Relationship Between Metabolic Rate and Sea Depth in Bivalves and Gastropods
NASA Astrophysics Data System (ADS)
Ruiz, B. R.; Shih, B.; Heim, N.; Payne, J.
2016-12-01
The purpose of this study was to find and observe trends in the metabolic rate of bivalves and gastropod in regards to sea depth in order to see if all organisms follow a general trend for metabolism and to provide data to help future conservation efforts of these keystone organisms. Using geographic data produced by McClain et. al (2012) and body size data from Heim et. al (2015), the metabolic rate and sea depth data were plotted using the `R statistical software'. The Pearson correlation test was performed on each respective graph. Deep sea mollusks were considered those that resided at a water depth of 500 meters or deeper while shallow mollusks resided at a depth less than 500 meters. The gastropods showed positive correlations in the relationship between metabolic rate and ocean depth while bivalves showed a negative trend. When the metabolic rate versus minimum ocean depth was graphed, the graphs for deep bivalves and shallow gastropods returned bad p-values. From this data, it can be seen that water depth and metabolic rate have relationships, although different molluscan classes are adapted to their environments in different ways, as seen by the differences in the relationships between metabolic rates and ocean depth of the gastropods and bivalves. The results indicated that there is a general negative trend between metabolic rate and ocean depth of bivalves, and a positive relationship for gastropods. The difference in relationship in gastropods is thought to be attributed to the size trends of gastropods as they live in deeper waters, which is that gastropods increase in size across the bathyal region, and decrease as gastropods approach the extremely deep water. As displayed by the two different metabolic trends, this study shows the different ways molluscan classes have adapted to different evolutionary selection pressures.
Influence of water depth on energy expenditure during aquatic walking in people post stroke.
Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou
2018-05-11
This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p < .05). The participants demonstrated reduction in all variables as the water depth increased from thigh depth to chest depth. Significantly higher values in EE and VO 2 were found when the water depth increased from waist depth to chest depth. However, no significant difference was found in all variables between thigh-depth and waist-depth walking. Only thigh-depth walking revealed significant differences when compared with land walking in all variables. People post stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.
In vivo facial tissue depth for Canadian aboriginal children: a case study from Nova Scotia, Canada.
Peckmann, Tanya R; Manhein, Mary H; Listi, Ginesse A; Fournier, Michel
2013-11-01
This study examines facial tissue depth in Canadian Aboriginal children. Using ultrasound, measurements were taken at 19 points on the faces of 392 individuals aged 3-18 years old. The relationships between tissue thickness, age, and sex were investigated. A positive linear trend may exist between tissue thickness and age for Aboriginal females and males at multiple points. No points show significant differences in facial tissue depth between males and females aged 3-8 years old; seven points show significant differences in facial tissue depth between males and females aged 9-13 years old; and five points show significant differences in facial tissue depth between males and females aged 14-18 years old. Comparisons were made with White Americans and African Nova Scotians. These data can assist in 3-D facial reconstructions and aid in establishing an individual's identity. Previously, no data existed for facial tissue thickness in Canadian Aboriginal populations. © 2013 American Academy of Forensic Sciences.
Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos
2018-01-16
The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.
Body and blubber relationships in antarctic pack ice seals: implications for blubber depth patterns.
Castellini, M A; Trumble, S J; Mau, T L; Yochem, P K; Stewart, B S; Koski, M A
2009-01-01
Morphometrics and blubber depths from all four high Antarctic seals (Weddell, Ross, crabeater, and leopard) were obtained during a midsummer research cruise in the Ross Sea as the physiological ecology component of the U.S. Antarctic Pack Ice Seals project. These data are the only in vivo measurements of all four species from the same location and time of year and focused on variances in morphometrics and blubber depth related to species, sex, and age. By controlling for location and season, this cross-species design provided the means to differentiate how blubber mass might be influenced in these groups. We measured both absolute blubber depth and ratio of blubber depth to body core diameter. We found that adult and younger animals showed differences in blubber depth, but male versus female seals did not show differences within any given species. However, when compared across species, the ratio of blubber ring depth to body core diameter suggests that adult Weddell seals differ in their use of blubber compared with the other three species. We propose that this difference in blubber pattern is most likely related to Weddell nutritional requirements during the breeding season having a greater influence on blubber depth than thermal requirements when compared with the other three species.
The Vertical Dynamics of Larval Chironomids on Artificial Substrates in Lake Lido (Bogor, Indonesia)
Wardiatno, Yusli; Krisanti, Majariana
2013-01-01
The composition and abundance of chironomid larval communities was studied on artificial substrates in Lido Lake, located in Bogor, West Java, Indonesia. The lake is organically enriched as a result of fish farming activity. Seventy two artificial substrates were deployed at three depths (2.0, 3.5 and 5.0 m) at two sites: a cage culture site and a non-cage culture site (control). Larval chironomid larvae were collected 7, 14, 28 and 56 days after the artificial substrates were deployed. In addition, selected physical and chemical parameters of the water were simultaneously measured. Three chironomid subfamilies, the Chironominae, Tanypodinae and Orthocladiinae, were found at both sites. At the cage culture site, both diversity and total abundance were significantly higher at the 2.0 and 3.5 m depths than at the 5.0 m depth, but this was not the case at the non-cage culture site. Based on pooling of the data from all depths, a Mann-Whitney U test showed that the non-cage culture site had a significantly higher diversity and total abundance than the cage culture site. Dissolved oxygen (DO) and turbidity showed significant differences between the 2.0 m depth and the 2 greater depths at the cage culture site, whereas none of the environmental parameters showed significant differences among the three depths at the non-cage culture site. A comparison of the environmental parameters at the same depth at the two sites showed significant differences in turbidity, pH and DO. A Spearman rank correlation analysis at the cage culture site showed that abundance and DO were positively correlated, whereas abundance and turbidity were negatively correlated. However, only pH was negatively correlated with abundance at the non-cage culture site. PMID:24575246
Neuromuscular responses during aquatic resistance exercise with different devices and depths.
Colado, Juan C; Borreani, Sebastien; Pinto, Stephanie Santana; Tella, Victor; Martin, Fernando; Flandez, Jorge; Kruel, Luiz F
2013-12-01
Little research has been reported regarding the effects of using different devices and immersion depths during the performance of resistance exercises in a water environment. The purpose of this study was to compare muscular activation of upper extremity and core muscles during shoulder extensions performed at maximum velocity with different devices and at different depths. Volunteers (N = 24) young fit male university students performed 3 repetitions of shoulder extensions at maximum velocity using 4 different devices and at 2 different depths. The maximum amplitude of the electromyographic root mean square of the latissimus dorsi (LD), rectus abdominis, and erector lumbar spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction. No significant (p > 0.05) differences were found in the neuromuscular responses between the different devices used during the performance of shoulder extension at xiphoid process depth. Regarding the comparisons of muscle activity between the 2 depths analyzed in this study, only the LD showed a significantly (p ≤ 0.05) higher activity at the xiphoid process depth compared with that at the clavicle depth. Therefore, if maximum muscle activation of the extremities is required, the xiphoid depth is a better choice than clavicle depth, and the kind of device is not relevant. Regarding core muscles, neither the kind of device nor the immersion depth modifies muscle activation.
Root carbon decomposition and microbial biomass response at different soil depths
NASA Astrophysics Data System (ADS)
Rumpel, C.
2012-12-01
The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 < 90 < 60 cm). Its composition was soil depth independent suggesting that microbial communities in all three soil depths had similar degradation abilities. Microbial biomass C and fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.
Sampaio, Camila S; Atria, Pablo J; Rueggeberg, Frederick A; Yamaguchi, Satoshi; Giannini, Marcelo; Coelho, Paulo G; Hirata, Ronaldo; Puppin-Rontani, Regina M
2017-07-01
To evaluate the effect of light-curing wavelengths on composite filler particle displacement, and thus to visualize localized polymerization shrinkage in a resin-based composite (RBC) containing camphorquinone (CQ) and Lucirin TPO (TPO). Three light-curing units (LCUs) were used to light-cure a RBC containing CQ and TPO: a violet-only, a blue-only, and a dual-wavelength, conventional (Polywave ® , emitting violet and blue wavelengths simultaneously). Zirconia fillers were added to the RBC to act as filler particle displacement tracers. LCUs were characterized for total emitted power (mW) and spectral irradiant output (mW/cm 2 /nm). 2-mm high, 7-mm diameter silanized glass cylindrical specimens were filled in a single increment with the RBC, and micro-computed tomography (μ-CT) scans were obtained before and after light-curing, according to each LCU (n=6). Filler particle movement identified polymerization shrinkage vectors, traced using software, at five depths (from 0 up to 2mm): top, top-middle, middle, middle-bottom and bottom. Considering different RBC depths within the same LCU, use of violet-only and conventional LCUs showed filler particle movement decreased with increased depth. Blue-only LCU showed homogeneous filler particle movement along the depths. Considering the effect of different LCUs within the same depth, filler particle movement within LCUs was not statistically different until the middle of the samples (P>.05). However, at the middle-bottom and bottom depths (1.5 and 2mm, respectively), blue-only LCU compared to violet-only LCU showed higher magnitude of displacement vector values (P<.05). Use of the conventional LCU showed filler displacement magnitudes that were not significantly different than blue-only and violet-only LCUs at any depth (P>.05). With respect to the direction of particle movement vectors, use of violet-only LCU showed a greater displacement when close to the incident violet LED; blue-only LCU showed equally distributed particle displacement values within entire depth among the samples; and the conventional LCU showed greater filler displacement closer to the blue LED locations. Filler particle displacement in a RBC as a result of light-curing is related to localized application of light wavelength and total emitted power of the light emitted on the top surface of the RBC. When the violet LED is present (violet-only and conventional LCUs), filler particle displacement magnitude decreased with increased depth, while results using the blue-only LED show a more consistent pattern of displacement. Clinically, these results correlate to production of different characteristics of curing within a RBC restoration mass, depending on localized wavelengths applied to the irradiated surface. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
In vivo facial tissue depth for Canadian Mi'kmaq adults: a case study from Nova Scotia, Canada.
Peckmann, Tanya R; Harris, Mikkel; Huculak, Meaghan; Pringle, Ashleigh; Fournier, Michel
2015-01-01
This study examines facial tissue depth in Canadian Mi'kmaq adults. Using ultrasound, measurements were taken at 19 landmarks on the faces of 152 individuals aged 18-75 years old. The relationships between tissue thickness, age, and sex were investigated. A positive linear trend exists between tissue thickness and age for Mi'kmaq males and females at multiple landmarks. Seven landmarks show significant differences in facial tissue depth between males and females aged 18-34 years old; no landmarks show significant differences in facial tissue depth between males and females aged 35-45 years old and 46-55 years old. Significant differences were shown in facial tissue depth between Mi'kmaq and White Americans and Mi'kmaq and African Americans. These data can assist in 3-D facial reconstructions and aid in establishing the identity of unknown Mi'kmaq individuals. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
A weighted optimization approach to time-of-flight sensor fusion.
Schwarz, Sebastian; Sjostrom, Marten; Olsson, Roger
2014-01-01
Acquiring scenery depth is a fundamental task in computer vision, with many applications in manufacturing, surveillance, or robotics relying on accurate scenery information. Time-of-flight cameras can provide depth information in real-time and overcome short-comings of traditional stereo analysis. However, they provide limited spatial resolution and sophisticated upscaling algorithms are sought after. In this paper, we present a sensor fusion approach to time-of-flight super resolution, based on the combination of depth and texture sources. Unlike other texture guided approaches, we interpret the depth upscaling process as a weighted energy optimization problem. Three different weights are introduced, employing different available sensor data. The individual weights address object boundaries in depth, depth sensor noise, and temporal consistency. Applied in consecutive order, they form three weighting strategies for time-of-flight super resolution. Objective evaluations show advantages in depth accuracy and for depth image based rendering compared with state-of-the-art depth upscaling. Subjective view synthesis evaluation shows a significant increase in viewer preference by a factor of four in stereoscopic viewing conditions. To the best of our knowledge, this is the first extensive subjective test performed on time-of-flight depth upscaling. Objective and subjective results proof the suitability of our approach to time-of-flight super resolution approach for depth scenery capture.
Jiang, Hong; Du, Hongyu; Bai, Yingying; Hu, Yue; Rao, Yingfu; Chen, Chong; Cai, Yongli
2016-04-01
In order to study the effects of salinity on plant fine roots, we considered three different plant configuration modes (tree stand model (TSM), shrub stand model (SSM), and tree-shrub stand model (TSSM)). Soil samples were collected with the method of soil drilling. Significant differences of electrical conductivity (EC) in the soil depth of 0-60 cm were observed among the three modes (p < 0.05). In the above three modes, the variation of soil salinity among various soil layers and monthly variation of soil salinity were the highest in SSM and reached 2.30 and 2.23 mS/cm (EC1:5), respectively. Due to the effect of salinity, fine root biomass (FRB) showed significant differences in different soil depths (p < 0.05). More than 60% of FRB was concentrated in the soil depth above 30 cm. FRB showed exponential decline with soil depth (p < 0.05). FRB showed spatial heterogeneity in the 40-cm soil depth. In the above three modes, compared with FRB, specific root length (SRL) and fine root length density (FRLD) showed the similar changing trend. Fine roots showed significant seasonal differences among different modes (p < 0.05). FRB showed the bimodal variation and was the highest in July. However, we found that the high content of salts had obvious inhibitory effect on the distribution of FRB. Therefore, the salinity should be below 1.5 mS/cm, which was suitable for the growth of plant roots. Among the three modes, TSSM had the highest FRB, SRL, and FRLD and no obvious soil salt accumulation was observed. The results indicated that fine root biomass was affected by high salt and that TSSM had the strong effects of salt suppression and control. In our study, TSSM may be the optimal configuration mode for salt suppression and control in saline soil.
Focal depth measurement of scanning helium ion microscope
NASA Astrophysics Data System (ADS)
Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke
2014-07-01
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.
[Effect of different snow depth and area on the snow cover retrieval using remote sensing data].
Jiang, Hong-bo; Qin, Qi-ming; Zhang, Ning; Dong, Heng; Chen, Chao
2011-12-01
For the needs of snow cover monitoring using multi-source remote sensing data, in the present article, based on the spectrum analysis of different depth and area of snow, the effect of snow depth on the results of snow cover retrieval using normalized difference snow index (NDSI) is discussed. Meanwhile, taking the HJ-1B and MODIS remote sensing data as an example, the snow area effect on the snow cover monitoring is also studied. The results show that: the difference of snow depth does not contribute to the retrieval results, while the snow area affects the results of retrieval to some extents because of the constraints of spatial resolution.
Are face representations depth cue invariant?
Dehmoobadsharifabadi, Armita; Farivar, Reza
2016-06-01
The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition.
Fang, Feng; Wang, Lei; Xi, Xue-fei; Hu, Jia-jun; Fu, Xiao-hua; Lu, Bing; Xu, Dian-sheng
2015-05-01
The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth. The result showed that the PCFCs of NPMC in seawater with different depth were generally low and had no significant difference when using NaNO2 as the electron donor. The PCFC of NPMC in surface seawater was higher than that in deep seawater when using H2 as the electron donor, on the contrary, the PCFC of NPMC in deep seawater was higher than that in surface seawater when using Na2S2O3 as the electron donor. The abundance of the main CO2 fixation gene cbbL in surface seawater was higher than that in deep seawater while the cbbM gene abundance in deep seawater was higher than that in surface seawater. Most hydrogen-oxidizing bacteria had the cbbL gene, and most sulfur bacteria had the cbbM gene. The tendency of seawater cbbL/cbbM gene abundance with the change of depth revealed that there were different kinds of bacteria accounting for the majority in NPMC fixing CO2 at different depth of ocean, which led to different response of PCFC of NPMC at different depth of the sea to different electron donors. The distributions of dissolved oxygen and inorganic carbon concentration with the change of the depth of the sea might be an important reason leading to the difference of NPMC structure and even the difference of PCFC at different depth of the sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H; Sarkar, V; Rassiah-Szegedi, P
2014-06-01
Purpose: To investigate and report the discrepancy of scanned percent depth dose (PDD) for photon beams with physical wedge in place when using ion chambers with different sensitive volumes. Methods/Materials: PDD curves of open fields and physical wedged fields (15, 30, 45, and 60 degree wedge) were scanned for photon beams (6MV and 10MV, Varian iX) with field size of 5x5 and 10x10 cm using three common scanning chambers with different sensitive volumes - PTW30013 (0.6cm3), PTW23323 (0.1cm3) and Exradin A16 (0.007cm3). The scanning system software used was OmniPro version 6.2, and the scanning water tank was the Scanditronix Wellhoffermore » RFA 300.The PDD curves from the three chambers were compared. Results: Scanned PDD curves of the same energy beams for open fields were almost identical between three chambers, but the wedged fields showed non-trivial differences. The largest differences were observed between chamber PTW30013 and Exradin A16. The differences increased as physical wedge angle increased. The differences also increased with depth, and were more pronounced for 6MV beam. Similar patterns were shown for both 5x5 and 10x10 cm field sizes. For open fields, all PDD values agreed with each other within 1% at 10cm depth and within 1.62% at 20 cm depth. For wedged fields, the difference of PDD values between PTW30013 and A16 reached 4.09% at 10cm depth, and 5.97% at 20 cm depth for 6MV with 60 degree physical wedge. Conclusion: We observed a significant difference in scanned PDD curves of photon beams with physical wedge in place obtained when using different sensitive volume ion chambers. The PDD curves scanned with the smallest sensitive volume ion chamber showed significant difference from larger chamber results, beyond 10cm depth. We believe this to be caused by varying response to beam hardening by the wedges.« less
Analysis of influence of different pressure and different depth of pvd on soft foundation treatment
NASA Astrophysics Data System (ADS)
Li, Bin; Wang, XueKui
2018-02-01
According to the depth of plastic vertical drainage (pvd), the arrangement mode and the loading mode to analyze the influence of Vacuum preloading near the existing road. An arrangement mode of vacuum preloading to reduce the impact was put forward. The combination of different depth of pvd and loading modes are used to analyze the effect of vacuum preloading treatment and its influence range. The calculations show that the deformation and the influence distance are smaller by using the 40kPa vacuum loading and 41kPa surcharge load preloading. Reducing the depth of the pvd and vacuum combined surcharge preloading can weaken the influence to the existing highway.
Microbial community changes as a possible factor controlling carbon sequestration in subsoil
NASA Astrophysics Data System (ADS)
Strücker, Juliane; Jörgensen, Rainer Georg
2015-04-01
In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR was also able to differentiate between the two sites proves the assumption that resources are an important factor controlling the functional diversity of the microbial community, as abiotic factors are very similar for the two profiles, but the sites show a different depth gradient for SOC.
Message frames interact with motivational systems to determine depth of message processing.
Shen, Lijiang; Dillard, James Price
2009-09-01
Although several theoretical perspectives predict that negatively framed messages will be processed more deeply than positively framed messages, a recent meta-analysis found no such difference. In this article, the authors explore 2 explanations for this inconsistency. One possibility is methodological: the statistics used in the primary studies underestimated framing effects on depth of message processing because the data were maldistributed. The other is theoretical: the absence of a main effect is veridical, but framing interacts with individual differences that predispose individuals to greater or lesser depth of processing. Data from 2 experiments (Ns = 286 and 252) were analyzed via tobit regression, a technique designed to overcome the limitations of maldistributed data. One study showed the predicted main effect for framing, but the other did not. Both studies showed the anticipated interaction: Depth of processing correlated positively with a measure of the behavioral activation system in the advantage framing condition, whereas depth of processing correlated positively with the behavioral inhibition system in the disadvantage framing condition.
Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea
NASA Astrophysics Data System (ADS)
Bi, X.; Huang, J.; Gao, Z.; Liu, Y.
2017-12-01
This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.
Time-of-flight depth image enhancement using variable integration time
NASA Astrophysics Data System (ADS)
Kim, Sun Kwon; Choi, Ouk; Kang, Byongmin; Kim, James Dokyoon; Kim, Chang-Yeong
2013-03-01
Time-of-Flight (ToF) cameras are used for a variety of applications because it delivers depth information at a high frame rate. These cameras, however, suffer from challenging problems such as noise and motion artifacts. To increase signal-to-noise ratio (SNR), the camera should calculate a distance based on a large amount of infra-red light, which needs to be integrated over a long time. On the other hand, the integration time should be short enough to suppress motion artifacts. We propose a ToF depth imaging method to combine advantages of short and long integration times exploiting an imaging fusion scheme proposed for color imaging. To calibrate depth differences due to the change of integration times, a depth transfer function is estimated by analyzing the joint histogram of depths in the two images of different integration times. The depth images are then transformed into wavelet domains and fused into a depth image with suppressed noise and low motion artifacts. To evaluate the proposed method, we captured a moving bar of a metronome with different integration times. The experiment shows the proposed method could effectively remove the motion artifacts while preserving high SNR comparable to the depth images acquired during long integration time.
Validation of the Daily Passive Microwave Snow Depth Products Over Northern China
NASA Astrophysics Data System (ADS)
Qiao, D.; Li, Z.; Wang, N.; Zhou, J.; Zhang, P.; Gao, S.
2018-04-01
Passive microwave sensors have the capability to provide information on snow depth (SD), which is critically important for hydrological modeling and water resource management. However, the different algorithms used to produce SD products lead to discrepancies in the data. To determine which products might be most suitable for Northern China, this paper assesses the accuracy of the existing snow depth products in the period of 2002-2011. By comparing three daily snow depth products, including NSIDC, WESTDC and ESA Globsnow, with snow cover product and meteorological stations data, the accuracies of the different SD products are analyzed for different snow class and forest cover fraction. The results show that comparison between snow cover derived from snow depth of NSIDC, ESA GlobSnow and WESTDC with snow cover product shows that accuracy of WESTDC and ESA GlobSnow in snow cover detecting can reach 0.70. Compared to meteorological stations data below 20 cm, NSIDC consistently overestimate, WESTDC and ESA Globsnow underestimate, furthermore the product from WESTDC is superior to the others. The three products have the same tendency of significant undervaluation over 20 cm. The WESTDC is superior to the ESA Globsnow and NSIDC in non-forest regions, whereas the ESA GlobSnow estimate is superior to the WESTDC and NSIDC in forest regions. As for the prairie and alpine snow, WESTDC has smaller bias and RMSE, meanwhile Globsnow has advantages in the snow depth retrieval in tundra and taiga snow. Therefore, we should choose the more suitable snow depth products according to different needs.
The effect of glenoid cavity depth on rotator cuff tendinitis.
Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Sever, Cem; Kara, Adna; Mahirogulları, Mahir
2016-03-01
Some of the most important causes of shoulder pain are inflammation and degenerative changes in the rotator cuff (RC). Magnetic resonance imaging (MRI) is a noninvasive and safe imaging modality. MRI can be used for the evaluation of cuff tendinopathy. In this study, we evaluated the relationship between glenoid cavity depth and cuff tendinopathy and we investigated glenoid cavity depth on the pathogenesis of cuff tendinopathy. We retrospectively evaluated 215 patients who underwent MRI. Of these, 60 patients showed cuff tendinopathy (group A) and 54 patients showed no pathology (group B). Glenoid cavity depth was calculated in the coronal and transverse planes. The mean axial depth was 1.7 ± 0.9 and the mean coronal depth 3.8 ± 0.9, for group A. The mean axial depth was 3.5 ± 0.7 and the mean coronal depth 1.5 ± 0.8, for group B. There were significant differences in the axial and coronal depths between the two groups. High coronal and low axial depth of the glenoid cavity can be used to diagnose RC tendinitis.
The different behaviors of glyphosate and AMPA in compost-amended soil.
Erban, Tomas; Stehlik, Martin; Sopko, Bruno; Markovic, Martin; Seifrtova, Marcela; Halesova, Tatana; Kovaricek, Pavel
2018-09-01
The broad-spectrum herbicide glyphosate is one of the most widely used pesticides. Both glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), persist in waters; thus, their environmental fates are of interest. We investigated the influence of compost dose, sampling depth, moisture and saturated hydraulic conductivity (K s ) on the persistence of these substances. The amounts of AMPA quantified by triple quadrupole liquid chromatography-mass spectrometry (LC-QqQ-MS/MS) using isotopically labeled extraction standards were higher than those of glyphosate and differed among the samples. Both glyphosate and AMPA showed gradually decreasing concentrations with soil depth, and bootstrapped ANOVA showed significant differences between the contents of glyphosate and AMPA and their behavior related to different compost dosages and sampling depths. However, the compost dose alone did not cause significant differences among samples. Bayesian statistics revealed that the amounts of glyphosate and AMPA were both dependent on the sampling depth and compost dose, but differences were found when considering the physical factors of K s and moisture. Glyphosate was influenced by moisture but not K s , whereas AMPA was influenced by K s but not moisture. Importantly, we found behavioral differences between glyphosate and its major metabolite, AMPA, related to the physical properties of K s and moisture. Copyright © 2018 Elsevier Ltd. All rights reserved.
Focal depth measurement of scanning helium ion microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hongxuan, E-mail: Guo.hongxuan@nims.go.jp; Itoh, Hiroshi; Wang, Chunmei
2014-07-14
When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at differentmore » focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.« less
NASA Astrophysics Data System (ADS)
Gomez, C.; Quattrini, A.; Cordes, E. E.
2016-02-01
Deep-water corals represent abundant and highly diverse taxa with important functional and structural roles. Climate change can impact these ecological roles by altering coral community composition as response to changes in temperature, seawater chemistry, and food supply among other factors. Our aim is to understand processes of community assembly by integrating species' traits and environmental information into an evolutionary context. Particularly we examined whether depth and the factors that vary with it are important mechanisms in structuring deep-sea octocoral assemblages in the Gulf of Mexico. Collections were conducted on hardbottom from 250-2500 m depth across 27 sites using remotely operated vehicles. A total of 188 colonies spanning 54 different species where sampled from which 11 morphological traits were measured. The ensuing species-by-traits matrix was used as the basis for multivariate analyses performed on three different depth categories: 250-800 m, 800-1100 m, and 1100-2500 m. Principal coordinates analyses revealed that the traits of the octocoral community in the Gulf of Mexico segregate according to depth, where the first two components explained 79.8% of the variation in species' traits. Axis type (calcified - non-calcified), polyp shape and polyp retraction were highly correlated with PCo1, while polyp density, polyp arrangement (solitary - whorls), and type of sclerites were highly correlated with PCo2. Permutation tests showed statistical differences between depths (pseudo-F2,108=4.84, p<0.01), where the shallowest assemblage differed from the deepest one. Polyp size and inter-polyp distance showed significant positive relationships with depth, with higher variability in shallower communities, which highlight the labile nature of these traits. Functional diversity was higher in the shallowest and deepest depth zones; however, there was no significant difference (F2,32=1.33 p=0.27), suggesting that a wide range of traits are important in resource use and interacting with abiotic factors at the different depths. These results highlight the importance of including functional traits when attempting to make predictions of assembly mechanisms as well as for future responses of this significant taxonomic group as climate and ocean change progress.
NASA Astrophysics Data System (ADS)
Rosas, Pedro; Wagemans, Johan; Ernst, Marc O.; Wichmann, Felix A.
2005-05-01
A number of models of depth-cue combination suggest that the final depth percept results from a weighted average of independent depth estimates based on the different cues available. The weight of each cue in such an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be constructed from the available information. Here we test such models by using visual and haptic depth information. Different texture types produce differences in slant-discrimination performance, thus providing a means for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results show that the weights for the cues were generally sensitive to their reliability but fell short of statistically optimal combination - we find reliability-based reweighting but not statistically optimal cue combination.
Applications of just-noticeable depth difference model in joint multiview video plus depth coding
NASA Astrophysics Data System (ADS)
Liu, Chao; An, Ping; Zuo, Yifan; Zhang, Zhaoyang
2014-10-01
A new multiview just-noticeable-depth-difference(MJNDD) Model is presented and applied to compress the joint multiview video plus depth. Many video coding algorithms remove spatial and temporal redundancies and statistical redundancies but they are not capable of removing the perceptual redundancies. Since the final receptor of video is the human eyes, we can remove the perception redundancy to gain higher compression efficiency according to the properties of human visual system (HVS). Traditional just-noticeable-distortion (JND) model in pixel domain contains luminance contrast and spatial-temporal masking effects, which describes the perception redundancy quantitatively. Whereas HVS is very sensitive to depth information, a new multiview-just-noticeable-depth-difference(MJNDD) model is proposed by combining traditional JND model with just-noticeable-depth-difference (JNDD) model. The texture video is divided into background and foreground areas using depth information. Then different JND threshold values are assigned to these two parts. Later the MJNDD model is utilized to encode the texture video on JMVC. When encoding the depth video, JNDD model is applied to remove the block artifacts and protect the edges. Then we use VSRS3.5 (View Synthesis Reference Software) to generate the intermediate views. Experimental results show that our model can endure more noise and the compression efficiency is improved by 25.29 percent at average and by 54.06 percent at most compared to JMVC while maintaining the subject quality. Hence it can gain high compress ratio and low bit rate.
NASA Astrophysics Data System (ADS)
Pajuelo, J. G.; Seoane, J.; Biscoito, M.; Freitas, M.; González, J. A.
2016-12-01
The structure and composition of deep-sea fish assemblages living on the middle slope off NW Africa (26-33° N) were investigated. Data were collected by six commercial trawlers during experimental fishing (1027 hauls) at depths between 800 and 1515 m. A total of 1,115,727 fish specimens, belonging to 37 families and 96 species (24 Elasmobranchii, 5 Holocephali, and 67 Actinopteri) were collected with bottom trawls. The deep-sea demersal fish fauna off NW Africa is dominated by fishes of the family Macrouridae, followed by the Moridae and Alepocephalidae families. The main abundant species were Trachyrincus scabrus, Bathygadus favosus, Mora moro, Alepocephalus productus, Nezumia aequalis and Bathygadus melanobranchus. PERMANOVA analysis showed differences in demersal fish assemblages among bottom types, depth strata and between areas (north and south of parallel 30° N), with the area being the most influential factor followed by the type of substrate. PERMANOVAs computed separately for each area showed significant differences among the bottom types and depths in both areas. SIMPER analysis revealed that B. melanobranchus and B. favosus, which occurred at higher abundances in the area ≥30° N, were the species that were best discriminated between areas; whilst T. scabrus and M. moro occurred at higher abundances in the area <30° N. N. aequalis, B. favosus, B. melanobranchus, Deania hystricosa, Aphanopus intermedius, Coelorinchus labiatus and Halosaurus johnsonianus were restricted or more abundant in the area ≥30° N, and functioned as the discriminating species that most contributed to the average dissimilarity between areas. T. scabrus, M. moro, Alepocephalus productus and Alepocephalus bairdii were more abundant in the area <30° N. The standardized mean abundance (in number of individuals/km2) showed a decreasing pattern: i) with depth in both areas, north and south of parallel 30° N, and ii) with depth on each type of substrate, except on cold coral bottoms. Hydrolagus mirabilis, Gadomus dispar, Nettastoma melanurum, Halosaurus ovenii, Chimaera opalescens, A. productus, Hoplostethus mediterraneus, Apristurus laurussonii and Trachyscorpia cristulata echinata showed a deeper Center of Gravity at latitudes ≥30° N, with differences in depths from 299 to 110 m compared to the area at latitudes <30° N. T. scabrus, Anoplogaster cornuta, B. favosus, Centrophorus squamosus, B. melanobranchus and A. bairdii showed a similar depth Center of Gravity, with differences in depths lower than 21 m.
[Study on good agricultural practice for Tulipa edulis--planting density and sowing depth tests].
Bing, Qi-Zhong; Zhang, Ben-Gang; Zhang, Zhao; Chen, Zi-Hong
2008-11-01
To study optimum planting density and sowing depth of Tulipa edulis. The effects of different planting densities, sowing depth and thin plastic film cover were studied on yield, rate of increase, bulb weight increased multiples, and proliferation rate of bulb. Under 30-200 bulbs per squremeter density range, the yield increased with the density increasing, and reached significance level. In 5-20 centimeter depth range, the yield and the number of harvested bulbs enhanced along with the sowing depth increasing, and the best sowing depth was 20 cm. Thin plastic film cover showed no effect on the growth.
Neural correlates of monocular and binocular depth cues based on natural images: a LORETA analysis.
Fischmeister, Florian Ph S; Bauer, Herbert
2006-10-01
Functional imaging studies investigating perception of depth rely solely on one type of depth cue based on non-natural stimulus material. To overcome these limitations and to provide a more realistic and complete set of depth cues natural stereoscopic images were used in this study. Using slow cortical potentials and source localization we aimed to identify the neural correlates of monocular and binocular depth cues. This study confirms and extends functional imaging studies, showing that natural images provide a good, reliable, and more realistic alternative to artificial stimuli, and demonstrates the possibility to separate the processing of different depth cues.
Brazeau, Daniel A; Lesser, Michael P; Slattery, Marc
2013-01-01
Mesophotic coral reefs (30-150 m) have recently received increased attention as a potential source of larvae (e.g., the refugia hypothesis) to repopulate a select subset of the shallow water (<30 m) coral fauna. To test the refugia hypothesis we used highly polymorphic Amplified Fragment Length Polymorphism (AFLP) markers as a means to assess small-scale genetic heterogeneity between geographic locations and across depth clines in the Caribbean coral, Montastraea cavernosa. Zooxanthellae-free DNA extracts of coral samples (N = 105) were analyzed from four depths, shallow (3-10 m), medium (15-25 m), deep (30-50 m) and very deep (60-90 m) from Little Cayman Island (LCI), Lee Stocking Island (LSI), Bahamas and San Salvador (SS), Bahamas which range in distance from 170 to 1,600 km apart. Using AMOVA analysis there were significant differences in ΦST values in pair wise comparisons between LCI and LSI. Among depths at LCI, there was significant genetic differentiation between shallow and medium versus deep and very deep depths in contrast there were no significant differences in ΦST values among depths at LSI. The assignment program AFLPOP, however, correctly assigned 95.7% of the LCI and LSI samples to the depths from which they were collected, differentiating among populations as little as 10 to 20 m in depth from one another. Discriminant function analysis of the data showed significant differentiation among samples when categorized by collection site as well as collection depth. FST outlier analyses identified 2 loci under positive selection and 3 under balancing selection at LCI. At LSI 2 loci were identified, both showing balancing selection. This data shows that adult populations of M. cavernosa separated by depths of tens of meters exhibits significant genetic structure, indicative of low population connectivity among and within sites and are not supplying successful recruits to adjacent coral reefs less than 30 m in depth.
Tserpes, George; Lampadariou, Nikolaos; Stergiou, Kostantinos I.
2017-01-01
Knowledge on biodiversity patterns of demersal megafaunal species in the Mediterranean and particularly in its eastern basin is still very scarce. In the present study, fine-scale diversity patterns in relation to depth were analyzed for three major megafaunal groups (fish, cephalopods and crustaceans) in three subareas of the eastern Mediterranean (Crete, Cyclades and Dodecanese islands). The analysis was based on data from the Mediterranean International Trawl Survey conducted during 2005–2014 and the relationship between depth and two different diversity measures (species richness and Shannon-Weaver) was examined using Generalized Additive Modeling (GAM) techniques. Species richness of fish decreased with depth in two of the three subareas (Cyclades, Dodecanese), while the opposite was true for crustaceans in all subareas. Cephalopods had higher species richness at intermediate depths, near the shelf break. Significant differences among subareas were found, with Crete showing a distinct species richness-depth pattern, which was more obvious for fish and cephalopods. The differences among subareas were also highlighted based on the occurrence of alien species of Indo-Pacific origin, which were more frequent in Crete. Our results suggested that the importance of depth-related factors in structuring communities was higher for cephalopods and less important for fish, and that Crete showed a distinct diversity-depth relationship, a fact that can be attributed to its specific geographical and oceanographic characteristics. These results support the current GFCM/FAO’s characterization of Crete as a unique geographic subarea. The findings of the study contribute to understanding the causes of underlying diversity patterns and would assist various environmental management actions, particularly those related to the establishment of marine-protected areas. PMID:28873395
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkhatib, H; Oves, S; Gebreamlak, W
Purpose: To investigate discrepancies between measured percent depth dose curves of a linear accelerator at depths beyond the commissioning data and those generated by the treatment planning system (TPS) via extrapolation. Methods: Relative depth doses were measured on an Elekta Synergy™ linac for photon beams of 6 -MV and 10-MV. SSDs for all curves were 100-cm and field sizes ranged from 4×4 to 35×35-cm{sup 2}. As most scanning tanks cannot provide depths greater than about 30-cm, percent depth dose measurements, extending 45-cm depths, were performed in Solid Water™ using a 0.125-cc ionization chamber (PTW model TN31012). The buildup regions ofmore » the curves were acquired with a parallel plate chamber (PTW model TN34001). Extrapolated curves were generated by the TPS (Phillips Pinnacle{sup 3} v. 9.6) by applying beams to CT images of 50-cm of Solid Water™ with density override set to 1.0-g/cc. Results: Percent difference between the two sets of curves (measured and TPS) was investigated. There is significant discrepancy in the buildup region to a depth of 7-mm. Beyond this depth, the two sets show good agreement. When analyzing the tail end of the curves, we saw percent difference of between 1.2% and 3.2%. The highest disagreement for the 6-MV curves was 10×10-cm{sup 2} (3%) and for the 10-MV curves it was the 35×35-cm{sup 2} (3.2%). Conclusion: A qualitative analysis of the measured data versus PDD curves generated by the TPS shows generally good agreement beyond 1-cm. However, a measurable percent difference was observed when comparing curves at depths beyond that provided by the commissioning data and at depths in the buildup region. Possible explanations for this include inaccuracies in modeling of the Solid Water™ or drift in beam energy since commissioning. Additionally, closer attention must be paid for measurements in the buildup region.« less
Sensitivity of high-frequency Rayleigh-wave data revisited
Xia, J.; Miller, R.D.; Ivanov, J.
2007-01-01
Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.
[A snow depth inversion method for the HJ-1B satellite data].
Dong, Ting-Xu; Jiang, Hong-Bo; Chen, Chao; Qin, Qi-Ming
2011-10-01
The importance of the snow is self-evident, while the harms caused by the snow have also received more and more attention. At present, the retrieval of snow depth mainly focused on the use of microwave remote sensing data or a small amount of optical remote sensing data, such as the meteorological data or the MODIS data. The small satellites for environment and disaster monitoring of China are quite different form the meteorological data and MODIS data, both in the spectral resolution or spatial resolution. In this paper, aimed at the HJ-1B data, snow spectral of different underlying surfaces and depths were surveyed. The correlation between snow cover index and snow depth was also analyzed to establish the model for the snow depth retrieval using the HJ-1B data. The validation results showed that it can meet the requirements of real-time monitoring the snow depth on the condition of conventional snow depth.
Characterization of the phantom material virtual water in high-energy photon and electron beams.
McEwen, M R; Niven, D
2006-04-01
The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (<0.2%) between water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.
NASA Astrophysics Data System (ADS)
Mateu, Paula; Montero, Francisco E.; Carrassón, Maite
2014-05-01
This study examines the parasite fauna of Bathypterois mediterraneus, the most common fish below 1500 m in Western Mediterranean waters. Samples were obtained during July 2010 from the continental slope of two different areas (off Catalonia and Balearic Islands) in three different bathymetric strata at depths between 1000 and 2200 m. The parasite fauna of B. mediterraneus included a narrow range of species: Steringophorus cf. dorsolineatum, Scolex pleuronectis, Hysterothylacium aduncum, Anisakis sp. larva 3 type II and Sarcotretes sp. Steringophorus cf. dorsolineatum and H. aduncum were the most predominant parasites. H. aduncum showed significant differences in abundance between depths of 2000-2200 m with 1000-1400 m and 1400-2000 m, irrespective of locality, whereas S. cf. dorsolineatum showed significant differences between the two localities at all depths except for 2000-2200 m. We suggest the possible usefulness of these two parasites as geographical indicators for discriminating discrete stocks of B. mediterraneus in Western Mediterranean waters.
Contributions of depth filter components to protein adsorption in bioprocessing.
Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M
2018-04-16
Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths <50 mM and correlated the adsorption data to bulk measured properties such as surface area, morphology, surface charge density, and composition. We also explored the role of each depth filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.
2017-08-01
The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.
Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.
Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W
1998-05-01
The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.
Rotini, Alice; Mejia, Astrid Y; Costa, Rodrigo; Migliore, Luciana; Winters, Gidon
2016-01-01
Halophila stipulacea is a small tropical seagrass species. It is the dominant seagrass species in the Gulf of Aqaba (GoA; northern Red Sea), where it grows in both shallow and deep environments (1-50 m depth). Native to the Red Sea, Persian Gulf, and Indian Ocean, this species has invaded the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest to understand this species' capacity to adapt to new conditions, which might be attributed to its ability to thrive in a broad range of ecological niches. In this study, a multidisciplinary approach was used to depict variations in morphology, biochemistry (pigment and phenol content) and epiphytic bacterial communities along a depth gradient (4-28 m) in the GoA. Along this gradient, H. stipulacea increased leaf area and pigment contents (Chlorophyll a and b , total Carotenoids), while total phenol contents were mostly uniform. H. stipulacea displayed a well conserved core bacteriome, as assessed by 454-pyrosequencing of 16S rRNA gene reads amplified from metagenomic DNA. The core bacteriome aboveground (leaves) and belowground (roots and rhizomes), was composed of more than 100 Operational Taxonomic Units (OTUs) representing 63 and 52% of the total community in each plant compartment, respectively, with a high incidence of the classes Alphaproteobacteria , Gammaproteobacteria , and Deltaproteobacteria across all depths. Above and belowground communities were different and showed higher within-depth variability at the intermediate depths (9 and 18 m) than at the edges. Plant parts showed a clear influence in shaping the communities while depth showed a greater influence on the belowground communities. Overall, results highlighted a different ecological status of H. stipulacea at the edges of the gradient (4-28 m), where plants showed not only marked differences in morphology and biochemistry, but also the most distinct associated bacterial consortium. We demonstrated the pivotal role of morphology, biochemistry (pigment and phenol content), and epiphytic bacterial communities in helping plants to cope with environmental and ecological variations. The plant/holobiont capability to persist and adapt to environmental changes probably has an important role in its ecological resilience and invasiveness.
NASA Astrophysics Data System (ADS)
Akbar, Somaieh; Fathianpour, Nader
2016-12-01
The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.
Sulcal depth-based cortical shape analysis in normal healthy control and schizophrenia groups
NASA Astrophysics Data System (ADS)
Lyu, Ilwoo; Kang, Hakmook; Woodward, Neil D.; Landman, Bennett A.
2018-03-01
Sulcal depth is an important marker of brain anatomy in neuroscience/neurological function. Previously, sulcal depth has been explored at the region-of-interest (ROI) level to increase statistical sensitivity to group differences. In this paper, we present a fully automated method that enables inferences of ROI properties from a sulcal region- focused perspective consisting of two main components: 1) sulcal depth computation and 2) sulcal curve-based refined ROIs. In conventional statistical analysis, the average sulcal depth measurements are employed in several ROIs of the cortical surface. However, taking the average sulcal depth over the full ROI blurs overall sulcal depth measurements which may result in reduced sensitivity to detect sulcal depth changes in neurological and psychiatric disorders. To overcome such a blurring effect, we focus on sulcal fundic regions in each ROI by filtering out other gyral regions. Consequently, the proposed method results in more sensitive to group differences than a traditional ROI approach. In the experiment, we focused on a cortical morphological analysis to sulcal depth reduction in schizophrenia with a comparison to the normal healthy control group. We show that the proposed method is more sensitivity to abnormalities of sulcal depth in schizophrenia; sulcal depth is significantly smaller in most cortical lobes in schizophrenia compared to healthy controls (p < 0.05).
Origins of hydrocarbon gas seeping out from offshore mud volcanoes in the Nile delta
NASA Astrophysics Data System (ADS)
Prinzhofer, Alain; Deville, Eric
2013-04-01
This paper discusses the origin of gas seepages (free gas or dissolved gas in ground water or brine) sampled with the Nautile submarine during the Nautinil cruise at the seafloor of the deep water area of the Nile turbiditic system on different mud volcanoes and brine pools. Generally, the gas is wet and includes C1, C2, C3, iC4, nC4, CO2. These gas samples show no evidence of biodegradation which is not the case of the gas present in the deep hydrocarbon accumulations at depth. It indicates that the gas expelled by the mud volcanoes is not issued from direct leakages from deep gas fields. The collected gas samples mainly have a thermogenic origin and show different maturities. Some samples show very high maturities indicating that these seepages are sourced from great depths, below the Messinian salt. Moreover, the different chemical compositions of the gas samples reflect not only differences in maturity but also the fact that the gas finds its origin in different deep source rocks. Carbon dioxide has an organic signature and cannot result from carbonate decomposition or mantle fluids. The crustal-derived radiogenic isotopes show that the analyzed gas samples have suffered a fractionation processes after the production of the radiogenic isotopes, due either to oil occurrence at depth interacting with the flux of gas, and/or fractionation during the fluid migration.
Depth dependence of defect evolution and TED during annealing
NASA Astrophysics Data System (ADS)
Colombeau, B.; Cowern, N. E. B.; Cristiano, F.; Calvo, P.; Lamrani, Y.; Cherkashin, N.; Lampin, E.; Claverie, A.
2004-02-01
A quantitative transmission electron microscopy (TEM) study on the depth profile of extended defects, formed after Si implantation, has been carried out. Two different Si + implant conditions have been considered. TEM analysis for the highest energy/dose shows that {1 1 3} defects evolve into dislocation loops whilst the defect depth distribution remains unchanged as a function of annealing time. For the lowest energy/dose, {1 1 3} defects grow and dissolve while the defect band shrinks preferentially on the surface side. At the same time, extraction of boron transient enhanced diffusion (TED) as a function of depth shows a decrease of the supersaturation towards the surface, starting at the location of the defect band. The study clearly shows that in these systems the silicon surface is the principal sink for interstitials. The results provide a critical test of the ability of physical models to simulate defect evolution and TED.
Upper mantle electrical conductivity for seven subcontinental regions of the Earth
Campbell, W.H.; Schiffmacher, E.R.
1988-01-01
Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq) separated for the 7 continental regions of the observatories have been used to determine conductivity profiles to depths of about 600 km by the Schmucker equivalent substitute conductor method. The profiles give evidence of increases in conductivity between about 150 and 350 km depth, then a general increase in conductivity thereafter. For South America we found a high conductivity at shallow depths. The European profile showed a highly conducting layer near 125 km. At the greater depths, Europe, Australia and South America had the lowest values of conductivity. North America and east Asia had intermediate values whereas the African and central Asian profiles both showed the conductivities rising rapidly beyond 450 km depth. The regional differences indicate that there may be considerable lateral heterogeneity of electrical conductivity in the Earth's upper mantle. -Authors
Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1
Olman, Cheryl A.; Harel, Noam; Feinberg, David A.; He, Sheng; Zhang, Peng; Ugurbil, Kamil; Yacoub, Essa
2012-01-01
Recent work has established that cerebral blood flow is regulated at a spatial scale that can be resolved by high field fMRI to show cortical columns in humans. While cortical columns represent a cluster of neurons with similar response properties (spanning from the pial surface to the white matter), important information regarding neuronal interactions and computational processes is also contained within a single column, distributed across the six cortical lamina. A basic understanding of underlying neuronal circuitry or computations may be revealed through investigations of the distribution of neural responses at different cortical depths. In this study, we used T2-weighted imaging with 0.7 mm (isotropic) resolution to measure fMRI responses at different depths in the gray matter while human subjects observed images with either recognizable or scrambled (physically impossible) objects. Intact and scrambled images were partially occluded, resulting in clusters of activity distributed across primary visual cortex. A subset of the identified clusters of voxels showed a preference for scrambled objects over intact; in these clusters, the fMRI response in middle layers was stronger during the presentation of scrambled objects than during the presentation of intact objects. A second experiment, using stimuli targeted at either the magnocellular or the parvocellular visual pathway, shows that laminar profiles in response to parvocellular-targeted stimuli peak in more superficial layers. These findings provide new evidence for the differential sensitivity of high-field fMRI to modulations of the neural responses at different cortical depths. PMID:22448223
A comparison of observed and analytically derived remote sensing penetration depths for turbid water
NASA Technical Reports Server (NTRS)
Morris, W. D.; Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Guraus, E. A.
1981-01-01
The depth to which sunlight will penetrate in turbid waters was investigated. The tests were conducted in water with a single scattering albedo range, and over a range of solar elevation angles. Two different techniques were used to determine the depth of light penetration. It showed little change in the depth of sunlight penetration with changing solar elevation angle. A comparison of the penetration depths indicates that the best agreement between the two methods was achieved when the quasisingle scattering relationship was not corrected for solar angle. It is concluded that sunlight penetration is dependent on inherent water properties only.
Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.
Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E
1997-04-01
In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
NASA Astrophysics Data System (ADS)
Arpa, Maria Carmencita; Zellmer, Georg F.; Christenson, Bruce; Lube, Gert; Shellnutt, Gregory
2017-07-01
Mineral, groundmass and bulk rock chemical analyses of samples from the Tongariro Volcanic Complex were made to estimate depths of magma reservoirs for selected eruptive deposits. The sample set consists of two units from the 11,000 cal. years bp Mangamate Formation (Te Rato and Wharepu) and more recent deposits from near 1717 cal. years bp (Ngauruhoe and Red Crater) to 1975 (Ngauruhoe). The depths of crystallization were determined by established thermobarometers. Results show that the Mangamate eruptions of Te Rato and Wharepu originated from a deeper magma reservoir of about 28-35 km and likely ascended rapidly, whereas explosive eruption deposits from Ngauruhoe have depths of crystallization in the lower to mid-crust or about 7 to 22 km depth. A Red Crater lava flow had a possible magma reservoir depth from 4 to 9 km. The different eruptions sampled for this study tapped different reservoir levels, and the oldest and largest eruptions were sourced from the deepest reservoir.
Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target
NASA Astrophysics Data System (ADS)
Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.
2016-06-01
In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.
Depth cue reliance in surgeons and medical students.
Shah, J; Buckley, D; Frisby, J; Darzi, A
2003-09-01
Depth perception is reduced in endoscopic surgery, although little is known about the effect this has on surgical performance. To assess the role of depth cues, 45 subjects completed tests of depth cue reliance. Surgical skill was assessed using the Minimally Invasive Surgical Trainer-Virtual Reality, a previously validated laparoscopic simulator. We could demonstrate no difference in cue reliance for three depth cues--namely stereo, texture, and outline--between surgeons and medical students. Greater dominance on stereo for medical students was a positive finding and a negative finding for the surgeons when correlated with surgical performance. We suggest that surgeons learn to adapt to the nonstereo environment in MIS, and this is the first study to show evidence of this phenomenon. This difference in stereo reliance is a reflection of the experience that surgeons have with laparoscopy compared with medical students, who have none.
Ecological and morphological traits predict depth-generalist fishes on coral reefs
Bridge, Tom C. L.; Luiz, Osmar J.; Coleman, Richard R.; Kane, Corinne N.; Kosaki, Randall K.
2016-01-01
Ecological communities that occupy similar habitats may exhibit functional convergence despite significant geographical distances and taxonomic dissimilarity. On coral reefs, steep gradients in key environmental variables (e.g. light and wave energy) restrict some species to shallow depths. We show that depth-generalist reef fishes are correlated with two species-level traits: caudal fin aspect ratio and diet. Fishes with high aspect ratio (lunate) caudal fins produce weaker vortices in the water column while swimming, and we propose that ‘silent swimming’ reduces the likelihood of detection and provides an advantage on deeper reefs with lower light irradiance and water motion. Significant differences in depth preference among trophic guilds reflect variations in the availability of different food sources along a depth gradient. The significance of these two traits across three geographically and taxonomically distinct assemblages suggests that deep-water habitats exert a strong environmental filter on coral reef-fish assemblages. PMID:26791616
Depth resolution and preferential sputtering in depth profiling of sharp interfaces
NASA Astrophysics Data System (ADS)
Hofmann, S.; Han, Y. S.; Wang, J. Y.
2017-07-01
The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.
Xiao, Huapan; Chen, Zhi; Wang, Hairong; Wang, Jiuhong; Zhu, Nan
2018-02-19
Based on micro-indentation mechanics and kinematics of grinding processes, theoretical formulas are deduced to calculate surface roughness (SR) and subsurface damage (SSD) depth. The SRs and SSD depths of a series of fused silica samples, which are prepared under different grinding parameters, are measured. By experimental and theoretical analysis, the relationship between SR and SSD depth is discussed. The effect of grinding parameters on SR and SSD depth is investigated quantitatively. The results show that SR and SSD depth decrease with the increase of wheel speed or the decrease of feed speed as well as cutting depth. The interaction effect between wheel speed and feed speed should be emphasized greatly. Furthermore, a relationship model between SSD depth and grinding parameters is established, which could be employed to evaluate SSD depth efficiently.
Hatirli, Hüseyin; Yasa, Bilal; Yasa, Elif
2018-01-30
The aim of the study was to evaluate microleakage and the penetration-depths of different fissure-sealant materials applied with/without enameloplasty after cyclic aging. One-hundred-sixty mandibular molars were divided into non-invasive and enameloplasty preparation groups and eight material subgroups, including: flowable composites (microhyrid, nanohybrid, and nanofilled), three resin-based (unfilled, filled, and highly-filled), a giomer-based, and a glass-ionomer-based fissure sealant. Specimens were subjected to two-year cyclic chewing and brushing simulation. After 5% basic-fuchsin dye penetration, specimens were sectioned and scored under stereomicroscope. Kruskal-Wallis statistical data showed that preparation type significantly affected the penetration of all tested materials (p<0.05), but not significantly affected microleakage (p>0.05). Flowable composites showed the best and the glass-ionomer-based sealant showed the worst penetration and microleakage. Slight preparation of fissures is not important in microleakage. However, enameloplasty significantly enhanced the depth of penetration of the sealants. Flowable composites offer promising results at the fissure sealing.
NASA Astrophysics Data System (ADS)
Zhang, N.; Quiring, S. M.; Ochsner, T. E.
2017-12-01
Each soil moisture monitoring network commonly adopts different sensor technologies. This results in different measurement units, depths and impedes large-scale soil moisture applications that seek to integrate data from multiple networks. Therefore, a comprehensive comparison of different sensors to identify the best approach for integrating and homogenizing measurements from different sensors is required. This study compares three commonly used sensors, including Stevens Water Hydra Probes, Campbell Scientific CS616 TDR and CS 229-L heat dissipation sensors based on data from May 2010 to December 2012 from the Marena, Oklahoma, In Situ Sensor Testbed (MOISST). All sensors are installed at common depths of 5, 10, 20, 50, 100 cm. The results reveal that the differences between the three sensors tends to increase with depth. The CDF plots showed CS 229 is most sensitive to moisture variation in dry condition and most easily saturated in wet condition, followed by Hydra probe and CS616. Our results show that calculating percentiles is a good normalization method for standardizing measurements from different sensors. Our preliminary results demonstrate that CDF matching can be used to convert measurements from one sensor to another.
NASA Astrophysics Data System (ADS)
Brandt, Angelika; Linse, Katrin; Schüller, Myriam
2009-11-01
The aim of this study is to compare the depth distributions of four major Southern Ocean macrobenthic epi- and infaunal taxa, the Bivalvia, Gastropoda, Isopoda, and Polychaeta, from subtidal to abyssal depth. All literature data up to summer 2008, as well as the unpublished data from the most recent ANDEEP I-III (Antarctic benthic deep-sea biodiversity: colonisation history and recent community patterns) expeditions to the Southern Ocean deep sea are included in the analysis. Benthic invertebrates in the Southern Ocean are known for their wide bathymetric ranges. We analysed the distributions of four of the most abundant and species-rich taxa from intertidal to abyssal (5200 m) depths in depth zones of 100 m. The depth distributions of three macrofaunal classes (Bivalvia, Gastropoda, Polychaeta) and one order (Isopoda) showed distinct differences. In the case of bivalves, gastropods and polychaetes, the number of species per depth zone decreased from the shelf to the slope at around 1000 m depth and then showed stable low numbers. The isopods showed the opposite trend; they were less species rich in the upper 1000 m but increased in species numbers from the slope to bathyal and abyssal depths. Depth ranges of families of the studied taxa (Bivalvia: 31 families, Gastropoda: 60, Isopoda: 32, and Polychaeta: 46 families) were compiled and illustrated. At present vast areas of the deep sea in the Southern Ocean remain unexplored and species accumulation curves showed that only a fraction of the species have been discovered to date. We anticipate that further investigations will greatly increase the number of species known in the Southern Ocean deep sea.
NASA Astrophysics Data System (ADS)
Zhou, Shuai; Huang, Danian
2015-11-01
We have developed a new method for the interpretation of gravity tensor data based on the generalized Tilt-depth method. Cooper (2011, 2012) extended the magnetic Tilt-depth method to gravity data. We take the gradient-ratio method of Cooper (2011, 2012) and modify it so that the source type does not need to be specified a priori. We develop the new method by generalizing the Tilt-depth method for depth estimation for different types of source bodies. The new technique uses only the three vertical tensor components of the full gravity tensor data observed or calculated at different height plane to estimate the depth of the buried bodies without a priori specification of their structural index. For severely noise-corrupted data, our method utilizes different upward continuation height data, which can effectively reduce the influence of noise. Theoretical simulations of the gravity source model with and without noise illustrate the ability of the method to provide source depth information. Additionally, the simulations demonstrate that the new method is simple, computationally fast and accurate. Finally, we apply the method using the gravity data acquired over the Humble Salt Dome in the USA as an example. The results show a good correspondence to the previous drilling and seismic interpretation results.
NASA Astrophysics Data System (ADS)
Nagel, Thorsten; Düsterhöft, Erik; Schiffer, Christian
2017-04-01
We investigate the signature relevant mantle lithologies leave in the receiver function record for different adiabatic thermal gradients down to 800 kilometers depth. The parameter space is chosen to target the visibility of upwelling mantle (a plume). Seismic velocities for depleted mantle, primitive mantle, and three pyroxenites are extracted from thermodynamically calculated phases diagrams, which also provide the adiabatic decompression paths. Results suggest that compositional variations, i.e. the presence or absence of considerable amounts of pyroxenites in primitive mantle should produce a clear footprint while horizontal differences in thermal gradients for similar compositions might be more subtle. Peridotites best record the classic discontinuities at around 410 and 650 kilometers depth, which are associated with the olivin-wadsleyite and ringwoodite-perovskite transitions, respectively. Pyroxenites, instead, show the garnet-perovskite transition below 700 kilometers depth and SiO2-supersaturated compositions like MORB display the coesite-stishovite transition between 300 and 340 kilometers depth. The latter shows the strongest temperature-depth dependency of all significant transitions potentially allowing to infer information about the thermal state if the mantle contains a sufficient fraction of MORB-like compositions. For primitive and depleted mantle compositions, the olivin-wadsleyite transition shows a certain temperature-depth dependency reflected in slightly larger delay times for higher thermal gradients. The lower-upper-mantle discontinuity, however, is predicted to display larger delay times for higher thermal gradients although the associated assemblage transition occurs at shallower depths thus requiring a very careful depth migration if a thermal anomaly should be recognized. This counterintuitive behavior results from the downward replacement of the assemblage wadsleyite+garnet with the assemblage garnet+periclase at high temperatures. This transition causes even lower seismic velocities with greater depth (following an adiabatic gradient), the highly continuous nature of the reaction, however, should produce only a smooth negative conversion. In contrast, a small positive conversion is expected at normal thermal gradients in the same depth range between 500 and 550 kilometers because of the wadsleyite-ringwoodite-transition. Hence, the polarity of the 520 discontinuity also offers a possibility to recognize the thermal state of the upper mantle.
Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data
NASA Astrophysics Data System (ADS)
Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.
2013-12-01
The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.
Pressure as a limit to bloater (Coregonus hoyi) vertical migration
TeWinkel, Leslie M.; Fleischer, Guy W.
1998-01-01
Observations of bloater vertical migration showed a limit to the vertical depth changes that bloater experience. In this paper, we conducted an analysis of maximum differences in pressure encountered by bloater during vertical migration. Throughout the bottom depths studied, bloater experienced maximum reductions in swim bladder volume equal to approximately 50-60% of the volume in midwater. The analysis indicated that the limit in vertical depth change may be related to a maximum level of positive or negative buoyancy for which bloater can compensate using alternative mechanisms such as hydrodynamic lift. Bloater may be limited in the extent of migration by either their depth of neutral buoyancy or the distance above the depth of neutral buoyancy at which they can still maintain their position in the water column. Although a migration limit for the bloater population was evident, individual distances of migration varied at each site. These variations in migration distances may indicate differences in depths of neutral buoyancy within the population. However, in spite of these variations, the strong correlation between shallowest depths of migration and swim bladder volume reduction across depths provides evidence that hydrostatic pressure limits the extent of daily vertical movement in bloater.
Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia
Dittmann, Sabine; Sorokin, Shirley J.; Hendrycks, Ed
2015-01-01
Two South Australian canyons, one shelf-incising (du Couedic) and one slope-limited (Bonney) were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1) significantly differ by water mass, (H2) show significant regional differences and (H3) differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01) among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water) (H1). Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2), over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3). However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m), suggestive of heightened currents within the canyons that influence community composition there. At 1000–1500 m, the canyon interiors were depauperate, typical of V-shaped canyons elsewhere. The large number of species captured, given the relatively low sampling effort and focus on the larger macrofauna, support previous studies that identify the South Australian coast as a high biodiversity area. PMID:26618354
Diurnal variations in optical depth at Mars
NASA Technical Reports Server (NTRS)
Colburn, D. S.; Pollack, J. B.; Haberle, R. M.
1989-01-01
Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.
Nonextensive statistics and skin depth of transverse wave in collisional plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemzadeh, M., E-mail: hashemzade@gmail.com
Skin depth of transverse wave in a collisional plasma is studied taking into account the nonextensive electron distribution function. Considering the kinetic theory for charge particles and using the Bhatnagar-Gross-Krook collision model, a generalized transverse dielectric permittivity is obtained. The transverse dispersion relation in different frequency ranges is investigated. Obtaining the imaginary part of the wave vector from the dispersion relation, the skin depth for these frequency ranges is also achieved. Profiles of the skin depth show that by increasing the q parameter, the penetration depth decreases. In addition, the skin depth increases by increasing the electron temperature. Finally, itmore » is found that in the high frequency range and high electron temperature, the penetration depth decreases by increasing the collision frequency. In contrast, by increasing the collision frequency in a highly collisional frequency range, the skin depth of transverse wave increases.« less
NASA Astrophysics Data System (ADS)
Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel
2016-10-01
In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: first, we evaluate the contribution of surface- and body-wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time-dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Second, we compare the lapse-time behaviour in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.
Penetration depth of MgB2 measured using Josephson junctions and SQUIDs
NASA Astrophysics Data System (ADS)
Cunnane, Daniel; Zhuang, Chenggang; Chen, Ke; Xi, X. X.; Yong, Jie; Lemberger, T. R.
2013-02-01
The penetration depth of MgB2 was measured using two methods of different mechanisms. The first method used MgB2 Josephson junctions and the magnetic field dependence of the junction critical current. The second method deduced the penetration depth from the inductance of a MgB2 microstrip used to modulate the voltage of a MgB2 DC SQUID. The two methods showed a consistent value of the low-temperature penetration depth for MgB2 to be about 40 nm. Both the small penetration depth value and its temperature dependence are in agreement with a microscopic theory for MgB2 in the clean limit.
NASA Astrophysics Data System (ADS)
De Matteo, Ada; Massa, Bruno; Milano, Girolamo; D'Auria, Luca
2018-01-01
In this paper we investigate the border between the Sannio and Irpinia seismogenic regions, a sector of the southern Apennine chain considered among the most active seismic areas of the Italian peninsula, to shed further light on its complex seismotectonic setting. We integrated recent seismicity with literature data. A detailed analysis of the seismicity that occurred in the 2013-2016 time interval was performed. The events were relocated, after manual re-picking, using different approaches. To retrieve information about the stress field active in the area, inversion of Fault Plane Solutions was also carried out. Hypocentral distribution of the relocated events (ML ≤ 3.5), whose depth is included between 5 and 25 km with the deepest ones located in the NW sector of the study area, shows a different pattern between the northern sector and the southern one. The computed Fault Plane Solutions can be grouped in three depth ranges: < 12 km, dominated by normal dip-slip kinematics; 12-18 km, characterized by normal dip-slip and strike-slip kinematics; > 18 km, dominated by strike-slip kinematics. Stress field inversion across the whole area shows that we are dealing with an heterogeneous set of data, apparently governed by distinct stress fields. We built an upper crustal model profile through integration of geological data, well logs and seismic tomographic profiles. Our results suggest the co-existence of different tectonic styles at distinct crustal depths: the upper crust seems to be affected mostly by normal faulting, whereas strike-slip faulting prevails in the intermediate and lower crust. We infer about the existence of a transitional volume, located between 12 and 18 km depth, between the Sannio and Irpinia regions, acting as a vertical transfer zone.
NASA Astrophysics Data System (ADS)
Cartes, Joan E.; Carrassón, Maite
2004-02-01
We studied in a deep-sea megafaunal community the relationship of different trophic variables to the depth ranges inhabited by and depth zonation of species, after the ordination of fish and decapod crustaceans in feeding guilds. The variables studied included trophic level of species, food sources exploited, mean weight of predators and prey, feeding intensity and dietary diversity of species. We compiled data on the diets of 18 species of fish and 14 species of decapod crustaceans distributed between 862 and 2261 m in the Catalano-Balearic Basin (Western Mediterranean). Feeding guilds were identified for fish and decapods separately and at two depth strata (862-1400 and 1400-2261 m). The zonation rates (degree of depth overlap) between species within each trophic guild differed by guild and taxon (fish and decapods). The three guilds (G1, G2 and G3) of decapod crustaceans showed quite significantly distinct overlap. G1 (plankton feeders) showed the widest overlap (1326-1381 m) and G3 (benthos feeders) the narrowest (330-476 m). Among the four guilds established for fish, G1, comprising larger predators such as sharks, showed the lowest overlap (between 194 and 382 m). Macrourids overlap ranged between 122 and 553 m, the rest of benthopelagic feeders ranged between 423 and 970 m, and G3 (benthos feeders) gave overlaps between 867 and 1067 m. Significant differences were detected between the depth overlap of most feeding guilds excluding the paired comparisons between G1/macrourids, and G2/G3. Among decapods higher zonation rates (=lower depth overlap) were identified in those guilds occupying higher trophic levels (TL), with a similar, though not as general, trend among fish. In the ordination of species in feeding guilds, TL as indicated by δ15N measurements, was significantly correlated with Dimension 1 (D1) of ordination—MDS-analysis, both in fish and decapods at 862-1400 m. However, deeper (at 1400-2261 m), D1 was not significantly correlated with TL but with the mean weight of predator and prey in fish. In general, TL was again the main explanatory variable (accumulated variances, r2, explained by multi-linear regression—MLR-models between 0.54 and 0.69) both of the zonation rates and the depth ranges occupied by megafauna (fish and decapods together) throughout all the depth range studied. Possible relationships between zonation rates /depth distributions and other biological variables (i.e. egg size, fecundity) are also discussed.
Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I
2008-01-01
Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm2 multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. Conclusion: EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established. PMID:21614315
Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I
2008-01-01
To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm(2). Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm(2) and compared with ion chamber data. Scanditronix/Wellhofer OmniPro(TM) IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm(2) at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm(2) multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established.
Choe, ChunSik; Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E
2017-08-01
The intercellular lipids (ICL) of stratum corneum (SC) play an important role in maintaining the skin barrier function. The lateral and lamellar packing order of ICL in SC is not homogenous, but rather depth-dependent. This study aimed to analyze the influence of the topically applied mineral-derived (paraffin and petrolatum) and plant-derived (almond oil and jojoba oil) oils on the depth-dependent ICL profile ordering of the SC in vivo. Confocal Raman microscopy (CRM), a unique tool to analyze the depth profile of the ICL structure non-invasively, is employed to investigate the interaction between oils and human SC in vivo. The results show that the response of SC to oils' permeation varies in the depths. All oils remain in the upper layers of the SC (0-20% of SC thickness) and show predominated differences of ICL ordering from intact skin. In these depths, skin treated with plant-derived oils shows more disordered lateral and lamellar packing order of ICL than intact skin (p<0.05). In the intermediate layers of SC (30-50% of SC thickness), the oils do not influence the lateral packing order of SC ICL (p>0.1), except plant-derived oils at the depth 30% of SC thickness. In the deeper layers of the SC (60-100% of SC thickness), no difference between ICL lateral packing order of the oil-treated and intact skin can be observed, except that at the depths of 70-90% of the SC thickness, where slight changes with more disorder states are measured for plant-derived oil treated skin (p<0.1), which could be explained by the penetration of free fatty acid fractions in the deep-located SC areas. Both oil types remain in the superficial layers of the SC (0-20% of the SC thickness). Skin treated with mineral- and plant-derived oils shows significantly higher disordered lateral and lamellar packing order of ICL in these layers of the SC compared to intact skin. Plant-derived oils significantly changed the ICL ordering in the depths of 30% and 70-90% of the SC thickness, which is likely due to the penetration of free fatty acids in the deeper layers of the SC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Spatiotemporal Characteristics for the Depth from Luminance Contrast
Matsubara, Kazuya; Matsumiya, Kazumichi; Shioiri, Satoshi; Takahashi, Shuichi; Hyodo, Yasuhide; Ohashi, Isao
2011-01-01
Images with higher luminance contrast tend to be perceived closer in depth. To investigate a spatiotemporal characteristic of this effect, we evaluated subjective depth of a test stimulus with various spatial and temporal frequencies. For the purpose, the depth of a reference stimulus was matched to that of the test stimulus by changing the binocular disparity. The results showed that the test stimulus was perceived closer with higher luminance contrast for all conditions. Contrast efficiency was obtained from the contrast that provided the subjective depth for each spatiotemporal frequency. The shape of the contrast efficiency function was spatially low-pass and temporally band-pass. This characteristic is different from the one measure for a detection task. This suggests that only subset of contrast signals are used for depth from contrast.
Effects of Thread Depth in the Neck Area on Peri-Implant Hard and Soft Tissues: An Animal Study.
Sun, Shan-Pao; Lee, Dong-Won; Yun, Jeong-Ho; Park, Kwang-Ho; Park, Kwang-Bum; Moon, Ik-Sang
2016-11-01
Implants with deep thread depth have been developed for the purpose of increasing total implant surface area. However, effects of implant thread depth remain controversial. The aim of this study is to examine effects of thread depth on peri-implant tissues in terms of bone-implant contact (BIC), bone-implant volume (BIV), and hard and soft tissue dimensions using comprehensive analyses, including microcomputed tomography (micro-CT). Five beagle dogs received experimental intramandibular implants 3 months after removal of their premolars and first molars (P 2 , P 3 , P 4 , and M 1 ). Two different types of implants were installed in each animal: deep threaded (DT) and shallow threaded (ST). Resonance frequency testing was performed on the day of implantation as well as 4 and 8 weeks after implantation. Intraoral radiography, micro-CT, and histomorphometry were used to evaluate peri-implant tissues 4 and 8 weeks after implantation. There were no significant differences in resonance frequency test results between the two groups. Although radiographic analysis showed no group differences, micro-CT (P = 0.01) and histomorphometry (P = 0.003) revealed the DT group had significantly lower BIC values than the ST group at 4 weeks. However, by 8 weeks, BIC values of the two groups did not differ significantly. No significant differences in BIV or soft tissue height were observed between the two groups at either time point. DT implants showed no benefits over ST implants when inserted in dog mandibles.
NASA Astrophysics Data System (ADS)
Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.
2018-02-01
The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A.; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0–10, 10–20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees. PMID:28066384
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce.
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species ( Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0-10, 10-20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora ) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0-10 vs. 10-20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees.
Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation.
Cao, Hong; Tungjitkusolmun, Supan; Choy, Young Bin; Tsai, Jang-Zern; Vorperian, Vicken R; Webster, John G
2002-03-01
During radio-frequency (RF) cardiac catheter ablation, there is little information to estimate the contact between the catheter tip electrode and endocardium because only the metal electrode shows up under fluoroscopy. We present a method that utilizes the electrical impedance between the catheter electrode and the dispersive electrode to predict the catheter tip electrode insertion depth into the endocardium. Since the resistivity of blood differs from the resistivity of the endocardium, the impedance increases as the catheter tip lodges deeper in the endocardium. In vitro measurements yielded the impedance-depth relations at 1, 10, 100, and 500 kHz. We predict the depth by spline curve interpolation using the obtained calibration curve. This impedance method gives reasonably accurate predicted depth. We also evaluated alternative methods, such as impedance difference and impedance ratio.
Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry.
Chetty, Indrin J; Charland, Paule M
2002-10-21
We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3 x 3 cm2 and 10 x 10 cm2 at depths of d(max), 5 cm and 15 cm in the phantom. Measurements for a 25 x 25 cm2 field size showed consistently higher optical densities at depths of d(max), 5 cm and 15 cm, relative to a 10 x 10 cm2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25 x 25 cm2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges.
Lee, Seung-Hoon; Kang, Hojeong
2016-02-01
The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to biogeochemical factors, the study of the microbial community even in surface soil should be performed in detail by considering the soil depth.
NASA Astrophysics Data System (ADS)
Tessonnier, T.; Mairani, A.; Brons, S.; Sala, P.; Cerutti, F.; Ferrari, A.; Haberer, T.; Debus, J.; Parodi, K.
2017-08-01
In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.
Tessonnier, T; Mairani, A; Brons, S; Sala, P; Cerutti, F; Ferrari, A; Haberer, T; Debus, J; Parodi, K
2017-08-01
In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4 He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.
NASA Astrophysics Data System (ADS)
Neilson, B. T.; Hatch, C. E.; Bingham, Q. G.; Tyler, S. W.
2008-12-01
In recent years, distributed temperature sensing (DTS) has enjoyed steady increases in the number and diversity of applications. Because fiber optic cables used for DTS are typically sheathed in dark materials resistant to UV deterioration, the question arises of how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures. Initial calculations of these affects considered: shortwave radiation as a function of time of day, water depth, and water clarity; fiber optic cable dimensions; and fluid velocity. These indicate that for clear waterbodies with low velocities and shallow depths, some heating on the cable is likely during peak daily solar radiation. Given higher water velocities, substantial increases in turbidity, and/or deeper water, there should be negligible solar heating on the cable. To confirm these calculations, a field study was conducted to test the effects of solar radiation by installing two types of fiber optic cable at multiple, uniform depths in a trapezoidal canal with constant flow determined by a controlled release from Porcupine Dam near Paradise, Utah. Cables were installed in water depths from 0.05 to 0.79 m in locations of faster (center of canal) and slower (sidewall) water velocities. Thermister strings were installed at the same depths, but shielded from solar radiation and designed to record absolute water temperatures. Calculations predict that at peak solar radiation, in combination with shallow depths and slow velocities, typical fiber-optic cable is likely to experience heating greater than the ambient water column. In this study, DTS data show differences of 0.1-0.2°C in temperatures as seen by cables separated vertically by 0.31 m on the sidewall and center of the channel. Corresponding thermister data showed smaller vertical differences (~0.03-0.1°C) suggesting thermal stratification was also present in the canal. However, the magnitude of the DTS differences could not be fully explained by stratification alone. Additional information from cables installed in a shallow, near-zero velocity pool showed significantly higher temperature differences with cable depth when compared to the cable in the higher-velocity canal flows. This indicates a higher potential for heating of fiber-optic cable in stagnant, shallow waters. With sufficient water velocities and depths, the effect of shortwave solar radiation on DTS measurement accuracy via heating of the fiber- optic cable is negligible. Particular care in experimental design is recommended in shallow or low-velocity systems, including consideration of solar radiation, and independent quantification of (or calibration for) absolute temperatures.
Chen, Yapeng; Chen, Yaning; Xu, Changchun; Li, Weihong
2016-09-01
Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.
Solar radiative heating of fiber-optic cables used to monitor temperatures in water
NASA Astrophysics Data System (ADS)
Neilson, Bethany T.; Hatch, Christine E.; Ban, Heng; Tyler, Scott W.
2010-08-01
In recent years, applications of distributed temperature sensing (DTS) have increased in number and diversity. Because fiber-optic cables used for DTS are typically sheathed in dark UV-resistant materials, the question arises as to how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures in aquatic applications. To quantify these effects, we completed a modeling effort that accounts for the effects of radiation and convection on a submersed cable to predict when solar heating may be important. Results indicate that for cables installed at shallow depths in clear, low-velocity water bodies, measurable heating of the cable is likely during peak solar radiation. However, at higher velocities, increased turbidity and/or greater depths, the effects of solar heating are immeasurable. A field study illustrated the effects of solar radiation by installing two types of fiber-optic cable at multiple water depths (from 0.05 to 0.8 m) in the center and along the sidewall of a trapezoidal canal. Thermistors were installed at similar depths and shielded from solar radiation to record absolute water temperatures. During peak radiation, thermistor data showed small temperature differences (˜0.003°C-0.04°C) between depths suggesting minor thermal stratification in the canal center. DTS data from cables at these same depths show differences of 0.01°C-0.17°C. The DTS differences cannot be explained by stratification alone and are likely evidence of additional heating from solar radiation. Sidewall thermistor strings also recorded stratification. However, corresponding DTS data suggested that bed conduction overwhelmed the effects of solar radiation.
Depth and type of substrate influence the ability of Nasonia vitripennis to locate a host
Frederickx, Christine; Dekeirsschieter, Jessica; Verheggen, François J.; Haubruge, Eric
2014-01-01
Abstract The foraging behaviour of a parasitoid insect species includes the host’s habitat and subsequent location of the host. Habitats substrate, substrate moisture, and light levels can affect the host searching of different species of parasitoids. However, the depth at which parasitoids concentrate their search effort is another important ecological characteristic and plays an important role in locating a host. Here, we investigated the ability of a pupal parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae), to penetrate and kill fly pupae located at different depths of the substrate. Three different types of substrate were tested: loam soil, compost, and vermiculite substrate. In both loam soil and compost, all of the parasitism activity was restricted to pupae placed directly on the surface. Parasitism activity in vermiculite showed that the average number of pupae parasitized decreased with depth of substrate. These results suggest that fly pupae situated deeper in the substrate are less subjected to parasitism by N. vitripennis . PMID:25373205
Environment-dependent variation in selection on life history across small spatial scales.
Lange, Rolanda; Monro, Keyne; J Marshall, Dustin
2016-10-01
Variation in life-history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life-history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Nisauf, T. A.; Wibowo, W. E.; Pawiro, S. A.
2017-07-01
This study was done to evaluate the gamma index for registering between the planar of dose planning and the measurement of EBT film. The treatment plan was simulated for 5 patients using Fan Beam Computerized Tomography (FBCT) modality, Philips Pinnacle planning system, 6 MV photon energy, 50 segments IMRT technique, and calculation grid resolution (CGR) of 0.2 cm. Gamma Index (GI) evaluation was done with criteria of dose difference (DD) of 2 %, dose to agreement (DTA) of 2 mm and dose difference (DD) of 5 % DTA of 3 mm, SAD 100 cm, depth of 5 cm and 10 cm of the phantom. The result shows that GI for homogeneous material is greater than for inhomogeneous material with discrepancy to previous work is about 1.98 % for homogeneous material (depth 5 cm) and 2.05 % (depth 10 cm) while it was found of 2.98 % for inhomogeneous material (equivalent depth 5 cm) and 4.59 % (equivalent depth 10 cm).
Depth image super-resolution via semi self-taught learning framework
NASA Astrophysics Data System (ADS)
Zhao, Furong; Cao, Zhiguo; Xiao, Yang; Zhang, Xiaodi; Xian, Ke; Li, Ruibo
2017-06-01
Depth images have recently attracted much attention in computer vision and high-quality 3D content for 3DTV and 3D movies. In this paper, we present a new semi self-taught learning application framework for enhancing resolution of depth maps without making use of ancillary color images data at the target resolution, or multiple aligned depth maps. Our framework consists of cascade random forests reaching from coarse to fine results. We learn the surface information and structure transformations both from a small high-quality depth exemplars and the input depth map itself across different scales. Considering that edge plays an important role in depth map quality, we optimize an effective regularized objective that calculates on output image space and input edge space in random forests. Experiments show the effectiveness and superiority of our method against other techniques with or without applying aligned RGB information
A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths
NASA Astrophysics Data System (ADS)
Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo
2017-12-01
A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.
Lin, Yiqun; Wan, Brandi; Belanger, Claudia; Hecker, Kent; Gilfoyle, Elaine; Davidson, Jennifer; Cheng, Adam
2017-01-01
The depth of chest compression (CC) during cardiac arrest is associated with patient survival and good neurological outcomes. Previous studies showed that mattress compression can alter the amount of CCs given with adequate depth. We aim to quantify the amount of mattress compressibility on two types of ICU mattresses and explore the effect of memory foam mattress use and a backboard on mattress compression depth and effect of feedback source on effective compression depth. The study utilizes a cross-sectional self-control study design. Participants working in the pediatric intensive care unit (PICU) performed 1 min of CC on a manikin in each of the following four conditions: (i) typical ICU mattress; (ii) typical ICU mattress with a CPR backboard; (iii) memory foam ICU mattress; and (iv) memory foam ICU mattress with a CPR backboard, using two different sources of real-time feedback: (a) external accelerometer sensor device measuring total compression depth and (b) internal light sensor measuring effective compression depth only. CPR quality was concurrently measured by these two devices. The differences of the two measures (mattress compression depth) were summarized and compared using multilevel linear regression models. Effective compression depths with different sources of feedback were compared with a multilevel linear regression model. The mean mattress compression depth varied from 24.6 to 47.7 mm, with percentage of depletion from 31.2 to 47.5%. Both use of memory foam mattress (mean difference, MD 11.7 mm, 95%CI 4.8-18.5 mm) and use of backboard (MD 11.6 mm, 95% CI 9.0-14.3 mm) significantly minimized the mattress compressibility. Use of internal light sensor as source of feedback improved effective CC depth by 7-14 mm, compared with external accelerometer sensor. Use of a memory foam mattress and CPR backboard minimizes mattress compressibility, but depletion of compression depth is still substantial. A feedback device measuring sternum-to-spine displacement can significantly improve effective compression depth on a mattress. Not applicable. This is a mannequin-based simulation research.
Visual Depth from Motion Parallax and Eye Pursuit
Stroyan, Keith; Nawrot, Mark
2012-01-01
A translating observer viewing a rigid environment experiences “motion parallax,” the relative movement upon the observer’s retina of variously positioned objects in the scene. This retinal movement of images provides a cue to the relative depth of objects in the environment, however retinal motion alone cannot mathematically determine relative depth of the objects. Visual perception of depth from lateral observer translation uses both retinal image motion and eye movement. In (Nawrot & Stroyan, 2009, Vision Res. 49, p.1969) we showed mathematically that the ratio of the rate of retinal motion over the rate of smooth eye pursuit mathematically determines depth relative to the fixation point in central vision. We also reported on psychophysical experiments indicating that this ratio is the important quantity for perception. Here we analyze the motion/pursuit cue for the more general, and more complicated, case when objects are distributed across the horizontal viewing plane beyond central vision. We show how the mathematical motion/pursuit cue varies with different points across the plane and with time as an observer translates. If the time varying retinal motion and smooth eye pursuit are the only signals used for this visual process, it is important to know what is mathematically possible to derive about depth and structure. Our analysis shows that the motion/pursuit ratio determines an excellent description of depth and structure in these broader stimulus conditions, provides a detailed quantitative hypothesis of these visual processes for the perception of depth and structure from motion parallax, and provides a computational foundation to analyze the dynamic geometry of future experiments. PMID:21695531
Measuring impact crater depth throughout the solar system
Robbins, Stuart J.; Watters, Wesley A.; Chappelow, John E.; Bray, Veronica J.; Daubar, Ingrid J.; Craddock, Robert A.; Beyer, Ross A.; Landis, Margaret E.; Ostrach, Lillian; Tornabene, Livio L.; Riggs, Jamie D.; Weaver, Brian P.
2018-01-01
One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data‐gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.
A comparative study of soil water movement under different vegetation covers
NASA Astrophysics Data System (ADS)
FERNANDO, A.; Tanaka, T.
2002-05-01
Vegetation, varying widely floristically, structurally, and in spatial distribution, is a complex phenomenon, delicately adjusted within itself and to its broader environment. To investigate the soil water movement of different vegetation covers, soil physical properties, and pressure head of soil water, have been analysed in a pine forest and adjacent disturbed grassland at the Terrestrial Environmental Research Centre (ERC) of Tsukuba University, Japan. Our results of the soil physical properties showed significant differences under different vegetation. At the forest site, the total porosity was nearly constant, i.e. 81% to 84%, from the ground surface to the depth of 70 cm, and decreased uniformly with the depth to reach 63.2% at 150 cm. At the grassland site, the total porosity was about 70% near the ground surface, however, expeditiously decreased to approximately 62% between the depths of 10 and 40 cm. Below these depths the total porosity increased to a maximum of about 77% between the depths of 50 and 80 cm, then decreased again to 54.9% at 150 cm. The total pressure head indicated that the evapotranspiration zone of the pine forest was 70 cm but was 50 cm in the grassland. KEY WORDS: Natural pine forest, Disturbed grassland, Soil water movement, Soil physical properties, Evaporation effective zone.
NASA Astrophysics Data System (ADS)
Ross, David A. N.; Hamel, Jean-François; Mercier, Annie
2013-10-01
While conditions in shallow-water and deep-sea environments differ markedly, it remains unclear how eurybathic species adapt their life histories to cope with these changes. The present study compared indicators of maternal reproductive investment of three common echinoderms collected shallower than 20 m and deeper than 850 m: Cucumaria frondosa (Holothuroidea), Solaster endeca and Henricia sanguinolenta (Asteroidea). Depth-specific and species-specific differences were found in gonad indices (GI), potential fecundity, oocyte size frequency, as well as lipid classes and fatty acids measured in gonad tissue and oocytes. The asteroids, S. endeca and H. sanguinolenta, exemplified the interspecific trade-off between size and number of oocytes: the former had fewer larger oocytes than the latter, with higher total lipid proportions in them. However, intraspecifically, larger oocytes found in deep specimens of S. endeca did not translate into lower fecundity but rather into a seemingly higher GI, indicating greater investment per oocyte without reducing fecundity. Oocytes were absent in specimens of C. frondosa sampled in deep water, suggesting delayed or impaired maturation at the limit of their depth tolerance. Analysis of S. endeca sterol proportions in gonads and oocytes across depths showed higher sterol input into oocytes in females from the deep. Gonads of S. endeca and H. sanguinolenta contained similar essential fatty acids, but showed significant differences in major fatty acids and some of the less dominant ones, indicating diet specificities. Analyses within S. endeca showed evidence of similar feeding mode (carnivory) at both depths, but suggested shifts in the diet or synthesis of fatty acids, presumably reflecting differences in available food sources and/or adaptations to their respective environments.
African Genetic Ancestry is Associated with Sleep Depth in Older African Americans
Halder, Indrani; Matthews, Karen A.; Buysse, Daniel J.; Strollo, Patrick J.; Causer, Victoria; Reis, Steven E.; Hall, Martica H.
2015-01-01
Study Objectives: The mechanisms that underlie differences in sleep characteristics between European Americans (EA) and African Americans (AA) are not fully known. Although social and psychological processes that differ by race are possible mediators, the substantial heritability of sleep characteristics also suggests genetic underpinnings of race differences. We hypothesized that racial differences in sleep phenotypes would show an association with objectively measured individual genetic ancestry in AAs. Design: Cross sectional. Setting: Community-based study. Participants: Seventy AA adults (mean age 59.5 ± 6.7 y; 62% female) and 101 EAs (mean age 60.5 ± 7 y, 39% female). Measurements and Results: Multivariate tests were used to compare the Pittsburgh Sleep Quality Index (PSQI) and in-home polysomnographic measures of sleep duration, sleep efficiency, apnea-hypopnea index (AHI), and indices of sleep depth including percent visually scored slow wave sleep (SWS) and delta EEG power of EAs and AAs. Sleep duration, efficiency, and sleep depth differed significantly by race. Individual % African ancestry (%AF) was measured in AA subjects using a panel of 1698 ancestry informative genetic markers and ranged from 10% to 88% (mean 67%). Hierarchical linear regression showed that higher %AF was associated with lower percent SWS in AAs (β (standard error) = −4.6 (1.5); P = 0.002), and explained 11% of the variation in SWS after covariate adjustment. A similar association was observed for delta power. No association was observed for sleep duration and efficiency. Conclusion: African genetic ancestry is associated with indices of sleep depth in African Americans. Such an association suggests that part of the racial differences in slow-wave sleep may have genetic underpinnings. Citation: Halder I, Matthews KA, Buysse DJ, Strollo PJ, Causer V, Reis SE, Hall MH. African genetic ancestry is associated with sleep depth in older African Americans. SLEEP 2015;38(8):1185–1193. PMID:25845688
Effect of Cutting Tool Properties and Depth of Cut in Rock Cutting: An Experimental Study
NASA Astrophysics Data System (ADS)
Rostamsowlat, Iman
2018-06-01
The current paper is designed to investigate the effect of worn (blunt) polycrystalline diamond compact cutter properties on both the contact stress (σ) and friction coefficient ( μ) mobilized at the wear flat-rock interface at different inclination angles of the wear flat surface and at a wide range of depths of cut. An extensive and comprehensive set of cutting experiments is carried out on two sedimentary rocks (one limestone and one sandstone) using a state-of-the-art rock cutting equipment (Wombat) and various blunt cutters. Experiments with blunt cutters are characterized by different wear flat inclination angles (β), different wear flat surface roughness (Ra), different wear flat material, and different cutting tool velocities ({\\varvec{v}}) were conducted. The experimental results show that both the contact stress and friction coefficient are predominantly affected by the wear flat roughness at all inclination angles of the wear flat; however, the cutting tool velocity has a negligible influence on both the contact stress and friction coefficient. Further investigations suggest that the contact stress is greatly affected by the depth of cut within the plastic regime of frictional contact while the contact stress is insensitive to the depth of cut within the elastic regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luczkovich, J.J.; Wagner, T.W.; Michalek, J.L.
In order to monitor changes caused by local and global human actions to a coral reef ecosystem, we sea-truthed a natural color Landsat TM image prepared for a coastal region of the northwestern Dominican Republic and recorded average water depth, precise geographical positions, and bottom types (seagrass, 15 sites; coral reef, ten sites; and sand, six sites). There were no significant differences in depth for the bottom type groups. The depths ranged from 0 to 16.1 m. Mean digital counts of seagrass and coral reef sites did not differ significantly in any band. A multivariate analysis of variance using allmore » three bands gave similar results. A ratio of the green/blue bands (TM 2/TM 1) showed there was a spectral shift associated with increasing depth, but not bottom type. Due to small-scale patchiness, seagrass and coral areas were difficult to distinguish, but sandy areas can be distinguished using Landsat TM imagery and our methods. 12 refs.« less
Genetic attack on neural cryptography.
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido
2006-03-01
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
Genetic attack on neural cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka
2006-03-15
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold formore » the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.« less
Genetic attack on neural cryptography
NASA Astrophysics Data System (ADS)
Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido
2006-03-01
Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.
Diurnal variations in optical depth at Mars: Observations and interpretations
NASA Technical Reports Server (NTRS)
Colburn, D. S.; Pollack, J. B.; Haberle, R. M.
1988-01-01
Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.
Processing vertical size disparities in distinct depth planes.
Duke, Philip A; Howard, Ian P
2012-08-17
A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.
A Simon effect for depth in three-dimensional displays.
Rigon, Jessica; Massaccesi, Stefano; Umiltà, Carlo
2011-01-01
We investigated whether the Simon effect occurs for the depth dimension in a 3-dimensional display. In Experiment 1, participants executed discriminative responses to 2 stimuli, a cross and a sphere, both 3-dimensional, which were perceived to be located near or far with respect to the participant's body. The response keys were located near and far along the participant's midline. Apparent stimulus spatial location (near or far) was irrelevant to the task. Results showed a depth Simon effect, attributable to the apparent stimulus spatial location. Experiment 2 replicated Experiment 1 with a different procedure. The 2 stimuli, a triangle and a rectangle, were 2-dimensional and were perceived as being located near or far from the participant's midline; the response keys were located near and far along the participant's midline. Results showed again the depth Simon effect. Experiment 3 was a control condition in which the 2 stimuli, drawings of a lamp and of a chair, had the same size, regardless of whether they appeared to be near or far. The depth Simon effect was replicated. A distribution analysis on data of Experiment 3 showed that the Simon effect increased as reaction times became longer. In Experiment 4, the position of the 2 stimuli, a circle and a cross, varied on the horizontal (right or left) dimension, whereas the position of the 2 responses varied along the depth (near or far) dimension. No Simon effect was found.
Effect of flavonoids on remineralization of artificial root caries.
Epasinghe, D J; Yiu, Cky; Burrow, M F
2016-06-01
This study compared the effects of three flavonoids, including proanthocyanidin, naringin and quercetin on remineralization of artificial root caries. Demineralized root fragments (n = 75) were randomly divided into five groups for treatment with the remineralizing agents for 10 minutes: (1) 6.5% proanthocyanidin; (2) 6.5% naringin; (3) 6.5% quercetin; (4) 1000 ppm fluoride; and (5) deionized water (control). The demineralized samples were pH-cycled through treatment solutions, acidic buffer and neutral buffer for eight days at six cycles per day. The remineralization effects were evaluated using Knoop microhardness, transverse microradiography (lesion depth and mineral loss) and confocal laser scanning microscopy. Microhardness at different lesion depths was analysed with two-way ANOVA and Tukey's test, while lesion depths and mineral loss were analysed with one-way ANOVA and Tukey's test. Artificial caries lesions treated with fluoride and flavonoids showed significantly greater hardness than the control group (p < 0.05). Both lesion depths and mineral loss of the flavonoid treated groups were significantly lower than the control group (p < 0.05), but significantly higher than the fluoride treated group. No significant difference in lesion depth and mineral loss was found among the three flavonoids (p > 0.05). All three flavonoids showed positive effects on artificial root caries remineralization, which are significantly lower than that of 1000 ppm fluoride. © 2016 Australian Dental Association.
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2015-03-01
We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.
Soler, Carles; Picazo-Bueno, José Á; Micó, Vicente; Valverde, Anthony; Bompart, Daznia; Blasco, Francisco J; Álvarez, Juan G; García-Molina, Almudena
2018-05-04
Sperm motility is one of the most significant parameters in the prediction of male fertility. Until now, both motility analysis using an optical microscope and computer-aided sperm analysis (CASA-Mot) entailed the use of counting chambers with a depth to 20µm. Chamber depth significantly affects the intrinsic sperm movement, leading to an artificial motility pattern. For the first time, laser microscopy offers the possibility of avoiding this interference with sperm movement. The aims of the present study were to determine the different motility patterns observed in chambers with depths of 10, 20 and 100µm using a new holographic approach and to compare the results obtained in the 20-µm chamber with those of the laser and optical CASA-Mot systems. The ISAS®3D-Track results showed that values for curvilinear velocity (VCL), straight line velocity, wobble and beat cross frequency were higher for the 100-µm chambers than for the 10- and 20-µm chambers. Only VCL showed a positive correlation between chambers. In addition, Bayesian analysis confirmed that the kinematic parameters observed with the 100-µm chamber were significantly different to those obtained using chambers with depths of 10 and 20µm. When an optical analyser CASA-Mot system was used, all kinematic parameters, except VCL, were higher with ISAS®3D-Track, but were not relevant after Bayesian analysis. Finally, almost three different three-dimensional motility patterns were recognised. In conclusion, the use of the ISAS®3D-Track allows for the analysis of the natural three-dimensional pattern of sperm movement.
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu-wen Tan; Ying Jin; Hui Yu
2013-10-31
We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the humanmore » normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)« less
Depth Effects on the Decomposition Dynamics of Plant-derived C at Diverse Sites
NASA Astrophysics Data System (ADS)
Gregorich, E.; Ellert, B.; Janzen, H.; Beare, M.; Helgason, B. L.; Curtin, D.
2017-12-01
Decay of plant residues is tied to many ecosystem functions and affects atmospheric CO2, plant-available nutrients, microbial diversity, soil organic matter quality, among others. The rate of decay, in turn, is governed by soil type and management, location in the soil profile, and environmental variables, some of which may be changing in coming decades. Our objective in this study was to elucidate the decomposition dynamics of plant-derived C and N at different soil depths. To characterize the importance of these variables across a broad scale, we established a long-term study at two sites in Canada and one site in New Zealand. At each site, labelled barley straw (13C = 10.2 atom%,C = 37.9%; N = 0.95%; C:N = 40) was installed at 3 depths (5-10, 20-25 and 40-45 cm). Soil temperature was logged at each depth. Samples were collected at different times over 5-6 years after application of the residues. Results showed that substantial decay occurred at all depths within a relatively short time (< 1 year). Decay was greatest at the warmest site and depth affected the concentration of viable microbes. However, depth had no effect on residue decay after about 5 years.
Effects of burn location and investigator on burn depth in a porcine model.
Singer, Adam J; Toussaint, Jimmy; Chung, Won Taek; Thode, Henry C; McClain, Steve; Raut, Vivek
2016-02-01
In order to be useful, animal models should be reproducible and consistent regardless of sampling bias, investigator creating burn, and burn location. We determined the variability in burn depth based on biopsy location, burn location and investigator in a porcine model of partial thickness burns. 24 partial thickness burns (2.5 cm by 2.5 cm each) were created on the backs of 2 anesthetized pigs by 2 investigators (one experienced, one inexperienced) using a previously validated model. In one of the pigs, the necrotic epidermis covering each burn was removed. Five full thickness 4mm punch biopsies were obtained 1h after injury from the four corners and center of the burns and stained with Hematoxylin and Eosin and Masson's trichrome for determination of burn depth by a board certified dermatopathologist blinded to burn location and investigator. Comparisons of burn depth by biopsy location, burn location and investigator were performed with t-tests and ANOVA as appropriate. The mean (SD) depth of injury to blood vessels (the main determinant of burn progression) in debrided and non-debrided pigs pooled together was 1.8 (0.3)mm, which included 75% of the dermal depth. Non-debrided burns were 0.24 mm deeper than debrided burns (P<0.001). Burn depth increased marginally from cephalic to caudal in non-debrided burns, but showed no statistical differences for these locations, in debrided burns. Additionally, there were also no statistical differences in burn depths from midline to lateral in either of these burn types. Burn depth was similar for both investigators and among biopsy locations. Burn depth was greater for caudal locations in non-debrided burns and overall non-debrided burns were deeper than debrided burns. However, burn depth did not differ based on investigator, biopsy site, and medial-lateral location. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
NASA Astrophysics Data System (ADS)
Adlmann, Franz A.; Herbel, Jörg; Korolkovas, Airidas; Bliersbach, Andreas; Toperverg, Boris; Van Herck, Walter; Pálsson, Gunnar K.; Kitchen, Brian; Wolff, Max
2018-04-01
Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.
Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.
2005-01-01
Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.
The interaction of pulsed eddy current with metal surface crack for various coils
NASA Astrophysics Data System (ADS)
Yang, Hung-Chi; Tai, Cheng-Chi
2002-05-01
We study the interaction of pulsed eddy current (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil currents will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection.
Research of detection depth for graphene-based optical sensor
NASA Astrophysics Data System (ADS)
Yang, Yong; Sun, Jialve; Liu, Lu; Zhu, Siwei; Yuan, Xiaocong
2018-03-01
Graphene-based optical sensors have been developed for research into the biological intercellular refractive index (RI) because they offer greater detection depths than those provided by the surface plasmon resonance technique. In this Letter, we propose an experimental approach for measurement of the detection depth in a graphene-based optical sensor system that uses transparent polydimethylsiloxane layers with different thicknesses. The experimental results show that detection depths of 2.5 μm and 3 μm can be achieved at wavelengths of 532 nm and 633 nm, respectively. These results prove that graphene-based optical sensors can realize long-range RI detection and are thus promising for use as tools in the biological cell detection field. Additionally, we analyze the factors that influence the detection depth and provide a feasible approach for detection depth control based on adjustment of the wavelength and the angle of incidence. We believe that this approach will be useful in RI tomography applications.
Manipulating Digital Holograms to Modify Phase of Reconstructed Wavefronts
NASA Astrophysics Data System (ADS)
Ferraro, Pietro; Paturzo, Melania; Memmolo, Pasquale; Finizio, Andrea
2010-04-01
We show that through an adaptive deformation of digital holograms it is possible to manage the depth of focus in the numerical reconstruction. Deformation is applied to the original hologram with the aim to put simultaneously in-focus, and in one reconstructed image plane, different objects lying at different distance from the hologram plane (i.e. CCD sensor), but in the same field of view. In the same way it is possible to extend the depth of field for 3D object having a tilted object whole in-focus.
Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice
NASA Astrophysics Data System (ADS)
Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.
2017-12-01
The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use model simulations along these trajectories made with a sea ice version of SNOWPACK, a 1D multi-layer thermodynamic snow model driven by reanalysis data. These simulations are especially helpful for indicating the occurrence of snow-ice-transformation, which cannot be identified in the buoy data and contributes to the measured snow height.
Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.
Lamminmäki, Satu; Parkkonen, Lauri; Hari, Riitta
2014-01-01
Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears' inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth.The hemispheric balance of SSFs was toward the right hemisphere for tones and speech, whereas SSFs to music showed no lateralization. In addition, the right lateralization of SSFs to the speech stimuli decreased with decreasing modulation depth. The results showed that SSFs can be reliably measured to amplitude-modulated natural sounds, with slightly different hemispheric lateralization for different carrier sounds. With speech stimuli, modulation at 100% depth is required, whereas for music the 75% or even 50% modulation depths provide a reasonable compromise between the signal-to-noise ratio of SSFs and sound quality or perceptual requirements. SSF recordings thus seem feasible for assessing the early cortical processing of natural sounds.
SELECT RESEARCH GROUP IN AIR POLLUTION METEOROLOGY
Six individual investigators, who have conducted different but related meteorological research, present in-depth technical reviews of their work. Prime conclusions are that (1) a scale analysis shows that different models are necessary for meteorological processes on urban, regio...
The Study on Grinding Ratio in Form Grinding with White Fused Alumina (WA) Grinding Wheels
NASA Astrophysics Data System (ADS)
Junming, Wang; Jiong, Wang; Deyuan, Lou
2018-03-01
The study is carried out based on an experiment of form grinding spur rack with white fused alumina (WA) grinding wheels. In the experiment, SOV-3020A type tri-axial image mapper is utilized to measure the profile of the tooth space in the rack, and the curve equations between the sectional area of the tooth space and the tooth sequence under different grinding depths are established by nonlinear curve regress using software of origin8.0. Then, it deduces the prediction equations for current grinding ratio and cumulative grinding ratio under different grinding depths. The result shows that the grinding ratio is exponential decline relationship with the increase of the number of the tooth to be ground under the same grinding depth, and the decline speed is fast in the initial stage. With the increase of grinding depth, the grinding ratio increases gradually. The cumulative grinding ratio is about twice as high as the current grinding ratio. Thus, large grinding depth is generally used in rough grinding to improve grinding efficiency.
Using different ways to determine the focal depth of the 2014 Ludian Ms 6.5 earthquake
NASA Astrophysics Data System (ADS)
Song, X.; Yu, J.; Yang, J.; Cui, X.; Zhu, Y.
2017-12-01
As we all know, focal depth is a very important parameter. And it has remained challenging. The Ludian County of Yunnan Province in southwestern China was struck by an Ms6.5 earthquake on August 3, 2014. The rapid report focal depth of CENC was 12km, and the result of double difference location was 15km (Wang W L, 2014) and 13.3km (Zhang G W, 2014). Because of the great damage, we have studied the focal depth of the Ludian Ms6.5 earthquake with several different methods. The first way is precise location. Due to the significant role of the velocity model in the focal depth determination, we collected the earthquake data which took place in Ludian area in the past few years. A new velocity model was recalculated with these data, which is more suitable for Ludian area. Taking the initial position of the epicenter as center, uniformly distributed stations were chose to improve the accuracy of location. The second way is by seismic phase. We used developed Pn-Pg (A reliable method for the determination of the depth of a hypocenter, Zhu Y Q, 1990) to certify the focal depth. This method aims to determine the depth of a hypocenter in the crust. It requires multiple seismic stations recording simultaneously the initial arrival waves Pg and Pn at each station. And the third way is by the nearest station. One of the main difficulties of the accurate focal depth determination is lack of stations along the direction of depth. A very close station to the epicenter can effectively control the accuracy of depth (Mori, 1999). A strong motion recording of Ludian MS6.5 earthquake was found, which instrument was set nearly perpendicular to the hypocenter. It obviously provides robust evidence. All the results show that the focal depth of Ludian Ms6.5 earthquake is about 7-8km. And we did an error analysis of the result. In the process, it was certified that the velocity model plays a very important role in focal depth calculation as well as the determination method.
Investigation of the depth and diameter relationship of subkilometer-diameter lunar craters
NASA Astrophysics Data System (ADS)
Sun, Shujuan; Yue, Zongyu; Di, Kaichang
2018-07-01
The depth and diameter relationship is one of the most important characteristics of craters; however, previous studies have focused mostly on large-diameter craters because of the limitations of image resolution. Recently, very high resolution images have been obtained that make it possible to expand this field of study to craters with diameters of < 1 km. Using images with resolution of up to 0.5 m, acquired by the Lunar Reconnaissance Orbiter, we investigated the depth and diameter relationship of fresh craters with subkilometer diameters. We selected craters from lunar maria and highlands, and we made precise measurements of their diameters and depths. The results show that the d/D ratio of small craters in the lunar maria and highlands, which varies from ∼0.2 to ∼0.1, is generally shallower than that of larger craters. We propose that the reason for the difference is because of the low strength of the lunar surface material. The fitted power law parameters of lunar mare and highland craters were found to be different, and that might be explained by terrain-related differences.
Determining the orientation of depth-rotated familiar objects.
Niimi, Ryosuke; Yokosawa, Kazuhiko
2008-02-01
How does the human visual system determine the depth-orientation of familiar objects? We examined reaction times and errors in the detection of 15 degrees differences in the depth orientations of two simultaneously presented familiar objects, which were the same objects (Experiment 1) or different objects (Experiment 2). Detection of orientation differences was best for 0 degrees (front) and 180 degrees (back), while 45 degrees and 135 degrees yielded poorer results, and 90 degrees (side) showed intermediate results, suggesting that the visual system is tuned for front, side and back orientations. We further found that those advantages are due to orientation-specific features such as horizontal linear contours and symmetry, since the 90 degrees advantage was absent for objects with curvilinear contours, and asymmetric object diminished the 0 degrees and 180 degrees advantages. We conclude that the efficiency of visually determining object orientation is highly orientation-dependent, and object orientation may be perceived in favor of front-back axes.
Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang
2014-04-01
Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.
Bae, Jinkun; Chung, Tae Nyoung; Je, Sang Mo
2016-01-01
Objectives To assess how the quality of metronome-guided cardiopulmonary resuscitation (CPR) was affected by the chest compression rate familiarised by training before the performance and to determine a possible mechanism for any effect shown. Design Prospective crossover trial of a simulated, one-person, chest-compression-only CPR. Setting Participants were recruited from a medical school and two paramedic schools of South Korea. Participants 42 senior students of a medical school and two paramedic schools were enrolled but five dropped out due to physical restraints. Intervention Senior medical and paramedic students performed 1 min of metronome-guided CPR with chest compressions only at a speed of 120 compressions/min after training for chest compression with three different rates (100, 120 and 140 compressions/min). Friedman's test was used to compare average compression depths based on the different rates used during training. Results Average compression depths were significantly different according to the rate used in training (p<0.001). A post hoc analysis showed that average compression depths were significantly different between trials after training at a speed of 100 compressions/min and those at speeds of 120 and 140 compressions/min (both p<0.001). Conclusions The depth of chest compression during metronome-guided CPR is affected by the relative difference between the rate of metronome guidance and the chest compression rate practised in previous training. PMID:26873050
Lee, Sangyoon; Hu, Xinda; Hua, Hong
2016-05-01
Many error sources have been explored in regards to the depth perception problem in augmented reality environments using optical see-through head-mounted displays (OST-HMDs). Nonetheless, two error sources are commonly neglected: the ray-shift phenomenon and the change in interpupillary distance (IPD). The first source of error arises from the difference in refraction for virtual and see-through optical paths caused by an optical combiner, which is required of OST-HMDs. The second occurs from the change in the viewer's IPD due to eye convergence. In this paper, we analyze the effects of these two error sources on near-field depth perception and propose methods to compensate for these two types of errors. Furthermore, we investigate their effectiveness through an experiment comparing the conditions with and without our error compensation methods applied. In our experiment, participants estimated the egocentric depth of a virtual and a physical object located at seven different near-field distances (40∼200 cm) using a perceptual matching task. Although the experimental results showed different patterns depending on the target distance, the results demonstrated that the near-field depth perception error can be effectively reduced to a very small level (at most 1 percent error) by compensating for the two mentioned error sources.
NASA Astrophysics Data System (ADS)
Sunarsih; Sasongko, Dwi P.; Sutrisno
2018-02-01
This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.
Linear and nonlinear transparencies in binocular vision.
Langley, K; Fleet, D J; Hibbard, P B
1998-01-01
When the product of a vertical square-wave grating (contrast envelope) and a horizontal sinusoidal grating (carrier) are viewed binocularly with different disparity cues they can be perceived transparently at different depths. We found, however, that the transparency was asymmetric; it only occurred when the envelope was perceived to be the overlaying surface. When the same two signals were added, the percept of transparency was symmetrical; either signal could be seen in front of or behind the other at different depths. Differences between these multiplicative and additive signal combinations were examined in two experiments. In one, we measured disparity thresholds for transparency as a function of the spatial frequency of the envelope. In the other, we measured disparity discrimination thresholds. In both experiments the thresholds for the multiplicative condition, unlike the additive condition, showed distinct minima at low envelope frequencies. The different sensitivity curves found for multiplicative and additive signal combinations suggest that different processes mediated the disparity signal. The data are consistent with a two-channel model of binocular matching, with multiple depth cues represented at single retinal locations. PMID:9802240
NASA Astrophysics Data System (ADS)
Lin, Shan
2018-04-01
There have been lots of reports about the occurrence of cracks in bolts in aging nuclear and thermal power plants. Sizing of such cracks is crucial for assessing the integrity of bolts. Currently, hammering and visual tests are used to detect cracks in bolts. However, they are not applicable for sizing cracks. Although the tip diffraction method is well known as a crack sizing technique, reflection echoes from threads make it difficult to apply this technique to bolts. This paper addresses a method for depth sizing of cracks in bolts by means of ultrasonic phased array technology. Numerical results of wave propagation in bolts by the finite element method (FEM) shows that a peak associated within the vicinity of a crack tip can be observed in the curve of echo intensity versus refraction angle for deep cracks. The refraction angle with respect to this peak decreases as crack depth increases. Such numerical results are verified by experiments on bolt specimens that have electrical discharge machining notches or fatigue cracks with different depths. In the experiment, a 10-MHz linear array probe is used. Depth of cracks in bolts using the refraction angle associated with the peak is determined and compared to actual depths. The comparison shows that accurately determining a crack depth from the inspection results is possible.
Distribution of Trace Metals in a Tanzanian Andosol: A Combined Bulk and Leach Study
NASA Astrophysics Data System (ADS)
Little, M. G.
2005-12-01
Here is presented data from a sequential extraction scheme based on the Bureau Commun de Reference (BCR) applied to an andosol from Mt. Meru in northern Tanzania. This is a study into the origins, fractionation, and fate of 'potentially toxic elements' (PTE) and other trace elements. The elemental composition of four extracts, water soluble (WAT), carbonate and exchangeable (CARB), reducible oxides (OX), and organic (ORG), and the bulk soil were determined via ICP-MS and corrected for loss on ignition. We calculated the net elemental mass change using Zr and Hf as immobile elements. This calculated mass change was compared to the sum of all four leaches. Co, Mg, Ni, Zn, Cd, Tl are the only elements that show a positive correlation between the calculated net change based on Zr/Hf and the sum of all four leaches. Of these elements, Zn shows its greatest bulk enrichment at the surface and declines with depth. Conversely, Tl is enriched throughout the soil column, but increases in concentration in both the bulk and CARB fraction with depth. The other elements, Co, Ni, and Cd, are most enriched in the 80-120cm depth range where P and Fe are at their highest concentrations. These observations suggest that additional Co, Mg, Ni, Zn, Cd, and Tl were incorporated into the soil after initial weathering of the bedrock protolith; however, these elements redistributed themselves non-uniformly throughout the soil column. Sc and the REE's show increases in the CARB fraction with depth and Sc, Co, and the REE's show a clear increase in the OX fractions with depth. As much as 25% of the REE's and Co below 120 cm is in the OX leach. Additionally, Sr/Ca ratios in the CARB leach suggest that the source material for the carbonate soil fraction is the bedrock above 140cm and a different, high Sr/Ca source below 140 cm. Therefore, it is likely that exogenous material was added throughout the soil column, but from different sources above and below 120-140 cm depth.
NASA Astrophysics Data System (ADS)
Barrett, A. P.; Stroeve, J.; Liston, G. E.; Tschudi, M. A.; Stewart, S.
2017-12-01
Retrievals of sea ice thickness from satellite- and air-borne sensors require knowledge of snow depth and density. Early retrievals used climatologies of snow depth and density - "The Warren Climatology" - based on observations from 31 Soviet drifting stations between 1957 and 1991. This climatology was the best available Arctic-wide data set at the time. However, it does not account for year-to-year variations in spatial and temporal patterns of snow depth, nor does it account for changes in snow depth over longer time periods. Recent efforts to retrieve ice thickness have used output from global and regional atmospheric reanalyses directly or as input to snow accumulation, density evolution, and melt models to estimate snow depth. While such efforts represent the state-of-the-art in terms of Arctic-wide snow depth fields, there can be large differences between precipitation (and other variables) from reanalyses. Knowledge about these differences and about biases in precipitation magnitude are important for getting the best-possible retrievals of ice thickness. Here, we evaluate fields of total precipitation and snow fall from the NASA MERRA and MERRA2, NOAA CFSR and CFSR version 2, ECMWF ERA-Interim, and Arctic System (ASR) reanalyses with a view to understanding differences in the magnitude, and temporal and spatial patterns of precipitation. Where possible we use observations to understand biases in the reanalysis output. Time series of annual total precipitation for the central Arctic correlate well with all reanalyses showing similar year-to-year variability. Time series for MERRA, MERRA2 and CFSR show no evidence of long-term trends. By contrast ERA-Interim appears to be wetter in the most recent decade. The ASR records only spans 2000 to 2012 but is similar to ERA-Interim. CFSR and MERRA2 are wetter than the other five reanalyses, especially over the eastern Arctic and North Atlantic.
van Tulder, Raphael; Roth, Dominik; Krammel, Mario; Laggner, Roberta; Schriefl, Christoph; Kienbacher, Calvin; Lorenzo Hartmann, Alexander; Novosad, Heinz; Constantin Chwojka, Christof; Havel, Christoph; Schreiber, Wolfgang; Herkner, Harald
2015-01-01
We investigated the effect on compression rate and depth of a conventional metronome and a voice metronome in simulated telephone-assisted, protocol-driven bystander Cardiopulmonary resucitation (CPR) compared to standard instruction. Thirty-six lay volunteers performed 10 minutes of compression-only CPR in a prospective, investigator-blinded, 3-arm study on a manikin. Participants were randomized either to standard instruction ("push down firmly, 5 cm"), a regular metronome pacing 110 beats per minute (bpm), or a voice metronome continuously prompting "deep-deepdeep- deeper" at 110 bpm. The primary outcome was deviation from the ideal chest compression target range (50 mm compression depth x 100 compressions per minute x 10 minutes = 50 m). Secondary outcomes were CPR quality measures (compression and leaning depth, rate, no-flow times) and participants' related physiological response (heart rate, blood pressure and nine hole peg test and borg scales score). We used a linear regression model to calculate effects. The mean (SD) deviation from the ideal target range (50 m) was -11 (9) m in the standard group, -20 (11) m in the conventional metronome group (adjusted difference [95%, CI], 9.0 [1.2-17.5 m], P=.03), and -18 (9) m in the voice metronome group (adjusted difference, 7.2 [-0.9-15.3] m, P=.08). Secondary outcomes (CPR quality measures and physiological response of participants to CPR performance) showed no significant differences. Compared to standard instruction, the conventional metronome showed a significant negative effect on the chest compression target range. The voice metronome showed a non-significant negative effect and therefore cannot be recommended for regular use in telephone-assisted CPR.
NASA Technical Reports Server (NTRS)
Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent
2005-01-01
The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.
Kang, Seongjoo; Yoneda, Minoru; Shimada, Yoko; Satta, Naoya; Fujita, Yasutaka; Shin, In Hwan
2017-08-01
We investigated the deposition and depth distributions of radiocesium in the Takizawa Research Forest, Iwate Prefecture, in order to understand the behavior of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant. The deposition distribution and vertical depth distribution of radiocesium in the soil were compared between topographically distinct parts of the forest where two different tree species grow. The results for all investigated locations show that almost 85% of the radiocesium has accumulated in the region of soil from the topmost organic layer to a soil depth of 0-4 cm. However, no activity was detected at depths greater than 20 cm. Analysis of the radiocesium deposition patterns in forest locations dominated by either coniferous or deciduous tree species suggests that radiocesium was sequestered and retained in higher concentrations in coniferous areas. The deposition data showed large spatial variability, reflecting the differences in tree species and topography. The variations in the measured 137 Cs concentrations reflected the variability in the characteristics of the forest floor environment and the heterogeneity of the initial ground-deposition of the Fukushima fallout. Sequential extraction experiments showed that most of the 137 Cs was present in an un-exchangeable form with weak mobility. Nevertheless, the post-vertical distribution of 137 Cs is expected to be governed by the percentage of exchangeable 137 Cs in the organic layer and the organic-rich upper soil horizons.
Underwater study of arterial blood pressure in breath-hold divers.
Sieber, Arne; L'abbate, Antonio; Passera, Mirko; Garbella, Erika; Benassi, Antonio; Bedini, Remo
2009-11-01
Knowledge regarding arterial blood pressure (ABP) values during breath-hold diving is scanty. It derives from a few reports of measurements performed at the water's surface, showing slight or no increase in ABP, and from a single study of two simulated deep breath-hold dives in a hyperbaric chamber. Simulated dives showed an increase in ABP to values considered life threatening by standard clinical criteria. For the first time, using a novel noninvasive subaquatic sphygmomanometer, we successfully measured ABP in 10 healthy elite breath-hold divers at a depth of 10 m of freshwater (mfw). ABP was measured in dry conditions, at the surface (head-out immersion), and twice at a depth of 10 mfw. Underwater measurements of ABP were obtained in all subjects. Each measurement lasted 50-60 s and was accomplished without any complications or diver discomfort. In the 10 subjects as a whole, mean ABP values were 124/93 mmHg at the surface and 123/94 mmHg at a depth of 10 mfw. No significant statistical differences were found when blood pressure measurements at the water surface were compared with breath-hold diving conditions at a depth of 10 mfw. No systolic blood pressure values >140 mmHg or diastolic blood pressure values >115 mmHg were recorded. In conclusion, direct measurements of ABP during apnea diving showed no or only mild increases in ABP. However, our results cannot be extended over environmental conditions different from those of the present study.
NASA Astrophysics Data System (ADS)
Li, Jian; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan
2016-02-01
Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe3O4 nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values.
Mapping water table depth using geophysical and environmental variables.
Buchanan, S; Triantafilis, J
2009-01-01
Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management.
NASA Astrophysics Data System (ADS)
Alamaru, Ada; Loya, Yossi; Brokovich, Eran; Yam, Ruth; Shemesh, Aldo
2009-09-01
We examined the utilization of carbon and nitrogen in two common Red Sea coral species (Stylophora pistillata and Favia favus), differing in colony morphology and polyp size, along a depth gradient down to 60 m. We describe the changes in C/N ratios and in the stable isotope composition of carbon and nitrogen of coral's tissue and algal symbionts. We also measured the carbon isotopic composition of the lipid fraction extracted from both coral tissue and algal symbionts in order to reveal the changes in the carbon source utilized by the host coral for lipid synthesis. The results show that for both species, δ13C decreases by 7-8‰ in animal tissue, algal symbionts and in the lipid fractions as depth increases. However, in contrast to previous reports, the difference between δ13C values of coral tissue and algal symbionts does not increase with depth. δ15N values of coral tissue and algal symbionts in both species do not correlate with depth suggesting that the heterotrophic capacity of these corals does not increase with depth. δ13C values of tissue lipids were depleted by an average of ˜3.5‰ compared to δ13C of the entire tissue at all depths. δ13C values of algal lipids were depleted by an average of ˜2‰ compared to δ13C of the entire zooxanthellae at all depths, indicating high efficiency of carbon recycling between the two symbiotic partners along the entire gradient. The depletion of lipids is attributed to the fractionation mechanism during lipid synthesis. In addition, for both species, δ13C values of algal lipids were enriched compared with δ13C of tissue lipids. In S. pistillata, the difference between δ13C values of tissue lipids and algal lipids increased linearly with depth, indicating a change in the sources of carbon utilized by the coral for lipid synthesis below 20 m from an autotrophic to a heterotrophic source. However, in F. favus, this average difference was ˜4 times larger compared to shallow S. pistillata and was constant along the entire depth gradient, suggesting that F. favus uses heterotrophically-acquired carbon for lipid synthesis regardless of depth. Overall, F. favus exhibited enriched δ13C and δ15N values compared to S. pistillata along the entire gradient. We attribute these differences to both morphological differences (i.e. colony morphology, tissue thickness and polyp size) between the two species and to a higher heterotrophy/autotrophy ratio in F. favus at all depths. The C/N ratio in S. pistillata tissue decreased with increasing water depth whereas in F. favus it remained constant. This reflects a higher heterotrophic capacity in the large polyped F. favus, at all depths.
NASA Astrophysics Data System (ADS)
Yang, Yu; Guo, Jianqiu; Goue, Ouloide Yannick; Kim, Jun Gyu; Raghothamachar, Balaji; Dudley, Michael; Chung, Gill; Sanchez, Edward; Manning, Ian
2018-02-01
Synchrotron x-ray topography in grazing-incidence geometry is useful for discerning defects at different depths below the crystal surface, particularly for 4H-SiC epitaxial wafers. However, the penetration depths measured from x-ray topographs are much larger than theoretical values. To interpret this discrepancy, we have simulated the topographic contrast of dislocations based on two of the most basic contrast formation mechanisms, viz. orientation and kinematical contrast. Orientation contrast considers merely displacement fields associated with dislocations, while kinematical contrast considers also diffraction volume, defined as the effective misorientation around dislocations and the rocking curve width for given diffraction vector. Ray-tracing simulation was carried out to visualize dislocation contrast for both models, taking into account photoelectric absorption of the x-ray beam inside the crystal. The results show that orientation contrast plays the key role in determining both the contrast and x-ray penetration depth for different types of dislocation.
Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin
Wynn, J.G.; Harden, J.W.; Fries, T.L.
2006-01-01
Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, J.; Calva-Vasquez, G.; Solis, C.
Particle induced X-ray emission (PIeXE) and Rutherford backscattering (RBS) elemental analyses of tree rings and soils from forests around the Mexico City Metropolitan Area (MCMA) were performed. The aim was to estimate the impact of pollution on the forests. Cores from Pinus montezumae and Abies religiosa trees, in four forests around the MCMA (Desierto de los Leones, Iztapopocatepetl, Villa del Carbon and Zoquiapan) and a reference site (El Chico). Differences were observed in samples from the different forests, showing higher values in the areas closest to the MCMA. A correlation of several elements with ring width was found using clustermore » analysis. Additionally, soil analyses from different depths in the forests were carried out, trying to relate the elemental concentrations measured in the tree rings with cation mobility. In this case, samples taken in 1993 and 1999 were analyzed, showing elemental mobility to the various depths.« less
NASA Astrophysics Data System (ADS)
Kim, R. S.; Durand, M. T.; Li, D.; Baldo, E.; Margulis, S. A.; Dumont, M.; Morin, S.
2017-12-01
This paper presents a newly-proposed snow depth retrieval approach for mountainous deep snow using airborne multifrequency passive microwave (PM) radiance observation. In contrast to previous snow depth estimations using satellite PM radiance assimilation, the newly-proposed method utilized single flight observation and deployed the snow hydrologic models. This method is promising since the satellite-based retrieval methods have difficulties to estimate snow depth due to their coarse resolution and computational effort. Indeed, this approach consists of particle filter using combinations of multiple PM frequencies and multi-layer snow physical model (i.e., Crocus) to resolve melt-refreeze crusts. The method was performed over NASA Cold Land Processes Experiment (CLPX) area in Colorado during 2002 and 2003. Results showed that there was a significant improvement over the prior snow depth estimates and the capability to reduce the prior snow depth biases. When applying our snow depth retrieval algorithm using a combination of four PM frequencies (10.7,18.7, 37.0 and 89.0 GHz), the RMSE values were reduced by 48 % at the snow depth transects sites where forest density was less than 5% despite deep snow conditions. This method displayed a sensitivity to different combinations of frequencies, model stratigraphy (i.e. different number of layering scheme for snow physical model) and estimation methods (particle filter and Kalman filter). The prior RMSE values at the forest-covered areas were reduced by 37 - 42 % even in the presence of forest cover.
NASA Astrophysics Data System (ADS)
Gülşen, Esra; Kurtulus, Bedri; Necati Yaylim, Tolga; Avsar, Ozgur
2017-04-01
In groundwater studies, quantification and detection of fluid flows in borehole is an important part of assessment aquifer characteristic at different depths. Monitoring wells disturbs the natural flow field and this disturbance creates different flow paths to an aquifer. Vertical flow fluid analyses are one of the important techniques to deal with the detection and quantification of these vertical flows in borehole/monitoring wells. Liwa region is located about 146 km to the south west of Abu Dhabi city and about 36 km southwest of Madinat Zayed. SWSR (Strategic Water Storage & Recovery Project) comprises three Schemes (A, B and C) and each scheme contains an infiltration basin in the center, 105 recovery wells, 10 clusters and each cluster comprises 3 monitoring wells with different depths; shallow ( 50 m), intermediate ( 75 m) and deep ( 100 m). The scope of this study is to calculate the transmissivity values at different depth and evaluate the Fluid Flow Log (FFL) data for Scheme A (105 recovery wells) in order to understand the aquifer characteristic at different depths. The transmissivity values at different depth levels are calculated using Razack and Huntley (1991) equation for vertical flow rates of 30 m3 /h, 60 m3 /h, 90 m3 /h, 120 m3 /h and then Empirical Bayesian Kriging is used for interpolation in Scheme A using ArcGIS 10.2 software. FFL are drawn by GeODin software. Derivative analysis of fluid flow data are done by Microsoft Office: Excel software. All statistical analyses are calculated by IBMSPSS software. The interpolation results show that the transmissivity values are higher at the top of the aquifer. In other word, the aquifer is found more productive at the upper part of the Liwa aquifer. We are very grateful for financial support and providing us the data to ZETAS Dubai Inc.
Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N
2018-01-01
The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cartier, V.; Claret, C.; Garnier, R.; Fayolle, S.; Franquet, E.
2010-03-01
The complexity of the relationships between environmental factors and organisms can be revealed by sampling designs which consider the contribution to variability of different temporal and spatial scales, compared to total variability. From a management perspective, a multi-scale approach can lead to time-saving. Identifying environmental patterns that help maintain patchy distribution is fundamental in studying coastal lagoons, transition zones between continental and marine waters characterised by great environmental variability on spatial and temporal scales. They often present organic enrichment inducing decreased species richness and increased densities of opportunist species like C hironomus salinarius, a common species that tends to swarm and thus constitutes a nuisance for human populations. This species is dominant in the Bolmon lagoon, a French Mediterranean coastal lagoon under eutrophication. Our objective was to quantify variability due to both spatial and temporal scales and identify the contribution of different environmental factors to this variability. The population of C. salinarius was sampled from June 2007 to June 2008 every two months at 12 sites located in two areas of the Bolmon lagoon, at two different depths, with three sites per area-depth combination. Environmental factors (temperature, dissolved oxygen both in sediment and under water surface, sediment organic matter content and grain size) and microbial activities (i.e. hydrolase activities) were also considered as explanatory factors of chironomid densities and distribution. ANOVA analysis reveals significant spatial differences regarding the distribution of chironomid larvae for the area and the depth scales and their interaction. The spatial effect is also revealed for dissolved oxygen (water), salinity and fine particles (area scale), and for water column depth. All factors but water column depth show a temporal effect. Spearman's correlations highlight the seasonal effect (temperature, dissolved oxygen in sediment and water) as well as the effect of microbial activities on chironomid larvae. Our results show that a multi-scale approach identifies patchy distribution, even when there is relative environmental homogeneity.
Effect of image scaling on stereoscopic movie experience
NASA Astrophysics Data System (ADS)
Häkkinen, Jukka P.; Hakala, Jussi; Hannuksela, Miska; Oittinen, Pirkko
2011-03-01
Camera separation affects the perceived depth in stereoscopic movies. Through control of the separation and thereby the depth magnitudes, the movie can be kept comfortable but interesting. In addition, the viewing context has a significant effect on the perceived depth, as a larger display and longer viewing distances also contribute to an increase in depth. Thus, if the content is to be viewed in multiple viewing contexts, the depth magnitudes should be carefully planned so that the content always looks acceptable. Alternatively, the content can be modified for each viewing situation. To identify the significance of changes due to the viewing context, we studied the effect of stereoscopic camera base distance on the viewer experience in three different situations: 1) small sized video and a viewing distance of 38 cm, 2) television and a viewing distance of 158 cm, and 3) cinema and a viewing distance of 6-19 meters. We examined three different animations with positive parallax. The results showed that the camera distance had a significant effect on the viewing experience in small display/short viewing distance situations, in which the experience ratings increased until the maximum disparity in the scene was 0.34 - 0.45 degrees of visual angle. After 0.45 degrees, increasing the depth magnitude did not affect the experienced quality ratings. Interestingly, changes in the camera distance did not affect the experience ratings in the case of television or cinema if the depth magnitudes were below one degree of visual angle. When the depth was greater than one degree, the experience ratings began to drop significantly. These results indicate that depth magnitudes have a larger effect on the viewing experience with a small display. When a stereoscopic movie is viewed from a larger display, other experiences might override the effect of depth magnitudes.
Campbell, Matthew D.; Patino, Reynaldo; Tolan, J.M.; Strauss, R.E.; Diamond, S.
2009-01-01
The sublethal effects of simulated capture of red snapper (Lutjanus campechanus) were analysed using physiological responses, condition indexing, and performance variables. Simulated catch-and-release fishing included combinations of depth of capture and thermocline exposure reflective of environmental conditions experienced in the Gulf of Mexico. Frequency of occurrence of barotrauma and lack of reflex response exhibited considerable individual variation. When combined into a single condition or impairment index, individual variation was reduced, and impairment showed significant increases as depth increased and with the addition of thermocline exposure. Performance variables, such as burst swimming speed (BSS) and simulated predator approach distance (AD), were also significantly different by depth. BSSs and predator ADs decreased with increasing depth, were lowest immediately after release, and were affected for up to 15 min, with longer recovery times required as depth increased. The impairment score developed was positively correlated with cortisol concentration and negatively correlated with both BSS and simulated predator AD. The impairment index proved to be an efficient method to estimate the overall impairment of red snapper in the laboratory simulations of capture and shows promise for use in field conditions, to estimate release mortality and vulnerability to predation.
Hotrabhavananda, Benjamin; Mishra, Anup K; Skubic, Marjorie; Hotrabhavananda, Nijaporn; Abbott, Carmen
2016-08-01
We compared the performance of the Kinect skeletal data with the Kinect depth data in capturing different gait parameters during the Timed-up and Go Test (TUG) and Figure of 8 Walk Test (F8W). The gait parameters considered were stride length, stride time, and walking speed for the TUG, and number of steps and completion time for the F8W. A marker-based Vicon motion capture system was used for the ground-truth measurements. Five healthy participants were recruited for the experiment and were asked to perform three trials of each task. Results show that depth data analysis yields stride length and stride time measures with significantly low percentile errors as compared to the skeletal data analysis. However, the skeletal and depth data performed similar with less than 3% of absolute mean percentile error in determining the walking speed for the TUG and both parameters of F8W. The results show potential capabilities of Kinect depth data analysis in computing many gait parameters, whereas, the Kinect skeletal data can also be used for walking speed in TUG and F8W gait parameters.
Severin, Anna C; Burkett, Brendan J; McKean, Mark R; Wiegand, Aaron N; Sayers, Mark G L
2017-01-01
Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr.) performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz) recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI) throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as they appear to improve the technique without compromising movement depth.
2017-01-01
Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr.) performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz) recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI) throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as they appear to improve the technique without compromising movement depth. PMID:28767683
The riches of the cyclopean paradigm
NASA Astrophysics Data System (ADS)
Tyler, Christopher W.
2005-03-01
The cyclopean paradigm introduced by Bela Julesz remains one of the richest probes into the neural organization of sensory processing, by virtue of both its specificity for purely stereoscopic form and the sophistication of the processing required to retrieve it. The introduction of the sinusoidal stereograting showed that the perceptual limitations of human depth processing are very different from those for monocular form. Their use has also revealed the existence of hypercyclopean form channels selective for specific aspects of the monocularly invisible depth form. The natural extension of stereogratings to patches of stereoGabor ripple has allowed the measurement of the summation properties for depth structure, which is specific for narrow horizontal bars in depth. Consideration of the apparent motion between two cyclopean depth structures reveals the existence of a novel surface correspondence problem operating for cyclopean surfaces over time after the binocular correspondence has been solved. Such concepts imply that remains to be discovered about cyclopean stereopsis and its relationship to 3D form perception from other depth cues.
Stereoscopic depth perception varies with hues
NASA Astrophysics Data System (ADS)
Chen, Zaiqing; Shi, Junsheng; Tai, Yonghang; Yun, Lijun
2012-09-01
The contribution of color information to stereopsis is controversial, and whether the stereoscopic depth perception varies with chromaticity is ambiguous. This study examined the changes in depth perception caused by hue variations. Based on the fact that a greater disparity range indicates more efficient stereoscopic perception, the effect of hue variations on depth perception was evaluated through the disparity range with random-dot stereogram stimuli. The disparity range was obtained by constant-stimulus method for eight chromaticity points sampled from the CIE 1931 chromaticity diagram. Eight sample points include four main color hues: red, yellow, green, and blue at two levels of chroma. The results show that the disparity range for the yellow hue is greater than the red hue, the latter being greater than the blue hue and the disparity range for green hue is smallest. We conclude that the perceived depth is not the same for different hues for a given size of disparity. We suggest that the stereoscopic depth perception can vary with chromaticity.
Velocities of Subducted Sediments and Continents
NASA Astrophysics Data System (ADS)
Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.
2009-12-01
The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios <1.7 and >1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at shallow depths through trench-parallel at moderate depths to down-dip approaching sub-arc depths. Vertically incident waves have VP/ VS of 1.7-1.3 over the same range of depths, waves propagating up dip have VP/ VS of 1.7-1.3, and waves propagating along the slab at constant depth have VP/ VS of 1.7-1.45. These remarkably low VP/ VS ratios are due to the anomalous elastic behavior of quartz. More aluminous lithologies have elevated VP/ VS ratios: 1.85 for slab-normal waves, 1.75 for trench-parallel waves, and 1.65 for down-dip waves. Subducted continental crust that is too dry to transform to high-pressure minerals has relatively ordinary VP/ VS ratio of 1.71-1.75 for vertically incident waves, 1.6-1.7 for waves propagating up dip, and 1.65-1.75 for waves propagating along the slab. Thus, subducted mica-rich sediments can have high VP/ VS ratios, whereas quartzose lithologies generate low VP/ VS ratios.
Soufrière Hills Plagioclase: Postcards From the Edge.
NASA Astrophysics Data System (ADS)
Genareau, K.; Clarke, A.; Hervig, R.
2005-12-01
Secondary Ion Mass Spectrometry (SIMS) can provide sub-micron depth resolution for analyzing products of volcanic eruptions. SIMS was used to examine the outer rims of plagioclase phenocrysts derived from both explosive and effusive eruptions of the Soufrière Hills Volcano (SHV), Montserrat. Phenocrysts were separated from the host igneous rock by crushing with a mortar and pestle and then cleaned with a Branson Sonifier. A 12.5 kV O2+ primary ion beam was used to examine the variation in ten elements (Ca, Na, Si, Al, Ti, Zr, K, Fe, Sr, Li) through a crystal depth of 5-9 microns. Plagioclase crystals separated from explosively produced pumice clasts show increasing anorthite (An) content with depth into the crystal surface, starting at ~10% An at the surface and reaching a constant composition of ~45% An at 2-4 microns depth. According to experimentally determined estimates of plagioclase growth rates for the SHV magma (Couch et al. 2003; J. Petrology 44, 1477-1502), the 2-4 microns depth over which An changes corresponds to 1-7 hours of growth. Sr also shows a general increase with depth into the crystal. K shows a rapid decrease in abundance with depth. Fe shows more complex patterns that may indicate late-stage crystallization of magnetite. Plagioclase derived from exogenous dome samples also have surface compositions of ~10% An increasing with depth to ~30% An, but rather than plateau, the values begin to decrease again at 2-5 microns depth. This fluctuating abundance of An may reveal the presence of micron-scale decompression-induced growth zones that have not been previously documented due to limitations in the spatial resolution of conventional analytical techniques. Explosive and effusive samples exhibit conflicting Li trends. The explosively derived plagioclase have elevated surface Li concentrations while the dome derived plagioclase have low surface Li concentrations. These differing trends may provide evidence of closed system vs. open system degassing as a function of eruptive style. Geochemical analyses of igneous phenocrysts using the SIMS depth-profiling technique can be used to constrain the style of magma decompression and eruption. Additional analyses are currently being performed on an expanded suite of samples in order to confirm these results and to relate crystal-edge chemistry to other parameters such as quench pressure and degree of magma degassing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utama, Muhammad Reza July, E-mail: muhammad.reza@bmkg.go.id; Indonesian Meteorological, Climatological and Geophysical Agency; Nugraha, Andri Dian
The precise hypocenter was determined location using double difference method around subduction zone in Moluccas area eastern part of Indonesia. The initial hypocenter location from MCGA data catalogue of 1,945 earthquake events. Basically the principle of double-difference algorithm assumes if the distance between two earthquake hypocenter distribution is very small compared to the distance between the station to the earthquake source, the ray path can be considered close to both earthquakes. The results show the initial earthquakes with a certain depth (fix depth 10 km) relocated and can be interpreted more reliable in term of seismicity and geological setting. Themore » relocation of the intra slab earthquakes beneath Banda Arc are also clearly observed down to depth of about 400 km. The precise relocated hypocenter will give invaluable seismicity information for other seismological and tectonic studies especially for seismic hazard analysis in this region.« less
NASA Astrophysics Data System (ADS)
Karan, S.; Sebok, E.; Engesgaard, P. K.
2016-12-01
For identifying groundwater seepage locations in small streams within a headwater catchment, we present a method expanding on the linear regression of air and stream temperatures. Thus, by measuring the temperatures in dual-depth; in the stream column and at the streambed-water interface (SWI), we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept and coefficient of determination), and the daily mean temperatures (temperature variance and the average difference between the minimum and maximum daily temperatures). Our study show that using metrics from single-depth stream temperature measurements only are not sufficient to identify substantial groundwater seepage locations within a headwater stream. Conversely, comparing the metrics from dual-depth temperatures show significant differences so that at groundwater seepage locations, temperatures at the SWI, merely explain 43-75 % of the variation opposed to ≥91 % at the corresponding stream column temperatures. The figure showing a box-plot of the variation in daily mean temperature depict that at several locations there is great variation in the range the upper and lower loggers due to groundwater seepage. In general, the linear regression show that at these locations at the SWI, the slopes (<0.25) and intercepts (>6.5oC) are substantially lower and higher, while the mean diel amplitudes (<0.98oC) are decreased compared to remaining locations. The dual-depth approach was applied in a post-glacial fluvial setting, where metrics analyses overall corresponded to field measurements of groundwater fluxes deduced from vertical streambed temperatures and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambed in such settings.
Bae, Jinkun; Chung, Tae Nyoung; Je, Sang Mo
2016-02-12
To assess how the quality of metronome-guided cardiopulmonary resuscitation (CPR) was affected by the chest compression rate familiarised by training before the performance and to determine a possible mechanism for any effect shown. Prospective crossover trial of a simulated, one-person, chest-compression-only CPR. Participants were recruited from a medical school and two paramedic schools of South Korea. 42 senior students of a medical school and two paramedic schools were enrolled but five dropped out due to physical restraints. Senior medical and paramedic students performed 1 min of metronome-guided CPR with chest compressions only at a speed of 120 compressions/min after training for chest compression with three different rates (100, 120 and 140 compressions/min). Friedman's test was used to compare average compression depths based on the different rates used during training. Average compression depths were significantly different according to the rate used in training (p<0.001). A post hoc analysis showed that average compression depths were significantly different between trials after training at a speed of 100 compressions/min and those at speeds of 120 and 140 compressions/min (both p<0.001). The depth of chest compression during metronome-guided CPR is affected by the relative difference between the rate of metronome guidance and the chest compression rate practised in previous training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Analysis of the in vivo confocal Raman spectral variability in human skin
NASA Astrophysics Data System (ADS)
Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.
2015-06-01
Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.
NASA Astrophysics Data System (ADS)
Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro
2016-06-01
The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.
Changes in prescribed doses for the Seattle neutron therapy system
NASA Astrophysics Data System (ADS)
Popescu, A.
2008-06-01
From the beginning of the neutron therapy program at the University of Washington Medical Center, the neutron dose distribution in tissue has been calculated using an in-house treatment planning system called PRISM. In order to increase the accuracy of the absorbed dose calculations, two main improvements were made to the PRISM treatment planning system: (a) the algorithm was changed by the addition of an analytical expression of the central axis wedge factor dependence with field size and depth developed at UWMC. Older versions of the treatment-planning algorithm used a constant central axis wedge factor; (b) a complete newly commissioned set of measured data was introduced in the latest version of PRISM. The new version of the PRISM algorithm allowed for the use of the wedge profiles measured at different depths instead of one wedge profile measured at one depth. The comparison of the absorbed dose calculations using the old and the improved algorithm showed discrepancies mainly due to the missing central axis wedge factor dependence with field size and depth and due to the absence of the wedge profiles at depths different from 10 cm. This study concludes that the previously reported prescribed doses for neutron therapy should be changed.
Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement
Hu, Bo; Knill, David C.
2012-01-01
Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567
Fernández-Varea, J M; Andreo, P; Tabata, T
1996-07-01
Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth-dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies.
NASA Astrophysics Data System (ADS)
Kokubun, Nobuo; Yamamoto, Takashi; Sato, Nobuhiko; Watanuki, Yutaka; Will, Alexis; Kitaysky, Alexander S.; Takahashi, Akinori
2016-04-01
Subarctic environmental changes are expected to affect the foraging ecology of marine top predators, but the response to such changes may vary among species if they use food resources differently. We examined the characteristics of foraging behavior of two sympatric congeneric diving seabird: common (Uria aalge: hereafter COMUs) and thick-billed (U. lomvia: hereafter TBMUs) murres breeding on St. George Island, located in the seasonal sea-ice region of the Bering Sea. We investigated their foraging trip and flight durations, diel patterns of dive depth, and underwater wing strokes, along with wing morphology and blood stable isotope signatures and stress hormones. Acceleration-temperature-depth loggers were attached to chick-guarding birds, and data were obtained from 7 COMUs and 12 TBMUs. Both species showed similar mean trip duration (13.2 h for COMUs and 10.5 h for TBMUs) and similar diurnal patterns of diving (frequent dives to various depths in the daytime and less frequent dives to shallow depths in the nighttime). During the daytime, the dive depths of COMUs had two peaks in shallow (18.1 m) and deep (74.2 m) depths, while those of TBMUs were 20.2 m and 59.7 m. COMUs showed more frequent wing strokes during the bottom phase of dives (1.90 s-1) than TBMUs (1.66 s-1). Fish occurred more frequently in the bill loads of COMUs (85 %) than those of TBMUs (56 %). The δ15N value of blood was significantly higher in COMUs (14.5 ‰) than in TBMUs (13.1 ‰). The relatively small wing area (0.053 m2) of COMUs compared to TBMUs (0.067 m2) may facilitate their increased agility while foraging and allow them to capture more mobile prey such as larger fishes that inhabit deeper depths. These differences in food resource use may lead to the differential responses of the two murre species to marine environmental changes in the Bering Sea.
Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool
NASA Astrophysics Data System (ADS)
Tumac, Deniz; Copur, Hanifi; Balci, Cemal; Er, Selman; Avunduk, Emre
2018-04-01
The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting performance of chisel tools can be predicted based on texture coefficients of the natural stones.
NASA Astrophysics Data System (ADS)
Jiang, Feng; Liu, Shulin
2018-03-01
In this paper, we present a feasibility study for detecting cracks with different hidden depths and shapes using information contained in the magnetic field excited by a rectangular coil with a rectangular cross section. First, we solve for the eigenvalues and the unknown coefficients of the magnetic vector potential by imposing artificial and natural boundary conditions. Thus, a semi-analytical solution for the magnetic field distribution around the surface of a conducting plate that contains a long hidden crack is formulated. Next, based on the proposed modelling, the influences of the different hidden depth cracks on the surface magnetic field are analysed. The results show that the horizontal and vertical components of the magnetic field near the crack are becoming weaker and that the phase information of the magnetic field can be used to qualitatively determine the hidden depth of the crack. In addition, the model is optimised to improve its accuracy in classifying crack types. The relationship between signal features and crack shapes is subsequently established. The modified model is validated by using finite element simulations, visually indicating the change in the magnetic field near the crack.
Mapping Snow Depth with Automated Terrestrial Laser Scanning - Investigating Potential Applications
NASA Astrophysics Data System (ADS)
Adams, M. S.; Gigele, T.; Fromm, R.
2017-11-01
This contribution presents an automated terrestrial laser scanning (ATLS) setup, which was used during the winter 2016/17 to monitor the snow depth distribution on a NW-facing slope at a high-alpine study site. We collected data at high temporal [(sub-)daily] and spatial resolution (decimetre-range) over 0.8 km² with a Riegl LPM-321, set in a weather-proof glass fibre enclosure. Two potential ATLS-applications are investigated here: monitoring medium-sized snow avalanche events, and tracking snow depth change caused by snow drift. The results show the ATLS data's high explanatory power and versatility for different snow research questions.
Stress drops for intermediate-depth intraslab earthquakes beneath Hokkaido, northern Japan
NASA Astrophysics Data System (ADS)
Kita, S.; Katsumata, K.
2015-12-01
Spatial variations in the stress drop for 1726 intermediate-depth intraslab earthquakes in the subducting Pacific plate beneath Hokkaido were examined, using precisely relocated hypocenters, the corner frequencies of events, and detailed determined geometry of the upper interface of the Pacific plate. The analysis results show that median stress drop for intraslab earthquakes generally increases with an increase in depth from 10 to 157 Mpa at depths of 70-300 km. Median stress drops for events in the oceanic crust decrease (9.9-6.8 MPa) at depths of 70-120 km and increase (6.8-17 MPa) at depths of 120- 170 km, whereas median stress drop for events in the oceanic mantle decrease (21.6-14.0 MPa) at depths of 70-170 km, where the geometry of the Pacific plate is well determined. The increase in stress drop with depth in the oceanic crust at depths of 120-170 km can be explained by a lithofacies change (increases in velocity and density and a decrease in the water content) due to the phase change with dehydration in the oceanic crust. At depths of 70-110 km, the decrease in the median stress drop in the oceanic crust would also be explained by that the temperature-induced rigidity decrease would be larger than that of the rigidity increase caused by lithofacies change and water content. Stress drops for events in the oceanic mantle were larger than those for events in the oceanic crust at depths of 70-120 km. Differences in both the rigidity of the rock types and in the rupture mechanisms for events between the oceanic crust and mantle could be causes for the stress drop differences within a slab. These analysis results can help clarify the nature of intraslab earthquakes and provide information useful for the prediction of strong motion associated with earthquakes in the slab at intermediate depths.
Campbell, W.H.; Schiffmacher, E.R.
1986-01-01
Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq), separated for the N American, European, Central Asian and E Asian regions, were used to determine conductivity profiles to depths of about 600km by the Schmucker equivalent-substitute conductor method. All 3 regions showed a roughly exponential increase of conductivity with depth. Distinct discontinuities seemed to be evident near 255-300km and near 450-600km. Regional differences in the conductivity profiles were shown by the functional fittings to the data. For depths less than about 275km, the N American conductivities seemed to be significantly higher than the other regions. For depths greater than about 300km, the E Asian conductivities were largest. -Authors
Gain Modulation as a Mechanism for Coding Depth from Motion Parallax in Macaque Area MT
Kim, HyungGoo R.; Angelaki, Dora E.
2017-01-01
Observer translation produces differential image motion between objects that are located at different distances from the observer's point of fixation [motion parallax (MP)]. However, MP can be ambiguous with respect to depth sign (near vs far), and this ambiguity can be resolved by combining retinal image motion with signals regarding eye movement relative to the scene. We have previously demonstrated that both extra-retinal and visual signals related to smooth eye movements can modulate the responses of neurons in area MT of macaque monkeys, and that these modulations generate neural selectivity for depth sign. However, the neural mechanisms that govern this selectivity have remained unclear. In this study, we analyze responses of MT neurons as a function of both retinal velocity and direction of eye movement, and we show that smooth eye movements modulate MT responses in a systematic, temporally precise, and directionally specific manner to generate depth-sign selectivity. We demonstrate that depth-sign selectivity is primarily generated by multiplicative modulations of the response gain of MT neurons. Through simulations, we further demonstrate that depth can be estimated reasonably well by a linear decoding of a population of MT neurons with response gains that depend on eye velocity. Together, our findings provide the first mechanistic description of how visual cortical neurons signal depth from MP. SIGNIFICANCE STATEMENT Motion parallax is a monocular cue to depth that commonly arises during observer translation. To compute from motion parallax whether an object appears nearer or farther than the point of fixation requires combining retinal image motion with signals related to eye rotation, but the neurobiological mechanisms have remained unclear. This study provides the first mechanistic account of how this interaction takes place in the responses of cortical neurons. Specifically, we show that smooth eye movements modulate the gain of responses of neurons in area MT in a directionally specific manner to generate selectivity for depth sign from motion parallax. We also show, through simulations, that depth could be estimated from a population of such gain-modulated neurons. PMID:28739582
Invariant models in the inversion of gravity and magnetic fields and their derivatives
NASA Astrophysics Data System (ADS)
Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni
2014-11-01
In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.
NASA Astrophysics Data System (ADS)
Guyot, Adrien; Fan, Junliang; Oestergaard, Kasper T.; Whitley, Rhys; Gibbes, Badin; Arsac, Margaux; Lockington, David A.
2017-01-01
Groundwater-vegetation-atmosphere fluxes were monitored for a subtropical coastal conifer forest in South-East Queensland, Australia. Observations were used to quantify seasonal changes in transpiration rates with respect to temporal fluctuations of the local water table depth. The applicability of a Modified Jarvis-Stewart transpiration model (MJS), which requires soil-water content data, was assessed for this system. The influence of single depth values compared to use of vertically averaged soil-water content data on MJS-modelled transpiration was assessed over both a wet and a dry season, where the water table depth varied from the surface to a depth of 1.4 m below the surface. Data for tree transpiration rates relative to water table depth showed that trees transpire when the water table was above a threshold depth of 0.8 m below the ground surface (water availability is non-limiting). When the water table reached the ground surface (i.e., surface flooding) transpiration was found to be limited. When the water table is below this threshold depth, a linear relationship between water table depth and the transpiration rate was observed. MJS modelling results show that the influence of different choices for soil-water content on transpiration predictions was insignificant in the wet season. However, during the dry season, inclusion of deeper soil-water content data improved the model performance (except for days after isolated rainfall events, here a shallower soil-water representation was better). This study demonstrated that, to improve MJS simulation results, appropriate selection of soil water measurement depths based on the dynamic behaviour of soil water profiles through the root zone was required in a shallow unconfined aquifer system.
Veli, Ilknur; Ozturk, Mehmet Ali; Uysal, Tancan
2015-03-01
Our objectives were to assess the depth of the curve of Spee (COS) in different malocclusion groups, to relate this to the eruption of anterior or posterior teeth quantitatively, and to determine whether the depth of the COS is affected by the vertical eruption of anterior or posterior teeth. Two hundred conventional lateral cephalograms and 3-dimensional models of untreated patients (70 boys, mean age: 16.4 ± 1.4 years; 130 young women, mean age: 18.1 ± 1.8 years) were included and assigned to 4 malocclusion groups as Class I, Class II Division 1, Class II Division 2, and Class III. The depth of the COS, overjet, and overbite were measured on 3-dimensional models. The perpendicular distance between the incisal tip of the mandibular central incisor (L1-MP), the deepest point of the COS (S-MP), and the distobuccal cusp tip of the mandibular second molar (L7-MP) to the mandibular plane were calculated and proportioned with each other. The Pearson correlation coefficient was calculated, and multiple linear regression analysis was carried out. Also, multivariate analysis of variance was performed at the P <0.05 level. The mesiobuccal cusp of the first molar was the deepest part of the COS in all groups, with a maximum depth of 2.44 ± 0.73 mm in the Class II Division 1 subjects and a minimum depth of 1.76 ± 0.94 in the Class III subjects. The depth of the COS changed as follows: Class II Division 1 > Class II Division 2 > Class I > Class III malocclusion groups. Statistically significant positive correlations were found between the depth of the COS and L1-MP/S-MP (r = 0.541) and L7-MP/S-MP (r = 0.269) in the Class I and Class III subjects, and between the depth of the COS and overjet (r = 0.483) and L7-MP/S-MP (r = 0.289) in the Class II Division 1 subjects. All variables except overjet had positive correlations with the depth of the COS in Class II Division 2 subjects. The multivariate analysis of variance showed statistically significant differences in overjet, overbite, L1-MP/S-MP, L7-MP/S-MP, and the depth of the COS (P <0.001) among the groups. Although the overjet differed, vertical eruption of the anterior teeth did not differ among the different malocclusion groups and had a significant contribution to the depth of the COS in subjects with Class I and Class III malocclusions. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Fish communities associated with cold-water corals vary with depth and substratum type
NASA Astrophysics Data System (ADS)
Milligan, Rosanna J.; Spence, Gemma; Roberts, J. Murray; Bailey, David M.
2016-08-01
Understanding the processes that drive the distribution patterns of organisms and the scales over which these processes operate are vital when considering the effective management of species with high commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals (CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of this study were to investigate the role of CWCs in shaping fish community structure and individual species-habitat associations across four spatial scales in the NE Atlantic ranging from "regions" (separated by >500 km) to "substratum types" (contiguous). Demersal fish and substratum types were quantified from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA analyses showed significant differences in community composition between all regions which were most likely caused by differences in depths. Within regions, significant variation in community composition was recorded at scales of c. 20-3500 m. CWCs supported significantly different fish communities to non-CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific and depends on the broader spatial context in which the substratum is found. The precautionary approach would be to assume that CWCs are important for associated fish, but must acknowledge that CWCs in different depths will not provide redundancy or replication within spatially-managed conservation networks.
Balanay, Jo Anne G; Floyd, Evan L; Lungu, Claudiu T
2015-05-01
Activated carbon fibers (ACF) are considered viable alternative adsorbent materials in respirators because of their larger surface area, lighter weight, and fabric form. The purpose of this study was to characterize the breakthrough curves of toluene for different types of commercially available ACFs to understand their potential service lives in respirators. Two forms of ACF, cloth (AC) and felt (AF), with three surface areas each were tested. ACFs were challenged with six toluene concentrations (50-500 p.p.m.) at constant air temperature (23°C), relative humidity (50%), and air flow (16 l min-1) at different bed depths. Breakthrough data were obtained using continuous monitoring by gas chromatography using a gas sampling valve. The ACF specific surface areas were measured by an automatic physisorption analyzer. Results showed unique shapes of breakthrough curves for each ACF form: AC demonstrated a gradual increase in breakthrough concentration, whereas AF showed abrupt increase in concentration from the breakpoint, which was attributed to the difference in fiber density between the forms. AF has steeper breakthrough curves compared with AC with similar specific surface area. AC exhibits higher 10% breakthrough times for a given bed depth due to higher mass per bed depth compared with AF, indicating more adsorption per bed depth with AC. ACF in respirators may be appropriate for use as protection in environments with toluene concentration at the Occupational Safety and Health Administration Permissible Exposure Limit, or during emergency escape for higher toluene concentrations. ACF has shown great potential for application in respiratory protection against toluene and in the development of thinner, lighter, and more efficient respirators. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Ant distribution in relation to ground water in north Florida pine flatwoods.
Tschinkel, Walter R; Murdock, Tyler; King, Joshua R; Kwapich, Christina
2012-01-01
Longleaf pine savannas are one of the most threatened ecosystems in the world, yet are understudied. Ants are a functionally important and diverse group of insects in these ecosystems. It is largely unknown how local patterns of species diversity and composition are determined through the interaction of this dominant animal group with abiotic features of longleaf pine ecosystems. Here we describe how an important abiotic variable, depth to water table, relates to ant species distributions at local scales. Pitfall trapping studies across habitat gradients in the Florida coastal plains longleaf pine flatwoods showed that the ant community changed with mild differences in habitat. In this undulating landscape, elevation differences were less than 2 m, and the depth to the water table ranged from < 20 cm to 1.2 m. The plant species composing the ground cover were zoned in response to depth to water, and shading by canopy trees increased over deeper water tables. Of the 27 ant species that were analyzed, depending on the statistical test, seven or eight were significantly more abundant over a deep water table, eight to ten over a shallow one, and nine to eleven were not significantly patterned with respect to depth to water. Ant species preferring sites with shallow groundwater also preferred the shadier parts of the sites, while those preferring sites with deeper groundwater preferred the sunnier parts of the sites. This suggests that one group of species prefers hot-dry conditions, and the other cooler-moist. Factor analysis and abundance-weighted mean site characteristics generally confirmed these results. These results show that ant communities in this region respond to subtle differences in habitat, but whether these differences arise from founding preferences, survival, competition, or some combination of these is not known.
NASA Astrophysics Data System (ADS)
Salari, Mahmoud; Rava, Amin
2017-09-01
Nowadays, Autonomous Underwater Vehicles (AUVs) are frequently used for exploring the oceans. The hydrodynamics of AUVs moving in the vicinity of the water surface are significantly different at higher depths. In this paper, the hydrodynamic coefficients of an AUV in non-dimensional depths of 0.75, 1, 1.5, 2, and 4D are obtained for movement close to the free-surface. Reynolds Averaged Navier Stokes Equations (RANS) are discretized using the finite volume approach and the water-surface effects modeled using the Volume of Fraction (VOF) method. As the operating speeds of AUVs are usually low, the boundary layer over them is not fully laminar or fully turbulent, so the effect of boundary layer transition from laminar to turbulent flow was considered in the simulations. Two different turbulence/transition models were used: 1) a full-turbulence model, the k-ɛ model, and 2) a turbulence/transition model, Menter's Transition-SST model. The results show that the Menter's Transition-SST model has a better consistency with experimental results. In addition, the wave-making effects of these bodies are studied at different immersion depths in the sea-surface vicinity or at finite depths. It is observed that the relevant pitch moments and lift coefficients are non-zero for these axi-symmetric bodies when they move close to the sea-surface. This is not expected for greater depths.
Particle sizes in Saturn's rings from UVIS stellar occultations 1. Variations with ring region
NASA Astrophysics Data System (ADS)
Colwell, J. E.; Esposito, L. W.; Cooney, J. H.
2018-01-01
The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high speed photometer (HSP) that has observed stellar occultations by Saturn's rings with a radial resolution of ∼10 m. In the absence of intervening ring material, the time series of measurements by the HSP is described by Poisson statistics in which the variance equals the mean. The finite sizes of the ring particles occulting the star lead to a variance that is larger than the mean due to correlations in the blocking of photons due to finite particle size and due to random variations in the number of individual particles in each measurement area. This effect was first exploited by Showalter and Nicholson (1990) with the stellar occultation observed by Voyager 2. At a given optical depth, a larger excess variance corresponds to larger particles or clumps that results in greater variation of the signal from measurement to measurement. Here we present analysis of the excess variance in occultations observed by Cassini UVIS. We observe differences in the best-fitting particle size in different ring regions. The C ring plateaus show a distinctly smaller effective particle size, R, than the background C ring, while the background C ring itself shows a positive correlation between R and optical depth. The innermost 700 km of the B ring has a distribution of excess variance with optical depth that is consistent with the C ring ramp and C ring but not with the remainder of the B1 region. The Cassini Division, while similar to the C ring in spectral and structural properties, has different trends in effective particle size with optical depth. There are discrete jumps in R on either side of the Cassini Division ramp, while the C ring ramp shows a smooth transition in R from the C ring to the B ring. The A ring is dominated by self-gravity wakes whose shadow size depends on the occultation geometry. The spectral ;halo; regions around the strongest density waves in the A ring correspond to decreases in R. There is also a pronounced dip in R at the Mimas 5:3 bending wave corresponding to an increase in optical depth there, suggesting that at these waves small particles are liberated from clumps or self-gravity wakes leading to a reduction in effective particle size and an increase in optical depth.
Bacterial and fungal community composition and functioning of two different peatlands in China
NASA Astrophysics Data System (ADS)
Wang, Meng; Tian, Jianqing; Bu, Zhaojun; Chen, Huai; Zhu, Qiuan; Peng, Changhui
2017-04-01
Peatlands are important carbon sinks which store one third of the global soil carbon ( 550 Gt) with only 3% of the land surface. The slow rate of organic matter decomposition associated with low microbial diversity and limited functioning under cold, acidic and anoxic condition is of critical importance in controlling biogeochemical cycles in northern peatlands. To evaluate the variation in microbial community composition and functionality can advance our understanding of the underlying mechanisms of the biogeochemical processes and interactions. However, there is still a lack of information for Chinese peatlands. Here, we sampled peat profiles at three different depths (10-20, 30-40 and 60-70 cm) from two typical peatlands in China: a rich fen in Qinghai-Tibet Plateau (QTP) and a poor fen in the Changbai Mountains (CBM). We investigated the bacterial (16S rRNA) and fungal (ITS2) community composition and diversity with high-throughput sequencing and predicted the metagenome functioning with PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States). The results showed that Proteobacteria, Acidobacteria and Actinobacteria were the most abundant bacterial phyla in the upper peat layer (10-20 cm) for both sites, with increasing abundance of Chloroflexi and Bacteroidetes down to the saturated zone (60-70 cm in CMB; 30-40 and 60-70 cm in QTP). For fungi, Ascomycota, Ciliophora and Basidiomycota were the most abundant phyla in both sites, with decreasing Ciliophora abundance down to the saturated zone. The α-diversity of both bacterial and fungal showed a decreasing trend with depth in QTP, with the largest diversity occurring at the depth of 30-40 cm in CMB. Regardless of sampling sites, the bacterial communities at the depth of 60-70 cm were more similar than the other depths. The fungal community was clustered into two groups, corresponding to two sampling sites. The variation in fungal community with depth was larger in QTP than in CBM. The predicted abundances of KEGG orthologs (KOs) assigned to the metabolism of amino acid, lipid and xenobiotics, as well as environmental adaptation, were decreased with depth in CBM, with energy metabolism showing the opposite trend. In contrast, the KO abundances of amino acid and lipid metabolism and environmental adaptation were the highest in the middle layer (30-40 cm) in QTP, where the KO abundance of energy metabolism was the lowest. In general, the difference in predicted metagenome functioning between sites was less obvious than between depths. These results highlight the important role of hydrology in shaping the microbial community in minerotrophic peatlands. The effect of environmental drivers on microbial diversity and functioning may be mediated by shifting in hydrological dynamics (e.g. land use change and desiccation) which should be considered under future global change condition.
Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis
NASA Astrophysics Data System (ADS)
Chang, C. H.; Chan, H. C.; Chen, B. A.
2016-12-01
Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.
NASA Technical Reports Server (NTRS)
Loeb, Norman G.; Schuster, Gregory L.
2008-01-01
Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.
Magnetic Barkhausen noise indications of stress concentrations near pits of various depths
NASA Astrophysics Data System (ADS)
Mandal, K.; Loukas, M. E.; Corey, A.; Atherton, D. L.
1997-11-01
The presence of a defect in a material under stress, changes the local stress distribution around it. This local stress distributions around three circular pits in line pipe steel with depths of 30, 50 and 80% wall thickness were studied nondestructively by magnetic Barkhausen noise measurements and in the presence of different bending stresses. The results show stress concentration factors ˜ 1.5, 1.7 and 2.05, respectively, and are consistent with theoretical predictions.
A Comparison of Snow Depth on Sea Ice Retrievals Using Airborne Altimeters and an AMSR-E Simulator
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Marksu, T.; Ivanoff, A.; Miller, J. A.; Brucker, L.; Sturm, M.; Maslanik, J. A.; Heinrichs, J. F.; Gasiewski, A.; Leuschen, C.;
2011-01-01
A comparison of snow depths on sea ice was made using airborne altimeters and an Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) simulator. The data were collected during the March 2006 National Aeronautics and Space Administration (NASA) Arctic field campaign utilizing the NASA P-3B aircraft. The campaign consisted of an initial series of coordinated surface and aircraft measurements over Elson Lagoon, Alaska and adjacent seas followed by a series of large-scale (100 km ? 50 km) coordinated aircraft and AMSR-E snow depth measurements over portions of the Chukchi and Beaufort seas. This paper focuses on the latter part of the campaign. The P-3B aircraft carried the University of Colorado Polarimetric Scanning Radiometer (PSR-A), the NASA Wallops Airborne Topographic Mapper (ATM) lidar altimeter, and the University of Kansas Delay-Doppler (D2P) radar altimeter. The PSR-A was used as an AMSR-E simulator, whereas the ATM and D2P altimeters were used in combination to provide an independent estimate of snow depth. Results of a comparison between the altimeter-derived snow depths and the equivalent AMSR-E snow depths using PSR-A brightness temperatures calibrated relative to AMSR-E are presented. Data collected over a frozen coastal polynya were used to intercalibrate the ATM and D2P altimeters before estimating an altimeter snow depth. Results show that the mean difference between the PSR and altimeter snow depths is -2.4 cm (PSR minus altimeter) with a standard deviation of 7.7 cm. The RMS difference is 8.0 cm. The overall correlation between the two snow depth data sets is 0.59.
NASA Astrophysics Data System (ADS)
Konishi, Kensuke; Fuji, Nobuaki; Deschamps, Frédéric
2017-03-01
We investigate the elastic and anelastic structure of the lowermost mantle at the western edge of the Pacific large low shear velocity province (LLSVP) by inverting a collection of S and ScS waveforms. The transverse component data were obtained from F-net for 31 deep earthquakes beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratios, according to which we divide our region of interest into three subregions. For each of these subregions, we then perform 1-D (depth-dependent) waveform inversions simultaneously for radial profiles of shear wave velocity (VS) and seismic quality factor (Q). Models for all three subregions show low VS and low Q structures from 2000 km depth down to the core-mantle boundary. We further find that VS and Q in the central subregion, sampling the Caroline plume, are substantially lower than in the surrounding regions, whatever the depth. In the central subregion, VS-anomalies with respect to PREM (dVS) and Q are about -2.5 per cent and 216 at a depth of 2850 km, and -0.6 per cent and 263 at a depth of 2000 km. By contrast, in the two other regions, dVS and Q are -2.2 per cent and 261 at a depth of 2850 km, and -0.3 per cent and 291 at a depth of 2000 km. At depths greater than ∼2500 km, these differences may indicate lateral variations in temperature of ∼100 K within the Pacific LLSVP. At shallower depths, they may be due to the temperature difference between the Caroline plume and its surroundings, and possibly to a small fraction of iron-rich material entrained by the plume.
New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles
NASA Astrophysics Data System (ADS)
Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.
2017-12-01
The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.
Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth
Becerra, Alejandra; Bartoloni, Norberto; Cofré, Noelia; Soteras, Florencia; Cabello, Marta
2014-01-01
Arbuscular mycorrhizal fungi (AMF) colonize land plants in every ecosystem, even extreme conditions such as saline soils. In the present work we report for the first time the mycorrhizal status and the vertical fungal distribution of AMF spores present in the rhizospheric soil samples of four species of Chenopodiaceae (Allenrolfea patagonica, Atriplex argentina, Heterostachys ritteriana and Suaeda divaricata) at five different depths in two saline of central Argentina. Roots showed medium, low or no colonization (0–50%). Nineteen morphologically distinctive AMF species were recovered. The number of AMF spores ranged between 3 and 1162 per 100 g dry soil, and AMF spore number decreased as depth increased at both sites. The highest spore number was recorded in the upper soil depth (0–10 cm) and in S. divaricata. Depending of the host plant, some AMF species sporulated mainly in the deep soil layers (Glomus magnicaule in Allenrolfea patagonica, Septoglomus aff. constrictum in Atriplex argentina), others mainly in the top layers (G. brohultti in Atriplex argentina and Septoglomus aff. constrictum in Allenrolfea patagonica). Although the low percentages of colonization or lack of it, our results show a moderate diversity of AMF associated to the species of Chenopodiaceae investigated in this study. The taxonomical diversity reveals that AMF are adapted to extreme environmental conditions from saline soils of central Argentina. PMID:25242945
Fahlman, A; Hooker, S K; Olszowka, A; Bostrom, B L; Jones, D R
2009-01-01
We developed a mathematical model to investigate the effect of lung compression and collapse (pulmonary shunt) on the uptake and removal of O(2), CO(2) and N(2) in blood and tissue of breath-hold diving mammals. We investigated the consequences of pressure (diving depth) and respiratory volume on pulmonary shunt and gas exchange as pressure compressed the alveoli. The model showed good agreement with previous studies of measured arterial O(2) tensions (Pa(O)(2)) from freely diving Weddell seals and measured arterial and venous N(2) tensions from captive elephant seals compressed in a hyperbaric chamber. Pulmonary compression resulted in a rapid spike in Pa(O)(2) and arterial CO(2) tension, followed by cyclical variation with a periodicity determined by Q(tot). The model showed that changes in diving lung volume are an efficient behavioural means to adjust the extent of gas exchange with depth. Differing models of lung compression and collapse depth caused major differences in blood and tissue N(2) estimates. Our integrated modelling approach contradicted predictions from simple models, and emphasised the complex nature of physiological interactions between circulation, lung compression and gas exchange. Overall, our work suggests the need for caution in interpretation of previous model results based on assumed collapse depths and all-or-nothing lung collapse models.
Stability of hydrocarbon systems at thermobaric conditions corresponding to depth down to 50 km
NASA Astrophysics Data System (ADS)
Kutcherov, V.; Kolesnikov, A.; Mukhina, E.; Serovaiskii, A.
2017-12-01
Most of the theoretical models show that crude oil stability is limited by the depth of 6-8 km (`oil window'). Commercial discovery of crude oil deposits on the depth more than 10 km in the different petroleum basins worldwide casts doubt on the validity of the above-mentioned theoretical calculations. Therefore, the question at which depth complex hydrocarbon systems could be stable is important not only from fundamental research point of view but has a great practical application. To answer this question a hydrocarbon mixture was investigated under thermobaric conditions corresponding to the conditions of the Earth's lower crust. Experiments were conducted by means of Raman Mössbauer spectroscopy. The results obtained show that the complex hydrocarbon systems could be stable and remain their qualitative and quantitative composition at temperature 320-450 °C and pressure 0.7-1.4 GPa. The oxidizing resistance of hydrocarbon system was tested in the modelled the Earth's crust surrounding. The hydrocarbon system stability at the presence of Fe2O3 strongly confirms that the Earth's crust oxygen fugacity does not influence on petroleum composition. The data obtained broaden our knowledge about the possible range of depths for crude oil and natural gas deposits in the Earth's crust and give us the possibility to revise the depth of petroleum deposits occurrence.
Bridi, Enrico Coser; do Amaral, Flávia Lucisano Botelho; França, Fabiana Mantovani Gomes; Turssi, Cecilia Pedroso; Basting, Roberta Tarkany
2016-05-01
The objective of this study was to evaluate the inhibition of demineralization around enamel-dentin/restoration interface after dentin pretreatment with 2.5% titanium tetrafluoride (TiF4). Forty dental class V cavities at the cementoenamel junction were distributed into four groups (n = 10), according to the presence or absence of TiF4 and to the adhesive system (Clearfil SE Bond/CL and Adper EasyOne/AD), and restored with a resin composite. A dynamic pH cycling model was used to induce the development of artificial caries lesions. After sectioning the dental blocks, Knoop microhardness tests were performed at different depths (20, 40, and 60 μm from the occlusal margin of the restoration) and at different distances (100, 200, and 300 μm from the adhesive interface). Repeated measures three-way analysis of variance (ANOVA) and Tukey's test were used (α = 0.05). For enamel, there were no differences in the microhardness values for CL, AD, and TiF4-AD at depths, regardless of the distances. Considering each depth, there were no significant differences among treatments. For dentin, ANOVA showed no significant interaction among the independent variables treatment*distance*depth (p = 0.994), no significant interaction between treatment*depth (p = 0.722), no significant interaction between treatment*distance (p = 0.265), no significant interaction between depth*distance (p = 0.365), and no significant effect on treatment (p = 0.151), depth (p = 0.067), or distance (p = 0.251). Dentin pretreatment of the cavity walls with TiF4 before self-etching adhesive systems was not effective in inhibiting demineralization around the enamel-dentin/restoration interfaces. The mechanism of incorporating fluoride in enamel and dentin of the cavity walls to inhibit demineralization around restorations seems ineffective when using TiF4 as a dentin pretreatment.
Elements of an improved model of debris-flow motion
Iverson, R.M.
2009-01-01
A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.
Shadow analysis via the C+K Visioline: A technical note.
Houser, T; Zerweck, C; Grove, G; Wickett, R
2017-11-01
This research investigated the ability of shadow analysis (via the Courage + Khazaka Visioline and Image Pro Premiere 9.0 software) to accurately assess the differences in skin topography associated with photo aging. Analyses were performed on impressions collected from a microfinish comparator scale (GAR Electroforming) as well a series of impressions collected from the crow's feet region of 9 women who represent each point on the Zerweck Crow's Feet classification scale. Analyses were performed using a Courage + Khazaka Visioline VL 650 as well as Image Pro Premiere 9.0 software. Shadow analysis showed an ability to accurately measure the groove depth when measuring impressions collected from grooves of known depth. Several shadow analysis parameters showed a correlation with the expert grader ratings of crow's feet when averaging measurements taken from the North and South directions. The Max Depth parameter in particular showed a strong correlation with the expert grader's ratings which improved when a more sophisticated analysis was performed using Image Pro Premiere. When used properly, shadow analysis is effective at accurately measuring skin surface impressions for differences in skin topography. Shadow analysis is shown to accurately assess the differences across a range of crow's feet severity correlating to a 0-8 grader scale. The Visioline VL 650 is a good tool for this measurement, with room for improvement in analysis which can be achieved through third party image analysis software. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Berkeley UXO Discriminator (BUD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank
2007-01-01
The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve.more » Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.« less
Regional Wave Propagation in Southeastern United States
NASA Astrophysics Data System (ADS)
Jemberie, A. L.; Langston, C. A.
2003-12-01
Broad band seismograms from the April 29, 2003, M4.6 Fort Payne, Alabama earthquake are analyzed to infer mechanisms of crustal wave propagation, crust and upper mantle velocity structure in southeastern United States, and source parameters of the event. In particular, we are interested in producing deterministic models of the distance attenuation of earthquake ground motions through computation of synthetic seismograms. The method first requires constraining the source parameters of an earthquake and then modeling the amplitude and times of broadband arrivals within the waveforms to infer appropriate layered earth models. A first look at seismograms recorded by stations outside the Mississippi Embayment (ME) show clear body phases such P, sP, Pnl, Sn and Lg. The ME signals are qualitatively different from others because they have longer durations and large surface waves. A straightforward interpretation of P wave arrival times shows a typical upper mantle velocity of 8.18 km/s. However, there is evidence of significantly higher P phase velocities at epicentral distances between 400 and 600km, that may be caused by a high velocity upper mantle anomaly; triplication of P-waves is seen in these seismograms. The arrival time differences between regional P and the depth phase sP at different stations are used to constrain the depth of the earthquake. The source depth lies between 9.5 km and 13km which is somewhat more shallow than the network location that was constrained to 15km depth. The Fort Payne earthquake is the largest earthquake to have occurred within the Eastern Tennessee Seismic Zone.
Human Stereopsis is not Limited by the Optics of the Well-focused Eye
Vlaskamp, Björn N.S.; Yoon, Geunyoung; Banks, Martin S.
2011-01-01
Human stereopsis—the perception of depth from differences in the two eyes’ images—is very precise: Image differences smaller than a single photoreceptor can be converted into a perceived difference in depth. To better understand what determines this precision, we examined how the eyes’ optics affects stereo resolution. We did this by comparing performance with normal, well-focused optics and with optics improved by eliminating chromatic aberration and correcting higher-order aberrations. We first measured luminance contrast sensitivity in both eyes and showed that we had indeed improved optical quality significantly. We then measured stereo resolution in two ways: by finding the finest corrugation in depth that one can perceive, and by finding the smallest disparity one can perceive as different from zero. Our optical manipulation had no effect on stereo performance. We checked this by redoing the experiments at low contrast and again found no effect of improving optical quality. Thus, the resolution of human stereopsis is not limited by the optics of the well-focused eye. We discuss the implications of this remarkable finding. PMID:21734272
Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging
NASA Astrophysics Data System (ADS)
Zhang, P.; Chen, L.; Yao, H.; Fang, L.
2016-12-01
The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.
NASA Astrophysics Data System (ADS)
Liu, Ruhai; Zhang, Yanyan; Wang, Yan; Zhao, Jin; Shan, Huayao
2018-02-01
Wetlands often show different small-scale topography, such as riffle, habitat island, deep water, shallow water zone and dry zone. Core soils in different micro topographical landforms of Nandagang and Beidagang wetlands in North China were sampled for THg and MeHg to analyze the influence of microtopography. Results showed that THg content in surface soil (<2 cm) was little higher than that at depth 2-4 cm of all stations. There were several peaks in the profile, which reflected mercury pollution in past. High THg content in undisturbed natural wetland soil implied accumulation of mercury. Harvest of plant, drained water decreased the accumulation of mercury in wetlands. Water level caused by microtopography affected the production of MeHg. Depth of the highest MeHg content decreased from N1, N2, N6, N3 to N4 following the increase of water level. Plant type and coverage also affected the vertical distribution of MeHg. More detailed profiles of MeHg, organic matter and total phosphorus in different sites show strong differences in soil chemistry, suggesting a complex interplay among hydrology, biogeochemistry and microtopography.
Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps
Liu, Jing; Li, Chunpeng; Fan, Xuefeng; Wang, Zhaoqi
2015-01-01
Depth estimation is a classical problem in computer vision, which typically relies on either a depth sensor or stereo matching alone. The depth sensor provides real-time estimates in repetitive and textureless regions where stereo matching is not effective. However, stereo matching can obtain more accurate results in rich texture regions and object boundaries where the depth sensor often fails. We fuse stereo matching and the depth sensor using their complementary characteristics to improve the depth estimation. Here, texture information is incorporated as a constraint to restrict the pixel’s scope of potential disparities and to reduce noise in repetitive and textureless regions. Furthermore, a novel pseudo-two-layer model is used to represent the relationship between disparities in different pixels and segments. It is more robust to luminance variation by treating information obtained from a depth sensor as prior knowledge. Segmentation is viewed as a soft constraint to reduce ambiguities caused by under- or over-segmentation. Compared to the average error rate 3.27% of the previous state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury datasets, which shows that our method performs almost 20% better than other “fused” algorithms in the aspect of precision. PMID:26308003
Claerhoudt, S; Bergman, H J; Van Der Veen, H; Duchateau, L; Raes, E V; Saunders, J H
2012-11-01
Distal border synovial invaginations of the distal sesamoid bone are radiographically assessed during the selection process of horses admitted as breeding stallions or in purchase examinations. Nowadays, many moderately or some deeply penetrating proximally enlarged synovial invaginations are considered as moderate or severe radiographic findings. To measure the difference between and agreement of the morphology of distal border synovial invaginations on radiography vs. computed tomography (CT). It was hypothesised that the morphology of distal border synovial invaginations would be better evaluable on CT compared with radiography. Computed tomography scans and 3 dorsoproximal-palmarodistal oblique (DPr-PaDiO) radiographs were obtained on 50 cadaver forefeet from 25 Warmblood horses. Computed tomography was assumed to be the gold standard. The number, shape and depth of penetration of distal border synovial invaginations into the distal sesamoid bone were evaluated with both methods, and the comparison of their measurements was statistically described. A statistically significant mean difference for number of distal synovial invaginations between CT and all 3 DPr-PaDiO projections was found and was approximately equal to 2, meaning that CT permits visualisation of an average of 2 more invaginations than radiography. In none of the cases did radiography have a higher number observed than CT. A large variation in the difference of measurements for depth of penetration against their mean difference between CT and the 3 radiographic projections was seen. Radiography underestimated the depth of invaginations, and more so when these were deeper. There was no statistically significant mean difference found between the techniques for depth. A moderate to good agreement between measurements on CT and the three DPr-PaDiO projections for shape was seen, in which the D55°Pr-PaDiO projection showed the best agreement. A high specificity (90-99%) and low sensitivity (65%) for all projections for shape were found. Radiography differs considerably from CT concerning the morphology of distal navicular border synovial invaginations. For the evaluation of the number, depth and shape of distal synovial invaginations in the distal sesamoid bone, radiography shows only partially the morphology seen on CT. © 2012 EVJ Ltd.
Response of seasonal soil freeze depth to climate change across China
NASA Astrophysics Data System (ADS)
Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui
2017-05-01
The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.
NASA Astrophysics Data System (ADS)
Grossmann, Mary M.; Nishikawa, Jun; Lindsay, Dhugal J.
2015-06-01
The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous with respect to salinity (ca. 34.00) and temperature (ca. 10 °C). The neighbouring Celebes Sea is more open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, especially at mesopelagic depths. At the surface, the cnidarian community was similar in both marginal seas, but, at depth, community structure was dependent first on sampling location and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in the Indo-Pacific. Mesopelagic and bathypelagic species recorded in the Sulu Sea did not have significantly different vertical distributions in the Celebes Sea. However, some deep mesopelagic genera were absent from the Sulu Sea in the sampled depth range. These results suggest that a combination of environmental and physiological parameters determine the distribution and dominance of pelagic cnidarians.
Joint Multifractal Analysis of penetration resistance variability in an olive orchard.
NASA Astrophysics Data System (ADS)
Lopez-Herrera, Juan; Herrero-Tejedor, Tomas; Saa-Requejo, Antonio; Villeta, Maria; Tarquis, Ana M.
2016-04-01
Spatial variability of soil properties is relevant for identifying those zones with physical degradation. We used descriptive statistics and multifractal analysis for characterizing the spatial patterns of soil penetrometer resistance (PR) distributions and compare them at different soil depths and soil water content to investigate the tillage effect in soil compactation. The study was conducted on an Inceptisol dedicated to olive orchard for the last 70 years. Two parallel transects of 64 m were selected as different soil management plots, conventional tillage (CT) and no tillage (NT). Penetrometer resistance readings were carried out at 50 cm intervals within the first 20 cm of soil depth (López de Herrera et al., 2015a). Two way ANOVA highlighted that tillage system, soil depth and their interaction are statistically significant to explain the variance of PR data. The comparison of CT and NT results at different depths showed that there are significant differences deeper than 10 cm but not in the first two soil layers. The scaling properties of each PR profile was characterized by τ(q) function, calculated in the range of moment orders (q) between -5 and +5 taken at 0.5 lag increments. Several parameters were calculated from this to establish different comparisons (López de Herrera et al., 2015b). While the multifractal analysis characterizes the distribution of a single variable along its spatial support, the joint multifractal analysis can be used to characterize the joint distribution of two or more variables along a common spatial support (Kravchenko et al., 2000; Zeleke and Si, 2004). This type of analysis was performed to study the scaling properties of the joint distribution of PR at different depths. The results showed that this type of analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets in all the soil layers. References Kravchenko AN, Bullock DG, Boast CW (2000) Joint multifractal analysis of crop yield and terrain slope. Agro. j. 92: 1279-1290. López de Herrera, J., Tomas Herrero Tejedor, Antonio Saa-Requejo and Ana M. Tarquis (2015a) Influence of tillage in soil penetration resistance variability in an olive orchard. Geophysical Research Abstracts, 17, EGU2015-15425. López de Herrera, J., Tomás Herrero Tejedor, Antonio Saa-Requejo, A.M. Tarquis. Influence of tillage in soil penetration resistance variability in an olive orchard. Soil Research, accepted, 2015b. doi: SR15046 Zeleke TB, Si BC (2004) Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches. Agro. j. 96: 1082-1090.
Hydrogeologische Untersuchungen im oberflächennahen Opalinuston (Bohrloch Lausen, Schweiz)
NASA Astrophysics Data System (ADS)
Vogt, Tobias; Hekel, Uwe; Ebert, Andreas; Becker, Jens K.; Traber, Daniel; Giger, Silvio; Brod, Monika; Häring, Christian
2017-09-01
In Switzerland, the Opalinus Clay is being investigated in detail as a host rock for disposal of radioactive waste. To complement and improve existing data on near-surface decompaction effects, hydraulic-hydrochemical characterization of the Opalinus Clay from the weathering zone into the unweathered rock below was performed. For these investigations, one borehole of a borehole heat-exchanger field in Lausen (Canton Basel-Landschaft, Switzerland), which penetrates the near-surface Opalinus Clay, was completely cored. The hydraulic conductivity was determined by means of hydraulic tests in different depths and shows an decrease from 10-4 m/s at the very shallow weathered zone to 10-13 m/s starting at a depth of 28 m below the decompaction zone. In addition, different groundwater types could be identified. Moreover, the structural investigations indicate the end of the weathering zone at a depth of 18 m and that decompaction has no influence on hydraulic conductivity from 28 m onwards.
Influence of tundra snow layer thickness on measured and modelled radar backscatter
NASA Astrophysics Data System (ADS)
Rutter, N.; Sandells, M. J.; Derksen, C.; King, J. M.; Toose, P.; Wake, L. M.; Watts, T.
2017-12-01
Microwave radar backscatter within a tundra snowpack is strongly influenced by spatial variability of the thickness of internal layering. Arctic tundra snowpacks often comprise layers consisting of two dominant snow microstructures; a basal depth hoar layer overlain by a layer of wind slab. Occasionally there is also a surface layer of decomposing fresh snow. The two main layers have strongly different microwave scattering properties. Depth hoar has a greater capacity for scattering electromagnetic energy than wind slab, however, wind slab usually has a larger snow water equivalent (SWE) than depth hoar per unit volume due to having a higher density. So, determining the relative proportions of depth hoar and wind slab from a snowpack of a known depth may help our future capacity to invert forward models of electromagnetic backscatter within a data assimilation scheme to improve modelled estimates of SWE. Extensive snow measurements were made within Trail Valley Creek, NWT, Canada in April 2013. Snow microstructure was measured at 18 pit and 9 trench locations throughout the catchment (trench extent ranged between 5 to 50 m). Ground microstructure measurements included traditional stratigraphy, near infrared stratigraphy, Specific Surface Area (SSA), and density. Coincident airborne Lidar measurements were made to estimate distributed snow depth across the catchment, in addition to airborne radar snow backscatter using a dual polarized (VV/VH) X- and Ku-band Synthetic Aperture Radar (SnowSAR). Ground measurements showed the mean proportion of depth hoar was just under 30% of total snow depth and was largely unresponsive to increasing snow depth. The mean proportion of wind slab is consistently greater than 50% and showed an increasing trend with increasing total snow depth. A decreasing trend in the mean proportion of surface snow (approximately 25% to 10%) with increasing total depth accounted for this increase in wind slab. This new knowledge of variability in stratigraphic thickness, relative to respective proportions of total snow depth, was used to investigate the representativeness of point measurements of density and microstructure for forward simulations of the SMRT microwave scattering model, using Lidar derived snow depths.
The Sun's Meridional Circulation - not so Deep
NASA Astrophysics Data System (ADS)
Hathaway, David H.
2011-05-01
The Sun's global meridional circulation is evident as a slow poleward flow at its surface. This flow is observed to carry magnetic elements poleward - producing the Sun's polar magnetic fields as a key part of the 11-year sunspot cycle. Flux Transport Dynamo models for the sunspot cycle are predicated on the belief that this surface flow is part of a circulation which sinks inward at the poles and returns to the equator in the bottom half of the convection zone - at depths between 100 and 200 Mm. Here I use the advection of the supergranule cells by the meridional flow to map the flow velocity in latitude and depth. My measurements show that the equatorward return flow begins at a depth of only 35 Mm - the base of the Sun's surface shear layer. This is the first clear (10 sigma) detection of the meridional return flow. While the shallow depth of the return flow indicates a false foundation for Flux Transport Dynamo models it helps to explain the different meridional flow rates seen for different features and provides a mechanism for selecting the characteristic size of supergranules.
Han, Xuesong; Zhu, Haihong; Nie, Xiaojia; Wang, Guoqing; Zeng, Xiaoyan
2018-01-01
AlSi10Mg inclined struts with angle of 45° were fabricated by selective laser melting (SLM) using different scanning speed and hatch spacing to gain insight into the evolution of the molten pool morphology, surface roughness, and dimensional accuracy. The results show that the average width and depth of the molten pool, the lower surface roughness and dimensional deviation decrease with the increase of scanning speed and hatch spacing. The upper surface roughness is found to be almost constant under different processing parameters. The width and depth of the molten pool on powder-supported zone are larger than that of the molten pool on the solid-supported zone, while the width changes more significantly than that of depth. However, if the scanning speed is high enough, the width and depth of the molten pool and the lower surface roughness almost keep constant as the density is still high. Therefore, high dimensional accuracy and density as well as good surface quality can be achieved simultaneously by using high scanning speed during SLMed cellular lattice strut. PMID:29518900
NASA Astrophysics Data System (ADS)
Chevooruvalappil Chandran, B.; Pittana, M.; Haas, C.
2015-12-01
Snow on sea ice is a critical and complex factor influencing sea ice processes. Deep snow with a high albedo and low thermal conductivity inhibits ice growth in winter and minimizes ice loss in summer. Very shallow or absent snow promotes ice growth in winter and ice loss in summer. The timing of snow ablation critically impacts summer sea ice mass balance. Here we assess the accuracy of various snow on sea ice data products from reanalysis and modeling comparing them with in situ measurements. The latter are based on the Warren et al. (1999) monthly climatology derived from snow ruler measurements between 1954-1991, and on daily snow depth retrievals from few drifting ice mass balance buoys (IMB) with sufficiently long observations spanning the summer season. These were compared with snow depth data from the National Center for Environmental Prediction Department of Energy Reanalysis 2 (NCEP), the Community Climate System Model 4 (CCSM4), and the Canadian Earth System Model 2 (CanESM2). Results are quite variable in different years and regions. However, there is often good agreement between CanESM2 and IMB snow depth during the winter accumulation and spring melt periods. Regional analyses show that over the western Arctic covered primarily with multiyear ice NCEP snow depths are in good agreement with the Warren climatology while CCSM4 overestimates snow depth. However, in the Eastern Arctic which is dominated by first-year ice the opposite behavior is observed. Compared to the Warren climatology CanESM2 underestimates snow depth in all regions. Differences between different snow depth products are as large as 10 to 20 cm, with large consequences for the sea ice mass balance. However, it is also very difficult to evaluate the accuracy of reanalysis and model snow depths due to a lack of extensive, continuous in situ measurements.
Community structure of aquatic insects in the Esparza River, Costa Rica.
Herrera-Vásquez, Jonathan
2009-01-01
This study focused on the structure of the aquatic insect community in spatial and temporal scales in the Esparza River. The river was sampled for one full year throughout 2007. During the dry season low flow months, five sampling points were selected in two different habitats (currents and pools), with five replicates per sample site. During the wet season with peak rain, only the data in the "current habitat" were sampled at each site. Specimens present in the different substrates were collected and preserved in situ. A nested ANOVA was then applied to the data to determine richness and density as the response variables. The variations in temporal and spatial scales were analyzed using width, depth and discharge of the river, and then analyzed using a nested ANOVA. Only a correlation of 51% similarity in richness was found, while in spatial scale, richness showed significant variation between sampling sites, but not between habitats. However, the temporal scale showed significant differences between habitats. Density showed differences between sites and habitats during the dry season in the spatial scale, while in the temporal scale significant variation was found between sampling sites. Width varied between habitats during the dry season, but not between sampling points. Depth showed differences between sampling sites and season. This work studies the importance of community structure of aquatic insects in rivers, and its relevance for the quality of water in rivers and streams.
NASA Astrophysics Data System (ADS)
Engel, Michael; Bertoldi, Giacomo; Notarnicola, Claudia; Comiti, Francesco
2017-04-01
To assess the performance of simulated snow cover of hydrological models, it is common practice to compare simulated data with observed ones derived from satellite images such as MODIS. However, technical and methodological limitations such as data availability of MODIS products, its spatial resolution or difficulties in finding appropriate parameterisations of the model need to be solved previously. Another important assumption usually made is the threshold of minimum simulated snow depth, generally set to 10 mm of snow depth, to respect the MODIS detection thresholds for snow cover. But is such a constant threshold appropriate for complex alpine terrain? How important is the impact of different snow depth thresholds on the spatial and temporal distribution of the pixel-based overall accuracy (OA)? To address this aspect, we compared the snow covered area (SCA) simulated by the GEOtop 2.0 snow model to the daily composite 250 m EURAC MODIS SCA in the upper Saldur basin (61 km2, Eastern Italian Alps) during the period October 2011 - October 2013. Initially, we calibrated the snow model against snow depths and snow water equivalents at point scale, taken from measurements at different meteorological stations. We applied different snow depth thresholds (0 mm, 10 mm, 50 mm, and 100 mm) to obtain the simulated snow cover and assessed the changes in OA both in time (during the entire evaluation period, accumulation and melting season) and space (entire catchment and specific areas of topographic characteristics such as elevation, slope, aspect, landcover, and roughness). Results show remarkable spatial and temporal differences in OA with respect to different snow depth thresholds. Inaccuracies of simulated and observed SCA during the accumulation season September to November 2012 were located in areas with north-west aspect, slopes of 30° or little elevation differences at sub-pixel scale (-0.25 to 0 m). We obtained best agreements with MODIS SCA for a snow depth threshold of 100 mm, leading to increased OA (> 0.8) in 13‰ of the catchment area. SCA agreement in January 2012 and 2013 was slightly limited by MODIS sensor detection due to shading effects and low illumination in areas exposed north-west to north. On the contrary, during the melting season in April 2013 and after the September 2013 snowfall event seemed to depend more on parameterisation than on snow depth thresholds. In contrast, inaccuracies during the melting season March to June 2013 could hardly be attributed to topographic characteristics and different snow depth thresholds but rather on model parameterisation. We identified specific conditions (p.e. specific snowfall events in autumn 2012 and spring 2013) when either MODIS data or the hydrological model was less accurate, thus justifying the need for improvements of precision in the snow cover detection algorithms or in the model's process description. In consequence, our study observations could support future snow cover evaluations in mountain areas, where spatially and temporally dynamic snow depth thresholds are transferred from the catchment scale to the regional scale. Keywords: snow cover, snow modelling, MODIS, snow depth sensitivity, alpine catchment
Yamada, Tomonori; Shimura, Takaya; Ebi, Masahide; Hirata, Yoshikazu; Nishiwaki, Hirotaka; Mizushima, Takashi; Asukai, Koki; Togawa, Shozo; Takahashi, Satoru; Joh, Takashi
2015-01-01
Our recent prospective study found equivalent accuracy of magnifying chromoendoscopy (MC) and endoscopic ultrasonography (EUS) for diagnosing the invasion depth of colorectal cancer (CRC); however, whether these tools show diagnostic differences in categories such as tumor size and morphology remains unclear. Hence, we conducted detailed subset analysis of the prospective data. In this multicenter, prospective, comparative trial, a total of 70 patients with early, flat CRC were enrolled from February 2011 to December 2012, and the results of 66 lesions were finally analyzed. Patients were randomly allocated to primary MC followed by EUS or to primary EUS followed by MC. Diagnoses of invasion depth by each tool were divided into intramucosal to slight submucosal invasion (invasion depth <1000 μm) and deep submucosal invasion (invasion depth ≥1000 μm), and then compared with the final pathological diagnosis by an independent pathologist blinded to clinical data. To standardize diagnoses among examiners, this trial was started after achievement of a mean κ value of ≥0.6 which was calculated from the average of κ values between each pair of participating endoscopists. Both MC and EUS showed similar diagnostic outcomes, with no significant differences in prediction of invasion depth in subset analyses according to tumor size, location, and morphology. Lesions that were consistently diagnosed as Tis/T1-SMS or ≥T1-SMD with both tools revealed accuracy of 76-78%. Accuracy was low in borderline lesions with irregular pit pattern in MC and distorted findings of the third layer in EUS (MC, 58.5%; EUS, 50.0%). MC and EUS showed the same limited accuracy for predicting invasion depth in all categories of early CRC. Since the irregular pit pattern in MC, distorted findings to the third layer in EUS and inconsistent diagnosis between both tools were associated with low accuracy, further refinements or even novel methods are still needed for such lesions. University hospital Medical Information Network Clinical Trials Registry UMIN 000005085.
NASA Astrophysics Data System (ADS)
Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin
2018-04-01
This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.
Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.
Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung
2014-08-01
The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souri, S; Qian, X; Gill, G
Purpose: To investigate energy dependent effects of different dosimetry systems which can be used as in vivo dosimetry monitoring for intraoperative radiotherapy in therapeutic soft x-ray energy range. Methods: Three dosimetry systems were evaluated in therapeutic soft x-ray energy range: optically stimulated luminescent dosimeter (OSLD) nanoDots, radiochromic EBT2 and EBT3 films. The x-ray photons were produced by a Zeiss Intrabeam 50 kV x-ray radiotherapy system. Solid water and bolus slabs with different thicknesses were used in the process of irradiation. An aluminum filter set was used to measure HVLs of X-rays. Calibration curves were made at different depth of boluses.more » Results: Half Value Layers at depths of 0, 3, 10, and 20 mm of solid water were measured to represent the energy change versus depth, yielding 0.306, 0.482, 0.865 and 0.901 respectively and indicating nearly unchanged HVL beyond 1 cm depth. The responses of each system at different depths were normalized to the response at 2 cm depth. In film dosimetry, the response is calculated as optical density (OD). The results show that there is nearly the same energy dependence for EBT2 and EBT3. At a HVL of 0.482 mm Al, the relative responses of nanoDots and EBT3 are 0.85 ± 0.04 and 0.89 ± 0.03 compared to those at 0.901 mm Al HVL, respectively, indicating no obvious difference between those two systems within the measurement uncertainty. Conclusion: It was observed that the studied dosimeter response increases about 13% from the x-ray energy of 0.48 mm Al to 0.90 mm Al. Therefore, caution should be exercised in using an appropriate calibration curve, and x-ray beam hardening effect has to be taken into account.« less
Gestalt grouping via closure degrades suprathreshold depth percepts.
Deas, Lesley M; Wilcox, Laurie M
2014-08-19
It is well known that the perception of depth is susceptible to changes in configuration. For example, stereoscopic precision for a pair of vertical lines can be dramatically reduced when these lines are connected to form a closed object. Here, we extend this paradigm to suprathreshold estimates of perceived depth. Using a touch-sensor, observers made quantitative estimates of depth between a vertical line pair presented in isolation or as edges of a closed rectangular object with different figural interpretations. First, we show that the amount of depth estimated within a closed rectangular object is consistently reduced relative to the vertical edges presented in isolation or when they form the edges of two segmented objects. We then demonstrate that the reduction in perceived depth for closed objects is modulated by manipulations that influence perceived closure of the central figure. Depth percepts were most disrupted when the horizontal connectors and vertical lines matched in color. Perceived depth increased slightly when the connectors had opposite contrast polarity, but increased dramatically when flankers were added. Thus, as grouping cues were added to counter the interpretation of a closed object, the depth degradation effect was systematically eliminated. The configurations tested here rule out explanations based on early, local interactions such as inhibition or cue conflict; instead, our results provide strong evidence of the impact of Gestalt grouping, via closure, on depth magnitude percepts from stereopsis. © 2014 ARVO.
Retinal fundus imaging with a plenoptic sensor
NASA Astrophysics Data System (ADS)
Thurin, Brice; Bloch, Edward; Nousias, Sotiris; Ourselin, Sebastien; Keane, Pearse; Bergeles, Christos
2018-02-01
Vitreoretinal surgery is moving towards 3D visualization of the surgical field. This require acquisition system capable of recording such 3D information. We propose a proof of concept imaging system based on a light-field camera where an array of micro-lenses is placed in front of a conventional sensor. With a single snapshot, a stack of images focused at different depth are produced on the fly, which provides enhanced depth perception for the surgeon. Difficulty in depth localization of features and frequent focus-change during surgery are making current vitreoretinal heads-up surgical imaging systems cumbersome to use. To improve the depth perception and eliminate the need to manually refocus on the instruments during the surgery, we designed and implemented a proof-of-concept ophthalmoscope equipped with a commercial light-field camera. The sensor of our camera is composed of an array of micro-lenses which are projecting an array of overlapped micro-images. We show that with a single light-field snapshot we can digitally refocus between the retina and a tool located in front of the retina or display an extended depth-of-field image where everything is in focus. The design and system performances of the plenoptic fundus camera are detailed. We will conclude by showing in vivo data recorded with our device.
Holdo, Ricardo M
2013-01-01
The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.
Holdo, Ricardo M.
2013-01-01
The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models. PMID:23950900
Interaction of depth probes and style of depiction
van Doorn, Andrea J.; Koenderink, Jan J.; Leyssen, Mieke H. R.; Wagemans, Johan
2012-01-01
We study the effect of stylistic differences on the nature of pictorial spaces as they appear to an observer when looking into a picture. Four pictures chosen from diverse styles of depiction were studied by 2 different methods. Each method addresses pictorial depth but draws on a different bouquet of depth cues. We find that the depth structures are very similar for 8 observers, apart from an idiosyncratic depth scaling (up to a factor of 3). The differences between observers generalize over (very different) pictures and (very different) methods. They are apparently characteristic of the person. The differences between depths as sampled by the 2 methods depend upon the style of the picture. This is the case for all observers except one. PMID:23145306
NASA Astrophysics Data System (ADS)
Montcel, Bruno; Chabrier, Renée; Poulet, Patrick
2006-12-01
Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.
Montcel, Bruno; Chabrier, Renée; Poulet, Patrick
2006-12-11
Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.
Whitehead, S P; Watts, T L
1987-11-01
Keyes' method of non-surgical therapy was compared with modified Widman flap surgery in 9 patients with symmetrical periodontal disease. Following an initial oral hygiene programme, baseline measurements were recorded and paired contralateral areas were subjected randomly to the 2 techniques. 42 teeth receiving surgery were compared with 40 treated by Keyes' method. 6 sites per tooth were scored immediately prior to therapy and 3 months later, using a constant force probe with onlays. Consistent data were recorded for the 6 separate sites, which showed no baseline difference between treatments, slightly greater recession with surgery at 3 months, but no difference between treatments in probing depth and attachment levels. Mean data for individual patients showed similar consistency. Probing depth in deep sites was reduced slightly more with surgery, and there were no differences in bleeding on probing at 3 months. Both techniques gave marked improvements in health. Surprisingly, only 2 subjects preferred Keyes' technique of mechanical therapy, 6 preferred surgery, and 1 had no preference.
Zhong, Lin; Tang, Yuan-Jiao; Yang, Yu-Jia; Qiu, Li
2017-01-01
To explore the value of high frequency color doppler ultrasonography in differentiating benign and malignant skin solid tumors. Clinical and ultrasonic data of cutaneous solid tumors confirmed by pathology in our hospital were collected. The differences in clinical and sonographic features between benign and malignant tumors were statistically analyzed. A total of 512 patients, involving 527 cases of skin solid tumors, were enrolled in this study. The ultrasonic detected 99.43% of the cases, with 99.02% accuracy in locating the lesions. The benign and malignant tumors showed differences in patient age, location, multiple occurance, location and depth, surface skin condition, tumor size, echo, morphology, uniformity, calcification, blood flow status, tumor rear area and peripheral echo, and pathological requests ( P <0.05). High frequency ultrasound has excellent detection rate of skin tumors, which can locate invasion depth of skin accurately. Benign and malignant skin tumors show differences in a number of clinical and ultrasound features.
Wang, Jian-Lin; Zhong, Zhi-Ming; Wang, Zhong-Hong; Chen, Bao-Xiong; Zhang, Xian-Zhou; Shen, Zhen-Xi; Hu, Xing-Xiang; Dacizhuoga
2013-12-01
The distribution characteristics of soil N/P ratio in alpine grassland ecosystem of Qinghai-Tibet Plateau were surveyed by field investigation and laboratory analysis. Horizontally, soil N/ P ratio was generally higher in west and lower in east in a manner of staggered patch distribution, with higher N/P ratios mainly centralized in the hinterland of northern part of Tibet Plateau and in the lake basin area of the northern foot of Himalayas. Significant differences in soil N/P ratio were observed among grassland types and natural transects. Vertically, the distribution of N/P ratio along the soil profile from aboveground to underground among different grass types could be categorized into five patterns, including low-high-low-high, low-high-low, low-high, high-low-high-low, and high-low-high. The N/P ratio showed a significant positive correlation with soil bulk density at 0-20 cm depth, soil water content at 20-30 cm depth, contents of soil available K and total nitrogen, respectively. However, it showed significant negative correlation with soil bulk density at 20-30 cm depth, contents of soil available P and total P, respectively.
Focus information is used to interpret binocular images
Hoffman, David M.; Banks, Martin S.
2011-01-01
Focus information—blur and accommodation—is highly correlated with depth in natural viewing. We examined the use of focus information in solving the binocular correspondence problem and in interpreting monocular occlusions. We presented transparent scenes consisting of two planes. Observers judged the slant of the farther plane, which was seen through the nearer plane. To do this, they had to solve the correspondence problem. In one condition, the two planes were presented with sharp rendering on one image plane, as is done in conventional stereo displays. In another condition, the planes were presented on two image planes at different focal distances, simulating focus information in natural viewing. Depth discrimination performance improved significantly when focus information was correct, which shows that the visual system utilizes the information contained in depth-of-field blur in solving binocular correspondence. In a second experiment, we presented images in which one eye could see texture behind an occluder that the other eye could not see. When the occluder's texture was sharp along with the occluded texture, binocular rivalry was prominent. When the occluded and occluding textures were presented with different blurs, rivalry was significantly reduced. This shows that blur aids the interpretation of scene layout near monocular occlusions. PMID:20616139
NASA Astrophysics Data System (ADS)
Darnell, K.; Flemings, P. B.; DiCarlo, D. A.
2016-12-01
In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of chemical characteristics in the seawater and sediment of the Yap Trench.
Chemical Characteristics of Seawater and Sediment in the Yap Trench
NASA Astrophysics Data System (ADS)
Ding, H.; Sun, C.; Yang, G.
2017-12-01
In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of chemical characteristics in the seawater and sediment of the Yap Trench.
Correlation between elastic energy density and deep earthquakes distribution
NASA Astrophysics Data System (ADS)
Gunawardana, P. M.; Morra, G.
2017-05-01
The mechanism at the origin of the earthquakes below 30 km remains elusive as these events cannot be explained by brittle frictional processes. In this work we focus on the global total distribution of earthquakes frequency vs. depth from ∼50 km to 670 km depth. We develop a numerical model of self-driven subduction by solving the non-homogeneous Stokes equation using the ;Particle in cell method; in combination with a conservative finite difference scheme, here solved for the first time using Python and NumPy only. We show that most of the elastic energy is stored in the slab core and that it is strongly correlated with the earthquake frequency-depth distribution for a wide range of lithosphere and lithosphere-core viscosities. According to our results, we suggest that 1) slab bending at the bottom of the upper mantle causes the peak of the earthquake frequency-depth distribution that is observed at mantle transition depth; 2) the presence of a high viscous stiff core inside the lithosphere generates an elastic energy distribution that fits better with the exponential decay that is observed at intermediate depth.
Baillie, Louisa J; Mirijali, Seyed Ali; Niven, Brian E; Blyth, Phil; Dias, George J
2015-09-01
This study measured and assessed facial soft tissue depths (FSTDs) in adult female Chinese and New Zealand (NZ) Europeans (Caucasoids). Ultrasound was used to obtain depths at nine landmarks on 108 healthy subjects (51 Chinese, 57 NZ European), erect positioned, of same age group (18-29 years). Height and weight were also recorded. Statistical analysis focused on comparison of tissue depth between the two ancestry groups and the influence of Body Mass Index (BMI) (kg/m2). Results showed mean depth differences at Supra M2 and Infra M2 landmarks significantly greater for Chinese than Caucasoid women for all three BMI Classes (BMI<20, 20≤BMI<25, 25≤BMI<30), even BMI<20. For both groups BMI positively correlated with FSTD values at all landmarks except Labrale superius. This study enabled ancestry and BMI influence on FSTDs to be observed and compared for two distinct groups. Results add to knowledge about facial tissue depth variation. © 2015 American Academy of Forensic Sciences.
Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma
2015-01-01
Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated japonica ssp. as indicated by the up/downregulation of various stress-responsive pathways identified from gene expression analysis. The cold-stress response is described in relation to the stress signaling pathways, showing complex adaptive mechanisms in different genotypes. PMID:26230579
NASA Astrophysics Data System (ADS)
Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio
2016-04-01
Glaciers shaped the headwaters and valley floors in the Eastern Pyrenees during the Last Glaciation at elevations above 2100-2200 m. Since the deglaciation of these areas, periglacial processes have generated a wide range of periglacial landforms, such as rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive for the degree of activity of periglacial processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes in the Eastern Pyrenees are driven by a seasonal frozen layer extending 5-7 months. In general, at 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing in 2003 we set up several monitoring sites along a vertical transect from the valley floors (1100 m) to the high plateaus (2700 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures has been conducted from 2003 to 2015 in different periglacial landforms using UTL and Hobo loggers. These loggers were installed at depths of 5, 20 and 50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey in Malniu and Das, and with two loggers installed in La Feixa and Meranges. No permafrost regime was detected in none of the sites. Data shows evidence of the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher elevation showing a thicker and longer snow cover, only 17 freeze-thaw cycles per year are recorded at 5 cm depth, with no cycles recorded at 50 cm depth. Soils remain unfrozen during years with a very thick snow cover. The snow cover is also largely conditioned by the microtopography and exposure to the dominant winds. These factors condition the distribution, duration and intensity of the frozen ground and, thus, determine the intensity of periglacial processes in these areas.
Towards a global harmonized permafrost soil organic carbon stock estimates.
NASA Astrophysics Data System (ADS)
Hugelius, G.; Mishra, U.; Yang, Y.
2017-12-01
Permafrost affected soils store disproportionately large amount of organic carbon stocks due to multiple cryopedogenic processes. Previous permafrost soil organic carbon (SOC) stock estimates used a variety of approaches and reported substantial uncertainty in SOC stocks of permafrost soils. Here, we used spatially referenced data of soil-forming factors (topographic attributes, land cover types, climate, and bedrock geology) and SOC pedon description data (n = 2552) in a regression kriging approach to predict the spatial and vertical heterogeneity of SOC stocks across the Northern Circumpolar and Tibetan permafrost regions. Our approach allowed us to take into account both environmental correlation and spatial autocorrelation to separately estimate SOC stocks and their spatial uncertainties (95% CI) for three depth intervals at 250 m spatial resolution. In Northern Circumpolar region, our results show 1278.1 (1009.33 - 1550.45) Pg C in 0-3 m depth interval, with 542.09 (451.83 - 610.15), 422.46 (306.48 - 550.82), and 313.55 (251.02 - 389.48) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. In Tibetan region, our results show 26.68 (9.82 - 79.92) Pg C in 0 - 3 m depth interval, with 13.98 (6.2 - 32.96), 6.49 (1.73 - 25.86), and 6.21 (1.889 - 20.90) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. Our estimates show large spatial variability (50 - 100% coefficient of variation, depending upon the study region and depth interval) and higher uncertainty range in comparison to existing estimates. We will present the observed controls of different environmental factors on SOC at the AGU meeting.
Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.
2009-01-01
The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.
Depth and substratum differentiations among coexisting herbivorous cichlids in Lake Tanganyika
Ochi, Haruki
2016-01-01
Cichlid fish in Lake Tanganyika represent a system of adaptive radiation in which eight ancestral lineages have diversified into hundreds of species through adaptation to various niches. However, Tanganyikan cichlids have been thought to be oversaturated, that is, the species number exceeds the number of niches and ecologically equivalent and competitively even species coexist. However, recent studies have shed light on niche segregation on a finer scale among apparently equivalent species. We observed depth and substratum preferences of 15 herbivorous cichlids from four ecomorphs (i.e. grazer, browser, scraper and scooper) on a rocky littoral slope for 14 years. Depth differentiation was detected among grazers that defended feeding territories and among browsers with feeding territories. Cichlid species having no feeding territory also showed specificity on depth and substratum, resulting in habitat segregation among species that belong to the same ecomorph. Phylogenetically close species did not occupy adjacent depths, nor the opposite depth zones. Our findings suggest that apparently equivalent species of the same ecomorph coexist parapatrically along depth on a few-metre scale, or coexist with different substratum preferences on the rocky shore, and this niche segregation may have been acquired by competition between encountering equivalent species through repetitive lake-level fluctuations. PMID:28018609
Bitton, Pierre-Paul; Harant, Ulrike K; Fritsch, Roland; Champ, Connor M; Temple, Shelby E; Michiels, Nico K
2017-03-01
The light environment in water bodies changes with depth due to the absorption of short and long wavelengths. Below 10 m depth, red wavelengths are almost completely absent rendering any red-reflecting animal dark and achromatic. However, fluorescence may produce red coloration even when red light is not available for reflection. A large number of marine taxa including over 270 fish species are known to produce red fluorescence, yet it is unclear under which natural light environment fluorescence contributes perceptively to their colours. To address this question we: (i) characterized the visual system of Tripterygion delaisi, which possesses fluorescent irides, (ii) separated the colour of the irides into its reflectance and fluorescence components and (iii) combined these data with field measurements of the ambient light environment to calculate depth-dependent perceptual chromatic and achromatic contrasts using visual modelling. We found that triplefins have cones with at least three different spectral sensitivities, including differences between the two members of the double cones, giving them the potential for trichromatic colour vision. We also show that fluorescence contributes increasingly to the radiance of the irides with increasing depth. Our results support the potential functionality of red fluorescence, including communicative roles such as species and sex identity, and non-communicative roles such as camouflage.
Development of HiLo Microscope and its use in In-Vivo Applications
NASA Astrophysics Data System (ADS)
Patel, Shreyas J.
The functionality of achieving optical sectioning in biomedical research is invaluable as it allows for visualization of a biological sample at different depths while being free of background scattering. Most current microscopy techniques that offer optical sectioning, unfortunately, require complex instrumentation and thus are generally costly. HiLo microscopy, on the other hand, offers the same functionality and advantage at a relatively low cost. Hence, the work described in this thesis involves the design, build, and application of a HiLo microscope. More specifically, a standalone HiLo microscope was built in addition to implementing HiLo microscopy on a standard fluorescence microscope. In HiLo microscopy, optical sectioning is achieved by acquiring two different types of images per focal plane. One image is acquired under uniform illumination and the other is acquired under speckle illumination. These images are processed using an algorithm that extracts in-focus information and removes features and glare that occur as a result of background fluorescence. To show the benefits of the HiLo microscopy, several imaging experiments on various samples were performed under a HiLo microscope and compared against a traditional fluorescence microscope and a confocal microscope, which is considered the gold standard in optical imaging. In-vitro and ex-vivo imaging was performed on a set of pollen grains, and optically cleared mouse brain and heart slices. Each of these experiments showed great reduction in background scattering at different depths under HiLo microscopy. More importantly, HiLo imaging of optically cleared heart slice demonstrated emergence of different vasculature at different depths. Reduction of out-of-focus light increased the spatial resolution and allowed better visualization of capillary vessels. Furthermore, HiLo imaging was tested in an in-vivo model of a rodent dorsal window chamber model. When imaging the same sample under confocal microscope, the results were comparable between the two modalities. Additionally, a method of achieving blood flow maps at different depth using a combination of HiLo and LSI imaging is also discussed. The significance of this combined technique could help categorize blood flow to particular depths; this can help improve outcomes of medical treatments such pulse dye laser and photodynamic therapy treatments.
Neural Representation of Motion-In-Depth in Area MT
Sanada, Takahisa M.
2014-01-01
Neural processing of 2D visual motion has been studied extensively, but relatively little is known about how visual cortical neurons represent visual motion trajectories that include a component toward or away from the observer (motion in depth). Psychophysical studies have demonstrated that humans perceive motion in depth based on both changes in binocular disparity over time (CD cue) and interocular velocity differences (IOVD cue). However, evidence for neurons that represent motion in depth has been limited, especially in primates, and it is unknown whether such neurons make use of CD or IOVD cues. We show that approximately one-half of neurons in macaque area MT are selective for the direction of motion in depth, and that this selectivity is driven primarily by IOVD cues, with a small contribution from the CD cue. Our results establish that area MT, a central hub of the primate visual motion processing system, contains a 3D representation of visual motion. PMID:25411481
Depth profiling of ion-induced damage in D9 alloy using X-ray diffraction
NASA Astrophysics Data System (ADS)
Dey, S.; Gayathri, N.; Mukherjee, P.
2018-04-01
The ion-induced depthwise damage profile in 35 MeV α-irradiated D9 alloy samples with doses of 5 × 1015 He2+/cm2, 6.4 × 1016 He2+/cm2 and 2 × 1017 He2+/cm2 has been assessed using X-ray diffraction technique. The microstructural characterisation has been done along the depth from beyond the stopping region (peak damage region) to the homogeneous damage region (surface) as simulated from SRIM. The parameters such as domain size and microstrain have been evaluated using two different X-ray diffraction line profile analysis techniques. The results indicate that at low dose the damage profile shows a prominent variation as a function of depth but, with increasing dose, it becomes more homogeneous along the depth. This suggests that enhanced defect diffusion and their annihilation in pre-existing and newly formed sinks play a significant role in deciding the final microstructure of the irradiated sample as a function of depth.
Ovanesyan, Zaven; Mimun, L. Christopher; Kumar, Gangadharan Ajith; Yust, Brian G.; Dannangoda, Chamath; Martirosyan, Karen S.; Sardar, Dhiraj K.
2015-01-01
Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance. PMID:26322519
How Frequency of Electrosurgical Current and Electrode Size Affect the Depth of Electrocoagulation.
Taheri, Arash; Mansoori, Parisa; Bahrami, Naeim; Alinia, Hossein; Watkins, Casey E; Feldman, Steven R
2016-02-01
Many factors affect the depth of electrocoagulation. To evaluate the effect of current frequency and electrode size on the depth of electrocoagulation. In this in vitro study, 4 cylindrical electrodes (2, 2.3, 3, and 4 mm) were used to apply 3 electrosurgical currents (0.4, 1.5, and 3 MHz) to bovine liver. Each electrode was placed at different points on the surface of the liver, and energy at various levels and frequencies was delivered to the tissue. Subsequently, cross-sections of the liver were analyzed. Coagulation started at the periphery of the electrode-tissue contact area. With higher energy levels, coagulation spreads to involve the remainder of the contact area. Neither the frequency nor the electrode size had any effect on this coagulation pattern. The frequency of the current also did not show any relation with depth of coagulation; however, there was a direct correlation between the size of the electrode and the depth of coagulation. Larger-tip electrodes provided deeper coagulation compared with finer-tip electrodes.
Myopic refractive shift represents dense nuclear sclerosis and thin lens in lenticular myopia.
Cho, Yang Kyung; Huang, Wei; Nishimura, Eiichi
2013-09-01
It is not rare to meet unilateral nuclear sclerotic cataracts with myopic refractive changes (lenticular myopia) compared with the fellow eye in the ophthalmic examination of patients with decreased visual acuity. To determine the relationship between the myopic refractive changes and interocular differences of parameters, we investigated the interocular differences of ocular parameters between a lenticular myopic eye and the fellow eye. This retrospective study included 68 eyes of 34 patients, who showed unilateral lenticular myopia. We compared the dimensions of ocular component, such as anterior chamber depth, anterior chamber volume, lens thickness, vitreous chamber depth, lens position, lens density of nuclear sclerosis, anterior lens curvature and myopic refractive changes (spherical equivalent refraction) between the lenticular myopic eye and the myopic refractive change were examined. Statistically significant differences were found between the lenticular myopic eye and the fellow eye for anterior chamber depth (p = 0.015) anterior chamber volume (p = 0.031), lens thickness (p < 0.001), lens density of the nuclear sclerosis (p < 0.001) and the spherical equivalent myopic refractive changes (p < 0.001). Based on univariate analysis, the interocular difference in spherical equivalent refraction was significantly correlated with interocular differences of the density of the nuclear sclerosis (r = 0.79, p < 0.001), lens thickness (r = -0.70, p < 0.001) and vitreous chamber depth (r = 0.43, p = 0.012). Based on multiple regression analysis, the interocular difference in spherical equivalent refraction was significantly correlated with interocular differences of density of nuclear sclerosis (p < 0.001) and lens thickness (p = 0.007). The difference in myopic spherical change reflects the differences in the severity of nuclear sclerosis and lens thickness between the lenticular myopic eye and the fellow eye. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.
NASA Astrophysics Data System (ADS)
Gapper, J.; El-Askary, H. M.; Linstead, E.
2017-12-01
Ground cover prediction of benthic habitats using remote sensing imagery requires substantial feature engineering. Artifacts that confound the ground cover characteristics must be severely reduced or eliminated while the distinguishing features must be exposed. In particular, the impact of wavelength attenuation in the water column means that a machine learning algorithm will primarily detect depth. However, the per pixel depths are difficult to know on a grand scale. Previous research has taken an in situ approach to applying depth invariant index on a small area of interest within a Landsat 8 scene. We aim to abstract this process for application to entire Landsat scene as well as other locations in order to study change detection in shallow benthic zones on a global scale. We have developed a methodology and applied it to more than 25 different Landsat 8 scenes. The images were first preprocessed to mask land, clouds, and other distortions then atmospheric correction via dark pixel subtraction was applied. Finally, depth invariant indices were calculated for each location and associated parameters recorded. Findings showed how robust the resulting parameters (deep-water radiance, depth invariant constant, band radiance variance/covariance, and ratio of attenuation) were across all scenes. We then created false color composite images of the depth invariant indices for each location. We noted several artifacts within some sites in the form of patterns or striations that did not appear to be aligned with variations in subsurface ground cover types. Further research into depth surveys for these sites revealed depths consistent with one or more wavelengths fully attenuating. This result showed that our model framework is generalizing well but limited to the penetration depths due to wavelength attenuation. Finally, we compared the parameters associated with the depth invariant calculation which were consistent across most scenes and explained any outliers observed. We concluded that the depth invariant index framework can be deployed on a large scale for ground cover detection in shallow waters (less than 16.8m or 5.2m for three DII measurements).
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Mohamad, Abu Bakar
2014-01-01
Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape. PMID:24605055
NASA Astrophysics Data System (ADS)
Chen, K. P.; Chang, W. Y.; Tsai, Y. B.
2016-12-01
The main purpose of this study is to apply an innovative approach to assess the median annual seismicity rates and their dispersions for Taiwan earthquakes in different depth ranges. This approach explicitly represents the Gutenberg-Richter (G-R) relation in terms of both the logarithmic mean annual seismicity rate and its standard deviation, instead of just the arithmetic mean. We use the high-quality seismicity data obtained by the Institute of Earth Sciences (IES) and the Central Weather Bureau (CWB) in an earthquake catalog with homogenized moment magnitudes from 1975 to 2014 for our study. The selected data set is shown to be complete for Mw>3.0. We first use it to illustrate the merits of our new approach for dampening the influence of spuriously large or small event numbers in individual years on the determination of median annual seismicity rate and its standard deviation. We further show that the logarithmic annual seismicity rates indeed possess a well-behaved lognormal distribution. The final results are summarized as follows: log10N=5.75-0.90Mw+/-(0.245-0.01Mw) for focal depth 0 300 km; log10N=5.78-0.94Mw+/-(0.195+0.01Mw) for focal depth 0-35 km; log10N=4.72-0.89Mw+/-(-0.075+0.075Mw) for focal depth 35-70 km; and log10N=4.69-0.88Mw+/-(-0.47+0.16Mw) for focal depth 70-300 km. Above results show distinctly different values for the parameters a and b in the G-R relations for Taiwan earthquakes in different depth ranges. These analytical equations can be readily used for comprehensive probabilistic seismic hazard assessment. Furthermore, a numerical table on the corresponding median annual seismicity rates and their upper and lower bounds at median +/- one standard deviation levels, as calculated from above analytical equations, is presented at the end. This table offers an overall glance of the estimated median annual seismicity rates and their dispersions for Taiwan earthquakes of various magnitudes and focal depths. It is interesting to point out that the seismicity rate of crustal earthquakes, which tend to contribute most hazards, accounts for only about 74% of the overall seismicity rate in Taiwan. Accordingly, direct use of the entire earthquake catalog without differentiating the focal depth may result in substantial overestimates of potential seismic hazards.
Depth of suppression in anisometropic amblyopia (with or without microtropia).
Firth, Alison Y; Stevenson, Clare
2012-01-01
There are conflicting reports concerning the relationship between depth of suppression and level of amblyopia in strabismics. Little attention has been given to anisometropes. This study examines the density of suppression in anisometropic amblyopes, with or without microtropia, and investigates whether there is a relationship with level of amblyopia. Patients with anisometropia (defined as a difference of 1D or 0.5 D cyl), binocular single vision and a difference in corrected visual acuity of at least 0.1 logMAR between eyes were recalled. The degree of amblyopia was expressed as the interocular difference using the Bailey-Lovie logMAR chart. Stereoacuity (Titmus test), binocular alignment and fixation were recorded. The depth of suppression was measured using the neutral density filter bar together with the Worth four dot test at 4.5m (subtending an angle of 0.5 degrees). Best spherical equivalent (BSE) was calculated to represent anisometropia. Thirteen participants aged 8.3 years to 12.1 years (mean 9.7 years) completed the study. No significant correlation was present (r=0.10, p=0.74) between the depth of suppression and degree of amblyopia. However, there was a correlation between depth of suppression and level of stereoacuity (r=0.59, p=0.03). Six participants had microtropia and showed stronger suppression (p=0.03) and worse stereoacuity (p=0.001) than the pure anisometropes. No evidence was found of a relationship between density of suppression and amblyopia in this cohort of anisometropic amblyopes.
NASA Astrophysics Data System (ADS)
Chen, Ming; Fang, Jian; Cui, Ronghua
2018-02-01
This work aims to investigate the crustal and lithospheric mantle thickness of the South China Sea (SCS) and adjacent regions. The crust-mantle interface, average crustal density, and lithospheric mantle base are calculated from free-air gravity anomaly and topographic data using an iterative inversion method. We construct a three-dimensional lithospheric model with different hierarchical layers. The satellite-derived gravity is used to invert the average crustal density and Moho (crust-mantle interface) undulations. The average crustal density and LAB (lithosphere-asthenosphere boundary) depths are further adjusted by topographic data under the assumption of local isostasy. The average difference in Moho depths between this study and the seismic measurement results is <1.5 km. The results show that in oceanic regions, the Moho depths are 7.5-30 km and the LAB depths are 65-120 km. The lithospheric thickness of the SCS basin and the adjacent regions increases from the sea basin to the continental margin with a large gradient in the ocean-continent transition zones. The Moho depths of conjugate plots during the opening of SCS, Zhongsha Islands and Reed Bank, reveal the asymmetric spreading pattern of SCS seafloor spreading. The lithospheric thinning pattern indicate two different spreading directions during seafloor spreading, which changed from N-S to NW-SE after the southward transition of the spreading axis. The lithosphere of the SCS basin and adjacent regions indicate that the SCS basin is a young basin with a stable interior lithosphere.
Yazdani, Shahin; Akbarian, Shadi; Pakravan, Mohammad; Doozandeh, Azadeh; Afrouzifar, Mohsen
2015-03-01
To compare ocular biometric parameters using low-coherence interferometry among siblings affected with different degrees of primary angle closure (PAC). In this cross-sectional comparative study, a total of 170 eyes of 86 siblings from 47 families underwent low-coherence interferometry (LenStar 900; Haag-Streit, Koeniz, Switzerland) to determine central corneal thickness, anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), vitreous depth, and axial length (AL). Regression coefficients were applied to show the trend of the measured variables in different stages of angle closure. To evaluate the discriminative power of the parameters, receiver operating characteristic curves were used. Best cutoff points were selected based on the Youden index. Sensitivity, specificity, positive and negative predicative values, positive and negative likelihood ratios, and diagnostic accuracy were determined for each variable. All biometric parameters changed significantly from normal eyes to PAC suspects, PAC, and PAC glaucoma; there was a significant stepwise decrease in central corneal thickness, ACD, AD, vitreous depth, and AL, and an increase in LT and LT/AL. Anterior chamber depth and AD had the best diagnostic power for detecting angle closure; best levels of sensitivity and specificity were obtained with cutoff values of 3.11 mm for ACD and 2.57 mm for AD. Biometric parameters measured by low-coherence interferometry demonstrated a significant and stepwise change among eyes affected with various degrees of angle closure. Although the current classification scheme for angle closure is based on anatomical features, it has excellent correlation with biometric parameters.
Blur and the perception of depth at occlusions.
Zannoli, Marina; Love, Gordon D; Narain, Rahul; Banks, Martin S
2016-01-01
The depth ordering of two surfaces, one occluding the other, can in principle be determined from the correlation between the occlusion border's blur and the blur of the two surfaces. If the border is blurred, the blurrier surface is nearer; if the border is sharp, the sharper surface is nearer. Previous research has found that observers do not use this informative cue. We reexamined this finding. Using a multiplane display, we confirmed the previous finding: Our observers did not accurately judge depth order when the blur was rendered and the stimulus presented on one plane. We then presented the same simulated scenes on multiple planes, each at a different focal distance, so the blur was created by the optics of the eye. Performance was now much better, which shows that depth order can be reliably determined from blur information but only when the optical effects are similar to those in natural viewing. We asked what the critical differences were in the single- and multiplane cases. We found that chromatic aberration provides useful information but accommodative microfluctuations do not. In addition, we examined how image formation is affected by occlusions and observed some interesting phenomena that allow the eye to see around and through occluding objects and may allow observers to estimate depth in da Vinci stereopsis, where one eye's view is blocked. Finally, we evaluated how accurately different rendering and displaying techniques reproduce the retinal images that occur in real occlusions. We discuss implications for computer graphics.
Habitat Specialization in Tropical Continental Shelf Demersal Fish Assemblages
Fitzpatrick, Ben M.; Harvey, Euan S.; Heyward, Andrew J.; Twiggs, Emily J.; Colquhoun, Jamie
2012-01-01
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1–10 m depth), down the fore reef slope to the reef base (10–30 m depth) then across the adjacent continental shelf (30–110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate. PMID:22761852
Investigation of solid phase composition on tablet surfaces by grazing incidence X-ray diffraction.
Koradia, Vishal; Tenho, Mikko; Lopez de Diego, Heidi; Ringkjøbing-Elema, Michiel; Møller-Sonnergaard, Jørn; Salonen, Jarno; Lehto, Vesa-Pekka; Rantanen, Jukka
2012-01-01
To investigate solid state transformations of drug substances during compaction using grazing incidence X-ray diffraction (GIXD). The solid forms of three model drugs-theophylline (TP), nitrofurantoin (NF) and amlodipine besylate (AMB)-were compacted at different pressures (from 100 to 1000 MPa); prepared tablets were measured using GIXD. After the initial measurements of freshly compacted tablets, tablets were subjected to suitable recrystallization treatment, and analogous measurements were performed. Solid forms of TP, NF and AMB showed partial amorphization as well as crystal disordering during compaction; the extent of these effects generally increased as a function of pressure. The changes were most pronounced at the outer surface region. The different solid forms showed difference in the formation of amorphicity/crystal disordering. Dehydration due to compaction was observed for the TP monohydrate, whereas hydrates of NF and AMB were stable towards dehydration. With GIXD measurements, it was possible to probe the solid form composition at the different depths of the tablet surfaces and to obtain depth-dependent information on the compaction-induced amorphization, crystal disordering and dehydration.
Urease activity in different soils of Egypt.
el-Shinnawi, M M
1978-01-01
Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.
Arnold, Naomi Adele; Ng, Kim Tee; Jongman, Ellen Caroline; Hemsworth, Paul Hamilton
2007-11-01
The ability of cows (Bos taurus) to perceive depth has never been experimentally investigated. If cows can perceive depth, the milking pit in commercial milking facilities may be fear provoking for dairy cows, as past research has shown that most land-dwelling species possess an instinctive fear of heights. In the current study, 12 dairy heifers (1-year-old cows) were exposed to a milking pit (depth-exposed group) and 13 heifers (control group) were exposed to a standard change in the environment while they moved through a milking facility over a 5-day treatment period. Heifers in the depth-exposed group showed a higher heart rate (p < .05) and stopped more often (p < .05) than did those in the control group; persistence of heart rate but not of behavioral responses on repeated exposures indicated that some habituation to the depth stimulus had occurred. Depth exposure had no effect on cortisol concentrations or on ease of handling. These results indicate that heifers responded differently to a change in depth than they did to a standard change in the environment and provide evidence of both depth perception and acute fear of heights in cows. Copyright 2007 APA.
NASA Astrophysics Data System (ADS)
Mugisidi, Dan; Heriyani, Okatrina
2018-02-01
Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.
Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji
2016-04-01
This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.
2015-12-01
Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.
Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E
2016-07-01
Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
McGregor, Edward E.; Van Horn, Richard; Arnow, Ted
1974-01-01
This map provides information on the location and distribution of three general types of geologic materials in part of Salt Lake County, including the southeastern part of Salt Lake City, Utah. These materials have different physical properties that are pertinent to comprehensive planning and zoning, land-use studies, and engineering usage. The map should be of use in preliminary studies to determine the depth to different general types of foundation material and to determine the potential for settlement of the ground surface during major earthquakes, which could result in damage to waterlines, gaslines, large buildings, and other major engineering structures.The lines on the map are generalized. Lines showing the thickness of loosely packed sediments are based on drillers’ logs of 27 water wells in and near the 35-square-mile part of the quadrangle west of the mountains – less than one data point for each square mile. Lines showing the depth to bedrock are based on indirect geophysical data, and the data points are more widely scattered. The map may be useful as a general guide in planning, but investigations by qualified specialists should be made for detailed evaluations of specific areas.references to other reports of possible interest to the reader are included at the end of this text.
Small scale variability of transport and composition of dissolved organic matter in the subsoil
NASA Astrophysics Data System (ADS)
Leinemann, T.; Mikutta, R.; Kalbitz, K.; Guggenberger, G.
2016-12-01
Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Dystric Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80 % from 10 to 50 cm depth and by 40 % from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. The 13C-labelling experiment showed that after 10 month just 0.3 % of the DOC in 150 cm depth was derived from fresh litter. The transport of leaf litter carbon seemed to be controlled by the flow regime as the DO13C ratio and the water flux correlated positively. This can be an indication for the importance of preferential flow on carbon transport to the subsoil.
Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele
2013-01-01
For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376
Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E; Mazzuca, Silvia; Serra, Ilia A; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele
2013-01-01
For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.
Ch'ng, Huck-Ywih; Ahmed, Osumanu Haruna; Ab. Majid, Nik Muhamad
2011-01-01
Logging and poor shifting cultivation negatively affect initial soil carbon (C) storage, especially at the initial stage of deforestation, as these practices lead to global warming. As a result, an afforestation program is needed to mitigate this problem. This study assessed initial soil C buildup of rehabilitated forests using Fourier transform infrared (FTIR) spectroscopy. The relatively high E4/E6 values of humic acids (HAs) in the rehabilitated forest indicate prominence of aliphatic components, suggesting that the HAs were of low molecular weight. The total acidity, carboxylic (-COOH) and phenolic (-OH) of the rehabilitated forest were found to be consistent with the ranges reported by other researchers. The spectra of all locations were similar because there was no significant difference in the quantities of C in humic acids (CHA) regardless of forest age and soil depth. The spectra showed distinct absorbance at 3290, 1720, 1630, 1510, 1460, 1380, and 1270 cm-1. Increase of band at 1630 and 1510 cm-1 from 0–20 to 40–60 cm were observed, suggesting C buildup from the lowest depths 20–40 and 40–60 cm. However, the CHA content in the soil depths was not different. The band at 1630 cm-1 was assigned to carboxylic and aromatic groups. Increase in peak intensity at 1510 cm-1 was because C/N ratio increased with increasing soil depth. This indicates that decomposition rate decreased with increasing soil depth and decreased with CHA. The finding suggests that FTIR spectroscopy enables the assessment of C composition functional group buildup at different depths and ages. PMID:21403973
Statistical characterization of Earth’s heterogeneities from seismic scattering
NASA Astrophysics Data System (ADS)
Zheng, Y.; Wu, R.
2009-12-01
The distortion of a teleseismic wavefront carries information about the heterogeneities through which the wave propagates and it is manifestited as logarithmic amplitude (logA) and phase fluctuations of the direct P wave recorded by a seismic network. By cross correlating the fluctuations (e.g., logA-logA or phase-phase), we obtain coherence functions, which depend on spatial lags between stations and incident angles between the incident waves. We have mathematically related the depth-dependent heterogeneity spectrum to the observable coherence functions using seismic scattering theory. We will show that our method has sharp depth resolution. Using the HiNet seismic network data in Japan, we have inverted power spectra for two depth ranges, ~0-120km and below ~120km depth. The coherence functions formed by different groups of stations or by different groups of earthquakes at different back azimuths are similar. This demonstrates that the method is statistically stable and the inhomogeneities are statistically stationary. In both depth intervals, the trend of the spectral amplitude decays from large scale to small scale in a power-law fashion with exceptions at ~50km for the logA data. Due to the spatial spacing of the seismometers, only information from length scale 15km to 200km is inverted. However our scattering method provides new information on small to intermediate scales that are comparable to scales of the recycled materials and thus is complimentary to the global seismic tomography which reveals mainly large-scale heterogeneities on the order of ~1000km. The small-scale heterogeneities revealed here are not likely of pure thermal origin. Therefore, the length scale and strength of heterogeneities as a function of depth may provide important constraints in mechanical mixing of various components in the mantle convection.
COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchner, Marc J.; Stark, Christopher C., E-mail: Marc.Kuchner@nasa.go, E-mail: starkc@umd.ed
2010-10-15
We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature ismore » caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.« less
van Tulder, Raphael; Roth, Dominik; Havel, Christof; Eisenburger, Philip; Heidinger, Benedikt; Chwojka, Christof Constantin; Novosad, Heinz; Sterz, Fritz; Herkner, Harald; Schreiber, Wolfgang
2014-03-01
The medical priority dispatch system (MPDS®) assists lay rescuers in protocol-driven telephone-assisted cardiopulmonary resuscitation (CPR). Our aim was to clarify which CPR instruction leads to sufficient compression depth. This was an investigator-blinded, randomized, parallel group, simulation study to investigate 10 min of chest compressions after the instruction "push down firmly 5 cm" vs. "push as hard as you can." Primary outcome was defined as compression depth. Secondary outcomes were participants exertion measured by Borg scale, provider's systolic and diastolic blood pressure, and quality values measured by the skill-reporting program of the Resusci(®) Anne Simulator manikin. For the analysis of the primary outcome, we used a linear random intercept model to allow for the repeated measurements with the intervention as a covariate. Thirteen participants were allocated to control and intervention. One participant (intervention) dropped out after min 7 because of exhaustion. Primary outcome showed a mean compression depth of 44.1 mm, with an inter-individual standard deviation (SDb) of 13.0 mm and an intra-individual standard deviation (SDw) of 6.7 mm for the control group vs. 46.1 mm and a SDb of 9.0 mm and SDw of 10.3 mm for the intervention group (difference: 1.9; 95% confidence interval -6.9 to 10.8; p = 0.66). Secondary outcomes showed no difference for exhaustion and CPR-quality values. There is no difference in compression depth, quality of CPR, or physical strain on lay rescuers using the initial instruction "push as hard as you can" vs. the standard MPDS(®) instruction "push down firmly 5 cm." Copyright © 2014 Elsevier Inc. All rights reserved.
Shin, Hyun Joo; Kim, Myung-Joon; Kim, Ha Yan; Roh, Yun Ho; Lee, Mi-Jung
2016-10-01
To investigate consistency in shear wave velocities (SWVs) on ultrasound elastography using different machines, transducers and acquisition depths. The SWVs were measured using an elasticity phantom with a Young's modulus of 16.9 kPa, with three recently introduced ultrasound elastography machines (A, B and C from different vendors) and two transducers (low and high frequencies) at four depths (2, 3, 4 and 5 cm). Mean SWVs from 15 measurements and coefficient of variations (CVs) were compared between three machines, two transducers and four acquisition depths. The SWVs using the high frequency transducer were not acquired at 5 cm depth in machine B, and a high frequency transducer was not available in machine C. The mean SWVs in the three machines were different (p ≤ 0.002). The CVs were 0-0.09 in three machines. The mean SWVs between the two transducers were different (p < 0.001) except at 4 and 5 cm depths in machine A. The SWVs were affected by the acquisition depths in all conditions (p < 0.001). There is considerable difference in SWVs on ultrasound elastography depending on different machines, transducers and acquisition depths. Caution is needed when using the cutoff values of SWVs in different conditions. • The shear wave velocities (SWVs) are different between different ultrasound elastography machines • The SWVs are also different between different transducers and acquisition depths • Caution is needed when using the cutoff SWVs measured under different conditions.
Xu, Jia Hui; Gao, Lei; Cui, Xiao Yang
2017-10-01
Soil black carbon (BC) is considered to be the main component of passive C pool because of its inherent biochemical recalcitrance. In this paper, soil BC in the middle part of Great Xing'an Mountains was quantified, the distribution of BC in different particle size fractions was analyzed, and BC stabilization mechanism and its important role in soil C pool were discussed. The results showed that BC expressed obvious accumulation in surface soil, accounting for about 68.7% in the whole horizon (64 cm), and then decreased with the increasing soil depth, however, BC/OC showed an opposite pattern. Climate conditions redistributed BC in study area, and the soil under cooler and moister conditions would sequester more BC. BC proportion in different particle size fractions was in the order of clay>silt>fine sand>coarse sand. Although BC content in clay was the highest and was enhanced with increasing soil depth, BC/OC in clay did not show a marked change. Thus, the rise of BC/OC was attributed to the preservation of BC particles in the fine sand and silt fractions. Biochemical recalcitrance was the main stabilization mechanism for surface BC, and with the increasing soil depth, the chemical protection from clay mineral gradually played a predominant role. BC not only was the essential component of soil stable carbon pool, but also took up a sizable proportion in particulate organic carbon pool. Therefore, the storage of soil stable carbon and the potential of soil carbon sequestration would be enhanced owing to the existence of BC.
Gilbert, Luiram R.; Lohra, Parul; Mandlik, V.B.; Rath, S.K.; Jha, A.K.
2012-01-01
Background Esthetics represents an inseparable part of today's oral therapy, and several procedures have been proposed to preserve or enhance it. Gingival recessions may cause hypersensitivity, impaired esthetics and root caries. Keeping in mind patient's desire for improved esthetics and other related problems, every effort should be made to achieve complete root coverage. Methods Different types of modalities have been introduced to treat gingival recession including displaced flaps, free gingival graft, connective tissue graft, different type of barrier membranes and combination of different techniques. The aim of this study was to compare the commonly used techniques for gingival recession coverage and evaluate the results obtained. 73 subjects were selected for the present study who were randomly divided into four groups and were followed at baseline and 180 days where following parameters were recorded: (a) Assessment of gingival recession depth (RD); (b) Assessment of pocket depth (PD); (c) Assessment of clinical attachment level (CAL) and (d) Assessment of width of attached gingiva (WAG). Results Results of this study showed statistically significant reduction of gingival recession, with concomitant attachment gain, following treatment with all tested surgical techniques. However, SCTG with CAF technique showed the highest percentage gain in coverage of recession depth as well as gain in keratinized gingiva. Similar results were obtained with CAF alone. The use of GTR and other techniques showed less predictable coverage and gain in keratinized gingiva. Conclusion Connective tissue grafts were statistically significantly superior to guided tissue regeneration for improvement in gingival recession reduction. PMID:25609865
No scanning depth imaging system based on TOF
NASA Astrophysics Data System (ADS)
Sun, Rongchun; Piao, Yan; Wang, Yu; Liu, Shuo
2016-03-01
To quickly obtain a 3D model of real world objects, multi-point ranging is very important. However, the traditional measuring method usually adopts the principle of point by point or line by line measurement, which is too slow and of poor efficiency. In the paper, a no scanning depth imaging system based on TOF (time of flight) was proposed. The system is composed of light source circuit, special infrared image sensor module, processor and controller of image data, data cache circuit, communication circuit, and so on. According to the working principle of the TOF measurement, image sequence was collected by the high-speed CMOS sensor, and the distance information was obtained by identifying phase difference, and the amplitude image was also calculated. Experiments were conducted and the experimental results show that the depth imaging system can achieve no scanning depth imaging function with good performance.
Measurement of aerosol optical depth in the Atlantic Ocean and Mediterranean Sea
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Yershov, Oleg; Villevalde, Yuri
1995-12-01
A brief summary of aerosol optical depth measurements in a maritime atmosphere during the last three decades is presented. The results of more than fifty publications have been analyzed and are summarized in a single table. New results of spectral aerosol optical depth measurements (from 440 to 1030 nm) in the Mediterranean Sea and Atlantic Ocean made from aboard a research vessel are also presented. Comparison of aerosol optical depths obtained over the Mediterranean Sea in the winter 1989-1990 with other Mediterranean data indicate substantial seasonal difference. The angstrom parameter values for the central and western Atlantic indicate good agreement with the results obtained for the north Atlantic. The measurements in the subtropical Atlantic region show significant variations. The pure atmosphere in the winter 1989-1990 evolved in the fall of 1991 into very turbid conditions which were probably associated with Saharan dust.
Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas
NASA Astrophysics Data System (ADS)
Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Schofield, Oscar
2017-01-01
Mixed-layer depth (MLD) has been widely linked to phytoplankton dynamics in Antarctica's coastal regions; however, inconsistent definitions have made intercomparisons among region-specific studies difficult. Using a data set with over 20,000 water column profiles corresponding to 32 Slocum glider deployments in three coastal Antarctic regions (Ross Sea, Amundsen Sea, and West Antarctic Peninsula), we evaluated the relationship between MLD and phytoplankton vertical distribution. Comparisons of these MLD estimates to an applied definition of phytoplankton bloom depth, as defined by the deepest inflection point in the chlorophyll profile, show that the maximum of buoyancy frequency is a good proxy for an ecologically relevant MLD. A quality index is used to filter profiles where MLD is not determined. Despite the different regional physical settings, we found that the MLD definition based on the maximum of buoyancy frequency best describes the depth to which phytoplankton can be mixed in Antarctica's coastal seas.
NASA Astrophysics Data System (ADS)
Robles, Francisco E.; Zhu, Yizheng; Lee, Jin; Sharma, Sheela; Wax, Adam
2011-03-01
We present Fourier domain low coherence interferometry (fLCI) applied to the detection of preneoplastic changes in the colon using the ex-vivo azoxymethane (AOM) rat carcinogenesis model. fLCI measures depth resolved spectral oscillations, also known as local oscillations, resulting from coherent fields induced by the scattering of cell nuclei. The depth resolution of fLCI permits nuclear morphology measurements within thick tissues, making the technique sensitive to the earliest stages of precancerous development. To achieve depth resolved spectroscopic analysis, we use the dual window method, which obtains simultaneously high spectral and depth resolution and yields access to the local oscillations. The results show highly statistically significant differences between the AOM-treated and control group samples. Further, the results suggest that fLCI may be used to detect the field effect of carcinogenesis, in addition to identifying specific areas where more advanced neoplastic development has occurred.
Pictorial depth probed through relative sizes
Wagemans, Johan; van Doorn, Andrea J; Koenderink, Jan J
2011-01-01
In the physical environment familiar size is an effective depth cue because the distance from the eye to an object equals the ratio of its physical size to its angular extent in the visual field. Such simple geometrical relations do not apply to pictorial space, since the eye itself is not in pictorial space, and consequently the notion “distance from the eye” is meaningless. Nevertheless, relative size in the picture plane is often used by visual artists to suggest depth differences. The depth domain has no natural origin, nor a natural unit; thus only ratios of depth differences could have an invariant significance. We investigate whether the pictorial relative size cue yields coherent depth structures in pictorial spaces. Specifically, we measure the depth differences for all pairs of points in a 20-point configuration in pictorial space, and we account for these observations through 19 independent parameters (the depths of the points modulo an arbitrary offset), with no meaningful residuals. We discuss a simple formal framework that allows one to handle individual differences. We also compare the depth scale obtained by way of this method with depth scales obtained in totally different ways, finding generally good agreement. PMID:23145258
NASA Astrophysics Data System (ADS)
Kokubun, N.; Yamamoto, T.,; Sato, N.; Watanuki, Y.; Will, A.; Kitaysky, A. S.; Takahashi, A.
2015-11-01
Sub-arctic environmental changes are expected to affect the ecology of marine top predators. We examined the characteristics of foraging behavior of two sympatric congeneric diving seabirds, common (Uria aalge: hereafter COMU) and thick-billed (U. lomvia: hereafter TBMU) murres breeding on St. George Island located in the seasonal sea-ice region of the Bering Sea. We investigated their flight duration, diel patterns of dive depth, and underwater wing strokes, along with morphology and blood stable isotopes. Acceleration-temperature-depth data loggers were attached to chick-guarding birds, and behavioral data were obtained from 7 COMU and 12 TBMU. Both species showed similar trip duration (13.21 ± 4.79 h for COMU and 10.45 ± 7.09 h for TBMU) and similar diurnal patterns of diving (frequent dives to various depths in the daytime and less frequent dives to shallow depths in the nighttime). During the daytime, dive depths of COMU had two peaks in shallow (18.1 ± 6.0 m) and deep (74.2 ± 8.7 m) depths, while those of TBMU were 20.2 ± 7.4 m and 59.7 ± 7.9 m. COMU showed more frequent wing strokes during the bottom phase of dives (1.90 ± 0.11 s-1) than TBMU (1.66 ± 0.15 s-1). Fishes occurred with higher proportion in the bill-loads brought back to chicks in COMU (85 %) than in TBMU (56 %). δ15N value of blood was significantly higher in COMU (14.47 ± 0.27 ‰) than in TBMU (13.14 ± 0.36 ‰). Relatively small wing area (0.053 ± 0.007 m2) of COMU compared to TBMU (0.067 ± 0.007 m2) may make them more agile underwater and thus enable them to target more mobile prey including larger fishes that inhabit deeper depths. These differences in foraging behavior between COMU and TBMU might explain the differences in their responses to long-term marine environmental changes.
NASA Astrophysics Data System (ADS)
Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.
2017-12-01
Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in all depth ranges and shows a better accuracy compared to that of classification map produced using only with DII.
Chaurasia, Aalok R
2017-02-01
In this paper, we decompose the difference between the weight of a child and the weight of a reference child into the difference between the height of the child and the height of the reference child and the difference between the weight per unit height of the child and the weight per unit height of the reference child. The decomposition provides the theoretical justification to the classification of the nutritional status proposed by Svedberg and by Nandy et al. An application of the decomposition framework to the Indian data shows that the level, depth and severity of the faltering of the growth of the body mass in Indian children are primarily due to the level, depth and severity of the faltering of the ponderal growth.
Limit-order book resiliency after effective market orders: spread, depth and intensity
NASA Astrophysics Data System (ADS)
Xu, Hai-Chuan; Chen, Wei; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing; Stanley, H. Eugene
2017-07-01
In order-driven markets, limit-order book (LOB) resiliency is an important microscopic indicator of market quality when the order book is hit by a liquidity shock and plays an essential role in the design of optimal submission strategies of large orders. However, the evolutionary behavior of LOB resilience around liquidity shocks is not well understood empirically. Using order flow data sets of Chinese stocks, we quantify and compare the LOB dynamics characterized by the bid-ask spread, the LOB depth and the order intensity surrounding effective market orders with different aggressiveness. We find that traders are more likely to submit effective market orders when the spreads are relatively low, the same-side depth is high, and the opposite-side depth is low. Such phenomenon is especially significant when the initial spread is 1 tick. Although the resiliency patterns show obvious diversity after different types of market orders, the spread and depth can return to the sample average within 20 best limit updates. The price resiliency behavior is dominant following aggressive market buy orders, while the price continuation behavior is dominant following less-aggressive market sell orders. Moreover, the resiliency stimulus of buy-sell shock is asymmetrical. The intensities of limit sell orders after market buy orders’ shock are always higher than the intensities of limit buy orders after market sell orders’ shock. The resiliency behavior of spread and depth is linked to limit order intensity.
Limitations of silicon diodes for clinical electron dosimetry.
Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder
2006-01-01
This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams.
Vadhana, Sekar; Latha, Jothi; Velmurugan, Natanasabapathy
2015-05-01
This study evaluated the penetration depth of 2% chlorhexidine digluconate (CHX) into root dentinal tubules and the influence of passive ultrasonic irrigation (PUI) using a confocal laser scanning microscope (CLSM). Twenty freshly extracted anterior teeth were decoronated and instrumented using Mtwo rotary files up to size 40, 4% taper. The samples were randomly divided into two groups (n = 10), that is, conventional syringe irrigation (CSI) and PUI. CHX was mixed with Rhodamine B dye and was used as the final irrigant. The teeth were sectioned at coronal, middle and apical levels and viewed under CLSM to record the penetration depth of CHX. The data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests. The mean penetration depths of 2% CHX in coronal, middle and apical thirds were 138 µm, 80 µm and 44 µm in CSI group, respectively, whereas the mean penetration depths were 209 µm, 138 µm and 72 µm respectively in PUI group. Statistically significant difference was present between CSI group and PUI group at all three levels (p < 0.01 for coronal third and p < 0.001 for middle and apical thirds). On intragroup analysis, both groups showed statistically significant difference among three levels (p < 0.001). Penetration depth of 2% CHX into root dentinal tubules is deeper in coronal third when compared to middle and apical third. PUI aided in deeper penetration of 2% CHX into dentinal tubules when compared to conventional syringe irrigation at all three levels.
Monocular zones in stereoscopic scenes: A useful source of information for human binocular vision?
NASA Astrophysics Data System (ADS)
Harris, Julie M.
2010-02-01
When an object is closer to an observer than the background, the small differences between right and left eye views are interpreted by the human brain as depth. This basic ability of the human visual system, called stereopsis, lies at the core of all binocular three-dimensional (3-D) perception and related technological display development. To achieve stereopsis, it is traditionally assumed that corresponding locations in the right and left eye's views must first be matched, then the relative differences between right and left eye locations are used to calculate depth. But this is not the whole story. At every object-background boundary, there are regions of the background that only one eye can see because, in the other eye's view, the foreground object occludes that region of background. Such monocular zones do not have a corresponding match in the other eye's view and can thus cause problems for depth extraction algorithms. In this paper I will discuss evidence, from our knowledge of human visual perception, illustrating that monocular zones do not pose problems for our human visual systems, rather, our visual systems can extract depth from such zones. I review the relevant human perception literature in this area, and show some recent data aimed at quantifying the perception of depth from monocular zones. The paper finishes with a discussion of the potential importance of considering monocular zones, for stereo display technology and depth compression algorithms.
Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping
2016-04-01
Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.
Nystrom, Elizabeth A.; Burns, Douglas A.
2011-01-01
TOPMODEL uses a topographic wetness index computed from surface-elevation data to simulate streamflow and subsurface-saturation state, represented by the saturation deficit. Depth to water table was computed from simulated saturation-deficit values using computed soil properties. In the Fishing Brook Watershed, TOPMODEL was calibrated to the natural logarithm of streamflow at the study area outlet and depth to water table at Sixmile Wetland using a combined multiple-objective function. Runoff and depth to water table responded differently to some of the model parameters, and the combined multiple-objective function balanced the goodness-of-fit of the model realizations with respect to these parameters. Results show that TOPMODEL reasonably simulated runoff and depth to water table during the study period. The simulated runoff had a Nash-Sutcliffe efficiency of 0.738, but the model underpredicted total runoff by 14 percent. Depth to water table computed from simulated saturation-deficit values matched observed water-table depth moderately well; the root mean squared error of absolute depth to water table was 91 millimeters (mm), compared to the mean observed depth to water table of 205 mm. The correlation coefficient for temporal depth-to-water-table fluctuations was 0.624. The variability of the TOPMODEL simulations was assessed using prediction intervals grouped using the combined multiple-objective function. The calibrated TOPMODEL results for the entire study area were applied to several subwatersheds within the study area using computed hydrogeomorphic properties of the subwatersheds.
NASA Astrophysics Data System (ADS)
Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.
2011-12-01
The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth, suggesting that most of the differential storage is taken by the epikarst. Second, we use STD gravity differences to determine the effective density values for each site. These integrative density values are compared to measured grain densities from core samples in order to obtain the apparent porosity and saturation representative to the investigated volume. We then discuss the relation between the physical characteristic of each non-saturated zone and its water storage capacity. It seems that epikarst water storage variation is only weakly related to lithology. We also discuss the reasons for specific water storage in the epikarst. Because epikarst water storage has been claimed to be a general characteristic of karst system, a gravimetric approach appears to be a promising method to verify quantitatively this hypothesis.
NASA Astrophysics Data System (ADS)
Marcinkevics, Zbignevs; Rubins, Uldis; Zaharans, Janis; Miscuks, Aleksejs; Urtane, Evelina; Ozolina-Moll, Liga
2016-03-01
The feasibility of bispectral imaging photoplethysmography (iPPG) system for clinical assessment of cutaneous microcirculation at two different depths is proposed. The iPPG system has been developed and evaluated for in vivo conditions during various tests: (1) topical application of vasodilatory liniment on the skin, (2) skin local heating, (3) arterial occlusion, and (4) regional anesthesia. The device has been validated by the measurements of a laser Doppler imager (LDI) as a reference. The hardware comprises four bispectral light sources (530 and 810 nm) for uniform illumination of skin, video camera, and the control unit for triggering of the system. The PPG signals were calculated and the changes of perfusion index (PI) were obtained during the tests. The results showed convincing correlations for PI obtained by iPPG and LDI at (1) topical liniment (r=0.98) and (2) heating (r=0.98) tests. The topical liniment and local heating tests revealed good selectivity of the system for superficial microcirculation monitoring. It is confirmed that the iPPG system could be used for assessment of cutaneous perfusion at two different depths, morphologically and functionally different vascular networks, and thus utilized in clinics as a cost-effective alternative to the LDI.
Marcinkevics, Zbignevs; Rubins, Uldis; Zaharans, Janis; Miscuks, Aleksejs; Urtane, Evelina; Ozolina-Moll, Liga
2016-03-01
The feasibility of bispectral imaging photoplethysmography (iPPG) system for clinical assessment of cutaneous microcirculation at two different depths is proposed. The iPPG system has been developed and evaluated for in vivo conditions during various tests: (1) topical application of vasodilatory liniment on the skin, (2) skin local heating, (3) arterial occlusion, and (4) regional anesthesia. The device has been validated by the measurements of a laser Doppler imager (LDI) as a reference. The hardware comprises four bispectral light sources (530 and 810 nm) for uniform illumination of skin, video camera, and the control unit for triggering of the system. The PPG signals were calculated and the changes of perfusion index (PI) were obtained during the tests. The results showed convincing correlations for PI obtained by iPPG530 nm and LDI at (1) topical liniment (r = 0.98) and (2) heating (r = 0.98) tests. The topical liniment and local heating tests revealed good selectivity of the system for superficial microcirculation monitoring. It is confirmed that the iPPG system could be used for assessment of cutaneous perfusion at two different depths, morphologically and functionally different vascular networks, and thus utilized in clinics as a cost-effective alternative to the LDI.
Ingebretson, Justin J; Masino, Mark A
2013-01-01
High-throughput behavioral studies using larval zebrafish often assess locomotor activity to determine the effects of experimental perturbations. However, the results reported by different groups are difficult to compare because there is not a standardized experimental paradigm or measure of locomotor activity. To address this, we investigated the effects that several factors, including the stage of larval development and the physical dimensions (depth and diameter) of the behavioral arena, have on the locomotor activity produced by larval zebrafish. We provide evidence for differences in locomotor activity between larvae at different stages and when recorded in wells of different depths, but not in wells of different diameters. We also show that the variability for most properties of locomotor activity is less for older than younger larvae, which is consistent with previous reports. Finally, we show that conflicting interpretations of activity level can occur when activity is assessed with a single measure of locomotor activity. Thus, we conclude that although a combination of factors should be considered when designing behavioral experiments, the use of older larvae in deep wells will reduce the variability of locomotor activity, and that multiple properties of locomotor activity should be measured to determine activity level.
Josberger, E.G.; Gloersen, P.; Chang, A.; Rango, A.
1996-01-01
Understanding the passive microwave emissions of a snowpack, as observed by satellite sensors, requires knowledge of the snowpack properties: water equivalent, grain size, density, and stratigraphy. For the snowpack in the Upper Colorado River Basin, measurements of snow depth and water equivalent are routinely available from the U.S. Department of Agriculture, but extremely limited information is available for the other properties. To provide this information, a field program from 1984 to 1995 obtained profiles of snowpack grain size, density, and temperature near the time of maximum snow accumulation, at sites distributed across the basin. A synoptic basin-wide sampling program in 1985 showed that the snowpack exhibits consistent properties across large regions. Typically, the snowpack in the Wyoming region contains large amounts of depth hoar, with grain sizes up to 5 mm, while the snowpack in Colorado and Utah is dominated by rounded snow grains less than 2 mm in diameter. In the Wyoming region, large depth hoar crystals in shallow snowpacks yield the lowest emissivities or coldest brightness temperatures observed across the entire basin. Yearly differences in the average grain sizes result primarily from variations in the relative amount of depth hoar within the snowpack. The average grain size for the Colorado and Utah regions shows much less variation than do the grain sizes from the Wyoming region. Furthermore, the greatest amounts of depth hoar occur in the Wyoming region during 1987 and 1992, years with strong El Nin??o Southern Oscillation, but the Colorado and Utah regions do not show this behavior.
Seafloor in the Expanded Malaysia Airlines Flight MH370 Search Area
NASA Astrophysics Data System (ADS)
Smith, W. H. F.; Marks, K. M.; Beaman, R. J.
2014-12-01
Smith and Marks (Eos Trans. AGU, 95(21), 27 May 2014) illustrated a map of the seafloor in the Malaysia Airlines Flight MH370 search area. This map showed a bathymetric model that is constructed from a combination of available ship soundings and depths estimated from satellite altimetry. They noted that available depth measurements covered only 5% of their study region, and that very few of these measurements were collected using modern multibeam and navigation systems. Recently the MH370 search has been expanded along the "7th Arc" to encompass newly prioritized underwater search areas identified in an Australian Transport Safety Bureau report (AE-2014-054, 26 June 2014). While the new "Priority" search area is within the Eos article Fig. 1, the new "Wide" search area extends beyond the region evaluated in Eos. Additionally, multibeam data that were not incorporated in the bathymetric model have been made available to us after the Eos article was published. This presentation will update and extend the study published in Eos. We will present illustrations of the expanded region, sounding coverage, and tectonic features that are associated with steep topographic slopes. Our results include comparisons of multibeam survey depths and bathymetric model depths. The standard deviation of the differences is 182 m, with the greatest differences (exceeding 1000 m) over steep topographic slopes, and the smallest over low-relief ocean floor. This is consistent with differences found by Smith and Sandwell (JGR, 99(B11), 1994) between soundings and bathymetric predictions from altimetry. Such depth differences are common where bathymetric model constraints are sparse, which is typical of many of the world's oceans.
Mugnai, Riccardo; Sattamini, Ana; Albuquerque dos Santos, José Augusto; Regua-Mangia, Adriana Hamond
2015-01-01
The Hyporheic Zone is among the most important interstitial freshwater habitats, but the relationship between biotic and abiotic factors in this zone remains under-explored. Enterobacteria were expected to be present, but no specific studies had ever confirmed this prediction. The aim of this study was, therefore, to evaluate the total coliforms, Escherichia coli and Salmonella spp. in hyporheic water and to determine the relationship of the physical, chemical and environmental factors at different depths in a rainforest stream. To this end, thirty-six water samples were collected at three depths in sites located in the first, second and third orders in diverse substrates. The total coliforms, Escherichia coli and Salmonella sp. were evaluated in terms of their CFU/ml. In the interstitial samples, coliforms were detected in 100% of the samples. The total coliform counts had higher values at intermediate depths, while E. coli and Salmonella spp. instead had higher values at intermediate and large depths, often reaching or exceeding the values of the surface samples. Our results revealed that Salmonella spp. and the coliforms have different microhabitat preferences. Salmonella spp. and coliform species prefer deposition areas, such as lateral sides of pools, curves and bars, but they have a tendency to distribute into different depths, likely due to temperature differences. Salmonella spp. prefer compact substrata, with fewer fluids passing through and with upwelling areas with lower oxygen inflow. The coliform species showed the opposite preference. Our results suggest that bacterial variation is related to environmental factors and physical-chemical parameters within the HZ and may play a key role in the microbial diversity and distribution in these ecosystems. PMID:26067288
Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations
NASA Astrophysics Data System (ADS)
Becker, G.; Knapmeyer-Endrun, B.
2018-02-01
We derive autocorrelations from ambient seismic noise to image the reflectivity of the subsurface and to extract the Moho depth beneath the stations for two different data sets in Central Europe. The autocorrelations are calculated by smoothing the spectrum of the data in order to suppress high amplitude, narrow-band signals of industrial origin, applying a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking. The stacked autocorrelation results are filtered and analysed predominantly in the frequency range of 1-2 Hz. Moho depth is automatically picked inside uncertainty windows obtained from prior information. The processing scheme we developed is applied to data from permanent seismic stations located in different geological provinces across Europe, with varying Moho depths between 25 and 50 km, and to the mainly short period temporary PASSEQ stations along seismic profile POLONAISE P4. The autocorrelation results are spatially and temporarily stable, but show a clear correlation with the existence of cultural noise. On average, a minimum of six months of data is needed to obtain stable results. The obtained Moho depth results are in good agreement with the subsurface model provided by seismic profiling, receiver function estimates and the European Moho depth map. In addition to extracting the Moho depth, it is possible to identify an intracrustal layer along the profile, again closely matching the seismic model. For more than half of the broad-band stations, another change in reflectivity within the mantle is observed and can be correlated with the lithosphere-asthenosphere boundary to the west and a mid-lithospheric discontinuity beneath the East European Craton. With the application of the developed autocorrelation processing scheme to different stations with varying crustal thicknesses, it is shown that Moho depth can be extracted independent of subsurface structure, when station coverage is low, when no strong seismic sources are present, and when only limited amounts of data are available.
NASA Astrophysics Data System (ADS)
Chen, Jone F.; Tsai, Yen-Lin; Chen, Chun-Yen; Hsu, Hao-Tang; Kao, Chia-Yu; Hwang, Hann-Ping
2018-04-01
Device characteristics and hot-carrier-induced device degradation of n-channel MOS transistors with an off-state breakdown voltage of approximately 25 V and various Si recess depths introduced by sidewall spacer overetching are investigated. Experimental data show that the depth of the Si recess has small effects on device characteristics. A device with a deeper Si recess has lower substrate current and channel electric field, whereas a greater hot-carrier-induced device degradation and a shorter hot-carrier lifetime are observed. Results of technology computer-aided design simulations suggest that these unexpected observations are related to the severity of plasma damage caused by the sidewall spacer overetching and the difference in topology.
NASA Astrophysics Data System (ADS)
Dai, Liyun; Che, Tao; Ding, Yongjian; Hao, Xiaohua
2017-08-01
Snow cover on the Qinghai-Tibetan Plateau (QTP) plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW) remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow depth across the QTP, new algorithms should be developed to retrieve snow depth with higher spatial resolution and should consider the variation in brightness temperatures at different frequencies emitted from ground with changing ground features.
Schober, P; Krage, R; Lagerburg, V; Van Groeningen, D; Loer, S A; Schwarte, L A
2014-04-01
Current cardiopulmonary resuscitation (CPR)-guidelines recommend an increased chest compression depth and rate compared to previous guidelines, and the use of automatic feedback devices is encouraged. However, it is unclear whether this compression depth can be maintained at an increased frequency. Moreover, the underlying surface may influence accuracy of feedback devices. We investigated compression depths over time and evaluated the accuracy of a feedback device on different surfaces. Twenty-four volunteers performed four two-minute blocks of CPR targeting at current guideline recommendations on different surfaces (floor, mattress, 2 backboards) on a patient simulator. Participants rested for 2 minutes between blocks. Influences of time and different surfaces on chest compression depth (ANOVA, mean [95% CI]) and accuracy of a feedback device to determine compression depth (Bland-Altman) were assessed. Mean compression depth did not reach recommended depth and decreased over time during all blocks (first block: from 42 mm [39-46 mm] to 39 mm [37-42 mm]). A two-minute resting period was insufficient to restore compression depth to baseline. No differences in compression depth were observed on different surfaces. The feedback device slightly underestimated compression depth on the floor (bias -3.9 mm), but markedly overestimated on the mattress (bias +12.6 mm). This overestimation was eliminated after correcting compression depth by a second sensor between manikin and mattress. Strategies are needed to improve chest compression depth, and more than two providers should alternate with chest compressions. The underlying surface does not necessarily adversely affect CPR performance but influences accuracy of feedback devices. Accuracy is improved by a second, posterior, sensor.
Sniffin' Sticks and olfactory system imaging in patients with Kallmann syndrome.
Ottaviano, Giancarlo; Cantone, Elena; D'Errico, Arianna; Salvalaggio, Alessandro; Citton, Valentina; Scarpa, Bruno; Favaro, Angela; Sinisi, Antonio Agostino; Liuzzi, Raffaele; Bonanni, Guglielmo; Di Salle, Francesco; Elefante, Andrea; Manara, Renzo; Staffieri, Alberto; Martini, Alessandro; Brunetti, Arturo
2015-09-01
The relationship between olfactory function, rhinencephalon and forebrain changes in Kallmann syndrome (KS) have not been adequately investigated. We evaluated a large cohort of male KS patients using Sniffin' Sticks and MRI in order to study olfactory bulb (OB) volume, olfactory sulcus (OS) depth, cortical thickness close to the OS, and olfactory phenotype. Olfaction was assessed administering Sniffin' Sticks®, in 38 KS patients and 17 controls (by means of Screening 12 test®). All subjects underwent magnetic resonance imaging (MRI) to study OB volume, sulcus depth, and cortical thickness. Compared to controls, KS patients showed smaller OB volume (p<0.0001), reduced sulcus depth (p<0.0001), and thicker cortex in the region close to the OS (p<0.0001). Anosmic KS patients had smaller OB than controls and hyposmic KS patients; there was no difference between hyposmic KS patients and controls. OB volume correlated with Sniffin' Sticks score (r = 0.64; p < 0.001), OS depth (p<0.0001) and, inversely, with cortical thickness changes (p<0.0001). Sniffin' Sticks showed an inverse correlation with cortical thickness (r = -0.5; p<0.0001) and a trend toward a statistically significant correlation with OS depth. The present study provides further evidence of the strict relationship between olfaction and OB volume. The strong correlation between OB volume and the overlying cortical changes highlights the key role of rhinencephalon in forebrain embryogenesis. © 2015 ARS-AAOA, LLC.
Effect of bench time polymerization on depth of cure of dental composite resin
NASA Astrophysics Data System (ADS)
Harahap, K.; Yudhit, A.; Sari, F.
2017-07-01
The aim of this research was to investigate the effect of bench time before light cured polymerization on the depth of cure of dental composite resin. Nanofiller composite resin (Filtek Z350 XT,3M, ESPE,China) was used in this study. Sixty samples of nanofiller composite resin were made and divided into control and test groups with bench time for 0, 15, 30, 45, and 60 min. For the test group, composite resins were stored in refrigerator with 4°C temperatures. Meanwhile, for the control groups, the composite resin was stored at room temperature. The samples were prepared using metal mould with size diameter of 6 mm and 4 mm in thickness. Samples were cured for 20 s by using visible blue light curing unit. Part of samples that unpolymerized were removed by using a plastic spatula. The remaining parts of samples were measured by digital caliper and noted as depth of cure (mm). Data were analyzed to one-way ANOVA and LSD tests (p≤0.05). Results showed there was no significance differences between test groups (p=0.5). A 60 minutes bench time group showed the highest depth of cure value among test group, and it was almost similar with control group value. It can be concluded that longer bench time can increase the depth of cure of composite resin.
Xiao, Jingjing; Stolkin, Rustam; Gao, Yuqing; Leonardis, Ales
2017-09-06
This paper presents a novel robust method for single target tracking in RGB-D images, and also contributes a substantial new benchmark dataset for evaluating RGB-D trackers. While a target object's color distribution is reasonably motion-invariant, this is not true for the target's depth distribution, which continually varies as the target moves relative to the camera. It is therefore nontrivial to design target models which can fully exploit (potentially very rich) depth information for target tracking. For this reason, much of the previous RGB-D literature relies on color information for tracking, while exploiting depth information only for occlusion reasoning. In contrast, we propose an adaptive range-invariant target depth model, and show how both depth and color information can be fully and adaptively fused during the search for the target in each new RGB-D image. We introduce a new, hierarchical, two-layered target model (comprising local and global models) which uses spatio-temporal consistency constraints to achieve stable and robust on-the-fly target relearning. In the global layer, multiple features, derived from both color and depth data, are adaptively fused to find a candidate target region. In ambiguous frames, where one or more features disagree, this global candidate region is further decomposed into smaller local candidate regions for matching to local-layer models of small target parts. We also note that conventional use of depth data, for occlusion reasoning, can easily trigger false occlusion detections when the target moves rapidly toward the camera. To overcome this problem, we show how combining target information with contextual information enables the target's depth constraint to be relaxed. Our adaptively relaxed depth constraints can robustly accommodate large and rapid target motion in the depth direction, while still enabling the use of depth data for highly accurate reasoning about occlusions. For evaluation, we introduce a new RGB-D benchmark dataset with per-frame annotated attributes and extensive bias analysis. Our tracker is evaluated using two different state-of-the-art methodologies, VOT and object tracking benchmark, and in both cases it significantly outperforms four other state-of-the-art RGB-D trackers from the literature.
NASA Astrophysics Data System (ADS)
Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.
2016-05-01
Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.
Uncertainty Analyses for Back Projection Methods
NASA Astrophysics Data System (ADS)
Zeng, H.; Wei, S.; Wu, W.
2017-12-01
So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.
Hamarat, Yasin; Deimantavicius, Mantas; Kalvaitis, Evaldas; Siaudvytyte, Lina; Januleviciene, Ingrida; Zakelis, Rolandas; Bartusis, Laimonas
2017-12-01
The aim of the present study was to locate the ophthalmic artery by using the edge of the internal carotid artery (ICA) as the reference depth to perform a reliable non-invasive intracranial pressure measurement via a multi-depth transcranial Doppler device and to then determine the positions and angles of an ultrasonic transducer (UT) on the closed eyelid in the case of located segments. High tension glaucoma (HTG) patients and healthy volunteers (HVs) undergoing non-invasive intracranial pressure measurement were selected for this prospective study. The depth of the edge of the ICA was identified, followed by a selection of the depths of the IOA and EOA segments. The positions and angles of the UT on the closed eyelid were measured. The mean depth of the identified ICA edge for HTG patients was 64.3 mm and was 63.0 mm for HVs (p = 0.21). The mean depth of the selected IOA segment for HTG patients was 59.2 mm and 59.3 mm for HVs (p = 0.91). The mean depth of the selected EOA segment for HTG patients was 48.5 mm and 49.8 mm for HVs (p = 0.14). The difference in the located depths of the segments between groups was not statistically significant. The results showed a significant difference in the measured UT angles in the case of the identified edge of the ICA and selected ophthalmic artery segments (p = 0.0002). We demonstrated that locating the IOA and EOA segments can be achieved using the edge of the ICA as a reference point. OA: ophthalmic artery; IOA: intracranial segments of the ophthalmic artery; EOA: extracranial segments of the ophthalmic artery; ICA: internal carotid artery; UT: ultrasonic transducer; HTG: high tension glaucoma; SD: standard deviation; ICP: intracranial pressure; TCD: transcranial Doppler.
Jiang, Hua; Luo, Yi; McQuerrey, Joe
2018-02-01
Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.
Visual selective attention with virtual barriers.
Schneider, Darryl W
2017-07-01
Previous studies have shown that interference effects in the flanker task are reduced when physical barriers (e.g., hands) are placed around rather than below a target flanked by distractors. One explanation of this finding is the referential coding hypothesis, whereby the barriers serve as reference objects for allocating attention. In five experiments, the generality of the referential coding hypothesis was tested by investigating whether interference effects are modulated by the placement of virtual barriers (e.g., parentheses). Modulation of flanker interference was found only when target and distractors differed in size and the virtual barriers were beveled wood-grain objects. Under these conditions and those of previous studies, the author conjectures that an impression of depth was produced when the barriers were around the target, such that the target was perceived to be on a different depth plane than the distractors. Perception of depth in the stimulus display might have led to referential coding of the stimuli in three-dimensional (3-D) space, influencing the allocation of attention beyond the horizontal and vertical dimensions. This 3-D referential coding hypothesis is consistent with research on selective attention in 3-D space that shows flanker interference is reduced when target and distractors are separated in depth.
NASA Astrophysics Data System (ADS)
Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E.
2017-09-01
Autofluorescence photobleaching describes the decrease of fluorescence intensity of endogenous fluorophores in biological tissue upon light irradiation. The origin of autofluorescence photobleaching is not fully understood. In the skin, the spatial distribution of various endogenous fluorophores varies within the skin layers. Most endogenous fluorophores are excited in the ultraviolet and short visible wavelength range, and only a few, such as porphyrins (red) and melanin (near-infrared), are excited at longer wavelengths. The excitation wavelength- and depth-dependent irradiation of skin will therefore excite different fluorophores, which will likely influence the photobleaching characteristics. The autofluorescence photobleaching of porcine ear skin has been measured ex vivo using 325, 473, 633, and 785 nm excitation at different skin depths from the surface to the dermis at 150 μm. Confocal Raman microscopes were used to achieve sufficient spatial resolution of the measurements. The autofluorescence area under the curve was measured for 21 consecutive acquisitions of 15 s. In all cases, the photobleaching follows a two-exponential decay function approximated by nonlinear regression. The results show that photobleaching can be applied to improve the signal-to-noise ratio in Raman spectroscopy for all of the applied excitation wavelengths and skin depths.
Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia
NASA Astrophysics Data System (ADS)
Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.
2014-02-01
Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.
NASA Astrophysics Data System (ADS)
Houben, Georg J.; Koeniger, Paul; Schloemer, Stefan; Gröger-Trampe, Jens; Sültenfuß, Jürgen
2018-02-01
Depth-specific sampling of groundwater is important for a variety of hydrogeological applications. Several sampling methods are available but comparably little is known about how their results compare. Therefore, samples from regular observation wells (short screen), micro-filters and direct push were compared for two sites with differing hydrogeological conditions and land use, both located in the Fuhrberger Feld, Germany. The encountered hydrochemical zonation requires a high resolution of 1 m or better, which the available small number of regular observation wells could only roughly mirror. Because the three methods employ significantly varying pumping rates and therefore, have varying spatial origins of the sample, individual concentrations at similar depths may differ significantly. In a hydrologically and chemically dynamical environment such as the agricultural site, this effect becomes more pronounced than for the more stable forest site. The micro-filters are probably the most depth-specific, but showed distinctly lower concentrations for dissolved gases than the other two methods, due to degassing during sampling. They should thus not be used for any method that relies on dissolved gas analysis.
NASA Astrophysics Data System (ADS)
Bártová, H.; Trojek, T.; Johnová, K.
2017-11-01
This article describes the method for the estimation of depth distribution of radionuclides in a material with gamma-ray spectrometry, and the identification of a layered structure of a material with X-ray fluorescence analysis. This method is based on the measurement of a ratio of two gamma or X-ray lines of a radionuclide or a chemical element, respectively. Its principle consists in different attenuation coefficient for these two lines in a measured material. The main aim of this investigation was to show how the detected ratio of these two lines depends on depth distribution of an analyte and mainly how this ratio depends on density and chemical composition of measured materials. Several different calculation arrangements were made and a lot of Monte Carlo simulation with the code MCNP - Monte Carlo N-Particle (Briesmeister, 2000) was performed to answer these questions. For X-ray spectrometry, the calculated Kα/Kβ diagrams were found to be almost independent upon matrix density and composition. Thanks to this phenomenon it would be possible to draw only one Kα/Kβ diagram for an element whose depth distribution is examined.
CASA-Mot technology: how results are affected by the frame rate and counting chamber.
Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles
2018-04-04
For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baibakov, K.; O'Neill, N. T.; Firanski, B.
2009-03-11
In the summer of 2007, a SPSTAR03 starphotometer was installed at Egbert, Canada (44 deg. 13' N, 79 deg. 45' W, alt 264 m) and a continuous series of initial measurements was performed between August 26 and September 19. Several sunphotometry parameters such as the aerosol optical depth (AOD) and the 'fine' and 'coarse' optical depths were extracted from the SPSTAR03 extinction spectra. The SPSTAR03 data was analyzed in conjunction with sunphotometry and zenith-pointing lidar data acquired during the same time period. Preliminary results show coarse continuity between the day- and night time AOD values (with the mean difference betweenmore » the measured and the interpolated values being 0.05) as well as a qualitative correlation between the 'fine' and 'coarse' optical depths and the normalized lidar backscatter coefficient profiles. It was also found that the spectra produced with the differential two-star measurement method were sensitive to non-horizontally homogeneous differences in the line-of-sight conditions of both stars. The one-star method helps to reduce the uncertainties but requires the determination of a calibration constant.« less
NASA Astrophysics Data System (ADS)
Ansari, Kapuli Gani Mohamed Thameemul; Lyla, Somasundharanair; Khan, Syed Ajmal; Bhadury, Punyasloke
2017-09-01
Depth and latitudinal patterns of nematode functional attributes were investigated from 35 stations of Bay of Bengal (BoB) continental shelf. We aim to address whether depth and latitudinal variations can modify nematode community structure and their functional attributes (trophic diversity, size and biomass spectra). Global trend of depth and latitudinal related variations have also been noticed from BoB shelf in terms of nematode abundance and species richness, albeit heterogeneity patterns were encountered in functional attributes. Index of trophic diversity values revealed higher trophic diversity across the BoB shelf and suggested variety of food resource availability. However, downstream analysis of trophic status showed depth and latitude specific patterns but not reflected in terms of size and biomass spectrum. The peaks at different positions clearly visualized heterogeneity in distribution patterns for both size and biomass spectrum and also there was evidence of availability of diversified food resources. Nematode biomass spectra (NBS) constructed for nematode communities showed shift in peak biomass values towards lower to moderate size classes particularly in shallower depth but did not get reflected in latitudes. However, Chennai and Parangipettai transects demonstrated shift in peak biomass values towards higher biomass classes explaining the representation of higher nematode abundance. Our findings concluded that depth and latitudes are physical variables; they may not directly affect nematode community structure and functional attributes but they might influence the other factors such as food availability, sediment deposition and settlement rate. Our observations suggest that the local factors (seasonal character) of phytodetrital food flux can be very important for shaping the nematode community structure and success of nematode functional heterogeneity patterns across the Bay of Bengal shelf.
Narayanaswamy, Bhavani E.; Bett, Brian J.
2011-01-01
The Faroe-Shetland Channel, located in the NE Atlantic, ranges in depth from 0–1700 m and is an unusual deep-sea environment because of its complex and dynamic hydrographic regime, as well as having numerous different seafloor habitats. Macrofaunal samples have been collected on a 0.5 mm mesh sieve from over 300 stations in a wide area survey and on nested 0.5 and 0.25 mm mesh sieves along a specific depth transect. Contrary to general expectation, macrofauanl biomass in the Channel did not decline with increasing depth. When examined at phylum level, two main biomass patterns with depth were apparent: (a) polychaetes showed little change in biomass on the upper slope then increased markedly below 500 m to a depth of 1100 m before declining; and (b) other phyla showed enhanced biomass between 300–500 m. The polychaete response may be linked with a seafloor environment change to relatively quiescent hydrodynamic conditions and an increasing sediment mud content that occurs at c. 500 m. In contrast, the mid-slope enhancement of other phyla biomass may reflect the hydrodynamically active interface between the warm and cold water masses present in the Channel at c. 300–500 m. Again contrary to expectation, mean macrofaunal body size did not decline with depth, and the relative contribution of smaller (>0.25 mm<0.5 mm) to total (>0.25 mm) macrobenthos did not increase with depth. Overall our total biomass and average individual biomass estimates appear to be greater than those predicted from global analyses. It is clear that global models of benthic biomass distribution may mask significant variations at the local and regional scale. PMID:21526171
Seasonal oxygen and carbon isotope variability in euthecosomatous pteropods from the Sargasso Sea
NASA Astrophysics Data System (ADS)
Juranek, L. W.; Russell, A. D.; Spero, H. J.
2003-02-01
We examine seasonal variations in the stable carbon and oxygen isotopic composition of individual shells of the pteropods Limacina inflata and Styliola subula, collected from Oceanic Flux Program sediment traps (at 500 m depth) near Bermuda in the western Sargasso Sea. Calcification depths estimated from L. inflata δ18O vary between 200 and 650 m in late winter and spring, and between 50 and 250 m in late summer and fall. S. subula shows similar seasonal variability with calcification depths between 250 and 600 m in late winter and spring and 50-400 m in late summer and fall. These results suggest that both species calcify across a greater range of depths than indicated by previous geochemical studies. Furthermore, the data indicate that these species change their calcification depth in conjunction with changes in thermal stratification of the water column. Pteropod shell δ13C values vary inversely with δ13C DIC but show a positive correlation with seawater [CO 32-] and temperature after depth differences in δ13C DIC are accounted for. We hypothesize that either the influence of temperature on metabolic CO 2 incorporation during shell growth and/or the influence of ambient [CO 32-] on shell geochemistry can explain these relationships. Taken together, the individual shell δ18O and δ13C data suggest that shell calcification, and by inference the life cycle, of these pteropods is several months or less. Individual pteropod shell analyses have potential for contributing to our understanding of the environmental parameters that play a role in seasonal calcification depth shifts, as well as to our knowledge of past upper ocean thermal structure.
Trends of Abutment-Scour Prediction Equations Applied to 144 Field Sites in South Carolina
Benedict, Stephen T.; Deshpande, Nikhil; Aziz, Nadim M.; Conrads, Paul
2006-01-01
The U.S. Geological Survey conducted a study in cooperation with the Federal Highway Administration in which predicted abutment-scour depths computed with selected predictive equations were compared with field measurements of abutment-scour depth made at 144 bridges in South Carolina. The assessment used five equations published in the Fourth Edition of 'Evaluating Scour at Bridges,' (Hydraulic Engineering Circular 18), including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. An additional unpublished equation also was assessed. Comparisons between predicted and observed scour depths are intended to illustrate general trends and order-of-magnitude differences for the prediction equations. Field measurements were taken during non-flood conditions when the hydraulic conditions that caused the scour generally are unknown. The predicted scour depths are based on hydraulic conditions associated with the 100-year flow at all sites and the flood of record for 35 sites. Comparisons showed that predicted scour depths frequently overpredict observed scour and at times were excessive. The comparison also showed that underprediction occurred, but with less frequency. The performance of these equations indicates that they are poor predictors of abutment-scour depth in South Carolina, and it is probable that poor performance will occur when the equations are applied in other geographic regions. Extensive data and graphs used to compare predicted and observed scour depths in this study were compiled into spreadsheets and are included in digital format with this report. In addition to the equation-comparison data, Water-Surface Profile Model tube-velocity data, soil-boring data, and selected abutment-scour data are included in digital format with this report. The digital database was developed as a resource for future researchers and is especially valuable for evaluating the reasonableness of future equations that may be developed.
NASA Astrophysics Data System (ADS)
Webster, C.; Bühler, Y.; Schirmer, M.; Stoffel, A.; Giulia, M.; Jonas, T.
2017-12-01
Snow depth distribution in forests exhibits strong spatial heterogeneity compared to adjacent open sites. Measurement of snow depths in forests is currently limited to a) manual point measurements, which are sparse and time-intensive, b) ground-penetrating radar surveys, which have limited spatial coverage, or c) airborne LiDAR acquisition, which are expensive and may deteriorate in denser forests. We present the application of unmanned aerial vehicles in combination with structure-from-motion (SfM) methods to photogrammetrically map snow depth distribution in forested terrain. Two separate flights were carried out 10 days apart across a heterogeneous forested area of 900 x 500 m. Corresponding snow depth maps were derived using both, LiDAR-based and SfM-based DTM data, obtained during snow-off conditions. Manual measurements collected following each flight were used to validate the snow depth maps. Snow depths were resolved at 5cm resolution and forest snow depth distribution structures such as tree wells and other areas of preferential melt were represented well. Differential snow depth maps showed maximum ablation in the exposed south sides of trees and smaller differences in the centre of gaps and on the north side of trees. This new application of SfM to map snow depth distribution in forests demonstrates a straightforward method for obtaining information that was previously only available through manual spatially limited ground-based measurements. These methods could therefore be extended to more frequent observation of snow depths in forests as well as estimating snow accumulation and depletion rates.
Variation in Water Content in Martian Subsurface Along Curiosity Traverse
2013-03-18
This set of graphs shows variation in the amount and the depth of water detected beneath NASA Mars rover Curiosity by use of the rover Dynamic Albedo of Neutrons DAN instrument at different points the rover has driven.
Turkish Primary Students' Perceptions of Geography
ERIC Educational Resources Information Center
Senyurt, Secil
2014-01-01
This study provides an in-depth investigation of Turkish primary school students' perceptions of geography. Gender differences in students' perceptions of geography were investigated, including definitions of geography and its field of study. The findings showed that "landforms," "our geographical regions/Turkey,"…
SRF niobium characterization using SIMS and FIB-TEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevie, F. A.
2015-12-04
Our understanding of superconducting radio frequency (SRF) accelerator cavities has been improved by elemental analysis at high depth resolution and by high magnification microscopy. This paper summarizes the technique development and the results obtained on poly-crystalline, large grain, and single crystal SRF niobium. Focused ion beam made possible sample preparation using transmission electron microscopy and the images obtained showed a very uniform oxide layer for all samples analyzed. Secondary ion mass spectrometry indicated the presence of a high concentration of hydrogen and the hydrogen content exhibited a relationship with improvement in performance. Depth profiles of carbon, nitrogen, and oxygen didmore » not show major differences with heat treatment. Niobium oxide less than 10 nm thick was shown to be an effective hydrogen barrier. Niobium with titanium contamination showed unexpected performance improvement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutzbruck, M.; Brackrock, D.; Brekow, G.
Lightweight components are increasingly used in different industrial sectors such as transportation, energy generation and automotive. This growing field includes different types of CFRP-structures, hybrid materials and glued components showing - compared to their pure metallic counterparts- a significant more complicated structure in terms of internal interfaces and anisotropy of material parameters. In this work we present the use of matrix phased array to increase the amount of obtained information to enhance the inspection quality. We used different types of carbon materials such as 6 mm thick uni- and bidirectional prepreg specimens containing impact damages. The latter were introduced withmore » different energy levels ranging from 1.3 to 7.2 J. By scanning a 2.25 MHz matrix array with 6 × 10 elements above the prepreg surface and using different angels of incidence a complete 3D-image was generated which allows the detection of defects as small as 1mm in a depth of 4 mm. A comparison with conventional approaches show that the signal-to-noise ratio can be highly increased. This enables us to visualize the region of damage within the impact zone, clearly showing the cone-like damage distribution along increasing material depth. The detection quality allows the estimation of the opening angles of the cone shaped damage, which can be used for further evaluation and quantitation of energy dependent impact damages.« less
Depth distribution of benthic dinoflagellates in the Caribbean Sea
NASA Astrophysics Data System (ADS)
Boisnoir, Aurélie; Pascal, Pierre-Yves; Cordonnier, Sébastien; Lemée, Rodolophe
2018-05-01
Monitoring of benthic dinoflagellates is usually conducted between sub-surface and 5 m depth, where these organisms are supposed to be in highest abundances. However, only few studies have focused on the small-scale depth distribution of benthic dinoflagellates. In the present study, abundances of dinoflagellates were evaluated on an invasive macrophyte Halophila stipulacea in two coastal sites in Guadeloupe (Caribbean Sea) along a depth gradient from sub-surface to 3 m at Gosier and until 20 m at Rivière Sens during the tropical wet and dry seasons. Species of genus Ostreopsis and Prorocentrum were the most abundant. Depth did not influence total dinoflagellate abundance but several genera showed particular depth-distribution preferences. The highest abundances of Ostreopsis and Gambierdiscus species were estimated preferentially in surface waters, whereas Coolia spp. were found in the same proportions but in deeper waters. Halophila stipulacea biomass was positively correlated with Ostreopsis spp. abundance. Our study suggests that sampling of benthic dinoflagellates should be conducted at different water depths taking into account the presence of the macroalgal substrate as well. In the Caribbean area, special attention should be addressed to the presence of H. stipulacea which tends to homogenize the marine landscape and represents a substrate for hosting dinoflagellate growth.
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.
2018-01-01
Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).
Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe
2018-04-10
InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.
Influence of Heavy Metal Stress On Water Regime of A Model Forest Ecosystem
NASA Astrophysics Data System (ADS)
Menon, M.; Abbaspour, K. C.; Schulin, R.
Among various toxic substances that contaminate the soil, the effects of heavy metals are particularly severe on all aspects of soil-plant system. The Swiss Federal Institute for Forest Snow and Land Research (WSL) is addressing comprehensively the issue of heavy metal toxicity in a forest ecosystem in a project titled Sfrom cell to treeT. As & cedil; part of the above project an investigation is being carried out to evaluate the impact of heavy metal stress on water regime of a young forest ecosystem grown in sixteen open top lysimeters. The factorial treatments of the lysimeters include variations of rainwa- ter acidity (acidic, neutral), subsoil type (acidic, calcareous), and heavy metal con- centration (with and without heavy metals in the top 20 cm). Filling of lysimeters was completed in November 1999. Each model ecosystem was planted in spring 2000 with the same collection of trees and herbaceous plants. Each lysimeters is equipped with tensiometers for monitoring of pressure head, time domain reflectometry for moni- toring of water content, and sprinkler devices for application of controlled irrigation. Drainage water data are measured regularly from the canisters installed at the bot- tom of lysimeters and evapotranspiration is calculated through water balancing. Our preliminary analyses of the data shoed the following results. Weekly data collected from May to October 2001 indicated higher amount of percolating water in acidic soil compared to the neutral soil due to textural difference. At 12 cm depth in both soils, control and acidic rain showed lower water potential than heavy metal and combina- tion of acidic rain with heavy metal treatments. In lower depths, water potential did not show much difference between treatments. Water contents showed differences be- tween treatments in the upper part of the profile where the soil is contaminated with heavy metals. Higher water content was observed in heavy metal treatment at 0-25 cm depth than 25-50 cm depth. This indicates higher root activity at deeper soil profile where heavy metal is not present. The overall results indicated differences in water regime of the heavy metal-treated soils. We expect this difference to be more signifi- cant in the next years as trees grow larger and exert a stronger water demand.
Penetration depth of corneal cross-linking with riboflavin and UV-A (CXL) in horses and rabbits.
Gallhoefer, Nicolin S; Spiess, Bernhard M; Guscetti, Franco; Hilbe, Monika; Hartnack, Sonja; Hafezi, Farhad; Pot, Simon A
2016-07-01
CXL penetration depth is an important variable influencing clinical treatment effect and safety. The purposes of this study were to determine the penetration depth of CXL in rabbit and equine corneas in epithelium-on and epithelium-off procedures and to assess an ex vivo fluorescent biomarker staining assay for objective assessment of CXL penetration depth. CXL treatment was performed according to a standardized protocol on 21 and 17 rabbit eyes and on 12 and 10 equine eyes with and without debridement, respectively. Control corneas were treated similarly, but not exposed to CXL. Hemicorneas were stained with either phalloidin and DAPI to visualize intracellular F-actin and nuclei, or with hematoxylin and eosin. Loss of actin staining was measured and compared between groups. Epithelium-off CXL caused a median actin cytoskeleton loss with a demarcation at 274 μm in rabbits and 173 μm in horses. In non-CXL-treated controls, we observed a median actin cytoskeleton loss with a demarcation at 134 μm in rabbits and 149 μm in horses. No effect was detected in the epithelium-on procedure. CXL penetration depth, as determined by a novel ex vivo fluorescent assay, shows clear differences between species. A distinct effect was observed following epithelium-off CXL treatment in the anterior stroma of rabbits, but no different effect was observed in horses in comparison with nontreated controls. Different protocols need to be established to effectively treat equine patients with infectious corneal disease. © 2015 American College of Veterinary Ophthalmologists.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Pueschel, R. F.; Bauman, J. J.; Pollack, J. B.; Brooks, S. L.; Hamill, P.; Thomason, L. W.; Stowe, L. L.; Deshler, T.;
2000-01-01
We assemble data on the Pinatubo aerosol from space, air, and ground measurements, develop a composite picture, and assess the consistency and uncertainties of measurement and retrieval techniques. Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements agree with theoretical calculations in showing a dominant composition of H2SO4-H20 mixture, with H2SO4 weight fraction of 65-80% for most stratospheric temperatures and humidities. Important exceptions are (1) volcanic ash, present at all heights initially and just above the tropopause until at least March 1992, and (2) much smaller H2SO4 fractions at the low temperatures of high-latitude winters and the tropical tropopause. Laboratory spectroscopy and calculations yield wavelength- and temperature-dependent refractive indices for the H2SO4-H20 droplets. These permit derivation of particle size information from measured optical depth spectra, for comparison to impactor and optical-counter measurements. All three techniques paint a generally consistent picture of the evolution of R(sub eff), the effective radius. In the first month after the eruption, although particle numbers increased greatly, R(sub eff) outside the tropical core was similar to preeruption values of approx. 0.1 to 0.2 microns, because numbers of both small (r < 0.2 microns) and large (r > 0.6 microns) particles increased. In the next 3-6 months, extracore R(sub eff) increased to approx. 0.5 microns, reflecting particle growth through condensation and coagulation. Most data show that R(sub eff) continued to increase for about 1 year after the eruption. R(sub eff) values up to 0.6 - 0.8 microns or more are consistent with 0.38 - 1 micron optical depth spectra in middle to late 1992 and even later. However, in this period, values from in situ measurements are somewhat less. The difference might reflect in situ undersampling of the very few largest particles, insensitivity of optical depth spectra to the smallest particles, or the inability of flat spectra to place an upper limit on particle size. Optical depth spectra extending to wavelengths lambda > 1 micron are required to better constrain R(sub eff), especially for R(sub eff) > 0.4 microns. Extinction spectra computed from in situ size distributions are consistent with optical depth measurements; both show initial spectra with lambda(sub max) <= 0.42 microns, thereafter increasing to 0.78 <= lambda(sub max) <= 1 micron. Not until 1993 do spectra begin to show a clear return to the preeruption signature of lambda(sub max) <= 0.42 microns. The twin signatures of large R(sub eff) (> 0.3 microns) and relatively flat extinction spectra (0.4 - 1 microns) are among the longest-lived indicators of Pinatubo volcanic influence. They persist for years after the peaks in number, mass, surface area, and optical depth at all wavelengths <= 1 microns. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between global maps of 0.5- and 1.0-micron optical depth derived from the Advanced Very High Resolution Radiometer (AVHRR) and Stratospheric Aerosol and Gas Experiment (SAGE) satellite sensors. However, there are important differences between the AVHRR and SAGE midvisible optical thickness products. We discuss possible reasons for these differences and how they might be resolved.
Examination of soil effect upon GPR detectability of landmine with different orientations
NASA Astrophysics Data System (ADS)
Ebrahim, Shereen M.; Medhat, N. I.; Mansour, Khamis K.; Gaber, A.
2018-06-01
Landmines represent a serious environmental problem for several countries as it causes severe injured and many victims. In this paper, the response of GPR from different parameters of the landmine targets has been shown and the data is correlated with observed field experiment made in 2012 at Miami Crandon Park test site. The ability of GPR for detecting non-metallic mines with different orientations was revealed and soil effect upon the GPR signal was examined putting into consideration the soil parameters in different locations in Egypt such as in Sinai and El Alamein. The simulation results showed that PMN-2 landmine was detected at 5 cm and 15 cm depths, even at the minimum radar cross section vertical orientation. The B-Scan (2D GPR profiles) of PMN-2 target at 15 cm depth figured out high reflectivity for Wadi deposits due to large contrast between PMN-2 landmine material and soil of sand dunes.
Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang
2018-01-01
Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N 2 , respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem.
Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang
2018-01-01
Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N2, respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem. PMID:29599794
da Vinci decoded: does da Vinci stereopsis rely on disparity?
Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S
2012-11-01
In conventional stereopsis, the depth between two objects is computed based on the retinal disparity in the position of matching points in the two eyes. When an object is occluded by another object in the scene, so that it is visible only in one eye, its retinal disparity cannot be computed. Nakayama and Shimojo (1990) found that a precept of quantitative depth between the two objects could still be established for such stimuli and proposed that this precept is based on the constraints imposed by occlusion geometry. They named this and other occlusion-based depth phenomena "da Vinci stereopsis." Subsequent research found quantitative depth based on occlusion geometry in several other classes of stimuli grouped under the term da Vinci stereopsis. However, Nakayama and Shimojo's findings were later brought into question by Gillam, Cook, and Blackburn (2003), who suggested that quantitative depth in their stimuli was perceived based on conventional disparity. In order to understand whether da Vinci stereopsis relies on one type of mechanism or whether its function is stimulus dependent we examine the nature and source of depth in the class of stimuli used by Nakayama and Shimojo (1990). We use three different psychophysical and computational methods to show that the most likely source for depth in these stimuli is occlusion geometry. Based on these experiments and previous data we discuss the potential mechanisms responsible for processing depth from monocular features in da Vinci stereopsis.
Determination of water depth with high-resolution satellite imagery over variable bottom types
Stumpf, Richard P.; Holderied, Kristine; Sinclair, Mark
2003-01-01
A standard algorithm for determining depth in clear water from passive sensors exists; but it requires tuning of five parameters and does not retrieve depths where the bottom has an extremely low albedo. To address these issues, we developed an empirical solution using a ratio of reflectances that has only two tunable parameters and can be applied to low-albedo features. The two algorithms--the standard linear transform and the new ratio transform--were compared through analysis of IKONOS satellite imagery against lidar bathymetry. The coefficients for the ratio algorithm were tuned manually to a few depths from a nautical chart, yet performed as well as the linear algorithm tuned using multiple linear regression against the lidar. Both algorithms compensate for variable bottom type and albedo (sand, pavement, algae, coral) and retrieve bathymetry in water depths of less than 10-15 m. However, the linear transform does not distinguish depths >15 m and is more subject to variability across the studied atolls. The ratio transform can, in clear water, retrieve depths in >25 m of water and shows greater stability between different areas. It also performs slightly better in scattering turbidity than the linear transform. The ratio algorithm is somewhat noisier and cannot always adequately resolve fine morphology (structures smaller than 4-5 pixels) in water depths >15-20 m. In general, the ratio transform is more robust than the linear transform.
LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskot, A. E.; Oey, M. S.
2014-08-20
We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originatesmore » from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.« less
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Masson, Robert; Worby, Anthony; Lytle, Victoria; Kurtz, Nathan; Maksym, Ted
2011-01-01
In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50 500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. The results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.
COSMO-SkyMed Image Investigation of Snow Features in Alpine Environment
Paloscia, Simonetta; Pettinato, Simone; Santi, Emanuele; Valt, Mauro
2017-01-01
In this work, X band images acquired by COSMO-SkyMed (CSK) on alpine environment have been analyzed for investigating snow characteristics and their effect on backscattering variations. Preliminary results confirmed the capability of simultaneous optical and Synthetic Aperture Radar (SAR) images (Landsat-8 and CSK) in separating snow/no-snow areas and in detecting wet snow. The sensitivity of backscattering to snow depth has not always been confirmed, depending on snow characteristics related to the season. A model based on Dense Media Radiative Transfer theory (DMRT-QMS) was applied for simulating the backscattering response on the X band from snow cover in different conditions of grain size, snow density and depth. By using DMRT-QMS and snow in-situ data collected on Cordevole basin in Italian Alps, the effect of grain size and snow density, beside snow depth and snow water equivalent, was pointed out, showing that the snow features affect the backscatter in different and sometimes opposite ways. Experimental values of backscattering were correctly simulated by using this model and selected intervals of ground parameters. The relationship between simulated and measured backscattering for the entire dataset shows slope >0.9, determination coefficient, R2 = 0.77, and root mean square error, RMSE = 1.1 dB, with p-value <0.05. PMID:28054962
Yang, Sheng-long; Jin, Shao-fei; Hua, Cheng-jun; Dai, Yang
2015-02-01
In order to analyze the correlation between spatial-temporal distribution of the bigeye tuna ( Thunnus obesus) and subsurface factors, the study explored the isothermal distribution of subsurface temperatures in the bigeye tuna fishing grounds in the tropical Atlantic Ocean, and built up the spatial overlay chart of the isothermal lines of 9, 12, 13 and 15 °C and monthly CPUE (catch per unit effort) from bigeye tuna long-lines. The results showed that the bigeye tuna mainly distributed in the water layer (150-450 m) below the lower boundary depth of thermocline. At the isothermal line of 12 °C, the bigeye tuna mainly lived in the water layer of 190-260 m, while few individuals were found at water depth more than 400 m. As to the 13 °C isothermal line, high CPUE often appeared at water depth less than 250 m, mainly between 150-230 m, while no CPUE appeared at water depth more than 300 m. The optimum range of subsurface factors calculated by frequency analysis and empirical cumulative distribution function (ECDF) exhibited that the optimum depth range of 12 °C isothermal depth was 190-260 m and the 13 °C isothermal depth was 160-240 m, while the optimum depth difference range of 12 °C isothermal depth was -10 to 100 m and the 13 °C isothermal depth was -40 to 60 m. The study explored the optimum range of subsurface factors (water temperature and depth) that drive horizontal and vertical distribution of bigeye tuna. The preliminary result would help to discover the central fishing ground, instruct fishing depth, and provide theoretical and practical references for the longline production and resource management of bigeye tuna in the Atlantic Ocean.
The Seismic Velocity In Gas-charged Magma
NASA Astrophysics Data System (ADS)
Sturton, S.; Neuberg, J. W.
2001-12-01
Long-period and hybrid events, seen at the Soufrière Hills Volcano, Montserrat, show dominant low frequency content suggesting the seismic wavefield is formed as a result of interface waves at the boundary between a fluid and a solid medium. This wavefield will depend on the impedance contrast between the two media and therefore the difference in seismic velocity. For a gas-charged magma, increasing pressure with depth reduces the volume of gas exsolved, increasing the seismic velocity with depth in the conduit. The seismic radiation pattern along the conduit can then be modelled. Where single events merge into tremor, gliding lines can sometimes be seen in the spectra and indicate either changes in the seismic parameters with time or varying triggering rates of single events.The differential equation describing the time dependence of bubble growth by diffusion is solved numerically for a stationary magma column undergoing a decompression event. The volume of gas is depth dependent and increases with time as the bubbles grow and expand. It is used to calculate the depth and time dependence of the density, pressure and seismic velocity. The effect of different viscosities associated with different magma types and concentration of water in the melt on the rate of bubble growth is explored. Crystal growth, which increases the concentration of water in the melt, affects the amount of gas that can be exsolved.
NASA Astrophysics Data System (ADS)
Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica
2016-09-01
Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.
NASA Astrophysics Data System (ADS)
Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.
2017-04-01
Groundwater thermally enhanced by the Urban Heat Island effect can be utilised by ground source heating systems (GSHSs). However, the near subsurface is subject to seasonal temperature variation reflected in shallow groundwater that can differ by several degrees throughout the year. To sustainably manage the near surface thermal resource an understanding of factors which control variation in groundwater temperature and how these are transmitted through the aquifer is needed. We show that even in relatively small urban areas (Cardiff, U.K., situated on a shallow gravel aquifer) the Zone of Seasonal Fluctuation (ZSF) can vary in depth by 8m. GSHSs are more efficient if they are sited below the ZSF, where temperatures are more stable. In Spring 2014, 48 groundwater monitoring boreholes were profiled at a 1m resolution to measure groundwater temperature across Cardiff. These were reprofiled that Autumn and compared to the Spring temperatures, defining the ZSF. The average depth to the base of the ZSF was 9.5mbgl but ranged from 7.1-15.5mbgl. The amplitude of the differences between Spring and Autumn temperatures also varied. To better understand the high spatial variability 60 boreholes were instrumented with in situ temperature loggers, recording at half-hourly intervals. The first year's data revealed the amplitudes of temperature variation within boreholes with loggers at similar depths were not always consistent. It was also noted that lag times between air temperature and groundwater temperature were not uniform across the sites. The data also showed that where gravels occurred at shallower depths the ZSF tended to be shallower and lag times shorter. The wide spatial variability of the ZSF may be partially explained by differing landuse. Those boreholes in open, grassed areas showed a deeper ZSF than those in built-up areas but built-up areas generally showed the greatest variation between Spring and Autumn temperature profiles, suggesting heat loss from buildings and underground infrastructure plays a part. Natural and anthropogenic factors affecting spatial and temporal groundwater temperatures, either separately or in combination, that have been considered in this study include landuse, depth, lithology/lithostratigraphy, material properties, hydrogeological setting, thermal conductivity, buried infrastructure, land surface temperature, weather effects and solar radiation. This study shows that urban groundwater temperatures can vary greatly across a small area, which has implications for the successful development, and long-term performance of open- and closed-loop GSHSs, and the environmental regulation of these systems. Key to the effective wide-scale use of GSHSs is an understanding of the hydrogeological setting, chiefly how heat is transferred across the aquifer. This study attempts to provide insight into an array of factors which determine heat transfer in the ZSF.
Starfish (Asteroidea, Echinodermata) from the Faroe Islands; spatial distribution and abundance
NASA Astrophysics Data System (ADS)
Ringvold, H.; Andersen, T.
2016-01-01
"Marine benthic fauna of the Faroe Islands" (BIOFAR) is a large programme with a focus on collecting invertebrate fauna from the Faroes (62°N and 7°W). Cruises were undertaken from 1987 to 1990, and starfish (Asteroidea, Echinodermata) collected during this time were analysed. Asteroidea were sampled at ~50% of all BIOFAR stations. A Detritus sledge and a Triangular dredge proved to be the most efficient equipment, collecting over 60% of the specimens. In total 2473 specimens were collected from 20 to 1500 m depth, including 41 species from 17 families and 31 genera. Henricia pertusa (O. F. Müller, 1776) group, Pontaster tenuispinus (Düben & Koren, 1846), and Leptychaster arcticus (M. Sars, 1851) showed highest relative abundance. Maximum species diversity was found at 500-700 m depth, which coincides with the transition zone of water masses (North Icelandic Winter Water and Arctic Intermediate Water (NI/AI)) at approximately 400-600 m depth. 63% of the species were recorded at an average-weighted depth above 600 m. Two different ordination methods (detrended correspondence analysis (DCA) and nonmetric multidimensional scaling (NMDS)) gave highly consistent representations of the community structure gradients. The first ordination axis scores did not show significant relationships with any environmental variable. Biological covariates like the presence of Lophelia corals were not significantly related to ordination scores on any axis. The second ordination axis scores were significantly correlated with depth. Temperature and salinity were highly correlated (r=0.90), and both negatively correlated with depth (r=-0.69 and r=-0.57, respectively).
NASA Astrophysics Data System (ADS)
Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.
2013-12-01
Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A8 as well as at http://www.stagger-stars.net
Signs of depth-luminance covariance in 3-D cluttered scenes.
Scaccia, Milena; Langer, Michael S
2018-03-01
In three-dimensional (3-D) cluttered scenes such as foliage, deeper surfaces often are more shadowed and hence darker, and so depth and luminance often have negative covariance. We examined whether the sign of depth-luminance covariance plays a role in depth perception in 3-D clutter. We compared scenes rendered with negative and positive depth-luminance covariance where positive covariance means that deeper surfaces are brighter and negative covariance means deeper surfaces are darker. For each scene, the sign of the depth-luminance covariance was given by occlusion cues. We tested whether subjects could use this sign information to judge the depth order of two target surfaces embedded in 3-D clutter. The clutter consisted of distractor surfaces that were randomly distributed in a 3-D volume. We tested three independent variables: the sign of the depth-luminance covariance, the colors of the targets and distractors, and the background luminance. An analysis of variance showed two main effects: Subjects performed better when the deeper surfaces were darker and when the color of the target surfaces was the same as the color of the distractors. There was also a strong interaction: Subjects performed better under a negative depth-luminance covariance condition when targets and distractors had different colors than when they had the same color. Our results are consistent with a "dark means deep" rule, but the use of this rule depends on the similarity between the color of the targets and color of the 3-D clutter.
Multilevel depth and image fusion for human activity detection.
Ni, Bingbing; Pei, Yong; Moulin, Pierre; Yan, Shuicheng
2013-10-01
Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.
Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon
Savini, John; Bodhaine, G.L.
1971-01-01
The U.S. Geological Survey developed equipment to measure stream velocity simultaneously with 10 current meters arranged in a vertical and to measure velocity closer to the streambed than attainable with conventional equipment. With the 10 current meters, synchronous velocities were recorded for a period of 66 minutes at 10 different depths in one vertical of one gaging-station cross section. In addition, with a current meter installed on a special bracket to allow measurements to 0.5 foot above streambed, data were obtained at two to four verticals in four gaging-station cross sections. The mean velocity determined for the 66-minute period of record was 3.30 fps (feet per second). The graphic record of velocity was analyzed on a minute-by-minute basis. It was noted that the shape of the vertical velocity curves (plot of horizontal flow velocities measured in a vertical) changed from one minute to the next, but the change seemed to be random. Velocities obtained at different depths in the, profile fluctuated significantly, with the 1-minute velocities obtained at 0.05 depth (5 percent of total depths measured from the surface at indicated vertical) showing the smallest range--0.66 fps--and those at 0.55 depth the largest range--l.22 fps. The standard deviation, expressed in feet per second, of the velocity at each point in the vertical tended to increase with depth--from 0.16 fps at 0.05 depth to a maximum of 0.24 fps at 0.75 depth. The standard deviation, expressed as a percentage of the mean velocity, ranged from about 4 percent near the surface to 11 percent at 0.95 depth. In spite of the fluctuation in mean velocity that occurred during the 66 minutes and observation period of 4 minutes yields a mean velocity that differs from the 66-minute mean by less than one-half of a percent. Determining the mean velocity by averaging the 10-point observations of the 66minute run proved to be as accurate as by plotting the vertical velocity curvy (from the averaged 10 points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.
NASA Astrophysics Data System (ADS)
Lischeid, G.; Hohenbrink, T.; Schindler, U.
2012-04-01
Hydrology is based on the observation that catchments process input signals, e.g., precipitation, in a highly deterministic way. Thus, the Darcy or the Richards equation can be applied to model water fluxes in the saturated or vadose zone, respectively. Soils and aquifers usually exhibit substantial spatial heterogeneities at different scales that can, in principle, be represented by corresponding parameterisations of the models. In practice, however, data are hardly available at the required spatial resolution, and accounting for observed heterogeneities of soil and aquifer structure renders models very time and CPU consuming. We hypothesize that the intrinsic dimensionality of soil hydrological processes, which is induced by spatial heterogeneities, actually is very low and that soil hydrological processes in heterogeneous soils follow approximately the same trajectory. That means, the way how the soil transforms any hydrological input signals is the same for different soil textures and structures. Different soils differ only with respect to the extent of transformation of input signals. In a first step, we analysed the output of a soil hydrological model, based on the Richards equation, for homogeneous soils down to 5 m depth for different soil textures. A matrix of time series of soil matrix potential and soil water content at 10 cm depth intervals was set up. The intrinsic dimensionality of that matrix was assessed using the Correlation Dimension and a non-linear principal component approach. The latter provided a metrics for the extent of transformation ("damping") of the input signal. In a second step, model outputs for heterogeneous soils were analysed. In a last step, the same approaches were applied to 55 time series of observed soil water content from 15 sites and different depths. In all cases, the intrinsic dimensionality in fact was very close to unity, confirming our hypothesis. The metrics provided a very efficient tool to quantify the observed behaviour, depending on depth and soil heterogeneity: Different soils differed primarily with respect to the extent of damping per depth interval rather than to the kind of damping. We will show how that metrics can be used in a very efficient way for representing soil heterogeneities in simulation models.
NASA Technical Reports Server (NTRS)
Noel, Vincent; Winker, D. M.; Garrett, T. J.; McGill, M.
2005-01-01
This paper presents a comparison of volume extinction coefficients in tropical ice clouds retrieved from two instruments : the 532-nm Cloud Physics Lidar (CPL), and the in-situ probe Cloud Integrating Nephelometer (CIN). Both instruments were mounted on airborne platforms during the CRYSTAL-FACE campaign and took measurements in ice clouds up to 17km. Coincident observations from three cloud cases are compared : one synoptically-generated cirrus cloud of low optical depth, and two ice clouds located on top of convective systems. Emphasis is put on the vertical variability of the extinction coefficient. Results show small differences on small spatial scales (approx. 100m) in retrievals from both instruments. Lidar retrievals also show higher extinction coefficients in the synoptic cirrus case, while the opposite tendency is observed in convective cloud systems. These differences are generally variations around the average profile given by the CPL though, and general trends on larger spatial scales are usually well reproduced. A good agreement exists between the two instruments, with an average difference of less than 16% on optical depth retrievals.
NASA Astrophysics Data System (ADS)
Palevsky, Hilary I.; Doney, Scott C.
2018-05-01
Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.
Analyzing the Effect of Spinning Process Variables on Draw Frame Blended Cotton Mélange Yarn Quality
NASA Astrophysics Data System (ADS)
Ray, Suchibrata; Ghosh, Anindya; Banerjee, Debamalya
2018-06-01
An investigation has been made to study the effect of important spinning process variables namely shade depth, ring frame spindle speed and yarn twist multiplier (TM) on various yarn quality parameters like unevenness, strength, imperfection, elongation at break and hairiness index of draw frame blended cotton mélange yarn. Three factors Box and Behnken design of experiment has been used to conduct the study. The quadratic regression model is used to device the statistical inferences about sensitivity of the yarn quality parameters to the different process variables. The response surfaces are constructed for depicting the geometric representation of yarn quality parameters plotted as a function of process variables. Analysis of the results show that yarn strength of draw frame blended cotton mélange yarn is significantly affected by shade depth and TM. Yarn unevenness is affected by shade depth and ring frame spindle speed. Yarn imperfection level is mainly influenced by the shade depth and spindle speed. The shade depth and yarn TM have shown significant impact on yarn hairiness index.
Analyzing the Effect of Spinning Process Variables on Draw Frame Blended Cotton Mélange Yarn Quality
NASA Astrophysics Data System (ADS)
Ray, Suchibrata; Ghosh, Anindya; Banerjee, Debamalya
2017-12-01
An investigation has been made to study the effect of important spinning process variables namely shade depth, ring frame spindle speed and yarn twist multiplier (TM) on various yarn quality parameters like unevenness, strength, imperfection, elongation at break and hairiness index of draw frame blended cotton mélange yarn. Three factors Box and Behnken design of experiment has been used to conduct the study. The quadratic regression model is used to device the statistical inferences about sensitivity of the yarn quality parameters to the different process variables. The response surfaces are constructed for depicting the geometric representation of yarn quality parameters plotted as a function of process variables. Analysis of the results show that yarn strength of draw frame blended cotton mélange yarn is significantly affected by shade depth and TM. Yarn unevenness is affected by shade depth and ring frame spindle speed. Yarn imperfection level is mainly influenced by the shade depth and spindle speed. The shade depth and yarn TM have shown significant impact on yarn hairiness index.
Indentation Size Effect on Ag Nanoparticle-Modified Graphene/Sn-Ag-Cu Solders
NASA Astrophysics Data System (ADS)
Xu, L. Y.; Zhang, S. T.; Jing, H. Y.; Wang, L. X.; Wei, J.; Kong, X. C.; Han, Y. D.
2018-01-01
This paper presents the results for the indentation size effect (ISE) on the creep stress exponent and hardness of 0.03 wt.% Ag-modified graphene nanosheet Sn-Ag-Cu solder alloys, using constant loading/holding and multi-cycle (CMC) loading methods, respectively. At each maximum load, with increasing indentation depth, the creep exponent first decreased and then increased. At the same strain rate, the stress exponent also showed the same tendency, increasing as the indentation depth (peak load) increased and then decreased. The hardness was measured continuously with increasing indentation depth by the CMC loading method. The hardness did not exhibit a decrease as the indentation depth increased, which differs from the classical description of the ISE. After an initial decrease, the hardness then increased and finally decreased as the indentation depth increased. This study reviews the existing theories and formulations describing ISE with hardening effects. The experimental results fit well with the empirical formulation. The phenomenon of ISE accompanied by hardening effects has been explained physically via the interaction between geometrically necessary dislocations and grain boundaries.
Using Foraminifera Shell Geochemistry to Test Proxies for Paleoclimate Reconstruction
NASA Astrophysics Data System (ADS)
Hudson, C. Y.; Herrmann, A. D.
2016-02-01
Previous research conducted on Foraminifera tests determined that the elemental concentrations of the shell reflect pH and salinity of the environment these organisms lived in. Changes in concentrations of Boron and Uranium were analyzed because they are both pH and salinity indicators. For this project, sand samples were gathered from two different stations along Terrebonne Bay in the Gulf of Mexico. Each station had a different depth and salinity. Alabaminella sp. were then separated from the sand sample. Foraminifera were analyzed using an LA-ICP-MS to determine if there were geochemical differences in the shells from different stations. If differences were determined to exist, then it would be possible to use these differences to reconstruct changes in past coastal environments. Because the depth and salinity at each Terrebonne station was different, it was expected that the geochemisty of the shells would also be different. It has been concluded that the Foraminifera shells from each station show no significant variation in their Boron and Uranium concentrations. Therefore, paleoclimate pH and salinity cannot be accurately reconstructed using these Foraminifera collected from Terrebonne Bay. The similarity of the geochemistries is likely due to the short distance between stations, allowing the Foraminifera to easily move from one location to another. Further tests can evaluate whether Foraminifera collected from stations farther apart do show the expected geochemical changes that result from different environments.
3D Modeling of Spectra and Light Curves of Hot Jupiters with PHOENIX; a First Approach
NASA Astrophysics Data System (ADS)
Jiménez-Torres, J. J.
2016-04-01
A detailed global circulation model was used to feed the PHOENIX code and calculate 3D spectra and light curves of hot Jupiters. Cloud free and dusty radiative fluxes for the planet HD179949b were modeled to show differences between them. The PHOENIX simulations can explain the broad features of the observed 8 μm light curves, including the fact that the planet-star flux ratio peaks before the secondary eclipse. The PHOENIX reflection spectrum matches the Spitzer secondary-eclipse depth at 3.6 μm and underpredicts eclipse depths at 4.5, 5.8 and 8.0 μm. These discrepancies result from the chemical composition and suggest the incorporation of different metallicities in future studies.
Influence of camera parameters on the quality of mobile 3D capture
NASA Astrophysics Data System (ADS)
Georgiev, Mihail; Boev, Atanas; Gotchev, Atanas; Hannuksela, Miska
2010-01-01
We investigate the effect of camera de-calibration on the quality of depth estimation. Dense depth map is a format particularly suitable for mobile 3D capture (scalable and screen independent). However, in real-world scenario cameras might move (vibrations, temp. bend) form their designated positions. For experiments, we create a test framework, described in the paper. We investigate how mechanical changes will affect different (4) stereo-matching algorithms. We also assess how different geometric corrections (none, motion compensation-like, full rectification) will affect the estimation quality (how much offset can be still compensated with "crop" over a larger CCD). Finally, we show how estimated camera pose change (E) relates with stereo-matching, which can be used for "rectification quality" measure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belucz, Bernadett; Dikpati, Mausumi
2013-12-10
Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does notmore » change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.« less
Lohmann, Johannes; Schroeder, Philipp A; Nuerk, Hans-Christoph; Plewnia, Christian; Butz, Martin V
2018-01-01
Spatial, physical, and semantic magnitude dimensions can influence action decisions in human cognitive processing and interact with each other. For example, in the spatial-numerical associations of response code (SNARC) effect, semantic numerical magnitude facilitates left-hand or right-hand responding dependent on the small or large magnitude of number symbols. SNARC-like interactions of numerical magnitudes with the radial spatial dimension (depth) were postulated from early on. Usually, the SNARC effect in any direction is investigated using fronto-parallel computer monitors for presentation of stimuli. In such 2D setups, however, the metaphorical and literal interpretation of the radial depth axis with seemingly close/far stimuli or responses are not distinct. Hence, it is difficult to draw clear conclusions with respect to the contribution of different spatial mappings to the SNARC effect. In order to disentangle the different mappings in a natural way, we studied parametrical interactions between semantic numerical magnitude, horizontal directional responses, and perceptual distance by means of stereoscopic depth in an immersive virtual reality (VR). Two VR experiments show horizontal SNARC effects across all spatial displacements in traditional latency measures and kinematic response parameters. No indications of a SNARC effect along the depth axis, as it would be predicted by a direct mapping account, were observed, but the results show a non-linear relationship between horizontal SNARC slopes and physical distance. Steepest SNARC slopes were observed for digits presented close to the hands. We conclude that spatial-numerical processing is susceptible to effector-based processes but relatively resilient to task-irrelevant variations of radial-spatial magnitudes.
Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth
2015-01-01
Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments. PMID:26092461
Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy
2012-07-01
A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis-an in vitro study. The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5(th) day followed by aloe vera gel and papain gel.
How visual attention is modified by disparities and textures changes?
NASA Astrophysics Data System (ADS)
Khaustova, Dar'ya; Fournier, Jérome; Wyckens, Emmanuel; Le Meur, Olivier
2013-03-01
The 3D image/video quality of experience is a multidimensional concept that depends on 2D image quality, depth quantity and visual comfort. The relationship between these parameters is not yet clearly defined. From this perspective, we aim to understand how texture complexity, depth quantity and visual comfort influence the way people observe 3D content in comparison with 2D. Six scenes with different structural parameters were generated using Blender software. For these six scenes, the following parameters were modified: texture complexity and the amount of depth changing the camera baseline and the convergence distance at the shooting side. Our study was conducted using an eye-tracker and a 3DTV display. During the eye-tracking experiment, each observer freely examined images with different depth levels and texture complexities. To avoid memory bias, we ensured that each observer had only seen scene content once. Collected fixation data were used to build saliency maps and to analyze differences between 2D and 3D conditions. Our results show that the introduction of disparity shortened saccade length; however fixation durations remained unaffected. An analysis of the saliency maps did not reveal any differences between 2D and 3D conditions for the viewing duration of 20 s. When the whole period was divided into smaller intervals, we found that for the first 4 s the introduced disparity was conducive to the section of saliency regions. However, this contribution is quite minimal if the correlation between saliency maps is analyzed. Nevertheless, we did not find that discomfort (comfort) had any influence on visual attention. We believe that existing metrics and methods are depth insensitive and do not reveal such differences. Based on the analysis of heat maps and paired t-tests of inter-observer visual congruency values we deduced that the selected areas of interest depend on texture complexities.
Königshausen, M; Jettkant, B; Sverdlova, N; Ehlert, C; Gessmann, J; Schildhauer, T A; Seybold, D
2015-01-01
There is no biomechanical basis to determine the influence of different length of the central peg of the baseplate anchored within the native scapula in glenoid defect reconstruction in cases of degenerative or posttraumatic glenoid bone loss in reversed shoulder arthroplasty. The purpose of this study was to analyse the stability of different peg lengths used in glenoid bone loss in reversed shoulder arthroplasty. Different lengths of metaglene pegs with different depths of peg anchorage performed with or without metaglene screws in sawbone foam blocks were loaded in vertical and horizontal directions for differentiating load capacities. Simulated physiological loadings were then applied to the peg implants to determine the limits of loading in each depth of anchorage. The loading capacity of the implant was reduced as less of the peg was anchored. The vertically loaded implants showed a significantly higher stability, in contrast to those loaded horizontally at a corresponding peg length and depth of anchorage (p < 0.05). The tests revealed that the metaglene screws are more essential for primary stability than is the peg particularly in the vertically directed loadings (2/3 anchored: peg contributed to 28% of the stability, 1/3 anchorage: peg contributed to 12%). Under the second test conditions, the lowest depth of peg anchorage (1/3) resulted in 322 Newtons [N] in the long peg with a vertical loading direction, and in 130 N in the long peg with a horizontal loading direction (p < 0.05). The pegs should be anchored as deeply as possible into the native scapula bone stock. The metaglene screws play a major role in the initial stability, in contrast to the peg, and they become more important when the depth of the peg anchorage is reduced. If possible, four metaglene screws should be used in cases of uncontained bone loss to guarantee the highest stability.
NASA Astrophysics Data System (ADS)
Aaltonen, Heidi; Palviainen, Marjo; Köster, Kajar; Berninger, Frank; Pumpanen, Jukka
2017-04-01
On the Northern Hemisphere, 24% of soils are underlain by permafrost. These soils contain 50% of the global soil carbon pool. The Northern Hemisphere is also the region which is predicted to be most affected by climate warming and this causes uncertainties over the future of the permafrost. It has been estimated that 25% of permafrost might thaw by 2100, exposing previously frozen carbon pools to decomposition. In addition, global warming is expected to cause increase in the frequency of wild fires, which further increase permafrost melting by removing the insulating organic surface layer. The amount of released soil carbon from permafrost soils after forest fire is affected by degradability and temperature sensitivity of the soil organic matter, as well as soil depth and the stage of succession. Yet the common effect of these factors remains unclear. We studied how soil respiration and its temperature sensitivity (Q10) vary in different depths and within time by taking soil samples from different fire chronosequence areas (burned 3, 25, 46 and 100 years ago) from permafrost region in Northern Canada (Yukon and Northwest Territories, along Dempster Highway). The samples from three different depths (5, 10 and 30 cm) were incubated in four different temperatures (1, 7, 13 and 19°C) over 24h. Our results showed that the CO2 fluxes followed the stages of succession, with recently burned sites having lowest rates. The organic matter at 5 cm depth proved to be more labile and temperature sensitive than in deeper depths. The Q10 values, however, did not differ between sites, excluding 30 cm at the most recently burned site that had a significantly higher Q10 value than the other sites. The results implicate that heterotrophic soil respiration decreases on permafrost regions during the first stages after forest fire. At the same time the temperature sensitivity in deeper soil layers may increase.
Comparison of Time-Distance Local Helioseismology on GONG and MDI Data Sets
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Zhao, J.; Rajaguru, S. P.; Toner, C. G.; Kosovichev, A. G.; Thompson, M. J.; Hughes, S. J.
2003-01-01
We show first results derived from one rotation of GONG++ and MDI data analyzed independently by different groups with time-distance techniques. We focus on observations obtained during spring 2002 and especially on Carrington rotation 1988 (2002/3/30 - 2002/4/26) and measure flow components and wave speed inhomogeneities over a range of depths for different active regions.
NASA Astrophysics Data System (ADS)
Preusser, Sebastian; Poll, Christian; Marhan, Sven; Kandeler, Ellen
2017-04-01
At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic carbon (OC) pool. Carbon dynamics in subsoil, however, vary from those in topsoil with much lower C concentrations in subsoil than in topsoil horizons, although more than 50 % of SOC is stored in subsoils below 30 cm soil depth. In addition, microorganisms in subsoil are less abundant, more heterogeneously distributed and the microbial communities have a lower diversity than those in topsoil. Especially in deeper soil, the impact of changes in habitat conditions on microorganisms involved in carbon cycling are largely unexplored and consequently the understanding of microbial functioning is limited. A reciprocal translocation experiment allowed us to investigate the complex interaction effects of altered environmental and substrate conditions on microbial decomposer communities in both topsoil and subsoil habitats under in situ conditions. We conducted this experiment with topsoil (5 cm soil depth) and subsoil (110 cm) samples of an acid and sandy Dystric Cambisol from a European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. In total 144 samples were buried into three depths (5 cm, 45 cm and 110 cm) and 13C-labelled root litter was added to expose the samples to different environmental conditions and to increase the substrate availability, respectively. Samples were taken in three month intervals up to a maximum exposure time of one year to follow the temporal development over the experimental period. Analyses included 13Cmic and 13C PLFA measurements to investigate the response of microbial abundance, community structure and 13C-root decomposition activity under the different treatments. Environmental conditions in the respective soil depths such as soil temperature and water content were recorded throughout the experimental period. All microbial groups (gram+ and gram- bacteria, fungi) showed highest relative 13C incorporation in 110 cm depth and samples with root addition had generally higher microbial abundances than those with no root addition. Here, especially fungi benefited from the additional carbon source with highly increased abundances in all incorporation depths. Also the altered environmental conditions in the different incorporation depths significantly influenced the different microbial groups. The steepest decrease with depth was detected in fungal abundance, while bacteria were less affected and increased in relative abundance in soil samples incorporated into subsoil layers. The highest seasonal variability in microbial abundance, however, was determined in 5 cm incorporation depth demonstrating the higher amplitude in micro-climatic and micro-environmental conditions in this near-surface soil habitat. In summary, this experiment demonstrated that carbon quality and quantity are the main factors restricting fungal abundance in deeper soil layers, while bacterial decomposer communities are adapted to a wider range of habitat conditions.
Prechsl, Ulrich E; Burri, Susanne; Gilgen, Anna K; Kahmen, Ansgar; Buchmann, Nina
2015-01-01
Temperate C3-grasslands are of high agricultural and ecological importance in Central Europe. Plant growth and consequently grassland yields depend strongly on water supply during the growing season, which is projected to change in the future. We therefore investigated the effect of summer drought on the water uptake of an intensively managed lowland and an extensively managed sub-alpine grassland in Switzerland. Summer drought was simulated by using transparent shelters. Standing above- and belowground biomass was sampled during three growing seasons. Soil and plant xylem waters were analyzed for oxygen (and hydrogen) stable isotope ratios, and the depths of plant water uptake were estimated by two different approaches: (1) linear interpolation method and (2) Bayesian calibrated mixing model. Relative to the control, aboveground biomass was reduced under drought conditions. In contrast to our expectations, lowland grassland plants subjected to summer drought were more likely (43-68%) to rely on water in the topsoil (0-10 cm), whereas control plants relied less on the topsoil (4-37%) and shifted to deeper soil layers (20-35 cm) during the drought period (29-48%). Sub-alpine grassland plants did not differ significantly in uptake depth between drought and control plots during the drought period. Both approaches yielded similar results and showed that the drought treatment in the two grasslands did not induce a shift to deeper uptake depths, but rather continued or shifted water uptake to even more shallower soil depths. These findings illustrate the importance of shallow soil depths for plant performance under drought conditions.
Klaus, James S; Janse, Ingmar; Heikoop, Jeffrey M; Sanford, Robert A; Fouke, Bruce W
2007-05-01
The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Curaçao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth. Furthermore, distinct differences in bacterial communities were found with increasing water depth. Comparisons of TRFLP peaks with sequenced clone libraries indicate the black band disease cyanobacterium clone CD1C11 is common and most abundant on healthy corals in less than 10 m water depth. Similarly, sequences belonging to a previously unrecognized group of likely phototrophic bacteria, herein referred to as CAB-I, were also more common in shallow water. To assess the influence of environmental and physiologic factors on bacterial community structure, canonical correspondence analysis was performed using explanatory variables associated with: (i) light availability; (ii) seawater pollution; (iii) coral mucus composition; (iv) the community structure of symbiotic algae; and (v) the photosynthetic activity of symbiotic algae. Eleven per cent of the variation in bacterial communities was accounted for by covariation with these variables; the most important being photosynthetically active radiation (sunlight) and the coral uptake of sewage-derived compounds as recorded by the delta(15)N of coral tissue.
Mackanos, Mark A; Simanovskii, Dmitrii M; Contag, Christopher H; Kozub, John A; Jansen, E Duco
2012-11-01
Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.
Wang, Hongyu; He, Jiajie; Yang, Kai
2010-01-01
This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.
NASA Astrophysics Data System (ADS)
Avanzi, Francesco; De Michele, Carlo; Gabriele, Salvatore; Ghezzi, Antonio; Rosso, Renzo
2015-04-01
Here, we show how atmospheric circulation and topography rule the variability of depth-duration-frequency (DDF) curves parameters, and we discuss how this variability has physical implications on the formation of extreme precipitations at high elevations. A DDF is a curve ruling the value of the maximum annual precipitation H as a function of duration D and the level of probability F. We consider around 1500 stations over the Italian territory, with at least 20 years of data of maximum annual precipitation depth at different durations. We estimated the DDF parameters at each location by using the asymptotic distribution of extreme values, i.e. the so-called Generalized Extreme Value (GEV) distribution, and considering a statistical simple scale invariance hypothesis. Consequently, a DDF curve depends on five different parameters. A first set relates H with the duration (namely, the mean value of annual maximum precipitation depth for unit duration and the scaling exponent), while a second set links H to F (namely, a scale, position and shape parameter). The value of the shape parameter has consequences on the type of random variable (unbounded, upper or lower bounded). This extensive analysis shows that the variability of the mean value of annual maximum precipitation depth for unit duration obeys to the coupled effect of topography and modal direction of moisture flux during extreme events. Median values of this parameter decrease with elevation. We called this phenomenon "reverse orographic effect" on extreme precipitation of short durations, since it is in contrast with general knowledge about the orographic effect on mean precipitation. Moreover, the scaling exponent is mainly driven by topography alone (with increasing values of this parameter at increasing elevations). Therefore, the quantiles of H(D,F) at durations greater than unit turn to be more variable at high elevations than at low elevations. Additionally, the analysis of the variability of the shape parameter with elevation shows that extreme events at high elevations appear to be distributed according to an upper bounded probability distribution. These evidences could be a characteristic sign of the formation of extreme precipitation events at high elevations.
The absolute disparity anomaly and the mechanism of relative disparities.
Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne
2016-06-01
There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).
The absolute disparity anomaly and the mechanism of relative disparities
Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne
2016-01-01
There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566
Wang, Ruikang K.; An, Lin; Francis, Peter; Wilson, David J.
2010-01-01
We demonstrate the depth-resolved and detailed ocular perfusion maps within retina and choroid can be obtained from an ultrahigh sensitive optical microangiography (OMAG). As opposed to the conventional OMAG, we apply the OMAG algorithm along the slow scanning axis to achieve the ultrahigh sensitive imaging to the slow flows within capillaries. We use an 840nm system operating at an imaging rate of 400 frames/sec that requires 3 sec to complete one 3D scan of ~3x3 mm2 area on retina. We show the superior imaging performance of OMAG to provide functional images of capillary level microcirculation at different land-marked depths within retina and choroid that correlate well with the standard retinal pathology. PMID:20436605
Capture and Emission of Charge Carriers by Quantum Well
NASA Astrophysics Data System (ADS)
Davydov, V. N.; Karankevich, O. A.
2018-06-01
The interaction of electrons from the conduction band of the barrier layer of a LED heterostructure with the quantum well size-quantization level described by the capture time and emission time of charge carriers is considered. Relaxation of an excess energy upon capture and emission of charge carriers occurs as a result of their collisions with phonons of the quantum well substance and the "barrier layer-quantum well" interface. Analytical expressions are obtained for the interaction times, taking into account the depth of the sizequantization level, involved in the interaction with electrons, and the width of the well. Numerical estimates show that in real conditions, the capture time is shorter than the emission time, and this difference increases with increasing depth of the level. At shallow depths, the capture and emission times are comparable.
Depth-dependent erodibility: representing burnt soils as a two-layered cohesive/non-cohesive system
NASA Astrophysics Data System (ADS)
Nyman, P.; Sheridan, G. J.; Moody, J. A.; Smith, H. G.; Lane, P. N.
2011-12-01
Immediately after wildfire there is an abundant supply of non-cohesive ash, soil and gravel which is easily entrained by overland flow. Under these conditions the sediment flux on hillslopes can be assumed to be equal to the transport capacity of the flow. However, the supply of material is finite and at some point the hillslope could shift towards a system where entrainment is restricted by armouring and soil cohesion. In this study we test the notion that burnt hillslopes can be represented as a two-layered system of non-cohesive and cohesive soils. Using a combination of i) shear vane measurements, ii) confined hillslope flow experiments and iii) a laboratory flume, we demonstrate how erosion on burnt hillslopes primarily takes place in a distinct layer of non-cohesive soil with erosion properties that are very different to the underlying soil matrix. Shear vane measurements were taken at 5 soil depths at more than 50 points along transects in order to quantify the depth and spatial distribution of non-cohesive soil in two small (0.5 ha) and steep (30 deg) convergent basins (SE Australia) that were burnt at high severity. The measurements showed that the recently burnt hillslopes were mantled with non-cohesive soil to an average depth of 18mm and 20mm at the two sites which were situated in different geologic terrain but in similar eucalyptus dominated forests. In the hillslope flow experiments, the rapid entrainment of non-cohesive material resulted in very high sediment concentration (50-60% by volume) in the initial surge from the test area. During the flow experiments the sediment concentration decreased exponentially with time until the erosion rate reached a steady state reflecting the erodibility of the underlying cohesive soil. The formation of shallow rills and the presence of large clasts (>16cm) within the test area resulted in incomplete removal of the non-cohesive material at shear stress < 50 Ncm-2. At shear stress > 50 Ncm-2 all material was removed, and the erosion depth at the end of the experiments was equal to the depth of non-cohesive material measured using the shear vane. In a separate set of experiments, a laboratory flume was used to measure the erodibility at different soil depths using soil cores that were burnt at moderate to high severity. Unlike the field based flow experiments, the erodibility measurements of non-cohesive soils in the flume were not restricted by the transport capacity of the flow. Results from the flume experiments showed a two order of magnitude decrease in erodibility within the top 2cm of the soil profile for soil cores from both chaparral and coniferous forests (western US). In summary, these results indicate that a majority of hillslope sediment may be generated from a relatively shallow layer of non-cohesive and highly erodible material. The depth of this material may be an important property that can help determine the post-fire erosion and debris flow potential, particularly in systems where other sources of sediment are limited. The study confirms that erodibility of burnt soil shows strong variation with depth and that the assumption of a constant erodibility factor may lead to misrepresentation of important processes.
NASA Astrophysics Data System (ADS)
Tirta, A. P.; Saefumillah, A.; Foliatini
2017-04-01
Eutrophication is one of the environmental problems caused by the excessive nutrients in aquatic ecosystems. In most lakes, phosphate is a limiting nutrient for algae photosynthesis. Even though the concentration of phosphate from external loading into the water body has been reduced, eutrophication could still be occured due to internal mobilization of phosphate from the sediment pore water into the overlying water. Therefore, the released phosphate from sediments and their interaction in the pore water must be included in the monitoring of phosphate concentration in aquatic system. The released phosphate from sediment into pore water has been studied by DGT device with ferrihydrite as binding gel and N-N‧-methylenebisacrylamide as crosslinker. The results showed that DGT with 15% acrylamide; 0.1 % N-N‧-methylenebisacrylamide and ferrihydrite as binding gel was suitable for the measurement of the released phosphate from sediment into pore water. The result of the deployed DGT in oxic and anoxic conditions in seven days incubation showed the released phosphate process from the sediment into pore water was affected by incubation time and the existence of oxygen in the environment. The released phosphate from the sediment into pore water in anoxic condition has a higher value than oxic condition. The experimental results of the deployed DGT in natural sediment core at a depth of 1 to 15 cm from the surface of the water for 7 days showed that the sediment has a different phosphate mass profile based on depth. The concentration of phosphate tends to be increased with depth. The maximum CDGT of phosphate released in oxic and anoxic conditions at 7th day period of incubation are 29.23 μg/L at 14 cm depth and 30.19 μg/L at 8 cm depth, respectively.
Liu, Yan; Li, Yang; Yang, Yun; Jian, Ji
2014-05-01
Vegetation and bare soil were collected in the areas of Miyaluo district in northwest of Sichuan province, the Qilian Mountains in Qinghai province and northern areas of Xinjiang during the years of 2007 and 2013. Then these data were converted to spectral reflectance by applying sensor response function of MODIS and HJ-1B respectively within the range of visible light, near-infrared and shortwave infrared. Comprehensive analysis was made on spectral characteristics and reflectivity similarities and differences of different sensors between old and new snowmelt, under the condition of different snow depth and different snow cover. The conclusions can be drawn That is, there exists high consistency of spectral response between new snow and dirty snow for each sensor in the visible wavelength range, also it is true for bare soil and low vegetation. However, low consistency happens to other types of snow; especially snowmelt and frozen snow. The range of NDSI is relatively stable under the condition of different snow depth for full snow cover and the trend of NDSI shows great consistency for different sensors; NDSI threshold method for monitoring snow by using MODIS and HJ-1B data showed very obvious difference in spatial scales, which is a reasonable explanation of the existence of mixed pixels.
Shear waves in lithosphere studies on the territory of the U.S.S.R.
NASA Astrophysics Data System (ADS)
Alekseev, A. S.; Egorkin, A. V.; Pavlenkova, N. I.
1988-11-01
Thousands of kilometers of DSS profiles were compiled with three-component stations in the U.S.S.R. The results showed that the usual shots in holes or water basins normally create not only P-waves but shear waves as well. The most favourable condition for their generation is the presence of a sharp seismic boundary near the source, for example, the basement surface. The S-wave field, as a rule, contains all the types of reflected and refracted waves that are found in the P-field. The difference is in lower frequencies (they are lower by one third), somewhat higher intensity, and greater variability of amplitudes of shear waves. When recording the S-waves, the major information is obtained from the velocity relation VP/ VS = γ with depth and laterally. It reveals that three major factors are affecting this relation: the degree of rock fissuring, the composition of rocks and the temperatures at depth. Reduction of fissuring with depth i.e. with greater distances from the source, results in an overall drop of γ. As the composition of the uppermost crust changes (the Urals), γ increases in blocks composed of basic rocks. This value shows little changes on the Baltic and Ukrainian shields. On the Siberian platform, γ first increases with depth from 1.71 up to 1.76, probably, due to the dilatancy effect, and then it decreases to values less than 1.7 in the lower crust and upper mantle. In Western Siberia γ grows with depth reaching 1.79 in the lower crust; it is somewhat reduced in the mantle but still above 1.7. This can be ascribed apparently to a higher temperature regime of the lower crust in Western Siberia. In many regions a splitting of the shear waves of different polarization is observed due to velocity anisotropy. This was found for the first (refracted) waves in the Urals and for reflected waves from the M-boundary on the Siberian platform. In both cases anisotropy is associated with the crust. On the Ukrainian and Baltic shields the difference in the velocities of SH and SV-waves was not recorded.
Numerical investigation of a centrifugal compressor with circumferential grooves in vane diffuser
NASA Astrophysics Data System (ADS)
Chen, X. F.; Qin, G. L.; Ai, Z. J.
2015-08-01
Enhancing stall and surge margin has a great importance for the development of turbo compressors. The application of casing treatment is an effective measure to expand the stall margin and stable operation range. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with circumferential groove casing treatment in vane diffuser. Numerical cases with different radial location, radial width and axial depth of a circumferential single groove and different numbers of circumferential grooves were carried out to compare the results. The CFD analyses results show that the centrifugal compressor with circumferential grooves in diffuser can extend stable range by about 9% while the efficiency over the whole operating range decreases by 0.2 to 1.7%. The evaluation based on stall margin improvement showed the optimal position for the groove to be located was indicated to exist near the leading edge of the diffuser, and a combination of position, width, depth and numbers of circumferential grooves that will maximize both surge margin range and efficiency.
Andújar, Dionisio; Fernández-Quintanilla, César; Dorado, José
2015-06-04
In energy crops for biomass production a proper plant structure is important to optimize wood yields. A precise crop characterization in early stages may contribute to the choice of proper cropping techniques. This study assesses the potential of the Microsoft Kinect for Windows v.1 sensor to determine the best viewing angle of the sensor to estimate the plant biomass based on poplar seedling geometry. Kinect Fusion algorithms were used to generate a 3D point cloud from the depth video stream. The sensor was mounted in different positions facing the tree in order to obtain depth (RGB-D) images from different angles. Individuals of two different ages, e.g., one month and one year old, were scanned. Four different viewing angles were compared: top view (0°), 45° downwards view, front view (90°) and ground upwards view (-45°). The ground-truth used to validate the sensor readings consisted of a destructive sampling in which the height, leaf area and biomass (dry weight basis) were measured in each individual plant. The depth image models agreed well with 45°, 90° and -45° measurements in one-year poplar trees. Good correlations (0.88 to 0.92) between dry biomass and the area measured with the Kinect were found. In addition, plant height was accurately estimated with a few centimeters error. The comparison between different viewing angles revealed that top views showed poorer results due to the fact the top leaves occluded the rest of the tree. However, the other views led to good results. Conversely, small poplars showed better correlations with actual parameters from the top view (0°). Therefore, although the Microsoft Kinect for Windows v.1 sensor provides good opportunities for biomass estimation, the viewing angle must be chosen taking into account the developmental stage of the crop and the desired parameters. The results of this study indicate that Kinect is a promising tool for a rapid canopy characterization, i.e., for estimating crop biomass production, with several important advantages: low cost, low power needs and a high frame rate (frames per second) when dynamic measurements are required.
Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements
NASA Astrophysics Data System (ADS)
Kazadzis, Stelios; Kouremeti, Natalia; Diémoz, Henri; Gröbner, Julian; Forgan, Bruce W.; Campanelli, Monica; Estellés, Victor; Lantz, Kathleen; Michalsky, Joseph; Carlund, Thomas; Cuevas, Emilio; Toledano, Carlos; Becker, Ralf; Nyeki, Stephan; Kosmopoulos, Panagiotis G.; Tatsiankou, Viktar; Vuilleumier, Laurent; Denn, Frederick M.; Ohkawara, Nozomu; Ijima, Osamu; Goloub, Philippe; Raptis, Panagiotis I.; Milner, Michael; Behrens, Klaus; Barreto, Africa; Martucci, Giovanni; Hall, Emiel; Wendell, James; Fabbri, Bryan E.; Wehrli, Christoph
2018-03-01
This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005 ± 0.001/m
(where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865 nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future.
Pukacz, Andrzej; Pełechaty, Mariusz; Frankowski, Marcin
2016-11-01
The month-to-month variability of biomass and CaCO 3 precipitation by dense charophyte beds was studied in a shallow Chara-lake at two depths, 1 and 3 m. Charophyte dry weights (d.w.), the percentage contribution of calcium carbonate to the dry weight and the precipitation of CaCO 3 per 1 m 2 were analysed from May to October 2011. Physical-chemical parameters of water were also measured for the same sample locations. The mean dry weight and calcium carbonate precipitation were significantly higher at 1 m than at 3 m. The highest measured charophyte dry weight (exceeding 2000 g m -2 ) was noted at 1 m depth in September, and the highest CaCO 3 content in the d.w. (exceeding 80 % of d.w.) was observed at 3 m depth in August. The highest CaCO 3 precipitation per 1 m 2 exceeded 1695 g at 1 m depth in August. Significant differences in photosynthetically active radiation (PAR) were found between 1 and 3 m depths; there were no significant differences between depths for other water properties. At both sampling depths, there were distinct correlations between the d.w., CaCO 3 content and precipitation and water properties. In addition to PAR, the water temperature and magnesium and calcium ion concentrations were among the most significant determinants of CaCO 3 content and d.w. The results show that light availability seems to be the major factor in determining charophyte biomass in a typical, undisturbed Chara-lake. The study results are discussed in light of the role of charophyte vegetation in whole ecosystem functioning, with a particular focus on sedimentary processes and the biogeochemical cycle within the littoral zone.
Comparision between crustal density and velocity variations in Southern California
Langenheim, V.E.; Hauksson, E.
2001-01-01
We predict gravity from a three-dimensional Vp model of the upper crust and compare it to the observed isostatic residual gravity field. In general this comparison shows that the isostatic residual gravity field reflects the density variations in the upper to middle crust. Both data sets show similar density variations for the upper crust in areas such as the Peninsular Ranges and the Los Angeles basin. Both show similar variations across major faults, such as the San Andreas and Garlock faults in the Mojave Desert. The difference between the two data sets in regions such as the Salton Trough, the Eastern California Shear Zone, and the eastern Ventura basin (where depth to Moho is <30 km), however, suggests high-density middle to lower crust beneath these regions. Hence the joint interpretation of these data sets improves the depth constraints of crustal density variations.
Semantic deficits in Spanish-English bilingual children with language impairment.
Sheng, Li; Peña, Elizabeth D; Bedore, Lisa M; Fiestas, Christine E
2012-02-01
To examine the nature and extent of semantic deficits in bilingual children with language impairment (LI). Thirty-seven Spanish-English bilingual children with LI (ranging from age 7;0 [years;months] to 9;10) and 37 typically developing (TD) age-matched peers generated 3 associations to 12 pairs of translation equivalents in English and Spanish. Responses were coded as paradigmatic (e.g., dinner-lunch, cena-desayuno [dinner-breakfast]), syntagmatic (e.g., delicious-pizza, delicioso-frijoles [delicious-beans]), and errors (e.g., wearing-where, vestirse-mal [to get dressed-bad]). A semantic depth score was derived in each language and conceptually by combining children's performance in both languages. The LI group achieved significantly lower semantic depth scores than the TD group after controlling for group differences in vocabulary size. Children showed higher conceptual scores than single-language scores. Both groups showed decreases in semantic depth scores across multiple elicitations. Analyses of individual performances indicated that semantic deficits (1 SD below the TD mean semantic depth score) were manifested in 65% of the children with LI and in 14% of the TD children. School-age bilingual children with and without LI demonstrated spreading activation of semantic networks. Consistent with the literature on monolingual children with LI, sparsely linked semantic networks characterize a considerable proportion of bilingual children with LI.
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey; Beriozkin, Victor; Dogadkin, Nikolay
2016-04-01
The main goal of the study performed in 2014-2015 at the test site located in the abandoned zone of the Iput river basin was to study detailed patterns of Cs-137 redistribution along the terrace slope and the adjacent floodplain depression almost 30 years after the Chernobyl accident. Cs-137 surface activity was measured with the help of modified field gamma-spectrometer Violinist III (USA) in a grid 2 m x 2 m within the test plot sized 10 m x 24 m. Gamma-spectrometry was accompanied by topographical survey. Cs-137 depth distribution was studied by soil core sampling in increments of 2 cm and 5 cm down to 40 cm depth. Cs-137 activity in soil samples was measured in laboratory conditions by Nokia gamma-spectrometer. The results showed distinct natural dissimilarity of Cs-137 surface activity within the undisturbed soil of slope. Cs-137 depth migration in successive soil cores marked different patterns correlated with the position in relief. In particular cores Cs-137 depth variation correlated with water regime that shows that the processes of secondary distribution of Cs-137 along the slope obviously depend upon water migration. The finding is important for understanding of regularities in patterns of radiocesium spatial distribution.
Autrey, Michelle; Mahovetz, Lindsay; Pope, Sarah; Mareno, Mary Catherine; Schapiro, Steven J.
2017-01-01
Captive chimpanzees (Pan troglodytes) have been shown to learn the use of novel attention-getting (AG) sounds to capture the attention of humans as a means of requesting or drawing their attention to a desired object or food. There are significant individual differences in the use of AG sounds by chimpanzees and, here, we examined whether changes in cortical organization of the central sulcus (CS) were associated with AG sound production. MRI scans were collected from 240 chimpanzees, including 122 that reliably produced AG sounds and 118 that did not. For each subject, the depth of CS was quantified along the superior–inferior plane with specific interest in the inferior portion corresponding to the region of the motor cortex where the mouth and orofacial movements are controlled. Results indicated that CS depth in the inferior, but not superior, portion was significantly greater in chimpanzees that reliably produced AG sounds compared with those who did not. Quantitative genetic analyses indicated that overall CS surface area and depth were significantly heritable, particularly in the superior regions, but less so in the inferior and central portions. Further, heritability in CS depth was altered as a function of acquisition of AG sounds. The collective results suggest that learning to produce AG sounds resulted in region-specific cortical reorganization within the inferior portion of the CS, a finding previously undocumented in chimpanzees or any nonhuman primate. SIGNIFICANCE STATEMENT Recent studies in chimpanzees (Pan troglodytes) have shown that some can learn to produce novel sounds by configuring different orofacial movement patterns and these sounds are used in communicatively relevant contexts. Here, we examined the neuromorphological correlates in the production of these sounds in chimpanzees. We show that chimpanzees that have learned to produce these sounds show significant differences in central sulcus (CS) morphology, particularly in the inferior region. We further show that overall CS morphology and regions within the superior portion are significantly heritable, whereas central and inferior portions of the CS are not. The collective findings suggest chimpanzees exhibit cortical plasticity in regions of the brain that were central to the emergence of speech functions in humans. PMID:28473646
Evaluation of HCMM data for assessing soil moisture and water table depth. [South Dakota
NASA Technical Reports Server (NTRS)
Moore, D. G.; Heilman, J. L.; Tunheim, J. A.; Westin, F. C.; Heilman, W. E.; Beutler, G. A.; Ness, S. D. (Principal Investigator)
1981-01-01
Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables.
Tsunami Inundation Mapping for the Upper East Coast of the United States
NASA Astrophysics Data System (ADS)
Tehranirad, B.; Kirby, J. T., Jr.; Callahan, J. A.; Shi, F.; Banihashemi, S.; Grilli, S. T.; Grilli, A. R.; Tajalli Bakhsh, T. S.; O'Reilly, C.
2014-12-01
We describe the modeling of tsunami inundation for the Upper US East Coast (USEC) from Ocean City, MD up to Nantucket, MA. and the development of inundation maps for use in emergency management and hazard analysis. Seven tsunami sources were used as initial conditions in order to develop inundation maps based on a Probable Maximum Tsunami approach. Of the seven, two coseismic sources were used; the first being a large earthquake in the Puerto Rico Trench, in the well-known Caribbean Subduction Zone, and the second, an earthquake close to the Azores Gibraltar plate boundary known as the source of the biggest tsunami recorded in the North Atlantic Basin. In addition, four Submarine Mass Failure (SMF) sources located at different locations on the edge of the shelf break were simulated. Finally, the Cumbre Vieja Volcanic (CVV) collapse, located in the Canary Islands, was studied. For this presentation, we discuss modeling results for nearshore tsunami propagation and onshore inundation. A fully nonlinear Boussinesq model (FUNWAVE-TVD) is used to capture the characteristics of tsunami propagation, both nearshore and inland. In addition to the inundation line as the main result of this work, other tsunami quantities such as inundation depth and maximum velocities will be discussed for the whole USEC area. Moreover, a discussion of most vulnerable areas to a possible tsunami in the USEC will be provided. For example, during the inundation simulation process, it was observed that coastal environments with barrier islands are among the hot spots to be significantly impacted by a tsunami. As a result, areas like western Long Island, NY and Atlantic City, NJ are some of the locations that will get extremely affected in case of a tsunami occurrence in the Atlantic Ocean. Finally, the differences between various tsunami sources modeled here will be presented. Although inundation lines for different sources usually follow a similar pattern, there are clear distinctions between the inundation depth and other tsunami features in different areas. Figure below shows the inundation depth for surrounding area of the Ocean City, MD. Figure (a) and (b) are the envelope inundation depth for SMF and coseismic sources. Figure (C) shows the inundation depth for CVV source, which clearly has the largest magnitude amongst the sources studied for this work.
EDTA-assisted leaching of Pb and Cd from contaminated soil.
Qiao, Jiangbo; Sun, Huimin; Luo, Xiuhua; Zhang, Wang; Mathews, Shiny; Yin, Xianqiang
2017-01-01
Lead (Pb) and cadmium (Cd) contamination of soil and its harmful effects on human and environmental health have been one concern. In this study, batch and column leaching experiments were conducted to investigate the effects of two EDTA-assisted leaching methods, continuous and intermittent (dry-wet alternate), on the removal of Pb and Cd from contaminated soil. Total content and fractions of Pb and Cd at every 1 cm soil column depth were analyzed before and after the leaching. The results indicated that continuous leaching removed 75.43% of Pb (19.370 mg) and 53.21% of Cd (6.168 mg) and intermittent leaching removed 78.08% of Pb (20.051 mg) and 57.37% of Cd (6.650 mg), which showed intermittent leaching removed more Pb and Cd, but didn't differ significantly (P > 0.05) compared to the continuous leaching. In both leaching methods, total Pb and Cd content in all soil depths reduced after leaching. The two leaching methods made no significant differences in Pb and Cd distributions at different depths of the soil column. Copyright © 2016 Elsevier Ltd. All rights reserved.
Strategy of topical vaccination with nanoparticles
NASA Astrophysics Data System (ADS)
Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen
2009-03-01
Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached ~70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.
Strategy of topical vaccination with nanoparticles.
Jung, Sascha; Patzelt, Alexa; Otberg, Nina; Thiede, Gisela; Sterry, Wolfram; Lademann, Juergen
2009-01-01
Liposomes in the nanosize range have been recognized as a versatile drug delivery system of both hydrophilic and lipophilic molecules. In order to develop a liposome-based topical vaccination strategy, five different types of liposomes were tested as a putative vaccine delivery system on pig ear skin. The investigated liposomes mainly varied in size, lipid composition, and surface charge. Using hydrophilic and hydrophobic fluorescent dyes as model drugs, penetration behavior was studied by means of confocal laser scanning microscopy of intact skin and histological sections, respectively. Follicular penetration of the liposomes was measured in comparison to a standard, nonliposomal formulation at different time points. Dependent on time but independent of their different characters, the liposomes showed a significantly higher penetration depth into the hair follicles compared to the standard formulation. The standard formulation reached a relative penetration depth of 30% of the full hair follicle length after seven days, whereas amphoteric and cationic liposomes had reached approximately 70%. Penetration depth of negatively charged liposomes did not exceed 50% of the total follicle length. The fluorescence dyes were mainly detected in the hair follicle; only a small amount of dye was found in the upper parts of the epidermis.
Designing and Constructing an Optical Monitoring System of Blood Supply to Tissues under Pressure.
Hadi, Akbari; Amin, Younessi Heravi Mohammad
2012-04-01
Reduced blood flow due to obstruction is in most cases a primary factor in pressure ulcer formation and creation of bedsores. The aim of this study is to design and manufacture a care system for tissue under pressure, based on variations in blood flow at different depths of tissue. In the manufacture of the system two infrared light transmitters and receivers were located between 5 and 10 mm depth to measure the flow of blood at different in the under- pressure heel tissue. In addition, blood flow was evaluated in an unloaded and loaded condition, with 30 mmHg and 60.0 mmHg. A total of 15 people participated with a mean age of 50. Of these 15; 9 (60%) were men and 6 (40%) were women. Primary measurement results showed different individual differences in variation of blood flow in the tissue. To study signal amplitude changes significantly influenced by external pressure the PPG, P-value was measured. It was noted that there were significant changes in PPG signal amplitude during loading both pressures of 30 and 60 mmHg. Further development of this system would be possible with the use of a more flexible probe and by using a stronger optical receiver and transmitter to access more depth.
de Barros da Cunha, Sandra Ribeiro; Fonseca, Felipe Paiva; Ramos, Pedro Augusto Minorin Mendes; Haddad, Cecília Maria Kalil; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa
2017-08-01
To evaluate the effects of three different radiotherapy doses (20, 40, and 70Gy) on the microhardness, superficial morphology, and mineral content (based on Ca and P values) of three different depths of human enamel (cervical, middle, and occlusal). Thirty-four third molars were cut, separated, and prepared. Microhardness samples (n=30) were embedded in acrylic resin and then polished, and depths were delimited. Microhardness tests were performed on cervical, middle, and occlusal enamel pre- and post-radiotherapy with a load of 50g for 30s. For the scanning electron microscopy (SEM) analysis (n=4) and energy dispersive X-ray spectroscopy (EDS) (n=12), samples were fixed in a 3% glutaraldehyde solution, washed in 0.1M cacodylate solution, and dehydrated in crescent concentrations of ethanol. Microhardness data were tested for significant differences using a two-way analysis of variance (ANOVA) and Tukey's test (p<0.05), while SEM and EDS were evaluated qualitatively. The results showed a decrease in microhardness values only in the cervical enamel, regardless of the radiation dose used; no morphological or mineral change was observed. Radiotherapy can affect the microhardness values of only cervical enamel without compromising the morphological or mineral (Ca and P) content at any depth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raman spectroscopy: in vivo quick response code of skin physiological status
NASA Astrophysics Data System (ADS)
Vyumvuhore, Raoul; Tfayli, Ali; Piot, Olivier; Le Guillou, Maud; Guichard, Nathalie; Manfait, Michel; Baillet-Guffroy, Arlette
2014-11-01
Dermatologists need to combine different clinically relevant characteristics for a better understanding of skin health. These characteristics are usually measured by different techniques, and some of them are highly time consuming. Therefore, a predicting model based on Raman spectroscopy and partial least square (PLS) regression was developed as a rapid multiparametric method. The Raman spectra collected from the five uppermost micrometers of 11 healthy volunteers were fitted to different skin characteristics measured by independent appropriate methods (transepidermal water loss, hydration, pH, relative amount of ceramides, fatty acids, and cholesterol). For each parameter, the obtained PLS model presented correlation coefficients higher than R2=0.9. This model enables us to obtain all the aforementioned parameters directly from the unique Raman signature. In addition to that, in-depth Raman analyses down to 20 μm showed different balances between partially bound water and unbound water with depth. In parallel, the increase of depth was followed by an unfolding process of the proteins. The combinations of all these information led to a multiparametric investigation, which better characterizes the skin status. Raman signal can thus be used as a quick response code (QR code). This could help dermatologic diagnosis of physiological variations and presents a possible extension to pathological characterization.
Raman spectroscopy: in vivo quick response code of skin physiological status.
Vyumvuhore, Raoul; Tfayli, Ali; Piot, Olivier; Le Guillou, Maud; Guichard, Nathalie; Manfait, Michel; Baillet-Guffroy, Arlette
2014-01-01
Dermatologists need to combine different clinically relevant characteristics for a better understanding of skin health. These characteristics are usually measured by different techniques, and some of them are highly time consuming. Therefore, a predicting model based on Raman spectroscopy and partial least square (PLS) regression was developed as a rapid multiparametric method. The Raman spectra collected from the five uppermost micrometers of 11 healthy volunteers were fitted to different skin characteristics measured by independent appropriate methods (transepidermal water loss, hydration, pH, relative amount of ceramides, fatty acids, and cholesterol). For each parameter, the obtained PLS model presented correlation coefficients higher than R2=0.9. This model enables us to obtain all the aforementioned parameters directly from the unique Raman signature. In addition to that, in-depth Raman analyses down to 20 μm showed different balances between partially bound water and unbound water with depth. In parallel, the increase of depth was followed by an unfolding process of the proteins. The combinations of all these information led to a multiparametric investigation, which better characterizes the skin status. Raman signal can thus be used as a quick response code (QR code). This could help dermatologic diagnosis of physiological variations and presents a possible extension to pathological characterization.
Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.
Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L
2016-01-01
Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.
[Detection of marginal leakage of Class V restorations in vitro by micro-CT].
Gu, Lin-juan; Zhao, Xin-yi; Li, Shi-bao
2012-09-01
To evaluate the reliability and superiority of micro-CT in marginal leakage assessment of Class V restorations. Class V preparations with gingival margins in dentin and occlusal in enamel were made in sixteen extracted non-carious human molars and restored with dental bonding agents and composite resin. All teeth were then immersed in 50% ammonia-silver nitrate solution for 12 hours, followed by developing solution for 8 hours. Each restoration was scanned by a micro-CT and silver leakage was measured and three-dimensional image of the silver leakage alone cavity wall were reconstructed. Afterward, all restorations were sectioned and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by micro-CT and microscope were compared for equivalency. The silver leakage depths in gingival wall obtained with micro-CT (0.78 mm) and microscope (0.74 mm) showed no significant difference (P > 0.05), while the judgment of leakage depths in occlusal wall in micro-CT image (0.40 mm) was affected by adjacent enamel structure, giving less leakage depths compared to microscope (0.72 mm)(P < 0.01). The three-dimensional shapes of the microleakages displayed clearly by micro-CT alone wall of Class V restorations were multiform and some leakages showed channels on their way to spreading. Micro-CT can detect precisely the silver leakage in the dentin wall of a restoration and display its three-dimensional shape fully. Enamel structure affects the detection of the silver leakage next to it.
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2014-03-01
Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.
Deep Roots of Cratons From Surface-wave Tomography
NASA Astrophysics Data System (ADS)
Cara, M.; Debayle, E.; Lévêque, J. J.
Thanks to the application of multimode waveform inversion techniques to various sets of surface wave seismograms recorded on global networks of broad-band seismome- ters, either permanent (IRIS, Geoscope) or temporary (PASSCAL, INSU), unprece- dented lateral- and depth-resolution can be achieved in upper-mantle surface-wave tomography. With a depth-resolution around 50 km and a lateral resolution around 250 km in the upper mantle, Sv velocity models beneath Australia, South-America, Eurasia and East-Africa show fast velocity anomalies associated with shield generally confined to the uppermost 200 km of the mantle. We show on cross-sections taken across different continents that there is no evidence so far for "thermal and/or com- positional" lithospheric roots extending deeper than 300 km in the continental regions we have investigated. In addition, surface wave azimuthal anisotropy can be used as an indicator of the me- chanical thickness of the lithosphere when a clear change in the pattern of anisotropic directions is observed with depth. The fast moving Australian plate shows the clear- est example of such a change occuring at relatively shallow depths (150 km) within the high seismic velocity lid. This suggests that seismic anisotropy defines a "me- chanical" lithosphere that does not coincide with the "thermal and/or compositional" lithosphere probably imaged by velocity anomalies. However, beneath other slowly moving plates, such a change in pattern is less clear and there is a tendency of seismic anisotropy to disappear at the bottom of the lid.
Li, Chuan; Peng, Juan; Liang, Ming
2014-01-01
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730
Li, Chuan; Peng, Juan; Liang, Ming
2014-03-28
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.
NASA Astrophysics Data System (ADS)
Boaga, J.; Sauermilch, I.; Mateo, Z. R. P.
2017-12-01
Time-depth relationships (TDR) are crucial in correlating drillhole and core information to seismic reflection profiles, for accurate resource estimation, scientific interpretation and to guide drilling operations. Conventional seismic time-depth domain conversion utilizes downhole sonic logs (DSI), calibrated using available checkshot data, which are local travel times from the surface to a particular depth. Scientific drilling programs (ODP and IODP) also measure P-wave velocity (PWL or C) on recovered core samples. Only three percent of all ODP and IODP sites record all three velocity measurements, however this information can be instructive as sometimes these data input show dissimilar TDR. These representative sites provide us with an opportunity to perform a comparative analysis highlighting the differences and similarities of TDRs derived from checkshot, downhole, and laboratory measurements. We then discuss the impact of lithology, stratigraphy, water column and other petrophysical properties in the predictive accuracy of TDR calculations, in an effort to provide guidance for future drilling and coring expeditions.
Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia
NASA Astrophysics Data System (ADS)
Yulnafatmawita; Yasin, S.
2018-03-01
Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.
Ingebretson, Justin J.; Masino, Mark A.
2013-01-01
High-throughput behavioral studies using larval zebrafish often assess locomotor activity to determine the effects of experimental perturbations. However, the results reported by different groups are difficult to compare because there is not a standardized experimental paradigm or measure of locomotor activity. To address this, we investigated the effects that several factors, including the stage of larval development and the physical dimensions (depth and diameter) of the behavioral arena, have on the locomotor activity produced by larval zebrafish. We provide evidence for differences in locomotor activity between larvae at different stages and when recorded in wells of different depths, but not in wells of different diameters. We also show that the variability for most properties of locomotor activity is less for older than younger larvae, which is consistent with previous reports. Finally, we show that conflicting interpretations of activity level can occur when activity is assessed with a single measure of locomotor activity. Thus, we conclude that although a combination of factors should be considered when designing behavioral experiments, the use of older larvae in deep wells will reduce the variability of locomotor activity, and that multiple properties of locomotor activity should be measured to determine activity level. PMID:23772207
Boerner, Jana; Godenschwege, Tanja Angela
2010-09-01
The Drosophila standard brain has been a useful tool that provides information about position and size of different brain structures within a wild-type brain and allows the comparison of imaging data that were collected from individual preparations. Therefore the standard can be used to reveal and visualize differences of brain regions between wild-type and mutant brains and can provide spatial description of single neurons within the nervous system. Recently the standard brain was complemented by the generation of a ventral nerve cord (VNC) standard. Here the authors have registered the major components of a simple neuronal circuit, the Giant Fiber System (GFS), into this standard. The authors show that they can also virtually reconstruct the well-characterized synaptic contact of the Giant Fiber with its motorneuronal target when they register the individual neurons from different preparations into the VNC standard. In addition to the potential application for the standard thorax in neuronal circuit reconstruction, the authors show that it is a useful tool for in-depth analysis of mutant morphology of single neurons. The authors find quantitative and qualitative differences when they compared the Giant Fibers of two different neuroglian alleles, nrg(849) and nrg(G00305), using the averaged wild-type GFS in the standard VNC as a reference.
Mechanical properties of multilayered films using different nanoindenters.
Fang, Te-Hua; Wang, Tong Hong; Wu, Jia-Hung
2010-07-01
The effects of interface, contact hardness, deformation, and adhesion of Al/Ni multilayered films under nanoindentation were investigated using molecular dynamics (MD) simulations. The results show that the indentation force of the sphere indenter is the largest among nanoindentations using sphere, cone, Vickers, or Berkovich type indenters at the same penetration depth. Force increasing, relaxation and adhesion took place during loading, holding depth and unloading, respectively. The interface occurred along the {111} (110) slip systems and the maximum width of the glide bands was about 1 nm. The reaction force and plastic energy of the indented films are also discussed.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.
2010-12-01
Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.
Stemflow: A literature review and the challenges ahead
NASA Astrophysics Data System (ADS)
José, Návar
2013-04-01
Stemflow is the rainfall portion that flows down to the ground via trunks or stems. It is a localized point source input of precipitation and solutes at the stem base, creating islands of soil moisture and fertility. It accounts on average for less than 5% of the gross rainfall but maximum figures can reach 3.5%, 11.3%, and 19% in tropical, temperate and semi-arid plant communities, respectively. However, recent research has shown these statistics could be twice as large in overstocked semi-arid, subtropical and temperate forest stands. Tree and shrub species funnel different stemflow depths and canopy features; diameter at breast height, top height, canopy area and volume, branch number and position; bark smoothness, etc. are the most frequent independent variables employed to explain the large intrinsic variation. The funneling ratio evaluates the hydro-pedological importance; calculated by the division of stemflow volume by the stem base area and by the rainfall depth. Statistics quite often show funneling ratios >> 1. Assessments of the stemflow infiltration area quite frequently show the islands of soil moisture are at least twice as large as the soil depth wetted by rainfall in the open and calculations are in agreement with several visual observations. Empirical evaluations quite often also show the potential contribution of stemflow to groundwater recharge and streamflow generation. However, assessments of the infiltration area and depth quite frequently deviate from visual observations conducted by dying pathways, showing roots are the most frequent sources of stemflow transport within soils. Should this be the case for most trees, then the number of roots and their position within the soil profile would help to better forecast the stemflow (rootflow) infiltration depth and the potential triggering of other hydrological processes. Current mathematical approaches challenge future research on stemflow and rootflow to better understand the hydro-eco-pedological importance of point source inputs of plant communities.
Cloud and aerosol optical depths
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Ackerman, Thomas P.; Colburn, D. C.; Wrigley, R. C.; Spanner, M. A.; Livingston, J. M.
1988-01-01
An airborne Sun photometer was used to measure optical depths in clear atmospheres between the appearances of broken stratus clouds, and the optical depths in the vicinity of smokes. Results show that (human) activities can alter the chemical and optical properties of background atmospheres to affect their spectral optical depths. Effects of water vapor adsorption on aerosol optical depths are apparent, based on data of the water vapor absorption band centered around 940 nm. Smoke optical depths show increases above the background atmosphere by up to two orders of magnitude. When the total optical depths measured through clouds were corrected for molecular scattering and gaseous absorption by subtracting the total optical depths measured through the background atmosphere, the resultant values are lower than those of the background aerosol at short wavelengths. The spectral dependence of these cloud optical depths is neutral, however, in contrast to that of the background aerosol or the molecular atmosphere.
Bathymetric mapping of shallow water surrounding Dongsha Island using QuickBird image
NASA Astrophysics Data System (ADS)
Li, Dongling; Zhang, Huaguo; Lou, Xiulin
2018-03-01
This article presents an experiment of water depth inversion using the band ratio method in Dongsha Island shallow water. The remote sensing data is from QuickBird satellite on April 19, 2004. The bathymetry result shows an extensive agreement with the charted depths. 129 points from the chart depth data were chosen to evaluate the accuracy of the inversion depth. The results show that when the water depth is less than 20m, the inversion depth is accord with the chart, while the water depth is more than 20m, the inversion depth is still among 15- 25m. Therefore, the remote sensing methods can only be effective with the inversion of 20m in Dongsha Island shallow water, rather than in deep water area. The total of 109 depth points less than 20m were used to evaluate the accuracy, the root mean square error is 2.2m.
Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.
2011-09-30
Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines.more » Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.« less
NASA Astrophysics Data System (ADS)
Yu, Wen; Li, Xiongyao; Wei, Guangfei; Wang, Shijie
2016-03-01
Indications of buried lunar bedrock may help us to understand the tectonic evolution of the Moon and provide some clues for formation of lunar regolith. So far, the information on distribution and burial depth of lunar bedrock is far from sufficient. Due to good penetration ability, microwave radiation can be a potential tool to ameliorate this problem. Here, a novel method to estimate the burial depth of lunar bedrock is presented using microwave data from Chang'E-1 (CE-1) lunar satellite. The method is based on the spatial variation of differences in brightness temperatures between 19.35 GHz and 37.0 GHz (ΔTB). Large differences are found in some regions, such as the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, and the highland east of Mare Smythii. Interestingly, a large change of elevation is found in the corresponding region, which might imply a shallow burial depth of lunar bedrock. To verify this deduction, a theoretical model is derived to calculate the ΔTB. Results show that ΔTB varies from 12.7 K to 15 K when the burial depth of bedrock changes from 1 m to 0.5 m in the equatorial region. Based on the available data at low lunar latitude (30°N-30°S), it is thus inferred that the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, the highland located east of Mare Smythii, the edge of Pasteur and Chaplygin are the areas with shallow bedrock, the burial depth is estimated between 0.5 m and 1 m.
Evaluation of machinability and flexural strength of a novel dental machinable glass-ceramic.
Qin, Feng; Zheng, Shucan; Luo, Zufeng; Li, Yong; Guo, Ling; Zhao, Yunfeng; Fu, Qiang
2009-10-01
To evaluate the machinability and flexural strength of a novel dental machinable glass-ceramic (named PMC), and to compare the machinability property with that of Vita Mark II and human enamel. The raw batch materials were selected and mixed. Four groups of novel glass-ceramics were formed at different nucleation temperatures, and were assigned to Group 1, Group 2, Group 3 and Group 4. The machinability of the four groups of novel glass-ceramics, Vita Mark II ceramic and freshly extracted human premolars were compared by means of drilling depth measurement. A three-point bending test was used to measure the flexural strength of the novel glass-ceramics. The crystalline phases of the group with the best machinability were identified by X-ray diffraction. In terms of the drilling depth, Group 2 of the novel glass-ceramics proves to have the largest drilling depth. There was no statistical difference among Group 1, Group 4 and the natural teeth. The drilling depth of Vita MK II was statistically less than that of Group 1, Group 4 and the natural teeth. Group 3 had the least drilling depth. In respect of the flexural strength, Group 2 exhibited the maximum flexural strength; Group 1 was statistically weaker than Group 2; there was no statistical difference between Group 3 and Group 4, and they were the weakest materials. XRD of Group 2 ceramic showed that a new type of dental machinable glass-ceramic containing calcium-mica had been developed by the present study and was named PMC. PMC is promising for application as a dental machinable ceramic due to its good machinability and relatively high strength.
Lotter, Oliver; Held, Manuel; Schiefer, Jennifer; Werner, Ole; Medved, Fabian; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Jaminet, Patrick; Rothenberger, Jens
2015-01-01
Currently, the diagnosis of burn depth is primarily based on a visual assessment and can be dependent on the surgeons' experience. The goal of this study was to determine the ability of laser Doppler flowmeter combined with a tissue spectrophotometer to discriminate burn depth in a miniature swine burn model. Burn injuries of varying depth, including superficial-partial, deep-partial, and full thickness, were created in seven Göttingen minipigs using an aluminium bar (100 °C), which was applied to the abdominal skin for periods of 1, 3, 6, 12, 30, and 60 seconds with gravity alone. The depth of injury was evaluated histologically using hematoxylin and eosin staining. All burns were assessed 3 hours after injury using a device that combines a laser light and a white light to determine blood flow, hemoglobin oxygenation, and relative amount of hemoglobin. The blood flow (41 vs. 124 arbitrary units [AU]) and relative amount of hemoglobin (32 vs. 52 AU) were significantly lower in full thickness compared with superficial-partial thickness burns. However, no significant differences in hemoglobin oxygenation were observed between these depths of burns (61 vs. 60%). These results show the ability of laser Doppler flowmeter and tissue spectrophotometer in combination to discriminate between various depths of injury in the minipig model, suggesting that this device may offer a valuable tool for burn depth assessment influencing burn management. © 2014 by the Wound Healing Society.
The mean and variance of phylogenetic diversity under rarefaction
Matsen, Frederick A.
2013-01-01
Summary Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required. PMID:23833701
The mean and variance of phylogenetic diversity under rarefaction.
Nipperess, David A; Matsen, Frederick A
2013-06-01
Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.
NASA Astrophysics Data System (ADS)
Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.
2017-12-01
Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.
Stress Study on Southern Segment of Longmenshan Fault Constrained by Focal Mechanism Data
NASA Astrophysics Data System (ADS)
Yang, Y.; Liang, C.; Su, J.; Zhou, L.
2016-12-01
The Longmenshan fault (LMSF) lies at the eastern margin of Tibetan plateau and constitutes the boundary of the active Bayankala block and rigid Sichuan basin. This fault was misinterpreted as an inactive fault before the great Wenchuan earthquake. Five years after the devastating event, the Lushan MS 7.0 stroke the southern segment of the LMSF but fractured in a very limited scale and formed a seismic gap between the two earthquakes. In this study, we determined focal mechanisms of earthquakes with magnitude M≥3 from Jan 2008 to July 2014 in the southern segment of LMSF, and then applied the damped linear inversion to derive the regional stress field based on the focal mechanisms. Focal mechanisms of 755 earthquakes in total were determined. We further used a damped linear inversion technique to produce a 2D stress map in upper crust in the study region. A dominant thrust regime is determined south of the seismic gap, with a horizontal maximum compression oriented in NWW-SEE. But in the area to the north of the seismic gap is characterized as a much more complex stress environment. To the west of the Dujiangyan city, there appear to be a seismic gap in the Pengguan complex. The maximum compressions show the anti-clockwise and clockwise patterns to the south and north of this small gap. Thus the small gap seems to be an asperity that causes the maximum compression to rotate around it. While combined the maximum compression pattern with the focal solutions of strong earthquakes (Mw≥5) in this region, two of those strong earthquakes located near the back-range-fault have strikes parallel to the Miyaluo fault. Considering a large amount of earthquakes in Lixian branch, the Miyaluo fault may be extended to LMSF following the great Wenchuan earthquake. Investigations on the stress field of different depths indicate complex spatial variations. The Pengguan complex is almost aseismic in shallow depth in its central part. In deeper depth, the maximum compressions show the NNW-SSE and NE-SW directions to the north and south of the seismic gap respectively, this are surprisingly different from that of the shallower depth. Thus the maximum compressions vary with depth may imply the movement in depth is decoupled from the movement in shallow depth. This work was partially supported by National Natural Science Foundation of China (41340009).
Hernandez-Andrade, Edgar; Aurioles-Garibay, Alma; Garcia, Maynor; Korzeniewski, Steven J.; Schwartz, Alyse G.; Ahn, Hyunyoung; Martinez-Varea, Alicia; Yeo, Lami; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Romero, Roberto
2014-01-01
Aim To investigate the effect of depth on cervical shear-wave elastography. Methods Shear-wave elastography was applied to estimate the velocity of propagation of the acoustic force impulse (shear-wave) in the cervix of 154 pregnant women at 11-36 weeks of gestation. Shear-wave speed (SWS) was evaluated in cross-sectional views of the internal and external cervical os in five regions of interest: anterior, posterior, lateral right, lateral left, and endocervix. Distance from the center of the US transducer to the center of the each region of interest was registered. Results In all regions, SWS decreased significantly with gestational age (p=0.006). In the internal os SWS was similar among the anterior, posterior and lateral regions, and lower in the endocervix. In the external os, the endocervix and anterior regions showed similar SWS values, lower than those from the posterior and lateral regions. In the endocervix, these differences remained significant after adjustment for depth, gestational age and cervical length. SWS estimations in all regions of the internal os were higher than those of the external os, suggesting denser tissue. Conclusion Depth from the ultrasound probe to different regions in the cervix did not significantly affect the SWS estimations. PMID:25029081
Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.
2015-01-01
Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.
Mousavi, Seyed Mortaza; Adamoğlu, Ahmet; Demiralp, Tamer; Shayesteh, Mahrokh G
2014-01-01
Awareness during general anesthesia for its serious psychological effects on patients and some juristically problems for anesthetists has been an important challenge during past decades. Monitoring depth of anesthesia is a fundamental solution to this problem. The induction of anesthesia alters frequency and mean of amplitudes of the electroencephalogram (EEG), and its phase couplings. We analyzed EEG changes for phase coupling between delta and alpha subbands using a new algorithm for depth of general anesthesia measurement based on complex wavelet transform (CWT) in patients anesthetized by Propofol. Entropy and histogram of modulated signals were calculated by taking bispectral index (BIS) values as reference. Entropies corresponding to different BIS intervals using Mann-Whitney U test showed that they had different continuous distributions. The results demonstrated that there is a phase coupling between 3 and 4 Hz in delta and 8-9 Hz in alpha subbands and these changes are shown better at the channel T 7 of EEG. Moreover, when BIS values increase, the entropy value of modulated signal also increases and vice versa. In addition, measuring phase coupling between delta and alpha subbands of EEG signals through continuous CWT analysis reveals the depth of anesthesia level. As a result, awareness during anesthesia can be prevented.
An empirical study of preferred settings for lumbar support on adjustable office chairs.
Coleman, N; Hull, B P; Ellitt, G
1998-04-01
The preferred settings for lumbar support height and depth of 43 male and 80 female office workers were investigated. All subjects were equipped with identical modern office chairs with foam-padded backrests adjustable in both height and depth. Measurements of lumbar support settings were recorded in the workplace, outside of working hours, on four different occasions, over a 5 week period. Preferred lumbar support height and depth settings extended to both extremes of the adjustment range. The mean preferred height setting was 190 mm above the compressed seat surface. The mean depth setting (horizontal distance from front of seat to lumbar support point) was 387 mm. A regression model examining the effects of standing height, Body Mass Index (BMI) and gender on mean preferred lumbar support height showed a significant relationship between preferred height and BMI. Higher lumbar supports were chosen by subjects with greater BMIs. Gender and standing height were not associated with preferred lumbar support height settings. Preferred lumbar support depth was not significantly associated with standing height, gender or BMI. Older subjects were more likely to readjust their lumbar support from a disrupted position than younger subjects, indicating that older users are more sensitive to the position of their lumbar support. Subjects who reported recent back pain or discomfort that they believed to be associated with their chair or office work were found to set their lumbar support significantly closer to the front of the seat, probably to ensure greater support for their back. Based on the evidence that a high proportion of users do make adjustments to the height and depth of their lumbar support, and the finding that different groups of users, with different physical characteristics, adjust the position of their lumbar support in distinct and predictable ways, the researchers conclude that office chairs with traditional padded fixed-height lumbar supports are unlikely to provide a comfortable or appropriate seat for the wide range of potential users.
A global reference model of Curie-point depths based on EMAG2
NASA Astrophysics Data System (ADS)
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-03-01
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.
A global reference model of Curie-point depths based on EMAG2.
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-03-21
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C) -1 for the ocean and K = ~2.5 W(m°C) -1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m 2 , leading to a global heat loss ranging from ~34.6 to 36.6 TW.
Out-of-Plane Seismic Reflections Beneath the Pacific and Their Geophysical Implications
NASA Astrophysics Data System (ADS)
Schumacher, Lina; Thomas, Christine; Abreu, Rafael
2018-03-01
We detect seismic P wave arrivals that reach the surface from a different horizontal direction than the theoretical back azimuth of the earthquake. Slowness, back azimuth, and traveltime of observed out-of-plane signals are measured with array methods in relation to the main phases that travel along the great circle path. This directivity information is used to back trace the wave through a 1-D velocity model to its scattering or reflection location. The focus of this study lies on out-of-plane signals reflected once beneath the Pacific at a depth greater than 800 km. Data analysis is carried out for a broad frequency range (band-pass filter with corner periods of 0.5-5 s up to 5-50 s) to enable the detection of different structures and heterogeneities. In addition to mapping seismic heterogeneities in the lower mantle, we also qualitatively analyze waveforms and polarities of these signals to understand the nature of the structure. The observed 21 reflections with a reflection depth between 800 and 2,200 km illuminate heterogeneities in the mid- and lower mantle. Back-traced locations show shallowest depths around Hawaii and increase in depth to the north and southwest. Analysis of the polarities indicates low velocities for the imaged structure, and complexity of waveforms argues for a likely thermochemical origin. Additional 11 deep reflections/scatterers with depth larger than 2,200 km suggest internal heterogeneities or a presence of the D'' reflector.
2012-01-01
Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm) being greater than in both deeper sediment layers (15–20 and 35–40 cm), which were similar to each other. PMID:22935169
Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S
2012-08-30
Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.
NASA Astrophysics Data System (ADS)
Gonsior, M.; Timko, S.; Conte, M. H.; Schmitt-Kopplin, P.
2016-02-01
Ten liter water samples were collected at the Bermuda Atlantic Time Series Station (BATS) at 200 m intervals down to a maximum depth of 4530 m and solid-phase extracted. The methanol extracts were dried and re-dissolved in pure water and then used to determine the time-resolved photo-degradation of marine dissolved organic matter to be able to determine kinetic data. Excitation Emission Matrix (EEM) fluorescence spectra were recorded every 20 minutes using a custom-built flow-through photo-degradation system during 20 h of solar simulated light exposure. The resulting EEM spectra were modeled using Parallel Factor Analysis (PARAFAC) and results revealed reproducible and significant changes in the photo-degradation of marine FDOM originating from different depths. A five component model was fitted and the terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in the surface layer, which might be the reason for its prevalence in the open ocean. Surface ocean waters were depleted in the highly photo-degradable components while protein-like fluorescent components were enriched, which was in agreement with previous studies. Ultrahigh resolution mass spectrometry confirmed unique aliphatic molecular ions in the Surface Ocean and hydrogen-deficient molecules at depth. Multivariate statistical analyses revealed strong correlations between unsaturated/aromatic molecular ions and depth, where aliphatic molecular ions were more prevalent in the Surface Ocean and aromatic molecular ions at depth. Strong correlations were also found between hydrogen-deficient molecular ions and the humic-like fluorescent components. The rapid photo-degradation of the deep-sea FDOM and the surface oceans relative depletion of aromatic molecular ions suggested that deep-ocean FDOM may be too photochemically labile to survive meridional overturning circulation.
Response simulation and theoretical calibration of a dual-induction resistivity LWD tool
NASA Astrophysics Data System (ADS)
Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei
2014-03-01
In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.
The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping
NASA Astrophysics Data System (ADS)
Vopát, Tomáš; Peterka, Jozef; Kováč, Martin
2014-12-01
The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.
Levin-Rozalis, Miri
2010-11-01
This paper addresses the issue of the knowledge gap between evaluators and the entity being evaluated: the dilemma of the knowledge of professional evaluators vs. the in-depth knowledge of the evaluated subjects. In order to optimize evaluative outcomes, the author suggests an approach based on ideas borrowed from the science of cybernetics as a method of evaluation--one that enables in-depth perception of the evaluated field without jeopardizing a rigorous study or the evaluator's professionalism. The paper focuses on the main concepts that deal with this dilemma--showing how cybernetics combines the different bodies of knowledge of the different stakeholders, including the professional evaluator, resulting in a coherent body of knowledge created mainly by those internal to the process, owned by them, and relevant to all--those who are internal and those who are external and their different purposes. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Quick and Easy Measurements of the Inherent Optical Property of Water by Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadi, Dina; Hajiesmaeilbaigi, Fereshteh
2009-04-19
To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less
Event-Based Stereo Depth Estimation Using Belief Propagation.
Xie, Zhen; Chen, Shengyong; Orchard, Garrick
2017-01-01
Compared to standard frame-based cameras, biologically-inspired event-based sensors capture visual information with low latency and minimal redundancy. These event-based sensors are also far less prone to motion blur than traditional cameras, and still operate effectively in high dynamic range scenes. However, classical framed-based algorithms are not typically suitable for these event-based data and new processing algorithms are required. This paper focuses on the problem of depth estimation from a stereo pair of event-based sensors. A fully event-based stereo depth estimation algorithm which relies on message passing is proposed. The algorithm not only considers the properties of a single event but also uses a Markov Random Field (MRF) to consider the constraints between the nearby events, such as disparity uniqueness and depth continuity. The method is tested on five different scenes and compared to other state-of-art event-based stereo matching methods. The results show that the method detects more stereo matches than other methods, with each match having a higher accuracy. The method can operate in an event-driven manner where depths are reported for individual events as they are received, or the network can be queried at any time to generate a sparse depth frame which represents the current state of the network.
Trapped Modes in a Three-Layer Fluid
NASA Astrophysics Data System (ADS)
Saha, Sunanda; Bora, Swaroop Nandan
2018-03-01
In this work, trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities. The impermeable cylinder is fully immersed in either the bottom layer or the upper layer. The effect of surface tension at the surface of separation is neglected. In this set-up, there exist three wave numbers: the lowest one on the free surface and the other two on the internal interfaces. For each wave number, there exist two modes for which trapped waves exist. The existence of these trapped modes is shown by numerical evidence. We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth. We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity. The existence of trapped modes shows that in general, a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.
Chao, Lei; Zhou, Qi-xing; Cui, Shuang; Chen, Su; Ren, Li-ping
2007-06-01
This paper studied the profile distribution of heavy metals in soils under different kind livestock feces composts. The results showed that in the process of livestock feces composting, the pH value and organic matter content of soil under feces compost increased significantly, and had a decreased distribution with soil depth. The contents of soil Zn and Cd also had an obvious increase, and decreased with increasing soil depth. Under the composts of chicken and pig feces, soil Cu content decreased with soil depth, while under cattle feces compost, it had little change. Soil Cd and Zn had a stronger mobility than soil Cu, and the Zn, Cd and Cu contents in some soil layers exceeded the first level of the environmental quality standard for soils in China. The geo-accumulation indices showed that only the 0-10 cm soil layer under chicken feces compost and the 0-40 cm soil layer under egg chicken feces compost were lightly polluted by Zn, while the soil profiles under other kinds of livestock feces compost were not polluted by Pb, Cu, Zn and Cd.
Yang, Liu; Li, Xiangkun; Chu, Zhaorui; Ren, Yuhui; Zhang, Jie
2014-03-01
A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Germination and emergence of annual species and burial depth: Implications for restoration ecology
NASA Astrophysics Data System (ADS)
Limón, Ángeles; Peco, Begoña
2016-02-01
Due to the high content of viable seeds, topsoil is usually spread on ground left bare during railway and motorway construction to facilitate the regeneration of vegetation cover. However, during handling of the topsoil, seeds are often buried deeply and they cannot germinate or the seedlings cannot emerge from depth. This study experimentally explores the predictive value of seed mass for seed germination, mortality and seedling emergence at different burial depths for 13 common annual species in semiarid Mediterranean environments. We separate the effect of burial depth on germination and emergence by means of two experiments. In the germination experiment, five replicates of 20 seeds for each species were buried at depths ranging from 0 to 4 cm under greenhouse conditions. Germinated and empty or rotten seeds were counted after 8 weeks. In the emergence experiment, five replicates of four newly-germinated seeds per species were buried at the same depths under controlled conditions and emergence was recorded after 3 weeks. The effect of burial depth on percentage of germination and seedling emergence was dependent on seed size. Although all species showed a decrease in germination with burial depth, this decrease was greater for small-than large-seeded species. Percentage of emergence was positively related to seed mass but negatively related to burial depth. Seed mortality was higher for small-than large-seeded species, but there was no general effect of burial depth on this variable. Thus, the current practice of spreading 30 cm deep layers of topsoil in post-construction restoration projects is unadvisable. In this restoration scenario, thinner layers of topsoil should be used to achieve the maximum potential of the topsoil for germination and seedling establishment.
The selection of the optimal baseline in the front-view monocular vision system
NASA Astrophysics Data System (ADS)
Xiong, Bincheng; Zhang, Jun; Zhang, Daimeng; Liu, Xiaomao; Tian, Jinwen
2018-03-01
In the front-view monocular vision system, the accuracy of solving the depth field is related to the length of the inter-frame baseline and the accuracy of image matching result. In general, a longer length of the baseline can lead to a higher precision of solving the depth field. However, at the same time, the difference between the inter-frame images increases, which increases the difficulty in image matching and the decreases matching accuracy and at last may leads to the failure of solving the depth field. One of the usual practices is to use the tracking and matching method to improve the matching accuracy between images, but this algorithm is easy to cause matching drift between images with large interval, resulting in cumulative error in image matching, and finally the accuracy of solving the depth field is still very low. In this paper, we propose a depth field fusion algorithm based on the optimal length of the baseline. Firstly, we analyze the quantitative relationship between the accuracy of the depth field calculation and the length of the baseline between frames, and find the optimal length of the baseline by doing lots of experiments; secondly, we introduce the inverse depth filtering technique for sparse SLAM, and solve the depth field under the constraint of the optimal length of the baseline. By doing a large number of experiments, the results show that our algorithm can effectively eliminate the mismatch caused by image changes, and can still solve the depth field correctly in the large baseline scene. Our algorithm is superior to the traditional SFM algorithm in time and space complexity. The optimal baseline obtained by a large number of experiments plays a guiding role in the calculation of the depth field in front-view monocular.
NASA Astrophysics Data System (ADS)
Jansson, J.; Tas, N.; Wu, Y.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Chakraborty, R.; Graham, D. E.; Wullschleger, S. D.
2013-12-01
The Arctic is one of the most climatically sensitive regions on Earth and current surveys show that permafrost degradation is widespread in arctic soils. Biogeochemical feedbacks of permafrost thaw are expected to be dominated by the release of currently stored carbon back into the atmosphere as CO2 and CH4. Understanding the dynamics of C release from permafrost requires assessment of microbial functions from different soil compartments. To this end, as part of the Next Generation Ecosystem Experiment in the Arctic, we collected two replicate permafrost cores (1m and 3m deep) from a transitional polygon near Barrow, AK. At this location, permafrost starts from 0.5m in depth and is characterized by variable ice content and higher pH than surface soils. Prior to sectioning, the cores were CT-scanned to determine the physical heterogeneity throughout the cores. In addition to detailed geochemical characterization, we used Illumina MiSeq technology to sequence 16SrRNA genes throughout the depths of the cores at 1 cm intervals. Selected depths were also chosen for metagenome sequencing of total DNA (including phylogenetic and functional genes) using the Illumina HiSeq platform. The 16S rRNA gene sequence data revealed that the microbial community composition and diversity changed dramatically with depth. The microbial diversity decreased sharply below the first few centimeters of the permafrost and then gradually increased in deeper layers. Based on the metagenome sequence data, the permafrost microbial communities were found to contain members with a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. The surface active layers had more representatives of Verrucomicrobia (potential methane oxidizers) whereas the deep permafrost layers were dominated by several different species of Actinobacteria. The latter are known to have a diverse metabolic capability and are able to adapt to stress by entering a dormant yet viable state. In addition, several isolates were obtained from different depths throughout the cores, including methanogens from some of the deeper layers. Together these data present a new view of potential geochemical cycles carried out by microorganisms in permafrost and reveal how community members and functions are distributed with depth.
NASA Astrophysics Data System (ADS)
Swanpalmer, John; Johansson, Karl-Axel
2011-11-01
In the late 1970s, Johansson et al (1978 Int. Symp. National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) reported experimentally determined displacement correction factors (pdis) for cylindrical ionization chamber dosimetry in 60Co and high-energy photon beams. These pdis factors have been implemented and are currently in use in a number of dosimetry protocols. However, the accuracy of these factors has recently been questioned by Wang and Rogers (2009a Phys. Med. Biol. 54 1609-20), who performed Monte Carlo simulations of the experiments performed by Johansson et al. They reported that the inaccuracy of the pdis factors originated from the normalization procedure used by Johansson et al. In their experiments, Johansson et al normalized the measured depth-ionization curves at the depth of maximum ionization for each of the different ionization chambers. In this study, we experimentally investigated the effect of air cavity size of cylindrical ionization chambers in a PMMA phantom and 60Co γ-beam. Two different pairs of air-filled cylindrical ionization chambers were used. The chambers in each pair had identical construction and materials but different air cavity volume (diameter). A 20 MeV electron beam was utilized to determine the ratio of the mass of air in the cavity of the two chambers in each pair. This ratio of the mass of air in each pair was then used to compare the ratios of the ionizations obtained at different depths in the PMMA phantom and 60Co γ-beam using the two pairs of chambers. The diameter of the air cavity of cylindrical ionization chambers influences both the depth at which the maximum ionization is observed and the ionization per unit mass of air at this depth. The correction determined at depths of 50 mm and 100 mm is smaller than the correction currently used in many dosimetry protocols. The results presented here agree with the findings of Wang and Rogers' Monte Carlo simulations and show that the normalization procedure employed by Johansson et al is not correct.
Reference independent species level profiling of the largest marine microbial ecosystem.
NASA Astrophysics Data System (ADS)
Mende, D. R.; DeLong, E.; Aylward, F.
2016-02-01
Marine microbes are of immense importance for the flux of matter and energy within the global oceans. Yet, the temporal variability of microbial communities in response to seasonal and environmental changes remains understudied. In addition, there is only a very limited understanding of the effects that changes within microbial communities at a certain depth have on the other microbes within the water column. Further, existing studies have mostly been limited by the lack of good reference databases. Here we present an reference independent analysis of a year long time series at 5 different water depth of the microbial communities at Station ALOHA, a sampling location representative of the largest contiguous ecosystem on earth, the North Pacific Subtropical Gyre (NPSG). Due to the lack the lack of closely related reference genomes most recent meta-genomic studies of marine microbial ecosystems have been limited to a coarse grained view at higher taxonomic levels. In order to gain a fine grained picture of the microbial communities and their dynamics within the NPSG, we extended the mOTU approach that has been successfully applied to the human microbiome to this marine ecosystem using more than 60 deeply sequenced metagenomic samples. This method allows for species level community profiling and diversity estimates, revealing seasonal shifts within the microbial communities. Additionally, we detected a number of microbes that respond to changes of different changing environmental conditions. We further surveyed the depth specificity of microbes at station ALOHA, showing species specific patterns of presence at different depths.
NASA Astrophysics Data System (ADS)
Monteys, Xavier; Harris, Paul; Caloca, Silvia
2014-05-01
The coastal shallow water zone can be a challenging and expensive environment within which to acquire bathymetry and other oceanographic data using traditional survey methods. Dangers and limited swath coverage make some of these areas unfeasible to survey using ship borne systems, and turbidity can preclude marine LIDAR. As a result, an extensive part of the coastline worldwide remains completely unmapped. Satellite EO multispectral data, after processing, allows timely, cost efficient and quality controlled information to be used for planning, monitoring, and regulating coastal environments. It has the potential to deliver repetitive derivation of medium resolution bathymetry, coastal water properties and seafloor characteristics in shallow waters. Over the last 30 years satellite passive imaging methods for bathymetry extraction, implementing analytical or empirical methods, have had a limited success predicting water depths. Different wavelengths of the solar light penetrate the water column to varying depths. They can provide acceptable results up to 20 m but become less accurate in deeper waters. The study area is located in the inner part of Dublin Bay, on the East coast of Ireland. The region investigated is a C-shaped inlet covering an area of 10 km long and 5 km wide with water depths ranging from 0 to 10 m. The methodology employed on this research uses a ratio of reflectance from SPOT 5 satellite bands, differing to standard linear transform algorithms. High accuracy water depths were derived using multibeam data. The final empirical model uses spatially weighted geographical tools to retrieve predicted depths. The results of this paper confirm that SPOT satellite scenes are suitable to predict depths using empirical models in very shallow embayments. Spatial regression models show better adjustments in the predictions over non-spatial models. The spatial regression equation used provides realistic results down to 6 m below the water surface, with reliable and error controlled depths. Bathymetric extraction approaches involving satellite imagery data are regarded as a fast, successful and economically advantageous solution to automatic water depth calculation in shallow and complex environments.
NASA Astrophysics Data System (ADS)
Pérez-i-García, D.; Constenla, M.; Padrós, F.; Soler-Membrives, A.; Solé, M.; Carrassón, M.
2015-05-01
This study examines the parasite communities of Alepocephalus rostratus and its influence on some fish biochemical markers and histological alterations. A. rostratus constitutes the second most important fish species, in terms of biomass, inhabiting the deep slope of the Catalan Sea (Balearic Sea, NW Mediterranean). The study revealed eight different parasite species in this host: one coccidian, one digenean, one monogenean, one cestode and four nematodes. The parasite fauna of A. rostratus was partially dominated by larval forms (four of the seven metazoan taxa found), which combined with low species richness corresponds to a parasite fauna pattern more typical of bathypelagic fish species rather than demersal ones. The larval tetraphyllideans and cucullanid nematodes were the predominant species. In relation to depth, differences in abundance of the nematodes Cucullaninae gen. sp. and Hysterothylacium aduncum were found, probably due to the dietary shift in the fish host at greater depth. Thus, Cucullaninae gen. sp. and H. aduncum could be regarded as indicators for discriminating populations of A. rostratus in relation to depth in NW Mediterranean waters. Of the biochemical markers examined, acetylcholinesterase (AChE) and lactate dehydrogenase (LDH) activities and lipid peroxidation (LP) levels, only LP showed significant differences between depths. A positive relationship was found between AChE activity and Tetraphyllidea fam. gen. sp., Anisakis physeteris and H. aduncum abundance and a negative one with the abundance of Cucullaninae gen. sp. LDH showed a positive relationship with the abundance of the parasites Paracyclocotyla cherbonnieri and Tetraphyllidea fam. gen. sp. At cyto-histological level, coccidians were detected in the pyloric caeca with a prevalence of 90% in Barcelona, but in the rest of organs almost no alterations were detected. The restricted macroplanktonic diet of A. rostratus, that maintains it distant from the sea-floor for longer periods than other demersal species, probably makes this species less susceptible to sediment-associated impacts including parasitism.
Joves, Gerardo José; Inoue, Go; Sadr, Alireza; Nikaido, Toru; Tagami, Junji
2014-04-01
The purpose of this study was to investigate the mechanical properties of intertubular dentin in sound, natural caries-affected (NCAD) and artificial caries-affected dentin (ACAD) using nanoindentation. Non-caries molars and caries molars with International Caries Detection and Assessment System (ICDAS II) score 5 at the occlusal site were used and caries was excavated using a spoon excavator, a round bur at low speed without water and a dye solution as guidance to detect the infected tissue. Specimens with remaining dentin thickness (RDT) >2mm were selected. ACAD teeth were created from sound teeth over 7 days in a demineralizing solution. Specimens were embedded into plastic rings with acrylic resin and then sagittal mesial-distal sectioned from crown to the long axis of the root under cooling water using a low-speed diamond blade. The surface of interest was fine polished sequentially. Hardness measurement was performed within an axial depth of 1000μm with at least of 320 indentations on each sample. Mann-Whitney U Test was used to compare the hardness as the variable among different dentin types (SOUND, NCAD and ACAD) at each dentin depth level. There was no significant difference in nanohardness between NCAD and ACAD up to a depth of 130μm (p>0.05). NCAD consistently showed lower hardness. ACAD showed no significant difference in hardness with SOUND dentin beyond 190μm (p<0.05). The lesion front in ACAD was considered to be located around the depth of 180μm. Natural and artificial caries-affected dentin tissues were superficially comparable in intertubular nanohardness. There is a certain layer within the natural caries-affected dentin with higher hardness; however the long-term effects of caries beneath the lesion extend deeply through intertubular dentin. Sound dentin at deep areas (close to the pulp chamber) is considered to be soft. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pattern of distribution and diversity of demersal assemblages in the central Mediterranean Sea
NASA Astrophysics Data System (ADS)
Colloca, F.; Cardinale, M.; Belluscio, A.; Ardizzone, G.
2003-03-01
A highly diversified mix of fish species, cephalopods and crustaceans, together with several macro-epibenthic organisms, compose trawl catches in the Mediterranean Sea. Management of Mediterranean trawling needs a multispecies approach that considers the community and not the single species as the basic unit of the analysis. While many studies have correlated several environmental factors to the spatial organizations of demersal organisms, few have focused on the role of macro-epibenthic communities in structuring demersal assemblages. In this paper, the following hypotheses were tested: (1) there are discrete demersal assemblages in the central Mediterranean Sea; (2) the distribution and diversity of demersal communities does not change on small temporal scales (1 year); (3) the demersal assemblages were segregated across both different epibenthic assemblages and depth gradients. Shallow stations were separated into coastal and middle-deep shelf assemblages while stations on the slope formed three main assemblages: slope edge, upper slope and middle slope assemblages. The demersal community did not show a substantial change at the small temporal scale. Sandy, sand-muddy and detritic epibenthic communities characterized coastal shelf assemblages, while epibenthic assemblage on muddy bottoms were dominant in the deeper areas of the shelf. A well-defined difference in macro-epibenthic faunal associations among stations on the slope (depth >200 m) was not found. Depth appeared to affect diversity of the main taxa of demersal organisms in different ways. Teleostean diversity did not show any trend with depth, the number of cephalopod species increased on the shelf and decreased on the slope while crustacean and elasmobranch species richness increased significantly from the shelf to the middle slope. The strong correlation shown in this study between epifaunal benthic communities and demersal fish assemblages requires the formulation of an ecosystem-based management for the Mediterranean Sea trawl fisheries. The existence of such biological diversity certainly contributes to the Mediterranean ecosystem health and its conservation should become one of the main objective of demersal resources management in the future.
DU, Shao Ping; Ma, Zhong Ming; Xue, Liang
2017-05-18
The distribution characteristics of soil aggregates and their organic carbon in gravel-mulched land with different planting years (5, 10, 15, 20 and 30 years) were studied based on a long-term field trial. The results showed that the soil aggregate fraction showed a fluctuation (down-up-down) trend with the decrease of soil aggregate size. The soil aggregates were distributed mainly in the size of >5 mm for less than 10 years cultivation, and 0.05-0.25 mm for more than 15 years. The content of aggregates over 0.25 mm (R 0.25 ) and the mean weight diameter (MWD) of soil aggregates all decreased with the increase of cultivation time. The content of organic carbon within soil aggregates increased with the decrease of soil aggregate size in gravel-mulched land with diffe-rent planting years. However, the content of organic carbon within soil aggregates, contribution rates of different aggregate fractions to soil organic carbon and soil organic carbon storage of aggregate fractions decreased with planting time extension and soil depth. Soil organic carbon in the aggregate sizes over 1 mm was sensitive to long term gravel-mulched field planting. Organic carbon storage of aggregate fractions with 10, 15, 20 and 30 years of planting decreased by 8.0%, 24.4%, 27.5% and 31.4% in the soil depth of 0-10 cm, and 1.4%, 15.8%, 19.4% and 21.8% in the soil depth of 10-20 cm, respectively. In conclusion, the ability of soil carbon sequestration in arid gravel-mulched field was reduced with planting time extension. Therefore, soil fertility of gravel-mulched fields which were cultivated for more than 15 years need to be improved.
Quantitative wood–adhesive penetration with X-ray computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paris, Jesse L.; Kamke, Frederick A.
Micro X-ray computed tomography (XCT) was used to analyze the 3D adhesive penetration behavior of different wood–adhesive bondlines. Three adhesives, a phenol formaldehyde (PF), a polymeric diphenylmethane diisocyanate (pMDI), and a hybrid polyvinyl acetate (PVA), all tagged with iodine for enhanced X-ray attenuation, were used to prepare single-bondline laminates in two softwoods, Douglas-fir and loblolly pine, and one hardwood, a hybrid polar. Adhesive penetration depth was measured with two separate calculations, and results were compared with 2D fluorescent micrographs. A total of 54 XCT scans were collected, representing six replicates of each treatment type; each replicate, however, consisted of approximatelymore » 1500 individual, cross-section slices stacked along the specimen length. As these adhesives were highly modified, the presented results do not indicate typical behavior for their broader adhesive classes. Still, clear penetration differences were observed between each adhesive type, and between wood species bonded with both the PF and pMDI adhesives. Furthermore, penetration results depended on the calculation method used. Two adhesive types with noticeably different resin distributions in the cured bondline, showed relatively similar penetration depths when calculated with a traditional effective penetration equation. However, when the same data was calculated with a weighted penetration calculation, which accounts for both adhesive area and depth, the results appeared to better represent the different distributions depicted in the photomicrographs and tomograms. Additionally, individual replicate comparisons showed variation due to specimen anatomy, not easily observed or interpreted from 2D images. Finally, 3D views of segmented 3D adhesive phases offered unique, in-situ views of the cured adhesive structures. In particular, voids formed by CO 2 bubbles generated during pMDI cure were clearly visible in penetrated columns of the solidified adhesive.« less
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Brenner, Anita C.; Barbieri, Kristine; DiMarzio, John P.; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui
2012-01-01
A primary purpose of satellite altimeter measurements is determination of the mass balances of the Greenland and Antarctic ice sheets and changes with time by measurement of changes in the surface elevations. Since the early 1990's, important measurements for this purpose have been made by radar altimeters on ERS-l and 2, Envisat, and CryoSat and a laser altimeter on ICESat. One principal factor limiting direct comparisons between radar and laser measurements is the variable penetration depth of the radar signal and the corresponding location of the effective depth of the radar-measured elevation beneath the surface, in contrast to the laser-measured surface elevation. Although the radar penetration depth varies significantly both spatially and temporally, empirical corrections have been developed to account for this effect. Another limiting factor in direct comparisons is caused by differences in the size of the laser and radar footprints and their respective horizontal locations on the surface. Nevertheless, derived changes in elevation, dHldt, and time-series of elevation, H(t), have been shown to be comparable. For comparisons at different times, corrections for elevation changes caused by variations in the rate offrrn compaction have also been developed. Comparisons between the H(t) and the average dH/dt at some specific locations, such as the Vostok region of East Antarctic, show good agreement among results from ERS-l and 2, Envisat, and ICESat. However, Greenland maps of dHidt from Envisat and ICESat for the same time periods (2003-2008) show some areas of significant differences as well as areas of good agreement. Possible causes of residual differences are investigated and described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigts-Rhetz, P von; Zink, K; University Hospital Giessen-Marburg, Marburg
2016-06-15
Purpose: National and international dosimetry protocols assume a position accuracy for ionization chambers of less than 0.2mm. To follow this precept the manufacturer PTW-Freiburg introduced a positioning assistance system (TRUFIX) for their particular ion chambers. Aim of this study is an experimental investigation of the positioning uncertainties for ROOS-type ionization chambers. Methods: For all measurements a linear accelerator Elekta Synergie was used. The experiments were performed in a water-phantom. To collimate the electron beam a 10×10cm{sup 2} applicator was installed. All measured depth dose curves were normalized to their maximum. In all cases the TRUFIX system was applied for chambermore » positioning. For the first measurement series, to determine the positioning reproducibility of a ROOS chamber, one person placed the chamber three times in a 6 MeV electron beam. The mean value of this three measurements was the reference for further six random persons who repeated this procedure. The results were compared for different depths (R{sub 50}, z{sub ref} and R{sub p}). To investigate the impact of different individual chambers of the same type 10 different ROOS chambers were placed by the same person in a 6, 12 and 18MeV electron beam and the measured reference depths z{sub ref} were compared. Results: The absolute positioning reproducibility is less than 0.1mm for the same person. The positioning uncertainties are increasing up to +/−0.3mm if different persons perform the chamber’s positioning within the water phantom. The comparison of the 10 different ROOS chambers resulted in reference depths z{sub ref} with deviations in the range of +/−0.45mm for all energies. Conclusion: The position accuracy of 0.2mm can be fulfilled with the TRUFIX system. The comparison of the 10 different ROOS ionization chambers showed noticeable deviations in the determined reference depth. The impact of a positioning uncertainty of about 0.3–0.4mm on the total perturbation correction will be considered.« less
Reconstruction of radial thermal conductivity depth profile in case hardened steel rods
NASA Astrophysics Data System (ADS)
Celorrio, Ricardo; Mendioroz, Arantza; Apiñaniz, Estibaliz; Salazar, Agustín; Wang, Chinhua; Mandelis, Andreas
2009-04-01
In this work the surface thermal-wave field (ac temperature) of a solid cylinder illuminated by a modulated light beam is calculated first in two cases: a multilayered cylinder and a cylinder the radial thermal conductivity of which varies continuously. It is demonstrated numerically that, using a few layers of different thicknesses, the surface thermal-wave field of a cylindrical sample with continuously varying radial thermal conductivity can be calculated with high accuracy. Next, an inverse procedure based on the multilayered model is used to reconstruct the radial thermal conductivity profile of hardened C1018 steel rods, the surface temperature of which was measured by photothermal radiometry. The reconstructed thermal conductivity depth profile has a similar shape to those found for flat samples of this material and shows a qualitative anticorrelation with the hardness depth profile.
The Influence of Minimalist Footwear on Knee and Ankle Load during Depth Jumping.
Sinclair, J; Hobbs, S J; Selfe, J
2015-01-01
Plyometric training is used by athletes to promote strength and explosive power. However plyometric activities such as depth jumping are associated with a high incidence of injuries. This study examined the influence of minimalist and conventional footwear on the loads experienced by the patellofemoral joint and Achilles tendon. Patellofemoral and Achilles tendon forces were obtained from ten male participants using an eight-camera 3D motion capture system and force platform data as they completed depth jumps in both footwear conditions. Differences between footwear were calculated using paired t-tests. The results show that the minimalist footwear were associated with significantly lower patellofemoral contact force/pressure and also knee abduction moment. It is therefore recommended, based on these observations, that those who are susceptible to knee pain should consider minimalist footwear when performing plyometric training.
Tielmann, Moritz; Reiser, Stefan; Hufnagl, Marc; Herrmann, Jens-Peter; Eckardt, André; Temming, Axel
2015-10-01
The brown shrimp (Crangon crangon) is a highly abundant invertebrate in the North Sea, with its life cycle stages ranging from deep offshore spawning to shallow onshore nursery areas. To overcome the long distances between these two habitats, brown shrimp are suspected to use selective tidal stream transport (STST), moving with the cyclic tide currents towards their preferred water depths. However, it is not known which stimulus actually triggers STST behavior in brown shrimp. In this work, we determined the influence of different hyperbaric pressures on STST behavior of juvenile brown shrimp. Brown shrimp activity was recorded in a hyperbaric pressure chamber that supplied constant and dynamic pressure conditions simulating different depths, with and without a tidal cycle. Subsequent wavelet and Fourier analysis were performed to determine the periodicity in the activity data. The results of the experiments show that STST behavior in brown shrimp varies with pressure and therefore with depth. We further show that STST behavior can be initiated by cyclic pressure changes. However, an interaction with one or more other environmental triggers remains possible. Furthermore, a security ebb-tide activity was identified that may serve to avoid potential stranding in shallow waters and is 'remembered' by shrimp for about 1.5 days without contact with tidal triggers. © 2015. Published by The Company of Biologists Ltd.
Influence of Pre-etching Times on Fatigue Strength of Self-etch Adhesives to Enamel.
Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Endo, Hajime; Tsuchiya, Kenji; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi
To use shear bond strength (SBS) and shear fatigue strength (SFS) testing to determine the influence of phosphoric acid pre-etching times prior to application of self-etch adhesives on enamel bonding. Two single-step self-etch universal adhesives (Prime&Bond Elect and Scotchbond Universal), a conventional single-step self-etch adhesive (G-ӕnial Bond), and a conventional two-step self-etch adhesive (OptiBond XTR) were used. The SBS and SFS were obtained with phosphoric acid pre-etching for 3, 10, or 15 s prior to application of the adhesives, and without pre-etching (0 s) as a control. A staircase method was used to determine the SFS with 10 Hz frequency for 50,000 cycles or until failure occurred. The mean demineralization depth for each treated enamel surface was also measured using a profilometer. For all the adhesives, the groups with pre-etching showed significantly higher SBS and SFS than groups without pre-etching. However, there was no significant difference in SBS and SFS among groups with > 3 s of preetching. In addition, although the groups with pre-etching showed significantly deeper demineralization depths than groups without pre-etching, there was no significant difference in depth among groups with > 3 s of pre-etching. Three seconds of phosphoric acid pre-etching prior to application of self-etch adhesive can enhance enamel bonding effectiveness.
Depth of intrastromal corneal ring segments by OCT.
Naftali, Modi; Jabaly-Habib, Haneen
2013-01-01
To compare the depth of intrastromal corneal ring segments (ICRS) with the expected depth value using optical coherence tomography (OCT). This was a retrospective comparative study in an ophthalmic unit in a government hospital, the Baruch Padeh Medical Center, Poriya, Israel. Ten eyes of 8 patients with 18 ICRS were reviewed. Eleven segments were Intacs (Addition Technology, Inc.) and 7 Kerarings (Mediphacos). Using anterior segment OCT (OPKO OTI) the shortest distance from the epithelium to the segment at 3 points was measured for each segment. The 3 points are proximal, middle, and distal to the incision. The mean depth of the 18 segments was 360±68 µm. The mean maximal and minimal depths were 383±70 and 336±72 µm, respectively. The mean depths of the distal, central, and proximal point measurements of all ICRS were 358±79, 361±77, and 362±59 µm, respectively; no significant difference was found. No part of the segments tended to be more superficial than others (p=0.98). There was no significant difference between Intacs and Kerarings depths (p=0.43). There was a significant difference between the expected ICRS depth and the OCT measurements (mean 480±20) and 360±68), respectively. The ICRS actual depth was less than expected. There was mild variability in segment depth, both between segments and along the same segment. No significant difference was found between the depth of Intacs and Kerarings.
NASA Astrophysics Data System (ADS)
Hardy, S. M.; Bik, H.; Walker, A.; Sharma, J.; Blanchard, A.
2016-02-01
Rapid change is occurring in the Arctic concurrently with increased human activity, yet our knowledge of the structure and function of high-Arctic sediment communities is still rudimentary. The Beaufort Sea is particularly poorly sampled, and largely unexplored at slope depths, providing little information with which to assess the impacts of petroleum exploration activities now beginning in this area. We are investigating diversity and community structure of meio- and macrobenthic infauna on the continental shelf and slope of the Beaufort Sea across a range of depths (50 to 1000 m) using traditional taxonomic and environmental DNA sequencing approaches, and comparing results to additional sites in the adjacent NE Chukchi Sea petroleum lease-sale area. The Beaufort slope is topographically complex and characterized by an east-west gradient in benthic habitat characteristics, with heavy input of terrestrial organic matter particularly in the region of the Mackenzie River delta. Warmer, saltier subsurface Atlantic water masses impact benthic communities at mid-slope depths, likely influencing turnover in community structure observed with depth. Food resources are variable across the region, with very high sediment chlorophyll concentrations at 350 m depth in some areas. Differences in nematode assemblages were detected across the Beaufort Sea shelf/slope, across depths within the Beaufort Sea, and between the Beaufort and adjacent NE Chukchi Sea. These differences were apparent in both morphological and environmental sequencing data. Macrofaunal communities showed variable community structure among transects, with high abundance and high dominance in polychaete assemblages coincident with the chlorophyll maximum. Sequencing data also revealed an abundance of protists in sediments which have been mostly ignored in studies of ecosystem dynamics in this region, and may represent an important component of the food web.
Habitat Parameters for Oxygen Minimum Zone Copepods from the Eastern Tropical North Pacific
NASA Astrophysics Data System (ADS)
Wishner, K. F.; Outram, D.; Grassian, B.
2016-02-01
Oxygen minimum zones (OMZs) affect zooplankton distributions and may be expanding in worldwide spatial and vertical extent from climate change. We studied zooplankton (especially copepod) distributions in the Eastern Tropical North Pacific (ETNP) OMZ, using day-night vertically-stratified MOCNESS tows (0-1000m). Habitat parameters (temperature, oxygen, depth) were defined for abundant copepod species and groups. Zooplankton layers, with a unique suite of species, occurred at upper and lower OMZ oxyclines. At the mesopelagic lower oxycline, there was a layer with a characteristic species assemblage and a sharp 10X biomass increase compared to nearby depths. The lower oxycline layer occurred within a narrow very low oxygen concentration (2µM). At two stations with different OMZ vertical extents, the lower oxycline layer depth changed with OMZ thickness, remaining at the same oxygen concentration but different temperature. Life history habitat (diapause depth, temperature) of the copepod Eucalanus inermis was also affected. In the upper water column at the two stations, large diel vertical migrators (fish, euphausiids) descended to taxon-specific daytime depths in the mid OMZ, regardless of oxygen level, but copepod species distributions showed more variability and sensitivity to habitat parameters. We predict that, with moderate OMZ expansion, the lower oxycline community will likely shift depth, thus re-distributing midwater biomass, species, and processes. In the upper water column, large vertical migrator distributions may be less affected, while smaller taxa (copepods) will likely be sensitive to habitat changes. At some point, the ability to withstand these changes may be exceeded for particular taxa, with consequences for assemblages, trophic webs, and export. In keeping with the session theme, we hope to compare our oceanic findings with others' results from coastal hypoxic situations.
Nondestructive testing and characterization of residual stress field using an ultrasonic method
NASA Astrophysics Data System (ADS)
Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng
2016-03-01
To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.
Wierichs, Richard J; Lausch, Julian; Meyer-Lueckel, Hendrik; Esteves-Oliveira, Marcella
2016-01-01
The aim of this double-blinded, randomized, cross-over in situ study was to evaluate the re- and demineralization characteristics of sound enamel as well as lowly and highly demineralized caries-like enamel lesions after the application of different fluoride compounds. In each of three experimental legs of 4 weeks, 21 participants wore intraoral mandibular appliances containing 4 bovine enamel specimens (2 lowly and 2 highly demineralized). Each specimen included one sound enamel and either one lowly demineralized (7 days, pH 4.95) or one highly demineralized (21 days, pH 4.95) lesion, and was positioned 1 mm below the acrylic under a plastic mesh. The three randomly allocated treatments (application only) included the following dentifrices: (1) 1,100 ppm F as NaF, (2) 1,100 ppm F as SnF2 and (3) 0 ppm F (fluoride-free) as negative control. Differences in integrated mineral loss (x0394;x0394;Z) and lesion depth (x0394;LD) were calculated between values before and after the in situ period using transversal microradiography. Of the 21 participants, 6 did not complete the study and 2 were excluded due to protocol violation. Irrespectively of the treatment, higher baseline mineral loss and lesion depth led to a less pronounced change in mineral loss and lesion depth. Except for x0394;x0394;Z of the dentifrice with 0 ppm F, sound surfaces showed significantly higher x0394;x0394;Z and x0394;LD values compared with lowly and highly demineralized lesions (p < 0.05, t test). Re- and demineralization characteristics of enamel depended directly on baseline mineral loss and lesion depth. Treatment groups should therefore be well balanced with respect to baseline mineral loss and lesion depth. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Wilson, K. P.; Williams, D. D.
2004-05-01
Integration of the fields of hydrogeology, biogeochemistry, and meiofaunal and microbial ecology is being used for a shallow groundwater temperature manipulation which simulates global climate change predictions. This study is being conducted on a first order spring-stream, Valley Spring, (southern Ontario, Canada) the headwater of which has been longitudinally divided to a sediment depth of -100 cm. To examine groundwater flow paths and hydraulic conductivity, and to collect physicochemical parameters and nutrient samples, a series of nested piezometers have been installed along three transects across the stream channel. Each nest evaluates water characteristics at depths of -20, -40, -60, -80, and -100 cm. Meiofaunal and microbial samples are collected, using a standpipe corer at the same depths as the piezometer openings. Sampling started in June 2002 and heating of one side of the groundwater began in March 2004. Hydraulic conductivity is heterogeneous with depth ranging from 0.0004 cm/s at -20 cm to 0.00002 cm/s at -100cm, but relatively uniform laterally, ranging from 0.0004 cm/s at 1 m to 0.0003 cm/s at 3 m from the stream channel. Pre-manipulation water temperatures decrease with depth in the summer, ranging from 14.5° C at the surface to 12.5° C at -100 cm. In contrast, temperature increases from 13.1 at the surface to 14.5° C at -100 cm in the fall. Temperature during the winter and spring are within 1.0° C from the surface to -100 cm, but range from 9.0-9.5° C in the winter and 8.0-7.0° C in the spring, respectively. Pre-manipulation nitrate concentrations are higher in winter (0.45 mg/l) then in summer (0.28 mg/l) and decrease with depth. Ammonia shows an inverse relationship, with lower concentrations in winter than summer (0.19 and 0.32 mg/l, respectively) and increase with depth. Dissolved organic carbon (DOC) also shows an increase with depth, ranging from 1.6 mg/l at the surface to 6.23 mg/l at -100 cm. Pre-manipulation meiofaunal abundance shows no difference between seasons but higher densities at -20cm then at all other depths. The most common meiofaunal taxa include Harpacticoida, Nematoda, Ostracoda, Chironomidae, Collembola, and Hydracarina. Plecoptera and Hymenoptera larvae are also found on occasion above -60 cm.
Effects of Different Tillage and Straw Return on Soil Organic Carbon in a Rice-Wheat Rotation System
Zhu, Liqun; Hu, Naijuan; Yang, Minfang; Zhan, Xinhua; Zhang, Zhengwen
2014-01-01
Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C) contents. However, the effects of tillage method or straw return on soil organic C (SOC) have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC) and labile organic C fractions at three soil depths (0–7, 7–14 and 14–21 cm) for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC), dissolved organic C (DOC) and microbial biomass C (MBC) contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0–7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7–14 cm depth. However, at 14–21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta. PMID:24586434
Cell Lineage Analysis of the Mammalian Female Germline
Elbaz, Judith; Jinich, Adrian; Chapal-Ilani, Noa; Maruvka, Yosef E.; Nevo, Nava; Marx, Zipora; Horovitz, Inna; Wasserstrom, Adam; Mayo, Avi; Shur, Irena; Benayahu, Dafna; Skorecki, Karl; Segal, Eran; Dekel, Nava; Shapiro, Ehud
2012-01-01
Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development. PMID:22383887
Comparisons of global topographic/isostatic models to the Earth's observed gravity field
NASA Technical Reports Server (NTRS)
Rummel, Reiner; Rapp, Richard H.; Suenkel, Hans; Tscherning, C. Christian
1988-01-01
The Earth's gravitational potential, as described by a spherical harmonic expansion to degree 180, was compared to the potential implied by the topography and its isostatic compensation using five different hypothesis. Initially, series expressions for the Airy/Heiskanen topographic isostatic model were developed to the third order in terms of (h/R), where h is equivalent rock topography and R is a mean Earth radius. Using actual topographic developments for the Earth, it was found that the second and third terms of the expansion contributed 30 and 3 percents, of the first of the expansion. With these new equations it is possible to compute depths (D) of compensation, by degree, using 3 different criteria. The results show that the average depth implied by criterion I is 60 km while it is about 33 km for criteria 2 and 3 with smaller compensation depths at the higher degrees. Another model examined was related to the Vening-Meinesz regional hypothesis implemented in the spectral domain. Finally, oceanic and continental response functions were derived for the global data sets and comparisons made to locally determined values.
Vertical amplitude phase structure of a low-frequency acoustic field in shallow water
NASA Astrophysics Data System (ADS)
Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.
2016-11-01
We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.
Remineralization of primary tooth enamel from individuals with Down syndrome.
Okamoto, Takuma; Shibata, Munenori; Tsuboi, Shinji; Nakagaki, Haruo; Fukuta, Osamu; Kusabe, Yoshitaka; Inukai, Junko
2011-01-01
The purpose of this study was to clarify the characteristics of primary tooth enamel of Down syndrome patients (DSPs). We examined 9 primary teeth of Down syndrome children and 11 primary teeth of normally developed children to investigate the remineralization processes of enamel by transverse microradiography and X ray micro analyzer (XMA). Mineral loss, lesion depth, maximum mineral value, minimum mineral value, depth of maximum mineral value, and depth of minimum mineral value were used to analyze transverse microradiography (TMR). In addition, we calculated the percentage of enamel remineralization. All the parameters in the 2 groups showed marked recovery. The results indicated that the Down syndrome group was significantly remineralized the same way as the control group. According to the comparison of mineral content distribution by XMA, the content distribution of magnesium was different between the 2 groups. While recovery through remineralization of primary teeth was similar between Down syndrome children and normally developed children, the mechanism of remineralization process may be different between the 2 groups; consequently, magnesium may be considered as one of the factors affecting recovery.
Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area
NASA Astrophysics Data System (ADS)
Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua
2017-10-01
Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.
Surface characteristics and damage distributions of diamond wire sawn wafers for silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopori, Bhushan; Devayajanam, Srinivas; Basnyat, Prakash
2016-01-01
This paper describes surface characteristics, in terms of its morphology, roughness and near-surface damage of Si wafers cut by diamond wire sawing (DWS) of Si ingots under different cutting conditions. Diamond wire sawn Si wafers exhibit nearly-periodic surface features of different spatial wavelengths, which correspond to kinematics of various movements during wafering, such as ingot feed, wire reciprocation, and wire snap. The surface damage occurs in the form of frozen-in dislocations, phase changes, and microcracks. The in-depth damage was determined by conventional methods such as TEM, SEM and angle-polishing/defect-etching. However, because these methods only provide local information, we have alsomore » applied a new technique that determines average damage depth over a large area. This technique uses sequential measurement of the minority carrier lifetime after etching thin layers from the surfaces. The lateral spatial damage variations, which seem to be mainly related to wire reciprocation process, were observed by photoluminescence and minority carrier lifetime mapping. Our results show a strong correlation of damage depth on the diamond grit size and wire usage.« less
2013-01-01
Background The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. Results We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. Conclusions These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies. PMID:23496952
Francis, Warren R; Christianson, Lynne M; Kiko, Rainer; Powers, Meghan L; Shaner, Nathan C; Haddock, Steven H D
2013-03-12
The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies.
Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth; Greer, Charles W
2015-09-01
Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Jansen, D.; Llorens, M.-G.; Westhoff, J.; Steinbach, F.; Kipfstuhl, S.; Bons, P. D.; Griera, A.; Weikusat, I.
2016-02-01
Disturbances on the centimetre scale in the stratigraphy of the North Greenland Eemian Ice Drilling (NEEM) ice core (North Greenland) can be mapped by an optical line scanner as long as the ice has visual layering, such as, for example, cloudy bands. Different focal depths allow, to a certain extent, a three-dimensional view of the structures. In this study we present a detailed analysis of the visible folds, discuss their characteristics and frequency, and present examples of typical fold structures. We also analyse the structures with regard to the deformation boundary conditions under which they formed. The structures evolve from gentle waves at about 1500 m to overturned z folds with increasing depth. Occasionally, the folding causes significant thickening of layers. Their similar fold shape indicates that they are passive features and are probably not initiated by rheology differences between alternating layers. Layering is heavily disturbed and tracing of single layers is no longer possible below a depth of 2160 m. C axes orientation distributions for the corresponding core sections were analysed, where available, in addition to visual stratigraphy. The data show axial-plane parallel strings of grains with c axis orientations that deviate from that of the matrix, which shows a single maximum fabric at the depth where the folding occurs. Numerical modelling of crystal viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures during deformation. The modelling reproduces the development of bands of grains with a tilted-lattice orientation relative to the single maximum fabric of the matrix, and also the associated local deformation. We conclude from these results that the observed folding can be explained by formation of these tilted-lattice bands.
Bolduc, F.; Afton, A.D.
2008-01-01
Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Harpold, A. A.; Brooks, P. D.; Biederman, J. A.; Swetnam, T.
2011-12-01
Difficulty estimating snowpack variability across complex forested terrain currently hinders the prediction of water resources in the semi-arid Southwestern U.S. Catchment-scale estimates of snowpack variability are necessary for addressing ecological, hydrological, and water resources issues, but are often interpolated from a small number of point-scale observations. In this study, we used LiDAR-derived distributed datasets to investigate how elevation, aspect, topography, and vegetation interact to control catchment-scale snowpack variability. The study area is the Redondo massif in the Valles Caldera National Preserve, NM, a resurgent dome that varies from 2500 to 3430 m and drains from all aspects. Mean LiDAR-derived snow depths from four catchments (2.2 to 3.4 km^2) draining different aspects of the Redondo massif varied by 30%, despite similar mean elevations and mixed conifer forest cover. To better quantify this variability in snow depths we performed a multiple linear regression (MLR) at a 7.3 by 7.3 km study area (5 x 106 snow depth measurements) comprising the four catchments. The MLR showed that elevation explained 45% of the variability in snow depths across the study area, aspect explained 18% (dominated by N-S aspect), and vegetation 2% (canopy density and height). This linear relationship was not transferable to the catchment-scale however, where additional MLR analyses showed the influence of aspect and elevation differed between the catchments. The strong influence of North-South aspect in most catchments indicated that the solar radiation is an important control on snow depth variability. To explore the role of solar radiation, a model was used to generate winter solar forcing index (SFI) values based on the local and remote topography. The SFI was able to explain a large amount of snow depth variability in areas with similar elevation and aspect. Finally, the SFI was modified to include the effects of shading from vegetation (in and out of canopy), which further explained snow depth variability. The importance of SFI for explaining catchment-scale snow depth variability demonstrates that aspect is not a sufficient metric for direct radiation in complex terrain where slope and remote topographic shading are significant. Surprisingly, the net effects of interception and shading by vegetation on snow depths were minimal compared to elevation and aspect in these catchments. These results suggest that snowpack losses from interception may be balanced by increased shading to reduce the overall impacts from vegetation compared to topographic factors in this high radiation environment. Our analysis indicated that elevation and solar radiation are likely to control snow variability in larger catchments, with interception and shading from vegetation becoming more important at smaller scales.
NASA Astrophysics Data System (ADS)
Yoshida, Y.; Matsumura, A.; Higeta, K.; Inoue, T.; Shimizu, S.; Motonami, Y.; Sato, M.; Sadahiro, T.; Fujii, K.
1991-07-01
The hardness depth profiles of cemented carbides which were implanted with high-energy B + ions have been estimated using a dynamic microhardness tester. The B + implantations into (16% Co)-cemented WC alloys were carried out under conditions where the implantation energies were 1-3 MeV and the fluences 1 × 10 17-1 × 10 18ions/cm 2. The profiles show that the implanted layer becomes harder as fluences are chosen at higher values and there is a peak at a certain depth which depends on the implantation energy. In X-ray diffraction (XRD) studies of the implanted surface the broadened refraction peaks of only WC and Co are detected and the increments of lattice strain and of residual stress in the near-surface region are observed. It is supposed that the hardening effect should be induced by an increase in residual stress produced by lattice strain. The hardness depth profile in successive implantation of ions with different energies agrees with the compounded profile of each one of the implantations. It is concluded that the hardness depth profile can be controlled under adequate conditions of implantation.
Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan
2015-01-01
Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm3 water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in reproducing depth dose profile of the beam of pions was not negligible. Because the discrepancies were pronounced in smaller depth and also regarding the contribution of pions in deposited dose of a beam of antiproton, further investigation on choosing most suitable and accurate physic list for this purpose should be done. Furthermore, this study showed careful attention must be paid to choose the appropriate Geant4 physic list for neutron tracking depending to the applications criteria. We failed to find any agreement between results from Geant4 and Fluka to reproduce depth dose profile of pion with the energy range used in this study. PMID:26120569
NASA Astrophysics Data System (ADS)
Zhu, Q.; Xu, Y. P.; Gu, H.
2014-12-01
Traditionally, regional frequency analysis methods were developed for stationary environmental conditions. Nevertheless, recent studies have identified significant changes in hydrological records, leading to the 'death' of stationarity. Besides, uncertainty in hydrological frequency analysis is persistent. This study aims to investigate the impact of one of the most important uncertainty sources, parameter uncertainty, together with nonstationarity, on design rainfall depth in Qu River Basin, East China. A spatial bootstrap is first proposed to analyze the uncertainty of design rainfall depth estimated by regional frequency analysis based on L-moments and estimated on at-site scale. Meanwhile, a method combining the generalized additive models with 30-year moving window is employed to analyze non-stationarity existed in the extreme rainfall regime. The results show that the uncertainties of design rainfall depth with 100-year return period under stationary conditions estimated by regional spatial bootstrap can reach 15.07% and 12.22% with GEV and PE3 respectively. On at-site scale, the uncertainties can reach 17.18% and 15.44% with GEV and PE3 respectively. In non-stationary conditions, the uncertainties of maximum rainfall depth (corresponding to design rainfall depth) with 0.01 annual exceedance probability (corresponding to 100-year return period) are 23.09% and 13.83% with GEV and PE3 respectively. Comparing the 90% confidence interval, the uncertainty of design rainfall depth resulted from parameter uncertainty is less than that from non-stationarity frequency analysis with GEV, however, slightly larger with PE3. This study indicates that the spatial bootstrap can be successfully applied to analyze the uncertainty of design rainfall depth on both regional and at-site scales. And the non-stationary analysis shows that the differences between non-stationary quantiles and their stationary equivalents are important for decision makes of water resources management and risk management.
Hao, Yuanyuan; Xie, Yaowen; Ma, Jinhui; Zhang, Wenpei
2017-12-01
Designed as a watershed groundwater restoration policy (WGRP), the Comprehensive Treatment Program of the Shiyang River Basin (CTSRB) was launched in 2006 to restore the groundwater resources in the Minqin oasis, northwestern China. This study sought to verify the recovery effects of CTSRB implementation from the perspective of groundwater depth. We reconstructed the spatio-temporal distribution of groundwater depth at interannual and pixel scales by using digital groundwater depth models (DGDMs), based on the ordinary kriging interpolation method. Using DGDMs data, various measures of the groundwater table (e.g., regional depths, surface areas, depletion cones, and conditions in irrigated regions including Ba, Quanshan, and Hu) were quantitatively analyzed and compared for the pre-CTSRB (2001-2006), CTSRB I (2006-2010), and CTSRB II (2010-2015) periods, for which spatial trends in the annual amplitudes of groundwater depth were compared. Finally, strategies that impacted the groundwater behavior before and during the CTSRB periods, possible indirect and adverse effects, and long-term strategies and prospects were discussed. The results showed that groundwater depth first declined sharply, before increasing slowly and stabilizing after implementation of the CTSRB. Areas of greater groundwater depth (<-20m) and four groundwater depletion cones expanded during the pre-CTSRB period, whereas variable shrinking trends were detected during the CTSRB period. Spatial analysis showed that groundwater recovery mainly occurred along the periphery of the three irrigated regions, among which recovery effects in Hu were more obvious than those in Quanshan and Ba, with pumping-well densities the main reason for the difference. Therefore, various strategies (increasing the surface water supply, reducing groundwater mining, and some other auxiliary measures) of CTSRB together supported groundwater recovery in the Minqin oasis. Overall, this research demonstrates an innovative perspective to verify the effects of WGRPs in arid and semi-arid areas. Copyright © 2017. Published by Elsevier B.V.
Jelvehgaran, Pouya; Alderliesten, Tanja; Weda, Jelmer J A; de Bruin, Martijn; Faber, Dirk J; Hulshof, Maarten C C M; van Leeuwen, Ton G; van Herk, Marcel; de Boer, Johannes F
2017-12-01
Optical coherence tomography (OCT) is of interest to visualize microscopic esophageal tumor extensions to improve tumor delineation for radiation therapy (RT) planning. Fiducial marker placement is a common method to ensure target localization during planning and treatment. Visualization of these fiducial markers on OCT permits integrating OCT and computed tomography (CT) images used for RT planning via image registration. We studied the visibility of 13 (eight types) commercially available solid and liquid fiducial markers in OCT images at different depths using dedicated esophageal phantoms and evaluated marker placement depth in clinical practice. We designed and fabricated dedicated esophageal phantoms, in which three layers mimic the anatomical wall structures of a healthy human esophagus. We successfully implanted 13 commercially available fiducial markers that varied in diameter and material property at depths between 0.5 and 3.0 mm. The resulting esophageal phantoms were imaged with OCT, and marker visibility was assessed qualitatively and quantitatively using the contrast-to-background-noise ratio (CNR). The CNR was defined as the difference between the mean intensity of the fiducial markers and the mean intensity of the background divided by the standard deviation of the background intensity. To determine whether, in current clinical practice, the implanted fiducial markers are within the OCT visualization range (up to 3.0 mm depth), we retrospectively measured the distance of 19 fiducial markers to the esophageal lumen on CT scans of 16 esophageal cancer patients. In the esophageal phantoms, all the included fiducial markers were visible on OCT at all investigated depths. Solid fiducial markers were better visible on OCT than liquid fiducial markers with a 1.74-fold higher CNR. Although fiducial marker identification per type and size was slightly easier for superficially implanted fiducial markers, we observed no difference in the ability of OCT to visualize the markers over the investigated depth range. Retrospective distance measurements of 19 fiducial markers on the CT scan of esophageal cancer patients showed that 84% (distance from the closest border of the marker to the lumen) and 53% (distance from the center of the marker to the lumen) of the fiducial markers were located within the OCT visualization range of up to 3.0 mm. We studied the visibility of eight types of commercially available fiducial markers at different depths on OCT using dedicated esophageal phantoms. All tested fiducial markers were visible at depths ≤3.0 mm and most, but not all, clinically implanted markers were at a depth accessible to OCT. Consequently, the use of fiducial markers as a reference for OCT to CT registration is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Faulkner, D. R.; Samec, R. G.; Stoddard, M. L.; McKenzie, R.; Rebar, D.; Lavoie, G. D.; Moody, S.; Miller, J.; Van Hamme, W.
2002-12-01
As a part of our continuing search for solar type binaries with impacting gas streams, we present light curves of V343 Cen, UY Mus, HT Aps, and V1961 Sgr. These are all neglected variables whose observing histories show little or no observations since their discovery. The CCD observations were taken at the 0.9-m at CTI0 in the UBVRI Johnson-Cousins system. The observations were taken in on 2002, May 31-June 8 and 2001, May 16 - 23 respectively. UY Mus is a near contact binary with a large difference in eclipse depths of V = 0.67 mag. Otherwise the curve appears symmetric. The times of minimum light determined from our data are HJD Min I = 242047.62316(6) and Min II = 2452050.4874(3) where the value in parentheses is the standard error in the last decimal place. V1961 Sgr (GCVS 6848 485) is a W UMa binary with a difference in eclipse depths of V = 0.11 mag and a possible variable spot area causing a V = 0.04 mag variation in MAX I from night to night. HT Aps is a near contact solar type binary with a large difference in eclipse depths of V= 0.47 mag and a somewhat asymmetric (difference in maxima, V= 0.4 mag) light curve. It is a possibly a candidate for a binary with a gas stream. One time of minimum light determined from our data is HJD Min I = 2452331.63725 (12). V343 Cen is a near contact binary with a large difference in eclipse depths of V= 0.42 mag and distortions that give evidence of a gas stream collision. The difference in maxima is V = 0.07 mag. The curve shows little variation over the 4 day interval of observation. Light curves analyses, new period determinations and photometric data will be presented for these variables. Acknowledgements: We wish to thank the American Astronomical Society for their continued support of our undergraduate research programs through their small research grants. Faulkner and Samec were visiting Astronomers, Cerro Tololo InterAmerican Observatory, National Optical Astronomical Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.
Effects of coating materials on nanoindentation hardness of enamel and adjacent areas.
Alsayed, Ehab Z; Hariri, Ilnaz; Nakashima, Syozi; Shimada, Yasushi; Bakhsh, Turki A; Tagami, Junji; Sadr, Alireza
2016-06-01
Materials that can be applied as thin coatings and actively release fluoride or other bioavailable ions for reinforcing dental hard tissue deserve further investigation. In this study we assessed the potential of resin coating materials in protection of underlying and adjacent enamel against demineralization challenge using nanoindentation. Enamel was coated using Giomer (PRG Barrier Coat, PBC), resin-modified glass-ionomer (Clinpro XT Varnish, CXT), two-step self-etch adhesive (Clearfil SE Protect, SEP) or no coating (control). After 5000 thermal cycles and one-week demineralization challenge, Martens hardness of enamel beneath the coating, uncoated area and intermediate areas was measured using a Berkovich tip under 2mN load up to 200μm depth. Integrated hardness and 10-μm surface zone hardness were compared among groups. Nanoindentation and scanning electron microscopy suggested that all materials effectively prevented demineralization in coated area. Uncoated areas presented different hardness trends; PBC showed a remarkable peak at the surface zone before reaching as low as the control, while CXT showed relatively high hardness values at all depths. Ion-release from coating materials affects different layers of enamel. Coatings with fluoride-releasing glass fillers contributed to reinforcement of adjacent enamel. Surface prereacted glass filler-containing PBC superficially protected neighboring enamel against demineralization, while resin-modified glass-ionomer with calcium (CXT) improved in-depth protection. Cross-sectional hardness mapping of enamel on a wide range of locations revealed minute differences in its structure. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Ipek, O; Raaijmakers, A J E; Klomp, D W J; Lagendijk, J J W; Luijten, P R; van den Berg, C A T
2012-01-21
Ultra-high field magnetic resonance (≥7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.
NASA Astrophysics Data System (ADS)
Rebotim, Andreia; Voelker, Antje H. L.; Jonkers, Lukas; Waniek, Joanna J.; Meggers, Helge; Schiebel, Ralf; Fraile, Igaratza; Schulz, Michael; Kucera, Michal
2017-02-01
Planktonic foraminifera preserved in marine sediments archive the physical and chemical conditions under which they built their shells. To interpret the paleoceanographic information contained in fossil foraminifera, the recorded proxy signals have to be attributed to the habitat and life cycle characteristics of individual species. Much of our knowledge on habitat depth is based on indirect methods, which reconstruct the depth at which the largest portion of the shell has been calcified. However, habitat depth can be best studied by direct observations in stratified plankton nets. Here we present a synthesis of living planktonic foraminifera abundance data in vertically resolved plankton net hauls taken in the eastern North Atlantic during 12 oceanographic campaigns between 1995 and 2012. Live (cytoplasm-bearing) specimens were counted for each depth interval and the vertical habitat at each station was expressed as average living depth (ALD). This allows us to differentiate species showing an ALD consistently in the upper 100 m (e.g., Globigerinoides ruber white and pink), indicating a shallow habitat; species occurring from the surface to the subsurface (e.g., Globigerina bulloides, Globorotalia inflata, Globorotalia truncatulinoides); and species inhabiting the subsurface (e.g., Globorotalia scitula and Globorotalia hirsuta). For 17 species with variable ALD, we assessed whether their depth habitat at a given station could be predicted by mixed layer (ML) depth, temperature in the ML and chlorophyll a concentration in the ML. The influence of seasonal and lunar cycle on the depth habitat was also tested using periodic regression. In 11 out of the 17 tested species, ALD variation appears to have a predictable component. All of the tested parameters were significant in at least one case, with both seasonal and lunar cyclicity as well as the environmental parameters explaining up to > 50 % of the variance. Thus, G. truncatulinoides, G. hirsuta and G. scitula appear to descend in the water column towards the summer, whereas populations of Trilobatus sacculifer appear to descend in the water column towards the new moon. In all other species, properties of the mixed layer explained more of the observed variance than the periodic models. Chlorophyll a concentration seems least important for ALD, whilst shoaling of the habitat with deepening of the ML is observed most frequently. We observe both shoaling and deepening of species habitat with increasing temperature. Further, we observe that temperature and seawater density at the depth of the ALD were not equally variable among the studied species, and their variability showed no consistent relationship with depth habitat. According to our results, depth habitat of individual species changes in response to different environmental and ontogenetic factors and consequently planktonic foraminifera exhibit not only species-specific mean habitat depths but also species-specific changes in habitat depth.
Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain
NASA Astrophysics Data System (ADS)
Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.
2009-04-01
Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is not possible to conclude that the actual contamination by zinc is due to atmospheric deposition or spill. However, some samples in this same area present lightly higher zinc concentration in topsoil than in subsoil indicating a cursory atmospheric deposition. Regarding to lead, one of the industrial areas showed a very active atmospheric deposition, with concentrations higher than 900 mg/kg in topsoil decreasing until less than 10 mg/kg to 30 cm depth. Oppositely, the lead concentration in natural soil is constant in the profile. On the other hand, the range of cadmium concentrations in the different depths of the profiles was, generally, low. Only one sample from the industrial area shows high concentration in the first centimetre of soil, decreasing quickly with the depth, supporting the hypothesis that the atmospheric deposition is the main pathway of cadmium contamination. Studding the copper concentration, only in agricultural soil atmospheric deposition is observed, probably due to application of pesticides. Oppositely to the rest of metals, manganese increases its concentration with the depth in natural soil, probably due to that the parent material (metamorphic rock) is rich in this metal. In the case of chromium has not been detected atmospheric deposition in any sampling point. Finally, only one sample located at the industrial area, nickel concentration shows a higher level in topsoil than subsoil, indicating atmospheric deposition. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, K.; Dickhut, R.M.
1995-12-31
Photodegradation kinetics of selected polycyclic aromatic hydrocarbons (PAHs) in the presence of various particle and dissolved phases were examined in surface microlayer (SM) and surface water under direct solar irradiance during different seasons. Halflives of PAHs during different seasons in the various media were determined. The results showed shorter halflives measured at the surface for PAHs in the SM media than in surface water. Submergence depth also significantly affected rate constants, and halflives for PAH compounds were 1.4 to 5 times shorter at the surface than at 14cm depth below the surface. In bulk SM media, the annual average halflivesmore » varied from 1.3 to 43 hours (midday) with different PAH compounds, and in filtered SM from 1.8 to 56.9 hours (midday). The effects of particles and DOC on the photodegradation of PAHs were also inspected. The results showed particulates and DOC both enhanced or decreased the photodegradation rate constants for selected PAHs. Overall, PAH photoreactivity is related to the compound`s maximum net atomic charge (MNAC) on the most reactive carbon center of a specific PAH molecule.« less
Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy
2012-01-01
Aim: A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis—an in vitro study. Materials and Methods: The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. Results: The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Conclusion: Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5th day followed by aloe vera gel and papain gel. PMID:22876022
Effects of orbital exposure on Halar during the LDEF mission
NASA Technical Reports Server (NTRS)
Brower, William E., Jr.; Holla, Harish; Bauer, Robert A.
1992-01-01
Thermomechanical Analysis (TMA), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) were performed on samples of Halar exposed on the LDEF Mission for 6 years in orbit and unexposed Halar control samples. Sections 10-100 microns thick were removed from the exposed surface down to a depth of 1,000 microns through the 3 mm thick samples. The TMA and DSC results, which arise from the entire slice and not just its surface, showed no differences between the LDEF and the control samples. TMA scans were run from ambient to 300 C; results were compared by a tabulation of the glass transition temperatures. DSC scans were run from ambient to 700 C; the enthalpy of melting was compared for the samples as a function of section depth with the sample. The TGA results, which arise from the surface of the sample initially, showed a sharp increase in the topmost 50 micron section (the exposed, discolored side) in the weight loss of 170 C in oxygen. This weight loss dropped to bulk values in the range of depth of 50-200 microns. The control sample showed only a slight increase in weight loss as the top surface was approached. The LDEF Halar sample appears to be mechanically undamaged, with a surface layer which oxidizes faster as a result of orbital exposure.
NASA Astrophysics Data System (ADS)
McDowell, P. F.
2017-12-01
In many active restoration projects, instream structures or modifications are designed to produce specific change in channel form, such as reduced W:D or increased pool depth, yet there is little monitoring to evaluate effectiveness. Active restoration often takes place within a context of other land management changes that can have an effect on channel form. Thus, the effects of active restoration are difficult to separate from the effects of other management actions. We measured morphologic response to restoration designs on sections of the Middle Fork John Day River, a gravel-cobble bed river under a cattle grazing regime in the Blue Mountain of Oregon. Since 2000, restoration actions have included elimination of cattle grazing in the riparian zone (passive restoration), riparian planting of woody vegetation, instream log structures for fish habitat and pool maintenance, and elimination of a major flow diversion. We listed the hypothetical effects of each of these management changes, showing overlap among effects of active and passive restoration. Repeat cross-section and longitudinal profile surveys over eight years, and repeat aerial imagery, documented changes in channel width, depth and bed morphology, and processes of change (bank erosion or aggradation, point bar erosion or aggradation, bed incision or aggradation), in two restored reaches and two adjacent control (unrestored) reaches. Morphologic changes were modest. Bankfull cross-section area, width, and W:D all decreased slightly in both restored reaches. Control reaches were unchanged or increased slightly. Processes of change were markedly different among the four reaches, with different reaches dominated by different processes. One restored reach was dominated by slight bed aggradation, increased pool depth and deep pools/km, while the other restored reach was dominated by bank erosion, bar aggradation and slight bed incision, along with increased deep pools/km. The longitudinal profile showed significant re-arrangement of bed morphology. The spatial context of processes and controls allows some separation of the effectiveness of different management actions. Active restoration directly increased pool depth, but passive restoration apparently had more impact on aggradation/degradation and width.
NASA Astrophysics Data System (ADS)
Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz
2016-09-01
A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored for much longer than event water (average water age is 16 years). Tracing stable water isotopes through the water cycle in combination with our hydrological model was valuable for determining interactions between different water cycle components and unravelling age dynamics within the study area. This knowledge can further improve catchment-specific process understanding of developed, human-impacted landscapes.
Fate of redox-sensitive elements in two different East-African wetland systems
NASA Astrophysics Data System (ADS)
Glasner, Björn; Fiedler, Sabine
2017-04-01
We expect that an intensified cropping alters soil pH and Eh, and negatively affects the production potential of wetlands. Therefore, we investigated the redox-conditions in combination with the fate of different redox-sensitive elements in two prototypical wetland systems that show a high potential for food production in East-Africa. While the floodplains (observed near Ifakara, Kilombero District/Tanzania) serve as major crop producing areas in the region, the Inland Valleys (observed in Namulonge, Central District/Uganda) show a high potential for future production. Both systems have been divided into three positions; the fringe near to the slope, the center near to the river and the middle in between these two positions. In order to get a better understanding of the two systems we installed continuously measuring redox-electrodes in three different positions within both systems. Additionally, the fate of mineral elements was measured using ion-exchange resins with an installation period of 3-4 months. At the Tanzanian field sites the Eh-potential shows one major dry period with moderately reducing to well drained conditions in all sampling depths (10, 30, and 50 cm below ground) in all three positions during the measuring period from March 2015 to Dec 2016. Starting with the rains the Eh-potential drops from 700 mV (in 10 and 30 cm depth) to reducing conditions at all three sites - with intermediate brakes in the middle and fringe positions, showing that there has been no rain during these periods. At the Ugandan field sites the Eh-potential shows more fluctuations during the measuring period, especially in the center position in 2015 ( 750 to -200 mV in 30 and 50 cm depth). Having just the Eh-potential from the first 30 cm below ground it is not really possible to differentiate between dry- and rainy-seasons at the sites. The fate of redox-sensitive elements (Fe, Mn, and P) does not always correlate with the overall Eh-conditions (median) of the installation period. Short time events may play a crucial role in the fate of these elements.
A global reference model of Curie-point depths based on EMAG2
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-01-01
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)−1 for the ocean and K = ~2.5 W(m°C)−1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW. PMID:28322332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hao; He, Zhili; Wang, Aijie
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; ...
2017-10-27
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye
2018-01-01
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Kayode, John Stephen; Nawawi, M. N. M.; Abdullah, Khiruddin B.; Khalil, Amin E.
2017-01-01
The integration of Aeromagnetic data and remotely sensed imagery with the intents of mapping the subsurface geological structures in part of the South-western basement complex of Nigeria was developed using the PCI Geomatica Software. 2013. The data obtained from the Nigerian Geological Survey Agency; was corrected using Regional Residual Separation of the Total Magnetic field anomalies enhanced, and International Geomagnetic Reference Field removed. The principal objective of this study is, therefore, to introduce a rapid and efficient method of subsurface structural depth estimate and structural index evaluation through the incorporation of the Euler Deconvolution technique into PCI Geomatica 2013 to prospect for subsurface geological structures. The shape and depth of burial helped to define these structures from the regional aeromagnetic map. The method enabled various structural indices to be automatically delineated for an index of between 0.5 SI and 3.0 SI at a maximum depth of 1.1 km that clearly showed the best depths estimate for all the structural indices. The results delineate two major magnetic belts in the area; the first belt shows an elongated ridge-like structure trending mostly along the NorthNortheast-SouthSouthwest and the other anomalies trends primarily in the Northeast, Northwest, Northeast-Southwest parts of the study area that could be attributed to basement complex granitic intrusions from the tectonic history of the area. The majority of the second structures showed various linear structures different from the first structure. Basically, a significant offset was delineated at the core segment of the study area, suggesting a major subsurface geological feature that controls mineralisation in this area.
Crude oil degradation as an explanation of the depth rule
Price, L.C.
1980-01-01
Previous studies of crude oil degradation by water washing and bacterial attack have documented the operation of these processes in many different petroleum basins of the world. Crude oil degradation substantially alters the chemical and physical makeup of a crude oil, changing a light paraffinic low-S "mature" crude to a heavy naphthenic or asphalt base, "immature appearing" high-S crude. Rough calculations carried out in the present study using experimentally determined solubility data of petroleum in water give insight into the possible magnitude of water washing and suggest that the process may be able to remove large amounts of petroleum in small divisions of geologic time. Plots of crude oil gravity vs. depth fail to show the expected correlation of increasing API gravity (decreasing specific gravity) with depth below 2.44 km (8000 ft.). Previous studies which have been carried out to document in-reservoir maturation have used crude oil gravity data shallower than 2.44 km (8000 ft.). The changes in crude oil composition as a function of depth which have been attributed to in-reservoir maturation over these shallower depths, are better explained by crude oil degradation. This study concludes that changes in crude oil composition that result from in-reservoir maturation are not evident from existing crude oil gravity data over the depth and temperature range previously supposed, and that the significant changes in crude oil gravity which are present over the shallow depth range are due to crude oil degradation. Thus the existence of significant quantities of petroleum should not necessarily be ruled out below an arbitrarily determined depth or temperature limit when the primary evidence for this is the change in crude oil gravity at shallow depths. ?? 1980.
Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.
Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo
2011-11-18
We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.
Connective tissue graft vs. emdogain: A new approach to compare the outcomes.
Sayar, Ferena; Akhundi, Nasrin; Gholami, Sanaz
2013-01-01
The aim of this clinical trial study was to clinically evaluate the use of enamel matrix protein derivative combined with the coronally positioned flap to treat gingival recession compared to the subepithelial connective tissue graft by a new method to obtain denuded root surface area. Thirteen patients, each with two or more similar bilateral Miller class I or II gingival recession (40 recessions) were randomly assigned to the test (enamel matrix protein derivative + coronally positioned flap) or control group (subepithelial connective tissue graft). Recession depth, width, probing depth, keratinized gingival, and plaque index were recorded at baseline and at one, three, and six months after treatment. A stent was used to measure the denuded root surface area at each examination session. Results were analyzed using Kolmogorov-Smirnov, Wilcoxon, Friedman, paired-sample t test. The average percentages of root coverage for control and test groups were 63.3% and 55%, respectively. Both groups showed significant keratinized gingival increase (P < 0.05). Recession depth decreased significantly in both groups. Root surface area was improved significantly from baseline with no significant difference between the two study groups (P > 0.05). The results of Friedman test were significant for clinical indices (P < 0.05), except for probing depth in control group (P = 0.166). Enamel matrix protein derivative showed the same results as subepithelial connective tissue graft with relatively easy procedure to perform and low patient morbidity.
Passive Super-Low Frequency electromagnetic prospecting technique
NASA Astrophysics Data System (ADS)
Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming
2017-03-01
The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.
Replication of the nano-scale mold fabricated with focused ion beam
NASA Astrophysics Data System (ADS)
Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.
2004-12-01
Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.
Automatic laser welding and milling with in situ inline coherent imaging.
Webster, P J L; Wright, L G; Ji, Y; Galbraith, C M; Kinross, A W; Van Vlack, C; Fraser, J M
2014-11-01
Although new affordable high-power laser technologies enable many processing applications in science and industry, depth control remains a serious technical challenge. In this Letter we show that inline coherent imaging (ICI), with line rates up to 312 kHz and microsecond-duration capture times, is capable of directly measuring laser penetration depth, in a process as violent as kW-class keyhole welding. We exploit ICI's high speed, high dynamic range, and robustness to interference from other optical sources to achieve automatic, adaptive control of laser welding, as well as ablation, achieving 3D micron-scale sculpting in vastly different heterogeneous biological materials.
Identification of depth information with stereoscopic mammography using different display methods
NASA Astrophysics Data System (ADS)
Morikawa, Takamitsu; Kodera, Yoshie
2013-03-01
Stereoscopy in radiography was widely used in the late 80's because it could be used for capturing complex structures in the human body, thus proving beneficial for diagnosis and screening. When radiologists observed the images stereoscopically, radiologists usually needed the training of their eyes in order to perceive the stereoscopic effect. However, with the development of three-dimensional (3D) monitors and their use in the medical field, only a visual inspection is no longer required in the medical field. The question then arises as to whether there is any difference in recognizing depth information when using conventional methods and that when using a 3D monitor. We constructed a phantom and evaluated the difference in capacity to identify the depth information between the two methods. The phantom consists of acryl steps and 3mm diameter acryl pillars on the top and bottom of each step. Seven observers viewed these images stereoscopically using the two display methods and were asked to judge the direction of the pillar that was on the top. We compared these judged direction with the direction of the real pillar arranged on the top, and calculated the percentage of correct answerers (PCA). The results showed that PCA obtained using the 3D monitor method was higher PCA by about 5% than that obtained using the naked-eye method. This indicated that people could view images stereoscopically more precisely using the 3D monitor method than when using with conventional methods, like the crossed or parallel eye viewing. We were able to estimate the difference in capacity to identify the depth information between the two display methods.
NASA Astrophysics Data System (ADS)
Rosa, R.; Nunes, M. L.
2003-01-01
The objectives of the present study were to characterize the benthic life strategies of Aristeus antennatus (Crustacea: Penaeidea), Parapenaeus longirostris (Crustacea: Penaeidea) and Nephrops norvegicus (Crustacea: Astacidea) on the basis of biochemical composition (proximate chemical composition, total lipids, glycogen and cholesterol contents), and its response to biological and environmental factors (sex, maturation, reproduction, food availability and depth) into account. The specimens were collected at depths between 200 and 600 m off the Portuguese south coast (Algarve). The nektobenthic species ( A. antennatus and P. longirostris) showed higher protein, lipid, cholesterol and glycogen contents, and lower moisture content in the muscle than the benthic-endobenthic species ( N. norvegicus). Consequently, the energy content of the nektobenthic species was also higher. Principal component analyses were used to assess the relationship between the different biochemical contents and to relate them to the biotic and abiotic factors. Depth seems to have the most important role in the observed trends of the biochemical composition. The increase of the ovarian lipid levels occurs as a result of the maturation process. The highest values were obtained in mature N. norvegicus females. The differences can be due to maternal investment (lipid metabolism of the female is geared to the provision of egg lipid), since N. norvegicus produce large lecithotrophic eggs. The biochemical differences observed in the three species did not seem to be due to distinct trophic strategies, but instead were a consequence of depth, which may have a significant interspecific effect on food intake. It was also evident that reproductive cycle has profound effects upon the biochemistry of the three species. Gonadal maturation has large associated energy costs due to the increase in biosynthetic work. Moreover, the biochemical composition would be influenced by or synchronized with seasonal feeding activity or food availability.
Winters, W.J.; Dugan, Brandon; Collett, T.S.
2008-01-01
Physical property measurements and consolidation behavior are different between sediments from Atwater Valley and Keathley Canyon in the northern Gulf of Mexico. Void ratio and bulk density of Atwater Valley sediment from a seafloor mound (holes ATM1 and ATM2) show little effective stress (or depth) dependence to 27 meters below seafloor (mbsf), perhaps owing to fluidized transport through the mound itself with subsequent settling onto the seafloor or mound flanks. Off-mound sediments (hole AT13-2) have bulk physical properties that are similar to mound sediments above 27 mbsf, but void ratio and porosity decrease below that depth. Properties of shallow (<50 mbsf) Keathley Canyon sediments (KC151-3) change with increasing effective stress (or depth) compared to Atwater Valley, but vary little below that depth. Organic carbon is present in concentrations between typical near-shore and deep-sea sediments. Organic carbon-to-nitrogen ratios suggest that the organic matter contained in Atwater Valley off-mound and mound sites came from somewhat different sources. The difference in organic carbon-to-nitrogen ratios between Atwater Valley and Keathley Canyon is more pronounced. At Keathley Canyon a more terrigenous source of the organic matter is indicated. Grain sizes are typically silty clay or clay within the two basins reflecting similar transport energy. However, the range in most shallow sediment properties is significantly different between the two basins. Bulk density profiles agree with logging results in Atwater Valley and Keathley Canyon. Agreement between lab-derived and logging-derived properties supports using logging data to constrain bulk physical properties where cores were not collected.
NASA Astrophysics Data System (ADS)
Yan, Li-Tang; Xie, Xu-Ming
2007-02-01
Focusing on the off-critical condition, the quench depth dependence of surface-directed phase separation in the polymer binary mixture is numerically investigated by combination of the Cahn-Hilliard-Cook theory and the Flory-Huggins-de Gennes theory. Two distinct situations, i.e., for the wetting, the minority component is preferred by the surface and the majority component is preferred by the surface, are discussed in detail. The simulated results show that the formation mechanism of the wetting layer is affected by both the quench depth and the off-critical extent. Moreover, a diagram, illustrating the formation mechanisms of the wetting layer with various quench depths and compositions, is obtained on the basis of the simulated results. It is found that, when the minority component is preferred by the surface, the growth of the wetting layer can exhibit pure diffusion limited growth law, logarithmic growth law, and Lifshitz-Slyozov growth law. However, when the majority component is preferred by the surface, the wetting layer always grows logarithmically, regardless of the quench depth and the off-critical extent. It is interesting that the surface-induced nucleation can be observed in this case. The simulated results demonstrate that the surface-induced nucleation only occurs below a certain value of the quench depth, and a detailed range about it is calculated and indicated. Furthermore, the formation mechanisms of the wetting layer are theoretically analyzed in depth by the chemical potential gradient.
NASA Astrophysics Data System (ADS)
Cooper, C.; Nayegandhi, A.; Faux, R.
2013-12-01
Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.
Knowledge service decision making in business incubators based on the supernetwork model
NASA Astrophysics Data System (ADS)
Zhao, Liming; Zhang, Haihong; Wu, Wenqing
2017-08-01
As valuable resources for incubating firms, knowledge resources have received gradually increasing attention from all types of business incubators, and business incubators use a variety of knowledge services to stimulate rapid growth in incubating firms. Based on previous research, we generalize the knowledge transfer and knowledge networking services of two main forms of knowledge services and further divide knowledge transfer services into knowledge depth services and knowledge breadth services. Then, we construct the business incubators' knowledge supernetwork model, describe the evolution mechanism among heterogeneous agents and utilize a simulation to explore the performance variance of different business incubators' knowledge services. The simulation results show that knowledge stock increases faster when business incubators are able to provide knowledge services to more incubating firms and that the degree of discrepancy in the knowledge stock increases during the process of knowledge growth. Further, knowledge transfer services lead to greater differences in the knowledge structure, while knowledge networking services lead to smaller differences. Regarding the two types of knowledge transfer services, knowledge depth services are more conducive to knowledge growth than knowledge breadth services, but knowledge depth services lead to greater gaps in knowledge stocks and greater differences in knowledge structures. Overall, it is optimal for business incubators to select a single knowledge service or portfolio strategy based on the amount of time and energy expended on the two types of knowledge services.
Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S; Wiberg, Karin
2011-11-01
The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Orbitofrontal sulcogyral pattern and olfactory sulcus depth in the schizophrenia spectrum.
Nishikawa, Yumiko; Takahashi, Tsutomu; Takayanagi, Yoichiro; Furuichi, Atsushi; Kido, Mikio; Nakamura, Mihoko; Sasabayashi, Daiki; Noguchi, Kyo; Suzuki, Michio
2016-02-01
Morphological changes in the orbitofrontal cortex (OFC), such as an altered sulcogyral pattern of the 'H-shaped' orbital sulcus and a shallow olfactory sulcus, have been demonstrated in schizophrenia, possibly reflecting deviations in early neurodevelopment. However, it remains unclear whether patients with schizotypal features exhibit similar OFC changes. This magnetic resonance imaging study examined the OFC sulcogyral pattern (Types I, II, III, and IV) and olfactory sulcus morphology in 102 patients with schizophrenia, 47 patients with schizotypal disorder, and 84 healthy controls. The OFC sulcogyral pattern distribution between the groups was significantly different on the right hemisphere, with the schizophrenia patients showing a decrease in Type I (vs controls and schizotypal patients) and an increase in Type III (vs controls) expression. However, the schizotypal patients and controls did not differ in the OFC pattern. There were significant group differences in the olfactory sulcus depth bilaterally (schizophrenia patients < schizotypal patients < controls). Our findings suggest that schizotypal disorder, a milder form of schizophrenia spectrum disorders, partly shares the OFC changes (i.e., altered depth of the olfactory sulcus) with schizophrenia, possibly reflecting a common disease vulnerability. However, altered distribution of the OFC pattern specific to schizophrenia may at least partly reflect neurodevelopmental pathology related to a greater susceptibility to overt psychosis.
NASA Astrophysics Data System (ADS)
Cheng, Shyh-Wei; Weng, Jui-Chun; Liang, Kai-Chih; Sun, Yi-Chiang; Fang, Weileun
2018-04-01
Many mechanical and thermal characteristics, for example the air damping, of suspended micromachined structures are sensitive to the ambient pressure. Thus, micromachined devices such as the gyroscope and accelerometer have different ambient pressure requirements. Commercially available process platforms could be used to fabricate and integrate devices of various functions to reduce the chip size. However, it remains a challenge to offer different ambient pressures for micromachined devices after sealing them by wafer level capping (WLC). This study exploits the outgassing characteristics of the CMOS chip to fabricate chambers of various pressures after the WLC of the Si-above-CMOS (TSMC 0.18 µm 1P5M CMOS process) MEMS process platform. The pressure of the sealed chamber can be modulated by the chamber volume after the outgassing. In other words, the pressure of hermetic sealed chambers can be easily and properly defined by the etching depth of the cavity on an Si capping wafer. In applications, devices sealed with different cavity depths are implemented using the Si-above-CMOS (TSMC 0.18 µm 1P5M CMOS process) MEMS process platform to demonstrate the present approach. Measurements show the feasibility of this simple chamber pressure modulation approach on eight-inch wafers.
Elucidating the Polymeric Binder Distribution within Lithium-ion Battery Electrodes Using SAICAS.
Kim, Kyuman; Byun, Seoungwoo; Choi, Jaecheol; Hong, Seungbum; Ryou, Myung-Hyun; Lee, Yong Min
2018-03-30
Polymeric binder distribution within electrodes is crucial to guarantee the electrochemical performance of lithium-ion batteries (LIBs) for their long-term use in applications such as electric vehicles and energy-storage systems. However, due to limited analytical tools, such analyses have not been conducted so far. Herein, the adhesion properties of LIB electrodes at different depths are measured using a surface and interfacial cutting analysis system (SAICAS). Moreover, two LiCoO 2 electrodes, dried at 130 and 230 °C, are carefully prepared and used to obtain the adhesion properties at every 10 μm of depth as well as the interface between the electrode composite and the current collector. At high drying temperatures, more of the polymeric binder material and conductive agent appears adjacent to the electrode surface, resulting in different adhesion properties as a function of depth. When the electrochemical properties are evaluated at different temperatures, the LiCoO 2 electrode dried at 130 °C shows a much better high-temperature cycling performance than does the electrode dried at 230 °C due to the uniform adhesion properties and the higher interfacial adhesion strength. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.