theory, the prevalence of a disease and incidence-based mortality are modeled in terms of disease incidence and survival after diagnosis supplemented by information on disease prevalence at the initial age and year available in a dataset. Partitioning of the trends of prevalence and mortality is calculated with minimal assumptions. The resulting expressions for the components of the trends are given by continuous functions of data. The estimator is consistent and stable. The developed methodology is applied for data on type 2 diabetes using individual records from a nationally representative 5% sample of Medicare beneficiaries age 65+. Numerical estimates show excellent concordance between empirical estimates and theoretical predictions. Evaluated partitioning model showed that both prevalence and mortality increase with time. The primary driving factors of the observed prevalence increase are improved survival and increased prevalence at age 65. The increase in diabetes-related mortality is driven by increased prevalence and unobserved trends in time-periods and age-groups outside of the range of the data used in the study. Finally, the properties of the new estimator, possible statistical and systematical uncertainties, and future practical applications of this methodology in epidemiology, demography, public health and health forecasting are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests
Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; ...
2016-12-15
Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less
A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests
NASA Astrophysics Data System (ADS)
Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.
2017-01-01
Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test ("trinitite") and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.
Evidence of a natural marine source of oxalic acid and a possible link to glyoxal
NASA Astrophysics Data System (ADS)
Rinaldi, Matteo; Decesari, Stefano; Carbone, Claudio; Finessi, Emanuela; Fuzzi, Sandro; Ceburnis, Darius; O'Dowd, Colin D.; Sciare, Jean; Burrows, John P.; Vrekoussis, Mihalis; Ervens, Barbara; Tsigaridis, Kostas; Facchini, Maria Cristina
2011-08-01
This paper presents results supporting the existence of a natural source of oxalic acid over the oceans. Oxalate was detected in "clean-sector" marine aerosol samples at Mace Head (Ireland) (53°20'N, 9°54'W) during 2006, and at Amsterdam Island (37°48'S, 77°34'E) from 2003 to 2007, in concentrations ranging from 2.7 to 39 ng m-3 and from 0.31 to 17 ng m-3, respectively. The oxalate concentration showed a clear seasonal trend at both sites, with maxima in spring-summer and minima in fall-winter, being consistent with other marine biogenic aerosol components (e.g., methanesulfonic acid, non-sea-salt sulfate, and aliphatic amines). The observed oxalate was distributed along the whole aerosol size spectrum, with both a submicrometer and a supermicrometer mode, unlike the dominant submicrometer mode encountered in many polluted environments. Given its mass size distribution, the results suggest that over remote oceanic regions oxalate is produced through a combination of different formation processes. It is proposed that the cloud-mediated oxidation of gaseous glyoxal, recently detected over remote oceanic regions, may be an important source of submicrometer oxalate in the marine boundary layer. Supporting this hypothesis, satellite-retrieved glyoxal column concentrations over the two sampling sites exhibited the same seasonal concentration trend of oxalate. Furthermore, chemical box model simulations showed that the observed submicrometer oxalate concentrations were consistent with the in-cloud oxidation of typical marine air glyoxal mixing ratios, as retrieved by satellite measurements, at both sites.
Orbital and physical characteristics of meter-scale impactors from airburst observations
NASA Astrophysics Data System (ADS)
Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.
2016-03-01
We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are ;… cometary bodies of the weakest known structure;. We find a lower limit of ∼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but no trend in height of peak brightness as a function of mass is evident, suggesting no strong trend in strength with size for meter-scale impactors consistent with the results of Popova et al. (Popova, O.P. et al. [2011]. Meteorit. Planet. Sci. 46, 1525-1550).
Long-term (10 year) trends in the chemistry of urban streams
NASA Astrophysics Data System (ADS)
Groffman, P. M.; Band, L. E.; Belt, K. T.; Kaushal, S.; Fisher, G. T.
2010-12-01
Weekly sampling of eight streams in the Baltimore metropolitan area has been carried out since 1998 as part of the NSF funded Baltimore urban Long-Term Ecological Research (BES LTER) project. The BES watersheds include 100% forested and agricultural catchments and developed watersheds ranging from very low-density (<1% impervious surface) suburban watersheds serviced by septic systems to more dense (> 40% impervious surface) urban watersheds. Stream discharge is continuously monitored at these sites by the U.S. Geological Survey (USGS). Stream samples are collected weekly regardless of flow conditions (no bias towards storm versus baseflow) and analyzed for nitrate, total nitrogen (N), phosphate, total phosphorus (P), chloride and sulfate. Ten-year analysis of the BES long-term study sites reveals several interesting spatial and temporal patterns. For N, the highest concentrations were found in the agricultural and suburban watersheds, followed by the urban sites, and finally by the forested site. Organic N was most important as a proportion of total N in the urban and forested sites. Spatial patterns in P were more complex, with urban, suburban and agricultural sites having the highest values. Over the ten year record, many sites showed significant changes in N concentrations, but few sites showed consistent patterns in P. The patterns in N were quite variable however, with some sites showing striking increases, while others showed striking decreases. Most (7 of 8) sites showed a decrease in the proportion of organic N, the trend was significant at 4 of the sites. There were few trends in the proportion of organic P. Discharge was a significant driver of variation in N and P export at some (mostly smaller watersheds) sites, for some solutes, but was not an overwhelmingly important driver of temporal variation. Key factors driving long-term patterns include climate variation and efforts to improve urban stream water quality by municipal authorities.
Comparison of Recent Modeled and Observed Trends in Total Column Ozone
NASA Technical Reports Server (NTRS)
Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Bruehl, C.; Fleming, E. L.; deGrandpre, J.; Grewe, V.; Isaksen, I.; Pitari, G.;
2006-01-01
We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.
Comparison of recent modeled and observed trends in total column ozone
NASA Astrophysics Data System (ADS)
Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Brühl, C.; Fleming, E. L.; de Grandpré, J.; Grewe, V.; Isaksen, I.; Pitari, G.; Portmann, R. W.; Rognerud, B.; Rosenfield, J. E.; Smyshlyaev, S.; Nagashima, T.; Velders, G. J. M.; Weisenstein, D. K.; Xia, J.
2006-01-01
We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.
Understanding Southern Ocean SST Trends in Historical Simulations and Observations
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle
2017-04-01
Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes that drive SST trends in the real SO.
How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Reboredo, Juan C.; Rivera-Castro, Miguel A.; Miranda, José G. V.; García-Rubio, Raquel
2013-04-01
In this paper we analyse price fluctuations with the aim of measuring how long the market takes to adjust prices to weak-form efficiency, i.e., how long it takes for prices to adjust to a fractional Brownian motion with a Hurst exponent of 0.5. The Hurst exponent is estimated for different time horizons using detrended fluctuation analysis-a method suitable for non-stationary series with trends-in order to identify at which time scale the Hurst exponent is consistent with the efficient market hypothesis. Using high-frequency share price, exchange rate and stock data, we show how price dynamics exhibited important deviations from efficiency for time periods of up to 15 min; thereafter, price dynamics was consistent with a geometric Brownian motion. The intraday behaviour of the series also indicated that price dynamics at trade opening and close was hardly consistent with efficiency, which would enable investors to exploit price deviations from fundamental values. This result is consistent with intraday volume, volatility and transaction time duration patterns.
Natural gas 1998: Issues and trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs.,more » 18 tabs.« less
NASA Astrophysics Data System (ADS)
Siebach, K. L.; Baker, M. B.; Grotzinger, J. P.; McLennan, S. M.; Gellert, R.; Thompson, L. M.; Hurowitz, J.
2017-12-01
Mineral distribution patterns in sediments of the Bradbury group in Gale crater, interpreted from observations by the Mars Science Laboratory rover Curiosity, show the importance of transport mechanics in source-to-sink processes on Mars. The Bradbury group is comprised of basalt-derived mudstones to conglomerates exposed along the modern floor of Gale crater and analyzed along a 9-km traverse of the Curiosity rover. Over 110 bulk chemistry analyses of the rocks were acquired, along with two XRD mineralogical analyses of the mudstone. These rocks are uniquely suited for analysis of source-to-sink processes because they exhibit a wide range of compositions, but (based on multiple chemical weathering proxies) they appear to have experienced negligible cation-loss during weathering and erosion. Chemical variations between analyses correlate with sediment grain sizes, with coarser-grained rocks enriched in plagioclase components SiO2, Al2O3, and Na2O, and finer-grained rocks enriched in components of mafic minerals, consistent with grain-size sorting of mineral fractions during sediment transport. Further geochemical and mineralogical modeling supports the importance of mineral fractionation: even though the limited XRD data suggests that some fraction (if not all) of the rocks contain clays and an amorphous component, models show that 90% of the compositions measured are consistent with sorting of primary igneous minerals from a plagioclase-phyric subalkaline basalt (i.e., no corrections for cation-loss are required). The distribution of K2O, modeled as a potassium feldspar component, is an exception to the major-element trends because it does not correlate with grain size, but has an elevation-dependent signal likely correlated with the introduction of a second source material. However, the dominant compositional trends within the Bradbury group sedimentary rocks are correlated with grain size and consistent with mineral fractionation of minimally-weathered plagioclase-phyric basalts; the plagioclase phenocrysts settle into coarser deposits and the finer deposits are dominated by mafic minerals.
Retrospective analysis of Bering Sea bottom trawl surveys: regime shift and ecosystem reorganization
NASA Astrophysics Data System (ADS)
Conners, M. E.; Hollowed, A. B.; Brown, E.
2002-10-01
This paper compiles data from bottom trawl surveys using variations on a 400-mesh eastern trawl gear into a 38-year time series (1963-2000), using a robust index of median catch per unit effort (CPUE) as an indicator of regional abundance. Time series are presented for three index sites in the southeastern Bering Sea: the inner shelf in Bristol Bay, the middle shelf north of Unimak Island, and the outer shelf near the Pribilof Islands. All three sites show strong evidence of a shift in benthic biomass and community structure in the early to mid-1980s. During this period, all three sites showed substantial increases in the abundances of walleye pollock, Pacific cod, rock sole, flathead sole, cartilaginous fishes (skates) and non-crab benthic invertebrates. Species composition, especially of flatfish, differs at the three sites, but the trend for groundfish abundance to increase was consistent at all three sites. The similarity in trends both across the region and across both commercial and unexploited groups suggests to us that a complete reorganization of benthic and demersal food webs may have taken place. The timing of change in trawl catch weight is consistent with effects of the strong regime shift observed in climate indices in 1976-1977. There is little evidence of similar biological responses to subsequent, less pronounced changes in climate. Our data are also consistent with recently documented shifts in ecosystem dynamics resulting from changes in ice cover and thermal structure in the eastern Bering Sea. Our analysis indicates that there was a much higher biomass of groundfish at all three sites during 1980-2000 than in 1960-1980. This result provides evidence against the hypothesis that the overall productivity of the eastern Bering Sea has decreased. The precipitous decline of the endangered Steller sea lion in this region from 1975-1985 was concurrent with an overall increase in abundance of groundfish prey.
NASA Astrophysics Data System (ADS)
Zecchin, Massimo; Brancolini, Giuliano; Tosi, Luigi; Rizzetto, Federica; Caffau, Mauro; Baradello, Luca
2009-05-01
The southern portion of the Venice lagoon contains a relatively thick (up to 20 m) Holocene sedimentary body that represents a detailed record of the formation and evolution of the lagoon. New very high-resolution (VHR) seismic profiles provided a detailed investigation on depositional geometries, internal bounding surfaces and stratal relationships. These informations, combined with core analysis, allowed the identification of large- to medium-scale sedimentary structures (e.g. dunes, point bars), the corresponding sedimentary environment, and of retrogradational and progradational trends. In addition, the availability of dense seismic network produced a 3D reconstruction of the southern lagoon and the recognition of the along-strike and dip variability of the stratal architecture. Three main seismic units (H1-H3), separated by key stratal surfaces (S1-S3), form the Holocene succession in the southern Venice lagoon. This succession is bounded at the base by the Pleistocene/Holocene boundary (the surface S1), which consists of a surface of subaerial exposure locally subjected to river incision. The lower part of the Holocene succession (up to 13 m thick) consists of incised valley fills passing upward into lagoon and then shallow-marine sediments (Unit H1), and therefore shows a deepening-upward trend and a retrogradational stacking pattern. A prograding delta and adjacent shorelines, showing internal clinoforms downlapping onto the top of Unit H1 (the surface S2), form the middle part of the Holocene succession (Unit H2, up to 7.5 m thick). Unit H2 is interpreted as a result of a regressive phase started about 6 kyr BP and continued until recent time. The upper part of the Holocene succession (Unit H3) consists of lagoonal deposits, including tidal channel and tidal and subtidal flat sediments, that abruptly overlie Unit H2. Unit H3 is thought to represent a drowning of the area primarily due to human interventions that created rivers diversion and consequent delta abandonment during historical time.
NASA Astrophysics Data System (ADS)
Arias, P.; Fu, R.; Li, W.
2007-12-01
Tropical forests play a key role in determining the global carbon-climate feedback in the 21st century. Changes in rainforest growth and mortality rates, especially in the deep and least perturbed forest areas, have been consistently observed across global tropics in recent years. Understanding the underlying causes of these changes, especially their links to the global climate change, is especially important in determining the future of the tropical rainforests in the 21st century. Previous studies have mostly focus on the potential influences from elevated atmospheric CO2 and increasing surface temperature. Because the rainforests in wet tropical region is often light limited, we explore whether cloudiness have changed, if so, whether it is consistent with that expected from changes in forest growth rate. We will report our observational analysis examining the trends in annual average shortwave (SW) downwelling radiation, total cloud cover, and cumulus cover over the tropical land regions and to link them with trends in convective available potencial energy (CAPE). ISCCP data and radiosonde records available from the Department of Atmospheric Sciences of the University of Wyoming (http://www.weather.uwyo.edu/upperair/sounding.html) are used to study the trends. The period for the trend analysis is 1984-2004 for the ISCCP data and 1980-2006 for the radiosondes. The results for the Amazon rainforest region suggest a decreasing trend in total cloud and convective cloud covers, which results in an increase in downwelling SW radiation at the surface. These changes of total and convective clouds are consistent with a trend of decreasing CAPE and an elevated Level of Free Convection (LFC) height, as obtained from the radiosondes. All the above mentioned trends are statistically significant based on the Mann-Kendall test with 95% of confidence. These results consistently suggest the downward surface solar radiation has been increasing since 1984, result from a decrease of convective and total cloudiness over the Southern Amazon basin, due to an increase of LFC and atmospheric thermodynamic stability. Such an increase of surface SW radiation probably has contributed to the increasing in growth rate for the forests in the Amazon forests. Currently, the same analysis is being applied using radiosonde data from the Comprehensive Aerological Reference Data Set (CARDS) over the Amazon and Congo basins and the Southeast Asia. Our objective is to identify changes in cloudiness over tropical land and identify its underlying causes, especially the link to changes in surface temperature and humidity.
Mortality trends due to chronic obstructive pulmonary disease in Brazil.
Graudenz, Gustavo Silveira; Gazotto, Gabriel Pereira
2014-01-01
The purpose of this study was to update and analyze data on mortality trend due to chronic obstructive pulmonary disease (COPD) in Brazil. Initially, the specific COPD mortality rates were calculated from 1989 to 2009 using data collected from DATASUS (Departamento de Informática do SUS - Brazilian Health System Database). Then, the polynomial regression models from the observed functional relation were estimated based on mortality coefficients and study years. We verified that the general mortality rates due to COPD in Brazil showed an increasing trend from 1989 to 2004, and then decreased. Both genders showed the same increasing tendencies until 2004 and decreased thereafter. The age group under 35 years old showed a linear decreasing trend. All other age groups showed quadratic tendencies, with increases until the years of 1998-1999 and then decreasing. The South and Southeast regions showed the highest COPD mortality rates with increasing trends until the years 2001-2002 and then decreased. The North, Northeast and Central-West regions showed lower mortality rates but increasing trend. This is the first report of COPD mortality stabilization in Brazil since 1980.
Risch, Martin R.; Bunch, Aubrey R.; Vecchia, Aldo V.; Martin, Jeffrey D.; Baker, Nancy T.
2014-01-01
Statistically significant trends were identified that included 167 downward trends and 83 upward trends. The Kankakee River Basin had the most significant upward trends while the most significant downward trends were in the Whitewater River Basin, the Lake Michigan Basin, and the Patoka River Basin. For most constituents, a majority of sites had significant downward trends. Two streams in the Lake Michigan Basin have shown substantial decreases in most constituents. The West Fork White River near Indianapolis, Indiana, showed increases in nitrate and phosphorus and the Kankakee River Basin showed increases in copper, zinc, chloride, sulfate, and hardness. Upward trends in nutrients were identified at a few sites, but most nutrient trends were downward. Upward trends in metals corresponded with relatively small concentration increases while downward trends involved considerably larger concentration changes. Downward trends in chloride, sulfate, and suspended solids were observed statewide, but upward trends in hardness were observed in the northern half of Indiana.
Gilligan, Ian; Chandraphak, Supichya; Mahakkanukrauh, Pasuk
2013-08-01
The femoral neck-shaft angle (NSA) varies among modern humans but measurement problems and sampling limitations have precluded the identification of factors contributing to its variation at the population level. Potential sources of variation include sex, age, side (left or right), regional differences in body shape due to climatic adaptation, and the effects of habitual activity patterns (e.g. mobile and sedentary lifestyles and foraging, agricultural, and urban economies). In this study we addressed these issues, using consistent methods to assemble a global NSA database comprising over 8000 femora representing 100 human groups. Results from the analyses show an average NSA for modern humans of 127° (markedly lower than the accepted value of 135°); there is no sex difference, no age-related change in adults, but possibly a small lateral difference which could be due to right leg dominance. Climatic trends consistent with principles based on Bergmann's rule are evident at the global and continental levels, with the NSA varying in relation to other body shape indices: median NSA, for instance, is higher in warmer regions, notably in the Pacific (130°), whereas lower values (associated with a more stocky body build) are found in regions where ancestral populations were exposed to colder conditions, in Europe (126°) and the Americas (125°). There is a modest trend towards increasing NSA with the economic transitions from forager to agricultural and urban lifestyles and, to a lesser extent, from a mobile to a sedentary existence. However, the main trend associated with these transitions is a progressive narrowing in the range of variation in the NSA, which may be attributable to thermal insulation provided by improved cultural buffering from climate, particularly clothing. © 2013 Anatomical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamarque, J. F.; Bond, Tami C.; Eyring, Veronika
2010-08-11
We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report. Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available atmore » this point; 40 regions and 12 sectors were used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, was then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Application of these emissions into two chemistry-climate models is used to test their ability to capture long-term changes in atmospheric ozone, carbon monoxide and aerosols distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations consistently underestimate the carbon monoxide trend, while capturing the long-term trend at the Mace Head station. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates.« less
The CATDAT damaging earthquakes database
NASA Astrophysics Data System (ADS)
Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.
2011-08-01
The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.
NASA Astrophysics Data System (ADS)
Sulla-Menashe, Damien; Woodcock, Curtis E.; Friedl, Mark A.
2018-01-01
Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. Here we use NDVI time series from Landsat, which has much higher quality and spatial resolution than imagery used in most previous studies, to characterize biogeographic patterns in greening and browning across Canada’s boreal forest and to explore the drivers behind observed trends. Our results show that the majority of NDVI changes in Canada’s boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. By examining covariance between changes in NDVI and temperature and precipitation in locations not affected by disturbance, our results isolate and characterize the nature and magnitude of greening and browning directly associated with climate change. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observed greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where forests are more prone to moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada’s boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones.
Gilligan, Ian; Chandraphak, Supichya; Mahakkanukrauh, Pasuk
2013-01-01
The femoral neck-shaft angle (NSA) varies among modern humans but measurement problems and sampling limitations have precluded the identification of factors contributing to its variation at the population level. Potential sources of variation include sex, age, side (left or right), regional differences in body shape due to climatic adaptation, and the effects of habitual activity patterns (e.g. mobile and sedentary lifestyles and foraging, agricultural, and urban economies). In this study we addressed these issues, using consistent methods to assemble a global NSA database comprising over 8000 femora representing 100 human groups. Results from the analyses show an average NSA for modern humans of 127° (markedly lower than the accepted value of 135°); there is no sex difference, no age-related change in adults, but possibly a small lateral difference which could be due to right leg dominance. Climatic trends consistent with principles based on Bergmann's rule are evident at the global and continental levels, with the NSA varying in relation to other body shape indices: median NSA, for instance, is higher in warmer regions, notably in the Pacific (130°), whereas lower values (associated with a more stocky body build) are found in regions where ancestral populations were exposed to colder conditions, in Europe (126°) and the Americas (125°). There is a modest trend towards increasing NSA with the economic transitions from forager to agricultural and urban lifestyles and, to a lesser extent, from a mobile to a sedentary existence. However, the main trend associated with these transitions is a progressive narrowing in the range of variation in the NSA, which may be attributable to thermal insulation provided by improved cultural buffering from climate, particularly clothing. PMID:23781912
NASA Astrophysics Data System (ADS)
Gaschnig, R. M.; Rudnick, R. L.; McDonough, W. F.; Kaufman, A. J.; Valley, J. W.; Hu, Z.; Gao, S.
2014-12-01
V.M. Goldschmidt (1933) first suggested the use of Quaternary glacial till and loess to determine the average composition of the upper continental crust (UCC). We extend this approach back in time through the geochemical study of glacial diamictites from intervals of continental glaciation in the Paleozoic, Neoproterozoic, Paleoproterozoic, and Mesoarchean. The diamictites record fundamental changes in the bulk composition of UCC through time, with the largest change occurring at the end of the Archean. Post-Archean diamictites have progressively lower Eu/Eu* and concentrations of 1st row transition metals (Sc, Cr, V, Ni, Co) and higher Th and U concentrations. δ18O whole-rock values steadily increase through the Precambrian, with average values of 6.0 ± 1.6, 8.3 ± 0.4, 12.3 ± 0.9 per mil for the Mesoarchean, Paleoproterozoic, and Neoproterozoic, respectively. All of these trends are consistent with production of a progressively more evolved UCC, which may reflect changes in the composition of primary crustal melts, as well as a change in the nature of intracrustal differentiation. Subtle increases in Lu/Hf through time imply the continual addition of juvenile crust from an increasingly depleted mantle reservoir, consistent with continuous continental growth rather than an Armstrong-like no-growth model, and suggesting that intracrustal differentiation is unlikely to be the sole driver of the other trends. In addition to these uni-directional trends, Paleoproterozoic diamictites, which are dominated by 2.8 to 2.6 Ga provenance, show unique chemical characteristics (e.g., lowest Nb/Ta and highest La/Lu and Th/Nb). These features may reflect a distinctive geodynamic setting for the Neoarchean period, which was arguably the largest pulse of crustal growth in Earth's history and was also accompanied by widespread cratonization.
Teoh, Shao Thing; Kitamura, Miki; Nakayama, Yasumune; Putri, Sastia; Mukai, Yukio; Fukusaki, Eiichiro
2016-08-01
In recent years, the advent of high-throughput omics technology has made possible a new class of strain engineering approaches, based on identification of possible gene targets for phenotype improvement from omic-level comparison of different strains or growth conditions. Metabolomics, with its focus on the omic level closest to the phenotype, lends itself naturally to this semi-rational methodology. When a quantitative phenotype such as growth rate under stress is considered, regression modeling using multivariate techniques such as partial least squares (PLS) is often used to identify metabolites correlated with the target phenotype. However, linear modeling techniques such as PLS require a consistent metabolite-phenotype trend across the samples, which may not be the case when outliers or multiple conflicting trends are present in the data. To address this, we proposed a data-mining strategy that utilizes random sample consensus (RANSAC) to select subsets of samples with consistent trends for construction of better regression models. By applying a combination of RANSAC and PLS (RANSAC-PLS) to a dataset from a previous study (gas chromatography/mass spectrometry metabolomics data and 1-butanol tolerance of 19 yeast mutant strains), new metabolites were indicated to be correlated with tolerance within certain subsets of the samples. The relevance of these metabolites to 1-butanol tolerance were then validated from single-deletion strains of corresponding metabolic genes. The results showed that RANSAC-PLS is a promising strategy to identify unique metabolites that provide additional hints for phenotype improvement, which could not be detected by traditional PLS modeling using the entire dataset. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Landsat-based trend analysis of lake dynamics across northern permafrost regions
Nitze, Ingmar; Grosse, Guido; Jones, Benjamin M.; Arp, Christopher D.; Ulrich, Mathias; Federov, Alexander; Veremeeva, Alexandra
2017-01-01
Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here we present, a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM,ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e. upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.
Implications of Version 8 TOMS and SBUV Data for Long-Term Trend Analysis
NASA Technical Reports Server (NTRS)
Frith, Stacey M.
2004-01-01
Total ozone data from the Total Ozone Mapping Spectrometer (TOMS) and profile/total ozone data from the Solar Backscatter Ultraviolet (SBUV; SBW/2) series of instruments have recently been reprocessed using new retrieval algorithms (referred to as Version 8 for both) and updated calibrations. In this paper, we incorporate the Version 8 data into a TOMS/SBW merged total ozone data set and an S B W merged profile ozone data set. The Total Merged Ozone Data (Total MOD) combines data from multiple TOMS and SBW instruments to form an internally consistent global data set with virtually complete time coverage from October 1978 through December 2003. Calibration differences between instruments are accounted for using external adjustments based on instrument intercomparisons during overlap periods. Previous results showed errors due to aerosol loading and sea glint are significantly reduced in the V8 TOMS retrievals. Using SBW as a transfer standard, calibration differences between V8 Nimbus 7 and Earth Probe TOMS data are approx. 1.3%, suggesting small errors in calibration remain. We will present updated total ozone long-term trends based on the Version 8 data. The Profile Merged Ozone Data (Profile MOD) data set is constructed using data from the SBUV series of instruments. In previous versions, SAGE data were used to establish the long-term external calibration of the combined data set. The SBW Version 8 we assess the V8 profile data through comparisons with SAGE and between SBW instruments in overlap periods. We then construct a consistently-calibrated long term time series. Updated zonal mean trends as a function of altitude and season from the new profile data set will be shown, and uncertainties in determining the best long-term calibration will be discussed.
Lin, Mei; Li, Chien-Hsun; Wei, Liang; Naavaal, Shillpa; Kolavic Gray, Shellie; Manz, Michael C; Barker, Laurie
2017-03-01
To compare estimated prevalence of past-year dental visit (PPYDV) among US adults aged ≥18 years from the Behavioral Risk Factor Surveillance System (BRFSS) to estimates from the Medical Expenditure Panel Survey (MEPS), National Health Interview Survey (NHIS), and National Health and Nutrition Examination Survey (NHANES). We estimated PPYDV adjusted for covariates (age, race/ethnicity, education level, poverty status, edentulism) using BRFSS, MEPS, and NHIS 1999-2010, and NHANES 1999-2004. We tested trend in overall PPYDV for BRFSS, MEPS, and NHIS from 1999-2010. For 2002 and 2010, we calculated absolute differences (AD) and 95% confidence intervals (CI) in PPYDV between BRFSS and each of the other surveys overall and among subpopulations defined by covariates. We pooled NHANES 1999-2004 data for comparison with BRFSS 2002. From 1999 to 2010, BRFSS (68.5% vs. 67.5%), MEPS (43.5% vs. 39.7%), and NHIS (63.3% vs. 59.7%) showed small but significant decreases in overall PPYDV. In 2002, estimates for overall PPYDV were highest for BRFSS (70.0%) and lowest for MEPS (43.9%) with estimates for NHIS (61.5%) and NHANES (1999-2004: 58.1%) in between; the largest AD (26.2%, 95% CI: 25.0%-27.3%) was between BRFSS and MEPS. ADs were consistent in 2002 and 2010, overall and by covariates, except among edentate persons, where PPYDV estimates from BRFSS and NHIS were similar. Estimates of PPYDV from BRFSS were notably higher than estimates from MEPS, NHIS, or NHANES except among the edentate. Trends in PPYDV over time, however, were consistent across all surveys. © 2016 American Association of Public Health Dentistry.
Geenland Glacier Albedo Variability
NASA Astrophysics Data System (ADS)
2004-01-01
The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.
Greenland Glacier Albedo Variability
NASA Technical Reports Server (NTRS)
2004-01-01
The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.
Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping
2009-08-01
The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.
Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf
2012-01-03
Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from
Cao, Lijuan; Yan, Zhongwei; Zhao, Ping; ...
2017-05-26
Monthly mean instrumental surface air temperature (SAT) observations back to the nineteenth century in China are synthesized from different sources via specific quality-control, interpolation, and homogenization. Compared with the first homogenized long-term SAT dataset for China which contained 18 stations mainly located in the middle and eastern part of China, the present dataset includes homogenized monthly SAT series at 32 stations, with an extended coverage especially towards western China. Missing values are interpolated by using observations at nearby stations, including those from neighboring countries. Cross validation shows that the mean bias error (MBE) is generally small and falls between 0.45more » °C and –0.35 °C. Multiple homogenization methods and available metadata are applied to assess the consistency of the time series and to adjust inhomogeneity biases. The homogenized annual mean SAT series shows a range of trends between 1.1 °C and 4.0 °C/century in northeastern China, between 0.4 °C and 1.9 °C/century in southeastern China, and between 1.4 °C and 3.7 °C/century in western China to the west of 105 E (from the initial years of the stations to 2015). The unadjusted data include unusually warm records during the 1940s and hence tend to underestimate the warming trends at a number of stations. As a result, the mean SAT series for China based on the climate anomaly method shows a warming trend of 1.56 °C/century during 1901–2015, larger than those based on other currently available datasets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Lijuan; Yan, Zhongwei; Zhao, Ping
Monthly mean instrumental surface air temperature (SAT) observations back to the nineteenth century in China are synthesized from different sources via specific quality-control, interpolation, and homogenization. Compared with the first homogenized long-term SAT dataset for China which contained 18 stations mainly located in the middle and eastern part of China, the present dataset includes homogenized monthly SAT series at 32 stations, with an extended coverage especially towards western China. Missing values are interpolated by using observations at nearby stations, including those from neighboring countries. Cross validation shows that the mean bias error (MBE) is generally small and falls between 0.45more » °C and –0.35 °C. Multiple homogenization methods and available metadata are applied to assess the consistency of the time series and to adjust inhomogeneity biases. The homogenized annual mean SAT series shows a range of trends between 1.1 °C and 4.0 °C/century in northeastern China, between 0.4 °C and 1.9 °C/century in southeastern China, and between 1.4 °C and 3.7 °C/century in western China to the west of 105 E (from the initial years of the stations to 2015). The unadjusted data include unusually warm records during the 1940s and hence tend to underestimate the warming trends at a number of stations. As a result, the mean SAT series for China based on the climate anomaly method shows a warming trend of 1.56 °C/century during 1901–2015, larger than those based on other currently available datasets.« less
Tippett, Michael K; Cohen, Joel E
2016-02-29
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.
Tippett, Michael K.; Cohen, Joel E.
2016-01-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Cohen, Joel E.
2016-02-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from `outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.
NASA Astrophysics Data System (ADS)
Krishnan, M. V. Ninu; Prasanna, M. V.; Vijith, H.
2018-05-01
Effect of climate change in a region can be characterised by the analysis of rainfall trends. In the present research, monthly rainfall trends at Limbang River Basin (LRB) in Sarawak, Malaysia for a period of 45 years (1970-2015) were characterised through the non-parametric Mann-Kendall and Spearman's Rho tests and relative seasonality index. Statistically processed monthly rainfall of 12 well distributed rain gauging stations in LRB shows almost equal amount of rainfall in all months. Mann-Kendall and Spearman's Rho tests revealed a specific pattern of rainfall trend with a definite boundary marked in the months of January and August with positive trends in all stations. Among the stations, Limbang DID, Long Napir and Ukong showed positive (increasing) trends in all months with a maximum increase of 4.06 mm/year (p = 0.01) in November. All other stations showed varying trends (both increasing and decreasing). Significant (p = 0.05) decreasing trend was noticed in Ulu Medalam and Setuan during September (- 1.67 and - 1.79 mm/year) and October (- 1.59 and - 1.68 mm/year) in Mann-Kendall and Spearman's Rho tests. Spatial pattern of monthly rainfall trends showed two clusters of increasing rainfalls (maximas) in upper and lower part of the river basin separated with a dominant decreasing rainfall corridor. The results indicate a generally increasing trend of rainfall in Sarawak, Borneo.
Trend analysis of weekly acid rain data, 1978-83
Schertz, Terry L.; Hirsch, Robert M.
1985-01-01
There are 19 stations in the National Atmospheric Deposition Program which operated over the period 1978-83 and were subsequently incorporated into the National Trends Network in 1983. The precipitation chemistry data for these stations for this period were analyzed for trend, spatial correlation, seasonality, and relationship to precipitation volume. The intent of the analysis was to provide insights on the sources of variation in precipitation chemistry and to attempt to ascertain what statistical procedures may be most useful for ongoing analysis of the National Trends Network data. The Seasonal Kendall test was used for detection of trends in raw concentrations of dissolved constituents, pH and specific conductance, and residuals of these parameters from regression analysis. Forty-one percent of the trends detected in the raw concentrations were downtrends, 4 percent were uptrends, and 55 percent showed no trends at a = 0.2. At a more restrictive significance level of a = 0.05, 24 percent of the trends detected were downtrends, 2 percent were uptrends, and 74 percent showed no trends. The two constituents of greatest interest in terms of human generated emissions and environmental effects, sulfate and nitrate, showed only downtrends, and sulfate showed the largest decreases in concentration per year of all the ions tested.
NASA Astrophysics Data System (ADS)
Nam, J.; Kim, S. W.; Park, R.; Yoon, S. C.; Sugimoto, N.; Park, J. S.; Hong, J.
2015-12-01
Multi-year records of moderate resolution imaging spectroradiometer (MODIS), ground-level particulate matter (PM) mass concentration, cloud-aerosol lidar with orthogonal polarization (CALIOP), and ground-level lidar were analyzed to investigate seasonal and annual changes of aerosol optical depth (AOD) and PM mass concentration over East Asia. Least mean square fit method is applied to detect the trends and their magnitudes for each selected regions and stations. Eleven-year MODIS measurements show generally increasing trends in both AOD (1.18 % yr-1) and Ångström exponent (0.98 % yr-1), especially over the east coastal industrialized region in China. Monthly variation of AOD show maximum value at April-July, which were related to the progress of summer monsoon rain band and stationary continental air mass on the northeast of Asia. Increasing trends of AOD were found for eight cites in China (0.80 % yr-1) and Seoul site, Korea (0.40 % yr-1), whereas no significant change were shown in Gosan background site (0.04 % yr-1) and decreasing trend at five background sites in Japan (-0.42 % yr-1). Contrasting to AOD trend, all fifteen sites in China (-1.28 % yr-1), Korea (-2.77 % yr-1), and Japan (-2.03 % yr-1) showed decreasing trend of PM10 mass concentration. Also, PM2.5 mass concentration at Beijing, Seoul, Rishiri, and Oki show significant decreasing trend of -1.16 % yr-1. To further discuss the opposite trend of surface PM mass concentration and column AOD, we investigate vertical aerosol profile from lidar measurements. AOD estimated for planetary boundary layer (surface~1.5 km altitude; AODPBL) from CALIOP measurements over East China show decreasing trend of -1.71 % yr-1 over the period of 2007-2014, wherever AOD estimated for free troposphere (1.5 km~5 km altitude; AODFT) show increasing trend of 2.92 % yr-1. In addition, ground-level lidar measurements in Seoul show decreasing AODPBL trend of -2.57 % yr-1, whereas, AODFT show no significant change (-0.44 % yr-1) between 2007 and 2014. This significant decreasing AODPBL and increasing AODFT trend is attributable to the relative contribution of complex processes that may include decrease of coarse particles near surface following the implementation of numerous air pollution control and changes in meteorological factors (convection, precipitation, etc.).
ERIC Educational Resources Information Center
City Coll. of San Francisco, CA.
This document consists of two reports about trends in the expressed educational objectives of students applying for admission to the City College of San Francisco. The first report reveals that between 1968 and 1973: (1) the balance between students choosing transfer or semi-professional programs has shifted toward the latter; (2) student interest…
The Clean Air Status and Trends Network (CASTNET) is a long-term environmental monitoring program that measures trends in ambient air quality and atmospheric dry pollutant deposition across the United States. CASTNET has been operating since 1987 and currently consists of 89 moni...
Brain enlargement and dental reduction were not linked in hominin evolution
Smaers, Jeroen B.; Holloway, Ralph L.
2017-01-01
The large brain and small postcanine teeth of modern humans are among our most distinctive features, and trends in their evolution are well studied within the hominin clade. Classic accounts hypothesize that larger brains and smaller teeth coevolved because behavioral changes associated with increased brain size allowed a subsequent dental reduction. However, recent studies have found mismatches between trends in brain enlargement and posterior tooth size reduction in some hominin species. We use a multiple-variance Brownian motion approach in association with evolutionary simulations to measure the tempo and mode of the evolution of endocranial and dental size and shape within the hominin clade. We show that hominin postcanine teeth have evolved at a relatively consistent neutral rate, whereas brain size evolved at comparatively more heterogeneous rates that cannot be explained by a neutral model, with rapid pulses in the branches leading to later Homo species. Brain reorganization shows evidence of elevated rates only much later in hominin evolution, suggesting that fast-evolving traits such as the acquisition of a globular shape may be the result of direct or indirect selection for functional or structural traits typical of modern humans. PMID:28049819
Enhanced Component Performance Study: Emergency Diesel Generators 1998–2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John Alton
2015-11-01
This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using (1) Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2014 and (2) maintenance unavailability (UA) performance data from Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2014. The objective is to show estimates of current failure probabilities and rates related to EDGs, trend these data on an annual basis, determine if the current data are consistent with the probability distributions currently recommended for use inmore » NRC probabilistic risk assessments, show how the reliability data differ for different EDG manufacturers and for EDGs with different ratings; and summarize the subcomponents, causes, detection methods, and recovery associated with each EDG failure mode. Engineering analyses were performed with respect to time period and failure mode without regard to the actual number of EDGs at each plant. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating. Six trends with varying degrees of statistical significance were identified in the data.« less
Interpopulational variation in the cold tolerance of a broadly distributed marine copepod
Wallace, Gemma T.; Kim, Tiffany L.; Neufeld, Christopher J.
2014-01-01
Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change. PMID:27293662
Interpopulational variation in the cold tolerance of a broadly distributed marine copepod.
Wallace, Gemma T; Kim, Tiffany L; Neufeld, Christopher J
2014-01-01
Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change.
NASA Astrophysics Data System (ADS)
Xia, Jinjiao; Liang, Wenping; Miao, Qiang; Depla, Diederik
2018-05-01
The influence of the ratio between the energy and the deposition flux, or the energy per arriving atom, on the growth of Y2O3 sputter deposited thin films has been studied. The energy per arriving atom has been varied by the adjustment of the discharge power, and/or the target-to-substrate distance. The relationship between the energy per arriving atom and the phase evolution, grain size, microstructure, packing density and residual stress was investigated in detail. At low energy per arriving atom, the films consist of the monoclinic B phase with a preferential (1 1 1) orientation. A minority cubic C phase appears at higher energy per arriving atom. A study of the thin film cross sections showed for all films straight columns throughout the thickness, typically for a zone II microstructure. The intrinsic stress is compressive, and increases with increasing energy per atom. The same trend is observed for the film density. Simulations show that the momentum transfer per arriving atom also scales with the energy per arriving atom. Hence, the interpretation of the observed trends as a function of the energy per arriving atom must be treated with care.
NASA Technical Reports Server (NTRS)
Yuan, D. W.
1984-01-01
Magnetic anomalies of the South American continent are generally more positive and variable than the oceanic anomalies. There is better correlation between the magnetic anomalies and the major tectonic elements of the continents than between the anomalies and the main tectonic elements of the adjacent oceanic areas. Oceanic areas generally show no direct correlation to the magnetic anomalies. Precambrian continental shields are mainly more magnetic than continental basins and orogenic belts. Shields differ markedly from major aulacogens which are generally characterized by negative magnetic anomalies and positive gravity anomalies. The Andean orogenic belt shows rather poor correlation with the magnetic anomalies. The magnetic data exhibit instead prominent east-west trends, which although consistent with some tectonic features, may be related to processing noise derived from data reduction procedures to correct for external magnetic field effects. The pattern over the Andes is sufficiently distinct from the generally north trending magnetic anomalies occurring in the adjacent Pacific Ocean to separate effectively the leading edge of the South American Plate from the Nazea Plate. Eastern South America is characterized by magnetic anomalies which commonly extend across the continental margin into the Atlantic Ocean.
Observed and Simulated Urban Heat Island and Urban Cool Island in Las Vegas
NASA Astrophysics Data System (ADS)
Sauceda, Daniel O.
This research investigates the urban climate of Las Vegas and establishes long-term trends relative to the regional climate in an attempt to identify climate disturbances strictly related to urban growth. An experimental surface station network (DRI-UHI) of low-cost surface temperature (T2m) and relative humidity (RH) sensors were designed to cover under-sampled low-intensity residential urban areas, as well as complement the in-city and surrounding rural areas. In addition to the analysis of the surface station data, high-resolution gridded data products (GDPs) from Daymet (1km) and PRISM (800 m) and results from numerical simulations were used to further characterize the Las Vegas climate trends. The Weather Research and Forecasting (WRF) model was coupled with three different models: the Noah Land Surface Model (LSM) and a single- and multi-layer urban canopy model (UCM) to assess the urban related climate disturbances; as well as the model sensitivity and ability to characterize diurnal variability and rural/urban thermal contrasts. The simulations consisted of 1 km grid size for five, one month-long hindcast simulations during November of 2012: (i) using the Noah LSM without UCM treatment, (ii) same as (i) with a single-layer UCM (UCM1), (iii) same as (i) with a multi-layer UCM (UCM2), (iv) removing the City of Las Vegas (NC) and replacing it with predominant land cover (shrub), and (v) same as (ii) with increasing the albedo of rooftops from 0.20 to 0.65 as a potential adaptation scenario known as "white roofing". T2m long-term trends showed a regional warming of minimum temperatures (Tmin) and negligible trends in maximum temperatures (Tmax ). By isolating the regional temperature trends, an observed urban heat island (UHI) of ~1.63°C was identified as well as a daytime urban cool island (UCI) of ~0.15°C. GDPs agree with temperature trends but tend to underpredict UHI intensity by ~1.05°C. The WRF-UCM showed strong correlations with observed T2m (0.85 < rho < 0.95) and vapor pressure (ea ; 0.83 < rho < 0.88), and moderate-to-strong correlations for RH (0.64 < rho < 0.81) at the 95% confidence level. UCM1 shows the best skill and adequately simulates most of the UHI and UCI observed characteristics. Differences of LSM, UCM1, and UCM2 minus NC show simulated effects of warmer in-city Tmin for LSM and UCM2, and cooler in-city Tmax for UCM1 and UCM2. Finally, the white roofing scenario for Las Vegas was not found to significantly impact the UHI effect but has the potential to reduce daytime temperature by 1°-2°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenzhi; Jia, Min; Wang, Genxu
Tree radial growth is expected to increase at higher elevations under climate warming, while lower elevation tree growth is expected to decline. However, numerous studies have found tree radial growth responds consistently to climate along elevational gradients. Here, we sampled five plots across the subalpine Abies fabri forest belt on Gongga Mountain in the eastern Tibetan Plateau to determine tree radial growth trends and responses to climate. Three commonly used detrending methods all consistently showed that tree radial growth at high elevation (> 3100 m) increased, while tree growth declined at the lower elevations (2700 m–2900 m) over the lastmore » three decades. Increasing late-growing season temperature positively (p < 0.05) correlated to tree radial growth at higher elevations, but the sign of this relationship reversed to become negative at lower elevations. Moving-window correlation analyses indicated the difference between high and low elevations response to temperature variation increased strongly with warming. Placing our result into the global context, 62% of 39 published studies found that trees along elevation gradients respond divergently to warming, and that these are located in warmer and wetter regions of the Earth. Notably, 28% of studies found non-significant responses to temperature at both high and low elevations. Our findings in the subalpine mountain forest in the eastern Tibetan Plateau were consistent with the majority of published datasets, and imply increasing temperature benefit for tree populations at higher elevation, while warming dampens growth at lower elevations.« less
Modeling the long-term deposition trends in US over 1990 ...
Reactive nitrogen (Nr) is very important pollutant which at the same time plays a very important role on air and water quality, human health and biological diversity. The atmospheric nitrogen deposition can cause acidification and excess eutrophication, which brings damages to the ecosystems. Quantifying the total deposition is US is still a challenge due to the lack of the long-term observation data for the dry deposition. For this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate deposition changes in US over 1990—2010. The WRF-CMAQ model was run for the continental US using a 36km by 36km horizontal grid spacing, by using a consistent emission inventory recently developed by Jia et al., (2013). We found significant decreasing trend for the total inorganic nitrogen over the East and West coast of California, and increasing trend in the East North Central. The decreased total deposition was controlled by the oxidized nitrogen, as a result of the recent consistent NOx emission reductions due to air regulations such as the Clean Air Act and the NOx State Implementation Plan, consistent with other studies (Li et al., 2016; Schwede and Lear, 2014). The increased inorganic nitrogen deposition was dominated by the reduced nitrogen, which was attributed to the unregulated increasing ammonia (NH3) emissions. The dry and wet inorganic nitrogen deposition trends also have a different spatial patterns: wet deposition was decreasi
Using exogenous variables in testing for monotonic trends in hydrologic time series
Alley, William M.
1988-01-01
One approach that has been used in performing a nonparametric test for monotonic trend in a hydrologic time series consists of a two-stage analysis. First, a regression equation is estimated for the variable being tested as a function of an exogenous variable. A nonparametric trend test such as the Kendall test is then performed on the residuals from the equation. By analogy to stagewise regression and through Monte Carlo experiments, it is demonstrated that this approach will tend to underestimate the magnitude of the trend and to result in some loss in power as a result of ignoring the interaction between the exogenous variable and time. An alternative approach, referred to as the adjusted variable Kendall test, is demonstrated to generally have increased statistical power and to provide more reliable estimates of the trend slope. In addition, the utility of including an exogenous variable in a trend test is examined under selected conditions.
Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes
NASA Astrophysics Data System (ADS)
Zhao, Bin; Jiang, Jonathan H.; Gu, Yu; Diner, David; Worden, John; Liou, Kuo-Nan; Su, Hui; Xing, Jia; Garay, Michael; Huang, Lei
2017-05-01
Understanding long-term trends in aerosol loading and properties is essential for evaluating the health and climatic effects of these airborne particulates as well as the effectiveness of pollution control policies. While many studies have used satellite data to examine the trends in aerosol optical depth (AOD), very few have investigated the trends in aerosol properties associated with particle size, morphology, and light absorption. In this study, we investigate decadal-scale (13-15 year) trends in aerosol loading and properties during 2001-2015 over three populous regions: the Eastern United States (EUS), Western Europe (WEU), and Eastern and Central China (ECC). We use observations from MISR (Multi-angle Imaging SpectroRadiometer) and MODIS (Moderate resolution Imaging Spectroradiometer). Relationships between aerosol property trends and air pollutant emission changes are examined. We find that annual mean AOD shows pronounced decreasing trends over EUS and WEU regions, as a result of considerable emission reductions in all major pollutants except for mineral dust and ammonia (NH3). Over the ECC region, AOD increases before 2006 due to emission increases induced by rapid economic development, fluctuates between 2006 and 2011, and subsequently decreases after 2011 in conjunction with effective emission reduction in anthropogenic primary aerosols, sulfur dioxide (SO2), and nitrogen oxides (NOx). The fraction of small-size AOD (<0.7 μm diameter), Ångstrom exponent and single-scattering albedo have generally decreased, while the fractions of large-size (>1.4 μm diameter), nonspherical and absorbing AOD have generally shown increasing trends over EUS and WEU regions, indicating that fine and light-scattering aerosol constituents have been more effectively reduced than coarse and light-absorbing constituents. These trends are consistent with the larger reduction ratios in SO2 and NOx emissions than in primary aerosols, including mineral dust and black carbon (BC). Over the ECC region, no significant trends are observed with respect to size distribution, morphology, or light absorption, which we attribute to a simultaneous increase in emissions of SO2, NOx, and primary aerosols including BC before 2006, and a simultaneous decrease after 2011. This study demonstrates the importance and usefulness of satellite-borne sensors, particularly MISR, in association with evaluating the effectiveness of air pollution control policies.
Abwender, D A; Hough, K
2001-10-01
The authors examined the effects of interactions (a) between defendant attractiveness and juror gender and (b) between defendant race and juror race on judgment and sentencing among 207 Black, Hispanic, and White participants in the United States. After reading a vehicular-homicide vignette in which the defendant's attractiveness and race varied, the participants rated guilt and recommended sentences. The women treated the unattractive female defendant more harshly than they treated the attractive female defendant; the men showed an opposite tendency. The Black participants showed greater leniency when the defendant was described as Black rather than White. The Hispanic participants showed an opposite trend, and the White participants showed no race-based leniency. The findings on racial effects were consistent (a) with in-group favorability bias among the Black participants and (b) with attribution effects unrelated to race among the White participants.
Change in Unusually Hot and Cold Temperatures in the Contiguous 48 States, 1948-2015
This map shows trends in unusually hot and cold temperatures at individual weather stations that have operated consistently since 1948. In this case, the term ??unusually hot?? refers to a daily maximum temperature that is hotter than the 95th percentile temperature during the 1948??2015 period. Thus, the maximum temperature on a particular day at a particular station would be considered ??unusually hot?? if it falls within the warmest 5 percent of measurements at that station during the 1948??2015 period. The map shows changes in the total number of days per year that were hotter than the 95th percentile. Red upward-pointing symbols show where these unusually hot days are becoming more common. Blue downward-pointing symbols show where unusually hot days are becoming less common. For more information: www.epa.gov/climatechange/science/indicators
Lytic to temperate switching of viral communities
NASA Astrophysics Data System (ADS)
Knowles, B.; Silveira, C. B.; Bailey, B. A.; Barott, K.; Cantu, V. A.; Cobián-Güemes, A. G.; Coutinho, F. H.; Dinsdale, E. A.; Felts, B.; Furby, K. A.; George, E. E.; Green, K. T.; Gregoracci, G. B.; Haas, A. F.; Haggerty, J. M.; Hester, E. R.; Hisakawa, N.; Kelly, L. W.; Lim, Y. W.; Little, M.; Luque, A.; McDole-Somera, T.; McNair, K.; de Oliveira, L. S.; Quistad, S. D.; Robinett, N. L.; Sala, E.; Salamon, P.; Sanchez, S. E.; Sandin, S.; Silva, G. G. Z.; Smith, J.; Sullivan, C.; Thompson, C.; Vermeij, M. J. A.; Youle, M.; Young, C.; Zgliczynski, B.; Brainard, R.; Edwards, R. A.; Nulton, J.; Thompson, F.; Rohwer, F.
2016-03-01
Microbial viruses can control host abundances via density-dependent lytic predator-prey dynamics. Less clear is how temperate viruses, which coexist and replicate with their host, influence microbial communities. Here we show that virus-like particles are relatively less abundant at high host densities. This suggests suppressed lysis where established models predict lytic dynamics are favoured. Meta-analysis of published viral and microbial densities showed that this trend was widespread in diverse ecosystems ranging from soil to freshwater to human lungs. Experimental manipulations showed viral densities more consistent with temperate than lytic life cycles at increasing microbial abundance. An analysis of 24 coral reef viromes showed a relative increase in the abundance of hallmark genes encoded by temperate viruses with increased microbial abundance. Based on these four lines of evidence, we propose the Piggyback-the-Winner model wherein temperate dynamics become increasingly important in ecosystems with high microbial densities; thus ‘more microbes, fewer viruses’.
Change in Reported Lyme Disease Incidence in the Northeast and Upper Midwest, 1991-2014
This indicator shows how reported Lyme disease incidence has changed by state since 1991, based on the number of new cases per 100,000 people. The total change has been estimated from the average annual rate of change in each state. This map is limited to the 14 states where Lyme disease is most common, where annual rates are consistently above 10 cases per 100,000. Connecticut, New York, and Rhode Island had too much year-to-year variation in reporting practices to allow trend calculation. For more information: www.epa.gov/climatechange/science/indicators