ERIC Educational Resources Information Center
Camras, Linda A.; Oster, Harriet; Bakeman, Roger; Meng, Zhaolan; Ujiie, Tatsuo; Campos, Joseph J.
2007-01-01
Do infants show distinct negative facial expressions for different negative emotions? To address this question, European American, Chinese, and Japanese 11-month-olds were videotaped during procedures designed to elicit mild anger or frustration and fear. Facial behavior was coded using Baby FACS, an anatomically based scoring system. Infants'…
2010-01-01
Background Molecular chaperones have been shown to be important in the growth of the malaria parasite Plasmodium falciparum and inhibition of chaperone function by pharmacological agents has been shown to abrogate parasite growth. A recent study has demonstrated that clinical isolates of the parasite have distinct physiological states, one of which resembles environmental stress response showing up-regulation of specific molecular chaperones. Methods Chaperone networks operational in the distinct physiological clusters in clinical malaria parasites were constructed using cytoscape by utilizing their clinical expression profiles. Results Molecular chaperones show distinct profiles in the previously defined physiologically distinct states. Further, expression profiles of the chaperones from different cellular compartments correlate with specific patient clusters. While cluster 1 parasites, representing a starvation response, show up-regulation of organellar chaperones, cluster 2 parasites, which resemble active growth based on glycolysis, show up-regulation of cytoplasmic chaperones. Interestingly, cytoplasmic Hsp90 and its co-chaperones, previously implicated as drug targets in malaria, cluster in the same group. Detailed analysis of chaperone expression in the patient cluster 2 reveals up-regulation of the entire Hsp90-dependent pro-survival circuitries. In addition, cluster 2 also shows up-regulation of Plasmodium export element (PEXEL)-containing Hsp40s thought to have regulatory and host remodeling roles in the infected erythrocyte. Conclusion In all, this study demonstrates an intimate involvement of parasite-encoded chaperones, PfHsp90 in particular, in defining pathogenesis of malaria. PMID:20719001
Modular control of glutamatergic neuronal identity in C.elegans by distinct homeodomain proteins
Serrano-Saiz, Esther; Poole, Richard J.; Felton, Terry; Zhang, Feifan; De La Cruz, Estanisla Daniel; Hobert, Oliver
2013-01-01
The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT is expressed in 38 of the 118 anatomically defined neuron classes of the C.elegans nervous system. We show that eat-4/VGLUT expression is controlled in a modular manner, with distinct cis-regulatory modules driving expression in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in specific combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem. PMID:24243022
Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe
2015-01-01
The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. J. Comp. Neurol. 523:1202–1221, 2015. © 2015 Wiley Periodicals, Inc. PMID:25556858
Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe
2015-06-01
The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. © 2015 Wiley Periodicals, Inc.
Mechanosensory hair cells express two molecularly distinct mechanotransduction channels
Zhao, Bo; Cunningham, Christopher; Harkins-Perry, Sarah; Coste, Bertrand; Ranade, Sanjeev; Zebarjadi, Navid; Beurg, Maryline; Fettiplace, Robert; Patapoutian, Ardem; Mueller, Ulrich
2016-01-01
Auditory hair cells contain mechanotransduction channels that rapidly open in response to sound-induced vibrations. Surprisingly, we report here that auditory hair cells contain two molecularly distinct mechanotransduction channels. One ion channel is activated by sound and is responsible for sensory transduction. This sensory transduction channel is expressed in hair-cell stereocilia and previous studies show that its activity is affected by mutations in the genes encoding the transmembrane proteins TMHS/LHFPL5, TMIE and TMC1/2. We show here that the second ion channel is expressed at the apical surface of hair cells and contains the Piezo2 protein. The activity of the Piezo2-dependent channel is controlled by the intracellular Ca2+ concentration and can be recorded following disruption of the sensory transduction machinery or more generally by disruption of the sensory epithelium. We thus conclude that hair cells express two molecularly and functionally distinct mechanotransduction channels with different subcellular distribution. PMID:27893727
Smiling emphasizes perceived distinctiveness of faces.
Kawamura, Satoru; Komori, Masashi
2008-08-01
In this study, 114 Japanese observers (56 men and 58 women) rated the distinctiveness of 48 neutral faces and 48 smiling faces. Analysis showed smiling faces were rated as significantly more distinctive than neutral ones. Greater perceived distinctiveness provides an explanation for previous results that smiling faces are better remembered than faces with neutral expressions.
Li, Wencheng; Laishram, Rakesh S.; Hoque, Mainul; Ji, Zhe
2017-01-01
Abstract Polyadenylation of nascent RNA by poly(A) polymerase (PAP) is important for 3′ end maturation of almost all eukaryotic mRNAs. Most mammalian genes harbor multiple polyadenylation sites (PASs), leading to expression of alternative polyadenylation (APA) isoforms with distinct functions. How poly(A) polymerases may regulate PAS usage and hence gene expression is poorly understood. Here, we show that the nuclear canonical (PAPα and PAPγ) and non-canonical (Star-PAP) PAPs play diverse roles in PAS selection and gene expression. Deficiencies in the PAPs resulted in perturbations of gene expression, with Star-PAP impacting lowly expressed mRNAs and long-noncoding RNAs to the greatest extent. Importantly, different PASs of a gene are distinctly regulated by different PAPs, leading to widespread relative expression changes of APA isoforms. The location and surrounding sequence motifs of a PAS appear to differentiate its regulation by the PAPs. We show Star-PAP-specific PAS usage regulates the expression of the eukaryotic translation initiation factor EIF4A1, the tumor suppressor gene PTEN and the long non-coding RNA NEAT1. The Star-PAP-mediated APA of PTEN is essential for DNA damage-induced increase of PTEN protein levels. Together, our results reveal a PAS-guided and PAP-mediated paradigm for gene expression in response to cellular signaling cues. PMID:28911096
Bourquin, Jean-Pierre; Subramanian, Aravind; Langebrake, Claudia; Reinhardt, Dirk; Bernard, Olivier; Ballerini, Paola; Baruchel, André; Cavé, Hélène; Dastugue, Nicole; Hasle, Henrik; Kaspers, Gertjan L.; Lessard, Michel; Michaux, Lucienne; Vyas, Paresh; van Wering, Elisabeth; Zwaan, Christian M.; Golub, Todd R.; Orkin, Stuart H.
2006-01-01
Individuals with Down syndrome (DS) are predisposed to develop acute megakaryoblastic leukemia (AMKL), characterized by expression of truncated GATA1 transcription factor protein (GATA1s) due to somatic mutation. The treatment outcome for DS-AMKL is more favorable than for AMKL in non-DS patients. To gain insight into gene expression differences in AMKL, we compared 24 DS and 39 non-DS AMKL samples. We found that non-DS-AMKL samples cluster in two groups, characterized by differences in expression of HOX/TALE family members. Both of these groups are distinct from DS-AMKL, independent of chromosome 21 gene expression. To explore alterations of the GATA1 transcriptome, we used cross-species comparison with genes regulated by GATA1 expression in murine erythroid precursors. Genes repressed after GATA1 induction in the murine system, most notably GATA-2, MYC, and KIT, show increased expression in DS-AMKL, suggesting that GATA1s fail to repress this class of genes. Only a subset of genes that are up-regulated upon GATA1 induction in the murine system show increased expression in DS-AMKL, including GATA1 and BACH1, a probable negative regulator of megakaryocytic differentiation located on chromosome 21. Surprisingly, expression of the chromosome 21 gene RUNX1, a known regulator of megakaryopoiesis, was not elevated in DS-AMKL. Our results identify relevant signatures for distinct AMKL entities and provide insight into gene expression changes associated with these related leukemias. PMID:16492768
Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.
Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B
2018-05-01
Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.
Expression of the Diabetes-Associated Gene TCF7L2 in Adult Mouse Brain
LEE, SYANN; LEE, CHARLOTTE E.; ELIAS, CAROL F.; ELMQUIST, JOEL K.
2014-01-01
Polymorphisms of the gene TCF7L2 (transcription factor 7-like 2) are strongly associated with the development and progression of type 2 diabetes. TCF7L2 is important in the development of peripheral organs such as adipocytes, pancreas, and the intestine. However, very little is known about its expression elsewhere. In this study we used in situ hybridization histochemistry to show that TCF7L2 has a unique expression pattern in the mouse brain. TCF7L2 is expressed in two distinct populations. First, it is highly ex pressed in thalamic and tectal structures. Additionally, TCF7L2 mRNA is expressed at moderate to low levels in specific cells of the hypothalamus, preoptic nucleus, and circumventricular organs. Collectively, these patterns of expression suggest that TCF7L2 has distinct functions within the brain, with a general role in the development and maintenance of thalamic and midbrain neurons, and then a distinct role in autonomic homeostasis. PMID:19845015
Rhodes, Gillian; Pond, Stephen; Burton, Nichola; Kloth, Nadine; Jeffery, Linda; Bell, Jason; Ewing, Louise; Calder, Andrew J; Palermo, Romina
2015-09-01
Traditional models of face perception emphasize distinct routes for processing face identity and expression. These models have been highly influential in guiding neural and behavioural research on the mechanisms of face perception. However, it is becoming clear that specialised brain areas for coding identity and expression may respond to both attributes and that identity and expression perception can interact. Here we use perceptual aftereffects to demonstrate the existence of dimensions in perceptual face space that code both identity and expression, further challenging the traditional view. Specifically, we find a significant positive association between face identity aftereffects and expression aftereffects, which dissociates from other face (gaze) and non-face (tilt) aftereffects. Importantly, individual variation in the adaptive calibration of these common dimensions significantly predicts ability to recognize both identity and expression. These results highlight the role of common dimensions in our ability to recognize identity and expression, and show why the high-level visual processing of these attributes is not entirely distinct. Copyright © 2015 Elsevier B.V. All rights reserved.
A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.
He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang
2017-11-06
Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L
2017-02-01
Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.
Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David
2017-01-01
Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411
Developmental origin of lung macrophage diversity
Tan, Serena Y. S.; Krasnow, Mark A.
2016-01-01
Macrophages are specialized phagocytic cells, present in all tissues, which engulf and digest pathogens, infected and dying cells, and debris, and can recruit and regulate other immune cells and the inflammatory response and aid in tissue repair. Macrophage subpopulations play distinct roles in these processes and in disease, and are typically recognized by differences in marker expression, immune function, or tissue of residency. Although macrophage subpopulations in the brain have been found to have distinct developmental origins, the extent to which development contributes to macrophage diversity between tissues and within tissues is not well understood. Here, we investigate the development and maintenance of mouse lung macrophages by marker expression patterns, genetic lineage tracing and parabiosis. We show that macrophages populate the lung in three developmental waves, each giving rise to a distinct lineage. These lineages express different markers, reside in different locations, renew in different ways, and show little or no interconversion. Thus, development contributes significantly to lung macrophage diversity and targets each lineage to a different anatomical domain. PMID:26952982
Bohn, Olga; Maeda, Takahiro; Filatov, Alexander; Lunardi, Andrea; Pandolfi, Pier Paolo; Teruya-Feldstein, Julie
2014-01-01
Classical Hodgkin lymphoma (CHL) and nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) are considered separate entities with different prognosis and treatment. However, morphologic features can be similar and immunohistochemical studies are essential in the distinction; thus, determination of additional biomarkers is of utmost importance. LRF/Pokemon is a protooncogene, an interacting partner co-expressed with BCL6 in germinal centers and highly expressed in diffuse large B-cell lymphoma and follicular lymphoma. Conversely, loss of the LRF gene in mouse hematopoietic stem cells results in complete block of early B cell development with concomitant Notch derepression, indicating its critical role in B versus T cell fate decision at the hematopoietic stem cell stage. For the first time, we show that LRF/Pokemon is predominantly expressed in NLPHL cases as is BCL6 with low to absent NOTCH1 protein expression; while Hodgkin Reed-Sternberg (HRS) cells in CHL show low to absent BCL6 and LRF/Pokemon expression with higher NOTCH1 expression. We illustrate a potential functional interaction between LRF and BCL6 in NLPHL pathogenesis, and differential expression of LRF/Pokemon and NOTCH1 proteins in CHL thus showing differential expression, making for an additional diagnostic marker and therapeutic target. PMID:24326827
Bohn, Olga; Maeda, Takahiro; Filatov, Alexander; Lunardi, Andrea; Pandolfi, Pier Paolo; Teruya-Feldstein, Julie
2014-02-01
Classical Hodgkin lymphoma (CHL) and nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) are considered separate entities with different prognosis and treatment. However, morphologic features can be similar and immunohistochemical studies are essential in the distinction; thus, determination of additional biomarkers is of utmost importance. LRF/Pokemon is a proto-oncogene, an interacting partner co-expressed with BCL6 in germinal centers and highly expressed in diffuse large B-cell lymphoma and follicular lymphoma. Conversely, loss of the LRF gene in mouse hematopoietic stem cells results in complete block of early B cell development with concomitant Notch de-repression, indicating its critical role in B versus T cell fate decision at the hematopoietic stem cell stage. For the first time, we show that LRF/Pokemon is predominantly expressed in NLPHL cases as is BCL6 with low to absent NOTCH1 protein expression; while Hodgkin Reed-Sternberg (HRS) cells in CHL show low to absent BCL6 and LRF/Pokemon expression with higher NOTCH1 expression. We illustrate a potential functional interaction between LRF and BCL6 in NLPHL pathogenesis, and differential expression of LRF/Pokemon and NOTCH1 proteins in CHL thus showing differential expression, making for an additional diagnostic marker and therapeutic target.
Morona, Ruth; González, Agustín
2013-01-01
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. Copyright © 2012 Wiley Periodicals, Inc.
Verstrepen, B E; Nieuwenhuis, I G; Mooij, P; Bogers, W M; Boonstra, A; Koopman, G
2016-07-01
In humans, CD16 and CD56 are used to identify functionally distinct natural killer (NK) subsets. Due to ubiquitous CD56 expression, this marker cannot be used to distinguish between NK cell subsets in chimpanzees. Therefore, functional analysis of distinct NK subsets during hepatitis C virus (HCV) infection has never been performed in these animals. In the present study an alternative strategy was used to identify four distinct NK subsets on the basis of the expression of CD16 and CD94. The expression of activating and inhibiting surface receptors showed that these subsets resemble human NK subsets. CD107 expression was used to determine degranulation of the different subsets in naive and HCV-infected chimpanzees. In HCV-infected chimpanzees increased spontaneous cytotoxicity was observed in CD94(high/dim) CD16(pos) and CD94(low) CD16(pos) subsets. By contrast, increased natural cytotoxicity receptor (NCR)- mediated degranulation after NKp30 and NKp44 triggering was demonstrated in the CD94(dim) CD16(neg) subset. Our findings suggest that spontaneous and NCR-mediated cytotoxicity are effector functions of distinct NK subsets in HCV-infected chimpanzees. © 2016 British Society for Immunology.
Increased dysbindin-1B isoform expression in schizophrenia and its propensity in aggresome formation
Xu, Yiliang; Sun, Yuhui; Ye, Haihong; Zhu, Li; Liu, Jianghong; Wu, Xiaofeng; Wang, Le; He, Tingting; Shen, Yan; Wu, Jane Y; Xu, Qi
2015-01-01
Genetic variations in the human dysbindin-1 gene (DTNBP1) have been associated with schizophrenia. As a result of alternative splicing, the human DTNBP1 gene generates at least three distinct protein isoforms, dysbindin-1A, -1B and -1C. Significant effort has focused on dysbindin-1A, an important player in multiple steps of neurodevelopment. However, the other isoforms, dysbindin-1B and dysbindin-1C have not been well characterized. Nor have been associated with human diseases. Here we report an increase in expression of DTNBP1b mRNA in patients with paranoid schizophrenia as compared with healthy controls. A single-nucleotide polymorphism located in intron 9, rs117610176, has been identified and associated with paranoid schizophrenia, and its C allele leads to an increase of DTNBP1b mRNA splicing. Our data show that different dysbindin splicing isoforms exhibit distinct subcellular distribution, suggesting their distinct functional activities. Dysbindin-1B forms aggresomes at the perinuclear region, whereas dysbindin-1A and -1C proteins exhibit diffused patterns in the cytoplasm. Dysbindin-1A interacts with dysbindin-1B, getting recruited to the aggresome structure when co-expressed with dysbindin-1B. Moreover, cortical neurons over-expressing dysbindin-1B show reduction in neurite outgrowth, suggesting that dysbindin-1B may interfere with dysbindin-1A function in a dominant-negative manner. Taken together, our study uncovers a previously unknown association of DTNBP1b expression with schizophrenia in addition to its distinct biochemical and functional properties. PMID:27462430
The pursuit of optimal distinctiveness and consumer preferences.
He, Lingnan; Cong, Feng; Liu, Yanping; Zhou, Xinyue
2010-10-01
This article investigates the effect of optimal distinctiveness on consumer product consumption. The authors argue that consumers acquire and display material possessions to restore their optimal levels of distinctiveness. Results showed that placing consumers in a state of low distinctiveness increased desire to acquire distinctive products, whereas perceptions of high distinctiveness reduced desire to acquire such products. Consumers' desire for distinctiveness-related products held true for various consumer choices, including willingness to pay more for limited-edition products and preference for unpopular gifts. This finding has implications for understanding consumer choice in expressing identity. © 2010 The Authors. Scandinavian Journal of Psychology © 2010 The Scandinavian Psychological Associations.
Distinct spatial frequency sensitivities for processing faces and emotional expressions.
Vuilleumier, Patrik; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2003-06-01
High and low spatial frequency information in visual images is processed by distinct neural channels. Using event-related functional magnetic resonance imaging (fMRI) in humans, we show dissociable roles of such visual channels for processing faces and emotional fearful expressions. Neural responses in fusiform cortex, and effects of repeating the same face identity upon fusiform activity, were greater with intact or high-spatial-frequency face stimuli than with low-frequency faces, regardless of emotional expression. In contrast, amygdala responses to fearful expressions were greater for intact or low-frequency faces than for high-frequency faces. An activation of pulvinar and superior colliculus by fearful expressions occurred specifically with low-frequency faces, suggesting that these subcortical pathways may provide coarse fear-related inputs to the amygdala.
Johnson, Michael E.; Mahoney, J. Matthew; Taroni, Jaclyn; Sargent, Jennifer L.; Marmarelis, Eleni; Wu, Ming-Ru; Varga, John; Hinchcliff, Monique E.; Whitfield, Michael L.
2015-01-01
Genome-wide expression profiling in systemic sclerosis (SSc) has identified four ‘intrinsic’ subsets of disease (fibroproliferative, inflammatory, limited, and normal-like), each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling. PMID:25607805
Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity
Nautiyal, Katherine M.; Tanaka, Kenji F.; Barr, Mary M.; Tritschler, Laurent; Le Dantec, Yannick; David, Denis J.; Gardier, Alain M.; Blanco, Carlos; Hen, René; Ahmari, Susanne E.
2015-01-01
Summary Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs, and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulate impulsive behavior during adulthood. PMID:25892302
Hutton, Scott R; Pevny, Larysa H
2011-04-01
The HMG-Box transcription factor SOX2 is expressed in neural progenitor populations throughout the developing and adult central nervous system and is necessary to maintain their progenitor identity. However, it is unclear whether SOX2 levels are uniformly expressed across all neural progenitor populations. In the developing dorsal telencephalon, two distinct populations of neural progenitors, radial glia and intermediate progenitor cells, are responsible for generating a majority of excitatory neurons found in the adult neocortex. Here we demonstrate, using both cellular and molecular analyses, that SOX2 is differentially expressed between radial glial and intermediate progenitor populations. Moreover, utilizing a SOX2(EGFP) mouse line, we show that this differential expression can be used to prospectively isolate distinct, viable populations of radial glia and intermediate cells for in vitro analysis. Given the limited repertoire of cell-surface markers currently available for neural progenitor cells, this provides an invaluable tool for prospectively identifying and isolating distinct classes of neural progenitor cells from the central nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.
Bruggeman, Christine W.; den Haan, Joke M. M.; Mul, Erik P. J.; van den Berg, Timo K.; van Bruggen, Robin; Kuijpers, Taco W.
2018-01-01
Tissue-resident macrophages in the spleen play a major role in the clearance of immunoglobulin G (IgG)–opsonized blood cells, as occurs in immune thrombocytopenia (ITP) and autoimmune hemolytic anemia (AIHA). Blood cells are phagocytosed via the Fc-γ receptors (FcγRs), but little is known about the FcγR expression on splenic red pulp macrophages in humans, with only a few previous studies that showed conflicting results. We developed a novel method to specifically isolate red pulp macrophages from 82 human spleens. Surface expression of various receptors and phagocytic capacity was analyzed by flow cytometry and immunofluorescence of tissue sections. Red pulp macrophages were distinct from splenic monocytes and blood monocyte–derived macrophages on various surface markers. Human red pulp macrophages predominantly expressed the low-affinity receptors FcγRIIa and FcγRIIIa. In contrast to blood monocyte–derived macrophages, red pulp macrophages did not express the inhibitory FcγRIIb. Red pulp macrophages expressed very low levels of the high-affinity receptor FcγRI. Messenger RNA transcript analysis confirmed this expression pattern. Unexpectedly and despite these differences in FcγR expression, phagocytosis of IgG-opsonized blood cells by red pulp macrophages was dependent on the same FcγRs as phagocytosis by blood monocyte–derived macrophages, especially in regarding the response to IV immunoglobulin. Concluding, we show the distinct nature of splenic red pulp macrophages in human subjects. Knowledge on the FcγR expression and usage of these cells is important for understanding and improving treatment strategies for autoimmune diseases such as ITP and AIHA. PMID:29692344
Vallano, M L; Beaman-Hall, C M; Mathur, A; Chen, Q
2000-04-01
Multiple isoforms of type II Ca(2+)-calmodulin-dependent kinase (CaM KII) are composed of two major neuron-specific subunits, designated alpha and beta, and two less well-characterized subunits that are also expressed in non-neuronal tissues, designated delta and gamma. Regulated expression of these 4 gene products, and several variants produced by alternative splicing, shows temporal and regional specificity and influences intracellular targeting. We used immunoblotting and RT-PCR to analyze subunit and variant expression and distribution in cultured cerebellar astrocytes and neurons, and whole cerebellar cortex from rodent brain. The data indicate that: (i) astrocytes express a single splice variant of delta, namely delta(2); (ii) like neurons, astrocytes express two forms of CaM KII gamma; gamma(B) and gamma(A); (iii) these CaM KII variants are enriched in the supernate fraction in astrocytes, and the particulate fraction in neurons; (iv) unlike neurons, astrocytes do not express detectable levels of alpha or beta subunits or their respective splice variants. The results indicate that neurons and astrocytes express distinct CaM KII subunits and variants that localize to distinct subcellular compartments and, by inference, exert distinct cellular functions. Copyright 2000 Wiley-Liss, Inc.
Temporal identity in axonal target layer recognition.
Petrovic, Milan; Hummel, Thomas
2008-12-11
The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.
Distinct Protein Expression Profiles of Solid-Pseudopapillary Neoplasms of the Pancreas.
Park, Minhee; Lim, Jong-Sun; Lee, Hyoung-Joo; Na, Keun; Lee, Min Jung; Kang, Chang Moo; Paik, Young-Ki; Kim, Hoguen
2015-08-07
Solid-pseudopapillary neoplasm (SPN) is an uncommon pancreatic tumor with mutation in CTNNB1 and distinct clinical and pathological features. We compared the proteomic profiles of SPN to mRNA expression. Pooled SPNs and pooled non-neoplastic pancreatic tissues were examined with high-resolution mass spectrometry. We identified 329 (150 up-regulated and 179 down-regulated) differentially expressed proteins in SPN. We identified 191 proteins (58.1% of the 329 dysregulated proteins) with the same expression tendencies in SPN based on mRNA data. Many overexpressed proteins were related to signaling pathways known to be activated in SPNs. We found that several proteins involved in Wnt signaling, including DKK4 and β-catenin, and proteins that bind β-catenin, such as FUS and NONO, were up-regulated in SPNs. Molecules involved in glycolysis, including PKM2, ENO2, and HK1, were overexpressed in accordance to their mRNA levels. In summary, SPN showed (1) distinct protein expression changes that correlated with mRNA expression, (2) overexpression of Wnt signaling proteins and proteins that bind directly to β-catenin, and (3) overexpression of proteins involved in metabolism. These findings may help develop early diagnostic biomarkers and molecular targets.
Devault, A; Gros, P
1990-01-01
We report the cloning and functional analysis of a complete clone for the third member of the mouse mdr gene family, mdr3. Nucleotide and predicted amino acid sequence analyses showed that the three mouse mdr genes encode highly homologous membrane glycoproteins, which share the same length (1,276 residues), the same predicted functional domains, and overall structural arrangement. Regions of divergence among the three proteins are concentrated in discrete segments of the predicted polypeptides. Sequence comparison indicated that the three mouse mdr genes were created from a common ancestor by two independent gene duplication events, the most recent one producing mdr1 and mdr3. When transfected and overexpressed in otherwise drug-sensitive cells, the mdr3 gene, like mdr1 and unlike mdr2, conferred multidrug resistance to these cells. In independently derived transfected cell clones expressing similar amounts of either MDR1 or MDR3 protein, the drug resistance profile conferred by mdr3 was distinct from that conferred by mdr1. Cells transfected with and expressing MDR1 showed a marked 7- to 10-fold preferential resistance to colchicine and Adriamycin compared with cells expressing equivalent amounts of MDR3. Conversely, cells transfected with and expressing MDR3 showed a two- to threefold preferential resistance to actinomycin D over their cellular counterpart expressing MDR1. These results suggest that MDR1 and MDR3 are membrane-associated efflux pumps which, in multidrug-resistant cells and perhaps normal tissues, have overlapping but distinct substrate specificities. Images PMID:1969610
Aping expressions? Chimpanzees produce distinct laugh types when responding to laughter of others.
Davila-Ross, Marina; Allcock, Bethan; Thomas, Chris; Bard, Kim A
2011-10-01
Humans have the ability to replicate the emotional expressions of others even when they undergo different emotions. Such distinct responses of expressions, especially positive expressions, play a central role in everyday social communication of humans and may give the responding individuals important advantages in cooperation and communication. The present work examined laughter in chimpanzees to test whether nonhuman primates also use their expressions in such distinct ways. The approach was first to examine the form and occurrence of laugh replications (laughter after the laughter of others) and spontaneous laughter of chimpanzees during social play and then to test whether their laugh replications represented laugh-elicited laugh responses (laughter triggered by the laughter of others) by using a quantitative method designed to measure responses in natural social settings. The results of this study indicated that chimpanzees produce laugh-elicited laughter that is distinct in form and occurrence from their spontaneous laughter. These findings provide the first empirical evidence that nonhuman primates have the ability to replicate the expressions of others by producing expressions that differ in their underlying emotions and social implications. The data further showed that the laugh-elicited laugh responses of the subjects were closely linked to play maintenance, suggesting that chimpanzees might gain important cooperative and communicative advantages by responding with laughter to the laughter of their social partners. Notably, some chimpanzee groups of this study responded more with laughter than others, an outcome that provides empirical support of a socialization of expressions in great apes similar to that of humans.
Le Maout, S; Sewing, S; Coudrier, E; Elalouf, J M; Pongs, O; Merot, J
1996-01-01
Functional Kv 1-4 channels were stably expressed in filter-grown MDCK cells which form a polarized epithelium with two distinct plasma membrane domains: a basolateral and an apical cell surface. The Shaker-related Kv 1-4 channels mediated in MDCK cells fast transient (A-type) voltage-activated outward currents having similar properties to the ones reported for Kv 1-4 in the Xenopus oocytes expression system. Immunoblot analysis with specific anti-Kv 1-4 antibodies showed that two Kv 1-4 protein forms are expressed in MDCK cells which most likely represent the glycosylated and non-glycosylated Kv 1-4 protein, respectively. Using immunocytochemistry and confocal microscopy we showed that the Kv 1-4 channels are specifically localized in the basolateral membranes of MDCK cells. Thus, the MDCK cells may provide an important model system to analyse the polarized transport of ion channels such as Kv 1-4, which are distinctly expressed in the mammalian central nervous system.
Ow, Maria C.; Nichitean, Alexandra M.; Dorus, Steve; Hall, Sarah E.
2018-01-01
Environmental stress during early development in animals can have profound effects on adult phenotypes via programmed changes in gene expression. Using the nematode C. elegans, we demonstrated previously that adults retain a cellular memory of their developmental experience that is manifested by differences in gene expression and life history traits; however, the sophistication of this system in response to different environmental stresses, and how it dictates phenotypic plasticity in adults that contribute to increased fitness in response to distinct environmental challenges, was unknown. Using transcriptional profiling, we show here that C. elegans adults indeed retain distinct cellular memories of different environmental conditions. We identified approximately 500 genes in adults that entered dauer due to starvation that exhibit significant opposite (“seesaw”) transcriptional phenotypes compared to adults that entered dauer due to crowding, and are distinct from animals that bypassed dauer. Moreover, we show that two-thirds of the genes in the genome experience a 2-fold or greater seesaw trend in gene expression, and based upon the direction of change, are enriched in large, tightly linked regions on different chromosomes. Importantly, these transcriptional programs correspond to significant changes in brood size depending on the experienced stress. In addition, we demonstrate that while the observed seesaw gene expression changes occur in both somatic and germline tissue, only starvation-induced changes require a functional GLP-4 protein necessary for germline development, and both programs require the Argonaute CSR-1. Thus, our results suggest that signaling between the soma and the germ line can generate phenotypic plasticity as a result of early environmental experience, and likely contribute to increased fitness in adverse conditions and the evolution of the C. elegans genome. PMID:29447162
Matsuo, Taisuke; Yamamoto, Atsushi; Yamamoto, Takenori; Otsuki, Kaoru; Yamazaki, Naoshi; Kataoka, Masatoshi; Terada, Hiroshi; Shinohara, Yasuo
2010-04-01
Liver- and heart/muscle-type isozymes of human carnitine palmitoyltransferase I (L- and M-CPTI, respectively) show a certain similarity in their amino acid sequences, and mutation studies on the conserved amino acids between these two isozymes often show essentially the same effects on their enzymatic properties. Earlier mutation studies on C305 in human M-CPTI and its counterpart residue, C304, in human L-CPTI showed distinct effects of the mutations, especially in the aspect of enzyme stability; however, simple comparison of these effects on the conserved Cys residue between L- and M-CPTI was difficult, because these studies were carried out using different expression systems and distinct amino acids as replacements. In the present study, we carried out mutation studies on the C305 in human M-CPTI using COS cells for the expression system. Our results showed that C305 was replaceable with aspartic acid but that substitution with other amino acids caused both loss of function and reduced expression.
Pinto, Alexander R; Paolicelli, Rosa; Salimova, Ekaterina; Gospocic, Janko; Slonimsky, Esfir; Bilbao-Cortes, Daniel; Godwin, James W; Rosenthal, Nadia A
2012-01-01
Cardiac tissue macrophages (cTMs) are a previously uncharacterised cell type that we have identified and characterise here as an abundant GFP(+) population within the adult Cx(3)cr1(GFP/+) knock-in mouse heart. They comprise the predominant myeloid cell population in the myocardium, and are found throughout myocardial interstitial spaces interacting directly with capillary endothelial cells and cardiomyocytes. Flow cytometry-based immunophenotyping shows that cTMs exhibit canonical macrophage markers. Gene expression analysis shows that cTMs (CD45(+)CD11b(+)GFP(+)) are distinct from mononuclear CD45(+)CD11b(+)GFP(+) cells sorted from the spleen and brain of adult Cx(3)cr1(GFP/+) mice. Gene expression profiling reveals that cTMs closely resemble alternatively-activated anti-inflammatory M2 macrophages, expressing a number of M2 markers, including Mrc1, CD163, and Lyve-1. While cTMs perform normal tissue macrophage homeostatic functions, they also exhibit a distinct phenotype, involving secretion of salutary factors (including IGF-1) and immune modulation. In summary, the characterisation of cTMs at the cellular and molecular level defines a potentially important role for these cells in cardiac homeostasis.
New displays and new emotions: a commentary on Rozin and Cohen (2003).
Keltner, Dacher; Shiota, Michelle N
2003-03-01
In this article, the authors elaborate on 3 ideas advanced in P. Rozin and A. B. Cohen's (2003) innovative study of facial expression. Taking a cue from their discovery of new expressive behaviors (e.g., the narrowed eyebrows), the authors review recent studies showing that emotions are conveyed in more channels than usually studied, including posture, gaze patterns, voice, and touch. Building on their claim that confusion has a distinct display, the authors review evidence showing distinct displays for 3 self-conscious emotions (embarrassment, shame, and pride), 5 positive emotions (amusement, desire, happiness, love, interest), and sympathy and compassion. Finally, the authors offer a functional definition of emotion to integrate these findings on "new" displays and emotions.
Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto
2015-04-01
The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits obtained from patients by using static images of facial expressions, and offer novel routes for patient rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hauptmann, G; Gerster, T
2000-03-01
To shed light on the organization of the rostral embryonic brain of a lower vertebrate, we have directly compared the expression patterns of dlx, fgf, hh, hlx, otx, pax, POU, winged helix and wnt gene family members in the fore- and midbrain of the zebrafish. We show that the analyzed genes are expressed in distinct transverse and longitudinal domains and share expression boundaries at stereotypic positions within the fore- and midbrain. Some of these shared expression boundaries coincide with morphological landmarks like the pathways of primary axon tracts. We identified a series of eight transverse diencephalic domains suggestive of neuromeric subdivisions within the rostral brain. In addition, we identified four molecularly distinct longitudinal subdivisions and provide evidence for a strong bending of the longitudinal rostral brain axis at the cephalic flexure. Our data suggest a strong conservation of early forebrain organization between lower and higher vertebrates.
Lagman, David; Callado-Pérez, Amalia; Franzén, Ilkin E.
2015-01-01
Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation. PMID:25806532
Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W
2008-06-01
The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.
Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan
2016-04-01
DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.
Logan, Cairine; Millar, Cassie; Bharadia, Vinay; Rouleau, Katherine
2002-06-24
Recent studies have shown that the mammalian cerebellar cortex can be subdivided into a reproducible array of zones and stripes. In particular, discontinuous patterns of gene expression together with mutational analysis suggest that there are at least four distinct transverse zones along the rostrocaudal axis in mouse: the anterior zone (lobules I-V), the central zone (lobules VI and VII), the posterior zone (lobules VIII and IX), and the nodular zone (lobule X). Here we show that the divergent homeobox-containing transcription factor, Tlx- 3 (also known as Hox11L2 or Rnx) is transiently expressed in external granule cells in a distinct transverse domain of the developing chick cerebellar cortex. Expression is first detected at Hamburger and Hamilton (HH) stage 35. Interestingly, Tlx-3 mRNA expression is initially confined to, and coincident with, the morphological development of fissures. Slightly later, at HH stage 38, expression extends throughout the developing external granular layer (EGL) of lobules I-IXab. Notably, no Tlx-3 expression was detected in lobules IXc and X at any developmental time point examined. Expression is noticeably stronger in nonproliferating cells located in the deep layer of the EGL. Tlx-3 expression is downregulated as granule cells migrate inward to form the internal granule layer and is undetectable shortly after birth. These results suggest that Tlx-3 is expressed as granule cells become postmitotic and suggest that Tlx-3 may play a role in the differentiation of distinct neuronal populations in the cerebellum. Copyright 2002 Wiley-Liss, Inc.
Tamura, Koji; Ohtsuka, Takao; Date, Kenjiro; Fujimoto, Takaaki; Matsunaga, Taketo; Kimura, Hideyo; Watanabe, Yusuke; Miyazaki, Tetsuyuki; Ohuchida, Kenoki; Takahata, Shunichi; Ishigami, Kousei; Oda, Yoshinao; Mizumoto, Kazuhiro; Nakamura, Masafumi; Tanaka, Masao
2016-07-01
To clarify the usefulness of molecular biomarkers for distinguishing invasive carcinoma derived from intraductal papillary mucinous neoplasms (IPMNs [Inv-IPMN]) from concomitant pancreatic ductal adenocarcinoma (PDAC). Data from 19 patients with resected concomitant PDAC were retrospectively reviewed. KRAS/GNAS mutations and immunohistochemical (IHC) expression of p53 and p16/CDKN2A were assessed in both IPMN and distinct PDAC. As controls, KRAS/GNAS mutations and IHC labeling were assessed between invasive and noninvasive components in 1 lesion of 22 independent patients. KRAS/GNAS mutation status of invasive and noninvasive components in Inv-IPMN was consistent in 18 (86%) of 21 patients. Conversely, mutational patterns in IPMN and distinct PDAC in the same pancreas differed from each other in 17 (89%) of 19. There were 10 (53%) and 8 (42%) of 19 patients who showed the same p53 and p16/CDKN2A staining between concomitant PDAC and distinct IPMN. In the Inv-IPMN cohort, 19 (86%) of 22 patients showed the same IHC expression pattern between the noninvasive and invasive components. It may be possible to distinguish Inv-IPMN from concomitant PDAC by assessing these molecular biomarkers. More precise distinction of Inv-IPMN and concomitant PDAC will lead to adequate recognition of the natural history of IPMNs and hence optimal management.
Deconstructing transcriptional heterogeneity in pluripotent stem cells
Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.
2014-01-01
SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879
Behçet's: A Disease or a Syndrome? Answer from an Expression Profiling Study.
Oğuz, Ali Kemal; Yılmaz, Seda Taşır; Oygür, Çağdaş Şahap; Çandar, Tuba; Sayın, Irmak; Kılıçoğlu, Sibel Serin; Ergün, İhsan; Ateş, Aşkın; Özdağ, Hilal; Akar, Nejat
2016-01-01
Behçet's disease (BD) is a chronic, relapsing, multisystemic inflammatory disorder with unanswered questions regarding its etiology/pathogenesis and classification. Distinct manifestation based subsets, pronounced geographical variations in expression, and discrepant immunological abnormalities raised the question whether Behçet's is "a disease or a syndrome". To answer the preceding question we aimed to display and compare the molecular mechanisms underlying distinct subsets of BD. For this purpose, the expression data of the gene expression profiling and association study on BD by Xavier et al (2013) was retrieved from GEO database and reanalysed by gene expression data analysis/visualization and bioinformatics enrichment tools. There were 15 BD patients (B) and 14 controls (C). Three subsets of BD patients were generated: MB (isolated mucocutaneous manifestations, n = 7), OB (ocular involvement, n = 4), and VB (large vein thrombosis, n = 4). Class comparison analyses yielded the following numbers of differentially expressed genes (DEGs); B vs C: 4, MB vs C: 5, OB vs C: 151, VB vs C: 274, MB vs OB: 215, MB vs VB: 760, OB vs VB: 984. Venn diagram analysis showed that there were no common DEGs in the intersection "MB vs C" ∩ "OB vs C" ∩ "VB vs C". Cluster analyses successfully clustered distinct expressions of BD. During gene ontology term enrichment analyses, categories with relevance to IL-8 production (MB vs C) and immune response to microorganisms (OB vs C) were differentially enriched. Distinct subsets of BD display distinct expression profiles and different disease associated pathways. Based on these clear discrepancies, the designation as "Behçet's syndrome" (BS) should be encouraged and future research should take into consideration the immunogenetic heterogeneity of BS subsets. Four gene groups, namely, negative regulators of inflammation (CD69, CLEC12A, CLEC12B, TNFAIP3), neutrophil granule proteins (LTF, OLFM4, AZU1, MMP8, DEFA4, CAMP), antigen processing and presentation proteins (CTSS, ERAP1), and regulators of immune response (LGALS2, BCL10, ITCH, CEACAM8, CD36, IL8, CCL4, EREG, NFKBIZ, CCR2, CD180, KLRC4, NFAT5) appear to be instrumental in BS immunopathogenesis.
Matos, Leandro Luongo; Suarez, Eloah Rabello; Theodoro, Thérèse Rachell; Trufelli, Damila Cristina; Melo, Carina Mucciolo; Garcia, Larissa Ferraz; Oliveira, Olivia Capela Grimaldi; Matos, Maria Graciela Luongo; Kanda, Jossi Ledo; Nader, Helena Bonciani; Martins, João Roberto Maciel; Pinhal, Maria Aparecida Silva
2015-01-01
Introduction The search for a specific marker that could help to distinguish between differentiated thyroid carcinoma and benign lesions remains elusive in clinical practice. Heparanase (HPSE) is an endo-beta-glucoronidase implicated in the process of tumor invasion, and the heparanase-2 (HPSE2) modulates HPSE activity. The aim of this study was to evaluate the role of heparanases in the development and differential diagnosis of follicular pattern thyroid lesions. Methods HPSE and HPSE2 expression by qRT-PCR, immunohistochemistry evaluation, western blot analysis and HPSE enzymatic activity were evaluated. Results The expression of heparanases by qRT-PCR showed an increase of HPSE2 in thyroid carcinoma (P = 0.001). HPSE activity was found to be higher in the malignant neoplasms than in the benign tumors (P<0.0001). On Western blot analysis, HPSE2 isoforms were detected only in malignant tumors. The immunohistochemical assay allowed us to establish a distinct pattern for malignant and benign tumors. Carcinomas showed a typical combination of positive labeling for neoplastic cells and negative immunostaining in colloid, when compared to benign tumors (P<0.0001). The proposed diagnostic test presents sensitivity and negative predictive value of around 100%, showing itself to be an accurate test for distinguishing between malignant and benign lesions. Conclusions This study shows, for the first time, a distinct profile of HPSE expression in thyroid carcinoma suggesting its role in carcinogenesis. PMID:26488476
Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi
2014-01-01
During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3'H activity late in fruit development of F.×ananassa.
Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi
2014-01-01
During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (K cat/K m values) of DFR1 combined with the loss of F3’H activity late in fruit development of F.×ananassa. PMID:25393679
Network-Induced Classification Kernels for Gene Expression Profile Analysis
Dror, Gideon; Shamir, Ron
2012-01-01
Abstract Computational classification of gene expression profiles into distinct disease phenotypes has been highly successful to date. Still, robustness, accuracy, and biological interpretation of the results have been limited, and it was suggested that use of protein interaction information jointly with the expression profiles can improve the results. Here, we study three aspects of this problem. First, we show that interactions are indeed relevant by showing that co-expressed genes tend to be closer in the network of interactions. Second, we show that the improved performance of one extant method utilizing expression and interactions is not really due to the biological information in the network, while in another method this is not the case. Finally, we develop a new kernel method—called NICK—that integrates network and expression data for SVM classification, and demonstrate that overall it achieves better results than extant methods while running two orders of magnitude faster. PMID:22697242
Mills, James D.; Kavanagh, Tomas; Kim, Woojin S.; Chen, Bei Jun; Kawahara, Yoshihiro; Halliday, Glenda M.; Janitz, Michael
2013-01-01
The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases. PMID:24194939
Distribution of cellular HSV-1 receptor expression in human brain.
Lathe, Richard; Haas, Juergen G
2017-06-01
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.
Etich, Julia; Bergmeier, Vera; Pitzler, Lena; Brachvogel, Bent
2017-03-01
Wound healing is a coordinated process to restore tissue homeostasis and reestablish the protective barrier of the skin. miRNAs may modulate the expression of target genes to contribute to repair processes, but due to the complexity of the tissue it is challenging to quantify gene expression during the distinct phases of wound repair. Here, we aimed to identify a common reference gene to quantify changes in miRNA and mRNA expression during skin wound healing. Quantitative real-time PCR and bioinformatic analysis tools were used to identify suitable reference genes during skin repair and their reliability was tested by studying the expression of mRNAs and miRNAs. Morphological assessment of wounds showed that the injury model recapitulates the distinct phases of skin repair. Non-degraded RNA could be isolated from skin and wounds and used to study the expression of non-coding small nuclear RNAs during wound healing. Among those, RNU6B was most constantly expressed during skin repair. Using this reference gene we could confirm the transient upregulation of IL-1β and PTPRC/CD45 during the early phase as well as the increased expression of collagen type I at later stages of repair and validate the differential expression of miR-204, miR-205, and miR-31 in skin wounds. In contrast to Gapdh the normalization to multiple reference genes gave a similar outcome. RNU6B is an accurate alternative normalizer to quantify mRNA and miRNA expression during the distinct phases of skin wound healing when analysis of multiple reference genes is not feasible.
Lu, Hui; Wang, Yu; Xu, Shuang; Wang, Yifeng; Zhang, Ruiping; Li, Tsingan
2015-08-19
Aggression is reported to modulate neural responses to the threatening information. However, whether aggression can modulate neural response to different kinds of threatening facial expressions (angry and fearful expressions) remains unknown. Thus, event-related potentials were measured in individuals (13 high aggressive, 12 low aggressive) exposed to neutral, angry, and fearful facial expressions while performing a frame-distinguishing task, irrespective of the emotional valence of the expressions. Highly aggressive participants showed no distinct neural responses between the three facial expressions. In addition, compared with individuals with low aggression, highly aggressive individuals showed a decreased frontocentral response to fearful faces within 250-300 ms and to angry faces within 400-500 ms of exposure. These results indicate that fearful faces represent a more threatening signal requiring a quick cognitive response during the early stage of facial processing, whereas angry faces elicit a stronger response during the later processing stage because of its eminent emotional significance. The present results represent the first known evidence that aggression is associated with different neural responses to fearful and angry faces. By exploring the distinct temporal responses to fearful and angry faces modulated by aggression, this study more precisely characterizes the cognitive characteristics of aggressive individuals. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
A distinct bacterial dysbiosis associated skin inflammation in ovine footrot
NASA Astrophysics Data System (ADS)
Maboni, Grazieli; Blanchard, Adam; Frosth, Sara; Stewart, Ceri; Emes, Richard; Tötemeyer, Sabine
2017-03-01
Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression.
Zhang, Huakun; Zhu, Bo; Qi, Bao; Gou, Xiaowan; Dong, Yuzhu; Xu, Chunming; Zhang, Bangjiao; Huang, Wei; Liu, Chang; Wang, Xutong; Yang, Chunwu; Zhou, Hao; Kashkush, Khalil; Feldman, Moshe; Wendel, Jonathan F.; Liu, Bao
2014-01-01
Subgenome integrity in bread wheat (Triticum aestivum; BBAADD) makes possible the extraction of its BBAA component to restitute a novel plant type. The availability of such a ploidy-reversed wheat (extracted tetraploid wheat [ETW]) provides a unique opportunity to address whether and to what extent the BBAA component of bread wheat has been modified in phenotype, karyotype, and gene expression during its evolutionary history at the allohexaploid level. We report here that ETW was anomalous in multiple phenotypic traits but maintained a stable karyotype. Microarray-based transcriptome profiling identified a large number of differentially expressed genes between ETW and natural tetraploid wheat (Triticum turgidum), and the ETW-downregulated genes were enriched for distinct Gene Ontology categories. Quantitative RT-PCR analysis showed that gene expression differences between ETW and a set of diverse durum wheat (T. turgidum subsp durum) cultivars were distinct from those characterizing tetraploid cultivars per se. Pyrosequencing revealed that the expression alterations may occur to either only one or both of the B and A homoeolog transcripts in ETW. A majority of the genes showed additive expression in a resynthesized allohexaploid wheat. Analysis of a synthetic allohexaploid wheat and diverse bread wheat cultivars revealed the rapid occurrence of expression changes to the BBAA subgenomes subsequent to allohexaploidization and their evolutionary persistence. PMID:24989045
Leiss, Lina; Mutlu, Ercan; Øyan, Anne; Yan, Tao; Tsinkalovsky, Oleg; Sleire, Linda; Petersen, Kjell; Rahman, Mohummad Aminur; Johannessen, Mireille; Mitra, Sidhartha S; Jacobsen, Hege K; Talasila, Krishna M; Miletic, Hrvoje; Jonassen, Inge; Li, Xingang; Brons, Nicolaas H; Kalland, Karl-Henning; Wang, Jian; Enger, Per Øyvind
2017-02-07
Little is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers. We isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b + immune and CD31 + endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs. TAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs. Our data demonstrate that glial host cells in brain tumours are functionally distinct from glial cells of healthy mice brains. Furthermore, TAGs display a gene expression profile with enrichment for genes related to stem cells, immature cell types and developmental processes. Future studies are needed to delineate the biological mechanisms regulating the brain tumour-host interplay.
Behesti, Hourinaz; Holt, James KL; Sowden, Jane C
2006-01-01
Background Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4) is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4) acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse. Results Our data show that the level of BMP4 signaling is critical for the regulation of distinct Tbx2, Tbx3, Tbx5 and Vax2 gene expression domains along the dorso-ventral axis of the mouse optic cup. BMP4 signaling gradients were manipulated in whole mouse embryo cultures during optic cup development, by implantation of beads soaked in BMP4, or the BMP antagonist Noggin, to provide a local signaling source. Tbx2, Tbx3 and Tbx5, showed a differential response to alterations in the level of BMP4 along the entire dorso-ventral axis of the optic cup, suggesting that BMP4 acts across a distance. Increased levels of BMP4 caused expansion of Tbx2 and Tbx3, but not Tbx5, into the ventral retina and repression of the ventral marker Vax2. Conversely, Noggin abolished Tbx5 expression but only shifted Tbx2 expression dorsally. Increased levels of BMP4 signaling caused decreased proliferation, reduced retinal volume and altered the shape of the optic cup. Conclusion Our findings suggest the existence of a dorsal-high, ventral-low BMP4 signaling gradient across which distinct domains of Tbx2, Tbx3, Tbx5 and Vax2 transcription factor gene expression are set up. Furthermore we show that the correct level of BMP4 signaling is critical for normal growth of the mammalian embryonic eye. PMID:17173667
Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling.
Hoefnagel, Juliette J; Dijkman, Remco; Basso, Katia; Jansen, Patty M; Hallermann, Christian; Willemze, Rein; Tensen, Cornelis P; Vermeer, Maarten H
2005-05-01
In the European Organization for Research and Treatment of Cancer (EORTC) classification 2 types of primary cutaneous large B-cell lymphoma (PCLBCL) are distinguished: primary cutaneous follicle center cell lymphomas (PCFCCL) and PCLBCL of the leg (PCLBCL-leg). Distinction between both groups is considered important because of differences in prognosis (5-year survival > 95% and 52%, respectively) and the first choice of treatment (radiotherapy or systemic chemotherapy, respectively), but is not generally accepted. To establish a molecular basis for this subdivision in the EORTC classification, we investigated the gene expression profiles of 21 PCLBCLs by oligonucleotide microarray analysis. Hierarchical clustering based on a B-cell signature (7450 genes) classified PCLBCL into 2 distinct subgroups consisting of, respectively, 8 PCFCCLs and 13 PCLBCLsleg. PCLBCLs-leg showed increased expression of genes associated with cell proliferation; the proto-oncogenes Pim-1, Pim-2, and c-Myc; and the transcription factors Mum1/IRF4 and Oct-2. In the group of PCFCCL high expression of SPINK2 was observed. Further analysis suggested that PCFCCLs and PCLBCLs-leg have expression profiles similar to that of germinal center B-cell-like and activated B-cell-like diffuse large B-cell lymphoma, respectively. The results of this study suggest that different pathogenetic mechanisms are involved in the development of PCFCCLs and PCLBCLs-leg and provide molecular support for the subdivision used in the EORTC classification.
Bellardita, Carmelo; Kiehn, Ole
2015-01-01
SUMMARY Studies of locomotion in mice suggest that circuits controlling the alternating between left and right limbs may have a modular organization with distinct locomotor circuits being recruited at different speeds. It is not clear, however, whether such a modular organization reflects specific behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides a benchmark for studies of the neuronal control of locomotion in the full range of speeds. It provides evidence that gait expression depends upon selection of different modules of neuronal ensembles. PMID:25959968
Hou, Yuzhu; Zhu, Linnan; Tian, Hongling; Sun, Hai-Xi; Wang, Ruoyu; Zhang, Lianfeng; Zhao, Yong
2018-03-05
Macrophages acquire distinct phenotypes during tissue stress and inflammatory responses. Macrophages are roughly categorized into two different subsets named inflammatory M1 and anti-inflammatory M2 macrophages. We herein identified a unique pathogenic macrophage subpopulation driven by IL-23 with a distinct gene expression profile including defined types of cytokines. The freshly isolated resting mouse peritoneal macrophages were stimulated with different cytokines in vitro, the expression of cytokines and chemokines were detected by microarray, real-time PCR, ELISA and multiple colors flow cytometry. Adoptive transfer of macrophages and imiquimod-induced psoriasis mice were used. In contrast to M1- and M2-polarized macrophages, IL-23-treated macrophages produce large amounts of IL-17A, IL-22 and IFN-γ. Biochemical and molecular studies showed that IL-23 induces IL-17A expression in macrophages through the signal transducer and activator of transcription 3 (STAT3)-retinoid related orphan receptor-γ T (RORγT) pathway. T-bet mediates the IFN-γ production in IL-23-treated macrophages. Importantly, IL-23-treated macrophages significantly promote the dermatitis pathogenesis in a psoriasis-like mouse model. IL-23-treated resting macrophages express a distinctive gene expression prolife compared with M1 and M2 macrophages. The identification of IL-23-induced macrophage polarization may help us to understand the contribution of macrophage subpopulation in Th17-cytokines-related pathogenesis.
Platt, James L.; Rogers, Benjamin J.; Rogers, Kelley C.; Harwood, Adrian J.; Kimmel, Alan R.
2013-01-01
Control of chromatin structure is crucial for multicellular development and regulation of cell differentiation. The CHD (chromodomain-helicase-DNA binding) protein family is one of the major ATP-dependent, chromatin remodeling factors that regulate nucleosome positioning and access of transcription factors and RNA polymerase to the eukaryotic genome. There are three mammalian CHD subfamilies and their impaired functions are associated with several human diseases. Here, we identify three CHD orthologs (ChdA, ChdB and ChdC) in Dictyostelium discoideum. These CHDs are expressed throughout development, but with unique patterns. Null mutants lacking each CHD have distinct phenotypes that reflect their expression patterns and suggest functional specificity. Accordingly, using genome-wide (RNA-seq) transcriptome profiling for each null strain, we show that the different CHDs regulate distinct gene sets during both growth and development. ChdC is an apparent ortholog of the mammalian Class III CHD group that is associated with the human CHARGE syndrome, and GO analyses of aberrant gene expression in chdC nulls suggest defects in both cell-autonomous and non-autonomous signaling, which have been confirmed through analyses of chdC nulls developed in pure populations or with low levels of wild-type cells. This study provides novel insight into the broad function of CHDs in the regulation development and disease, through chromatin-mediated changes in directed gene expression. PMID:24301467
A Hypothalamic Switch for REM and Non-REM Sleep.
Chen, Kai-Siang; Xu, Min; Zhang, Zhe; Chang, Wei-Cheng; Gaj, Thomas; Schaffer, David V; Dan, Yang
2018-03-07
Rapid eye movement (REM) and non-REM (NREM) sleep are controlled by specific neuronal circuits. Here we show that galanin-expressing GABAergic neurons in the dorsomedial hypothalamus (DMH) comprise separate subpopulations with opposing effects on REM versus NREM sleep. Microendoscopic calcium imaging revealed diverse sleep-wake activity of DMH GABAergic neurons, but the galanin-expressing subset falls into two distinct groups, either selectively activated (REM-on) or suppressed (REM-off) during REM sleep. Retrogradely labeled, preoptic area (POA)-projecting galaninergic neurons are REM-off, whereas the raphe pallidus (RPA)-projecting neurons are primarily REM-on. Bidirectional optogenetic manipulations showed that the POA-projecting neurons promote NREM sleep and suppress REM sleep, while the RPA-projecting neurons have the opposite effects. Thus, REM/NREM switch is regulated antagonistically by DMH galaninergic neurons with intermingled cell bodies but distinct axon projections. Copyright © 2018 Elsevier Inc. All rights reserved.
Ferreira, Rute M M; Sancho, Rocio; Messal, Hendrik A; Nye, Emma; Spencer-Dene, Bradley; Stone, Richard K; Stamp, Gordon; Rosewell, Ian; Quaglia, Alberto; Behrens, Axel
2017-10-24
The cell of origin of pancreatic ductal adenocarcinoma (PDAC) has been controversial. Here, we show that identical oncogenic drivers trigger PDAC originating from both ductal and acinar cells with similar histology but with distinct pathophysiology and marker expression dependent on cell of origin. Whereas acinar-derived tumors exhibited low AGR2 expression and were preceded by pancreatic intraepithelial neoplasias (PanINs), duct-derived tumors displayed high AGR2 and developed independently of a PanIN stage via non-mucinous lesions. Using orthotopic transplantation and chimera experiments, we demonstrate that PanIN-like lesions can be induced by PDAC as bystanders in adjacent healthy tissues, explaining the co-existence of mucinous and non-mucinous lesions and highlighting the need to distinguish between true precursor PanINs and PanIN-like bystander lesions. Our results suggest AGR2 as a tool to stratify PDAC according to cell of origin, highlight that not all PanIN-like lesions are precursors of PDAC, and add an alternative progression route to the current model of PDAC development. Copyright © 2017 Francis Crick Institute. Published by Elsevier Inc. All rights reserved.
Vilim, F.S.; Sasaki, K.; Rybak, J.; Alexeeva, V.; Cropper, E.; Jing, J.; Orekhova, I.V.; Brezina, V.; Price, D.; Romanova, E.V.; Rubakhin, S.S.; Hatcher, N.; Sweedler, J.V.; Weiss, K.R.
2010-01-01
Many bioactive neuropeptides containing RFamide at their C-terminus have been described in both invertebrates and vertebrates. To obtain insight into the functional logic of RFamide signaling, we investigate it here in the feeding system of Aplysia. We focus on the expression, localization, and actions of two families of RFamide peptides, the FRFamides and FMRFamide, in the central neuronal circuitry and the peripheral musculature that generate the feeding movements. We describe the cloning of the FRFamide precursor protein and show that the FRFamides and FMRFamide are derived from different precursors. We map the expression of the FRFamide and FMRFamide precursors in the feeding circuitry using in-situ hybridization and immunostaining, and confirm proteolytic processing of the FRFamide precursor by mass spectrometry. We show that the two precursors are expressed in different populations of sensory neurons in the feeding system. In a representative feeding muscle, we demonstrate the presence of both FRFamides and FMRFamide and their release, probably from the processes of the sensory neurons in the muscle. Both centrally and in the periphery, the FRFamides and FMRFamide act in distinct ways, apparently through distinct mechanisms, that nevertheless, from an overall functional perspective, their actions are complementary. Together, the FRFamides and FMRFamide convert feeding motor programs from ingestive to egestive, and depress feeding muscle contractions. We conclude that these structurally related peptides, even though derived from different precursors, expressed in different neurons, and acting through different mechanisms, remain related to each other in the functional roles that they play in the system. PMID:20053896
Ribeiro, Maisa; Teixeira, Sarah R; Azevedo, Monarko N; Fraga, Ailton C; Gontijo, Antônio Pm; Vêncio, Eneida F
2017-04-01
To investigate hypoxia-induced factor-1 alpha expression in distinct oral squamous cell carcinoma subtypes and topographies and correlate with clinicopathological data. Hypoxia-induced factor-1 alpha expression was assessed by immunohistochemistry in 93 cases of OSCC. Clinical and histopathological data were reviewed from medical records. Hypoxia-induced factor-1 alpha status was distinct according to tumor location, subtype and topography affect. In superficial oral squamous cell carcinomas, most tumor cells overexpressed hypoxia-induced factor-1 alpha, whereas hypoxia-induced factor-1 alpha was restricted to the intratumoral region in conventional squamous cell carcinomas. All basaloid squamous cell carcinomas exhibited downregulation of hypoxia-induced factor-1 alpha. Interestingly, metastatic lymph nodes (91.7%, p = 0.001) and the intratumoral regions of corresponding primary tumors (58.3%, p = 0.142) showed hypoxia-induced factor-1 alpha-positive tumor cells. Overall survival was poor in patients with metastatic lymph nodes. Hypoxia-induced factor-1 alpha has distinct expression patterns in different oral squamous cell carcinoma subtypes and topographies, suggesting that low oxygen tension promotes the growth pattern of superficial and conventional squamous cell carcinoma, but not basaloid squamous cell carcinoma. Indeed, a hypoxic environment may facilitate regional metastasis, making it a useful diagnostic and prognostic marker in primary tumors.
Central Topography of Cranial Motor Nuclei Controlled by Differential Cadherin Expression
Astick, Marc; Tubby, Kristina; Mubarak, Waleed M.; Guthrie, Sarah; Price, Stephen R.
2014-01-01
Summary Neuronal nuclei are prominent, evolutionarily conserved features of vertebrate central nervous system (CNS) organization [1]. Nuclei are clusters of soma of functionally related neurons and are located in highly stereotyped positions. Establishment of this CNS topography is critical to neural circuit assembly. However, little is known of either the cellular or molecular mechanisms that drive nucleus formation during development, a process termed nucleogenesis [2–5]. Brainstem motor neurons, which contribute axons to distinct cranial nerves and whose functions are essential to vertebrate survival, are organized exclusively as nuclei. Cranial motor nuclei are composed of two main classes, termed branchiomotor/visceromotor and somatomotor [6]. Each of these classes innervates evolutionarily distinct structures, for example, the branchial arches and eyes, respectively. Additionally, each class is generated by distinct progenitor cell populations and is defined by differential transcription factor expression [7, 8]; for example, Hb9 distinguishes somatomotor from branchiomotor neurons. We characterized the time course of cranial motornucleogenesis, finding that despite differences in cellular origin, segregation of branchiomotor and somatomotor nuclei occurs actively, passing through a phase of each being intermingled. We also found that differential expression of cadherin cell adhesion family members uniquely defines each motor nucleus. We show that cadherin expression is critical to nucleogenesis as its perturbation degrades nucleus topography predictably. PMID:25308074
Importance of codon usage for the temporal regulation of viral gene expression
Shin, Young C.; Bischof, Georg F.; Lauer, William A.; Desrosiers, Ronald C.
2015-01-01
The glycoproteins of herpesviruses and of HIV/SIV are made late in the replication cycle and are derived from transcripts that use an unusual codon usage that is quite different from that of the host cell. Here we show that the actions of natural transinducers from these two different families of persistent viruses (Rev of SIV and ORF57 of the rhesus monkey rhadinovirus) are dependent on the nature of the skewed codon usage. In fact, the transinducibility of expression of these glycoproteins by Rev and by ORF57 can be flipped simply by changing the nature of the codon usage. Even expression of a luciferase reporter could be made Rev dependent or ORF57 dependent by distinctive changes to its codon usage. Our findings point to a new general principle in which different families of persisting viruses use a poor codon usage that is skewed in a distinctive way to temporally regulate late expression of structural gene products. PMID:26504241
Behçet's: A Disease or a Syndrome? Answer from an Expression Profiling Study
Oğuz, Ali Kemal; Yılmaz, Seda Taşır; Oygür, Çağdaş Şahap; Çandar, Tuba; Sayın, Irmak; Kılıçoğlu, Sibel Serin; Ergün, İhsan; Ateş, Aşkın; Özdağ, Hilal; Akar, Nejat
2016-01-01
Behçet’s disease (BD) is a chronic, relapsing, multisystemic inflammatory disorder with unanswered questions regarding its etiology/pathogenesis and classification. Distinct manifestation based subsets, pronounced geographical variations in expression, and discrepant immunological abnormalities raised the question whether Behçet’s is “a disease or a syndrome”. To answer the preceding question we aimed to display and compare the molecular mechanisms underlying distinct subsets of BD. For this purpose, the expression data of the gene expression profiling and association study on BD by Xavier et al (2013) was retrieved from GEO database and reanalysed by gene expression data analysis/visualization and bioinformatics enrichment tools. There were 15 BD patients (B) and 14 controls (C). Three subsets of BD patients were generated: MB (isolated mucocutaneous manifestations, n = 7), OB (ocular involvement, n = 4), and VB (large vein thrombosis, n = 4). Class comparison analyses yielded the following numbers of differentially expressed genes (DEGs); B vs C: 4, MB vs C: 5, OB vs C: 151, VB vs C: 274, MB vs OB: 215, MB vs VB: 760, OB vs VB: 984. Venn diagram analysis showed that there were no common DEGs in the intersection “MB vs C” ∩ “OB vs C” ∩ “VB vs C”. Cluster analyses successfully clustered distinct expressions of BD. During gene ontology term enrichment analyses, categories with relevance to IL-8 production (MB vs C) and immune response to microorganisms (OB vs C) were differentially enriched. Distinct subsets of BD display distinct expression profiles and different disease associated pathways. Based on these clear discrepancies, the designation as “Behçet’s syndrome” (BS) should be encouraged and future research should take into consideration the immunogenetic heterogeneity of BS subsets. Four gene groups, namely, negative regulators of inflammation (CD69, CLEC12A, CLEC12B, TNFAIP3), neutrophil granule proteins (LTF, OLFM4, AZU1, MMP8, DEFA4, CAMP), antigen processing and presentation proteins (CTSS, ERAP1), and regulators of immune response (LGALS2, BCL10, ITCH, CEACAM8, CD36, IL8, CCL4, EREG, NFKBIZ, CCR2, CD180, KLRC4, NFAT5) appear to be instrumental in BS immunopathogenesis. PMID:26890122
Tissue-specific NETs alter genome organization and regulation even in a heterologous system.
de Las Heras, Jose I; Zuleger, Nikolaj; Batrakou, Dzmitry G; Czapiewski, Rafal; Kerr, Alastair R W; Schirmer, Eric C
2017-01-02
Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes.
The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression.
Munch, David; Gupta, Vikas; Bachmann, Asger; Busch, Wolfgang; Kelly, Simon; Mun, Terry; Andersen, Stig Uggerhøj
2018-02-01
Nucleotide-binding site leucine-rich repeat resistance genes (NLRs) allow plants to detect microbial effectors. We hypothesized that NLR expression patterns could reflect organ-specific differences in effector challenge and tested this by carrying out a meta-analysis of expression data for 1,235 NLRs from nine plant species. We found stable NLR root/shoot expression ratios within species, suggesting organ-specific hardwiring of NLR expression patterns in anticipation of distinct challenges. Most monocot and dicot plant species preferentially expressed NLRs in roots. In contrast, Brassicaceae species, including oilseed rape ( Brassica napus ) and the model plant Arabidopsis ( Arabidopsis thaliana ), were unique in showing NLR expression skewed toward the shoot across multiple phylogenetically distinct groups of NLRs. The Brassicaceae are also outliers in the sense that they have lost the common symbiosis signaling pathway, which enables intracellular infection by root symbionts. While it is unclear if these two events are related, the NLR expression shift identified here suggests that the Brassicaceae may have evolved unique pattern-recognition receptors and antimicrobial root metabolites to substitute for NLR protection. Such innovations in root protection could potentially be exploited in crop rotation schemes or for enhancing root defense systems of non-Brassicaceae crops. © 2018 American Society of Plant Biologists. All Rights Reserved.
Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats.
Tang, Qianzi; Huang, Wenyao; Guan, Jiuqiang; Jin, Long; Che, Tiandong; Fu, Yuhua; Hu, Yaodong; Tian, Shilin; Wang, Dawei; Jiang, Zhi; Li, Xuewei; Li, Mingzhou
2015-08-10
Domestic goats are distributed in a wide range of habitats and have acclimated to their local environmental conditions. To investigate the gene expression changes of goats that are induced by high altitude stress, we performed RNA-seq on 27 samples from the three hypoxia-sensitive tissues (heart, lung, and skeletal muscle) in three indigenous populations from distinct altitudes (600 m, 2000 m, and 3000 m). We generated 129Gb of high-quality sequencing data (~4Gb per sample) and catalogued the expression profiles of 12,421 annotated hircine genes in each sample. The analysis showed global similarities and differences of high-altitude transcriptomes among populations and tissues as well as revealed that the heart underwent the most high-altitude induced expression changes. We identified numerous differentially expressed genes that exhibited distinct expression patterns, and nonsynonymous single nucleotide variant-containing genes that were highly differentiated between the high- and low-altitude populations. These genes have known or potential roles in hypoxia response and were enriched in functional gene categories potentially responsible for high-altitude stress. Therefore, they are appealing candidates for further investigation of the gene expression and associated regulatory mechanisms related to high-altitude acclimation. Copyright © 2015 Elsevier B.V. All rights reserved.
Prx1 and 3.2 kb Col1a1 promoters target distinct bone cell populations in transgenic mice
Ouyang, Zhufeng; Chen, Zhijun; Ishikawa, Masakazu; Yue, Xiuzhen; Kawanami, Aya; Leahy, Patrick; Greenfield, Edward M.; Murakami, Shunichi
2014-01-01
Bones consist of a number of cell types including osteoblasts and their precursor cells at various stages of differentiation. To analyze cellular organization within the bone, we generated Col1a1CreER-DsRed transgenic mice that express, in osteoblasts, CreER and DsRed under the control of a mouse 3.2 kb Col1a1 promoter. We further crossed Col1a1CreER-DsRed mice with Prx1CreER-GFP mice that express CreER and GFP in osteochondro progenitor cells under the control of a 2.4 kb Prx1 promoter. Since the 3.2 kb Col1a1 promoter becomes active in osteoblasts at early stages of differentiation, and Prx1CreER-GFP-expressing periosteal cells show endogenous Col1a1 expression, we expected to find a cell population in which both the 2.4 kb Prx1 promoter and the 3.2 kb Col1a1 promoter are active. However, our histological and flow cytometric analyses demonstrated that these transgenes are expressed in distinct cell populations. In the periosteum of long bones, Col1a1CreER-DsRed is expressed in the innermost layer directly lining the bone surface, while Prx1CreER-GFP-expressing cells are localized immediately outside of the Col1a1CreER-DsRed-expressing osteoblasts. In the calvaria, Prx1CreER-GFP-expressing cells are also localized in the cranial suture mesenchyme. Our experiments further showed that Col1a1CreER-DsRed-expressing cells lack chondrogenic potential, while the Prx1CreER-GFP-expressing cells show both chondrogenic and osteogenic potential. Our results indicate that Col1a1CreER-DsRed-expressing cells are committed osteoblasts, while Prx1CreER-GFP-expressing cells are osteochondro progenitor cells. The Prx1CreER-GFP and Col1a1CreER-DsRed transgenes will offer novel approaches for analyzing lineage commitment and early stages of osteoblast differentiation under physiologic and pathologic conditions. PMID:24513582
Plasticity of the Chemoreceptor Repertoire in Drosophila melanogaster
Zhou, Shanshan; Stone, Eric A.; Mackay, Trudy F. C.; Anholt, Robert R. H.
2009-01-01
For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins, whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex, development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members. We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor repertoire in response to ecologically relevant environmental and physiological conditions. PMID:19816562
Bouchlaka, Myriam N.; Moffitt, Andrea B.; Kim, Jaehyup; Kink, John A.; Bloom, Debra D.; Love, Cassandra; Dave, Sandeep; Hematti, Peiman; Capitini, Christian M.
2017-01-01
Mesenchymal stem cells (MSCs) have immunosuppressive and tissue repair properties, but clinical trials using MSCs to prevent or treat GVHD have shown mixed results. Macrophages (MØs) are important regulators of immunity and can promote tissue regeneration and remodeling. We have previously shown that MSCs can educate MØs toward a unique anti-inflammatory immunophenotype (MSC-educated macrophages or MEMs), however their implications for in vivo models of inflammation have not been studied yet. We now show that in comparison to MØs, MEMs have increased expression of the inhibitory molecules PD-L1, PD-L2, in addition to markers of alternatively activated macrophages: CD206 and CD163. RNA-Seq analysis of MEMs, as compared to MØs, show a distinct gene expression profile that positively correlates with multiple pathways important in tissue repair. MEMs also show increased expression of IL-6, TGF-β, Arginase-1, CD73, and decreased expression of IL-12 and TNF-α. We show that IL-6 secretion is controlled in part by the COX-2, arginase and JAK1/STAT1 pathway. When tested in vivo, we show that human MEMs significantly enhance survival from lethal GVHD, and improve survival of mice from radiation injury. We show these effects could be mediated in part through suppression of human T cell proliferation, and may have attenuated host tissue injury in part by enhancing murine fibroblast proliferation. MEMs are a unique MØ subset with therapeutic potential for the management of GVHD and/or protection from radiation-induced injury. PMID:28257800
Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.
Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa
2015-05-01
Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.
Transcription factors define the neuroanatomical organization of the medullary reticular formation
Gray, Paul A.
2013-01-01
The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic. PMID:23717265
Transcription factors define the neuroanatomical organization of the medullary reticular formation.
Gray, Paul A
2013-01-01
The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic.
Mullighan, C G; Kennedy, A; Zhou, X; Radtke, I; Phillips, L A; Shurtleff, S A; Downing, J R
2007-09-01
Somatic mutations in nucleophosmin (NPM1) occur in approximately 35% of adult acute myeloid leukemia (AML). To assess the frequency of NPM1 mutations in pediatric AML, we sequenced NPM1 in the diagnostic blasts from 93 pediatric AML patients. Six cases harbored NPM1 mutations, with each case lacking common cytogenetic abnormalities. To explore the phenotype of the AMLs with NPM1 mutations, gene expression profiles were obtained using Affymetrix U133A microarrays. NPM1 mutations were associated with increased expression of multiple homeobox genes including HOXA9, A10, B2, B6 and MEIS1. As dysregulated homeobox gene expression is also a feature of MLL-rearranged leukemia, the gene expression signatures of NPM1-mutated and MLL-rearranged leukemias were compared. Significant differences were identified between these leukemia subtypes including the expression of different HOX genes, with NPM1-mutated AML showing higher levels of expression of HOXB2, B3, B6 and D4. These results confirm recent reports of perturbed HOX expression in NPM1-mutated adult AML, and provide the first evidence that the NPM1-mutated signature is distinct from MLL-rearranged AML. These findings suggest that mutated NPM1 leads to dysregulated HOX expression via a different mechanism than MLL rearrangement.
E- and P-cadherin expression during murine hair follicle morphogenesis and cycling.
Müller-Röver, S; Tokura, Y; Welker, P; Furukawa, F; Wakita, H; Takigawa, M; Paus, R
1999-08-01
The role of adhesion molecules in the control of hair follicle (HF) morphogenesis, regression and cycling is still rather enigmatic. Since the adhesion molecules E- and P-cadherin (Ecad and Pcad) are functionally important, e.g. during embryonic pattern formation, we have studied their expression patterns during neonatal HF morphogenesis and cycling in C57/BL6 mice by immunohistology and semi-quantitative RT-PCR. The expression of both cadherins was strikingly hair cycle-dependent and restricted to distinct anatomical HF compartments. During HF morphogenesis, hair bud keratinocytes displayed strong Ecad and Pcad immunoreactivity (IR). While neonatal epidermis showed Ecad IR in all epidermal layers, Pcad IR was restricted to the basal layer. During later stages of HF morphogenesis and during anagen IV-VI of the adolescent murine hair cycle, the outer root sheath showed strong E- and Pcad IR. Instead, the outermost portion of the hair matrix and the inner root sheath displayed isolated Ecad IR, while the innermost portion of the hair matrix exhibited isolated Pcad IR. During telogen, all epidermal and follicular keratinocytes showed strong Ecad IR. This is in contrast to Pcad, whose IR was stringently restricted to matrix and secondary hair germ keratinocytes which are in closest proximity to the dermal papilla. These findings suggest that isolated or combined E- and/or Pcad expression is involved in follicular pattern formation by segregating HF keratinocytes into functionally distinct subpopulations; most notably, isolated Pcad expression may segregate those hair matrix keratinocytes into one functional epithelial tissue unit, which is particularly susceptible to growth control by dermal papilla-derived morphogens. The next challenge is to define which secreted agents implicated in hair growth control modulate these follicular cadherin expression patterns, and to define how these basic parameters of HF topobiology are altered during common hair growth disorders.
Shirahata, Mitsuaki; Iwao-Koizumi, Kyoko; Saito, Sakae; Ueno, Noriko; Oda, Masashi; Hashimoto, Nobuo; Takahashi, Jun A; Kato, Kikuya
2007-12-15
Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.
Naxerova, Kamila; Bult, Carol J; Peaston, Anne; Fancher, Karen; Knowles, Barbara B; Kasif, Simon; Kohane, Isaac S
2008-01-01
Background In recent years, the molecular underpinnings of the long-observed resemblance between neoplastic and immature tissue have begun to emerge. Genome-wide transcriptional profiling has revealed similar gene expression signatures in several tumor types and early developmental stages of their tissue of origin. However, it remains unclear whether such a relationship is a universal feature of malignancy, whether heterogeneities exist in the developmental component of different tumor types and to which degree the resemblance between cancer and development is a tissue-specific phenomenon. Results We defined a developmental landscape by summarizing the main features of ten developmental time courses and projected gene expression from a variety of human tumor types onto this landscape. This comparison demonstrates a clear imprint of developmental gene expression in a wide range of tumors and with respect to different, even non-cognate developmental backgrounds. Our analysis reveals three classes of cancers with developmentally distinct transcriptional patterns. We characterize the biological processes dominating these classes and validate the class distinction with respect to a new time series of murine embryonic lung development. Finally, we identify a set of genes that are upregulated in most cancers and we show that this signature is active in early development. Conclusion This systematic and quantitative overview of the relationship between the neoplastic and developmental transcriptome spanning dozens of tissues provides a reliable outline of global trends in cancer gene expression, reveals potentially clinically relevant differences in the gene expression of different cancer types and represents a reference framework for interpretation of smaller-scale functional studies. PMID:18611264
Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper.
Li, Shuisheng; Xiao, Ling; Liu, Qiongyu; Zheng, Binbin; Chen, Huapu; Liu, Xiaochun; Zhang, Yong; Lin, Haoran
2015-10-01
Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper. © 2015 Society for Endocrinology.
Vital, Marius; Chai, Benli; Østman, Bjørn; Cole, James; Konstantinidis, Konstantinos T; Tiedje, James M
2015-01-01
Escherichia coli spans a genetic continuum from enteric strains to several phylogenetically distinct, atypical lineages that are rare in humans, but more common in extra-intestinal environments. To investigate the link between gene regulation, phylogeny and diversification in this species, we analyzed global gene expression profiles of four strains representing distinct evolutionary lineages, including a well-studied laboratory strain, a typical commensal (enteric) strain and two environmental strains. RNA-Seq was employed to compare the whole transcriptomes of strains grown under batch, chemostat and starvation conditions. Highly differentially expressed genes showed a significantly lower nucleotide sequence identity compared with other genes, indicating that gene regulation and coding sequence conservation are directly connected. Overall, distances between the strains based on gene expression profiles were largely dependent on the culture condition and did not reflect phylogenetic relatedness. Expression differences of commonly shared genes (all four strains) and E. coli core genes were consistently smaller between strains characterized by more similar primary habitats. For instance, environmental strains exhibited increased expression of stress defense genes under carbon-limited growth and entered a more pronounced survival-like phenotype during starvation compared with other strains, which stayed more alert for substrate scavenging and catabolism during no-growth conditions. Since those environmental strains show similar genetic distance to each other and to the other two strains, these findings cannot be simply attributed to genetic relatedness but suggest physiological adaptations. Our study provides new insights into ecologically relevant gene-expression and underscores the role of (differential) gene regulation for the diversification of the model bacterial species. PMID:25343512
Kawakami, Takahisa; Lichtnekert, Julia; Thompson, Lucas J.; Karna, Prasanthi; Bouabe, Hicham; Hohl, Tobias M.; Heinecke, Jay W.; Ziegler, Steven F.; Nelson, Peter J.; Duffield, Jeremy S.
2013-01-01
Recent reports have highlighted greater complexity, plasticity and functional diversity of mononuclear phagocytes (MPCs), including monocytes, macrophages and dendritic cells (DCs), in our organs, than previously understood. The functions and origins of MPCs resident within healthy organs, especially in the kidney, are less well understood, while studies suggest they play roles in disease states distinct from recruited monocytes. We developed an unbiased approach using flow cytometry to analyze MPCs residing in the normal mouse kidney, and identified five discrete subpopulations according to CD11b/CD11c expression as well as F4/80, CD103, CD14, CD16 and CD64 expression. In addition to distinct marker profiles, these subpopulations have different lineages and expression of genes involved in tissue homeostasis, including angiogenesis. Among them, the CD11bint CD11cint F4/80hi subpopulation notably exhibited high capacity to produce a representative anti-inflammatory cytokine, IL-10. Each subpopulation had different degrees of both macrophage (phagocytosis) and DC (antigen presentation) capacities, with a tendency to promote differentiation of regulatory T cells, while two of these showed expression of transcription factors reported to be highly expressed by classical DCs, and proclivity to exit the kidney following stimulation with LPS. In summary, resident kidney MPCs comprise discrete subpopulations, which cannot be simply classified into the conventional entities, and they produce anti-inflammatory and tissue-homeostatic factors to differing degrees. PMID:23956422
Wang, Jie; Chung, Seung Ho; Peiffer, Michelle; Rosa, Cristina; Hoover, Kelli; Zeng, Rensen; Felton, Gary W
2016-06-01
Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.
Genomic connectivity networks based on the BrainSpan atlas of the developing human brain
NASA Astrophysics Data System (ADS)
Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.
2014-03-01
The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.
Wilhelm, C J; Hashimoto, J G; Roberts, M L; Sonmez, M K; Wiren, K M
2014-10-24
Ethanol abuse can lead to addiction, brain damage and premature death. The cycle of alcohol addiction has been described as a composite consisting of three stages: intoxication, withdrawal and craving/abstinence. There is evidence for contributions of both genotype and sex to alcoholism, but an understanding of the biological underpinnings is limited. Utilizing both sexes of genetic animal models with highly divergent alcohol withdrawal severity, Withdrawal Seizure-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) mice, the distinct contributions of genotype/phenotype and of sex during addiction stages on neuroadaptation were characterized. Transcriptional profiling was performed to identify expression changes as a consequence of chronic intoxication in the medial prefrontal cortex. Significant expression differences were identified on a single platform and tracked over a behaviorally relevant time course that covered each stage of alcohol addiction; i.e., after chronic intoxication, during peak withdrawal, and after a defined period of abstinence. Females were more sensitive to ethanol with higher fold expression differences. Bioinformatics showed a strong effect of sex on the data structure of expression profiles during chronic intoxication and at peak withdrawal irrespective of genetic background. However, during abstinence, differences were observed instead between the lines/phenotypes irrespective of sex. Confirmation of identified pathways showed distinct inflammatory signaling following intoxication at peak withdrawal, with a pro-inflammatory phenotype in females but overall suppression of immune signaling in males. Combined, these results suggest that each stage of the addiction cycle is influenced differentially by sex vs. genetic background and support the development of stage- and sex-specific therapies for alcohol withdrawal and the maintenance of sobriety. Published by Elsevier Ltd.
Goodnough, L Henry; Dinuoscio, Gregg J; Ferguson, James W; Williams, Trevor; Lang, Richard A; Atit, Radhika P
2014-02-01
The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation.
Berens, Ali J; Tibbetts, Elizabeth A; Toth, Amy L
2017-06-15
The specialized ability to learn and recall individuals based on distinct facial features is known in only a few, large-brained social taxa. Social paper wasps in the genus Polistes are the only insects known to possess this form of cognitive specialization. We analyzed genome-wide brain gene expression during facial and pattern training for two species of paper wasps ( P. fuscatus , which has face recognition, and P. metricus , which does not) using RNA sequencing. We identified 237 transcripts associated with face specialization in P. fuscatus , including some transcripts involved in neuronal signaling (serotonin receptor and tachykinin). Polistes metricus that learned faces (without specialized learning) and P. fuscatus in social interactions with familiar partners (from a previous study) showed distinct sets of brain differentially expressed transcripts. These data suggest face specialization in P. fuscatus is related to shifts in the brain transcriptome associated with genes distinct from those related to general visual learning and social interactions. © 2017. Published by The Company of Biologists Ltd.
Knecht, Zachary A; Silbering, Ana F; Ni, Lina; Klein, Mason; Budelli, Gonzalo; Bell, Rati; Abuin, Liliane; Ferrer, Anggie J; Samuel, Aravinthan Dt; Benton, Richard; Garrity, Paul A
2016-09-22
Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila . Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects.
Vascular Gene Expression in Nonneoplastic and Malignant Brain
Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.
2004-01-01
Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233
Dunipace, Leslie; Ozdemir, Anil; Stathopoulos, Angelike
2011-01-01
It has been shown in several organisms that multiple cis-regulatory modules (CRMs) of a gene locus can be active concurrently to support similar spatiotemporal expression. To understand the functional importance of such seemingly redundant CRMs, we examined two CRMs from the Drosophila snail gene locus, which are both active in the ventral region of pre-gastrulation embryos. By performing a deletion series in a ∼25 kb DNA rescue construct using BAC recombineering and site-directed transgenesis, we demonstrate that the two CRMs are not redundant. The distal CRM is absolutely required for viability, whereas the proximal CRM is required only under extreme conditions such as high temperature. Consistent with their distinct requirements, the CRMs support distinct expression patterns: the proximal CRM exhibits an expanded expression domain relative to endogenous snail, whereas the distal CRM exhibits almost complete overlap with snail except at the anterior-most pole. We further show that the distal CRM normally limits the increased expression domain of the proximal CRM and that the proximal CRM serves as a `damper' for the expression levels driven by the distal CRM. Thus, the two CRMs interact in cis in a non-additive fashion and these interactions may be important for fine-tuning the domains and levels of gene expression. PMID:21813571
Understanding women's experiences of distress during pregnancy in Dar es Salaam, Tanzania.
Kaaya, S F; Mbwambo, J K; Fawzi, M C Smith; Van Den Borne, H; Schaalma, H; Leshabari, M T
2010-01-01
Several studies show depression is common during pregnancy. However, there is limited information in Tanzania on the magnitude of perceived distress during pregnancy and meanings ascribed to such distress. A descriptive survey collected data using unstructured interviews from 12 traditional practitioners and 10 peri-urban women with previous pregnancy related mental health concerns identified using a depression vignette. The objectives were to describe the sources and characteristics of distress during pregnancy, and idioms of distress that could inform cultural adaptation of depression screening tools. Narrative analysis showed an emergent category of "problematic pregnancies" framed women's recollections of prolonged periods of sadness. This experience was qualified using various idioms of distress that were differentially emphasized depending on informant's perceived causes of health concern. The idiom kusononeka was consistently used to describe extreme sadness across causal categories and clustered with at least two typical features of major depression. This suggested existence of a construct with similarities to biomedical criteria for depression. "Thinking too much" emerged as a distinctive expression associated with prolonged sadness. Distinctive expressions of social functioning impairments were identified that can inform depression severity assessments. In conclusion, contextual inquiry into experiences of psychological distress showed distinct local idioms that clustered in patterns similar to symptoms of biomedical depressive episodes. Further studies to assess the utility of local idioms of distress and distress related functional impairment in depression assessment tools are warranted.
De La Cruz-Rivera, Pamela C; Kanchwala, Mohammed; Liang, Hanquan; Kumar, Ashwani; Wang, Lin-Fa; Xing, Chao; Schoggins, John W
2018-01-01
Bats host a large number of zoonotic viruses, including several viruses that are highly pathogenic to other mammals. The mechanisms underlying this rich viral diversity are unknown, but they may be linked to unique immunological features that allow bats to act as asymptomatic viral reservoirs. Vertebrates respond to viral infection by inducing IFNs, which trigger antiviral defenses through IFN-stimulated gene (ISG) expression. Although the IFN system of several bats is characterized at the genomic level, less is known about bat IFN-mediated transcriptional responses. In this article, we show that IFN signaling in bat cells from the black flying fox ( Pteropus alecto ) consists of conserved and unique ISG expression profiles. In IFN-stimulated cells, bat ISGs comprise two unique temporal subclusters with similar early induction kinetics but distinct late-phase declines. In contrast, human ISGs lack this decline phase and remained elevated for longer periods. Notably, in unstimulated cells, bat ISGs were expressed more highly than their human counterparts. We also found that the antiviral effector 2-5A-dependent endoribonuclease, which is not an ISG in humans, is highly IFN inducible in black flying fox cells and contributes to cell-intrinsic control of viral infection. These studies reveal distinctive innate immune features that may underlie a unique virus-host relationship in bats. Copyright © 2017 by The American Association of Immunologists, Inc.
Differential Activation of Human Monocytes and Lymphocytes by Distinct Strains of Trypanosoma cruzi.
Magalhães, Luísa M D; Viana, Agostinho; Chiari, Egler; Galvão, Lúcia M C; Gollob, Kenneth J; Dutra, Walderez O
2015-01-01
Trypanosoma cruzi strains are currently classified into six discrete typing units (DTUs) named TcI to VI. It is known that these DTUs have different geographical distribution, as well as biological features. TcI and TcII are major DTUs found in patients from northern and southern Latin America, respectively. Our hypothesis is that upon infection of human peripheral blood cells, Y strain (Tc II) and Col cl1.7 (Tc I), cause distinct immunological changes, which might influence the clinical course of Chagas disease. We evaluated the infectivity of CFSE-stained trypomastigotes of Col cl1.7 and Y strain in human monocytes for 15 and 72 hours, and determined the immunological profile of lymphocytes and monocytes exposed to the different isolates using multiparameter flow cytometry. Our results showed a similar percentage and intensity of monocyte infection by Y and Col cl1.7. We also observed an increased expression of CD80 and CD86 by monocytes infected with Col cl1.7, but not Y strain. IL-10 was significantly higher in monocytes infected with Col cl1.7, as compared to Y strain. Moreover, infection with Col cl1.7, but not Y strain, led to an increased expression of IL-17 by CD8+ T cells. On the other hand, we observed a positive correlation between the expression of TNF-alpha and granzyme A only after infection with Y strain. Our study shows that while Col cl1.7 induces higher monocyte activation and, at the same time, production of IL-10, infection with Y strain leads to a lower monocyte activation but higher inflammatory profile. These results show that TcI and TcII have a distinct immunological impact on human cells during early infection, which might influence disease progression.
Campos, Belinda; Shiota, Michelle N; Keltner, Dacher; Gonzaga, Gian C; Goetz, Jennifer L
2013-01-01
Understanding positive emotions' shared and differentiating features can yield valuable insight into the structure of positive emotion space and identify emotion states, or aspects of emotion states, that are most relevant for particular psychological processes and outcomes. We report two studies that examined core relational themes (Study 1) and expressive displays (Study 2) for eight positive emotion constructs--amusement, awe, contentment, gratitude, interest, joy, love, and pride. Across studies, all eight emotions shared one quality: high positive valence. Distinctive core relational theme and expressive display patterns were found for four emotions--amusement, awe, interest, and pride. Gratitude was associated with a distinct core relational theme but not an expressive display. Joy and love were each associated with a distinct expressive display but their core relational themes also characterised pride and gratitude, respectively. Contentment was associated with a distinct expressive display but not a core relational theme. The implications of this work for the study of positive emotion are discussed.
Mah, Wesley; Jiang, Guoqiao; Olver, Dylan; Cheung, Godwin; Kim, Ben; Larjava, Hannu; Häkkinen, Lari
2014-01-01
Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D) cultures that mimic the cells' natural extracellular matrix (ECM) niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs) and breast skin (SFBLs) were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs) while SFBLs showed significantly higher expression of TGF-β signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar-prone phenotype. PMID:24608113
Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132
Kim, Hee-Jung; Joo, Hye Joon; Kim, Yung Hee; Ahn, Soyeon; Chang, Jun; Hwang, Kyu-Baek; Lee, Dong-Hee; Lee, Kong-Joo
2011-01-01
The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins. PMID:21738571
Comparative proteomic analysis of Cronobacter sakazakii isolates with different virulences.
Du, Xin-jun; Han, Ran; Li, Ping; Wang, Shuo
2015-10-14
Cronobacter is a genus of widespread, opportunistic, foodborne pathogens that can result in serious illnesses in at-risk infants because of their immature immunity and high dependence on powdered formula, which is one of the foods most often contaminated by this pathogen. However, limited information is available regarding the pathogenesis and the specific virulence factors of this species. In this study, the virulences of 42 Cronobacter sakazakii isolates were analyzed by infecting neonatal SD rats. A comparison of the typing patterns of the isolates enabled groups with close relationships but that exhibited distinct pathogenesis to be identified. Among these groups, 2 strains belonging to the same group but showing distinct virulences were selected, and 2-DE was applied to identify differentially expressed proteins, focusing on virulence-related proteins. A total of 111 protein spots were identified using matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), and 89 were successfully identified. Further analysis suggested that at least 11 of these proteins may be involved in the pathogenesis of this pathogen. Real-time PCR was carried out to further confirm the differential expression pattern of the genes, and the results indicated that the mRNA expression levels were consistent with the protein expression levels. The virulence factors and pathogenesis of Cronobacter are largely unknown. In combination with animal toxicological experiments and subtyping results of C. sakazakii, comparative proteomics analysis was performed to comprehensively evaluate the differentially expressed proteins of two isolates that exhibited distinct virulence but were closely related. These procedures made it possible to identify the virulence-related of factors of Cronobacter. Among the 89 total identified proteins, at least 11 show virulence-related potential. This work provides comprehensive candidates for the further investigation of the pathogenesis of Cronobacter. Copyright © 2015 Elsevier B.V. All rights reserved.
Ai, Rizi; Hammaker, Deepa; Boyle, David L.; Morgan, Rachel; Walsh, Alice M.; Fan, Shicai; Firestein, Gary S.; Wang, Wei
2016-01-01
Stratifying patients on the basis of molecular signatures could facilitate development of therapeutics that target pathways specific to a particular disease or tissue location. Previous studies suggest that pathogenesis of rheumatoid arthritis (RA) is similar in all affected joints. Here we show that distinct DNA methylation and transcriptome signatures not only discriminate RA fibroblast-like synoviocytes (FLS) from osteoarthritis FLS, but also distinguish RA FLS isolated from knees and hips. Using genome-wide methods, we show differences between RA knee and hip FLS in the methylation of genes encoding biological pathways, such as IL-6 signalling via JAK-STAT pathway. Furthermore, differentially expressed genes are identified between knee and hip FLS using RNA-sequencing. Double-evidenced genes that are both differentially methylated and expressed include multiple HOX genes. Joint-specific DNA signatures suggest that RA disease mechanisms might vary from joint to joint, thus potentially explaining some of the diversity of drug responses in RA patients. PMID:27282753
Tajima, Shogo; Waki, Michihiko; Fukuyama, Masashi
2016-12-01
Although primary leiomyosarcoma of the kidney is extremely rare, it is the most common sarcoma of the kidney. Leiomyosarcoma with a large pleomorphic component is designated as pleomorphic leiomyosarcoma. The pleomorphic component is usually similar to undifferentiated high-grade pleomorphic sarcoma, although it variably expresses smooth muscle markers on immunohistochemistry. In the few reported cases of pleomorphic leiomyosarcoma of the kidney, cases with the pleomorphic component showing distinct nodularity similar to dedifferentiated leiomyosarcoma have not been described, to the best of our knowledge. Herein, we present a case of a 49-year-old woman with pleomorphic leiomyosarcoma in the kidney showing distinct nodularity of smooth muscle marker-expressing pleomorphic cells within a background of classic leiomyosarcoma. Along with the classification as a pleomorphic leiomyosarcoma, suggesting aggressive clinical behavior, the renal origin itself might also be a predictor of poor prognosis, as shown in a previous study. This case also involved concomitant distant metastases, already present during the initial detection of the renal tumor.
Valiyaveettil, Manojkumar; Mort, John S; McDevitt, Cahir A
2005-01-01
The concentration, spatial distribution, and gene expression of aggrecan in meniscus, articular cartilage, and the anterior and posterior cruciate ligaments (ACL and PCL) was determined in the knee joints of five mature dogs. An anti-serum against peptide sequences specific to the G1 domain of aggrecan was employed in competitive-inhibition ELISA of guanidine HCl extracts and immunofluorescence microscopy. Gene expression was determined by Taqman real-time PCR. The concentration of aggrecan in articular cartilage (240.1 +/- 32 nMol/g dry weight) was higher than that in meniscus (medial meniscus: 33.4 +/- 4.3 nMol/g) and ligaments (ACL: 6.8 +/- 0.9 nMol/g). Aggrecan was more concentrated in the inner than the outer zone of the meniscus. Aggrecan in meniscus showed an organized, spatial network, in contrast to its diffuse distribution in articular cartilage. Thus, differences in the concentration, gene expression, and spatial distribution of aggrecan constitute another molecular distinction between hyaline cartilage and fibrocartilage of the knee.
Neutrophils Express Distinct RNA Receptors in a Non-canonical Way*
Berger, Michael; Hsieh, Chin-Yuan; Bakele, Martina; Marcos, Veronica; Rieber, Nikolaus; Kormann, Michael; Mays, Lauren; Hofer, Laura; Neth, Olaf; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; von Schweinitz, Dietrich; Kappler, Roland; Hector, Andreas; Weber, Alexander; Hartl, Dominik
2012-01-01
RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics. PMID:22532562
Differential Expression of MicroRNA and Predicted Targets in Pulmonary Sarcoidosis
Crouser, Elliott D.; Julian, Mark W.; Crawford, Melissa; Shao, Guohong; Yu, Lianbo; Planck, Stephen R.; Rosenbaum, James T.; Nana-Sinkam, S. Patrick
2014-01-01
Background Recent studies show that various inflammatory diseases are regulated at the level of RNA translation by small non-coding RNAs, termed microRNAs (miRNAs). We sought to determine whether sarcoidosis tissues harbor a distinct pattern of miRNA expression and then considered their potential molecular targets. Methods and Results Genome-wide microarray analysis of miRNA expression in lung tissue and peripheral blood mononuclear cells (PBMCs) was performed and differentially expressed (DE)-miRNAs were then validated by real-time PCR. A distinct pattern of DE-miRNA expression was identified in both lung tissue and PBMCs of sarcoidosis patients. A subgroup of DE-miRNAs common to lung and lymph node tissues were predicted to target transforming growth factor (TGFβ)-regulated pathways. Likewise, the DE-miRNAs identified in PBMCs of sarcoidosis patients were predicted to target the TGFβ-regulated “wingless and integrase-1” (WNT) pathway. Conclusions This study is the first to profile miRNAs in sarcoidosis tissues and to consider their possible roles in disease pathogenesis. Our results suggest that miRNA regulate TGFβ and related WNT pathways in sarcoidosis tissues, pathways previously incriminated in the pathogenesis of sarcoidosis. PMID:22209793
Development of emotional facial recognition in late childhood and adolescence.
Thomas, Laura A; De Bellis, Michael D; Graham, Reiko; LaBar, Kevin S
2007-09-01
The ability to interpret emotions in facial expressions is crucial for social functioning across the lifespan. Facial expression recognition develops rapidly during infancy and improves with age during the preschool years. However, the developmental trajectory from late childhood to adulthood is less clear. We tested older children, adolescents and adults on a two-alternative forced-choice discrimination task using morphed faces that varied in emotional content. Actors appeared to pose expressions that changed incrementally along three progressions: neutral-to-fear, neutral-to-anger, and fear-to-anger. Across all three morph types, adults displayed more sensitivity to subtle changes in emotional expression than children and adolescents. Fear morphs and fear-to-anger blends showed a linear developmental trajectory, whereas anger morphs showed a quadratic trend, increasing sharply from adolescents to adults. The results provide evidence for late developmental changes in emotional expression recognition with some specificity in the time course for distinct emotions.
Grothe, Claudia; Claus, Peter; Haastert, Kirsten; Lutwak, Ela; Ron, Dina
2008-01-01
Fibroblast growth factors (FGFs) signal via four distinct high affinity cell surface tyrosine kinase receptors, termed FGFR1-FGFR4 (FGFR-FGF-receptor). Recently, a new modulator of the FGF signaling pathway, the transmembrane protein 'similar expression to FGF genes' (Sef), has been identified in zebrafish and subsequently in mammals. Sef from mouse and human inhibits FGF mitogenic activity. In the present study, we analyzed the expression of Sef in distinct rat brain areas, in the spinal cord and in peripheral nerves and spinal ganglia using semi-quantitative RT-PCR. Furthermore, we studied the cellular expression pattern of Sef in intact spinal ganglia and sciatic nerves and, in addition, after crush lesion, using in situ hybridization and immunohistochemistry. Sef transcripts were expressed in all brain areas evaluated and in the spinal cord. A neuronal expression was found in both intact and injured spinal ganglia. Intact sciatic nerves, however, showed little or no Sef expression. Seven days after injury, high Sef expression was concentrated to the crush site, and Schwann cells seemed to be the source of Sef. The labeling pattern of up-regulated Sef was complementary to the patterns of FGF-2 and FGFR1-3, which were localized proximal and distal to the crush site. These results suggest an involvement of Sef during the nerve regeneration process, possibly by fine-tuning the effects of FGF signaling.
Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.
2004-01-01
Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259
Sanchez, Marco A; Tryon, Rob; Green, Joy; Boor, Ilja; Landfear, Scott M
2002-06-14
Purine nucleoside and nucleobase transporters are of fundamental importance for Trypanosoma brucei and related kinetoplastid parasites because these protozoa are not able to synthesize purines de novo and must salvage the compounds from their hosts. In the studies reported here, we have identified a family of six clustered genes in T. brucei that encode nucleoside/nucleobase transporters. These genes, TbNT2/927, TbNT3, TbNT4, TbNT5, TbNT6, and TbNT7, have predicted amino acid sequences that show high identity to each other and to TbNT2, a P1 type nucleoside transporter recently identified in our laboratory. Expression in Xenopus laevis oocytes revealed that TbNT2/927, TbNT5, TbNT6, and TbNT7 are high affinity adenosine/inosine transporters with K(m) values of <5 microm. In addition, TbNT5, and to a limited degree TbNT6 and TbNT7, also mediate the uptake of the nucleobase hypoxanthine. Ribonuclease protection assays showed that mRNA from all of the six members of this gene family are expressed in the bloodstream stage of the T. brucei life cycle but that TbNT2/927 and TbNT5 mRNAs are also expressed in the insect stage of the life cycle. These results demonstrate that T. brucei expresses multiple purine transporters with distinct substrate specificities and different patterns of expression during the parasite life cycle.
Differential expression pattern of UBX family genes in Caenorhabditis elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru
2007-06-29
UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics inmore » their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated.« less
Lasagni, Laura; Grepin, Renaud; Mazzinghi, Benedetta; Lazzeri, Elena; Meini, Claudia; Sagrinati, Costanza; Liotta, Francesco; Frosali, Francesca; Ronconi, Elisa; Alain-Courtois, Nathalie; Ballerini, Lara; Netti, Giuseppe Stefano; Maggi, Enrico; Annunziato, Francesco; Serio, Mario; Romagnani, Sergio; Bikfalvi, Andreas; Romagnani, Paola
2007-05-15
PF-4/CXCL4 is a member of the CXC chemokine family, which is mainly produced by platelets and known for its pleiotropic biological functions. Recently, the proteic product of a nonallelic variant gene of CXCL4 was isolated from human platelets and named as CXCL4L1. CXCL4L1 shows only 4.3% amino acid divergence in the mature protein, but exhibits a 38% amino acid divergence in the signal peptide region. We hypothesized that this may imply a difference in the cell type in which CXCL4L1 is expressed or a difference in its mode of secretion. In different types of transfected cells, CXCL4 and CXCL4L1 exhibited a distinct subcellular localization and a differential regulation of secretion, CXCL4 being stored in secretory granules and released in response to protein kinase C activation, whereas CXCL4L1 was continuously synthesized and secreted through a constitutive pathway. A protein kinase C-regulated CXCL4 secretion was observed also in lymphocytes, a cell type expressing mainly CXCL4 mRNA, whereas smooth muscle cells, which preferentially expressed CXCL4L1, exhibited a constitutive pathway of secretion. These results demonstrate that CXCL4 and CXCL4L1 exhibit a distinct subcellular localization and are secreted in a differentially regulated manner, suggesting distinct roles in inflammatory or homeostatic processes.
Chong, Allen; Teo, Jing Xian; Ban, Kenneth H K
2016-05-10
Epigenetic changes, like DNA methylation, affect gene expression and in colorectal cancer (CRC), a distinct phenotype called the CpG island methylator phenotype ("CIMP") has significantly higher levels of DNA methylation at so-called "Type C loci" within the genome. We postulate that enhancer-gene pairs are coordinately controlled through DNA methylation in order to regulate the expression of key genes/biomarkers for a particular phenotype.Firstly, we found 24 experimentally-validated enhancers (VISTA enhancer browser) that contained statistically significant (FDR-adjusted q-value of <0.01) differentially methylated regions (DMRs) (1000bp) in a study of CIMP versus non-CIMP CRCs. Of these, the methylation of 2 enhancers, 1702 and 1944, were found to be very well correlated with the methylation of the genes Wnt3A and IGDCC3, respectively, in two separate and independent datasets.We show for the first time that there are indeed distinct and dynamic changes in the methylation pattern of specific enhancer-gene pairs in CRCs. Such a coordinated epigenetic event could be indicative of an interaction between (1) enhancer 1702 and Wnt3A and (2) enhancer 1944 and IGDCC3. Moreover, our study shows that the methylation patterns of these 2 enhancer-gene pairs can potentially be used as biomarkers to delineate CIMP from non-CIMP CRCs.
Poynton, Helen C; Lazorchak, James M; Impellitteri, Christopher A; Smith, Mark E; Rogers, Kim; Patra, Manomita; Hammer, Katherine A; Allen, H Joel; Vulpe, Chris D
2011-01-15
Zinc oxide nanoparticles (ZnO NPs) are being rapidly developed for use in consumer products, wastewater treatment, and chemotherapy providing several possible routes for ZnO NP exposure to humans and aquatic organisms. Recent studies have shown that ZnO NPs undergo rapid dissolution to Zn(2+), but the relative contribution of Zn(2+) to ZnO NP bioavailability and toxicity is not clear. We show that a fraction of the ZnO NPs in suspension dissolves, and this fraction cannot account for the toxicity of the ZnO NP suspensions to Daphnia magna. Gene expression profiling of D. magna exposed to ZnO NPs or ZnSO(4) at sublethal concentrations revealed distinct modes of toxicity. There was also little overlap in gene expression between ZnO NPs and SiO(x) NPs, suggesting specificity for the ZnO NP expression profile. ZnO NPs effected expression of genes involved in cytoskeletal transport, cellular respiration, and reproduction. A specific pattern of differential expression of three biomarker genes including a multicystatin, ferritin, and C1q containing gene were confirmed for ZnO NP exposure and provide a suite of biomarkers for identifying environmental exposure to ZnO NPs and differentiating between NP and ionic exposure.
Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof
2018-01-17
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.
Induction of neurite extension and survival in pheochromocytoma cells by the Rit GTPase.
Spencer, Michael L; Shao, Haipeng; Andres, Douglas A
2002-06-07
The Rit, Rin, and Ric proteins comprise a distinct and evolutionarily conserved subfamily of the Ras-like small G-proteins. Although these proteins share the majority of core effector domain residues with Ras, recent studies suggest that Rit uses novel effector pathways to regulate NIH3T3 cell proliferation and transformation, while the functions of Rin and Ric remain largely unknown. Since we demonstrate that Rit is expressed in neurons, we investigated the role of Rit signaling in promoting the differentiation and survival of pheochromocytoma cells. In this study, we show that expression of constitutively active Rit (RitL79) in PC6 cells results in neuronal differentiation, characterized by the elaboration of an extensive network of neurite-like processes that are morphologically distinct from those mediated by the expression of oncogenic Ras. Although activated Rit fails to stimulate mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) signaling pathways in COS cells, RitL79 induced the phosphorylation of ERK1/2 in PC6 cells. We also find that Rit-mediated effects on neurite outgrowth can be blocked by co-expression of dominant-negative mutants of C-Raf1 or mitogen-activated protein kinase kinase 1 (MEK1). Moreover, expression of dominant-negative Rit is sufficient to inhibit NGF-induced neurite outgrowth. Expression of active Rit inhibits growth factor-withdrawal mediated apoptosis of PC6 cells, but does not induce phosphorylation of Akt/protein kinase B, suggesting that survival does not utilize the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Instead, pharmacological inhibitors of MEK block Rit-stimulated cell survival. Taken together, these studies suggest that Rit represents a distinct regulatory protein, capable of mediating differentiation and cell survival in PC6 cells using a MEK-dependent signaling pathway to achieve its effects.
Gago-Lopez, Nuria; Awaji, Obinna; Zhang, Yiqiang; Ko, Christopher; Nsair, Ali; Liem, David; Stempien-Otero, April; MacLellan, W. Robb
2014-01-01
Summary Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation. PMID:24936447
Distinct polyadenylation landscapes of diverse human tissues revealed by a modified PA-seq strategy
2013-01-01
Background Polyadenylation is a key regulatory step in eukaryotic gene expression and one of the major contributors of transcriptome diversity. Aberrant polyadenylation often associates with expression defects and leads to human diseases. Results To better understand global polyadenylation regulation, we have developed a polyadenylation sequencing (PA-seq) approach. By profiling polyadenylation events in 13 human tissues, we found that alternative cleavage and polyadenylation (APA) is prevalent in both protein-coding and noncoding genes. In addition, APA usage, similar to gene expression profiling, exhibits tissue-specific signatures and is sufficient for determining tissue origin. A 3′ untranslated region shortening index (USI) was further developed for genes with tandem APA sites. Strikingly, the results showed that different tissues exhibit distinct patterns of shortening and/or lengthening of 3′ untranslated regions, suggesting the intimate involvement of APA in establishing tissue or cell identity. Conclusions This study provides a comprehensive resource to uncover regulated polyadenylation events in human tissues and to characterize the underlying regulatory mechanism. PMID:24025092
Seet, Li-Fong; Toh, Li Zhen; Chu, Stephanie W L; Finger, Sharon N; Chua, Jocelyn L L; Wong, Tina T
2017-06-01
Excessive accumulation of collagen is often used to assess the development of fibrosis. This study aims to identify collagen genes that define fibrosis in the conjunctiva following glaucoma filtration surgery (GFS). Using the mouse model of GFS, we have identified collagen transcripts that were upregulated in the fibrotic phase of wound healing via RNA-seq. The collagen transcripts that were increased the most were encoded by Col8a1 , Col11a1 and Col8a2 Further analysis of the Col8a1 , Col11a1 and Col8a2 transcripts revealed their increase by 67-, 54- and 18-fold, respectively, in the fibrotic phase, compared with 12-fold for Col1a1 , the most commonly evaluated collagen gene for fibrosis. However, only type I collagen was significantly upregulated at the protein level in the fibrotic phase. Type VIII and type I collagens colocalized in fibrous structures and in ACTA2-positive pericytes, and appeared to compensate for each other in expression levels. Type XI collagen showed low colocalization with both type VIII and type I collagens but can be found in association with macrophages. Furthermore, we show that both mouse and human conjunctival fibroblasts expressed elevated levels of the most highly expressed collagen genes in response to TGFβ2 treatment. Importantly, conjunctival tissues from individuals whose GF surgeries have failed due to scarring showed 3.60- and 2.78-fold increases in type VIII and I collagen transcripts, respectively, compared with those from individuals with no prior surgeries. These data demonstrate that distinct collagen transcripts are expressed at high levels in the conjunctiva after surgery and their unique expression profiles may imply differential influences on the fibrotic outcome. © 2017. Published by The Company of Biologists Ltd.
Enc1 expression in the chick telencephalon at intermediate and late stages of development.
García-Calero, Elena; Puelles, Luis
2009-12-10
In this work we studied the regional expression pattern of the Enc1 gene in the chick embryo telencephalon at intermediate and late stages of development, bearing on architectonic groupings and boundaries of current interest. In general, the Enc1 signal shows a markedly heterogeneous areal pattern of expression throughout the telencephalon; this corroborates data on new pallial and subpallial structures defined recently in the stereotaxic chick brain atlas of Puelles et al. (2007. The chick brain in stereotaxic coodinates. San Diego, CA: Academic Press). For example: a periventricular/central domain is Enc1-negative in the ventral pallium or nidopallium; core and shell nuclei appear in the mesopallium; the redefined caudodorsolateral area shows a characteristic pattern; the limits of the densocellular hyperpallium in the dorsal pallium are illuminated; and the postulated entorhinal cortex area is distinct at the posterior telencephalic pole. Interestingly, Enc1 transcripts are distinctly present in the piriform cortex at the surface of the ventral pallium throughout its longitudinal extent, as well as in the most rostral part of the lateral pallium, implying a layout of this cortex more similar to the situation in mammals than was assumed previously. Separate corticoid superficial strata are labeled by the Enc1 probe in the lateral and dorsal pallial regions. In the subpallium, the expression of Enc1 agrees with the new radial subdivisions defined by Puelles et al. (2007).
Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier
2010-06-01
Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.
Three urocortins in medaka: identification and spatial expression in the central nervous system.
Hosono, K; Yamashita, J; Kikuchi, Y; Hiraki-Kajiyama, T; Okubo, K
2017-05-01
The urocortin (UCN) group of neuropeptides includes urocortin 1/sauvagine/urotensin 1 (UTS1), urocortin 2 (UCN2) and urocortin 3 (UCN3). In recent years, evidence has accumulated showing that UCNs play pivotal roles in mediating stress response and anxiety in mammals. Evidence has also emerged regarding the evolutionary conservation of UCNs in vertebrates, but very little information is available about UCNs in non-mammalian vertebrates. Indeed, at present, there are no reports of the empirical identification of ucn2 in non-mammalian vertebrates or of the distribution of ucn2 and ucn3 expression in the adult central nervous system (CNS) of these animals. To gain insight into the evolutionary nature of UCNs in vertebrates, we cloned uts1, ucn2 and ucn3 in a teleost fish, medaka and examined the spatial expression of these genes in the adult brain and spinal cord. Although all known UCN2 genes except those in rodents have been reported to likely lack the necessary structural features to produce a functional pre-pro-protein, all three UCN genes in medaka, including ucn2, displayed all of these features, suggesting their functionality. The three UCN genes exhibited distinct spatial expression patterns in the medaka brain: uts1 was primarily expressed in broad regions of the dorsal telencephalon, ucn2 was expressed in restricted regions of the thalamus and brainstem and ucn3 was expressed in discrete nuclei throughout many regions of the brain. We also found that these genes were all expressed throughout the medaka spinal cord, each with a distinct spatial pattern. Given that many of these regions have been implicated in stress responses and anxiety, the three UCNs may serve distinct physiological roles in the medaka CNS, including those involved in stress and anxiety, as shown in the mammalian CNS. © 2017 British Society for Neuroendocrinology.
Global Genetic Response in a Cancer Cell: Self-Organized Coherent Expression Dynamics
Tsuchiya, Masa; Hashimoto, Midori; Takenaka, Yoshiko; Motoike, Ikuko N.; Yoshikawa, Kenichi
2014-01-01
Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF) and heregulin (HRG), which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf). These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics) at around 10–20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES). In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality) in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome. PMID:24831017
Chang, Dan; Duda, Thomas F
2014-06-05
Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components ('conotoxins'), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species' 'venom gene space'. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci ('under-dispersed' expression of available genes) while others express sets of more disparate genes ('over-dispersed' expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.
The influence of context on distinct facial expressions of disgust.
Reschke, Peter J; Walle, Eric A; Knothe, Jennifer M; Lopez, Lukas D
2018-06-11
Face perception is susceptible to contextual influence and perceived physical similarities between emotion cues. However, studies often use structurally homogeneous facial expressions, making it difficult to explore how within-emotion variability in facial configuration affects emotion perception. This study examined the influence of context on the emotional perception of categorically identical, yet physically distinct, facial expressions of disgust. Participants categorized two perceptually distinct disgust facial expressions, "closed" (i.e., scrunched nose, closed mouth) and "open" (i.e., scrunched nose, open mouth, protruding tongue), that were embedded in contexts comprising emotion postures and scenes. Results demonstrated that the effect of nonfacial elements was significantly stronger for "open" disgust facial expressions than "closed" disgust facial expressions. These findings provide support that physical similarity within discrete categories of facial expressions is mutable and plays an important role in affective face perception. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
A Heat-Sensitive TRP Channel Expressed in Keratinocytes
NASA Astrophysics Data System (ADS)
Peier, Andrea M.; Reeve, Alison J.; Andersson, David A.; Moqrich, Aziz; Earley, Taryn J.; Hergarden, Anne C.; Story, Gina M.; Colley, Sian; Hogenesch, John B.; McIntyre, Peter; Bevan, Stuart; Patapoutian, Ardem
2002-06-01
Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... Agents by Measuring Distinct Pattern in the Levels of Expression of Specific Genes AGENCY: Department of... Measuring Distinct Pattern in the Levels of Expression of Specific Genes,'' issued November 13, 2001. The... determining a difference in the detected amount of protein/gene expression between exposed and unexposed...
PIM-1 kinase expression in adipocytic neoplasms: diagnostic and biological implications
Nga, Min En; Swe, Nu Nu Ma; Chen, Kang Ting; Shen, Liang; Lilly, Michael B; Chan, Siew Pang; Salto-Tellez, Manuel; Das, Kakoli
2010-01-01
The differential diagnosis of soft tissue tumours poses a considerable challenge for pathologists, especially adipocytic tumours, as these may show considerable overlap in clinical presentation and morphological features with many other mesenchymal neoplasms. Hence, a specific and reliable marker that identifies adipocytic differentiation is much sought. We investigated the immunohistochemical expression of PIM-1 kinase in 35 samples of soft tissue tumours using tissue microarray technology and 49 full sections of adipocytic (n = 26) and non-adipocytic tumours (n = 23). Benign and malignant adipocytic tumours showed strong expression of PIM-1 while the non-adipocytic tumours were either negative or showed only weak staining for the protein. In myxoid liposarcomas, PIM-1 showed a distinct, unique vacuolar staining pattern, clearly outlining fine cytoplasmic lipid vacuoles. By contrast, non-adipocytic myxoid tumours (myxoma, chordoma and myxoid chondrosarcoma) did not show this vacuolar pattern of PIM-1 staining, although vacuolated cells were present on H&E. This differential expression was confirmed at a gene expression level in selected cases. Our results indicate that the expression of PIM-1 in adipose tissue may be a useful marker of adipocytic differentiation, in particular if the staining is both of high intensity and present in a unique, vacuolar pattern. PMID:19878356
Expression of the Fanconi anemia group A gene (Fanca) during mouse embryogenesis.
Abu-Issa, R; Eichele, G; Youssoufian, H
1999-07-15
About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fanca expression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.
Davis, Melissa B.; Walens, Andrea; Hire, Rupali; Mumin, Kauthar; Brown, Andrea M.; Ford, DeJuana; Howerth, Elizabeth W.; Monteil, Michele
2015-01-01
The Atypical ChemoKine Receptor 1 (ACKR1) gene, better known as Duffy Antigen Receptor for Chemokines (DARC or Duffy), is responsible for the Duffy Blood Group and plays a major role in regulating the circulating homeostatic levels of pro-inflammatory chemokines. Previous studies have shown that one common variant, the Duffy Null (Fy-) allele that is specific to African Ancestry groups, completely removes expression of the gene on erythrocytes; however, these individuals retain endothelial expression. Additional alleles are associated with a myriad of clinical outcomes related to immune responses and inflammation. In addition to allele variants, there are two distinct transcript isoforms of DARC which are expressed from separate promoters, and very little is known about the distinct transcriptional regulation or the distinct functionality of these protein isoforms. Our objective was to determine if the African specific Fy- allele alters the expression pattern of DARC isoforms and therefore could potentially result in a unique signature of the gene products, commonly referred to as antigens. Our work is the first to establish that there is expression of DARC on lymphoblasts. Our data indicates that people of African ancestry have distinct relative levels of DARC isoforms expressed in these cells. We conclude that the expression of both isoforms in combination with alternate alleles yields multiple Duffy antigens in ancestry groups, depending upon the haplotypes across the gene. Importantly, we hypothesize that DARC isoform expression patterns will translate into ancestry-specific inflammatory responses that are correlated with the axis of pro-inflammatory chemokine levels and distinct isoform-specific interactions with these chemokines. Ultimately, this work will increase knowledge of biological mechanisms underlying disparate clinical outcomes of inflammatory-related diseases among ethnic and geographic ancestry groups. PMID:26473357
Narayan, N; Morenos, L; Phipson, B; Willis, S N; Brumatti, G; Eggers, S; Lalaoui, N; Brown, L M; Kosasih, H J; Bartolo, R C; Zhou, L; Catchpoole, D; Saffery, R; Oshlack, A; Goodall, G J; Ekert, P G
2017-04-01
Enforced expression of microRNA-155 (miR-155) in myeloid cells has been shown to have both oncogenic or tumour-suppressor functions in acute myeloid leukaemia (AML). We sought to resolve these contrasting effects of miR-155 overexpression using murine models of AML and human paediatric AML data sets. We show that the highest miR-155 expression levels inhibited proliferation in murine AML models. Over time, enforced miR-155 expression in AML in vitro and in vivo, however, favours selection of intermediate miR-155 expression levels that results in increased tumour burden in mice, without accelerating the onset of disease. Strikingly, we show that intermediate and high miR-155 expression also regulate very different subsets of miR-155 targets and have contrasting downstream effects on the transcriptional environments of AML cells, including genes involved in haematopoiesis and leukaemia. Furthermore, we show that elevated miR-155 expression detected in paediatric AML correlates with intermediate and not high miR-155 expression identified in our experimental models. These findings collectively describe a novel dose-dependent role for miR-155 in the regulation of AML, which may have important therapeutic implications.
Ichikawa, Hiroko; Nakato, Emi; Kanazawa, So; Shimamura, Keiichi; Sakuta, Yuiko; Sakuta, Ryoichi; Yamaguchi, Masami K; Kakigi, Ryusuke
2014-10-01
Children with attention-deficit/hyperactivity disorder (ADHD) have difficulty recognizing facial expressions. They identify angry expressions less accurately than typically developing (TD) children, yet little is known about their atypical neural basis for the recognition of facial expressions. Here, we used near-infrared spectroscopy (NIRS) to examine the distinctive cerebral hemodynamics of ADHD and TD children while they viewed happy and angry expressions. We measured the hemodynamic responses of 13 ADHD boys and 13 TD boys to happy and angry expressions at their bilateral temporal areas, which are sensitive to face processing. The ADHD children showed an increased concentration of oxy-Hb for happy faces but not for angry faces, while TD children showed increased oxy-Hb for both faces. Moreover, the individual peak latency of hemodynamic response in the right temporal area showed significantly greater variance in the ADHD group than in the TD group. Such atypical brain activity observed in ADHD boys may relate to their preserved ability to recognize a happy expression and their difficulty recognizing an angry expression. We firstly demonstrated that NIRS can be used to detect atypical hemodynamic response to facial expressions in ADHD children. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Knecht, Zachary A; Silbering, Ana F; Ni, Lina; Klein, Mason; Budelli, Gonzalo; Bell, Rati; Abuin, Liliane; Ferrer, Anggie J; Samuel, Aravinthan DT; Benton, Richard; Garrity, Paul A
2016-01-01
Ionotropic Receptors (IRs) are a large subfamily of variant ionotropic glutamate receptors present across Protostomia. While these receptors are most extensively studied for their roles in chemosensory detection, recent work has implicated two family members, IR21a and IR25a, in thermosensation in Drosophila. Here we characterize one of the most evolutionarily deeply conserved receptors, IR93a, and show that it is co-expressed and functions with IR21a and IR25a to mediate physiological and behavioral responses to cool temperatures. IR93a is also co-expressed with IR25a and a distinct receptor, IR40a, in a discrete population of sensory neurons in the sacculus, a multi-chambered pocket within the antenna. We demonstrate that this combination of receptors is required for neuronal responses to dry air and behavioral discrimination of humidity differences. Our results identify IR93a as a common component of molecularly and cellularly distinct IR pathways important for thermosensation and hygrosensation in insects. DOI: http://dx.doi.org/10.7554/eLife.17879.001 PMID:27656904
Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats.
Kohen, R; Kirov, S; Navaja, G P; Happe, H Kevin; Hamblin, M W; Snoddy, J R; Neumaier, J F; Petty, F
2005-01-01
In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.
Kelly, Lorna; Bryan, Kenneth; Kim, Su Young; Janeway, Katherine A.; Killian, J. Keith; Schildhaus, Hans-Ulrich; Miettinen, Markku; Helman, Lee; Meltzer, Paul S.; van de Rijn, Matt; Debiec-Rychter, Maria; O’Sullivan, Maureen
2013-01-01
In contrast to adult mutant gastrointestinal stromal tumors [GISTs], pediatric/wild-type GISTs remain poorly understood overall, given their lack of oncogenic activating tyrosine kinase mutations. These GISTs, with a predilection for gastric origin in female patients, show limited response to therapy with tyrosine kinase inhibitors and generally pursue a more indolent course, but still may prove fatal. Defective cellular respiration appears to underpin tumor development in these wild-type cases, which as a group lack expression of succinate dehydrogenase [SDH] B, a surrogate marker for respiratory chain metabolism. Yet, only a small subset of the wild-type tumors show mutations in the genes coding for the SDH subunits [SDHx]. To explore additional pathogenetic mechanisms in these wild-type GISTs, we elected to investigate post-transcriptional regulation of these tumors by conducting microRNA (miRNA) profiling of a mixed cohort of 73 cases including 18 gastric pediatric wild-type, 25 (20 gastric, 4 small bowel and 1 retroperitoneal) adult wild-type GISTs and 30 gastric adult mutant GISTs. By this approach we have identified distinct signatures for GIST subtypes which correlate tightly with clinico-pathological parameters. A cluster of miRNAs on 14q32 show strikingly different expression patterns amongst GISTs, a finding which appears to be explained at least in part by differential allelic methylation of this imprinted region. Small bowel and retroperitoneal wild-type GISTs segregate with adult mutant GISTs and express SDHB, while adult wild-type gastric GISTs are dispersed amongst adult mutant and pediatric wild-type cases, clustering in this situation on the basis of SDHB expression. Interestingly, global methylation analysis has recently similarly demonstrated that these wild-type, SDHB-immunonegative tumors show a distinct pattern compared with KIT and PDGFRA mutant tumors, which as a rule do express SDHB. All cases with Carney triad within our cohort cluster together tightly. PMID:23717541
Kelly, Lorna; Bryan, Kenneth; Kim, Su Young; Janeway, Katherine A; Killian, J Keith; Schildhaus, Hans-Ulrich; Miettinen, Markku; Helman, Lee; Meltzer, Paul S; van de Rijn, Matt; Debiec-Rychter, Maria; O'Sullivan, Maureen
2013-01-01
In contrast to adult mutant gastrointestinal stromal tumors [GISTs], pediatric/wild-type GISTs remain poorly understood overall, given their lack of oncogenic activating tyrosine kinase mutations. These GISTs, with a predilection for gastric origin in female patients, show limited response to therapy with tyrosine kinase inhibitors and generally pursue a more indolent course, but still may prove fatal. Defective cellular respiration appears to underpin tumor development in these wild-type cases, which as a group lack expression of succinate dehydrogenase [SDH] B, a surrogate marker for respiratory chain metabolism. Yet, only a small subset of the wild-type tumors show mutations in the genes coding for the SDH subunits [SDHx]. To explore additional pathogenetic mechanisms in these wild-type GISTs, we elected to investigate post-transcriptional regulation of these tumors by conducting microRNA (miRNA) profiling of a mixed cohort of 73 cases including 18 gastric pediatric wild-type, 25 (20 gastric, 4 small bowel and 1 retroperitoneal) adult wild-type GISTs and 30 gastric adult mutant GISTs. By this approach we have identified distinct signatures for GIST subtypes which correlate tightly with clinico-pathological parameters. A cluster of miRNAs on 14q32 show strikingly different expression patterns amongst GISTs, a finding which appears to be explained at least in part by differential allelic methylation of this imprinted region. Small bowel and retroperitoneal wild-type GISTs segregate with adult mutant GISTs and express SDHB, while adult wild-type gastric GISTs are dispersed amongst adult mutant and pediatric wild-type cases, clustering in this situation on the basis of SDHB expression. Interestingly, global methylation analysis has recently similarly demonstrated that these wild-type, SDHB-immunonegative tumors show a distinct pattern compared with KIT and PDGFRA mutant tumors, which as a rule do express SDHB. All cases with Carney triad within our cohort cluster together tightly.
Ahuja, Gaurav; Reichel, Vera; Kowatschew, Daniel; Syed, Adnan S; Kotagiri, Aswani Kumar; Oka, Yuichiro; Weth, Franco; Korsching, Sigrun I
2018-05-23
The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and their expression zones intermingle with those of odorant receptor genes. Thus, distinctly different expression zones for individual receptor genes constitute a general feature shared by teleost and tetrapod V2R/OlfC and odorant receptor families alike.
Logan, C; Wingate, R J; McKay, I J; Lumsden, A
1998-07-15
Recent evidence suggests that in vertebrates the formation of distinct neuronal cell types is controlled by specific families of homeodomain transcription factors. Furthermore, the expression domains of a number of these genes correlates with functionally integrated neuronal populations. We have isolated two members of the divergent T-cell leukemia translocation (HOX11/Tlx) homeobox gene family from chick, Tlx-1 and Tlx-3, and show that they are expressed in differentiating neurons of both the peripheral and central nervous systems. In the peripheral nervous system, Tlx-1 and Tlx-3 are expressed in overlapping domains within the placodally derived components of a number of cranial sensory ganglia. Tlx-3, unlike Tlx-1, is also expressed in neural crest-derived dorsal root and sympathetic ganglia. In the CNS, both genes are expressed in longitudinal columns of neurons at specific dorsoventral levels of the hindbrain. Each column has distinct anterior and/or posterior limits that respect inter-rhombomeric boundaries. Tlx-3 is also expressed in D2 and D3 neurons of the spinal cord. Tlx-1 and Tlx-3 expression patterns within the peripheral and central nervous systems suggest that Tlx proteins may be involved not only in the differentiation and/or survival of specific neuronal populations but also in the establishment of neuronal circuitry. Furthermore, by analogy with the LIM genes, Tlx family members potentially define sensory columns early within the developing hindbrain in a combinatorial manner.
The low noise limit in gene expression
Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...
2015-10-21
Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less
Selinger, D A; Chandler, V L
1999-12-21
The b locus encodes a transcription factor that regulates the expression of genes that produce purple anthocyanin pigment. Different b alleles are expressed in distinct tissues, causing tissue-specific anthocyanin production. Understanding how phenotypic diversity is produced and maintained at the b locus should provide models for how other regulatory genes, including those that influence morphological traits and development, evolve. We have investigated how different levels and patterns of pigmentation have evolved by determining the phenotypic and evolutionary relationships between 18 alleles that represent the diversity of b alleles in Zea mays. Although most of these alleles have few phenotypic differences, five alleles have very distinct tissue-specific patterns of pigmentation. Superimposing the phenotypes on the molecular phylogeny reveals that the alleles with strong and distinctive patterns of expression are closely related to alleles with weak expression, implying that the distinctive patterns have arisen recently. We have identified apparent insertions in three of the five phenotypically distinct alleles, and the fourth has unique upstream restriction fragment length polymorphisms relative to closely related alleles. The insertion in B-Peru has been shown to be responsible for its unique expression and, in the other two alleles, the presence of the insertion correlates with the phenotype. These results suggest that major changes in gene expression are probably the result of large-scale changes in DNA sequence and/or structure most likely mediated by transposable elements.
Higón, M; Monteagudo, C; Fried, B; Esteban, J G; Toledo, R; Marcilla, A
2008-10-01
We cloned and expressed Echinostoma caproni HSP70 in Escherichia coli. This molecule presents an open reading frame (ORF) of 655 amino acids, and a theoretical molecular weight of 71 kDa. E. caproni HSP70 protein showed a high homology to other helminth molecules, major differences being located in the C-terminal region of the molecule, with a hydrophobic portion. Studies of protein and messenger RNA (mRNA) expression revealed a distinct pattern, depending on the host (low- or high-compatible). Specific polyclonal antisera raised against the recombinant protein expressed in Escherichia coli demonstrated its selective presence in excretory/secretory products (ESP) of adult parasites obtained from high-compatible hosts. Immunological studies showed clearly the association of HSP70 with the parasite surface and other structures, including eggs.
Selfie-Takers Prefer Left Cheeks: Converging Evidence from the (Extended) selfiecity Database
Manovich, Lev; Ferrari, Vera; Bruno, Nicola
2017-01-01
According to previous reports, selfie takers in widely different cultural contexts prefer poses showing the left cheek more than the right cheek. This posing bias may be interpreted as evidence for a right-hemispheric specialization for the expression of facial emotions. However, earlier studies analyzed selfie poses as categorized by human raters, which raises methodological issues in relation to the distinction between frontal and three-quarter poses. Here, we provide converging evidence by analyzing the (extended) selfiecity database which includes automatic assessments of head rotation and of emotional expression. We confirm a culture- and sex-independent left-cheek bias and report stronger expression of negative emotions in selfies showing the left cheek. These results are generally consistent with a psychobiological account of a left cheek bias in self-portraits but reveal possible unexpected facts concerning the relation between side bias and lateralization of emotional expression. PMID:28928683
Canine Lat1: molecular structure, distribution and its expression in cancer samples.
Ochiai, Hideharu; Morishita, Taiki; Onda, Ken; Sugiyama, Hiroki; Maruo, Takuya
2012-07-01
A full-length cDNA sequence of canine L-type amino acid transporter 1 (Lat1) was determined from a canine brain. The sequence was 1828 bp long and was predicted to encode 485 amino acid polypeptides. The deduced amino acid sequence of canine Lat1 showed 93.2% and 91.1% similarities to those of humans and rats, respectively. Northern blot analysis detected Lat1 expression in the cerebellum at 4 kb, and Western blot analysis showed a single band at 40 kDa. RT-PCR analysis revealed a distinct expression of Lat1 in the pancreas and testis in addition to the cerebrum and cerebellum. Notably, Lat1 expression was observed in the tissues of thyroid cancer, melanoma and hemangiopericytoma. Although the cancer samples examined were not enough, Lat1 may serve as a useful biomarker of cancer cells in veterinary clinic.
Functional Smiles: Tools for Love, Sympathy, and War.
Rychlowska, Magdalena; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Martin, Jared D; Niedenthal, Paula M
2017-09-01
A smile is the most frequent facial expression, but not all smiles are equal. A social-functional account holds that smiles of reward, affiliation, and dominance serve basic social functions, including rewarding behavior, bonding socially, and negotiating hierarchy. Here, we characterize the facial-expression patterns associated with these three types of smiles. Specifically, we modeled the facial expressions using a data-driven approach and showed that reward smiles are symmetrical and accompanied by eyebrow raising, affiliative smiles involve lip pressing, and dominance smiles are asymmetrical and contain nose wrinkling and upper-lip raising. A Bayesian-classifier analysis and a detection task revealed that the three smile types are highly distinct. Finally, social judgments made by a separate participant group showed that the different smile types convey different social messages. Our results provide the first detailed description of the physical form and social messages conveyed by these three types of functional smiles and document the versatility of these facial expressions.
Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer
Pussila, Marjaana; Törönen, Petri; Einarsdottir, Elisabet; Katayama, Shintaro; Krjutškov, Kaarel; Holm, Liisa; Kere, Juha; Peltomäki, Päivi; Mäkinen, Markus J; Linden, Jere; Nyström, Minna
2018-01-01
Abstract Colorectal cancer (CRC) genome is unstable and different types of instabilities, such as chromosomal instability (CIN) and microsatellite instability (MSI) are thought to reflect distinct cancer initiating mechanisms. Although 85% of sporadic CRC reveal CIN, 15% reveal mismatch repair (MMR) malfunction and MSI, the hallmarks of Lynch syndrome with inherited heterozygous germline mutations in MMR genes. Our study was designed to comprehensively follow genome-wide expression changes and their implications during colon tumorigenesis. We conducted a long-term feeding experiment in the mouse to address expression changes arising in histologically normal colonic mucosa as putative cancer preceding events, and the effect of inherited predisposition (Mlh1+/−) and Western-style diet (WD) on those. During the 21-month experiment, carcinomas developed mainly in WD-fed mice and were evenly distributed between genotypes. Unexpectedly, the heterozygote (B6.129-Mlh1tm1Rak) mice did not show MSI in their CRCs. Instead, both wildtype and heterozygote CRC mice showed a distinct mRNA expression profile and shortage of several chromosomal segregation gene-specific transcripts (Mlh1, Bub1, Mis18a, Tpx2, Rad9a, Pms2, Cenpe, Ncapd3, Odf2 and Dclre1b) in their colon mucosa, as well as an increased mitotic activity and abundant numbers of unbalanced/atypical mitoses in tumours. Our genome-wide expression profiling experiment demonstrates that cancer preceding changes are already seen in histologically normal colon mucosa and that decreased expressions of Mlh1 and other chromosomal segregation genes may form a field-defect in mucosa, which trigger MMR-proficient, chromosomally unstable CRC. PMID:29701748
Dact1-3 mRNAs exhibit distinct expression domains during tooth development
Kettunen, Päivi; Kivimäe, Saul; Keshari, Pankaj; Klein, Ophir D.; Cheyette, Benjamin N.R.; Luukko, Keijo
2010-01-01
Wnt signaling is essential for tooth formation. Dact proteins modulate Wnt signaling by binding to the intracellular protein Dishevelled (Dvl). Comparison of all known mouse Dact genes, Dact1-3, from the morphological initiation of mandibular first molar development after the onset of the root formation using sectional in situ hybridization showed distinct, complementary and overlapping expression patterns for the studied genes. While Dact2 expression was restricted to the dental epithelium including the enamel knot signaling centers and tooth specific preameloblasts, Dact1 and Dact3 showed developmentally regulated expression in the dental mesenchyme. Both mRNAs were first detected in the presumptive dental mesenchyme. After being downregulated from the condensed dental mesenchyme of the bud stage tooth germ, Dact1 was upregulated in the dental follicle masenchyme at the cap stage and subsequently also in the dental papilla at the bell stage where the expression persisted to the postnatal stages. In contrast, Dact3 transcripts persisted throughout the dental mesenchymal tissue components including the tooth-specific cells, preodontoblasts before transcripts were largely downregulated from the tooth germ postnatally. Collectively these results suggest that Dact1 and -3 may contribute to early tooth formation by modulation of Wnt signaling pathways in the mesenchyme, including preodontoblasts, whereas Dact2 may play important signal-modulating roles in the adjacent epithelial cells including the enamel knot signaling centers and preameloblasts. Future loss-of-function studies will help elucidate whether any of these functions are redundant, particularly for Dact1 and Dact3. PMID:20170752
Histogenesis of pure and combined Merkel cell carcinomas: An immunohistochemical study of 14 cases.
Narisawa, Yutaka; Koba, Shinichi; Inoue, Takuya; Nagase, Kotaro
2015-05-01
The histogenesis of Merkel cell carcinoma (MCC) has remained unresolved. Moreover, one of the questions is whether pure MCC and combined MCC represent the same histogenesis and entity. The existence of combined MCC suggests that MCC likely arise from pluripotent stem cells. Merkel cells (MC) localize within the bulge area, which is populated by hair follicle stem cells. We used hair follicle stem cell markers to investigate whether MCC share certain characteristics of these stem cells. Fourteen MCC specimens were examined histologically and immunohistochemically. There were six pure MCC and eight combined MCC. In six combined MCC, both MCC components and squamous components at least focally shared the expression of one or more of cytokeratin (CK)15, CK19 and CD200, which are hair follicle stem cell markers. On the other hand, four cases of pure MCC showed partially distinct CK19 expression, but did not show CK15 and/or CD200 expression. There was a distinct difference between pure MCC and combined MCC on the expression of hair follicle stem cell markers. The normal skin expressed CK15, CK19 and CD200 in the bulge area, whereas CK15 and CD200 were absent in the MC-rich glabrous skin and touch domes. The results led us to hypothesize that combined MCC originate from the hair follicle stem cells. We postulate that combined MCC undergo multidirectional differentiation into squamous, glandular, mesenchymal and Merkel cells. Further investigation is warranted to confirm the histogenesis of pure MCC and combined MCC. © 2015 Japanese Dermatological Association.
More than a feeling: Pervasive influences of memory without awareness of retrieval
Voss, Joel L.; Lucas, Heather D.; Paller, Ken A.
2015-01-01
The subjective experiences of recollection and familiarity have featured prominently in the search for neurocognitive mechanisms of memory. However, these two explicit expressions of memory, which involve conscious awareness of memory retrieval, are distinct from an entire category of implicit expressions of memory that do not entail such awareness. This review summarizes recent evidence showing that neurocognitive processing related to implicit memory can powerfully influence the behavioral and neural measures typically associated with explicit memory. Although there are striking distinctions between the neurocognitive processing responsible for implicit versus explicit memory, tests designed to measure only explicit memory nonetheless often capture implicit memory processing as well. In particular, the evidence described here suggests that investigations of familiarity memory are prone to the accidental capture of implicit memory processing. These findings have considerable implications for neurocognitive accounts of memory, as they suggest that many neural and behavioral measures often accepted as signals of explicit memory instead reflect the distinct operation of implicit memory mechanisms that are only sometimes related to explicit memory expressions. Proper identification of the explicit and implicit mechanisms for memory is vital to understanding the normal operation of memory, in addition to the disrupted memory capabilities associated with many neurological disorders and mental illnesses. We suggest that future progress requires utilizing neural, behavioral, and subjective evidence to dissociate implicit and explicit memory processing so as to better understand their distinct mechanisms as well as their potential relationships. When searching for the neurocognitive mechanisms of memory, it is important to keep in mind that memory involves more than a feeling. PMID:24171735
Du, Jianchang; Tian, Zhixi; Sui, Yi; Zhao, Meixia; Song, Qijian; Cannon, Steven B.; Cregan, Perry; Ma, Jianxin
2012-01-01
The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions—the cold spots for meiotic recombination in soybean—showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes. PMID:22227891
Molecular events of apical bud formation in white spruce, Picea glauca.
El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K
2011-03-01
Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce. © 2011 Blackwell Publishing Ltd.
Minow, Mark A A; Ávila, Luis M; Turner, Katie; Ponzoni, Elena; Mascheretti, Iride; Dussault, Forest M; Lukens, Lewis; Rossi, Vincenzo; Colasanti, Joseph
2018-05-25
Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.
1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells
Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N.; Glenn, Sean T.; Liu, Song; Trump, Donald L.; Johnson, Candace S.
2014-01-01
Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. MiRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253 J and 253J-BV cells express endogenous vitamin D receptor (VDR) which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253 J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. PMID:25263658
Verney, Aurélie; Traverse-Glehen, Alexandra; Callet-Bauchu, Evelyne; Jallades, Laurent; Magaud, Jean-Pierre; Salles, Gilles; Genestier, Laurent; Baseggio, Lucile
2018-01-01
In splenic marginal zone lymphoma (SMZL), specific and functional Toll-like Receptor (TLR) patterns have been recently described, suggesting their involvement in tumoral proliferation. Splenic diffuse red pulp lymphoma with villous lymphocytes (SDRPL) is close to but distinct from SMZL, justifying here the comparison of TLR patterns and functionality in both entities. Distinct TLR profiles were observed in both lymphoma subtypes. SDRPL B cells showed higher expression of TLR7 and to a lesser degree TLR9, in comparison to SMZL B cells. In both entities, TLR7 and TLR9 pathways appeared functional, as shown by IL-6 production upon TLR7 and TLR9 agonists stimulations. Interestingly, circulating SDRPL, but not SMZL B cells, constitutively expressed CD86. In addition, stimulation with both TLR7 and TLR9 agonists significantly increased CD80 expression in circulating SDRPL but not SMZL B cells. Finally, TLR7 and TLR9 stimulations had no impact on proliferation and apoptosis of SMZL or SDRPL B cells. In conclusion, SMZL and SDRPL may derive from different splenic memory B cells with specific immunological features that can be used as diagnosis markers in the peripheral blood.
Tek, Saime; Mesite, Laura; Fein, Deborah; Naigles, Letitia
2013-01-01
Although children with ASD show significant variation in language skills, research on what type(s) of language profiles they demonstrate has been limited. Using growth-curve analyses, we investigated how different groups of young children with ASD show increases in the size of their lexicon, morpho-syntactic production as measured by Brown’s 14 grammatical morphemes, and wh-question complexity, compared to TD children, across six time points. Children with ASD who had higher verbal skills were comparable to TD children on most language measures, whereas the children with ASD who had low verbal skills had flatter trajectories in most language measures. Thus, two distinct language profiles emerged for children with ASD. PMID:23719855
spiel ohne grenzen/pou2 is required for zebrafish hindbrain segmentation.
Hauptmann, Giselbert; Belting, Heinz-Georg; Wolke, Uta; Lunde, Karen; Söll, Iris; Abdelilah-Seyfried, Salim; Prince, Victoria; Driever, Wolfgang
2002-04-01
Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish mutants develop rhombomeric territories that are abnormal in both size and shape. Rhombomere boundaries are malpositioned or absent and the segmental pattern of neuronal differentiation is perturbed. Segment-specific expression of hoxa2, hoxb2 and hoxb3 is severely affected during initial stages of hindbrain development in spg mutants and the establishment of krx20 (Krox20 ortholog) and valentino (val; kreisler ortholog) expression is impaired. spg mutants carry loss-of-function mutations in the pou2 gene. pou2 is expressed at high levels in the hindbrain primordium of wild-type embryos prior to activation of krx20 and val. Widespread overexpression of Pou2 can rescue the segmental krx20 and val domains in spg mutants, but does not induce ectopic expression of these genes. This suggests that spg/pou2 acts in a permissive manner and is essential for normal expression of krx20 and val. We propose that spg/pou2 is an essential component of the regulatory cascade controlling hindbrain segmentation and acts before krx20 and val in the establishment of rhombomere precursor territories.
Influence of HLA-C Expression Level on HIV Control
Apps, Richard; Qi, Ying; Carlson, Jonathan M.; Chen, Haoyan; Gao, Xiaojiang; Thomas, Rasmi; Yuki, Yuko; Del Prete, Greg Q.; Goulder, Philip; Brumme, Zabrina L.; Brumme, Chanson J.; John, Mina; Mallal, Simon; Nelson, George; Bosch, Ronald; Heckerman, David; Stein, Judy L.; Soderberg, Kelly A.; Moody, M. Anthony; Denny, Thomas N.; Zeng, Xue; Fang, Jingyuan; Moffett, Ashley; Lifson, Jeffrey D.; Goedert, James J.; Buchbinder, Susan; Kirk, Gregory D.; Fellay, Jacques; McLaren, Paul; Deeks, Steven G.; Pereyra, Florencia; Walker, Bruce; Michael, Nelson L.; Weintrob, Amy; Wolinsky, Steven; Liao, Wilson; Carrington, Mary
2013-01-01
A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn’s disease, suggesting a broader influence of HLA expression levels in human disease. PMID:23559252
Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D.
2015-01-01
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Nav1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Nav1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Nav1.8 channels. We also show that native human DRG neurons recapitulate these properties of Nav1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Nav1.8, which contribute to the firing properties of human DRG neurons. PMID:25787950
Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D; Waxman, Stephen G
2015-05-01
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Na(v)1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Na(v)1.8 channels. We also show that native human DRG neurons recapitulate these properties of Na(v)1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Na(v)1.8, which contribute to the firing properties of human DRG neurons.
Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function.
Valsecchi, Federica; Konrad, Csaba; D'Aurelio, Marilena; Ramos-Espiritu, Lavoisier S; Stepanova, Anna; Burstein, Suzanne R; Galkin, Alexander; Magranè, Jordi; Starkov, Anatoly; Buck, Jochen; Levin, Lonny R; Manfredi, Giovanni
2017-11-01
cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca 2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca 2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca 2+ signaling. © 2017. Published by The Company of Biologists Ltd.
Happy guys finish last: the impact of emotion expressions on sexual attraction.
Tracy, Jessica L; Beall, Alec T
2011-12-01
This research examined the relative sexual attractiveness of individuals showing emotion expressions of happiness, pride, and shame compared with a neutral control. Across two studies using different images and samples ranging broadly in age (total N = 1041), a large gender difference emerged in the sexual attractiveness of happy displays: happiness was the most attractive female emotion expression, and one of the least attractive in males. In contrast, pride showed the reverse pattern; it was the most attractive male expression, and one of the least attractive in women. Shame displays were relatively attractive in both genders, and, among younger adult women viewers, male shame was more attractive than male happiness, and not substantially less than male pride. Effects were largely consistent with evolutionary and socio-cultural-norm accounts. Overall, this research provides the first evidence that distinct emotion expressions have divergent effects on sexual attractiveness, which vary by gender but largely hold across age. (c) 2011 APA, all rights reserved.
Lapp, Stacey A; Korir-Morrison, Cindy; Jiang, Jianlin; Bai, Yaohui; Corredor, Vladimir; Galinski, Mary R
2013-01-01
Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA) variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1) antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+), and a related progeny clone, Pk1(B+)1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera. We have investigated SICAvar RNA and protein expression in Pk1(A+), Pk1(B+)1+, and SICA[-] parasites. The Pk1(A+) and Pk1(B+)1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry. SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+) to Pk1(B+)1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying antigenic variation in the context of the host environment.
Müller, Margit S; Pedersen, Sofie E; Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K
2015-01-01
Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen. © 2014 Wiley Periodicals, Inc.
Furuya, Mitsuko; Hong, Seung-Beom; Tanaka, Reiko; Kuroda, Naoto; Nagashima, Yoji; Nagahama, Kiyotaka; Suyama, Takahito; Yao, Masahiro; Nakatani, Yukio
2015-01-01
Birt–Hogg–Dubé syndrome (BHD) is an inherited disorder associated with a germline mutation of the folliculin gene (FLCN). The affected families have a high risk for developing multiple renal cell carcinomas (RCC). Diagnostic markers that distinguish between FLCN-related RCC and sporadic RCC have not been investigated, and many patients with undiagnosed BHD fail to receive proper medical care. We investigated the histopathology of 27 RCCs obtained from 18 BHD patients who were diagnosed by genetic testing. Possible somatic mutations of RCC lesions were investigated by DNA sequencing. Western blotting and immunohistochemical staining were used to compare the expression levels of FLCN and glycoprotein non-metastatic B (GPNMB) between FLCN-related RCCs and sporadic renal tumors (n = 62). The expression of GPNMB was also evaluated by quantitative RT-PCR. Histopathological analysis revealed that the most frequent histological type was chromophobe RCC (n = 12), followed by hybrid oncocytic/chromophobe tumor (n = 6). Somatic mutation analysis revealed small intragenic mutations in six cases and loss of heterozygosity in two cases. Western blot and immunostaining analyses revealed that FLCN-related RCCs showed overexpression of GPNMB and underexpression of FLCN, whereas sporadic tumors showed inverted patterns. GPNMB mRNA in FLCN-related RCCs was 23-fold more abundant than in sporadic tumors. The distinctive expression patterns of GPNMB and FLCN might identify patients with RCCs who need further work-up for BHD. PMID:25594584
Matsuda, Ryo; Hosono, Chie; Saigo, Kaoru; Samakovlis, Christos
2015-01-01
The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. PMID:25615601
Chandrasekaran, Sriram; Ament, Seth A.; Eddy, James A.; Rodriguez-Zas, Sandra L.; Schatz, Bruce R.; Price, Nathan D.; Robinson, Gene E.
2011-01-01
Using brain transcriptomic profiles from 853 individual honey bees exhibiting 48 distinct behavioral phenotypes in naturalistic contexts, we report that behavior-specific neurogenomic states can be inferred from the coordinated action of transcription factors (TFs) and their predicted target genes. Unsupervised hierarchical clustering of these transcriptomic profiles showed three clusters that correspond to three ecologically important behavioral categories: aggression, maturation, and foraging. To explore the genetic influences potentially regulating these behavior-specific neurogenomic states, we reconstructed a brain transcriptional regulatory network (TRN) model. This brain TRN quantitatively predicts with high accuracy gene expression changes of more than 2,000 genes involved in behavior, even for behavioral phenotypes on which it was not trained, suggesting that there is a core set of TFs that regulates behavior-specific gene expression in the bee brain, and other TFs more specific to particular categories. TFs playing key roles in the TRN include well-known regulators of neural and behavioral plasticity, e.g., Creb, as well as TFs better known in other biological contexts, e.g., NF-κB (immunity). Our results reveal three insights concerning the relationship between genes and behavior. First, distinct behaviors are subserved by distinct neurogenomic states in the brain. Second, the neurogenomic states underlying different behaviors rely upon both shared and distinct transcriptional modules. Third, despite the complexity of the brain, simple linear relationships between TFs and their putative target genes are a surprisingly prominent feature of the networks underlying behavior. PMID:21960440
Jędroszka, Dorota; Hamouz, Raneem; Górniak, Karolina; Bednarek, Andrzej K.
2017-01-01
Introduction Prostate carcinoma (PRAD) is one of the most frequently diagnosed malignancies amongst men worldwide. It is well-known that androgen receptor (AR) plays a pivotal role in a vast majority of prostate tumors. However, recent evidence emerged stating that estrogen receptors (ERs) may also contribute to prostate tumor development. Moreover, progression and aggressiveness of prostate cancer may be associated with differential expression genes of epithelial-to-mesenchymal transition (EMT). Therefore we aimed to assess the significance of receptors status as well as EMT marker genes expression among PRAD patients in accordance to their age and Gleason score. Materials and methods We analyzed TCGA gene expression profiles of 497 prostate tumor samples according to 43 genes involved in EMT and 3 hormone receptor genes (AR, ESR1, ESR2) as well as clinical characteristic of cancer patients. Then patients were divided into four groups according to their age and 5 groups according to Gleason score. Next, we evaluated PRAD samples according to relationship between the set of variables in different combinations and compared differential expression in subsequent groups of patients. The analysis was applied using R packages: FactoMineR, gplots, RColorBrewer and NMF. Results MFA analysis resulted in distinct grouping of PRAD patients into four age categories according to expression level of AR, ESR1 and ESR2 with the most distinct group of age less than 50 years old. Further investigations indicated opposite expression profiles of EMT markers between different age groups as well as strong association of EMT gene expression with Gleason score. We found that depending on age of prostate cancer patients and Gleason score EMT genes with distinctly altered expression are: KRT18, KRT19, MUC1 and COL4A1, CTNNB1, SNAI2, ZEB1 and MMP3. Conclusions Our major observation is that prostate cancer from patients under 50 years old compared to older ones has entirely different EMT gene expression profiles showing potentially more aggressive invasive phenotype, despite Gleason score classification. PMID:29206234
Jędroszka, Dorota; Orzechowska, Magdalena; Hamouz, Raneem; Górniak, Karolina; Bednarek, Andrzej K
2017-01-01
Prostate carcinoma (PRAD) is one of the most frequently diagnosed malignancies amongst men worldwide. It is well-known that androgen receptor (AR) plays a pivotal role in a vast majority of prostate tumors. However, recent evidence emerged stating that estrogen receptors (ERs) may also contribute to prostate tumor development. Moreover, progression and aggressiveness of prostate cancer may be associated with differential expression genes of epithelial-to-mesenchymal transition (EMT). Therefore we aimed to assess the significance of receptors status as well as EMT marker genes expression among PRAD patients in accordance to their age and Gleason score. We analyzed TCGA gene expression profiles of 497 prostate tumor samples according to 43 genes involved in EMT and 3 hormone receptor genes (AR, ESR1, ESR2) as well as clinical characteristic of cancer patients. Then patients were divided into four groups according to their age and 5 groups according to Gleason score. Next, we evaluated PRAD samples according to relationship between the set of variables in different combinations and compared differential expression in subsequent groups of patients. The analysis was applied using R packages: FactoMineR, gplots, RColorBrewer and NMF. MFA analysis resulted in distinct grouping of PRAD patients into four age categories according to expression level of AR, ESR1 and ESR2 with the most distinct group of age less than 50 years old. Further investigations indicated opposite expression profiles of EMT markers between different age groups as well as strong association of EMT gene expression with Gleason score. We found that depending on age of prostate cancer patients and Gleason score EMT genes with distinctly altered expression are: KRT18, KRT19, MUC1 and COL4A1, CTNNB1, SNAI2, ZEB1 and MMP3. Our major observation is that prostate cancer from patients under 50 years old compared to older ones has entirely different EMT gene expression profiles showing potentially more aggressive invasive phenotype, despite Gleason score classification.
Lin, Haijiang; Keriel, Anne; Morales, Carlos R.; Bedard, Nathalie; Zhao, Qing; Hingamp, Pascal; Lefrançois, Stephane; Combaret, Lydie; Wing, Simon S.
2000-01-01
Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-γ-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action. PMID:10938131
Arvai, Kevin J; Hsu, Ya-Hsuan; Lee, Lobin A; Jones, Dan
2015-01-01
Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC). These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC. We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β) growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC) markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5%) but not in tumors with downregulated but non-alternating PTEN expression (14.3%). There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases. In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt/β-catenin pathways. This bottleneck-like zone is usually followed by the emergence of invasive tumors with intact PTEN expression but dysregulated TP53 and uniformly high proliferation rates.
Latos, Paulina A.; Stricker, Stefan H.; Steenpass, Laura; Pauler, Florian M.; Huang, Ru; Senergin, Basak H.; Regha, Kakkad; Koerner, Martha V.; Warczok, Katarzyna E.; Unger, Christine; Barlow, Denise P.
2010-01-01
Genomic imprinting is an epigenetic process that results in parental-specific gene expression. Advances in understanding the mechanism that regulates imprinted gene expression in mammals have largely depended on generating targeted manipulations in embryonic stem (ES) cells that are analysed in vivo in mice. However, genomic imprinting consists of distinct developmental steps, some of which occur in post-implantation embryos, indicating that they could be studied in vitro in ES cells. The mouse Igf2r gene shows imprinted expression only in post-implantation stages, when repression of the paternal allele has been shown to require cis-expression of the Airn non-coding (nc) RNA and to correlate with gain of DNA methylation and repressive histone modifications. Here we follow the gain of imprinted expression of Igf2r during in vitro ES cell differentiation and show that it coincides with the onset of paternal-specific expression of the Airn ncRNA. Notably, although Airn ncRNA expression leads, as predicted, to gain of repressive epigenetic marks on the paternal Igf2r promoter, we unexpectedly find that the paternal Igf2r promoter is expressed at similar low levels throughout ES cell differentiation. Our results further show that the maternal and paternal Igf2r promoters are expressed equally in undifferentiated ES cells, but during differentiation expression of the maternal Igf2r promoter increases up to 10-fold, while expression from the paternal Igf2r promoter remains constant. This indicates, contrary to expectation, that the Airn ncRNA induces imprinted Igf2r expression not by silencing the paternal Igf2r promoter, but by generating an expression bias between the two parental alleles. PMID:19141673
Miyaoka, Yuichiro; Kato, Hidenori; Ebato, Kazuki; Saito, Shigeru; Miyata, Naoko; Imamura, Toru; Miyajima, Atsushi
2011-11-15
Cfr (cysteine-rich fibroblast growth factor receptor) is an Fgf (fibroblast growth factor)-binding protein without a tyrosine kinase. We have shown previously that Cfr is involved in Fgf18 signalling via Fgf receptor 3c. However, as Cfr is also known as Glg (Golgi apparatus protein)-1 or MG-160 and occurs in the Golgi apparatus, it remains unknown how the distribution of Cfr is regulated. In the present study, we performed a mutagenic analysis of Cfr to show that two distinct regions contribute to its distribution and stability. First, the C-terminal region retains Cfr in the Golgi apparatus. Secondly, the Cfr repeats in the extracellular juxtamembrane region destabilizes Cfr passed through the Golgi apparatus. This destabilization does not depend on the cleavage and secretion of the extracellular domain of Cfr. Furthermore, we found that Cfr with a GPI (glycosylphosphatidylinositol) anchor was predominantly expressed on the cell surface in Ba/F3 cells and affected Fgf18 signalling in a similar manner to the full-length Cfr, indicating that the interaction of Cfr with Fgfs on the cell surface is important for its function in Fgf signalling. These results suggest that the expression of Cfr in the Golgi apparatus and on the plasma membrane is finely tuned through two distinct mechanisms for exhibiting different functions.
Behavioral and neural reactions to emotions of others in the distribution of resources.
Lelieveld, Gert-Jan; Van Dijk, Eric; Güroğlu, Berna; Van Beest, Ilja; Van Kleef, Gerben A; Rombouts, Serge A R B; Crone, Eveline A
2013-01-01
This study investigated the neural mechanisms involved in the interpersonal effects of emotions--i.e., how people are influenced by other people's emotions. Participants were allocators in a version of the dictator game and made a choice between two offers after receiving written emotional expressions of the recipients. The results showed that participants more often made a self-serving offer when dealing with an angry recipient than when dealing with a happy or disappointed recipient. Compared to disappointment, expressions of anger increased activation in regions associated with self-referential thinking (anterior medial prefrontal cortex, aMPFC) and (emotional) conflict (anterior cingulate cortex). We found increased activation in temporoparietal junction for receiving happy reactions in comparison with receiving angry or disappointed reactions. This study thus emphasizes that distinct emotions have distinct effects on people in terms of behavior and underlying neurological mechanisms.
An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time
Razy-Krajka, Florian; Gravez, Basile; Kaplan, Nicole; Racioppi, Claudia; Wang, Wei
2018-01-01
In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate Ciona emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, Hand-related, Tbx1/10 and Ebf. Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors. PMID:29431097
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friddle, Carl J; Koga, Teiichiro; Rubin, Edward M.
2000-03-15
While cardiac hypertrophy has been the subject of intensive investigation, regression of hypertrophy has been significantly less studied, precluding large-scale analysis of the relationship between these processes. In the present study, using pharmacological models of hypertrophy in mice, expression profiling was performed with fragments of more than 3,000 genes to characterize and contrast expression changes during induction and regression of hypertrophy. Administration of angiotensin II and isoproterenol by osmotic minipump produced increases in heart weight (15% and 40% respectively) that returned to pre-induction size following drug withdrawal. From multiple expression analyses of left ventricular RNA isolated at daily time-points duringmore » cardiac hypertrophy and regression, we identified sets of genes whose expression was altered at specific stages of this process. While confirming the participation of 25 genes or pathways previously known to be altered by hypertrophy, a larger set of 30 genes was identified whose expression had not previously been associated with cardiac hypertrophy or regression. Of the 55 genes that showed reproducible changes during the time course of induction and regression, 32 genes were altered only during induction and 8 were altered only during regression. This study identified both known and novel genes whose expression is affected at different stages of cardiac hypertrophy and regression and demonstrates that cardiac remodeling during regression utilizes a set of genes that are distinct from those used during induction of hypertrophy.« less
Neuronal expression of fibroblast growth factor receptors in zebrafish.
Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah
2013-12-01
Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michèle; Alfano, Christian
2016-01-01
During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features. DOI: http://dx.doi.org/10.7554/eLife.09531.001 PMID:26814051
Culture modulates the brain response to human expressions of emotion: electrophysiological evidence.
Liu, Pan; Rigoulot, Simon; Pell, Marc D
2015-01-01
To understand how culture modulates on-line neural responses to social information, this study compared how individuals from two distinct cultural groups, English-speaking North Americans and Chinese, process emotional meanings of multi-sensory stimuli as indexed by both behaviour (accuracy) and event-related potential (N400) measures. In an emotional Stroop-like task, participants were presented face-voice pairs expressing congruent or incongruent emotions in conditions where they judged the emotion of one modality while ignoring the other (face or voice focus task). Results indicated that while both groups were sensitive to emotional differences between channels (with lower accuracy and higher N400 amplitudes for incongruent face-voice pairs), there were marked group differences in how intruding facial or vocal cues affected accuracy and N400 amplitudes, with English participants showing greater interference from irrelevant faces than Chinese. Our data illuminate distinct biases in how adults from East Asian versus Western cultures process socio-emotional cues, supplying new evidence that cultural learning modulates not only behaviour, but the neurocognitive response to different features of multi-channel emotion expressions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stelzer, Yonatan; Sagi, Ido; Yanuka, Ofra; Eiges, Rachel; Benvenisty, Nissim
2014-06-01
Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated case-derived induced pluripotent stem cells (iPSCs) harboring distinct aberrations in the affected region on chromosome 15. In studying PWS-iPSCs and human parthenogenetic iPSCs, we unexpectedly found substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we determined that IPW, a long noncoding RNA in the critical region of the PWS locus, is a regulator of the DLK1-DIO3 region, as its overexpression in PWS and parthenogenetic iPSCs resulted in downregulation of MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.
Witek, Małgorzata A; Aufforth, Rachel D; Wang, Hong; Kamande, Joyce W; Jackson, Joshua M; Pullagurla, Swathi R; Hupert, Mateusz L; Usary, Jerry; Wysham, Weiya Z; Hilliard, Dawud; Montgomery, Stephanie; Bae-Jump, Victoria; Carey, Lisa A; Gehrig, Paola A; Milowsky, Matthew I; Perou, Charles M; Soper, John T; Whang, Young E; Yeh, Jen Jen; Martin, George; Soper, Steven A
2017-01-01
Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.
Perez, Louise N.; Lorena, Jamily; Costa, Carinne M.; Araujo, Maysa S.; Frota-Lima, Gabriela N.; Matos-Rodrigues, Gabriel E.; Martins, Rodrigo A. P.; Mattox, George M. T.
2017-01-01
The unique eyes of the four-eyed fish Anableps anableps have long intrigued biologists. Key features associated with the bulging eye of Anableps include the expanded frontal bone and the duplicated pupils and cornea. Furthermore, the Anableps retina expresses different photoreceptor genes in dorsal and ventral regions, potentially associated with distinct aerial and aquatic stimuli. To gain insight into the developmental basis of the Anableps unique eye, we examined neurocranium and eye ontogeny, as well as photoreceptor gene expression during larval stages. First, we described six larval stages during which duplication of eye structures occurs. Our osteological analysis of neurocranium ontogeny revealed another distinctive Anablepid feature: an ossified interorbital septum partially separating the orbital cavities. Furthermore, we identified the onset of differences in cell proliferation and cell layer density between dorsal and ventral regions of the retina. Finally, we show that differential photoreceptor gene expression in the retina initiates during development, suggesting that it is inherited and not environmentally determined. In sum, our results shed light on the ontogenetic steps leading to the highly derived Anableps eye. PMID:28381624
Campos, Laura Tojeiro; Brentani, Helena; Roela, Rosimeire Aparecida; Katayama, Maria Lucia Hirata; Lima, Leandro; Rolim, Cíntia Flores; Milani, Cíntia; Folgueira, Maria Aparecida Azevedo Koike; Brentani, Maria Mitzi
2013-01-01
The effects of 1α,25 dihydroxyvitamin D3 (1,25D) on breast carcinoma associated fibroblasts (CAFs) are still unknown. This study aimed to identify genes whose expression was altered after 1,25D treatment in CAFs and matched adjacent normal mammary associated fibroblasts (NAFs). CAFs and NAFs (from 5 patients) were cultured with or without (control) 1,25D 100 nM. Both CAF and NAF expressed vitamin D receptor (VDR) and 1,25D induction of the genomic pathway was detected through up-regulation of the target gene CYP24A1. Microarray analysis showed that despite presenting 50% of overlapping genes, CAFs and NAFs exhibited distinct transcriptional profiles after 1,25D treatment (FDR<0.05). Functional analysis revealed that in CAFs, genes associated with proliferation (NRG1, WNT5A, PDGFC) were down regulated and those involved in immune modulation (NFKBIA, TREM-1) were up regulated, consistent with anti tumor activities of 1,25D in breast cancer. In NAFs, a distinct subset of genes was induced by 1,25D, involved in anti apoptosis, detoxification, antibacterial defense system and protection against oxidative stress, which may limit carcinogenesis. Co-expression network and interactome analysis of genes commonly regulated by 1,25D in NAFs and CAFs revealed differences in their co-expression values, suggesting that 1,25D effects in NAFs are distinct from those triggered in CAFs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall
2015-01-01
Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546
Snyder, Jessica M.; Washington, Ida M.; Birkland, Timothy; Chang, Mary Y.; Frevert, Charles W.
2015-01-01
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection. PMID:26385570
Dowran, Razieh; Sarvari, Jamal; Moattari, Afagh; Fattahi, Mohammad-Reza; Ramezani, Amin; Hosseini, Seyed Younes
2017-01-01
Aim: To evaluate the baseline expression of the immune genes in PBMCs of responder and non-responder patients with chronic Hepatitis C. Background: Although the contribution of peripheral blood mononuclear cell (PBMC) gene expression in treatment outcome of hepatitis C virus (HCV) infection is supposed, it has remained to be distinctly delineated. The baseline expression of the immune genes inside PBMCs may reflect the responsiveness status following IFN treatment. Methods: Totally, 22 chronic HCV encompasses 10 responders and 12 non-responsive cases enrolled randomly regarding medical records. The PBMCs from the peripheral blood samples were isolated and then incubated for 6 hours in the culture media. The baseline expression of TLR7, SOCS1 and ISG15 was measured by Real time PCR. Results: The gene expression pattern in PBMCs of both groups showed a similar trend. The expression of SOCS1 and TLR7 genes showed higher levels in non-responder group (P>0.05). The result of ISG15 showed a higher but non-significant expression in the responder group (P>0.05). Conclusion: The similar pattern of TLR7, SOCS1 and ISG15 expression in the responder and non-responder patients indicated their poor discriminating and predictive value in PBMCs sample. PMID:29379591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida
The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.
Battelle, Barbara-Anne; Kempler, Karen E.; Saraf, Spencer R.; Marten, Catherine E.; Dugger, Donald R.; Speiser, Daniel I.; Oakley, Todd H.
2015-01-01
The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates. PMID:25524988
Joven, Alberto; Morona, Ruth; Moreno, Nerea; González, Agustín
2013-07-01
The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.
Hybrid Sterility over Tens of Meters Between Ecotypes Adapted to Serpentine and Non-Serpentine Soils
Leonie Moyle; Levine Mia; Stanton Maureen; Jessica Wright
2012-01-01
The development of hybrid sterility is an important step in the process of speciation, however the role of adaptive evolution in triggering these postzygotic barriers is poorly understood. We show that, in the California endemic plant Collinsia sparsiflora ecotypic adaptation to two distinct soil types is associated with the expression of...
Language and affective facial expression in children with perinatal stroke.
Lai, Philip T; Reilly, Judy S
2015-08-01
Children with perinatal stroke (PS) provide a unique opportunity to understand developing brain-behavior relations. Previous research has noted distinctive differences in behavioral sequelae between children with PS and adults with acquired stroke: children fare better, presumably due to the plasticity of the developing brain for adaptive reorganization. Whereas we are beginning to understand language development, we know little about another communicative domain, emotional expression. The current study investigates the use and integration of language and facial expression during an interview. As anticipated, the language performance of the five and six year old PS group is comparable to their typically developing (TD) peers, however, their affective profiles are distinctive: those with right hemisphere injury are less expressive with respect to affective language and affective facial expression than either those with left hemisphere injury or TD group. The two distinctive profiles for language and emotional expression in these children suggest gradients of neuroplasticity in the developing brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Ge, Shun-Nan; Ma, Yun-Fei; Hioki, Hiroyuki; Wei, Yan-Yan; Kaneko, Takeshi; Mizuno, Noboru; Gao, Guo-Dong; Li, Jin-Lian
2010-08-01
VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual-fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1- and VGLUT2-expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1-, VGLUT2-, and VGLUT1/VGLUT2-expressing ones, remain unsettled. (c) 2010 Wiley-Liss, Inc.
Epigenetic regulation of normal human mammary cell type-specific miRNAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrba, Lukas; Garbe, James C.; Stampfer, Martha R.
2011-08-26
Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linkedmore » to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.« less
Micropapillary Structures in Colorectal Cancer: An Anoikis-resistant Subpopulation.
Patankar, Madhura; Väyrynen, Sara; Tuomisto, Anne; Mäkinen, Markus; Eskelinen, Sinikka; Karttunen, Tuomo J
2018-05-01
Micropapillary structures (MIPs) are focal piles of columnar cells without extracellular matrix contact, and common in serrated colorectal carcinoma (CRC). In order to characterize biology of MIPs in colorectal cancer (CRC), the proliferation and apoptosis rates, and survivin expression were compared between MIPs and other cancer epithelial cells of CRC (non-MIPs). We assessed 46 samples of normal colorectal mucosa, 62 carcinomas and 54 polyps for proliferation (Ki67), apoptosis (M30), and survivin expression by immunohistochemistry. MIPs in carcinoma showed lower rates of proliferation and apoptosis than non-MIPs. A low rate of apotosis in MIPs was associated with poor prognosis in local carcinoma. In normal crypts, nuclear-to-cytoplasmic transition of survivin indicated epithelial cell maturation. Cancer cases showed increased cytoplasmic expression of survivin than normal mucosa and polyps. However, MIPs showed lower nuclear and cytoplasmic survivin expression than non-MIPs. Our findings suggest that MIPs represent a biologically distinct subpopulation of carcinoma cells with features of anoikis resistance and possibly quiescence. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishio, Sachiyo; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, 683-8503; Ohira, Takahito
Telomerase is a ribonucleoprotein enzyme that maintains telomere length. Telomerase activity is primarily attributed to the expression of telomerase reverse transcriptase (TERT). It has been reported that introduction of an intact human chromosome 3 into the human oral squamous cell carcinoma cell line HSC3 suppresses the tumorigenicity of these cells. However, the mechanisms that regulate tumorigenicity have not been elucidated. To determine whether this reduction in tumorigenicity was accompanied by a reduction in telomerase activity, we investigated the transcriptional activation of TERT in HSC3 microcell hybrid clones with an introduced human chromosome 3 (HSC3#3). HSC#3 cells showed inhibition of hTERT transcriptionmore » compared to that of the parental HSC3 cells. Furthermore, cell fusion experiments showed that hybrids of HSC3 cells and cells of the RCC23 renal carcinoma cell line, which also exhibits suppression of TERT transcription by the introduction of human chromosome 3, also displayed suppressed TERT transcription. These results suggested that human chromosome 3 may carry functionally distinct, additional TERT repressor genes. - Highlights: • hTERT mRNA expression level decreased in the chromosome 3 introduced HSC3 clones. • hTERT mRNA expression level was tend to suppressed in HSC3 and RCC23 hybrid cells. • We provide evidence that human chromosome 3 carries at least two distinct hTERT regulatory factors.« less
Distinct roles for Ste20-like kinase SLK in muscle function and regeneration
2013-01-01
Background Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. Methods To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. Results High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. Conclusions Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function. PMID:23815977
Teixeira, Ana Isabel; Soares-Almeida, Luís; Kutzner, Heinz
2017-03-01
Cutaneous clear cell tumors are a heterogeneous group of cutaneous neoplasms, which may show a wide range of histogenesis. We report the clinicopathological features of an agminated clear cell tumor, arising in a 67-year-old man, otherwise asymptomatic, with distinct histopathological and immunohistochemical features, which did not fit into any existing diagnostic categories. The patient presented with several skin-colored papules at the lateral and posterior aspects of the neck, which on histopathological examination showed circumscribed lobular aggregates of clear cells within the dermis. The immunohistochemical marker panel performed showed diffuse expression of vimentin, NKI-C3, and CD64 while revealing marked negativity for factor XIIIa, CD10, CD13, CD14, CD34, CD68, CD163, lysozyme, HMB45, Renal Cell Carcinoma antigen, calponin, h-caldesmon, Anti-alpha smooth muscle actin antibody [1 A4], S100, and pancytokeratin, leading the authors to postulate a monocytic origin.
Rojas-Peña, Monica L; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D; Williams, Joseph; Gibson, Greg
2014-01-01
Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention.
Rojas-Peña, Monica L.; Olivares-Navarrete, Rene; Hyzy, Sharon; Arafat, Dalia; Schwartz, Zvi; Boyan, Barbara D.; Williams, Joseph; Gibson, Greg
2014-01-01
Craniosynostosis, the premature fusion of one or more skull sutures, occurs in approximately 1 in 2500 infants, with the majority of cases non-syndromic and of unknown etiology. Two common reasons proposed for premature suture fusion are abnormal compression forces on the skull and rare genetic abnormalities. Our goal was to evaluate whether different sub-classes of disease can be identified based on total gene expression profiles. RNA-Seq data were obtained from 31 human osteoblast cultures derived from bone biopsy samples collected between 2009 and 2011, representing 23 craniosynostosis fusions and 8 normal cranial bones or long bones. No differentiation between regions of the skull was detected, but variance component analysis of gene expression patterns nevertheless supports transcriptome-based classification of craniosynostosis. Cluster analysis showed 4 distinct groups of samples; 1 predominantly normal and 3 craniosynostosis subtypes. Similar constellations of sub-types were also observed upon re-analysis of a similar dataset of 199 calvarial osteoblast cultures. Annotation of gene function of differentially expressed transcripts strongly implicates physiological differences with respect to cell cycle and cell death, stromal cell differentiation, extracellular matrix (ECM) components, and ribosomal activity. Based on these results, we propose non-syndromic craniosynostosis cases can be classified by differences in their gene expression patterns and that these may provide targets for future clinical intervention. PMID:25184005
Liu, Guosheng; Sheng, Xiaoyan; Greenshields, David L; Ogieglo, Adam; Kaminskyj, Susan; Selvaraj, Gopalan; Wei, Yangdou
2005-07-01
A cDNA library was constructed from leaf epidermis of diploid wheat (Triticum monococcum) infected with the powdery mildew fungus (Blumeria graminis f. sp. tritici) and was screened for genes encoding peroxidases. From 2,500 expressed sequence tags (ESTs), 36 cDNAs representing 10 peroxidase genes (designated TmPRX1 to TmPRX10) were isolated and further characterized. Alignment of the deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species demonstrated that these peroxidases fall into four distinct groups. Differential expression and tissue-specific localization among the members were observed during the B. graminis f. sp. tritici attack using Northern blots and reverse-transcriptase polymerase chain reaction analyses. Consistent with its abundance in the EST collection, TmPRX1 expression showed the highest induction during pathogen attack and fluctuated in response to the fungal parasitic stages. TmPRX1 to TmPRX6 were expressed predominantly in mesophyll cells, whereas TmPRX7 to TmPRX10, which feature a putative C-terminal propeptide, were detectable mainly in epidermal cells. Using TmPRX8 as a representative, we demonstrated that its C-terminal propeptide was sufficient to target a green fluorescent protein fusion protein to the vacuoles in onion cells. Finally, differential expression profiles of the TmPRXs after abiotic stresses and signal molecule treatments were used to dissect the potential role of these peroxidases in multiple stress and defense pathways.
Common patterns and disease-related signatures in tuberculosis and sarcoidosis.
Maertzdorf, Jeroen; Weiner, January; Mollenkopf, Hans-Joachim; Bauer, Torsten; Prasse, Antje; Müller-Quernheim, Joachim; Kaufmann, Stefan H E
2012-05-15
In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.
Oligodendrocytes in brain and optic nerve express the beta3 subunit isoform of Na,K-ATPase.
Martín-Vasallo, P; Wetzel, R K; García-Segura, L M; Molina-Holgado, E; Arystarkhova, E; Sweadner, K J
2000-09-01
The Na,K-ATPase, which catalyzes the active transport of Na(+) and K(+), has two principal subunits (alpha and beta) that have several genetically distinct isoforms. Most of these isoforms are expressed in the nervous system, but certain ones are preferentially expressed in glia and others in neurons. Of the beta isoforms, beta1 predominates in neurons and beta2 in astrocytes, although there are some exceptions. Here we demonstrate that beta3 is expressed in rat and mouse white matter oligodendrocytes. Immunofluorescence microscopy identified beta3 in oligodendrocytes of rat brain white matter in typical linear arrays of cell bodies between fascicles of axons. The intensity of stain peaked at 20 postnatal days. beta3 was identified in cortical oligodendrocytes grown in culture, where it was expressed in processes and colocalized with antibody to galactocerebroside. In the mouse and rat optic nerve, beta3 stain was seen in oligodendrocytes, where it colocalized with carbonic anhydrase II. For comparison, optic nerve was stained for the beta1 and beta2 subunits, showing distinct patterns of labelling of axons (beta1) and astrocytes (beta2). The C6 glioma cell line was also found to express the beta3 isoform preferentially. Since beta3 was not found at detectable levels in astrocytes, this suggests that C6 is closer to oligodendrocytes than astrocytes in the glial cell lineage. Copyright 2000 Wiley-Liss, Inc.
Kluczniok, Dorothea; Hindi Attar, Catherine; Stein, Jenny; Poppinga, Sina; Fydrich, Thomas; Jaite, Charlotte; Kappel, Viola; Brunner, Romuald; Herpertz, Sabine C; Boedeker, Katja; Bermpohl, Felix
2017-01-01
Maternal sensitive behavior depends on recognizing one's own child's affective states. The present study investigated distinct and overlapping neural responses of mothers to sad and happy facial expressions of their own child (in comparison to facial expressions of an unfamiliar child). We used functional MRI to measure dissociable and overlapping activation patterns in 27 healthy mothers in response to happy, neutral and sad facial expressions of their own school-aged child and a gender- and age-matched unfamiliar child. To investigate differential activation to sad compared to happy faces of one's own child, we used interaction contrasts. During the scan, mothers had to indicate the affect of the presented face. After scanning, they were asked to rate the perceived emotional arousal and valence levels for each face using a 7-point Likert-scale (adapted SAM version). While viewing their own child's sad faces, mothers showed activation in the amygdala and anterior cingulate cortex whereas happy facial expressions of the own child elicited activation in the hippocampus. Conjoint activation in response to one's own child happy and sad expressions was found in the insula and the superior temporal gyrus. Maternal brain activations differed depending on the child's affective state. Sad faces of the own child activated areas commonly associated with a threat detection network, whereas happy faces activated reward related brain areas. Overlapping activation was found in empathy related networks. These distinct neural activation patterns might facilitate sensitive maternal behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se; Chen, Maoshan; Lind, Sara Bergström
The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phasemore » and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.« less
Pinto, Mariana Tomazini; Malta, Tathiane Maistro; Rodrigues, Evandra Strazza; Pinheiro, Daniel Guariz; Panepucci, Rodrigo Alexandre; Malmegrim de Farias, Kelen Cristina Ribeiro; Sousa, Alessandra De Paula; Takayanagui, Osvaldo Massaiti; Tanaka, Yuetsu; Covas, Dimas Tadeu
2014-01-01
Abstract Human T cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T cells and these cells play a central role in HTLV-1 infection. In this study, we investigated the global gene expression profile of circulating CD4+ T cells from the distinct clinical status of HTLV-1-infected individuals in regard to TAX expression levels. CD4+ T cells were isolated from asymptomatic HTLV-1 carrier (HAC) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in order to identify genes involved in HAM/TSP development using a microarray technique. Hierarchical clustering analysis showed that healthy control (CT) and HTLV-1-infected samples clustered separately. We also observed that the HAC and HAM/TSP groups clustered separately regardless of TAX expression. The gene expression profile of CD4+ T cells was compared among the CT, HAC, and HAM/TSP groups. The paxillin (Pxn), chemokine (C-X-C motif ) receptor 4 (Cxcr4), interleukin 27 (IL27), and granzyme A (Gzma) genes were differentially expressed between the HAC and HAM/TSP groups, regardless of TAX expression. The perforin 1 (Prf1) and forkhead box P3 (Foxp3) genes were increased in the HAM/TSP group and presented a positive correlation to the expression of TAX and the proviral load (PVL). The frequency of CD4+FOXP3+ regulatory T cells (Treg) was higher in HTLV-1-infected individuals. Foxp3 gene expression was positively correlated with cell lysis-related genes (Gzma, Gzmb, and Prf1). These findings suggest that CD4+ T cell activity is distinct between the HAC and HAM/TSP groups. PMID:24041428
2012-01-01
Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts distinct effects on adipocyte cytokine and angiogenesis profiles in obese and lean mice. Our study also underscores the importance of angiogenesis-related proteins and cytokines in adipose tissue remodeling and development of obesity. PMID:22748184
Clifford, Jennifer C; Buchanan, Alex; Vining, Oliver; Kidarsa, Teresa A; Chang, Jeff H; McPhail, Kerry L; Loper, Joyce E
2016-10-01
Bacteria can be both highly communicative and highly competitive in natural habitats and antibiotics are thought to play a role in both of these processes. The soil bacterium Pseudomonas protegens Pf-5 produces a spectrum of antibiotics, two of which, pyoluteorin and 2,4-diacetylphloroglucinol (DAPG), function in intracellular and intercellular communication, both as autoinducers of their own production. Here, we demonstrate that phloroglucinol, an intermediate in DAPG biosynthesis, can serve as an intercellular signal influencing the expression of pyoluteorin biosynthesis genes, the production of pyoluteorin, and inhibition of Pythium ultimum, a phytopathogenic oomycete sensitive to pyoluteorin. Through analysis of RNAseq data sets, we show that phloroglucinol had broad effects on the transcriptome of Pf-5, significantly altering the transcription of more than two hundred genes. The effects of nanomolar versus micromolar concentrations of phloroglucinol differed both quantitatively and qualitatively, influencing the expression of distinct sets of genes or having opposite effects on transcript abundance of certain genes. Therefore, our results support the concept of hormesis, a phenomenon associated with signalling molecules that elicit distinct responses at different concentrations. Phloroglucinol is the first example of an intermediate of antibiotic biosynthesis that functions as a chemical messenger influencing gene expression in P. protegens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
The scorpion venom peptide BmKn2 induces apoptosis in cancerous but not in normal human oral cells.
Satitmanwiwat, Saranya; Changsangfa, Chinarat; Khanuengthong, Anuson; Promthep, Kornkanok; Roytrakul, Sittiruk; Arpornsuwan, Teerakul; Saikhun, Kulnasan; Sritanaudomchai, Hathaitip
2016-12-01
This study aimed to investigate the mechanism of the induction of apoptosis of human oral cancer cells by the scorpion venom peptide BmKn2. Human oral squamous carcinoma cells (HSC4), mouth epidermoid carcinoma cells (KB), human normal gingival cells (HGC) and dental pulp cells (DPC) were treated with BmKn-2 peptide for 24h. Cell viability was determined by the MTT assay. Apoptosis was assessed using phase contrast microscopy, by propidium iodide (PI) staining to assess nuclear morphology and by Annexin V staining. Apoptotic signaling pathways were investigated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and Western blotting. BmKn-2 showed potent cytotoxic effects towards both HSC4 and KB cells with the associated induction of apoptosis. The cells showed distinct morphological changes, nuclear disintegration and an increase in the number of Annexin V-positive cells. Interestingly, at concentrations which kill cancerous cells, BmKn-2 did not affect cell viability or mediate the induction of apoptosis in normal HGC or DPC. Induction of apoptosis by BmKn-2 in HSC4 and KB cells was associated with the activation of tumor suppress p53. Pro-apoptotic BAX expression was increased, whereas antiapoptotic BCL-2 expression was decreased in BmKn-2 exposed HSC4 and KB cells. BmKn-2 treated-oral cancer cells showed distinct upregulation of initiator caspase-9, with no effect on caspase-8 expression. Increased expression levels of executor caspases-3 and -7 were also found in treated cells for both oral cancers. This study has suggested for the first time that BmKn-2 exerts selective cytotoxic effects on human oral cancer cells by inducting apoptosis via a p53-dependent intrinsic apoptotic pathway. BmKn-2 peptide originally derived from a natural source shows great promise as a candidate treatment for oral cancer, with minimal effects on healthy tissue. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Khan, Anzalee; Liharska, Lora; Harvey, Philip; Atkins, Alexandra; Keefe, Richard; Ulshen, Danny
2018-01-01
Abstract Background Recognizing the discrete dimensions that underlie negative symptoms in schizophrenia and how these dimensions are conceptualized across geographical regions may result in better understanding and treatment. The expressive-experiential distinction has been shown to have vast importance in relation to functional outcomes in schizophrenia. Previous studies have shown that the PANSS may not be equivalently rated across counties and cultures, suggesting regional differences in both symptom expression and rater judgment of symptom severity. Items that perform in markedly different ways across demographic, regional, cultural, or clinical severity characteristics may not offer valid representations of the target construct. 1) Will the expressive and experiential dimensions of the PANSS vary over 15 geographical regions and will the item ratings defining each dimension manifest similar reliability across these regions? 2) In large multi-center, international trials where data are combined, which of the two dimensions are disposed to social, linguistic and cultural inconsistency? Methods Data was obtained for the baseline PANSS visits of 6,889 subjects. Using Confirmatory Factor Analysis (CFA), we examined whether the expressive-experiential distinction would be replicated in our sample. We investigated the validity of the expressive-experiential distinction using Differential Item Functioning (DIF; Mantel-Haenszel) across 15 geographical regions – South America-Mexico, Austria-Germany, Belgium-Netherlands, Brazil, Canada, Nordic regions (Denmark, Finland, Norway, Sweden), France, Great Britain, India, Italy, Poland, Eastern Europe (Romania, Slovakia, Ukraine, Croatia, Estonia, Czech Republic), Russia, South Africa, and Spain - as compared to the United States. Results Expressive Deficit: More DIF was observed for items in the Expressive deficit factor than for items relating to experiential deficits. The following regions showed at least moderate to large DIF for all items: Austria-Germany, Nordic, France, and Poland. Of all the items, N3 Poor Rapport showed the most moderate and large DIF (n = 13; 86.67%) across countries, with 7 countries reporting large DIF. Similarly, N6 Lack of Spontaneity and Flow of Conversation showed moderate and large DIF for 66.67% countries (n=10). Experiential Deficit: Item G16 Active Social Avoidance reported negligible DIF for 14 of the 15 countries investigated (93.33%). Large DIF was observed for N2 Emotional Withdrawal and N4 Passive Apathetic Social Withdrawal for Brazil and India. Seven regions demonstrated no DIF across all items of the PANSS experiential deficit factor (South America-Mexico, Belgium-Netherlands, Nordic, Great Britain, Eastern Europe, Russia, and Spain). Overall, there were many fewer observed items with large DIF for PANSS experiential domain. Discussion These results suggest that the PANSS Negative Symptoms Factor can be better represented by a two-factor model than by a single-factor model. Additionally, the results show significant differences in ratings on the PANSS expressive items, but not the experiential items, across regions. This could be due to a lack of equivalence between the original and translated versions, cultural differences in the interpretation of items, rater training, or understanding of scoring anchors. Knowing which items are challenging for raters across regions can help guide PANSS training to improve results of international clinical trials aimed at negative symptoms.
Yu, Yao; Tu, Kang; Zheng, Siyuan; Li, Yun; Ding, Guohui; Ping, Jie; Hao, Pei; Li, Yixue
2009-08-25
In the post-genomic era, the development of high-throughput gene expression detection technology provides huge amounts of experimental data, which challenges the traditional pipelines for data processing and analyzing in scientific researches. In our work, we integrated gene expression information from Gene Expression Omnibus (GEO), biomedical ontology from Medical Subject Headings (MeSH) and signaling pathway knowledge from sigPathway entries to develop a context mining tool for gene expression analysis - GEOGLE. GEOGLE offers a rapid and convenient way for searching relevant experimental datasets, pathways and biological terms according to multiple types of queries: including biomedical vocabularies, GDS IDs, gene IDs, pathway names and signature list. Moreover, GEOGLE summarizes the signature genes from a subset of GDSes and estimates the correlation between gene expression and the phenotypic distinction with an integrated p value. This approach performing global searching of expression data may expand the traditional way of collecting heterogeneous gene expression experiment data. GEOGLE is a novel tool that provides researchers a quantitative way to understand the correlation between gene expression and phenotypic distinction through meta-analysis of gene expression datasets from different experiments, as well as the biological meaning behind. The web site and user guide of GEOGLE are available at: http://omics.biosino.org:14000/kweb/workflow.jsp?id=00020.
Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective
NASA Astrophysics Data System (ADS)
Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat
2017-02-01
Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.
Anterior-posterior regionalized gene expression in the Ciona notochord
Veeman, Michael
2014-01-01
Background In the simple ascidian chordate Ciona the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape and behavior vary consistently along the anterior-posterior (AP) axis. Results Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. Conclusions We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. PMID:24288133
Anterior-posterior regionalized gene expression in the Ciona notochord.
Reeves, Wendy; Thayer, Rachel; Veeman, Michael
2014-04-01
In the simple ascidian chordate Ciona, the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape, and behavior vary consistently along the anterior-posterior (AP) axis. Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL, and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. Copyright © 2013 Wiley Periodicals, Inc.
Pescatori, Mario; Broccolini, Aldobrando; Minetti, Carlo; Bertini, Enrico; Bruno, Claudio; D'amico, Adele; Bernardini, Camilla; Mirabella, Massimiliano; Silvestri, Gabriella; Giglio, Vincenzo; Modoni, Anna; Pedemonte, Marina; Tasca, Giorgio; Galluzzi, Giuliana; Mercuri, Eugenio; Tonali, Pietro A; Ricci, Enzo
2007-04-01
Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.
Kim, Kyuhyung; Kim, Rinho; Sengupta, Piali
2010-01-01
The differentiated features of postmitotic neurons are dictated by the expression of specific transcription factors. The mechanisms by which the precise spatiotemporal expression patterns of these factors are regulated are poorly understood. In C. elegans, the ceh-36 Otx homeobox gene is expressed in the AWC sensory neurons throughout postembryonic development, and regulates terminal differentiation of this neuronal subtype. Here, we show that the HMX/NKX homeodomain protein MLS-2 regulates ceh-36 expression specifically in the AWC neurons. Consequently, the AWC neurons fail to express neuron type-specific characteristics in mls-2 mutants. mls-2 is expressed transiently in postmitotic AWC neurons, and directly initiates ceh-36 expression. CEH-36 subsequently interacts with a distinct site in its cis-regulatory sequences to maintain its own expression, and also directly regulates the expression of AWC-specific terminal differentiation genes. We also show that MLS-2 acts in additional neuron types to regulate their development and differentiation. Our analysis describes a transcription factor cascade that defines the unique postmitotic characteristics of a sensory neuron subtype, and provides insights into the spatiotemporal regulatory mechanisms that generate functional diversity in the sensory nervous system. PMID:20150279
Hegde, Venkatesh L.; Tomar, Sunil; Jackson, Austin; Rao, Roshni; Yang, Xiaoming; Singh, Udai P.; Singh, Narendra P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi
2013-01-01
Δ9-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b+Gr-1+ MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b+Ly6G+Ly6C+ and CD11b+Ly6G−Ly6C+ purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in myeloid expansion and differentiation likely play crucial roles in this process and therefore in cannabinoid-induced immunosuppression. PMID:24202177
Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut
2014-01-01
Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional targets and upstream regulators showed differential expression between the contrasting morphotypes. Interestingly, although selected network genes showed overlapping expression patterns in situ and no morph differences, Timp2 expression patterns differed between morphs. Our comparative study of transcriptional dynamics in divergent craniofacial morphologies of Arctic charr revealed a conserved network of coexpressed genes sharing functional roles in structural morphogenesis. We also implicate transcriptional regulators of the network as targets for future functional studies.
Zhang, Xiuming; Mormino, Elizabeth C; Sun, Nanbo; Sperling, Reisa A; Sabuncu, Mert R; Yeo, B T Thomas
2016-10-18
We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.
The High and Low Molecular Weight Forms of Hyaluronan Have Distinct Effects on CD44 Clustering*
Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng
2012-01-01
CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA. PMID:23118219
Orlova, Darya Y; Zimmerman, Noah; Meehan, Stephen; Meehan, Connor; Waters, Jeffrey; Ghosn, Eliver E B; Filatenkov, Alexander; Kolyagin, Gleb A; Gernez, Yael; Tsuda, Shanel; Moore, Wayne; Moss, Richard B; Herzenberg, Leonore A; Walther, Guenther
2016-01-01
Changes in the frequencies of cell subsets that (co)express characteristic biomarkers, or levels of the biomarkers on the subsets, are widely used as indices of drug response, disease prognosis, stem cell reconstitution, etc. However, although the currently available computational "gating" tools accurately reveal subset frequencies and marker expression levels, they fail to enable statistically reliable judgements as to whether these frequencies and expression levels differ significantly between/among subject groups. Here we introduce flow cytometry data analysis pipeline which includes the Earth Mover's Distance (EMD) metric as solution to this problem. Well known as an informative quantitative measure of differences between distributions, we present three exemplary studies showing that EMD 1) reveals clinically-relevant shifts in two markers on blood basophils responding to an offending allergen; 2) shows that ablative tumor radiation induces significant changes in the murine colon cancer tumor microenvironment; and, 3) ranks immunological differences in mouse peritoneal cavity cells harvested from three genetically distinct mouse strains.
2012-01-01
Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings. PMID:16964229
Geo-Distinctive Comorbidity Networks of Pediatric Asthma.
Shin, Eun Kyong; Shaban-Nejad, Arash
2018-01-01
Most pediatric asthma cases occur in complex interdependencies, exhibiting complex manifestation of multiple symptoms. Studying asthma comorbidities can help to better understand the etiology pathway of the disease. Albeit such relations of co-expressed symptoms and their interactions have been highlighted recently, empirical investigation has not been rigorously applied to pediatric asthma cases. In this study, we use computational network modeling and analysis to reveal the links and associations between commonly co-observed diseases/conditions with asthma among children in Memphis, Tennessee. We present a novel method for geo-parsed comorbidity network analysis to show the distinctive patterns of comorbidity networks in urban and suburban areas in Memphis.
Xia, Xiaohua; Zhao, Jie; Du, Qiyan; Chang, Zhongjie
2010-08-01
The Sox9 gene attracts a lot of attention because of its connection with gonadal development and differentiation. However, Sox8, belonging to the same subgroup SoxE, has rarely been studied. To investigate the function as well as the evolutionary origin of SOXE subgroup, we amplified the genomic DNA of Paramisgurnus dabryanu using a pair of degenerate primers. Using rapid amplification of the cDNA ends (RACE), it was discovered that P. dabryanu has two duplicates: Sox8a and Sox8b. Each has an intron of different length in the conserved HMG-box region. The overall sequence similarity of the deduced amino acid of PdSox8a and PdSox8b was 46.26%, and only two amino acids changed in the HMG-box. This is the first evidence showing that there are two distinct duplications of Sox8 genes in Cypriniformes. Southern blot analysis showed only one hybrid band, with lengths 7.4 or 9.2 kb. Both semi-quantitative RT-PCR and real-time quantitative PCR assay displayed that both PdSox8a and PdSox8b are downregulated during early embryonic development. In adult tissues, the two Sox8 genes expressed ubiquitously, and expression levels are particularly high in the gonads and brain. In gonads, both PdSox8a and PdSox8b are expressed at a higher level in the tesis than in the ovary. PdSox8a and PdSox8b may have functional overlaps and are essential for the neuronal development and differentiation of gonads.
Zhang, Feifan; Bhattacharya, Abhishek; Nelson, Jessica C; Abe, Namiko; Gordon, Patricia; Lloret-Fernandez, Carla; Maicas, Miren; Flames, Nuria; Mann, Richard S; Colón-Ramos, Daniel A; Hobert, Oliver
2014-01-01
Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.
Isolation and characterization of the trophectoderm from the Arabian camel (Camelus dromedarius).
Saadeldin, Islam M; Swelum, Ayman Abdel-Aziz; Elsafadi, Mona; Moumen, Abdullah F; Alzahrani, Faisal A; Mahmood, Amer; Alfayez, Musaad; Alowaimer, Abdullah N
2017-09-01
We isolated and characterized trophoblast from in vivo-derived camel embryos and compared with embryonic stem-like cells. Camel embryos were flushed on day 8 post-insemination and used to derive trophectoderm and embryonic stem-like cells under feeder-free culture conditions using a basement membrane matrix. Embryos were evaluated for the expression of POU5F1, MYC, KLF4, SOX2, CDX2, and KRT8 mRNA transcripts by relative quantitative polymerase chain reaction. Camel embryos grew and expanded to ∼4.5 mm and maintained their vesicular shape in vitro for 21 days post-insemination. Trophoblast and embryonic stem-like cell lines grew under feeder-free culture conditions and showed distinct morphological criteria and normal chromosomal counts. Embryonic stem-like cells showed positive staining in the alkaline phosphatase reaction. Trophoblast cells showed a significant increase in CDX2, KRT8, KLF4, and SOX2 expression compared with embryonic stem-like cells and whole embryos. Embryonic stem-like cells showed a significant decrease in CDX2 expression and increase in SOX2 and KRT8 expression compared to embryonic expression. POU5F1 and MYC expression showed no difference between embryos and both cell lines. We characterized embryo survival in vitro, particularly the derivation of trophectoderm and embryonic stem-like cells, providing a foundation for further analysis of early embryonic development and placentation in camels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Skoulidis, Ferdinandos; Byers, Lauren A; Diao, Lixia; Papadimitrakopoulou, Vassiliki A; Tong, Pan; Izzo, Julie; Behrens, Carmen; Kadara, Humam; Parra, Edwin R; Canales, Jaime Rodriguez; Zhang, Jianjun; Giri, Uma; Gudikote, Jayanthi; Cortez, Maria A; Yang, Chao; Fan, Youhong; Peyton, Michael; Girard, Luc; Coombes, Kevin R; Toniatti, Carlo; Heffernan, Timothy P; Choi, Murim; Frampton, Garrett M; Miller, Vincent; Weinstein, John N; Herbst, Roy S; Wong, Kwok-Kin; Zhang, Jianhua; Sharma, Padmanee; Mills, Gordon B; Hong, Waun K; Minna, John D; Allison, James P; Futreal, Andrew; Wang, Jing; Wistuba, Ignacio I; Heymach, John V
2015-08-01
The molecular underpinnings that drive the heterogeneity of KRAS-mutant lung adenocarcinoma are poorly characterized. We performed an integrative analysis of genomic, transcriptomic, and proteomic data from early-stage and chemorefractory lung adenocarcinoma and identified three robust subsets of KRAS-mutant lung adenocarcinoma dominated, respectively, by co-occurring genetic events in STK11/LKB1 (the KL subgroup), TP53 (KP), and CDKN2A/B inactivation coupled with low expression of the NKX2-1 (TTF1) transcription factor (KC). We further revealed biologically and therapeutically relevant differences between the subgroups. KC tumors frequently exhibited mucinous histology and suppressed mTORC1 signaling. KL tumors had high rates of KEAP1 mutational inactivation and expressed lower levels of immune markers, including PD-L1. KP tumors demonstrated higher levels of somatic mutations, inflammatory markers, immune checkpoint effector molecules, and improved relapse-free survival. Differences in drug sensitivity patterns were also observed; notably, KL cells showed increased vulnerability to HSP90-inhibitor therapy. This work provides evidence that co-occurring genomic alterations identify subgroups of KRAS-mutant lung adenocarcinoma with distinct biology and therapeutic vulnerabilities. Co-occurring genetic alterations in STK11/LKB1, TP53, and CDKN2A/B-the latter coupled with low TTF1 expression-define three major subgroups of KRAS-mutant lung adenocarcinoma with distinct biology, patterns of immune-system engagement, and therapeutic vulnerabilities. ©2015 American Association for Cancer Research.
Hakkaart, Gerrit A J; Dassa, Emmanuel P; Jacobs, Howard T; Rustin, Pierre
2006-01-01
Human mitochondrial respiration is distinct from that of most plants, microorganisms and even some metazoans in that it reduces molecular oxygen only through the highly cyanide-sensitive enzyme cytochrome c oxidase. Here we show that expression of the cyanide-insensitive alternative oxidase (AOX), recently identified in the ascidian Ciona intestinalis, is well tolerated by cultured human cells and confers spectacular cyanide resistance to mitochondrial substrate oxidation. The expressed AOX seems to be confined to mitochondria. AOX involvement in electron flow is triggered by a highly reduced redox status of the respiratory chain (RC) and enhanced by pyruvate; otherwise, the enzyme remains essentially inactive. AOX expression promises to be a valuable tool to limit the deleterious consequences of RC deficiency in human cells and whole animals. PMID:16322757
Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas
2015-01-01
Axo-axonic interneurons, innervating exclusively axon initial segments, and parvalbumin-expressing basket interneurons, targeting somata, dendrites, and spines of pyramidal cells, have been proposed to control neuronal activity in prefrontal circuits. We recorded the spike-timing of identified neurons in the prelimbic cortex of anesthetized rats, and show that axo-axonic cells increase their firing during tail pinch-induced brain state-activation. In addition, axo-axonic cells differ from other GABAergic parvalbumin-expressing cells in their spike timing during DOWN- to UP-state transitions of slow oscillations and in their coupling to gamma and spindle oscillations. The distinct firing dynamics and synaptic targets of axo-axonic and other parvalbumin-expressing cells provide differential contributions to the temporal organization of prefrontal networks. PMID:23152631
Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins.
Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won
2013-12-01
Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Narahara, Shun; Matsushima, Haruna; Sakai, Eiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki
2012-04-01
Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H(2)O(2)) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.
Hinder, Lucy M; Park, Meeyoung; Rumora, Amy E; Hur, Junguk; Eichinger, Felix; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C; Feldman, Eva L
2017-09-01
Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenoien, David L.; Knyushko, Tatyana V.; Londono, Monica P.
2007-06-01
The sarco/endoplasmic reticulum Ca-ATPase (SERCA) family members are transmembrane proteins that play an essential role in regulating intracellular calcium levels. Phospholamban (PLB), a 52 amino acid phosphoprotein, regulates SERCA activity in adult heart and skeletal muscle. Using the C2C12 myocyte cell line, we find endogenous PLB constitutively expressed in both myoblasts and myotubes, whereas SERCA expression coincides with activation of the differentiation program. PLB has a punctuate distribution in myoblasts changing to a reticular distribution in myotubes where it colocalizes with SERCAs. To examine the distribution and dynamics of PLB and SERCA, we expressed fluorescent fusion proteins (GFP, CFP, andmore » YFP) of PLB and SERCA in myoblasts. Coexpressed PLB and SERCA localize to distinct cellular compartments in myoblasts but begin to colocalize as cells differentiate. Fluorescence Recovery After Photobleaching (FRAP) studies show different recovery patterns for each protein in myoblasts confirming their localization to distinct compartments. To extend these studies, we created stable cell lines expressing O6-alkylguanine-DNA alkyltransferase (AGT) fusions with PLB or SERCA to track their localization as myocytes differentiate. These experiments demonstrate that PLB localizes to punctate vesicles in myoblasts and adopts a reticular distribution that coincides with SERCA distribution after differentiation. Colocalization experiments indicate that a subset of PLB in myoblasts colocalizes with endosomes, Golgi, and the plasma membrane however PLB also localizes to other, as yet unidentified vesicles. Our results indicate that differentiation plays a critical role in regulating PLB distribution to ensure its colocalization within the same cellular compartment as SERCA in differentiated cells. The presence and altered distribution of PLB in undifferentiated myoblasts raises the possibility that this protein has additional functions distinct from SERCA regulation.« less
Tukey, David S; Lee, Michelle; Xu, Duo; Eberle, Sarah E; Goffer, Yossef; Manders, Toby R; Ziff, Edward B; Wang, Jing
2013-07-09
Pain and natural rewards such as food elicit different behavioral effects. Both pain and rewards, however, have been shown to alter synaptic activities in the nucleus accumbens (NAc), a key component of the brain reward system. Mechanisms by which external stimuli regulate plasticity at NAc synapses are largely unexplored. Medium spiny neurons (MSNs) from the NAc receive excitatory glutamatergic inputs and modulatory dopaminergic and cholinergic inputs from a variety of cortical and subcortical structures. Glutamate inputs to the NAc arise primarily from prefrontal cortex, thalamus, amygdala, and hippocampus, and different glutamate projections provide distinct synaptic and ultimately behavioral functions. The family of vesicular glutamate transporters (VGLUTs 1-3) plays a key role in the uploading of glutamate into synaptic vesicles. VGLUT1-3 isoforms have distinct expression patterns in the brain, but the effects of external stimuli on their expression patterns have not been studied. In this study, we use a sucrose self-administration paradigm for natural rewards, and spared nerve injury (SNI) model for chronic pain. We examine the levels of VGLUTs (1-3) in synaptoneurosomes of the NAc in these two behavioral models. We find that chronic pain leads to a decrease of VGLUT1, likely reflecting decreased projections from the cortex. Pain also decreases VGLUT3 levels, likely representing a decrease in projections from GABAergic, serotonergic, and/or cholinergic interneurons. In contrast, chronic consumption of sucrose increases VGLUT3 in the NAc, possibly reflecting an increase from these interneuron projections. Our study shows that natural rewards and pain have distinct effects on the VGLUT expression pattern in the NAc, indicating that glutamate inputs to the NAc are differentially modulated by rewards and pain.
Emotional modulation of body-selective visual areas.
Peelen, Marius V; Atkinson, Anthony P; Andersson, Frederic; Vuilleumier, Patrik
2007-12-01
Emotionally expressive faces have been shown to modulate activation in visual cortex, including face-selective regions in ventral temporal lobe. Here, we tested whether emotionally expressive bodies similarly modulate activation in body-selective regions. We show that dynamic displays of bodies with various emotional expressions vs neutral bodies, produce significant activation in two distinct body-selective visual areas, the extrastriate body area and the fusiform body area. Multi-voxel pattern analysis showed that the strength of this emotional modulation was related, on a voxel-by-voxel basis, to the degree of body selectivity, while there was no relation with the degree of selectivity for faces. Across subjects, amygdala responses to emotional bodies positively correlated with the modulation of body-selective areas. Together, these results suggest that emotional cues from body movements produce topographically selective influences on category-specific populations of neurons in visual cortex, and these increases may implicate discrete modulatory projections from the amygdala.
Zeng, Lingfeng; Deng, Rong; Guo, Ziping; Yang, Shushen; Deng, Xiping
2016-03-16
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysi, we performed genome-wide identification of GAPDH genes in wheat and analyzed their structural characteristics and expression patterns under abiotic stress in wheat. A total of 22 GAPDH genes were identified in wheat cv. Chinese spring; the phylogenetic and structure analysis showed that these GAPDH genes could be divided into four distinct subfamilies. The expression profiles of GAPDH genes showed tissue specificity all over plant development stages. The qRT-PCR results revealed that wheat GAPDHs were involved in several abiotic stress response. Wheat carried 22 GAPDH genes, representing four types of plant GAPDHs (gapA/B, gapC, gapCp and gapN). Whole genome duplication and segmental duplication might account for the expansion of wheat GAPDHs. Expression analysis implied that GAPDHs play roles in plants abiotic stress tolerance.
Kang, Xiaolong; Liu, Yufang; Zhang, Jibin; Xu, Qinqin; Liu, Chengkun; Fang, Meiying
2017-07-01
As an important commercial trait for sheep, curly fleece has a great economic impact on production costs and efficiency in sheep industry. To identify genes that are important for curly fleece formation in mammals, a suppression subtractive hybridization analysis was performed on the shoulder skin tissues exposed to two different growth stages of Chinese Tan sheep with different phenotypes (curly fleece and noncurling fleece). BLAST analysis identified 67 differentially expressed genes, of which 31 were expressed lower and 36 were expressed higher in lambs than in adult sheep. Differential expressions of seven randomly selected genes were verified using quantitative real-time polymerase chain reaction (qRT-PCR). KRT71 gene was selected for further study due to its high correlation with the curly hair phenotype in various mammal species. Semi-qPCR showed distinctively high expression of KRT71 in skin tissues. Moreover, qPCR result showed a significantly higher expression of KRT71 in curly fleece than noncurling Tan sheep. The luciferase assay and electrophoresis mobility shift assay showed that there were transcription factor binding sites in the promoter region of KRT71 related to the differential expression of KRT71 at the two growth stages of Tan sheep. Online bioinformation tools predicted MFZ1 as a transcriptional factor that regulates the expression of KRT71. These studies on KRT71 gene revealed some mechanisms underlying the relationship between the KRT71 gene and the curly fleece phenotype of Tan sheep.
Molecular genetics of intraductal papillary-mucinous neoplasms of the pancreas.
Furukawa, Toru
2007-01-01
Intraductal papillary-mucinous neoplasms of the pancreas show characteristic clinicopathological and molecular pathobiological features which are distinct from those of conventional ductal adenocarcinomas. Alterations of KRAS, AKT/PKB, CDKN2A, TP53, SMAD4, STK11/LKB1, and DUSP6, and other molecular alterations, including global expression studies as well as their clinical implications, are discussed.
Hur, Junho K.; Luo, Yicheng; Moon, Sungjin; Ninova, Maria; Marinov, Georgi K.; Chung, Yun D.; Aravin, Alexei A.
2016-01-01
The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis. PMID:27036967
1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.
Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S
2015-04-01
Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Differences in the Regulation of K-Ras and H-Ras Isoforms by Monoubiquitination*
Baker, Rachael; Wilkerson, Emily M.; Sumita, Kazutaka; Isom, Daniel G.; Sasaki, Atsuo T.; Dohlman, Henrik G.; Campbell, Sharon L.
2013-01-01
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation. PMID:24247240
Aberrant Chromatin Modification as a Mechanism of Prostate Cancer Progression
2004-12-01
mediated control of gene expression. Using the antibody generated against phosphorylated histone H3 (from either Upstate Biotech or Cell Signaling), we...C4-2B cells (Fig 3 of Appendix 2). Interestingly, depletion of AR and ACTR affects the expression of distinct cell cycle genes. As shown in Fig 4A and...coactivator ACTR regulate the expression of different genes that are involved in control of cell cycle , suggesting that distinct mechanisms evolves
Adams, Yvonne; Kuhnrae, Pongsak; Higgins, Matthew K; Ghumra, Ashfaq; Rowe, J Alexandra
2014-03-01
Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.
Singh, Vineet K; Ring, Robert P; Aswani, Vijay; Stemper, Mary E; Kislow, Jennifer; Ye, Zhan; Shukla, Sanjay K
2017-12-01
Staphylococcus aureus is an opportunistic human pathogen that can cause serious infections in humans. A plethora of known and putative virulence factors are produced by staphylococci that collectively orchestrate pathogenesis. Ear protein (Escherichia coli ampicillin resistance) in S. aureus is an exoprotein in COL strain, predicted to be a superantigen, and speculated to play roles in antibiotic resistance and virulence. The goal of this study was to determine if expression of ear is modulated by single nucleotide polymorphisms in its promoter and coding sequences and whether this gene plays roles in antibiotic resistance and virulence. Promoter, coding sequences and expression of the ear gene in clinical and carriage S. aureus strains with distinct genetic backgrounds were analysed. The JE2 strain and its isogenic ear mutant were used in a systemic infection mouse model to determine the competiveness of the ear mutant.Results/Key findings. The ear gene showed a variable expression, with USA300FPR3757 showing a high-level expression compared to many of the other strains tested including some showing negligible expression. Higher expression was associated with agr type 1 but not correlated with phylogenetic relatedness of the ear gene based upon single nucleotide polymorphisms in the promoter or coding regions suggesting a complex regulation. An isogenic JE2 (USA300 background) ear mutant showed no significant difference in its growth, antibiotic susceptibility or virulence in a mouse model. Our data suggests that despite being highly expressed in a USA300 genetic background, Ear is not a significant contributor to virulence in that strain.
Drug-Path: a database for drug-induced pathways
Zeng, Hui; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661
Drug-Path: a database for drug-induced pathways.
Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.
Hox gene duplications correlate with posterior heteronomy in scorpions
Sharma, Prashant P.; Schwager, Evelyn E.; Extavour, Cassandra G.; Wheeler, Ward C.
2014-01-01
The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres to form morphologically and functionally distinct segmental regions called tagmata. Specification of regional identity is regulated by the Hox genes, of which 10 are inferred to be present in the ancestor of arthropods. With six different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression domains of the anterior eight Hox genes are conserved in previously surveyed chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression domain boundaries of each of the last four pairs of Hox genes (two paralogues each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while maintaining spatial collinearity. These distinct expression domains suggest neofunctionalization of Hox gene paralogues subsequent to duplication. Our data reconcile previous understanding of Hox gene function across arthropods with the extreme heteronomy of scorpions. PMID:25122224
Perez, Louise N; Lorena, Jamily; Costa, Carinne M; Araujo, Maysa S; Frota-Lima, Gabriela N; Matos-Rodrigues, Gabriel E; Martins, Rodrigo A P; Mattox, George M T; Schneider, Patricia N
2017-04-12
The unique eyes of the four-eyed fish Anableps anableps have long intrigued biologists. Key features associated with the bulging eye of Anableps include the expanded frontal bone and the duplicated pupils and cornea. Furthermore, the Anableps retina expresses different photoreceptor genes in dorsal and ventral regions, potentially associated with distinct aerial and aquatic stimuli. To gain insight into the developmental basis of the Anableps unique eye, we examined neurocranium and eye ontogeny, as well as photoreceptor gene expression during larval stages. First, we described six larval stages during which duplication of eye structures occurs. Our osteological analysis of neurocranium ontogeny revealed another distinctive Anablepid feature: an ossified interorbital septum partially separating the orbital cavities. Furthermore, we identified the onset of differences in cell proliferation and cell layer density between dorsal and ventral regions of the retina. Finally, we show that differential photoreceptor gene expression in the retina initiates during development, suggesting that it is inherited and not environmentally determined. In sum, our results shed light on the ontogenetic steps leading to the highly derived Anableps eye. © 2017 The Author(s).
Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso
2017-03-27
The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.
Dricu, Mihai; Frühholz, Sascha
2016-12-01
We conducted a series of activation likelihood estimation (ALE) meta-analyses to determine the commonalities and distinctions between separate levels of emotion perception, namely incidental perception, passive perception, and explicit evaluation of emotional expressions. Pooling together more than 180 neuroimaging experiments using facial, vocal or body expressions, our results are threefold. First, explicitly evaluating the emotions of others recruits brain regions associated with the sensory processing of expressions, such as the inferior occipital gyrus, middle fusiform gyrus and the superior temporal gyrus, and brain regions involved in low-level and high-level mindreading, namely the posterior superior temporal sulcus, the inferior frontal cortex and dorsomedial frontal cortex. Second, we show that only the sensory regions were also consistently active during the passive perception of emotional expressions. Third, we show that the brain regions involved in mindreading were active during the explicit evaluation of both facial and vocal expressions. We discuss these results in light of the existing literature and conclude by proposing a cognitive model for perceiving and evaluating the emotions of others. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tweeting nano: how public discourses about nanotechnology develop in social media environments
NASA Astrophysics Data System (ADS)
Runge, Kristin K.; Yeo, Sara K.; Cacciatore, Michael; Scheufele, Dietram A.; Brossard, Dominique; Xenos, Michael; Anderson, Ashley; Choi, Doo-hun; Kim, Jiyoun; Li, Nan; Liang, Xuan; Stubbings, Maria; Su, Leona Yi-Fan
2013-01-01
The growing popularity of social media as a channel for distributing and debating scientific information raises questions about the types of discourse that surround emerging technologies, such as nanotechnology, in online environments, as well as the different forms of information that audiences encounter when they use these online tools of information sharing. This study maps the landscape surrounding social media traffic about nanotechnology. Specifically, we use computational linguistic software to analyze a census of all English-language nanotechnology-related tweets expressing opinions posted on Twitter between September 1, 2010 and August 31, 2011. Results show that 55 % of tweets expressed certainty and 45 % expressed uncertainty. Twenty-seven percent of tweets expressed optimistic outlooks, 32 % expressed neutral outlooks and 41 % expressed pessimistic outlooks. Tweets were mapped by U.S. state, and our data show that tweets are more likely to originate from states with a federally funded National Nanotechnology Initiative center or network. The trend toward certainty in opinion coupled with the distinct geographic origins of much of the social media traffic on Twitter for nanotechnology-related opinion has significant implications for understanding how key online influencers are debating and positioning the issue of nanotechnology for lay and policy audiences.
Kontaraki, Joanna E; Marketou, Maria E; Kochiadakis, George E; Maragkoudakis, Spyros; Konstantinou, John; Vardas, Panos E; Parthenakis, Fragiskos I
2018-06-19
Long non-coding RNAs (lncRNAs) participate in the modulation of cardiac hypertrophy and they represent potential therapeutic targets in cardiovascular disease. We investigated the expression profiles of selected lncRNAs in peripheral blood mononuclear cells of patients with essential hypertension in relation to left ventricular hypertrophy. We assessed the expression levels of the lncRNAs MHRT, FENDRR and CARMEN using real-time reverse transcription polymerase chain reaction. Hypertensive patients showed significantly higher MHRT, FENDRR and CARMEN expression levels compared with healthy controls. In addition, we observed significant negative correlations of MHRT (r=-0.323, p=0.003) and FENDRR (r=-0.380, p=0.001) and a positive correlation of CARMEN (r=0.458, p<0.001) expression levels with left ventricular mass index. Our data reveal that the lncRNAs MHRT, FENDRR and CARMEN show distinct expression profiles in hypertensive patients and they possibly represent candidate therapeutic targets in hypertensive heart disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sizemore, Tyler R.; Dacks, Andrew M.
2016-01-01
Neuromodulation confers flexibility to anatomically-restricted neural networks so that animals are able to properly respond to complex internal and external demands. However, determining the mechanisms underlying neuromodulation is challenging without knowledge of the functional class and spatial organization of neurons that express individual neuromodulatory receptors. Here, we describe the number and functional identities of neurons in the antennal lobe of Drosophila melanogaster that express each of the receptors for one such neuromodulator, serotonin (5-HT). Although 5-HT enhances odor-evoked responses of antennal lobe projection neurons (PNs) and local interneurons (LNs), the receptor basis for this enhancement is unknown. We used endogenous reporters of transcription and translation for each of the five 5-HT receptors (5-HTRs) to identify neurons, based on cell class and transmitter content, that express each receptor. We find that specific receptor types are expressed by distinct combinations of functional neuronal classes. For instance, the excitatory PNs express the excitatory 5-HTRs, while distinct classes of LNs each express different 5-HTRs. This study therefore provides a detailed atlas of 5-HT receptor expression within a well-characterized neural network, and enables future dissection of the role of serotonergic modulation of olfactory processing. PMID:27845422
Zhu, Jinjin; Baker, Luke R.; Bashirullah, Arash
2018-01-01
A common occurrence in metazoan development is the rise of multiple tissues/organs from a single uniform precursor field. One example is the anterior forebrain of vertebrates, which produces the eyes, hypothalamus, diencephalon, and telencephalon. Another instance is the Drosophila wing disc, which generates the adult wing blade, the hinge, and the thorax. Gene regulatory networks (GRNs) that are comprised of signaling pathways and batteries of transcription factors parcel the undifferentiated field into discrete territories. This simple model is challenged by two observations. First, many GRN members that are thought to control the fate of one organ are actually expressed throughout the entire precursor field at earlier points in development. Second, each GRN can simultaneously promote one of the possible fates choices while repressing the other alternatives. It is therefore unclear how GRNs function to allocate tissue fates if their members are uniformly expressed and competing with each other within the same populations of cells. We address this paradigm by studying fate specification in the Drosophila eye-antennal disc. The disc, which begins its development as a homogeneous precursor field, produces a number of adult structures including the compound eyes, the ocelli, the antennae, the maxillary palps, and the surrounding head epidermis. Several selector genes that control the fates of the eye and antenna, respectively, are first expressed throughout the entire eye-antennal disc. We show that during early stages, these genes are tasked with promoting the growth of the entire field. Upon segregation to distinct territories within the disc, each GRN continues to promote growth while taking on the additional roles of promoting distinct primary fates and repressing alternate fates. The timing of both expression pattern restriction and expansion of functional duties is an elemental requirement for allocating fates within a single field. PMID:29351292
Thirst Driving and Suppressing Signals Encoded by Distinct Neural Populations in the Brain
Oka, Yuki; Ye, Mingyu; Zuker, Charles S.
2014-01-01
Thirst is the basic instinct to drink water. Previously, it was shown that neurons in several circumventricular organs (CVO) of the hypothalamus are activated by thirst-inducing conditions 1. Here, we identify two distinct, genetically-separable neural populations in the subfornical organ (SFO) that trigger or suppress thirst. We show that optogenetic activation of SFO excitatory neurons, marked by the expression of the transcription factor ETV-1, evokes intense drinking behavior, and does so even in fully water-satiated animals. The light-induced response is highly specific for water, immediate, and strictly locked to the laser stimulus. In contrast, activation of a second population of SFO neurons, marked by expression of the vesicular GABA transporter VGAT, drastically suppressed drinking, even in water-craving thirsty animals. These results reveal an innate brain circuit that can turn on and off an animal’s water-drinking behavior, and likely functions as a center for thirst control in the mammalian brain. PMID:25624099
Multiple, Distinct Isoforms of Sucrose Synthase in Pea1
Barratt, D.H. Paul; Barber, Lorraine; Kruger, Nicholas J.; Smith, Alison M.; Wang, Trevor L.; Martin, Cathie
2001-01-01
Genes encoding three isoforms of sucrose synthase (Sus1, Sus2, and Sus3) have been cloned from pea (Pisum sativum). The genes have distinct patterns of expression in different organs of the plant, and during organ development. Studies of the isoforms expressed as recombinant proteins in Escherichia coli show that they differ in kinetic properties. Although not of great magnitude, the differences in properties are consistent with some differentiation of physiological function between the isoforms. Evidence for differentiation of function in vivo comes from the phenotypes of rug4 mutants of pea, which carry mutations in the gene encoding Sus1. One mutant line (rug4-c) lacks detectable Sus1 protein in both the soluble and membrane-associated fractions of the embryo, and Sus activity in the embryo is reduced by 95%. The starch content of the embryo is reduced by 30%, but the cellulose content is unaffected. The results imply that different isoforms of Sus may channel carbon from sucrose towards different metabolic fates within the cell. PMID:11598239
Behavior-dependent specialization of identified hippocampal interneurons
Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas
2012-01-01
A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613
Notch ligands Delta1 and Jagged1 transmit distinct signals to T-cell precursors
Lehar, Sophie M.; Dooley, James; Farr, Andrew G.; Bevan, Michael J.
2009-01-01
Signaling through the Notch pathway plays an essential role in inducing T-lineage commitment and promoting the maturation of immature thymocytes. Using an in vitro culture system, we show that 2 different classes of Notch ligands, Jagged1 or Delta1, transmit distinct signals to T-cell progenitors. OP9 stromal cells expressing either Jagged1 or Delta1 inhibit the differentiation of DN1 thymocytes into the B-cell lineage, but only the Delta1-expressing stromal cells promote the proliferation and maturation of T-cell progenitors through the early double-negative (DN) stages of thymocyte development. Whereas the majority of bone marrow-derived stem cells do not respond to Jagged1 signals, T-cell progenitors respond to Jagged1 signals during a brief window of their development between the DN1 and DN3 stages of thymic development. During these stages, Jagged1 signals can influence the differentiation of immature thymocytes along the natural killer (NK) and γδ T-cell lineages. PMID:15486060
Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells.
Leon, P M M; Campos, V F; Kaefer, C; Begnini, K R; McBride, A J A; Dellagostin, O A; Seixas, F K; Deschamps, J C; Collares, T
2013-08-01
The gene expression of Bax, Bcl-2, survivin and p53, following in vitro maturation of equine oocytes, was compared in morphologically distinct oocytes and cumulus cells. Cumulus-oocyte complexes (COC) were harvested and divided into two groups: G1 - morphologically healthy cells; and G2 - less viable cells or cells with some degree of atresia. Total RNA was isolated from both immature and in vitro matured COC and real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to quantify gene expression. Our results showed there was significantly higher expression of survivin (P < 0.05) and lower expression of p53 (P < 0.01) in oocytes compared with cumulus cells in G1. No significant difference in gene expression was observed following in vitro maturation or in COC derived from G1 and G2. However, expression of the Bax gene was significantly higher in cumulus cells from G1 (P < 0.02).
Expression of Notch pathway genes in mammalian epidermis and modulation by beta-catenin.
Ambler, Carrie A; Watt, Fiona M
2007-06-01
The Notch pathway is required for hair follicle maintenance and is activated through beta-catenin induced transcription of the Notch ligand Jagged1. We show that hair follicles in the resting phase express low levels of Jagged1 and Hes1, and other Notch target genes are undetectable. In growing (anagen) follicles, Jagged1 and Hes1 expression increases, Hes5 and HeyL are expressed in distinct cell layers, and Hey2 is expressed in the dermal papilla. When beta-catenin is activated by means of an inducible transgene, Jagged1, Hes1, Hes5, HeyL, and Hey2 are up-regulated, the sites of expression being the same in beta-catenin induced ectopic follicles as in anagen follicles. beta-Catenin also induces Hey1 in dermal papilla cells. beta-Catenin-induced up-regulation of Jagged1 precedes induction of other Notch target genes. The different sites of expression of Hes and Hey genes suggest input from additional signaling pathways. Copyright 2007 Wiley-Liss, Inc.
Dorgau, Birthe; Felemban, Majed; Sharpe, Alexander; Bauer, Roman; Hallam, Dean; Steel, David H; Lindsay, Susan; Mellough, Carla; Lako, Majlinda
2018-05-23
Laminins are heterotrimeric glycoproteins of the extracellular matrix. Eleven different laminin chains have been identified in vertebrates. They are ubiquitously expressed in the human body, with a distinct tissue distribution. Laminin expression in neural retina and their functional role during human retinogenesis is still unknown. This study investigated the laminin expression in human developing and adult retina, showing laminin α1, α5, β1, β2 and γ1 to be predominantly expressed in Bruch's membrane and the inner limiting membrane. Laminin-332 and laminin γ3 expression were mainly observed in the neural retina during retinal histogenesis. These expression patterns were largely conserved in pluripotent stem cell-derived retinal organoids. Blocking of laminin γ3 function in retinal organoids resulted in the disruption of laminar organisation and synapse formation, the loss of photoreceptor organisation and retinal ganglion cells. Our data demonstrate a unique temporal and spatial expression for laminins and reveal a novel role for laminin γ3 during human retinogenesis.
Somatosensory Representations Link the Perception of Emotional Expressions and Sensory Experience.
Kragel, Philip A; LaBar, Kevin S
2016-01-01
Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory experience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional expressions are capable of biasing subjective experience in those who perceive them.
Somatosensory Representations Link the Perception of Emotional Expressions and Sensory Experience123
2016-01-01
Abstract Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory experience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional expressions are capable of biasing subjective experience in those who perceive them. PMID:27280154
Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum
Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.
2010-01-01
The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786
Agaimy, Abbas; Barthelmeß, Sarah; Geddert, Helene; Boltze, Carsten; Moskalev, Evgeny A; Koch, Michael; Wiemann, Stefan; Hartmann, Arndt; Haller, Florian
2014-11-01
Sinonasal haemangiopericytoma (SN-HPC) is a rare sinonasal mesenchymal neoplasm of perivascular myoid cell origin. Solitary fibrous tumour (SFT) occurs only very rarely in the sinonasal tract. SFT and soft tissue HPC have been considered a single entity. Recently, recurrent gene fusions involving NAB2-STAT6 resulting in differential expression of STAT6 were characterized as central molecular events in SFT. However, no data exist for NAB2-STAT6 status or STAT6 expression in SN-HPC. We examined six SN-HPCs and two sinonasal SFTs by immunohistochemistry and RT-PCR for NAB2-STAT6 fusions. SN-HPC affected three females and three males (mean age: 72 years). They expressed smooth muscle actin, lacked strong CD34 reactivity and were negative for nuclear STAT6 expression. RT-PCR analysis confirmed the absence of NAB2-STAT6 fusions in all cases. Conversely, both sinonasal SFTs (in males aged 39 and 52 years) displayed classical features of pleuropulmonary and soft-tissue SFTs (uniformly CD34-positive with strong nuclear expression of STAT6). RT-PCR revealed NAB2-STAT6 fusions in both cases. These findings confirm the molecular and phenotypical distinctness of these two entities. While SN-HPC is a site-specific sinonasal neoplasm of as yet unknown molecular pathogenesis, sinonasal SFTs show phenotypical and molecular identity to their pleural/extrapleural counterparts. © 2014 John Wiley & Sons Ltd.
Choi, Wonseon; Miyamura, Yoshinori; Wolber, Rainer; Smuda, Christoph; Reinhold, William; Liu, Hongfang; Kolbe, Ludger; Hearing, Vincent J.
2012-01-01
Ultraviolet (UV) radiation is a major environmental factor that affects pigmentation in human skin and can eventually result in various types of UV-induced skin cancers. The effects of various wavelengths of UV on melanocytes and other types of skin cells in culture have been studied but little is known about gene expression patterns in situ following in situe exposure of human skin to different types of UV (UVA and/or UVB). Paracrine factors expressed by keratinocytes and/or fibroblasts that affect skin pigmentation might be regulated differently by UV, as might their corresponding receptors expressed on melanocytes. To test the hypothesis that different mechanisms are involved in the pigmentary responses of the skin to different types of UV, we used immunohistochemical and whole human genome microarray analyses to characterize human skin in situ to examine how melanocyte-specific proteins and paracrine melanogenic factors are regulated by repetitive exposure to different types of UV compared with unexposed skin as a control. The results show that gene expression patterns induced by UVA or UVB are distinct, UVB eliciting dramatic increases in a large number of genes involved in pigmentation as well as in other cellular functions, while UVA had little or no effect on those. The expression patterns characterize the distinct responses of the skin to UVA or UVB, and identify several potential previously unidentified factors involved in UV-induced responses of human skin. PMID:20147966
Bordji, Karim; Becerril-Ortega, Javier; Nicole, Olivier; Buisson, Alain
2010-11-24
Calcium is a key mediator controlling essential neuronal functions depending on electrical activity. Altered neuronal calcium homeostasis affects metabolism of amyloid precursor protein (APP), leading to increased production of β-amyloid (Aβ), and contributing to the initiation of Alzheimer's disease (AD). A linkage between excessive glutamate receptor activation and neuronal Aβ release was established, and recent reports suggest that synaptic and extrasynaptic NMDA receptor (NMDAR) activation may have distinct consequences in plasticity, gene regulation, and neuronal death. Here, we report for the first time that prolonged activation of extrasynaptic NMDAR, but not synaptic NMDAR, dramatically increased the neuronal production of Aβ. This effect was preceded by a shift from APP695 to Kunitz protease inhibitory domain (KPI) containing APPs (KPI-APPs), isoforms exhibiting an important amyloidogenic potential. Conversely, after synaptic NMDAR activation, we failed to detect any KPI-APP expression and neuronal Aβ production was not modified. Calcium imaging data showed that intracellular calcium concentration after extrasynaptic NMDAR stimulation was lower than after synaptic activation. This suggests distinct signaling pathways for each pool of receptors. We found that modification of neuronal APP expression pattern triggered by extrasynaptic NMDAR activation was regulated at an alternative splicing level involving calcium-/calmodulin-dependent protein kinase IV, but overall APP expression remained identical. Finally, memantine dose-dependently inhibited extrasynaptic NMDAR-induced KPI-APPs expression as well as neuronal Aβ release. Altogether, these data suggest that a chronic activation of extrasynaptic NMDAR promotes amyloidogenic KPI-APP expression leading to neuronal Aβ release, representing a causal risk factor for developing AD.
Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.
Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang
2015-11-01
The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Hindi Attar, Catherine; Stein, Jenny; Poppinga, Sina; Fydrich, Thomas; Jaite, Charlotte; Kappel, Viola; Brunner, Romuald; Herpertz, Sabine C.; Boedeker, Katja; Bermpohl, Felix
2017-01-01
Background Maternal sensitive behavior depends on recognizing one’s own child’s affective states. The present study investigated distinct and overlapping neural responses of mothers to sad and happy facial expressions of their own child (in comparison to facial expressions of an unfamiliar child). Methods We used functional MRI to measure dissociable and overlapping activation patterns in 27 healthy mothers in response to happy, neutral and sad facial expressions of their own school-aged child and a gender- and age-matched unfamiliar child. To investigate differential activation to sad compared to happy faces of one’s own child, we used interaction contrasts. During the scan, mothers had to indicate the affect of the presented face. After scanning, they were asked to rate the perceived emotional arousal and valence levels for each face using a 7-point Likert-scale (adapted SAM version). Results While viewing their own child’s sad faces, mothers showed activation in the amygdala and anterior cingulate cortex whereas happy facial expressions of the own child elicited activation in the hippocampus. Conjoint activation in response to one’s own child happy and sad expressions was found in the insula and the superior temporal gyrus. Conclusions Maternal brain activations differed depending on the child’s affective state. Sad faces of the own child activated areas commonly associated with a threat detection network, whereas happy faces activated reward related brain areas. Overlapping activation was found in empathy related networks. These distinct neural activation patterns might facilitate sensitive maternal behavior. PMID:28806742
Howe, Elizabeth S; Clemente, Thomas E; Bass, Hank W
2012-06-01
Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.
Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D
2005-08-01
Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.
Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits
Yavorska, Iryna; Wehr, Michael
2016-01-01
Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM) inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons. PMID:27746722
Requirement for Lmo4 in the Vestibular Morphogenesis of Mouse Inner Ear
Deng, Min; Pan, Ling; Xie, Xiaoling; Gan, Lin
2009-01-01
During development, compartmentalization of an early embryonic structure produces blocks of cells with distinct properties and developmental potentials. The auditory and vestibular components of vertebrate inner ears are derived from defined compartments within the otocyst during embryogenesis. The vestibular apparatus, including three semicircular canals, saccule, utricle, and their associated sensory organs, detects angular and linear acceleration of the head and relays the information through vestibular neurons to vestibular nuclei in the brainstem. How the early developmental events manifest vestibular structures at the molecular level is largely unknown. Here, we show that LMO4, a LIM-domain-only transcriptional regulator, is required for the formation of semicircular canals and their associated sensory cristae. Targeted disruption of Lmo4 resulted in the dysmorphogenesis of the vestibule and in the absence of three semicircular canals, anterior and posterior cristae. In Lmo4-null otocysts, canal outpouches failed to form and cell proliferation was reduced in the dorsolateral region. Expression analysis of the known otic markers showed that Lmo4 is essential for the normal expression of Bmp4, Fgf10, Msx1, Isl1, Gata3, and Dlx5 in the dorsolateral domain of the otocyst, whereas the initial compartmentalization of the otocyst remains unaffected. Our results demonstrate that Lmo4 controls the development of the dorsolateral otocyst into semicircular canals and cristae through two distinct mechanisms: regulating the expression of otic specific genes and stimulating the proliferation of the dorsolateral part of the otocyst. PMID:19913004
Distinct molecular underpinnings of Drosophila olfactory trace conditioning
Shuai, Yichun; Hu, Ying; Qin, Hongtao; Campbell, Robert A. A.; Zhong, Yi
2011-01-01
Trace conditioning is valued as a simple experimental model to assess how the brain associates events that are discrete in time. Here, we adapted an olfactory trace conditioning procedure in Drosophila melanogaster by training fruit flies to avoid an odor that is followed by foot shock many seconds later. The molecular underpinnings of the learning are distinct from the well-characterized simultaneous conditioning, where odor and punishment temporally overlap. First, Rutabaga adenylyl cyclase (Rut-AC), a putative molecular coincidence detector vital for simultaneous conditioning, is dispensable in trace conditioning. Second, dominant-negative Rac expression, thought to sustain early labile memory, significantly enhances learning of trace conditioning, but leaves simultaneous conditioning unaffected. We further show that targeting Rac inhibition to the mushroom body (MB) but not the antennal lobe (AL) suffices to achieve the enhancement effect. Moreover, the absence of trace conditioning learning in D1 dopamine receptor mutants is rescued by restoration of expression specifically in the adult MB. These results suggest the MB as a crucial neuroanatomical locus for trace conditioning, which may harbor a Rac activity-sensitive olfactory “sensory buffer” that later converges with the punishment signal carried by dopamine signaling. The distinct molecular signature of trace conditioning revealed here shall contribute to the understanding of how the brain overcomes a temporal gap in potentially related events. PMID:22123966
Liu, Naiyou; Fair, Jeffrey Haskell; Shiue, Lily; Katzman, Sol; Donohue, John Paul
2017-01-01
Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer. PMID:29021242
2011-01-01
Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally different groups of proteins and interactions. We conclude that it is a useful and important measure to be used in concert with gene co-expression correlation for further insights into the characteristics of proteins in the context of their interaction network. PMID:22369639
Hodgkin's-like lymphoma in a ferret (Mustela putorius furo).
Matsumoto, Isao; Uchida, Kazuyuki; Chambers, James Kenn; Nibe, Kazumi; Sato, Yu; Hamasu, Taku; Nakayama, Hiroyuki
2017-10-07
A 7-year-old castrated male ferret developed unilateral cervical lymphadenomegaly over a 1-month period. Histological examination revealed proliferation of tumor cells in a diffuse and partially nodular pattern. The tumor cells were predominantly Hodgkin cells and binucleated Reed-Sternberg cells, characterized by abundant, clear, vacuolated cytoplasm, pleomorphic, ovoid nuclei with thick nuclear membranes and distinct nucleoli. Multinucleated cells, resembling lymphocytic and histiocytic (L&H) cells, were also observed. Immunohistochemically, the tumor cells expressed Pax-5, BLA-36 and vimentin. A small population of the tumor cells expressed CD20. This case showed proliferation of Hodgkin/Reed-Sternberg cells in conjunction with L&H cells that were histologically analogous to feline Hodgkin's-like lymphoma. However, Pax-5 and BLA-36 expression along with rare CD20 expression were consistent with classical Hodgkin's lymphoma in humans.
Leptin receptor mRNA in rat brain astrocytes
Hsuchou, Hung; Pan, Weihong; Barnes, Maria J.; Kastin, Abba J.
2009-01-01
We recently reported that mouse astrocytes express leptin receptors (ObR), and that obesity induces upregulation of astrocytic ObR. To provide further evidence of the importance of astrocytic ObR expression, we performed double-labeling fluorescent in-situ hybridization (FISH) and immunohistochemistry in the rat hypothalamus. Laser confocal microscopic image analysis showed that ObR mRNA was present in glial fibrillary acidic protein (+) cells that show distinctive astrocytic morphology as well as in neurons. In addition to the presence of ObR mRNA, ObR protein was shown in both astrocytes and neurons in the rat hypothalamus by double-labeling immunohistochemistry. In cultured rat C6 astrocytoma cells treated with different doses of lipopolysaccharide for 6 h, the mRNA for ObRa or ObRb did not show significant changes, as measured by quantitative RT-PCR. However, the protein expression of both ObRa and ObRb, determined by western blotting, was increased after the C6 cells were treated with either lipopolysaccharide or tumor necrosis factor-α. The results indicate that astrocytic ObR expression is present in rats as well as mice, and that it probably plays a role in the neuroinflammatory response. PMID:19747514
Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features
Fink, Elian; Heathers, James A. J.; de Rosnay, Marc
2015-01-01
Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (N study1 = 75; N study2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Yifeng; Li, Bin; Prakash, Divya
Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRsmore » reflects the diversity of electron carriers used in anaerobic metabolism« less
Breast cancer lung metastasis: Molecular biology and therapeutic implications.
Jin, Liting; Han, Bingchen; Siegel, Emily; Cui, Yukun; Giuliano, Armando; Cui, Xiaojiang
2018-03-26
Distant metastasis accounts for the vast majority of deaths in patients with cancer. Breast cancer exhibits a distinct metastatic pattern commonly involving bone, liver, lung, and brain. Breast cancer can be divided into different subtypes based on gene expression profiles, and different breast cancer subtypes show preference to distinct organ sites of metastasis. Luminal breast tumors tend to metastasize to bone while basal-like breast cancer (BLBC) displays a lung tropism of metastasis. However, the mechanisms underlying this organ-specific pattern of metastasis still remain to be elucidated. In this review, we will summarize the recent advances regarding the molecular signaling pathways as well as the therapeutic strategies for treating breast cancer lung metastasis.
Compound facial expressions of emotion: from basic research to clinical applications
Du, Shichuan; Martinez, Aleix M.
2015-01-01
Emotions are sometimes revealed through facial expressions. When these natural facial articulations involve the contraction of the same muscle groups in people of distinct cultural upbringings, this is taken as evidence of a biological origin of these emotions. While past research had identified facial expressions associated with a single internally felt category (eg, the facial expression of happiness when we feel joyful), we have recently studied facial expressions observed when people experience compound emotions (eg, the facial expression of happy surprise when we feel joyful in a surprised way, as, for example, at a surprise birthday party). Our research has identified 17 compound expressions consistently produced across cultures, suggesting that the number of facial expressions of emotion of biological origin is much larger than previously believed. The present paper provides an overview of these findings and shows evidence supporting the view that spontaneous expressions are produced using the same facial articulations previously identified in laboratory experiments. We also discuss the implications of our results in the study of psychopathologies, and consider several open research questions. PMID:26869845
Fazi, Barbara; Felsani, Armando; Grassi, Luigi; Moles, Anna; D'Andrea, Daniel; Toschi, Nicola; Sicari, Daria; De Bonis, Pasquale; Anile, Carmelo; Guerrisi, Maria Giovanna; Luca, Emilia; Farace, Maria Giulia; Maira, Giulio
2015-01-01
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor, driving patients to death within 15 months after diagnosis (short term survivors, ST), with the exception of a small fraction of patients (long term survivors, LT) surviving longer than 36 months. Here we present deep sequencing data showing that peritumoral (P) areas differ from healthy white matter, but share with their respective frankly tumoral (C) samples, a number of mRNAs and microRNAs representative of extracellular matrix remodeling, TGFβ and signaling, of the involvement of cell types different from tumor cells but contributing to tumor growth, such as microglia or reactive astrocytes. Moreover, we provide evidence about RNAs differentially expressed in ST vs LT samples, suggesting the contribution of TGF-β signaling in this distinction too. We also show that the edited form of miR-376c-3p is reduced in C vs P samples and in ST tumors compared to LT ones. As a whole, our study provides new insights into the still puzzling distinction between ST and LT tumors, and sheds new light onto that “grey” zone represented by the area surrounding the tumor, which we show to be characterized by the expression of several molecules shared with the proper tumor mass. PMID:26188123
Fazi, Barbara; Felsani, Armando; Grassi, Luigi; Moles, Anna; D'Andrea, Daniel; Toschi, Nicola; Sicari, Daria; De Bonis, Pasquale; Anile, Carmelo; Guerrisi, Maria Giovanna; Luca, Emilia; Farace, Maria Giulia; Maira, Giulio; Ciafré, Silvia Anna; Mangiola, Annunziato
2015-09-08
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor, driving patients to death within 15 months after diagnosis (short term survivors, ST), with the exception of a small fraction of patients (long term survivors, LT) surviving longer than 36 months. Here we present deep sequencing data showing that peritumoral (P) areas differ from healthy white matter, but share with their respective frankly tumoral (C) samples, a number of mRNAs and microRNAs representative of extracellular matrix remodeling, TGFβ and signaling, of the involvement of cell types different from tumor cells but contributing to tumor growth, such as microglia or reactive astrocytes. Moreover, we provide evidence about RNAs differentially expressed in ST vs LT samples, suggesting the contribution of TGF-β signaling in this distinction too. We also show that the edited form of miR-376c-3p is reduced in C vs P samples and in ST tumors compared to LT ones. As a whole, our study provides new insights into the still puzzling distinction between ST and LT tumors, and sheds new light onto that "grey" zone represented by the area surrounding the tumor, which we show to be characterized by the expression of several molecules shared with the proper tumor mass.
Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment
Ravanelli, Andrew M.; Appel, Bruce
2015-01-01
During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2+ cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis. PMID:26584621
Otto, Benjamin; Gruner, Katharina; Heinlein, Christina; Wegwitz, Florian; Nollau, Peter; Ylstra, Bauke; Pantel, Klaus; Schumacher, Udo; Baumbusch, Lars O; Martin-Subero, José Ignacio; Siebert, Reiner; Wagener, Christoph; Streichert, Thomas; Deppert, Wolfgang; Tolstonog, Genrich V
2013-03-15
Mammary carcinomas developing in SV40 transgenic WAP-T mice arise in two distinct histological phenotypes: as differentiated low-grade and undifferentiated high-grade tumors. We integrated different types of information such as histological grading, analysis of aCGH-based gene copy number and gene expression profiling to provide a comprehensive molecular description of mammary tumors in WAP-T mice. Applying a novel procedure for the correlation of gene copy number with gene expression on a global scale, we observed in tumor samples a global coherence between genotype and transcription. This coherence can be interpreted as a matched transcriptional regulation inherited from the cells of tumor origin and determined by the activity of cancer driver genes. Despite common recurrent genomic aberrations, e.g. gain of chr. 15 in most WAP-T tumors, loss of chr. 19 frequently occurs only in low-grade tumors. These tumors show features of "basal-like" epithelial differentiation, particularly expression of keratin 14. The high-grade tumors are clearly separated from the low-grade tumors by strong expression of the Met gene and by coexpression of epithelial (e.g. keratin 18) and mesenchymal (e.g. vimentin) markers. In high-grade tumors, the expression of the nonmutated Met protein is associated with Met-locus amplification and Met activity. The role of Met as a cancer driver gene is supported by the contribution of active Met signaling to motility and growth of mammary tumor-derived cells. Finally, we discuss the independent origin of low- and high-grade tumors from distinct cells of tumor origin, possibly luminal progenitors, distinguished by Met gene expression and Met signaling. Copyright © 2012 UICC.
Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P
2017-07-01
Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.
Cost, Hoa N.; Noratel, Elizabeth F.; Blumberg, Daphne D.
2013-01-01
The Dictyostelium discoideum ampA gene encodes a multifunctional regulator protein that modulates cell–cell and cell–substrate adhesions and actin polymerization during growth and is necessary for correct cell type specification and patterning during development. Insertional inactivation of the ampA gene results in defects that define two distinct roles for the ampA gene during development. AmpA is necessary in a non-cell autonomous manner to prevent premature expression of a prespore gene marker. It is also necessary in a cell autonomous manner for the anterior like cells, which express the ampA gene, to migrate to the upper cup during culmination. It is also necessary to prevent excessive cell–cell agglutination when cells are developed in a submerged suspension culture. Here, we demonstrate that a supernatant source of AmpA protein, added extracellularly, can prevent the premature mis-expression of the prespore marker. Synthetic oligopeptides are used to identify the domain of the AmpA protein that is important for preventing cells from mis-expressing the prespore gene. We further demonstrate that a factor capable of inducing additional cells to express the prespore gene marker accumulates extracellularly in the absence of AmpA protein. While the secreted AmpA acts extracellularly to suppress prespore gene expression, the effects of AmpA on cell agglutination and on actin polymerization in growing cells are not due to an extracellular role of secreted AmpA protein. Rather, these effects appear to reflect a distinct cell autonomous role of the ampA gene. Finally, we show that secretion of AmpA protein is brought about by elevating the levels of expression of ampA so that the protein accumulates to an excessive level. PMID:23911723
Watts, Annabelle M; West, Nicholas P; Cripps, Allan W; Smith, Pete K; Cox, Amanda J
2018-06-19
Investigations of gene expression in allergic rhinitis (AR) typically rely on invasive nasal biopsies (site of inflammation) or blood samples (systemic immunity) to obtain sufficient genetic material for analysis. New methodologies to circumvent the need for invasive sample collection offer promise to further the understanding of local immune mechanisms relevant in AR. A within-subject design was employed to compare immune gene expression profiles obtained from nasal washing/brushing and whole blood samples collected during peak pollen season. Twelve adults (age: 46.3 ± 12.3 years) with more than a 2-year history of AR and a confirmed grass pollen allergy participated in the study. Gene expression analysis was performed using a panel of 760 immune genes with the NanoString nCounter platform on nasal lavage/brushing cell lysates and compared to RNA extracted from blood. A total of 355 genes were significantly differentially expressed between sample types (9.87 to -9.71 log2 fold change). The top 3 genes significantly upregulated in nasal lysate samples were Mucin 1 (MUC1), Tight Junction Protein 1 (TJP1), and Lipocalin-2 (LCN2). The top 3 genes significantly upregulated in blood samples were cluster of differentiation 3e (CD3E), FYN Proto-Oncogene Src Family Tyrosine Kinase (FYN) and cluster of differentiation 3d (CD3D). Overall, the blood and nasal lavage samples showed vastly distinct gene expression profiles and functional gene pathways which reflect their anatomical and functional origins. Evaluating immune gene expression of the nasal mucosa in addition to blood samples may be beneficial in understanding AR pathophysiology and response to allergen challenge. © 2018 S. Karger AG, Basel.
Jin, Liang; Feng, Tao; Chai, Jing; Ghazalli, Nadiah; Gao, Dan; Zerda, Ricardo; Li, Zhuo; Hsu, Jasper; Mahdavi, Alborz; Tirrell, David A.; Riggs, Arthur D.; Ku, Hsun Teresa
2014-01-01
In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed “Dark” colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133+CD49flowCD107blow phenotype, while pancreatic CFU-Dark are CD133-. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth. PMID:25148366
Nakaoka, Hirofumi; Tajima, Atsushi; Yoneyama, Taku; Hosomichi, Kazuyoshi; Kasuya, Hidetoshi; Mizutani, Tohru; Inoue, Ituro
2014-08-01
The rupture of intracranial aneurysm (IA) causes subarachnoid hemorrhage associated with high morbidity and mortality. We compared gene expression profiles in aneurysmal domes between unruptured IAs and ruptured IAs (RIAs) to elucidate biological mechanisms predisposing to the rupture of IA. We determined gene expression levels of 8 RIAs, 5 unruptured IAs, and 10 superficial temporal arteries with the Agilent microarrays. To explore biological heterogeneity of IAs, we classified the samples into subgroups showing similar gene expression patterns, using clustering methods. The clustering analysis identified 4 groups: superficial temporal arteries and unruptured IAs were aggregated into their own clusters, whereas RIAs segregated into 2 distinct subgroups (early and late RIAs). Comparing gene expression levels between early RIAs and unruptured IAs, we identified 430 upregulated and 617 downregulated genes in early RIAs. The upregulated genes were associated with inflammatory and immune responses and phagocytosis including S100/calgranulin genes (S100A8, S100A9, and S100A12). The downregulated genes suggest mechanical weakness of aneurysm walls. The expressions of Krüppel-like family of transcription factors (KLF2, KLF12, and KLF15), which were anti-inflammatory regulators, and CDKN2A, which was located on chromosome 9p21 that was the most consistently replicated locus in genome-wide association studies of IA, were also downregulated. We demonstrate that gene expression patterns of RIAs were different according to the age of patients. The results suggest that macrophage-mediated inflammation is a key biological pathway for IA rupture. The identified genes can be good candidates for molecular markers of rupture-prone IAs and therapeutic targets. © 2014 American Heart Association, Inc.
Ren, Guomin; Lutz, Ian; Railton, Pamela; Wiley, J Preston; McAllister, Jenelle; Powell, James; Krawetz, Roman J
2018-02-05
Inflammation is associated with the onset and progression of osteoarthritis in multiple joints. It is well known that mechanical properties differ between different joints, however, it remains unknown if the inflammatory process is similar/distinct in patients with hip vs. knee OA. Without complete understanding of the role of any specific cytokine in the inflammatory process, understanding the 'profile' of inflammation in a given patient population is an essential starting point. The aim of this study was to identify serum cytokine profiles in hip Osteoarthritis (OA), and investigate the association between cytokine concentrations and clinical measurements within this patient population and compare these findings to knee OA and healthy control cohorts. In total, 250 serum samples (100 knee OA, 50 hip OA and 100 control) and 37 synovial fluid samples (8 knee OA, 14 hip OA and 15 control) were analyzed using a multiplex ELISA based approach. Synovial biopsies were also obtained and examined for specific cytokines. Pain, physical function and activity within the hip OA cohort were examined using the HOOS, SF-36, HHS and UCLA outcome measures. The three cohorts showed distinct serum cytokine profiles. EGF, FGF2, MCP3, MIP1α, and IL8 were differentially expressed between hip and knee OA cohorts; while FGF2, GRO, IL8, MCP1, and VEGF were differentially expressed between hip OA and control cohorts. Eotaxin, GRO, MCP1, MIP1β, VEGF were differentially expressed between knee OA and control cohorts. EGF, IL8, MCP1, MIP1β were differentially expressed in synovial fluid from a sub-set of patients from each cohort. Specifically within the hip OA cohort, IL-6, MDC and IP10 were associated with pain and were also found to be present in synovial fluid and synovial membrane (except IL-6) of patients with hip OA. OA may include different inflammatory subtypes according to affected joints and distinct inflammatory processes may drive OA in these joints. IL6, MDC and IP10 are associated with hip OA pain and these proteins may be able to provide additional information regarding pain in hip OA patients.
Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J
2013-05-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA
Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.
2013-01-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928
Xie, Rangjin; Dong, Cuicui; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang
2015-11-01
Small auxin-up RNA (SAUR) gene family is large, and the members of which can be rapidly induced by auxin and encode highly unstable mRNAs. SAUR genes are involved in various developmental and physiological processes, such as leaf senescence, fruitlet abscission, and hypocotyl development. However, their modes of action in citrus remain unknown. Hereby, a systematic analysis of SAUR gene family in citrus was conducted through a genome-wide search. In this study, a total of 70 SAUR genes, referred to as CitSAURs, have been identified in citrus. The evolutionary relationship and the intro-exon organization were analyzed, revealing strong gene conservation and the expansion of particular functional genes during plant evolution. Expression analysis showed that the major of CitSAUR genes were expressed in at least one tissue and showed distinctive expression levels, indicating the SAUR gene family play important roles in the development and growth of citrus organs. However, there were more than 20 CitSAUR genes such as CitSARU36, CitSAUR37, and CitSAUR54 exhibiting very low expression level in all tissue tested. Twenty-three out of 70 CitSAUR genes were responded to indole-3-acetic acid (IAA) treatment, of which just CitSAUR19 was down-regulated. Additionally, 14 CitSAUR genes exhibited distinct changes during fruitlet abscission, however just 5 of them including CitSAUR06, CitSAUR08, CitSAUR44, CitSAUR61, and CitSAUR64 were associated with fruitlet abscission. The current study provides basic information for the citrus SAUR gene family and will pave the way for deciphering the precise role of SAURs in citrus development and growth as well as fruitlet abscission.
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.
Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce
2013-01-01
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein. PMID:23825634
Liu, Xuan; Trakooljul, Nares; Hadlich, Frieder; Murani, Eduard; Wimmers, Klaus; Ponsuksili, Siriluck
2017-10-25
Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.
Chuang, Kai-Ting; Davis, Lianne C.; Al-Douri, Areej; Tynan, Patricia W.; Tunn, Ruth; Teboul, Lydia; Galione, Antony
2014-01-01
Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1XG716 and Tpcn1T159) and show expression of a novel evolutionarily conserved Tpcn1B transcript from an alternative promoter, raising important questions regarding the status of Tpcn1 expression in mice recently described to be Tpcn1 knockouts. We show that the transgenic Tpcn1T159 line lacks expression of both Tpcn1 isoforms in all tissues analyzed. Using mouse embryonic fibroblasts (MEFs) from Tpcn1−/− and Tpcn2−/− animals, we show that a lack of Tpcn1 or Tpcn2 expression has no significant impact on resting endo-lysosomal pH or morphology. However, differential effects in endo-lysosomal function were observed upon the loss of Tpcn1 or Tpcn2 expression; thus, while Tpcn1−/− MEFs have impaired trafficking of cholera toxin from the plasma membrane to the Golgi apparatus, Tpcn2−/− MEFs show slower kinetics of ligand-induced platelet-derived growth factor receptor β (PDGFRβ) degradation, which is dependent on trafficking to lysosomes. Our findings indicate that TPC1 and TPC2 have important but distinct roles in the endo-lysosomal pathway. PMID:25135478
Distinct anti-oncogenic effect of various microRNAs in different mouse models of liver cancer
Wu, Heng; Liu, Yan; Wang, XinWei; Calvisi, Diego F.; Song, Guisheng; Chen, Xin
2015-01-01
Deregulation of microRNAs (miRNAs) is a typical feature of human hepatocellular carcinoma (HCC). However, the in vivo relevance of miRNAs along hepatocarcinogenesis remains largely unknown. Here, we show that liver tumors induced in mice by c-Myc overexpression or AKT/Ras co-expression exhibit distinct miRNA expression profiles. Among the downregulated miRNAs, eight (miR-101, miR-107, miR-122, miR-29, miR-365, miR-375, miR-378, and miR-802) were selected and their tumor suppressor activity was determined by overexpressing each of them together with c-Myc or AKT/Ras oncogenes in mouse livers via hydrodynamic transfection. The tumor suppressor activity of these microRNAs was extremely heterogeneous in c-Myc and AKT/Ras mice: while miR-378 had no tumor suppressor activity, miR-107, mir-122, miR-29, miR-365 and miR-802 exhibited weak to moderate tumor suppressor potential. Noticeably, miR-375 showed limited antineoplastic activity against c-Myc driven tumorigenesis, whereas it strongly inhibited AKT/Ras induced hepatocarcinogenesis. Furthermore, miR-101 significantly suppressed both c-Myc and AKT/Ras liver tumor development. Altogether, the present data demonstrate that different oncogenes induce distinct miRNA patterns, whose modulation differently affects hepatocarcinogenesis depending on the driving oncogenes. Finally, our findings support a strong tumor suppressor activity of miR-101 in liver cancer models regardless of the driver oncogenes involved, thus representing a promising therapeutic target in human HCC. PMID:25762642
Accelerated recruitment of new brain development genes into the human genome.
Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan
2011-10-01
How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.
Differential expression of cysteine desulfurases in soybean
2011-01-01
Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression. PMID:22099069
Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior
Nautiyal, Katherine M; Wall, Melanie M; Wang, Shuai; Magalong, Valerie M; Ahmari, Susanne E; Balsam, Peter D; Blanco, Carlos; Hen, René
2017-01-01
Impulsivity is an endophenotype found in many psychiatric disorders including substance use disorders, pathological gambling, and attention deficit hyperactivity disorder. Two behavioral features often considered in impulsive behavior are behavioral inhibition (impulsive action) and delayed gratification (impulsive choice). However, the extent to which these behavioral constructs represent distinct facets of behavior with discrete biological bases is unclear. To test the hypothesis that impulsive action and impulsive choice represent statistically independent behavioral constructs in mice, we collected behavioral measures of impulsivity in a single cohort of mice using well-validated operant behavioral paradigms. Mice with manipulation of serotonin 1B receptor (5-HT1BR) expression were included as a model of disordered impulsivity. A factor analysis was used to characterize correlations between the measures of impulsivity and to identify covariates. Using two approaches, we dissociated impulsive action from impulsive choice. First, the absence of 5-HT1BRs caused increased impulsive action, but not impulsive choice. Second, based on an exploratory factor analysis, a two-factor model described the data well, with measures of impulsive action and choice separating into two independent factors. A multiple-indicator multiple-causes analysis showed that 5-HT1BR expression and sex were significant covariates of impulsivity. Males displayed increased impulsivity in both dimensions, whereas 5-HT1BR expression was a predictor of increased impulsive action only. These data support the conclusion that impulsive action and impulsive choice are distinct behavioral phenotypes with dissociable biological influences that can be modeled in mice. Our work may help inform better classification, diagnosis, and treatment of psychiatric disorders, which present with disordered impulsivity. PMID:27976680
Crosby, Lynn; Casey, Warren; Morgan, Kevin; Ni, Hong; Yoon, Lawrence; Easton, Marilyn; Misukonis, Mary; Burleson, Gary; Ghosh, Dipak K.
2010-01-01
Specific bacterial lipopolysaccharides (LPS), IFN-γ, and unmethylated cytosine or guanosine-phosphorothioate containing DNAs (CpG) activate host immunity, influencing infectious responses. Macrophages detect, inactivate and destroy infectious particles, and synthetic CpG sequences invoke similar responses of the innate immune system. Previously, murine macrophage J774 cells treated with CpG induced the expression of nitric oxide synthase 2 (NOS2) and cyclo-oxygenase 2 (COX2) mRNA and protein. In this study murine J774 macrophages were exposed to vehicle, interferon γ + lipopolysaccharide (IFN-g/LPS), non-CpG (SAK1), or two-CpG sequence-containing DNA (SAK2) for 0–18 hr and gene expression changes measured. A large number of immunostimulatory and inflammatory changes were observed. SAK2 was a stronger activator of TNFα- and chemokine expression-related changes than LPS/IFN-g. Up regulation included tumor necrosis factor receptor superfamily genes (TNFRSF’s), IL-1 receptor signaling via stress-activated protein kinase (SAPK), NF-κB activation, hemopoietic maturation factors and sonic hedgehog/wingless integration site (SHH/Wnt) pathway genes. Genes of the TGF-β pathway were down regulated. In contrast, LPS/IFN-g -treated cells showed increased levels for TGF-β signaling genes, which may be linked to the observed up regulation of numerous collagens and down regulation of Wnt pathway genes. SAK1 produced distinct changes from LPS/IFN-g or SAK2. Therefore, J774 macrophages recognize LPS/IFN-g, non-CpG DNA or two-CpG DNA-containing sequences as immunologically distinct. PMID:20097302
2011-01-01
Background Nestin-immunoreactive (nestin-ir) neurons have been identified in the medial septal/diagonal band complex (MS/DBB) of adult rat and human, but the significance of nestin expression in functional neurons is not clear. This study investigated electrophysiological properties and neurochemical phenotypes of nestin-expressing (nestin+) neurons using whole-cell recording combined with single-cell RT-PCR to explore the significance of nestin expression in functional MS/DBB neurons. The retrograde labelling and immunofluorescence were used to investigate the nestin+ neuron related circuit in the septo-hippocampal pathway. Results The results of single-cell RT-PCR showed that 87.5% (35/40) of nestin+ cells expressed choline acetyltransferase mRNA (ChAT+), only 44.3% (35/79) of ChAT+ cells expressed nestin mRNA. Furthermore, none of the nestin+ cells expressed glutamic acid decarboxylases 67 (GAD67) or vesicular glutamate transporters (VGLUT) mRNA. All of the recorded nestin+ cells were excitable and demonstrated slow-firing properties, which were distinctive from those of GAD67 or VGLUT mRNA-positive neurons. These results show that the MS/DBB cholinergic neurons could be divided into nestin-expressing cholinergic neurons (NEChs) and nestin non-expressing cholinergic neurons (NNChs). Interestingly, NEChs had higher excitability and received stronger spontaneous excitatory synaptic inputs than NNChs. Retrograde labelling combined with choline acetyltransferase and nestin immunofluorescence showed that both of the NEChs and NNChs projected to hippocampus. Conclusions These results suggest that there are two parallel cholinergic septo-hippocampal pathways that may have different functions. The significance of nestin expressing in functional neurons has been discussed. PMID:22185478
Mere social categorization modulates identification of facial expressions of emotion.
Young, Steven G; Hugenberg, Kurt
2010-12-01
The ability of the human face to communicate emotional states via facial expressions is well known, and past research has established the importance and universality of emotional facial expressions. However, recent evidence has revealed that facial expressions of emotion are most accurately recognized when the perceiver and expresser are from the same cultural ingroup. The current research builds on this literature and extends this work. Specifically, we find that mere social categorization, using a minimal-group paradigm, can create an ingroup emotion-identification advantage even when the culture of the target and perceiver is held constant. Follow-up experiments show that this effect is supported by differential motivation to process ingroup versus outgroup faces and that this motivational disparity leads to more configural processing of ingroup faces than of outgroup faces. Overall, the results point to distinct processing modes for ingroup and outgroup faces, resulting in differential identification accuracy for facial expressions of emotion. PsycINFO Database Record (c) 2010 APA, all rights reserved.
El Haj, Mohamad; Daoudi, Mohamed; Gallouj, Karim; Moustafa, Ahmed A; Nandrino, Jean-Louis
2018-05-11
Thanks to the current advances in the software analysis of facial expressions, there is a burgeoning interest in understanding emotional facial expressions observed during the retrieval of autobiographical memories. This review describes the research on facial expressions during autobiographical retrieval showing distinct emotional facial expressions according to the characteristics of retrieved memoires. More specifically, this research demonstrates that the retrieval of emotional memories can trigger corresponding emotional facial expressions (e.g. positive memories may trigger positive facial expressions). Also, this study demonstrates the variations of facial expressions according to specificity, self-relevance, or past versus future direction of memory construction. Besides linking research on facial expressions during autobiographical retrieval to cognitive and affective characteristics of autobiographical memory in general, this review positions this research within the broader context research on the physiologic characteristics of autobiographical retrieval. We also provide several perspectives for clinical studies to investigate facial expressions in populations with deficits in autobiographical memory (e.g. whether autobiographical overgenerality in neurologic and psychiatric populations may trigger few emotional facial expressions). In sum, this review paper demonstrates how the evaluation of facial expressions during autobiographical retrieval may help understand the functioning and dysfunctioning of autobiographical memory.
Wang, Jing-Jie; Bai, Wen-Wen; Zhou, Wei; Liu, Jing; Chen, Jie; Liu, Xiao-Yuan; Xiang, Ting-Ting; Liu, Ren-Hua; Wang, Wen-Hui; Zhang, Bao-Ling; Wan, Yong-Ji
2017-05-01
Beauveria bassiana is an important entomopathogenic fungus which not only widely distributes in the environment but also shows phenotypic diversity. However, the mechanism of pathogenic differences among natural B. bassiana strains has not been revealed at transcriptome-wide level. In the present study, in order to explore the mechanism, two B. bassiana strains with different pathogenicity were isolated from silkworms (Bombyx mori L.) and selected to analyze the gene expression of early stage by culturing on cuticle extracts of the silkworm and using RNA-sequencing technique. A total of 2108 up-regulated and 1115 down-regulated genes were identified in B. bassiana strain GXsk1011 (hyper-virulent strain) compared with B. bassiana strain GXtr1009 (hypo-virulent strain), respectively. The function categorization of differential expressed genes (DEGs) showed that most of them involved in metabolic process, biosynthesis of secondary metabolites, catalytic activity, and some involved in nutrition uptake, adhesion and host defense were also noted. Based on our data, distinct pathogenicity among different strains of B. bassiana may largely attribute to unique gene expression pattern which differed at very early infection process. Most of the genes involved in conidia adhesion, cuticle degradation and fungal growth were up-regulated in hyper-virulent B. bassiana strain GXsk1011. Furthermore, in combination with fungal growth analysis, our research provided a clue that fungal growth may also play an important role during early infection process. The results will help to explain why different B. bassiana strains show distinct pathogenicity on the same host even under same condition. Moreover, the transcriptome data were also useful for screening potential virulence factors. Copyright © 2017 Elsevier Inc. All rights reserved.
Actin expression in some Platyhelminthe species.
Fagotti, A; Panara, F; Di Rosa, I; Simoncelli, F; Gabbiani, G; Pascolini, R
1994-10-01
Actin expression in some Platyhelminthe species was demonstrated by western-blotting and immunocytochemical analysis using two distinct anti-actin antibodies: the anti-total actin that reacts against all actin isoforms of higher vertebrates and the anti-alpha SM-1 that recognizes the alpha-smooth muscle (alpha SM) isotype of endothermic vertebrates (Skalli et al., 1986). Western-blotting experiments showed that all species tested, including some free-living Platyhelminthes (Tricladida and Rhabdocoela) and the parasitic Fasciola hepatica, were stained by anti-total actin antibody while only Dugesidae and Dendrocoelidae showed a positive immunoreactivity against anti-alpha SM-1. These results were confirmed by cytochemical immunolocalization using both avidin biotin conjugated peroxidase reaction on paraffin sections, and immunogold staining on Lowicryl 4KM embedded specimens. Our findings may contribute to the understanding of Platyhelminthes phylogeny.
Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao
2012-03-01
High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.
Rauchbauer, Birgit; Majdandžić, Jasminka; Hummer, Allan; Windischberger, Christian; Lamm, Claus
2015-09-01
People often spontaneously engage in copying each other's postures and mannerisms, a phenomenon referred to as behavioral mimicry. Social psychology experiments indicate that mimicry denotes an implicit affiliative signal flexibly regulated in response to social requirements. Yet, the mediating processes and neural underpinnings of such regulation are largely unexplored. The present functional magnetic resonance imaging (fMRI) study examined mimicry regulation by combining an automatic imitation task with facial stimuli, varied on two social-affective dimensions: emotional expression (angry vs happy) and ethnic group membership (in- vs out-group). Behavioral data revealed increased mimicry when happy and when out-group faces were shown. Imaging results revealed that mimicry regulation in response to happy faces was associated with increased activation in the right temporo-parietal junction (TPJ), right dorsal premotor cortex (dPMC), and right superior parietal lobule (SPL). Mimicry regulation in response to out-group faces was related to increased activation in the left ventral premotor cortex (vPMC) and inferior parietal lobule (IPL), bilateral anterior insula, and mid-cingulate cortex (MCC). We suggest that mimicry in response to happy and to out-group faces is driven by distinct affiliative goals, and that mimicry regulation to attain these goals is mediated by distinct neuro-cognitive processes. Higher mimicry in response to happy faces seems to denote reciprocation of an affiliative signal. Higher mimicry in response to out-group faces, reflects an appeasement attempt towards an interaction partner perceived as threatening (an interpretation supported by implicit measures showing that out-group members are more strongly associated with threat). Our findings show that subtle social cues can result in the implicit regulation of mimicry. This regulation serves to achieve distinct affiliative goals, is mediated by different regulatory processes, and relies on distinct parts of an overarching network of task-related brain areas. Our findings shed new light on the neural mechanisms underlying the interplay between implicit action control and social cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Williamson, Sally M.; Robertson, Alan P.; Brown, Laurence; Williams, Tracey; Woods, Debra J.; Martin, Richard J.; Sattelle, David B.; Wolstenholme, Adrian J.
2009-01-01
Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect ∼1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs) on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5∶1 (Asu-unc-38∶Asu-unc-29), nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1∶5 Asu-unc-38∶Asu-unc-29), levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the development of parasite-specific screens for future anthelmintics. PMID:19609360
Genome-Wide Analysis Reveals the Unique Stem Cell Identity of Human Amniocytes
Maguire, Colin T.; Demarest, Bradley L.; Hill, Jonathon T.; Palmer, James D.; Brothman, Arthur R.; Yost, H. Joseph; Condic, Maureen L.
2013-01-01
Human amniotic fluid contains cells that potentially have important stem cell characteristics, yet the programs controlling their developmental potency are unclear. Here, we provide evidence that amniocytes derived from multiple patients are marked by heterogeneity and variability in expression levels of pluripotency markers. Clonal analysis from multiple patients indicates that amniocytes have large pools of self-renewing cells that have an inherent property to give rise to a distinct amniocyte phenotype with a heterogeneity of pluripotent markers. Significant to their therapeutic potential, genome-wide profiles are distinct at different gestational ages and times in culture, but do not differ between genders. Based on hierarchical clustering and differential expression analyses of the entire transcriptome, amniocytes express canonical regulators associated with pluripotency and stem cell repression. Their profiles are distinct from human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), and newborn foreskin fibroblasts. Amniocytes have a complex molecular signature, coexpressing trophoblastic, ectodermal, mesodermal, and endodermal cell-type-specific regulators. In contrast to the current view of the ground state of stem cells, ESCs and iPSCs also express high levels of a wide range of cell-type-specific regulators. The coexpression of multilineage differentiation markers combined with the strong expression of a subset of ES cell repressors in amniocytes suggests that these cells have a distinct phenotype that is unlike any other known cell-type or lineage. PMID:23326421
Conditioned associations and economic decision biases.
Guitart-Masip, Marc; Talmi, Deborah; Dolan, Ray
2010-10-15
Humans show substantial deviation from rationality during economic decision making under uncertainty. A computational perspective suggests these deviations arise out of an interaction between distinct valuation systems in the brain. Here, we provide behavioural data showing that the incidental presentation of aversive and appetitive conditioned stimuli can alter subjects' preferences in an economic task, involving a choice between a safe or gamble option. These behavioural effects informed a model-based analysis of a functional magnetic resonance imaging (fMRI) experiment, involving an identical paradigm, where we demonstrate that this conditioned behavioral bias engages the amygdala, a brain structure associated with acquisition and expression of conditioned associations. Our findings suggest that a well known bias in human economic choice can arise from an influence of conditioned associations on goal-directed decision making, consistent with an architecture of choice that invokes distinct decision-making systems. Copyright 2010 Elsevier Inc. All rights reserved.
Hedging Your Bets by Learning Reward Correlations in the Human Brain
Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.
2011-01-01
Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609
Gao, Fan-Xiang; Wang, Yang; Zhang, Qi-Ya; Mou, Cheng-Yan; Li, Zhi; Deng, Yuan-Sheng; Zhou, Li; Gui, Jian-Fang
2017-07-24
Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A + , candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A + , F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as "chemokine signaling pathway", "Toll-like receptor signaling pathway" and others, were remarkably much more than those from clone A + and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A + . In contrast to strong immune defense in resistant clone H, susceptible clone A + showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A + failed to resist virus offensive and evidently induced apoptosis or death. Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp.
Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur.
Sineva, Elena; Shadrin, Andrey; Rodikova, Ekaterina A; Andreeva-Kovalevskaya, Zhanna I; Protsenko, Alexey S; Mayorov, Sergey G; Galaktionova, Darya Yu; Magelky, Erica; Solonin, Alexander S
2012-07-01
The capacity of pathogens to respond to environmental signals, such as iron concentration, is key to bacterial survival and establishment of a successful infection. Bacillus cereus is a widely distributed bacterium with distinct pathogenic properties. Hemolysin II (HlyII) is one of its pore-forming cytotoxins and has been shown to be involved in bacterial pathogenicity in a number of cell and animal models. Unlike many other B. cereus pathogenicity factors, HlyII is not regulated by pleiotropic transcriptional regulator PlcR but is controlled by its own regulator, HlyIIR. Using a combination of in vivo and in vitro techniques, we show that hlyII expression is also negatively regulated by iron by the global regulator Fur via direct interaction with the hlyII promoter. DNase I footprinting and in vitro transcription experiments indicate that Fur prevents RNA polymerase binding to the hlyII promoter. HlyII expression profiles demonstrate that both HlyIIR and Fur regulate HlyII expression in a concerted fashion, with the effect of Fur being maximal in the early stages of bacterial growth. In sum, these results show that Fur serves as a transcriptional repressor for hlyII expression.
Broholm, Suvi K.; Tähtiharju, Sari
2016-01-01
The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. PMID:27382139
Fonseca-Alves, Carlos Eduardo; Kobayashi, Priscila Emiko; Rivera Calderón, Luis Gabriel; Felisbino, Sérgio Luis; Rinaldi, Jaqueline de Carvalho; Drigo, Sandra Aparecida; Rogatto, Silvia Regina; Laufer-Amorim, Renée
2018-01-01
An unusual variant of prostate adenocarcinoma (PC) expressing nuclear p63 in secretory cells instead of the typical basal expression has been reported in men. Nevertheless, the biological behavior and clinical significance of this phenomenon is unknown. In dogs, this unusual PC subtype has not been described. In this study, p63 immunoexpression was investigated in 90 canine PCs and 20 normal prostate tissues (NT). The p63 expression pattern in luminal or basal cells was confirmed in a selected group of 26 PCs and 20 NT by immunohistochemistry and/or Western blotting assays. Eleven canine PC samples aberrantly expressing p63 (p63+) in secretory cells were compared with 15 p63 negative (p63-) cases in the context of several molecular markers (high molecular weight cytokeratin-HMWC, CK8/18, CK5, AR, PSA, chromogranin, NKX3.1, PTEN, AKT and C-MYC). P63+ samples were positive for CK5, HMWC and CK8/18 and negative for PSA, NKX3.1, PTEN and chromogranin. Five p63+ PCs were negative for AR, and the remaining six samples had low AR expression. In contrast, p63- PC showed AR and PSA positive expression in all 15 samples. Only five p63- PCs were positive for CK5. Both p63+ and p63- PC samples showed higher cytoplasmic AKT expression and nuclear C-MYC staining in comparison with normal tissues. Metastatic (N = 12) and non-metastatic (N = 14) PCs showed similar immunoexpression for all markers tested. In contrast to human PC, canine PC aberrantly expressing p63 showed higher expression levels of HMWC and CK5 and lower levels of NKX3.1. Canine p63+ PC is a very rare PC group showing a distinct phenotype compared to typical canine PC, including AR and PSA negative expression. Although in a limited number of cases, p63 expression was not associated with metastasis in canine PC, and cytoplasmic p63 expression was observed in animals with shorter survival time, similar to human PC cases.
Adrenocortical Expression Profiling of Cattle with Distinct Juvenile Temperament Types.
Friedrich, Juliane; Brand, Bodo; Graunke, Katharina Luise; Langbein, Jan; Schwerin, Manfred; Ponsuksili, Siriluck
2017-01-01
Temperament affects ease of handling, animal welfare, and economically important production traits in cattle. The use of gene expression profiles as molecular traits provides a novel means of gaining insight into behavioural genetics. In this study, differences in adrenocortical expression profiles between 60 F 2 cows (Charolais × German Holstein) of distinct temperament types were analysed. The cows were assessed in a novel-human test at an age of 90 days. Most of the adrenal cortex transcripts which were differentially expressed (FDR <0.05) were found between temperament types of 'fearful/neophobic-alert' and all other temperament types. These transcripts belong to several biological functions like NRF2-mediated oxidative stress response, Glucocorticoid Receptor Signalling and Complement System. Overall, the present study provides new insight into transcriptional differences in the adrenal cortex between cows of distinct temperament types. Genetic regulations of such molecular traits facilitate uncovering positional and functional gene candidates for temperament type in cattle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, M; Craft, D
Purpose: To develop an efficient, pathway-based classification system using network biology statistics to assist in patient-specific response predictions to radiation and drug therapies across multiple cancer types. Methods: We developed PICS (Pathway Informed Classification System), a novel two-step cancer classification algorithm. In PICS, a matrix m of mRNA expression values for a patient cohort is collapsed into a matrix p of biological pathways. The entries of p, which we term pathway scores, are obtained from either principal component analysis (PCA), normal tissue centroid (NTC), or gene expression deviation (GED). The pathway score matrix is clustered using both k-means and hierarchicalmore » clustering, and a clustering is judged by how well it groups patients into distinct survival classes. The most effective pathway scoring/clustering combination, per clustering p-value, thus generates various ‘signatures’ for conventional and functional cancer classification. Results: PICS successfully regularized large dimension gene data, separated normal and cancerous tissues, and clustered a large patient cohort spanning six cancer types. Furthermore, PICS clustered patient cohorts into distinct, statistically-significant survival groups. For a suboptimally-debulked ovarian cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00127) showed significant improvement over that of a prior gene expression-classified study (p = .0179). For a pancreatic cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00141) showed significant improvement over that of a prior gene expression-classified study (p = .04). Pathway-based classification confirmed biomarkers for the pyrimidine, WNT-signaling, glycerophosphoglycerol, beta-alanine, and panthothenic acid pathways for ovarian cancer. Despite its robust nature, PICS requires significantly less run time than current pathway scoring methods. Conclusion: This work validates the PICS method to improve cancer classification using biological pathways. Patients are classified with greater specificity and physiological relevance as compared to current gene-specific approaches. Focus now moves to utilizing PICS for pan-cancer patient-specific treatment response prediction.« less
Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana
Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O’Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June
2015-01-01
In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as ‘Sister of PIN1’ (denoted AtqSoPIN1). Quantitative real-time reverse transcription–PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation. PMID:25911746
TLR9 ligation in pancreatic stellate cells promotes tumorigenesis
Zambirinis, Constantinos P.; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H.; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D.; Tuveson, David
2015-01-01
Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. PMID:26481685
TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.
Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George
2015-11-16
Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. © 2015 Zambirinis et al.
A closer look at cross-validation for assessing the accuracy of gene regulatory networks and models.
Tabe-Bordbar, Shayan; Emad, Amin; Zhao, Sihai Dave; Sinha, Saurabh
2018-04-26
Cross-validation (CV) is a technique to assess the generalizability of a model to unseen data. This technique relies on assumptions that may not be satisfied when studying genomics datasets. For example, random CV (RCV) assumes that a randomly selected set of samples, the test set, well represents unseen data. This assumption doesn't hold true where samples are obtained from different experimental conditions, and the goal is to learn regulatory relationships among the genes that generalize beyond the observed conditions. In this study, we investigated how the CV procedure affects the assessment of supervised learning methods used to learn gene regulatory networks (or in other applications). We compared the performance of a regression-based method for gene expression prediction estimated using RCV with that estimated using a clustering-based CV (CCV) procedure. Our analysis illustrates that RCV can produce over-optimistic estimates of the model's generalizability compared to CCV. Next, we defined the 'distinctness' of test set from training set and showed that this measure is predictive of performance of the regression method. Finally, we introduced a simulated annealing method to construct partitions with gradually increasing distinctness and showed that performance of different gene expression prediction methods can be better evaluated using this method.
Di Sante, Laura; Pugnaloni, Armanda; Biavasco, Francesca; Giovanetti, Eleonora; Vignaroli, Carla
2018-05-01
The multicellular behavior designated "red dry and rough" (rdar) morphotype-characterized by production of extracellular matrix mainly comprising curli fimbriae and cellulose-is a potential survival strategy of Escherichia coli outside the host. This study documents the ability of Escherichia cryptic clades, which have recently been recognized as new lineages genetically divergent from E. coli, to grow in unfavorable conditions through expression of distinct phenotypes. Growth under low-temperature and nutrient-poor conditions induced the rdar morphotype in all cryptic clade strains tested, especially after preincubation in broth supplemented with uracil. Such phenotypic response to harsh growth conditions was clearly detected by transmission and scanning electron microscopy, which showed that bacteria were encased in a fibrous matrix. Conversely, cells incubated in rich medium at 37 °C showed no matrix. Uracil enhanced the biosynthesis of matrix components, fostering biofilm production and strain adhesion to abiotic surfaces, as demonstrated by the increase of strong biofilm producers in biofilm assays. Harsh growth conditions also induced catalase activity, resulting in clade strain resistance to hydrogen peroxide oxidative stress. The present findings further support the 'environmental hypothesis' whereby cryptic clades would be able to persist in natural habitats outside the host through the expression of distinct survival phenotypes. Copyright © 2018 Elsevier GmbH. All rights reserved.
Role of IKK-alpha in EGFR Signaling Regulation
2013-09-01
correlated with IKKα expression using CCLE. Nonsupervised hierarchical clustering analysis was performed based on Erbb2, ERα ( ESR1 ), PR (PgR...signature (ERBB2, ESR1 , and PGR) genes. A subset of 4 genes showing distinct expression pattern in TNBC versus non-TNBC cell lines is shown in the...AKT2 AKT3 CDH1 MYB CDH2 VIM ERBB2 ESR1 PGR H C C 11 87 C A L- 85 -1 H C C 11 43 H D Q -P 1 C A L- 51 H C C 38 H C C 21 57 C A L- 12 0 B T- 54 9 H C C
RNA splicing regulates the temporal order of TNF-induced gene expression.
Hao, Shengli; Baltimore, David
2013-07-16
When cells are induced to express inflammatory genes by treatment with TNF, the mRNAs for the induced genes appear in three distinct waves, defining gene groups I, II, and III, or early, intermediate, and late genes. To examine the basis for these different kinetic classes, we have developed a PCR-based procedure to distinguish pre-mRNAs from mRNAs. It shows that the three groups initiate transcription virtually simultaneously but that delays in splicing characterize groups II and III. We also examined the elongation times, concluding that pre-mRNA synthesis is coordinate but splicing differences directly regulate the timing of mRNA production.
Liu, Huaxiang; Lu, Jing; He, Yong; Yuan, Bin; Li, Yizhao; Li, Xingfu
2014-03-01
Dideoxycytidine (zalcitabine, ddC) produces neurotoxic effects. It is particularly important to understand the toxic effects of ddC on different subpopulations of dorsal root ganglion (DRG) neurons which express distinct tyrosine kinase receptor (Trk) and to find therapeutic factors for prevention and therapy for ddC-induced peripheral sensory neuropathy. Insulin-like growth factor-1 (IGF-1) has been shown to have neurotrophic effects on DRG sensory neurons. However, little is known about the effects of ddC on distinct Trk (TrkA, TrkB, and TrkC) expression in DRG neurons and the neuroprotective effects of IGF-1 on ddC-induced neurotoxicity. Here, we have tested the extent to which the expression of TrkA, TrkB, and TrkC receptors in primary cultured DRG neurons is affected by ddC in the presence or absence of IGF-1. In this experiment, we found that exposure of 5, 25, and 50 μmol/L ddC caused a dose-dependent decrease of the mRNA, protein, and the proportion of TrkA-, TrkB-, and TrkC-expressing neurons. IGF-1 (20 nmol/L) could partially reverse the decrease of TrkA and TrkB, but not TrkC, expression with ddC exposure. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (10 μmol/L) blocked the effects of IGF-1. These results suggested that the subpopulations of DRG neurons which express distinct TrkA, TrkB, and TrkC receptors were affected by ddC exposure. IGF-1 might relieve the ddC-induced toxicity of TrkA- and TrkB-, but not TrkC-expressing DRG neurons. These data offer new clues for a better understanding of the association of ddC with distinct Trk receptor expression and provide new evidence of the potential therapeutic role of IGF-1 on ddC-induced neurotoxicity.
Unraveling flp-11/flp-32 dichotomy in nematodes.
Atkinson, Louise E; Miskelly, Iain R; Moffett, Christy L; McCoy, Ciaran J; Maule, Aaron G; Marks, Nikki J; Mousley, Angela
2016-10-01
FMRFamide-like peptide (FLP) signalling systems are core to nematode neuromuscular function. Novel drug discovery efforts associated with nematode FLP/FLP receptor biology are advanced through the accumulation of basic biological data that can reveal subtle complexities within the neuropeptidergic system. This study reports the characterisation of FMRFamide-like peptide encoding gene-11 (flp-11) and FMRFamide-like peptide encoding gene-32 (flp-32), two distinct flp genes which encode the analogous peptide, AMRN(A/S)LVRFamide, in multiple nematode species - the only known example of this phenomenon within the FLPergic system of nematodes. Using bioinformatics, in situ hybridisation, immunocytochemistry and behavioural assays we show that: (i) flp-11 and -32 are distinct flp genes expressed individually or in tandem across multiple nematode species, where they encode a highly similar peptide; (ii) flp-11 does not appear to be the most widely expressed flp in Caenorhabditis elegans; (iii) in species expressing both flp-11 and flp-32, flp-11 displays a conserved, restricted expression pattern across nematode clades and lifestyles; (iv) in species expressing both flp-11 and flp-32, flp-32 expression is more widespread and less conserved than flp-11; (v) in species expressing only flp-11, the flp-11 expression profile is more similar to the flp-32 profile observed in species expressing both; and (vi) FLP-11 peptides inhibit motor function in multiple nematode species. The biological significance and evolutionary origin of flp-11 and -32 peptide duplication remains unclear despite attempts to identify a common ancestor; this may become clearer as the availability of genomic data improves. This work provides insight into the complexity of the neuropeptidergic system in nematodes, and begins to examine how nematodes may compensate for structural neuronal simplicity. From a parasite control standpoint, this work underscores the importance of basic biological data, and has wider implications for the utility of C. elegans as a model for parasite neurobiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Characterization of zebrafish dysferlin by morpholino knockdown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawahara, Genri; Serafini, Peter R.; Myers, Jennifer A.
2011-09-23
Highlights: {yields} cDNAs of zebrafish dysferlin were cloned (6.3 kb). {yields} The dysferlin expression was detected in skeletal muscle, heart and eye. {yields} Injection of antisense morpholinos to dysferlin caused marked muscle disorganization. {yields} Zebrafish dysferlin expression may be involved in stabilizing muscle structures. -- Abstract: Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafishmore » dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11 h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, {beta}-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.« less
Hu, Shimin; Xu-Monette, Zijun Y.; Balasubramanyam, Aarthi; Manyam, Ganiraju C.; Visco, Carlo; Tzankov, Alexander; Liu, Wei-min; Miranda, Roberto N.; Zhang, Li; Montes-Moreno, Santiago; Dybkær, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W. L.; Han van Krieken, J.; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés J. M.; Zhao, Xiaoying; Winter, Jane N.; Zhang, Mingzhi; Li, Ling; Møller, Michael B.; Piris, Miguel A.; Li, Yong; Go, Ronald S.; Wu, Lin; Medeiros, L. Jeffrey; Young, Ken H.
2013-01-01
CD30, originally identified as a cell-surface marker of Reed-Sternberg and Hodgkin cells of classical Hodgkin lymphoma, is also expressed by several types of non-Hodgkin lymphoma, including a subset of diffuse large B-cell lymphoma (DLBCL). However, the prognostic and biological importance of CD30 expression in DLBCL is unknown. Here we report that CD30 expression is a favorable prognostic factor in a cohort of 903 de novo DLBCL patients. CD30 was expressed in ∼14% of DLBCL patients. Patients with CD30+ DLBCL had superior 5-year overall survival (CD30+, 79% vs CD30–, 59%; P = .001) and progression-free survival (P = .003). The favorable outcome of CD30 expression was maintained in both the germinal center B-cell and activated B-cell subtypes. Gene expression profiling revealed the upregulation of genes encoding negative regulators of nuclear factor κB activation and lymphocyte survival, and downregulation of genes encoding B-cell receptor signaling and proliferation, as well as prominent cytokine and stromal signatures in CD30+ DLBCL patients, suggesting a distinct molecular basis for its favorable outcome. Given the superior prognostic value, unique gene expression signature, and significant value of CD30 as a therapeutic target for brentuximab vedotin in ongoing successful clinical trials, it seems appropriate to consider CD30+ DLBCL as a distinct subgroup of DLBCL. PMID:23343832
Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice.
Shen, Rongxin; Wang, Lan; Liu, Xupeng; Wu, Jiang; Jin, Weiwei; Zhao, Xiucai; Xie, Xianrong; Zhu, Qinlong; Tang, Huiwu; Li, Qing; Chen, Letian; Liu, Yao-Guang
2017-11-03
Hybrids between divergent populations commonly show hybrid sterility; this reproductive barrier hinders hybrid breeding of the japonica and indica rice (Oryza sativa L.) subspecies. Here we show that structural changes and copy number variation at the Sc locus confer japonica-indica hybrid male sterility. The japonica allele, Sc-j, contains a pollen-essential gene encoding a DUF1618-domain protein; the indica allele, Sc-i, contains two or three tandem-duplicated ~ 28-kb segments, each carrying an Sc-j-homolog with a distinct promoter. In Sc-j/Sc-i hybrids, the high-expression of Sc-i in sporophytic cells causes suppression of Sc-j expression in pollen and selective abortion of Sc-j-pollen, leading to transmission ratio distortion. Knocking out one or two of the three Sc-i copies by CRISPR/Cas9 rescues Sc-j expression and male fertility. Our results reveal the gene dosage-dependent allelic suppression as a mechanism of hybrid incompatibility, and provide an effective approach to overcome the reproductive barrier for hybrid breeding.
Alexander, Matthew R; Murgai, Meera; Moehle, Christopher W; Owens, Gary K
2012-04-02
Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.
Gene expression links functional networks across cortex and striatum.
Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J
2018-04-12
The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.
Proteogenomic characterization of human colon and rectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bing; Wang, Jing; Wang, Xiaojing
2014-09-18
We analyzed proteomes of colon and rectal tumors previously characterized by the Cancer Genome Atlas (TCGA) and performed integrated proteogenomic analyses. Protein sequence variants encoded by somatic genomic variations displayed reduced expression compared to protein variants encoded by germline variations. mRNA transcript abundance did not reliably predict protein expression differences between tumors. Proteomics identified five protein expression subtypes, two of which were associated with the TCGA "MSI/CIMP" transcriptional subtype, but had distinct mutation and methylation patterns and associated with different clinical outcomes. Although CNAs showed strong cis- and trans-effects on mRNA expression, relatively few of these extend to the proteinmore » level. Thus, proteomics data enabled prioritization of candidate driver genes. Our analyses identified HNF4A, a novel candidate driver gene in tumors with chromosome 20q amplifications. Integrated proteogenomic analysis provides functional context to interpret genomic abnormalities and affords novel insights into cancer biology.« less
Recognizing emotion in faces: developmental effects of child abuse and neglect.
Pollak, Seth D; Cicchetti, Dante; Hornung, Katherine; Reed, Alex
2000-09-01
The contributions to the recognition of emotional signals of (a) experience and learning versus (b) internal predispositions are difficult to investigate because children are virtually always exposed to complex emotional experiences from birth. The recognition of emotion among physically abused and physically neglected preschoolers was assessed in order to examine the effects of atypical experience on emotional development. In Experiment 1, children matched a facial expression to an emotional situation. Neglected children had more difficulty discriminating emotional expressions than did control or physically abused children. Physically abused children displayed a response bias for angry facial expressions. In Experiment 2, children rated the similarity of facial expressions. Control children viewed discrete emotions as dissimilar, neglected children saw fewer distinctions between emotions, and physically abused children showed the most variance across emotions. These results suggest that to the extent that children's experience with the world varies, so too will their interpretation and understanding of emotional signals.
Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues.
Giannoulia, K; Haralampidis, K; Poghosyan, Z; Murphy, D J; Hatzopoulos, P
2000-12-01
Fatty acids are accumulated in triacylglycerols (TAGs), in specialized organelles of seeds named oil bodies. The major site of TAG accumulation is detected in developing seed and mesocarp of certain species. We have isolated two cDNAs encoding DGAT enzymes from olives. The deduced polypeptides differ by 26 amino acids in size. However, they have high homology and almost identical hydropathy profiles. The DGAT gene is expressed in all tissues that synthesize TAGs. However, higher levels of DGAT transcripts have been detected in seed tissues of developing olive drupe. DGAT expression and mRNA accumulation in drupe tissues is developmentally regulated. Each DGAT transcript shows a distinct profile of accumulation. The existence of two different DGAT transcripts might reflect two different enzymes with discrete function and/or localization.
Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian
2016-03-07
The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.
A Neuroanatomical Signature for Schizophrenia Across Different Ethnic Groups.
Gong, Qiyong; Dazzan, Paola; Scarpazza, Cristina; Kasai, Kyioto; Hu, Xinyu; Marques, Tiago R; Iwashiro, Norichika; Huang, Xiaoqi; Murray, Robin M; Koike, Shinsuke; David, Anthony S; Yamasue, Hidenori; Lui, Su; Mechelli, Andrea
2015-11-01
Schizophrenia is a disabling clinical syndrome found across the world. While the incidence and clinical expression of this illness are strongly influenced by ethnic factors, it is unclear whether patients from different ethnicities show distinct brain deficits. In this multicentre study, we used structural Magnetic Resonance Imaging to investigate neuroanatomy in 126 patients with first episode schizophrenia who came from 4 ethnically distinct cohorts (White Caucasians, African-Caribbeans, Japanese, and Chinese). Each patient was individually matched with a healthy control of the same ethnicity, gender, and age (±1 year). We report a reduction in the gray matter volume of the right anterior insula in patients relative to controls (P < .05 corrected); this reduction was detected in all 4 ethnic groups despite differences in psychopathology, exposure to antipsychotic medication and image acquisition sequence. This finding provides evidence for a neuroanatomical signature of schizophrenia expressed above and beyond ethnic variations in incidence and clinical expression. In light of the existing literature, implicating the right anterior insula in bipolar disorder, depression, addiction, obsessive-compulsive disorder, and anxiety, we speculate that the neuroanatomical deficit reported here may represent a transdiagnostic feature of Axis I disorders. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.
Boesmans, Werend; Lasrado, Reena; Vanden Berghe, Pieter; Pachnis, Vassilis
2015-02-01
Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease. © 2014 Wiley Periodicals, Inc.
Horsfield, Julia A.; Print, Cristin G.; Mönnich, Maren
2012-01-01
The multi-subunit protein complex, cohesin, is responsible for sister chromatid cohesion during cell division. The interaction of cohesin with DNA is controlled by a number of additional regulatory proteins. Mutations in cohesin, or its regulators, cause a spectrum of human developmental syndromes known as the “cohesinopathies.” Cohesinopathy disorders include Cornelia de Lange Syndrome and Roberts Syndrome. The discovery of novel roles for chromatid cohesion proteins in regulating gene expression led to the idea that cohesinopathies are caused by dysregulation of multiple genes downstream of mutations in cohesion proteins. Consistent with this idea, Drosophila, mouse, and zebrafish cohesinopathy models all show altered expression of developmental genes. However, there appears to be incomplete overlap among dysregulated genes downstream of mutations in different components of the cohesion apparatus. This is surprising because mutations in all cohesion proteins would be predicted to affect cohesin’s roles in cell division and gene expression in similar ways. Here we review the differences and similarities between genetic pathways downstream of components of the cohesion apparatus, and discuss how such differences might arise, and contribute to the spectrum of cohesinopathy disorders. We propose that mutations in different elements of the cohesion apparatus have distinct developmental outcomes that can be explained by sometimes subtly different molecular effects. PMID:22988450
Alternative splicing and promoter use in TFII-I genes.
Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg
2009-03-15
TFII-I proteins are ubiquitously expressed transcriptional factors involved in both basal transcription and signal transduction activation or repression. TFII-I proteins are detected as early as at two-cell stage and exhibit distinct and dynamic expression patterns in developing embryos as well as mark regional variation in the adult mouse brain. Analysis of atypical small and rare chromosomal deletions at 7q11.23 points to TFII-I genes (GTF2I and GTF2IRD1) as the prime candidates responsible for craniofacial and cognitive abnormalities in the Williams-Beuren syndrome. TFII-I genes are often subjected to alternative splicing, which generates isoforms that show different activities and play distinct biological roles. The coding regions of TFII-I genes are composed of more than 30 exons and are well conserved among vertebrates. However, their 5' untranslated regions are not as well conserved and all poorly characterized. In the present work, we analyzed promoter regions of TFII-I genes and described their additional exons, as well as tested tissue specificity of both previously reported and novel alternatively spliced isoforms. Our comprehensive analysis leads to further elucidation of the functional heterogeneity of TFII-I proteins, provides hints on search for regulatory pathways governing their expression, and opens up possibilities for examining the effect of different haplotypes on their promoter functions.
Song, Shangxin; Hooiveld, Guido J; Zhang, Wei; Li, Mengjie; Zhao, Fan; Zhu, Jing; Xu, Xinglian; Muller, Michael; Li, Chunbao; Zhou, Guanghong
2016-04-01
It has been reported that isolated dietary soy and meat proteins have distinct effects on physiology and liver gene expression, but the impact on protein expression responses are unknown. Because these may differ from gene expression responses, we investigated dietary protein-induced changes in liver proteome. Rats were fed for 1 week semisynthetic diets that differed only regarding protein source; casein (reference) was fully replaced by isolated soy, chicken, fish, or pork protein. Changes in liver proteome were measured by iTRAQ labeling and LC-ESI-MS/MS. A robust set totaling 1437 unique proteins was identified and subjected to differential protein analysis and biological interpretation. Compared with casein, all other protein sources reduced the abundance of proteins involved in fatty acid metabolism and Pparα signaling pathway. All dietary proteins, except chicken, increased oxidoreductive transformation reactions but reduced energy and essential amino acid metabolic pathways. Only soy protein increased the metabolism of sulfur-containing and nonessential amino acids. Soy and fish proteins increased translation and mRNA processing, whereas only chicken protein increased TCA cycle but reduced immune responses. These findings were partially in line with previously reported transcriptome results. This study further shows the distinct effects of soy and meat proteins on liver metabolism in rats.
Lery, Letícia M S; Goulart, Carolina L; Figueiredo, Felipe R; Verdoorn, Karine S; Einicker-Lamas, Marcelo; Gomes, Fabio M; Machado, Ednildo A; Bisch, Paulo M; von Kruger, Wanda M A
2013-06-28
PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. In order to disclose other roles of this system, a proteomic analysis of Vibrio cholerae 569BSR and its phoB/phoR mutant under high Pi levels was performed. Most of the proteins downregulated by the mutant have roles in energy production and conversion and in amino acid transport and metabolism. In contrast, the phoB/phoR mutant upregulated genes mainly involved in adaptation to atypical conditions, indicating that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways. This might be a strategy to overcome the lack of RpoS, whose expression in the stationary phase cells of V. cholerae seems to be controlled by PhoB/PhoR. Moreover, compared to the wild-type strain the phoB/phoR mutant presented a reduced cell density at stationary phase of culture in Pi abundance, lower resistance to acid shock, but higher tolerance to thermal and osmotic stresses. Together our findings show, for the first time, the requirement of PhoB/PhoR for full growth under high Pi level and for the accumulation of RpoS, indicating that PhoB/PhoR is a fundamental system for the biology of V. cholerae. Certain V. cholerae strains are pathogenic to humans, causing cholera, an acute dehydrating diarrhoeal disease endemic in Southern Asia, parts of Africa and Latin America, where it has been responsible for significant mortality and economical damage. Its ability to grow within distinct niches is dependent on gene expression regulation. PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. However, Pho regulon genes also play roles in virulence, motility and biofilm formation, among others. In this paper we report that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways, in Pi abundance. Moreover, we showed, for the first time, that the interrelationship between PhoB-RpoS-(p)ppGpp-poly(P) in V. cholerae, is somewhat diverse from the model of inter-regulation between those systems, described in Escherichia coli. The V. cholerae dependence on PhoB/PhoR for the RpoS mediated stress response and cellular growth under Pi abundance, suggests that this system's roles are broader than previously thought. Copyright © 2013. Published by Elsevier B.V.
Jung, Jee-Hyun; Lee, Eun-Hee; Choi, Kwang-Min; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Kim, Moonkoo
2017-06-01
Crude oils from distinct geographical regions have distinct chemical compositions, and, as a result, their toxicity may be different. However, developmental toxicity of crude oils derived from different geographical regions has not been extensively characterized. In this study, flounder embryos were separately exposed to effluents contaminated by three crude oils including: Basrah Light (BLO), Pyrenees (PCO), and Sakhalin Vityaz (SVO), in addition to a processed fuel oil (MFO-380), to measure developmental toxicity and for gene expressions. Each oil possessed a distinct chemical composition. Edema defect was highest in embryos exposed to PCO and MFO-380 that both have a greater fraction of three-ring PAHs (33% and 22%, respectively) compared to BLO and SVO. Observed caudal fin defects were higher in embryos exposed to SVO and MFO-380, which are both dominated by naphthalenes (81% and 52%, respectively). CYP1A gene expressions were also highest in embryos exposed to SVO and MFO-380. Higher incidence of cardiotoxicity and lower nkx 2.5 expression were detected in embryos exposed to PCO. Unique gene expression profiles were observed in embryos exposed to crude oils with distinct compositions. This study demonstrates that crude oils of different geographical origins with different compositional characteristics induce developmental toxicity to different degrees. Copyright © 2017 Elsevier Inc. All rights reserved.
Reptilian heart development and the molecular basis of cardiac chamber evolution.
Koshiba-Takeuchi, Kazuko; Mori, Alessandro D; Kaynak, Bogac L; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O; Latham, Stephany; Beck, Laurel; Beck, Laural; Henkelman, R Mark; Black, Brian L; Olson, Eric N; Wade, Juli; Takeuchi, Jun K; Nemer, Mona; Gilbert, Scott F; Bruneau, Benoit G
2009-09-03
The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution.
Reptilian heart development and the molecular basis of cardiac chamber evolution
Koshiba-Takeuchi, Kazuko; Mori, Alessandro D.; Kaynak, Bogac L.; Cebra-Thomas, Judith; Sukonnik, Tatyana; Georges, Romain O.; Latham, Stephany; Beck, Laural; Henkelman, R. Mark; Black, Brian L.; Olson, Eric N.; Wade, Juli; Takeuchi, Jun K.; Nemer, Mona; Gilbert, Scott F.; Bruneau, Benoit G.
2009-01-01
The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals, and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy1–3. However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles4–7? We examined heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors8,9. In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus, ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution. PMID:19727199
Jesch, Stephen A; Zhao, Xin; Wells, Martin T; Henry, Susan A
2005-03-11
In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.
Jesch, Stephen A.; Zhao, Xin; Wells, Martin T.; Henry, Susan A.
2005-01-01
SUMMARY In the yeast Saccharomyces cerevisiae the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was utilized to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination inositol and choline increased the number of repressed genes compared to inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another non-overlapping set of genes were coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but were not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, while choline plays a minor role. PMID:15611057
Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease
Hu, Yang; Zhang, Junli; Jia, Hongge; Sosso, Davide; Li, Ting; Frommer, Wolf B.; Yang, Bing; White, Frank F.; Wang, Nian; Jones, Jeffrey B.
2014-01-01
Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccAw, induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations. PMID:24474801
Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease.
Hu, Yang; Zhang, Junli; Jia, Hongge; Sosso, Davide; Li, Ting; Frommer, Wolf B; Yang, Bing; White, Frank F; Wang, Nian; Jones, Jeffrey B
2014-01-28
Citrus bacterial canker (CBC) disease occurs worldwide and incurs considerable costs both from control measures and yield losses. Bacteria that cause CBC require one of six known type III transcription activator-like (TAL) effector genes for the characteristic pustule formation at the site of infection. Here, we show that Xanthomonas citri subspecies citri strain Xcc306, with the type III TAL effector gene pthA4 or with the distinct yet biologically equivalent gene pthAw from strain XccA(w), induces two host genes, CsLOB1 and CsSWEET1, in a TAL effector-dependent manner. CsLOB1 is a member of the Lateral Organ Boundaries (LOB) gene family of transcription factors, and CsSWEET1 is a homolog of the SWEET sugar transporter and rice disease susceptibility gene. Both TAL effectors drive expression of CsLOB1 and CsSWEET1 promoter reporter gene fusions when coexpressed in citrus or Nicotiana benthamiana. Artificially designed TAL effectors directed to sequences in the CsLOB1 promoter region, but not the CsSWEET1 promoter, promoted pustule formation and higher bacterial leaf populations. Three additional distinct TAL effector genes, pthA*, pthB, and pthC, also direct pustule formation and expression of CsLOB1. Unlike pthA4 and pthAw, pthB and pthC do not promote the expression of CsSWEET1. CsLOB1 expression was associated with the expression of genes associated with cell expansion. The results indicate that CBC-inciting species of Xanthomonas exploit a single host disease susceptibility gene by altering the expression of an otherwise developmentally regulated gene using any one of a diverse set of TAL effector genes in the pathogen populations.
Chevaleyre, Vivien; Murray, Karl D.; Piskorowski, Rebecca A.
2017-01-01
Abstract The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function. PMID:28856240
Liu, Chaoyang; Xie, Tao; Chen, Chenjie; Luan, Aiping; Long, Jianmei; Li, Chuhao; Ding, Yaqi; He, Yehua
2017-07-01
The MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level. In the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization. In this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.
Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N
2013-10-01
Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.
Modularity and evolutionary constraints in a baculovirus gene regulatory network
2013-01-01
Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks. PMID:24006890
Ahrens, William A; Folpe, Andrew L
2011-03-01
Perivascular epithelioid cell neoplasms comprise a family of rare neoplasms composed of morphologically distinctive perivascular epithelioid cells exhibiting a "myomelanocytic" immunophenotype. The distinction of perivascular epithelioid cell neoplasms from other tumors with melanocytic and smooth muscle differentiation can be difficult. A recent study has suggested that perivascular epithelioid cell neoplasms routinely express CD1a, a Langerhans cell-associated transmembrane glycoprotein involved in antigen presentation and that expression of this marker may be helpful in the distinction of perivascular epithelioid cell neoplasms from various mimics. We evaluated a series of perivascular epithelioid cell neoplasms and potential mimics for CD1a expression. A total of 54 cases (27 perivascular epithelioid cell neoplasms, 11 leiomyosarcomas, 10 melanomas, 6 clear cell sarcomas) were evaluated in 2 laboratories (Mayo Clinic Rochester: 31 cases, Carolinas Medical Center: 23 cases). Selected positive cases were retested at Carolinas Medical Center (11 cases) and Mayo Clinic Rochester (10 cases). Mayo Clinic Rochester methods were as follows: MTB1 clone (1:20, Novocastra, Newcastle-upon-Tyne, UK), heat-induced epitope retrieval in EDTA (pH 8.0), and Dako Advance detection system (Dako Corp, Carpinteria, CA) with background-reducing diluent. Carolinas Medical Center methods were as follows: MTB1 clone (1:30; CellMarque, Rocklin, CA), heat-induced epitope retrieval in Medium Cell Conditioner #1 (pH 8.0-9.0), and streptavidin-biotin detection system with diaminobenzidine chromogen, with and without biotin blocking. Scores were as follows: 1+, 5% to 25%; 2+, 26% to 50%; and 3+, more than 51%. Langerhans cells served as a positive internal control in all tested cases. All Mayo Clinic Rochester cases were negative. Sixteen Carolinas Medical Center perivascular epithelioid cell neoplasms (14 renal angiomyolipomas, 1 soft tissue perivascular epithelioid cell neoplasm, 1 pulmonary clear cell "sugar" tumor) showed CD1a immunopositivity (1+: 7 cases; 2+: 7 cases; 3+: 2 cases) when tested without biotin blocking, 11 of these cases were retested with biotin blocking and were negative. All non-perivascular epithelioid cell neoplasms were negative. All positive perivascular epithelioid cell neoplasms showed cytoplasmic staining only, without membranous staining. Ten Carolinas Medical Center positive perivascular epithelioid cell neoplasms were negative when retested a Mayo Clinic Rochester, using a polymer-based detection system. We conclude that perivascular epithelioid cell neoplasms do not truly express CD1a in a biologically plausible membranous pattern, but may instead show aberrant cytoplasmic immunopositivity in some laboratories. Close inspection of published photomicrographs of previously reported CD1a-positive perivascular epithelioid cell neoplasms shows an identical pattern of cytoplasmic positivity, likely reflecting abundant endogenous biotin within perivascular epithelioid cell neoplasm cells. We do not believe that there is a role for CD1a immunohistochemistry in the differential diagnosis of perivascular epithelioid cell neoplasms. Copyright © 2011 Elsevier Inc. All rights reserved.
Eaton, Megan M.; Bracamontes, John; Shu, Hong-Jin; Li, Ping; Mennerick, Steven; Steinbach, Joe Henry
2014-01-01
Native γ-aminobutyric acid (GABA)A receptors consisting of α4, β1–3, and δ subunits mediate responses to the low, tonic concentration of GABA present in the extracellular milieu. Previous studies on heterologously expressed α4βδ receptors have shown a large degree of variability in functional properties, including sensitivity to the transmitter. We studied properties of α4β2δ receptors employing free subunits and concatemeric constructs, expressed in Xenopus oocytes, HEK 293 cells, and cultured hippocampal neurons. The expression system had a strong effect on the properties of receptors containing free subunits. The midpoint of GABA activation curve was 10 nM for receptors in oocytes versus 2300 nM in HEK cells. Receptors activated by the steroid alfaxalone had an estimated maximal open probability of 0.6 in oocytes and 0.01 in HEK cells. Irrespective of the expression system, receptors resulting from combining the tandem construct β2-δ and a free α4 subunit exhibited large steroid responses. We propose that free α4, β2, and δ subunits assemble in different configurations with distinct properties in oocytes and HEK cells, and that subunit linkage can overcome the expression system-dependent preferential assembly of free subunits. Hippocampal neurons transfected with α4 and the picrotoxin-resistant δ(T269Y) subunit showed large responses to alfaxalone in the presence of picrotoxin, suggesting that α4βδ receptors may assemble in a similar configuration in neurons and oocytes. PMID:25238745
Hoerder-Suabedissen, Anna; Oeschger, Franziska M.; Krishnan, Michelle L.; Belgard, T. Grant; Wang, Wei Zhi; Lee, Sheena; Webber, Caleb; Petretto, Enrico; Edwards, A. David; Molnár, Zoltán
2013-01-01
The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders. PMID:23401504
Horiuchi, Takayuki; Taoka, Masato; Isobe, Toshiaki; Komano, Teruya; Inouye, Sumiko
2002-07-26
Two genes, fruA and csgA, encoding a putative transcription factor and C-factor, respectively, are essential for fruiting body formation of Myxococcus xanthus. To investigate the role of fruA and csgA genes in developmental gene expression, developing cells as well as vegetative cells of M. xanthus wild-type, fruA::Tc, and csgA731 strains were pulse-labeled with [(35)S]methionine, and the whole cell proteins were analyzed using two-dimensional immobilized pH gradient/SDS-PAGE. Differences in protein synthesis patterns among more than 700 protein spots were detected during development of the three strains. Fourteen proteins showing distinctly different expression patterns in mutant cells were analyzed in more detail. Five of the 14 proteins were identified as elongation factor Tu (EF-Tu), Dru, DofA, FruA, and protein S by immunoblot analysis and mass spectroscopy. A gene encoding DofA was cloned and sequenced. Although both fruA and csgA genes regulate early development of M. xanthus, they were found to differently regulate expression of several developmental genes. The production of six proteins, including DofA and protein S, was dependent on fruA, whereas the production of two proteins was dependent on csgA, and one protein was dependent on both fruA and csgA. To explain the present findings, a new model was presented in which different levels of FruA phosphorylation may distinctively regulate the expression of two groups of developmental genes.
Gawronska-Kozak, Barbara
2011-01-01
Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin wounds in adult nude mice. Macroscopic and histological analyses of skin wounds revealed an accelerated wound healing process, minimal granulation tissue formation and markedly diminished scarring in nude mice. Quantitative RT-PCR (Mmp-2,-3,-8,-9,-10,-12,-13,-14 and Timp-1, -2, -3), Western blots (MMP-13) and gelatin zymography (MMP-9) revealed that MMP-9 and MMP-13 showed a unique, bimodal pattern of up-regulation during the early and late phases of wound healing in nude mice. Immunohistochemically MMP-9 and MMP-13 were generally detected in epidermis during the early phase and in dermis during the late (remodeling) phase. Consistent with these in vivo observations, dermal fibroblasts cultured from nude mice expressed higher levels of type I and III collagen, MMP-9 and MMP-13 mRNA levels and higher MMP enzyme activity than wild type controls. Collectively, these finding suggest that the bimodal pattern of MMP-9 and MMP-13 expression during skin repair process in nude mice could be a major component of their ability for scarless healing. PMID:21539913
Fox, Christopher J.; Moon, So Young; Iaria, Giuseppe; Barton, Jason J.S.
2009-01-01
The recognition of facial identity and expression are distinct tasks, with current models hypothesizing anatomic segregation of processing within a face-processing network. Using fMRI adaptation and a region-of-interest approach, we assessed how the perception of identity and expression changes in morphed stimuli affected the signal within this network, by contrasting (a) changes that crossed categorical boundaries of identity or expression with those that did not, and (b) changes that subjects perceived as causing identity or expression to change, versus changes that they perceived as not affecting the category of identity or expression. The occipital face area (OFA) was sensitive to any structural change in a face, whether it was identity or expression, but its signal did not correlate with whether subjects perceived a change or not. Both the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) showed release from adaptation when subjects perceived a change in either identity or expression, although in the pSTS this effect only occurred when subjects were explicitly attending to expression. The middle superior temporal sulcus (mSTS) showed release from adaptation for expression only, and the precuneus for identity only. The data support models where the OFA is involved in the early perception of facial structure. However, evidence for a functional overlap in the FFA and pSTS, with both identity and expression signals in both areas, argues against a complete independence of identity and expression processing in these regions of the core face-processing network. PMID:18852053
Fox, Christopher J; Moon, So Young; Iaria, Giuseppe; Barton, Jason J S
2009-01-15
The recognition of facial identity and expression are distinct tasks, with current models hypothesizing anatomic segregation of processing within a face-processing network. Using fMRI adaptation and a region-of-interest approach, we assessed how the perception of identity and expression changes in morphed stimuli affected the signal within this network, by contrasting (a) changes that crossed categorical boundaries of identity or expression with those that did not, and (b) changes that subjects perceived as causing identity or expression to change, versus changes that they perceived as not affecting the category of identity or expression. The occipital face area (OFA) was sensitive to any structural change in a face, whether it was identity or expression, but its signal did not correlate with whether subjects perceived a change or not. Both the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) showed release from adaptation when subjects perceived a change in either identity or expression, although in the pSTS this effect only occurred when subjects were explicitly attending to expression. The middle superior temporal sulcus (mSTS) showed release from adaptation for expression only, and the precuneus for identity only. The data support models where the OFA is involved in the early perception of facial structure. However, evidence for a functional overlap in the FFA and pSTS, with both identity and expression signals in both areas, argues against a complete independence of identity and expression processing in these regions of the core face-processing network.
Sex-Specific Selection and Sex-Biased Gene Expression in Humans and Flies.
Cheng, Changde; Kirkpatrick, Mark
2016-09-01
Sexual dimorphism results from sex-biased gene expression, which evolves when selection acts differently on males and females. While there is an intimate connection between sex-biased gene expression and sex-specific selection, few empirical studies have studied this relationship directly. Here we compare the two on a genome-wide scale in humans and flies. We find a distinctive "Twin Peaks" pattern in humans that relates the strength of sex-specific selection, quantified by genetic divergence between male and female adults at autosomal loci, to the degree of sex-biased expression. Genes with intermediate degrees of sex-biased expression show evidence of ongoing sex-specific selection, while genes with either little or completely sex-biased expression do not. This pattern apparently results from differential viability selection in males and females acting in the current generation. The Twin Peaks pattern is also found in Drosophila using a different measure of sex-specific selection acting on fertility. We develop a simple model that successfully recapitulates the Twin Peaks. Our results suggest that many genes with intermediate sex-biased expression experience ongoing sex-specific selection in humans and flies.
Wei, Yifeng; Li, Bin; Prakash, Divya; ...
2015-11-04
Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRsmore » reflects the diversity of electron carriers used in anaerobic metabolism« less
Spitzweck, Bettina; Brankatschk, Marko; Dickson, Barry J
2010-02-05
The orthogonal array of axon pathways in the Drosophila CNS is constructed in part under the control of three Robo family axon guidance receptors: Robo1, Robo2 and Robo3. Each of these receptors is responsible for a distinct set of guidance decisions. To determine the molecular basis for these functional specializations, we used homologous recombination to create a series of 9 "robo swap" alleles: expressing each of the three Robo receptors from each of the three robo loci. We demonstrate that the lateral positioning of longitudinal axon pathways relies primarily on differences in gene regulation, not distinct combinations of Robo proteins as previously thought. In contrast, specific features of the Robo1 and Robo2 proteins contribute to their distinct functions in commissure formation. These specializations allow Robo1 to prevent crossing and Robo2 to promote crossing. These data demonstrate how diversification of expression and structure within a single family of guidance receptors can shape complex patterns of neuronal wiring. 2010 Elsevier Inc. All rights reserved.
Reitzel, Adam M; Pang, Kevin; Martindale, Mark Q
2016-01-01
An essential developmental pathway in sexually reproducing animals is the specification of germ cells and the differentiation of mature gametes, sperm and oocytes. The "germline" genes vasa, nanos and piwi are commonly identified in primordial germ cells, suggesting a molecular signature for the germline throughout animals. However, these genes are also expressed in a diverse set of somatic stem cells throughout the animal kingdom leaving open significant questions for whether they are required for germline specification. Similarly, members of the Dmrt gene family are essential components regulating sex determination and differentiation in bilaterian animals, but the functions of these transcription factors, including potential roles in sex determination, in early diverging animals remain unknown. The phylogenetic position of ctenophores and the genome sequence of the lobate Mnemiopsis leidyi motivated us to determine the compliment of these gene families in this species and determine expression patterns during development. Our phylogenetic analyses of the vasa, piwi and nanos gene families show that Mnemiopsis has multiple genes in each family with multiple lineage-specific paralogs. Expression domains of Mnemiopsis nanos, vasa and piwi, during embryogenesis from fertilization to the cydippid stage, were diverse, with little overlapping expression and no or little expression in what we think are the germ cells or gametogenic regions. piwi paralogs in Mnemiopsis had distinct expression domains in the ectoderm during development. We observed overlapping expression domains in the apical organ and tentacle apparatus of the cydippid for a subset of "germline genes," which are areas of high cell proliferation, suggesting that these genes are involved with "stem cell" specification and maintenance. Similarly, the five Dmrt genes show diverse non-overlapping expression domains, with no clear evidence for expression in future gametogenic regions of the adult. We also report on splice variants for two Mnemiopsis Dmrt genes that impact the presence and composition of the DM DNA binding domain for these transcription factors. Our results are consistent with a potential role for vasa, piwi and nanos genes in the specification or maintenance of somatic stem cell populations during development in Mnemiopsis. These results are similar to previous results in the tentaculate ctenophore Pleurobrachia, with the exception that these genes were also expressed in gonads and developing gametes of adult Pleurobrachia. These differences suggest that the Mnemiopsis germline is either specified later in development than hypothesized, the germline undergoes extensive migration, or the germline does not express these classic molecular markers. Our results highlight the utility of comparing expression of orthologous genes across multiple species. We provide the first description of Dmrt expression in a ctenophore, which indicates that Dmrt genes are expressed in distinct structures and regions during development but not in future gametogenic regions, the only sex-specific structure for this hermaphroditic species.
Almeida, J; Bueno, C; Alguero, M C; Sanchez, M L; Cañizo, M C; Fernandez, M E; Vaquero, J M; Laso, F J; Escribano, L; San Miguel, J F; Orfao, A
1999-01-01
Dendritic cells (DC) represent the most powerful professional antigen-presenting cells (APC) in the immune system. The aim of the present study was to analyse, on a single-cell basis by multiparametric flow cytometry with simultaneous four-colour staining and a two-step acquisition procedure, the immunophenotypic profile and cytokine production of DC from 67 normal whole peripheral blood (PB) samples. Two clearly different subsets of HLA-II+/lineage− were identified on the basis of their distinct phenotypic characteristics: one DC subset was CD33strong+ and CD123dim+ (0.16 ± 0.06% of the PB nucleated cells and 55.9 ± 11.9% of all PB DC) and the other, CD33dim+ and CD123strong+ (0.12 ± 0.04% of PB nucleated cells and 44.53 ± 11.5% of all PB DC). Moreover, the former DC subpopulation clearly showed higher expression of the CD13 myeloid-associated antigen, the CD29 and CD58 adhesion molecules, the CD2, CD5 and CD86 costimulatory molecules, the CD32 IgG receptor and the CD11c complement receptor. In addition, these cells showed stronger HLA-DR and HLA-DQ expression and a higher reactivity for the IL-6 receptor α-chain (CD126) and for CD38. In contrast, the CD123strong+/CD33dim+ DC showed a stronger reactivity for the CD4 and CD45RA molecules, whereas they did not express the CD58, CD5, CD11c and CD13 antigens. Regarding cytokine production, our results show that while the CD33strong+/CD123dim+ DC are able to produce significant amounts of inflammatory cytokines, such as IL-1β (97 ± 5% of positive cells), IL-6 (96 ± 1.1% of positive cells), IL-12 (81.5 ± 15.5% of positive cells) and tumour necrosis factor-alpha (TNF-α) (84 ± 22.1% of positive cells) as well as chemokines such as IL-8 (99 ± 1% of positive cells), the functional ability of the CD123strong+/CD33dim+ DC subset to produce cytokines under the same conditions was almost null. Our results therefore clearly show the presence of two distinct subsets of DC in normal human PB, which differ not only in their immunophenotype but also in their functionality, as regards cytokine production. PMID:10594557
Blair, Karina; Shaywitz, Jonathan; Smith, Bruce W; Rhodes, Rebecca; Geraci, Marilla; Jones, Matthew; McCaffrey, Daniel; Vythilingam, Meena; Finger, Elizabeth; Mondillo, Krystal; Jacobs, Madeline; Charney, Dennis S; Blair, R J R; Drevets, Wayne C; Pine, Daniel S
2008-09-01
Generalized social phobia involves fear/avoidance, specifically of social situations, whereas generalized anxiety disorder involves intrusive worry about diverse circumstances. It remains unclear the degree to which these two, often comorbid, conditions represent distinct disorders or alternative presentations of a single, core underlying pathology. Functional magnetic resonance imaging assessed the neural response to facial expressions in generalized social phobia and generalized anxiety disorder. Individuals matched on age, IQ, and gender with generalized social phobia without generalized anxiety disorder (N=17), generalized anxiety disorder (N=17), or no psychopathology (N=17) viewed neutral, fearful, and angry expressions while ostensibly making a simple gender judgment. The patients with generalized social phobia without generalized anxiety disorder showed increased activation to fearful relative to neutral expressions in several regions, including the amygdala, compared to healthy individuals. This increased amygdala response related to self-reported anxiety in patients with generalized social phobia without generalized anxiety disorder. In contrast, patients with generalized anxiety disorder showed significantly less activation to fearful relative to neutral faces compared to the healthy individuals. They did show significantly increased response to angry expressions relative to healthy individuals in a lateral region of the middle frontal gyrus. This increased lateral frontal response related to self-reported anxiety in patients with generalized anxiety disorder. These results suggest that neural circuitry dysfunctions differ in generalized social phobia and generalized anxiety disorder.
Li, Jun; Zhang, Yang; Zhang, Yuehuan; Liu, Ying; Xiang, Zhiming; Qu, Fufa; Yu, Ziniu
2015-06-01
Members of the suppressor of cytokine signaling (SOCS) family are crucial for the control of a variety of signal transduction pathways that are involved in the immunity, growth and development of organisms. However, in mollusks, the identity and function of SOCS proteins remain largely unclear. In the present study, three SOCS genes, CgSOCS2, CgSOCS5 and CgSOCS7, have been identified by searching and analyzing the Pacific oyster genome. Structural analysis indicated that the CgSOCS share conserved functional domains with their vertebrate counterparts. Phylogenetic analysis showed that the three SOCS genes clustered into two distinct groups, the type I and II subfamilies, indicating that these subfamilies had common ancestors. Tissue-specific expression results showed that the three genes were constitutively expressed in all examined tissues and were highly expressed in immune-related tissues, such as the hemocytes, gills and digestive gland. The expression of CgSOCS can also be induced to varying degrees in hemocytes after challenge with pathogen-associated molecular patterns (PAMPs). Moreover, dual-luciferase reporter assays showed that the over-expression of CgSOCS2 and CgSOCS7, but not CgSOC5, can activate an NF-κB reporter gene. Collectively, these results demonstrated that the CgSOCS might play an important role in the innate immune responses of the Pacific oyster. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Guo-rong; Geller, Alfred I
2010-05-17
Multiple potential uses of direct gene transfer into neurons require restricting expression to specific classes of glutamatergic neurons. Thus, it is desirable to develop vectors containing glutamatergic class-specific promoters. The three vesicular glutamate transporters (VGLUTs) are expressed in distinct populations of neurons, and VGLUT1 is the predominant VGLUT in the neocortex, hippocampus, and cerebellar cortex. We previously reported a plasmid (amplicon) Herpes Simplex Virus (HSV-1) vector that placed the Lac Z gene under the regulation of the VGLUT1 promoter (pVGLUT1lac). Using helper virus-free vector stocks, we showed that this vector supported approximately 90% glutamatergic neuron-specific expression in postrhinal (POR) cortex, in rats sacrificed at either 4 days or 2 months after gene transfer. We now show that pVGLUT1lac supports expression preferentially in VGLUT1-containing glutamatergic neurons. pVGLUT1lac vector stock was injected into either POR cortex, which contains primarily VGLUT1-containing glutamatergic neurons, or into the ventral medial hypothalamus (VMH), which contains predominantly VGLUT2-containing glutamatergic neurons. Rats were sacrificed at 4 days after gene transfer, and the types of cells expressing ss-galactosidase were determined by immunofluorescent costaining. Cell counts showed that pVGLUT1lac supported expression in approximately 10-fold more cells in POR cortex than in the VMH, whereas a control vector supported expression in similar numbers of cells in these two areas. Further, in POR cortex, pVGLUT1lac supported expression predominately in VGLUT1-containing neurons, and, in the VMH, pVGLUT1lac showed an approximately 10-fold preference for the rare VGLUT1-containing neurons. VGLUT1-specific expression may benefit specific experiments on learning or specific gene therapy approaches, particularly in the neocortex. Copyright 2010 Elsevier B.V. All rights reserved.
Yoshida, S; Ina, A; Konno, J; Wu, T; Shutoh, F; Nogami, H; Hisano, S
2008-03-18
The pineal gland expresses vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2), which are thought to transport glutamate into synaptic-like microvesicles in the pinealocytes. Recently, we reported that the rat pineal gland also expresses VGLUT1v which is a novel variant of VGLUT1 during the perinatal period. To explore the biological significance of these VGLUT expressions in pineal development, we studied the ontogeny of VGLUT in this gland by in situ hybridization, immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-PCR) using rats. Histological analysis revealed that intensities of VGLUT1 hybridization signal and immunostaining drastically increase by postnatal day (P) 7, whereas VGLUT2 expression exhibits high levels of mRNA and protein at birth and decreases gradually from P7 onward. Quantitative RT-PCR analysis supported these histological observations, showing that expressions of VGLUT1 and VGLUT2 exhibit opposite patterns to each other. Coinciding with VGLUT1-upregulation, RT-PCR data showed that expressions of dynamin 1 and endophilin 1, which are factors predictably involved in the endocytotic recovery of VGLUT1-associated vesicle, are also increased by P7. Quantitative RT-PCR analysis of VGLUT1v demonstrated that its mRNA expression is upregulated by P7, kept at the same level until P14, and apparently decreased at P21, suggesting its functional property required for a certain developmental event. Moreover, a comparison of mRNA expressions at daytime and nighttime revealed that neither VGLUT1 nor VGLUT1v shows any difference in both P7 and P21 glands, whereas VGLUT2 is significantly lower at daytime than at nighttime at P21 but not P7, the time point at which the melatonin rhythm is not yet generated. The present study shows that expressions of these VGLUT types are differentially regulated during postnatal pineal development, each presumably participating in physiologically distinct glutamatergic functions.
Holanda, Gustavo Moraes; Casseb, Samir Mansour Moraes; Mello, Karla Fabiane Lopes; Vasconcelos, Pedro Fernando Costa; Cruz, Ana Cecília Ribeiro
2017-06-01
Yellow fever is a zoonotic disease caused by the yellow fever virus (YFV) and transmitted by mosquitoes of the family Culicidae. It is well known that cellular and viral microRNAs (miRNAs) are involved in modulation of viral and cellular gene expression, as well as immune response, and are considered by the scientific community as possible targets for an effective therapy against viral infections. This regulation may be involved in different levels of infection and clinical symptomatology. We used viral titration techniques, viral kinetics from 24 to 96 hours postinfection (hpi), and analyzed the expression of key proteins related to the miRNA pathway by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The expression of Dicer was different when compared over the course of infection by the distinct YFV genotypes. Drosha expression was similar during infection by YFV genotype 1 or 2, with a decrease in their expression over time and a slight increase in 96 hpi. Ago1, Ago2, and Ago4 showed different levels of expression between the viral genotypes: for YFV genotype 1 infection, Ago1 presented a positive expression, while for YFV genotype 2, it showed a negative expression, when compared with negative controls. We conclude that YFV infection modulates the proteins involved in miRNA biogenesis, which can regulate both viral replication and cellular immune response.
Expression of the ADHD candidate gene Diras2 in the brain.
Grünewald, Lena; Becker, Nils; Camphausen, Annika; O'Leary, Aet; Lesch, Klaus-Peter; Freudenberg, Florian; Reif, Andreas
2018-06-01
The distinct subgroup of the Ras family member 2 (DIRAS2) gene has been found to be associated with attention-deficit/hyperactivity disorder (ADHD) in one of our previous studies. This gene is coding for a small Ras GTPase with unknown function. DIRAS2 is highly expressed in the brain. However, the exact neural expression pattern of this gene was unknown so far. Therefore, we investigated the expressional profile of DIRAS2 in the human and murine brain. In the present study, qPCR analyses in the human and in the developing mouse brain, immunocytological double staining on murine hippocampal primary cells and RNA in situ hybridization (ISH) on brain sections of C57BL/6J wild-type mice, have been used to reveal the expression pattern of DIRAS2 in the brain. We could show that DIRAS2 expression in the human brain is the highest in the hippocampus and the cerebral cortex, which is in line with the ISH results in the mouse brain. During mouse brain development, Diras2 levels strongly increase from prenatal to late postnatal stages. Co-expression studies indicate Diras2 expression in glutamatergic and catecholaminergic neurons. Our findings support the idea of DIRAS2 as a candidate gene for ADHD as the timeline of its expression as well as the brain regions and cell types that show Diras2 expression correspond to those assumed to underlie the pathomechanisms of the disease.
Garand, R; Duchayne, E; Blanchard, D; Robillard, N; Kuhlein, E; Fenneteau, O; Salomon-Nguyen, F; Grange, M J; Rousselot, P; Demur, C
1995-08-01
We describe eight cases of erythroleukaemia distinct from FAB-AML M6, which demonstrate minimal erythroid differentiation not associated with a myeloblastic component. Three infants (including a Down's syndrome) and two adults presented with a de novo leukaemia. One case was preceded by an untreated refractory anaemia with excess of blasts and one by polycythaemia vera. One case presented with an inaugural blast crisis of chronic myeloid leukaemia. In four patients the leukaemic cells showed a proerythroblast-like morphology. The four other were initially classified as undifferentiated AL (two cases) or AML MO (two cases) because of the immature aspect of the cells, their lack of myeloperoxidase activity and the absence of B, T lymphoid and myeloid (My) marker expressions apart from the CD33 antigen. Immunophenotyping in three cases showed an immature erythroblast profile (glycophorins A and B+, spectrin+). In the five others the erythroid nature was recognized by the expression of ABH blood group system on fresh cells (four cases) and glycophorin A on cells after 3 d in vitro culture with erythropoietin (EPO) + IL3 (two cases). Moreover, an erythroid colony growth of leukaemic origin was observed in three patients. In conclusion, the study of erythroid marker expression is of particular importance when immunophenotyping leukaemic cells with a proerythroblast-like morphology or an undifferentiated aspect and a HLA DR-, CD36++, B-, T-, My- (CD33 +/-) phenotype. We propose the term AML M6 'variant' for this rare type of AML.
Howe, Gregg A.; Lee, Gyu In; Itoh, Aya; Li, Lei; DeRocher, Amy E.
2000-01-01
Allene oxide synthase (AOS) and fatty acid hydroperoxide lyase (HPL) are plant-specific cytochrome P450s that commit fatty acid hydroperoxides to different branches of oxylipin metabolism. Here we report the cloning and characterization of AOS (LeAOS) and HPL (LeHPL) cDNAs from tomato (Lycopersicon esculentum). Functional expression of the cDNAs in Escherichia coli showed that LeAOS and LeHPL encode enzymes that metabolize 13- but not 9-hydroperoxide derivatives of C18 fatty acids. LeAOS was active against both 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13-HPOT) and 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, whereas LeHPL showed a strong preference for 13-HPOT. These results suggest a role for LeAOS and LeHPL in the metabolism of 13-HPOT to jasmonic acid and hexenal/traumatin, respectively. LeAOS expression was detected in all organs of the plant. In contrast, LeHPL expression was predominant in leaves and flowers. Damage inflicted to leaves by chewing insect larvae led to an increase in the local and systemic expression of both genes, with LeAOS showing the strongest induction. Wound-induced expression of LeAOS also occurred in the def-1 mutant that is deficient in octadecanoid-based signaling of defensive proteinase inhibitor genes. These results demonstrate that tomato uses genetically distinct signaling pathways for the regulation of different classes of wound responsive genes. PMID:10859201
Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis.
Oldereid, N B; Angelis, P D; Wiger, R; Clausen, O P
2001-05-01
We investigated the frequency of spontaneous apoptosis and expression of the Bcl-2 family of proteins during normal spermatogenesis in man. Testicular tissue with both normal morphology and DNA content was obtained from necro-donors and fixed in Bouin's solution. A TdT-mediated dUTP end-labelling method (TUNEL) was used for the detection of apoptotic cells. Expression of apoptosis regulatory Bcl-2 family proteins and of p53 and p21(Waf1) was assessed by immunohistochemistry. Germ cell apoptosis was detected in all testes and was mainly seen in primary spermatocytes and spermatids and in a few spermatogonia. Bcl-2 and Bak were preferentially expressed in the compartments of spermatocytes and differentiating spermatids, while Bcl-x was preferentially expressed in spermatogonia. Bax showed a preferential expression in nuclei of round spermatids, whereas Bad was only seen in the acrosome region of various stages of spermatids. Mcl-1 staining was weak without a particular pattern, whereas expression of Bcl-w, p53 and p21(Waf1) proteins was not detected by immunohistochemistry. The results show that spontaneous apoptosis occurs in all male germ cell compartments in humans. Bcl-2 family proteins are distributed preferentially within distinct germ cell compartments suggesting a specific role for these proteins in the processes of differentiation and maturation during human spermatogenesis.
Lu, Hsiao-ling; Tanguy, Sylvie; Rispe, Claude; Gauthier, Jean-Pierre; Walsh, Tom; Gordon, Karl; Edwards, Owain; Tagu, Denis; Chang, Chun-che; Jaubert-Possamai, Stéphanie
2011-01-01
Piwi-interacting RNAs (piRNAs) are known to regulate transposon activity in germ cells of several animal models that propagate sexually. However, the role of piRNAs during asexual reproduction remains almost unknown. Aphids that can alternate sexual and asexual reproduction cycles in response to seasonal changes of photoperiod provide a unique opportunity to study piRNAs and the piRNA pathway in both reproductive modes. Taking advantage of the recently sequenced genome of the pea aphid Acyrthosiphon pisum, we found an unusually large lineage-specific expansion of genes encoding the Piwi sub-clade of Argonaute proteins. In situ hybridisation showed differential expressions between the duplicated piwi copies: while Api-piwi2 and Api-piwi6 are “specialised” in germ cells their most closely related copy, respectively Api-piwi5 and Api-piwi3, are expressed in the somatic cells. The differential expression was also identified in duplicated ago3: Api-ago3a in germ cells and Api-ago3b in somatic cells. Moreover, analyses of expression profiles of the expanded piwi and ago3 genes by semi-quantitative RT-PCR showed that expressions varied according to the reproductive types. These specific expression patterns suggest that expanded aphid piwi and ago3 genes have distinct roles in asexual and sexual reproduction. PMID:22162754
Florio, Marta; Heide, Michael; Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline; Huttner, Wieland B; Hiller, Michael
2018-03-21
Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL , demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. © 2018, Florio et al.
Garcia, Isabella; Bhullar, Paramjit K; Tepe, Burak; Ortiz-Guzman, Joshua; Huang, Longwen; Herman, Alexander M; Chaboub, Lesley; Deneen, Benjamin; Justice, Nicholas J; Arenkiel, Benjamin R
2016-01-01
Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.
Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline
2018-01-01
Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. PMID:29561261
Rai, Richa; Chauhan, Sudhir Kumar; Singh, Vikas Vikram; Rai, Madhukar; Rai, Geeta
2016-01-01
Systemic lupus erythematosus (SLE) patients exhibit immense heterogeneity which is challenging from the diagnostic perspective. Emerging high throughput sequencing technologies have been proved to be a useful platform to understand the complex and dynamic disease processes. SLE patients categorised based on autoantibody specificities are reported to have differential immuno-regulatory mechanisms. Therefore, we performed RNA-seq analysis to identify transcriptomics of SLE patients with distinguished autoantibody specificities. The SLE patients were segregated into three subsets based on the type of autoantibodies present in their sera (anti-dsDNA+ group with anti-dsDNA autoantibody alone; anti-ENA+ group having autoantibodies against extractable nuclear antigens (ENA) only, and anti-dsDNA+ENA+ group having autoantibodies to both dsDNA and ENA). Global transcriptome profiling for each SLE patients subsets was performed using Illumina® Hiseq-2000 platform. The biological relevance of dysregulated transcripts in each SLE subsets was assessed by ingenuity pathway analysis (IPA) software. We observed that dysregulation in the transcriptome expression pattern was clearly distinct in each SLE patients subsets. IPA analysis of transcripts uniquely expressed in different SLE groups revealed specific biological pathways to be affected in each SLE subsets. Multiple cytokine signaling pathways were specifically dysregulated in anti-dsDNA+ patients whereas Interferon signaling was predominantly dysregulated in anti-ENA+ patients. In anti-dsDNA+ENA+ patients regulation of actin based motility by Rho pathway was significantly affected. The granulocyte gene signature was a common feature to all SLE subsets; however, anti-dsDNA+ group showed relatively predominant expression of these genes. Dysregulation of Plasma cell related transcripts were higher in anti-dsDNA+ and anti-ENA+ patients as compared to anti-dsDNA+ ENA+. Association of specific canonical pathways with the uniquely expressed transcripts in each SLE subgroup indicates that specific immunological disease mechanisms are operative in distinct SLE patients’ subsets. This ‘sub-grouping’ approach could further be useful for clinical evaluation of SLE patients and devising targeted therapeutics. PMID:27835693
Fukuzawa, R; Anaka, M R; Heathcott, R W; McNoe, L A; Morison, I M; Perlman, E J; Reeve, A E
2008-08-01
Current models of Wilms tumour development propose that histological features of the tumours are programmed by the underlying molecular aberrations. For example, tumours associated with WT1 mutations arise from intralobar nephrogenic rests (ILNR), concur with CTNNB1 mutations and have distinct histology, whereas tumours with IGF2 loss of imprinting (LOI) often arise from perilobar nephrogenic rests (PLNR). Intriguingly, ILNR and PLNR are found simultaneously in Wilms tumours in children with overgrowth who have constitutional IGF2 LOI. We therefore examined whether the precursor lesions or early epigenetic changes are the primary determinant of Wilms tumour histology. We examined the histological features and gene expression profiles of IGF2 LOI tumours and WT1-mutant tumours which are associated with PLNR and/or ILNR. Two distinct types of IGF2 LOI tumours were identified: the first type had a blastemal-predominant histology associated with PLNR, while the second subtype had a myogenic histology, increased expression of mesenchymal lineage genes and an association with ILNR, similar to WT1-mutant tumours. These ILNR-associated IGF2 LOI tumours also showed signatures of activation of the WNT signalling pathway: differential expression of beta-catenin targets (MMP2, RARG, DKK1) and WNT antagonist genes (DKK1, WIF1, SFRP4). Unexpectedly, the majority of these tumours had CTNNB1 mutations, which are normally only seen in WT1-mutant tumours. The absence of WT1 mutations in tumours with IGF2 LOI indicated that CTNNB1 mutations occur predominantly in tumours arising from ILNR independent of the presence or absence of WT1 mutations. Thus, even though these two classes of tumours with IGF2 LOI have the same underlying predisposing epigenetic error, the tumour histology and the gene expression profiles are determined by the nature of the precursor cells within the nephrogenic rests and subsequent CTNNB1 mutations. Copyright (c) 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states.
Korkmaz, Ali Giray; Popov, Todor; Peisl, Loulou; Codrea, Marius Cosmin; Nahnsen, Sven; Steimle, Alexander; Velic, Ana; Macek, Boris; von Bergen, Martin; Bernhardt, Joerg; Frick, Julia-Stefanie
2018-05-30
Dendritic cells (DCs) can shape the immune system towards an inflammatory or tolerant state depending on the bacterial antigens and the environment they encounter. In this study we provide a proteomic catalogue of differentially expressed proteins between distinct DC maturation states, brought about by bacteria that differ in their endotoxicity. To achieve this, we have performed proteomics and phosphoproteomics on murine DC cultures. Symbiont and pathobiont bacteria were used to direct dendritic cells into a semi-mature and fully-mature state, respectively. The comparison of semi-mature and fully-mature DCs revealed differential expression in 103 proteins and differential phosphorylation in 118 phosphosites, including major regulatory factors of central immune processes. Our analyses predict that these differences are mediated by upstream elements such as SOCS1, IRF3, ABCA1, TLR4, and PTGER4. Our analyses indicate that the symbiont bacterial strain affects DC proteome in a distinct way, by downregulating inflammatory proteins and activating anti-inflammatory upstream regulators. Biological significance In this study we have investigated the responses of immune cells to distinct bacterial stimuli. We have used the symbiont bacterial strain B. vulgatus and the pathobiont E. coli strain to stimulate cultured primary dendritic cells and performed a shotgun proteome analysis to investigate the protein expression and phosphorylation level differences on a genome level. We have observed expression and phosphorylation level differences in key immune regulators, transcription factors and signal transducers. Moreover, our subsequent bioinformatics analysis indicated regulation at several signaling pathways such as PPAR signaling, LXR/RXR activation and glucocorticoid signaling pathways, which are not studied in detail in an inflammation and DC maturation context. Our phosphoproteome analysis showed differential phosphorylation in 118 phosphosites including those belonging to epigenetic regulators, transcription factors and major cell cycle regulators. We anticipate that our study will facilitate further investigation of immune cell proteomes under different inflammatory and non-inflammatory conditions. Copyright © 2017. Published by Elsevier B.V.
Histone H3.3 mutations drive paediatric glioblastoma through upregulation of MYCN
Bjerke, Lynn; Mackay, Alan; Nandhabalan, Meera; Burford, Anna; Jury, Alexa; Popov, Sergey; Bax, Dorine A; Carvalho, Diana; Taylor, Kathryn R; Vinci, Maria; Bajrami, Ilirjana; McGonnell, Imelda M; Lord, Christopher J; Reis, Rui M; Hargrave, Darren; Ashworth, Alan; Workman, Paul; Jones, Chris
2013-01-01
Glioblastomas of children and young adults have a median survival of only 12-15months and are clinically and biologically distinct from histologically similar cancers in older adults1. They are defined by highly specific mutations in the gene encoding the histone H3.3 variant H3F3A2, occurring either at or close to key residues marked by methylation for regulation of transcription – K27 and G34. Here we show that the cerebral hemispheric-specific G34 mutation drives a distinct expression signature through differential genomic binding of the K36 trimethylation mark (H3K36me3). The transcriptional program induced recapitulates that of the developing forebrain, and involves numerous markers of stem cell maintenance, cell fate decisions and self-renewal. Critically, H3F3A G34 mutations cause profound upregulation of MYCN, a potent oncogene which is causative of glioblastomas when expressed in the correct developmental context. This driving aberration is selectively targetable in this patient population by inhibiting kinases responsible for stabilisation of the protein. PMID:23539269
Kwon, Oh-Joon; Zhang, Li; Xin, Li
2016-01-01
Recent lineage tracing studies support the existence of prostate luminal progenitors that possess extensive regenerative capacity, but their identity remains unknown. We show that Sca-1 (Stem Cell Antigen-1) identifies a small population of murine prostate luminal cells that reside in the proximal prostatic ducts adjacent to the urethra. Sca-1+ luminal cells do not express Nkx3.1. They do not carry the secretory function, although they express the androgen receptor. These cells are enriched in the prostates of castrated mice. In the in vitro prostate organoid assay, a small fraction of the Sca-1+ luminal cells are capable of generating budding organoids that are morphologically distinct from those derived from other cell lineages. Histologically, this type of organoid is composed of multiple inner layers of luminal cells surrounded by multiple outer layers of basal cells. When passaged, these organoids retain their morphological and histological features. Finally, the Sca-1+ luminal cells are capable of forming small prostate glands containing both basal and luminal cells in an in vivo prostate regeneration assay. Collectively, our study establishes the androgen-independent and bipotent organoid-forming Sca-1+ luminal cells as a functionally distinct cellular entity. These cells may represent a putative luminal progenitor population and serve as a cellular origin for castration resistant prostate cancer. PMID:26418304
Fagg, W Samuel; Liu, Naiyou; Fair, Jeffrey Haskell; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel
2017-09-15
Quaking protein isoforms arise from a single Quaking gene and bind the same RNA motif to regulate splicing, translation, decay, and localization of a large set of RNAs. However, the mechanisms by which Quaking expression is controlled to ensure that appropriate amounts of each isoform are available for such disparate gene expression processes are unknown. Here we explore how levels of two isoforms, nuclear Quaking-5 (Qk5) and cytoplasmic Qk6, are regulated in mouse myoblasts. We found that Qk5 and Qk6 proteins have distinct functions in splicing and translation, respectively, enforced through differential subcellular localization. We show that Qk5 and Qk6 regulate distinct target mRNAs in the cell and act in distinct ways on their own and each other's transcripts to create a network of autoregulatory and cross-regulatory feedback controls. Morpholino-mediated inhibition of Qk translation confirms that Qk5 controls Qk RNA levels by promoting accumulation and alternative splicing of Qk RNA, whereas Qk6 promotes its own translation while repressing Qk5. This Qk isoform cross-regulatory network responds to additional cell type and developmental controls to generate a spectrum of Qk5/Qk6 ratios, where they likely contribute to the wide range of functions of Quaking in development and cancer. © 2017 Fagg et al.; Published by Cold Spring Harbor Laboratory Press.
2009-01-01
Background Chondroblastoma is a benign cartilaginous tumour of bone that predominantly affects the epiphysis of long bones in young males. No recurrent chromosomal re-arrangements have so far been observed. Methods: We identified an index case with a balanced translocation by Combined Binary Ratio-Fluorescent in situ Hybridisation (COBRA-FISH) karyotyping followed by breakpoint FISH mapping and array-Comparative Genomic Hybridisation (aCGH). Candidate region re-arrangement and candidate gene expression were subsequently investigated by interphase FISH and immunohistochemistry in another 14 cases. Results A balanced t(5;17)(p15;q22-23) was identified. In the index case, interphase FISH showed that the translocation was present only in mononucleated cells and was absent in the characteristic multinucleated giant cells. The t(5;17) translocation was not observed in the other cases studied. The breakpoint in 5p15 occurred close to the steroid reductase 5α1 (SRD5A1) gene. Expression of the protein was found in all cases tested. Similar expression was found for the sex steroid signalling-related molecules oestrogen receptor alpha and aromatase, while androgen receptors were only found in isolated cells in a few cases. The breakpoint in 17q22-23 was upstream of the carbonic anhydrase × (CA10) gene region and possibly involved gene-regulatory elements, which was indicated by the lack of CA10 protein expression in the index case. All other cases showed variable levels of CA10 expression, with low expression in three cases. Conclusion We report a novel t(5;17)(p15;q22-23) translocation in chondroblastoma without involvement of any of the two chromosomal regions in other cases studied. Our results indicate that the characteristic multinucleated giant cells in chondroblastoma do not have the same clonal origin as the mononuclear population, as they do not harbour the same translocation. We therefore hypothesise that they might be either reactive or originate from a distinct neoplastic clone, although the occurrence of two distinct clones is unlikely. Impairment of the CA10 gene might be pathogenetically relevant, as low expression was found in four cases. Diffuse expression of SRD5A1 and sex steroid signalling-related molecules confirms their role in neoplastic chondrogenesis. PMID:19903358
Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis
2015-01-01
The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515
Chakraborty, Prabuddha; Roy, Shyamal K
2013-01-01
Estradiol-17β (E) plays an important role in ovarian follicular development. Evidence indicates that some of the effect of E is mediated by the transmembrane estrogen receptor. In this study, we examined the spatio-temporal expression of recently discovered ERα36 (ESR36), a splice variant of Esr1 and a receptor for non-genomic E signaling, in the hamster ovary during the estrous cycle and the role of gonadotropins and ovarian steroid hormones in ESR36 expression. ESR36 expression was high on estrus (D1:0900 h) and declined precipitously by proestrus (D4:0900 h) and remained low up to D4:1600 h. Immunofluorescence findings corroborated immunoblot findings and revealed that ESR36 was expressed only in the cell membrane of both follicular and non-follicular cells, except the oocytes. Ovarian ESR36 was capable of binding to the E-affinity matrix, and have different molecular weight than that of the ESR1 or GPER. Hypophysectomy (Hx) resulted in a marked decline in ESR36 protein levels. FSH and LH, alone or combined, markedly upregulated ESR36 protein in Hx hamsters to the levels observed in D1 hamsters, but neither E nor P had any effect. Inhibition of the gonadotropin surge by phenobarbital treatment on D4:1100 h attenuated ESR36 expression in D1:0900 h ovaries, but the decline was restored by either FSH or LH replacement on D4 afternoon. This is the first report to show that ESR36, which is distinct from ESR1 or GPER is expressed in the plasma membrane of ovarian follicular and non-follicular cells, binds to E and its expression is regulated directly by the gonadotropins. In light of our previous findings, the results suggest that ovarian cells contain at least two distinct membrane estrogen receptors, such as GPER and ESR36, and strongly suggest for a non-genomic action of E regulating ovarian follicular functions.
Distinct amyloid precursor protein processing machineries of the olfactory system.
Kim, Jae Yeon; Rasheed, Ameer; Yoo, Seung-Jun; Kim, So Yeun; Cho, Bongki; Son, Gowoon; Yu, Seong-Woon; Chang, Keun-A; Suh, Yoo-Hun; Moon, Cheil
2018-01-01
Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by β-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of β-amyloid (Aβ) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex-which contains presenilin 1 or 2 as the catalytic core-could trigger marked Aβ accumulation. Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions. Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aβ*56 accumulates more quickly in the OE. Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.
Oh, Dong-Ha; Hong, Hyewon; Lee, Sang Yeol; Yun, Dae-Jin; Bohnert, Hans J.; Dassanayake, Maheshi
2014-01-01
Schrenkiella parvula (formerly Thellungiella parvula), a close relative of Arabidopsis (Arabidopsis thaliana) and Brassica crop species, thrives on the shores of Lake Tuz, Turkey, where soils accumulate high concentrations of multiple-ion salts. Despite the stark differences in adaptations to extreme salt stresses, the genomes of S. parvula and Arabidopsis show extensive synteny. S. parvula completes its life cycle in the presence of Na+, K+, Mg2+, Li+, and borate at soil concentrations lethal to Arabidopsis. Genome structural variations, including tandem duplications and translocations of genes, interrupt the colinearity observed throughout the S. parvula and Arabidopsis genomes. Structural variations distinguish homologous gene pairs characterized by divergent promoter sequences and basal-level expression strengths. Comparative RNA sequencing reveals the enrichment of ion-transport functions among genes with higher expression in S. parvula, while pathogen defense-related genes show higher expression in Arabidopsis. Key stress-related ion transporter genes in S. parvula showed increased copy number, higher transcript dosage, and evidence for subfunctionalization. This extremophyte offers a framework to identify the requisite adjustments of genomic architecture and expression control for a set of genes found in most plants in a way to support distinct niche adaptation and lifestyles. PMID:24563282
Sen, Ruchira; Raychoudhury, Rhitoban; Cai, Yunpeng; Sun, Yijun; Lietze, Verena-Ulrike; Boucias, Drion G; Scharf, Michael E
2013-07-19
Termites are highly eusocial insects and show a division of labor whereby morphologically distinct individuals specialize in distinct tasks. In the lower termite Reticulitermes flavipes (Rhinotermitidae), non-reproducing individuals form the worker and soldier castes, which specialize in helping (e.g., brood care, cleaning, foraging) and defense behaviors, respectively. Workers are totipotent juveniles that can either undergo status quo molts or develop into soldiers or neotenic reproductives. This caste differentiation can be regulated by juvenile hormone (JH) and primer pheromones contained in soldier head extracts (SHE). Here we offered worker termites a cellulose diet treated with JH or SHE for 24-hr, or held them with live soldiers (LS) or live neotenic reproductives (LR). We then determined gene expression profiles of the host termite gut and protozoan symbionts concurrently using custom cDNA oligo-microarrays containing 10,990 individual ESTs. JH was the most influential treatment (501 total ESTs affected), followed by LS (24 ESTs), LR (12 ESTs) and SHE treatments (6 ESTs). The majority of JH up- and downregulated ESTs were of host and symbiont origin, respectively; in contrast, SHE, LR and LS treatments had more uniform impacts on host and symbiont gene expression. Repeat "follow-up" bioassays investigating combined JH + SHE impacts in relation to individual JH and SHE treatments on a subset of array-positive genes revealed (i) JH and SHE treatments had opposite impacts on gene expression and (ii) JH + SHE impacts on gene expression were generally intermediate between JH and SHE. Our results show that JH impacts hundreds of termite and symbiont genes within 24-hr, strongly suggesting a role for the termite gut in JH-dependent caste determination. Additionally, differential impacts of SHE and LS treatments were observed that are in strong agreement with previous studies that specifically investigated soldier caste regulation. However, it is likely that gene expression outside the gut may be of equal or greater importance than gut gene expression.
In Vivo Analysis of Lrig Genes Reveals Redundant and Independent Functions in the Inner Ear
del Rio, Tony; Nishitani, Allison M.; Yu, Wei-Ming; Goodrich, Lisa V.
2013-01-01
Lrig proteins are conserved transmembrane proteins that modulate a variety of signaling pathways from worm to humans. In mammals, there are three family members – Lrig1, Lrig2, and Lrig3 – that are defined by closely related extracellular domains with a similar arrangement of leucine rich repeats and immunoglobulin domains. However, the intracellular domains show little homology. Lrig1 inhibits EGF signaling through internalization and degradation of ErbB receptors. Although Lrig3 can also bind ErbB receptors in vitro, it is unclear whether Lrig2 and Lrig3 exhibit similar functions to Lrig1. To gain insights into Lrig gene functions in vivo, we compared the expression and function of the Lrigs in the inner ear, which offers a sensitive system for detecting effects on morphogenesis and function. We find that all three family members are expressed in the inner ear throughout development, with Lrig1 and Lrig3 restricted to subsets of cells and Lrig2 expressed more broadly. Lrig1 and Lrig3 overlap prominently in the developing vestibular apparatus and simultaneous removal of both genes disrupts inner ear morphogenesis. This suggests that these two family members act redundantly in the otic epithelium. In contrast, although Lrig1 and Lrig2 are frequently co-expressed, Lrig1−/−;Lrig2−/− double mutant ears show no enhanced structural abnormalities. At later stages, Lrig1 expression is sustained in non-sensory tissues, whereas Lrig2 levels are enhanced in neurons and sensory epithelia. Consistent with these distinct expression patterns, Lrig1 and Lrig2 mutant mice exhibit different forms of impaired auditory responsiveness. Notably, Lrig1−/−;Lrig2−/− double mutant mice display vestibular deficits and suffer from a more severe auditory defect that is accompanied by a cochlear innervation phenotype not present in single mutants. Thus, Lrig genes appear to act both redundantly and independently, with Lrig2 emerging as the most functionally distinct family member. PMID:24086156
2013-01-01
Background Termites are highly eusocial insects and show a division of labor whereby morphologically distinct individuals specialize in distinct tasks. In the lower termite Reticulitermes flavipes (Rhinotermitidae), non-reproducing individuals form the worker and soldier castes, which specialize in helping (e.g., brood care, cleaning, foraging) and defense behaviors, respectively. Workers are totipotent juveniles that can either undergo status quo molts or develop into soldiers or neotenic reproductives. This caste differentiation can be regulated by juvenile hormone (JH) and primer pheromones contained in soldier head extracts (SHE). Here we offered worker termites a cellulose diet treated with JH or SHE for 24-hr, or held them with live soldiers (LS) or live neotenic reproductives (LR). We then determined gene expression profiles of the host termite gut and protozoan symbionts concurrently using custom cDNA oligo-microarrays containing 10,990 individual ESTs. Results JH was the most influential treatment (501 total ESTs affected), followed by LS (24 ESTs), LR (12 ESTs) and SHE treatments (6 ESTs). The majority of JH up- and downregulated ESTs were of host and symbiont origin, respectively; in contrast, SHE, LR and LS treatments had more uniform impacts on host and symbiont gene expression. Repeat “follow-up” bioassays investigating combined JH + SHE impacts in relation to individual JH and SHE treatments on a subset of array-positive genes revealed (i) JH and SHE treatments had opposite impacts on gene expression and (ii) JH + SHE impacts on gene expression were generally intermediate between JH and SHE. Conclusions Our results show that JH impacts hundreds of termite and symbiont genes within 24-hr, strongly suggesting a role for the termite gut in JH-dependent caste determination. Additionally, differential impacts of SHE and LS treatments were observed that are in strong agreement with previous studies that specifically investigated soldier caste regulation. However, it is likely that gene expression outside the gut may be of equal or greater importance than gut gene expression. PMID:23870282
FAF1, a Gene that Is Disrupted in Cleft Palate and Has Conserved Function in Zebrafish
Ghassibe-Sabbagh, Michella; Desmyter, Laurence; Langenberg, Tobias; Claes, Filip; Boute, Odile; Bayet, Bénédicte; Pellerin, Philippe; Hermans, Karlien; Backx, Liesbeth; Mansilla, Maria Adela; Imoehl, Sandra; Nowak, Stefanie; Ludwig, Kerstin U.; Baluardo, Carlotta; Ferrian, Melissa; Mossey, Peter A.; Noethen, Markus; Dewerchin, Mieke; François, Geneviève; Revencu, Nicole; Vanwijck, Romain; Hecht, Jacqueline; Mangold, Elisabeth; Murray, Jeffrey; Rubini, Michele; Vermeesch, Joris R.; Poirel, Hélène A.; Carmeliet, Peter; Vikkula, Miikka
2011-01-01
Cranial neural crest (CNC) is a multipotent migratory cell population that gives rise to most of the craniofacial bones. An intricate network mediates CNC formation, epithelial-mesenchymal transition, migration along distinct paths, and differentiation. Errors in these processes lead to craniofacial abnormalities, including cleft lip and palate. Clefts are the most common congenital craniofacial defects. Patients have complications with feeding, speech, hearing, and dental and psychological development. Affected by both genetic predisposition and environmental factors, the complex etiology of clefts remains largely unknown. Here we show that Fas-associated factor-1 (FAF1) is disrupted and that its expression is decreased in a Pierre Robin family with an inherited translocation. Furthermore, the locus is strongly associated with cleft palate and shows an increased relative risk. Expression studies show that faf1 is highly expressed in zebrafish cartilages during embryogenesis. Knockdown of zebrafish faf1 leads to pharyngeal cartilage defects and jaw abnormality as a result of a failure of CNC to differentiate into and express cartilage-specific markers, such as sox9a and col2a1. Administration of faf1 mRNA rescues this phenotype. Our findings therefore identify FAF1 as a regulator of CNC differentiation and show that it predisposes humans to cleft palate and is necessary for lower jaw development in zebrafish. PMID:21295280
What's in a Name? The Case of Emotional Disclosure of Pain-Related Distress.
Cano, Annmarie; Goubert, Liesbet
2017-08-01
Pain behavior plays a key role in many theoretical models of pain, with many of these models conceptualizing pain behaviors as potentially detrimental to patient functioning. We propose that a certain class of behaviors-talking to others about one's pain-related distress (ie, emotional disclosures of pain-related distress)-can be distinguished from other behaviors traditionally conceptualized as pain behaviors. Emotional disclosures of pain-related distress include verbally disclosing one's anger, sadness, or worry about the pain and its effects to another person. In this article, conceptual and empirical evidence is offered to indicate that these verbal behaviors are distinct from other pain behaviors such as bodily expressions and motions, facial expressions, pain ratings, and paraverbal expressions. Emotion and relationships models are also applied to assert that disclosures of pain-related distress may have functions that are not shared with other pain behaviors. In addition to an expanded conceptualization of these verbal expressions of distress about pain, further directions are provided to spur new research as well as clinical recommendations concerning appropriate responses to these behaviors. This article offers an expanded conceptualization of one type of pain behavior-emotional disclosure of pain-related distress-by showing the theoretical and empirical distinctions between this behavior and other pain behaviors. This perspective may enhance clinical work and research aimed at identifying adaptive responses to these behaviors to improve pain adjustment. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.
Diao, Feici; Mena, Wilson; Shi, Jonathan; Park, Dongkook; Diao, Fengqiu; Taghert, Paul; Ewer, John; White, Benjamin H.
2016-01-01
To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone’s neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced “Trojan exon” technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks. PMID:26534952
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Fei; Maslov, Sergei; Yoo, Shinjae
Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset andmore » found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.« less
The Effects of IGF-1 on Trk Expressing DRG Neurons with HIV-gp120- Induced Neurotoxicity.
Li, Hao; Liu, Zhen; Chi, Heng; Bi, Yanwen; Song, Lijun; Liu, Huaxiang
2016-01-01
HIV envelope glycoprotein gp120 is the main protein that causes HIVassociated sensory neuropathy. However, the underlying mechanisms of gp120-induced neurotoxicity are still unclear. There are lack effective treatments for relieving HIV-related neuropathic symptoms caused by gp120-induced neurotoxicity. In the present study, tyrosine kinase receptor (Trk)A, TrkB, and TrkC expression in primary cultured dorsal root ganglion (DRG) neurons with gp120-induced neurotoxicity was investigated. The effects of IGF-1 on distinct Trk-positive DRG neurons with gp120-induced neurotoxicity were also determined. The results showed that gp120 not only dose-dependently induced DRG neuronal apoptosis and inhibited neuronal survival and neurite outgrowth, but also decreased distinct Trk expression levels. IGF-1 rescued DRG neurons from apoptosis and improved neuronal survival of gp120 neurotoxic DRG neurons in vitro. IGF-1 also improved TrkA and TrkB, but not TrkC, expression in gp120 neurotoxic conditions. The effects of IGF-1 could be blocked by preincubation with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These results suggested that gp120 may have a wide range of neurotoxicity on different subpopulations of DRG neurons, while IGF-1 might only relieve some subpopulations of DRG neurons with gp120-induced neurotoxicity. These data provide novel information of mechanisms of gp120 neurotoxicity on primary sensory neurons and the potential therapeutic effects of IGF-1 on gp120-induced neurotoxicity.
He, Fei; Maslov, Sergei; Yoo, Shinjae; ...
2016-05-25
Here, transcriptome datasets from thousands of samples of the model plant Arabidopsis thaliana have been collectively generated by multiple individual labs. Although integration and meta-analysis of these samples has become routine in the plant research community, it is often hampered by the lack of metadata or differences in annotation styles by different labs. In this study, we carefully selected and integrated 6,057 Arabidopsis microarray expression samples from 304 experiments deposited to NCBI GEO. Metadata such as tissue type, growth condition, and developmental stage were manually curated for each sample. We then studied global expression landscape of the integrated dataset andmore » found that samples of the same tissue tend to be more similar to each other than to samples of other tissues, even in different growth conditions or developmental stages. Root has the most distinct transcriptome compared to aerial tissues, but the transcriptome of cultured root is more similar to those of aerial tissues as the former samples lost their cellular identity. Using a simple computational classification method, we showed that the tissue type of a sample can be successfully predicted based on its expression profile, opening the door for automatic metadata extraction and facilitating re-use of plant transcriptome data. As a proof of principle we applied our automated annotation pipeline to 708 RNA-seq samples from public repositories and verified accuracy of our predictions with samples’ metadata provided by authors.« less
Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals.
Li, Chonghui; Qiu, Jian; Ding, Ling; Huang, Mingzhong; Huang, Surong; Yang, Guangsui; Yin, Junmei
2017-03-01
Dendrobium hybrids orchid are popular throughout the world. They have various floral color and pigmentation patterns that are mainly caused by anthocyanins. It is well established that anthocyanin biosynthesis is regulated by the interplay between MYB and bHLH transcription factors (TF) in most plants. In this study, we identified one R2R3-MYB gene, DhMYB2, and one bHLH gene, DhbHLH1, from a Dendrobium hybrid. Their expression profiles were related to anthocyanin pigmentation in Dendrobium petals. Transient over-expression of these two TF genes showed that both DhMYB2 and DhbHLH1 resulted in anthocyanin production in white petals. The interaction between the two TFs was observed in vitro. In different Dendrobium hybrids petals with various pigmentations, DhMYB2 and DhbHLH1 were co-expressed with DhDFR and DhANS, which are regarded as potential regulatory targets of the two TFs. In flowers with distinct purple lips but white or yellow petals/sepals, the expression of DhbHLH1 was only related to anthocyanin accumulation in the lips. Taken together, DhMYB2 interacted with DhbHLH1 to regulate anthocyanin production in Dendrobium hybrid petals. DhbHLH1 was also responsible for the distinct anthocyanin pigmentation in lip tissues. The functional characterization of DhMYB2 and DhbHLH1 will improve understanding of anthocyanin biosynthesis modulation in Dendrobium orchids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kuang, Zheng; Cai, Ling; Zhang, Xuekui; Ji, Hongkai; Tu, Benjamin P.; Boeke, Jef D.
2014-01-01
Under continuous, glucose-limited conditions, budding yeast exhibit robust metabolic cycles associated with major oscillations of gene expression. How such fluctuations are linked to changes in chromatin status is not well understood. Here we examine the correlated genome-wide transcription and chromatin states across the yeast metabolic cycle at unprecedented temporal resolution, revealing a “just-in-time supply chain” by which components from specific cellular processes such as ribosome biogenesis become available in a highly coordinated manner. We identify distinct chromatin and splicing patterns associated with different gene categories and determine the relative timing of chromatin modifications to maximal transcription. There is unexpected variation in the chromatin modification and expression relationship, with histone acetylation peaks occurring with varying timing and “sharpness” relative to RNA expression both within and between cycle phases. Chromatin modifier occupancy reveals subtly distinct spatial and temporal patterns compared to the modifications themselves. PMID:25173176
Genome-Wide Analysis of bZIP-Encoding Genes in Maize
Wei, Kaifa; Chen, Juan; Wang, Yanmei; Chen, Yanhui; Chen, Shaoxiang; Lin, Yina; Pan, Si; Zhong, Xiaojun; Xie, Daoxin
2012-01-01
In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis. PMID:23103471
Postnatal development of GABAergic interneurons in the neocortical subplate of mice.
Qu, G-J; Ma, J; Yu, Y-C; Fu, Y
2016-05-13
The subplate (SP) plays important roles in developmental and functional events in the neocortex, such as thalamocortical and corticofugal projection, cortical oscillation generation and corticocortical connectivity. Although accumulated evidence indicates that SP interneurons are crucial for SP function, the molecular composition of SP interneurons as well as their developmental profile and distribution remain largely unclear. In this study, we systematically investigated dynamic development of SP thickness and chemical marker expression in SP interneurons in distinct cortical regions during the first postnatal month. We found that, although the relative area of the SP in the cerebral cortex significantly declined with postnatal development, the absolute thickness did not change markedly. We also found that somatostatin (SOM), the ionotropic serotonin receptor 3A (5HT3AR), and parvalbumin (PV) reliably identify three distinct non-overlapping subpopulations of SP interneurons. The SOM group, which represents ~30% of total SP interneurons, expresses neuronal nitric oxide synthase (nNOS) and calbindin (CB) and colocalizes entirely with neuropeptide Y (NPY). The 5HT3AR group, which accounts for ~60% of the total interneuronal population, expresses calretinin (CR) and GABA-A receptor subunit delta (GABAARδ). The PV group accounts for ~10% of total SP interneurons and coexpressed GABAARδ. Moreover, distinct interneuron subtypes show characteristic temporal and spatial distribution in the SP. nNOS(+) interneurons in the SP increase from the anterior motor cortex to posterior visual cortex, while CR(+) and CB(+) interneurons the opposite. Interestedly, the majority of GABAARδ(+) neurons in SP are non-GABAergic neurons in contrast to other cortical layers. These findings clarify and extend our understanding of SP interneurons in the developing cerebral cortex and will underpin further study of SP function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Swope, David; Kramer, Joseph; King, Tiffany R.; Cheng, Yi-Shan; Kramer, Sunita G.
2017-01-01
The embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood. Here we provide evidence that DV closure occurs at multiple independent points along the A-P axis of the embryo in a “buttoning” pattern, divergent from the zippering mechanism observed in the overlying epidermis during dorsal closure. Moreover, we demonstrate that a genetically distinct subset of CBs is programmed to make initial contact with the opposing row. To elucidate the cellular mechanisms underlying this process, we examined the role of Rho GTPases during cardiac migration using inhibitory and overexpression approaches. We found that Cdc42 shows striking cell-type specificity during DV formation. Disruption of Cdc42 function specifically prevents CBs that express the homeobox gene tinman from completing their dorsal migration, resulting in a failure to make connections with their partnering CBs. Conversely, neighboring CBs that express the orphan nuclear receptor, seven-up, are not sensitive to Cdc42 inhibition. Furthermore, this phenotype was specific to Cdc42 and was not observed upon perturbation of Rac or Rho function. Together with the observation that DV closure occurs through the initial contralateral pairing of tinman-expressing CBs, our studies suggest that the distinct buttoning mechanism we propose for DV closure is elaborated through signaling pathways regulating Cdc42 activity in this cell type. PMID:24949939
Matsuyoshi, Hiroko; Takimoto, Koichi; Yunoki, Takakazu; Erickson, Vickie L; Tyagi, Pradeep; Hirao, Yoshihiko; Wanaka, Akio; Yoshimura, Naoki
2012-09-17
Dorsal root ganglia contain heterogeneous populations of primary afferent neurons that transmit various sensory stimuli. This functional diversity may be correlated with differential expression of voltage-gated K(+) (Kv) channels. Here, we examine cellular distributions of Kv4 pore-forming and ancillary subunits that are responsible for fast-inactivating A-type K(+) current. Expression pattern of Kv α-subunit, β-subunit and auxiliary subunit was investigated using immunohistochemistry, in situ hybridization and RT-PCR technique. The two pore-forming subunits Kv4.1 and Kv4.3 show distinct cellular distributions: Kv4.3 is predominantly in small-sized C-fiber neurons, whereas Kv4.1 is seen in DRG neurons in various sizes. Furthermore, the two classes of Kv4 channel auxiliary subunits are also distributed in different-sized cells. KChIP3 is the only significantly expressed Ca(2+)-binding cytosolic ancillary subunit in DRGs and present in medium to large-sized neurons. The membrane-spanning auxiliary subunit DPP6 is seen in a large number of DRG neurons in various sizes, whereas DPP10 is restricted in small-sized neurons. Distinct combinations of Kv4 pore-forming and auxiliary subunits may constitute A-type channels in DRG neurons with different physiological roles. Kv4.1 subunit, in combination with KChIP3 and/or DPP6, form A-type K(+) channels in medium to large-sized A-fiber DRG neurons. In contrast, Kv4.3 and DPP10 may contribute to A-type K(+) current in non-peptidergic, C-fiber somatic afferent neurons. Copyright © 2012 Elsevier Inc. All rights reserved.
Mitsiades, Nicholas; Sung, Clifford C.; Schultz, Nikolaus; Danila, Daniel C.; He, Bin; Eedunuri, Vijay Kumar; Fleisher, Martin; Sander, Chris; Sawyers, Charles L.; Scher, Howard I.
2012-01-01
Androgen receptor (AR) signaling persists in castration-resistant prostate carcinomas (CRPCs), due to several mechanisms that include increased AR expression and intratumoral androgen metabolism. We investigated the mechanisms underlying aberrant expression of transcripts involved in androgen metabolism in CRPC. We compared gene expression profiles and DNA copy number alteration (CNA) data from 29 normal prostate tissue samples, 127 primary prostate carcinomas (PCas) and 19 metastatic PCas. Steroidogenic enzyme transcripts were evaluated by qRT-PCR in PCa cell lines and circulating tumor cells (CTCs) from CRPC patients. Metastatic PCas expressed higher transcript levels for AR and several steroidogenic enzymes, including SRD5A1, SRD5A3, and AKR1C3, while expression of SRD5A2, CYP3A4, CYP3A5 and CYP3A7 was decreased. This aberrant expression was rarely associated with CNAs. Instead, our data suggest distinct patterns of coordinated aberrant enzyme expression. Inhibition of AR activity by itself stimulated AKR1C3 expression. The aberrant expression of the steroidogenic enzyme transcripts were detected in CTCs from CRPC patients. In conclusion, our findings identify substantial interpatient heterogeneity and distinct patterns of dysregulated expression of enzymes involved in intratumoral androgen metabolism in PCa. These steroidogenic enzymes represent targets for complete suppression of systemic and intratumoral androgen levels, an objective that is supported by the clinical efficacy of the CYP17 inhibitor abiraterone. A comprehensive AR axis targeting approach via simultaneous, frontline enzymatic blockade and/or transcriptional repression of several steroidogenic enzymes, in combination with GnRH analogs and potent anti-androgens, would represent a powerful future strategy for PCa management. PMID:22971343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko
Highlights: Black-Right-Pointing-Pointer AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. Black-Right-Pointing-Pointer AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. Black-Right-Pointing-Pointer AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown.more » Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPAR{gamma}), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPAR{gamma}-agonist or forced expression of FSP27, while it was synergized by a PPAR{gamma}-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological situations; one is a supportive response against nutritional deprivation achieved by enhancing lipase activity, and the other is a pathological consequence of obesity, causing subclinical inflammation and metabolic disorders, mediated by abolishing droplet-coating proteins.« less
Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome.
Hansen, Katelin F; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H; Loeser, Jacob; Hesse, Andrea M; Page, Chloe E; Pelz, Carl; Arthur, J Simon C; Impey, Soren; Obrietan, Karl
2016-02-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. © 2016 Hansen et al.; Published by Cold Spring Harbor Laboratory Press.
Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome
Hansen, Katelin F.; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H.; Loeser, Jacob; Hesse, Andrea M.; Page, Chloe E.; Pelz, Carl; Arthur, J. Simon C.; Impey, Soren
2016-01-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. PMID:26773099
Andrade, Bruno B.; Kumar, Nathella Pavan; Amaral, Eduardo P.; Riteau, Nicolas; Mayer-Barber, Katrin D.; Tosh, Kevin W.; Maier, Nolan; Conceição, Elisabete L.; Kubler, Andre; Sridhar, Rathinam; Banurekha, Vaithilingam V.; Jawahar, Mohideen S.; Barbosa, Theolis; Manganiello, Vincent C.; Moss, Joel; Fontana, Joseph R.; Marciano, Beatriz E.; Sampaio, Elizabeth P.; Olivier, Kenneth N.; Holland, Steven M.; Jackson, Sharon H.; Moayeri, Mahtab; Leppla, Stephen; Sereti, Irini; Barber, Daniel L.; Nutman, Thomas B.; Babu, Subash; Sher, Alan
2015-01-01
Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMP). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels have been shown to distinguish active from latent as well as successfully treated Mycobacterium tuberculosis (Mtb) infection. MMP-1 expression is also associated with active TB. Here, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other non-tuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied expression of HO-1 and MMP-1 in Mtb-infected human and murine macrophages. We found that infection of macrophages with live virulent Mtb is required for robust induction of high levels of HO-1, but not MMP-1. In addition, we observed that carbon monoxide, a product of Mtb induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients. PMID:26268658
Muñoz-Cano, Rosa; Pascal, Mariona; Bartra, Joan; Picado, Cesar; Valero, Antonio; Kim, Do-Kyun; Brooks, Stephen; Ombrello, Michael; Metcalfe, Dean D.; Rivera, Juan; Olivera, Ana
2015-01-01
Background Lipid transfer protein (LTP), an abundant protein in fruits, vegetables and nuts, is a common food allergen in Mediterranean areas causing diverse allergic reactions. Approximately 40% of food anaphylaxis induced by LTP require non-steroidal anti-inflammatory drugs (NSAIDs) as a triggering cofactor. Objective To better understand the determinants of NSAID-dependent (NSAID-LTP-A) and NSAID-independent LTP-anaphylaxis (LTP-A) Methods Selection of patients was based on a proven clinical history of NSAID-dependent or -independent anaphylaxis to LTP, positive skin prick test to LTP and serum LTP-IgE. Whole transcriptome (RNA-Seq) analysis of blood cells from 14 individuals with NSAID-LTP-A, 7 with LTP-A and 13 healthy controls was performed to identify distinct gene expression signatures. Results Expression of genes regulating gastrointestinal epithelium renewal was altered in both patient sets, particularly in LTP-A, who also presented gene expression profiles characteristic of an inflammatory syndrome. These included altered B cell pathways, increased neutrophil activation markers and elevated levels of reactive oxygen species. Increased expression of the IgG receptor (CD64) in LTP-A patients was mirrored by the presence of LTP-specific IgG1 and 3. Conversely, NSAID-LTP-A patients were characterized by reduced expression of IFN-γ-regulated genes and IFN-γ levels as well as up-regulated adenosine receptor 3 (ADORA3) expression and genes related to adenosine metabolism. Conclusions Gene ontology analysis suggests disturbances in gut epithelium homeostasis in both LTP-related anaphylaxis groups with potential integrity breaches in LTP-A that may explain their distinct inflammatory signature. Differential regulation in LTP-A and NSAID-LTP-A of the IFN-γ pathway, IgG receptors and ADORA3 may provide the pathogenic basis of their distinct responses. PMID:26194548
Chen, Hsu-Hsin; Luche, Ralf; Wei, Bo; Tonks, Nicholas K
2004-10-01
Dual specificity phosphatases (DSPs) are members of the protein-tyrosine phosphatase superfamily that dephosphorylate both phosphotyrosine and phosphoserine/threonine residues in vitro. Many DSPs have been found to play important roles in various aspects of cellular function and to be involved in human disease. We have identified a gene located on human chromosome 10q22.2, which utilizes alternative open reading frames (ORFs) to encode the following two distinct DSPs: the previously described testis and skeletal muscle-specific dual specificity phosphatase (TMDP) and a novel DSP, muscle-restricted dual specificity phosphatase (MDSP). Use of alternative ORFs encoding distinct proteins from a single gene is extremely rare in eukaryotes, and in all previously reported cases the two proteins produced from one gene are unrelated. To our knowledge this is the first example of a gene from which two distinct proteins of the same family are expressed using alternative ORFs. Here we provide evidence that both MDSP and TMDP proteins are expressed in vivo and are restricted to specific tissues, skeletal muscle and testis, respectively. Most interestingly, the protein expression profiles of both MDSP and TMDP during mouse postnatal development are strikingly similar. MDSP is expressed at very low levels in myotubes and early postnatal muscle. TMDP is not detectable in testis lysate in the first 3 weeks of life. The expression of both MDSP and TMDP proteins was markedly increased at approximately the 3rd week after birth and continued to increase gradually into adulthood, implying that the physiological functions of both DSPs are specific to the mature/late-developing organs. The conserved gene structure and the similarity in postnatal expression profile of these two proteins suggest biological significance of the unusual gene arrangement.
Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B
2017-10-01
In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p < 0.04) and 8 g/L (p = 0.05) treatments. HAMP expression showed alternating elevations and increased upon 1 g/L (p < 0.05) and 5 g/L (p < 0.05). However, in the recombinant cells that showed higher intracellular iron levels than wild-type cells, HFE and HAMP expressions were elevated only at low 1 g/L treatment (p < 0.03) and were repressed at 2 g/L treatment (p < 0.03). Under holotransferrin-untreated conditions, the iron-loaded recombinant cells showed higher expressions of HFE (p < 0.03) and HAMP (p = 0.05) than wild-type cells. HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.
CD94 Defines Phenotypically and Functionally Distinct Mouse NK Cell Subsets1
Yu, Jianhua; Wei, Min; Mao, Hsiaoyin; Zhang, Jianying; Hughes, Tiffany; Mitsui, Takeki; Park, Il-kyoo; Hwang, Christine; Liu, Shujun; Marcucci, Guido; Trotta, Rossana; Benson, Don M.; Caligiuri, Michael A.
2010-01-01
Understanding of heterogeneous NK subsets is important for the study of NK cell biology and development, and for the application of NK cell-based therapies in the treatment of disease. Here we demonstrate that the surface expression of CD94 can distinctively divide mouse NK cells into two approximately even CD94low and CD94high subsets in all tested organs and tissues. The CD94high NK subset has significantly greater capacity to proliferate, produce IFN-γ, and lyse target cells than does the CD94low subset. The CD94high subset has exclusive expression of NKG2A/C/E, higher expression of CD117 and CD69, and lower expression of Ly49D (activating) and Ly49G2 (inhibitory). In vivo, purified mouse CD94low NK cells become CD94high NK cells, but not vice versa. Collectively, our data suggest that CD94 is an Ag that can be used to identify functionally distinct NK cell subsets in mice and could also be relevant to late-stage mouse NK cell development. PMID:19801519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, J.; Malchiodi, E; Cho, S
2009-01-01
Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less
Neutrophil subset responses in infants with severe viral respiratory infection.
Cortjens, Bart; Ingelse, Sarah A; Calis, Job C; Vlaar, Alexander P; Koenderman, Leo; Bem, Reinout A; van Woensel, Job B
2017-03-01
Neutrophils are the predominant inflammatory cells recruited to the respiratory tract as part of the innate immune response to viral infections. Recent reports indicate the existence of distinct functional neutrophil subsets in the circulatory compartment of adults, following severe inflammatory conditions. Here, we evaluated the occurrence of neutrophil subsets in blood and broncho-alveolar lavage fluid during severe viral respiratory infection in infants based on CD16/CD62L expression. We show that during the course of severe respiratory infection infants may develop four heterogeneous neutrophil subsets in blood (mature, immature, progenitor, and suppressive neutrophils), each with distinct activation states. However, while isolated viral respiratory infection was characterized by a relative absence of suppressive neutrophils in both blood and lungs, only patients with bacterial co-infection were shown to produce suppressive neutrophils. These data suggest the occurrence of distinct and unique neutrophil subset responses during severe viral and (secondary) bacterial respiratory infection in infants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Keustermans, Genoveva; van der Heijden, Laila B; Boer, Berlinda; Scholman, Rianne; Nuboer, Roos; Pasterkamp, Gerard; Prakken, Berent; de Jager, Wilco; Kalkhoven, Eric; Janse, Arieke J; Schipper, Henk S
2017-01-01
Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.
Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops
Schiefelbein, John; Huang, Ling; Zheng, Xiaohua
2014-01-01
The specification of distinct cell types in multicellular organisms is accomplished via establishment of differential gene expression. A major question is the nature of the mechanisms that establish this differential expression in time and space. In plants, the formation of the hair and non-hair cell types in the root epidermis has been used as a model to understand regulation of cell specification. Recent findings show surprising complexity in the number and the types of regulatory interactions between the multiple transcription factor genes/proteins influencing root epidermis cell fate. Here, we describe this regulatory network and the importance of the multiple feedback loops for its establishment and maintenance. PMID:24596575
Fluxoids configurations in finite superconducting networks
NASA Astrophysics Data System (ADS)
Sharon, Omri J.; Haham, Noam; Shaulov, Avner A.; Yeshurun, Yosef
2017-12-01
Analysis of superconducting ladders consisting of rectangular loops, yields an Ising like expression for the total energy of the ladders as a function of the loops vorticities and the applied magnetic field. This expression shows that fluxoids can be treated as repulsively interacting objects driven towards the ladder center by the applied field. Distinctive repulsive interactions between fluxoids are obtained depending on the ratio l between the loops length and the common width of adjacent loops. A 'short range' and a 'long range' interactions obtained for l ≳ 1 and l ≪ 1, respectively, give rise to remarkably different fluxoid configurations. The different configurations of fluxoids in different types of ladders are illustrated by simulations.
Developmental expression of human hemoglobins mediated by maturation of their subunit interfaces
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio; Chait, Brian T; Russell, J Eric; Manning, James M
2010-01-01
Different types of human hemoglobins (Hbs) consisting of various combinations of the embryonic, fetal, and adult Hb subunits are present at certain times during development representing a major paradigm of developmental biology that is still not understood and one which we address here. We show that the subunit interfaces of these Hbs have increasing bonding strengths as demonstrated by their distinct distribution of tetramers, dimers, and monomers during gel filtration at very low-Hb concentration. This maturation is mediated by competition between subunits for more favorable partners with stronger subunit interactions. Thus, the protein products of gene expression can themselves have a role in the developmental process due to their intrinsic properties. PMID:20572018
[Search for protective antigens in Ixodes persulcatus (ixodidae) salivary gland extracts].
Shtannikov, A V; Reshetniak, T V; Repolovskaia, T V; Panfertsev, E A; Perovskaia, O N; Gutova, V P; Vasil'eva, I S; Ershova, A S; Prilipov, A G; Biketov, S F; Zeidner, N
2010-01-01
RT-PCR evaluation of the activity of eight Ixodes persulcatus salivary gland genes shows clear distinctions in their expression depending of the stage of tick feeding. Out of them, only Salp 10 and Salp 15 proteins may be regarded as candidates for protective antigens to develop anti-tick and anti-Borrelia vaccines. Firstly they play an important role in feeding a tick and modifying a host's immune response. Secondly, the increasing expression of the salp 10 and salp 10 genes begins at early tick feeding stages. Thirdly, the activity of these genes increases with the beginning of feeding by tens and hundreds times and keeps at this level until the third tick feeding stage is over.
Sakata, Kazuko; Martinowich, Keri; Woo, Newton H.; Schloesser, Robert J.; Jimenez, Dennisse V.; Ji, Yuanyuan; Shen, Liya; Lu, Bai
2013-01-01
Activity-dependent gene transcription, including that of the brain-derived neurotrophic factor (Bdnf) gene, has been implicated in various cognitive functions. We previously demonstrated that mutant mice with selective disruption of activity-dependent BDNF expression (BDNF-KIV mice) exhibit deficits in GABA-mediated inhibition in the prefrontal cortex (PFC). Here, we show that disruption of activity-dependent BDNF expression impairs BDNF-dependent late-phase long-term potentiation (L-LTP) in CA1, a site of hippocampal output to the PFC. Interestingly, early-phase LTP and conventional L-LTP induced by strong tetanic stimulation were completely normal in BDNF-KIV mice. In parallel, attenuation of activity-dependent BDNF expression significantly impairs spatial memory reversal and contextual memory extinction, two executive functions that require intact hippocampal–PFC circuitry. In contrast, spatial and contextual memory per se were not affected. Thus, activity-dependent BDNF expression in the hippocampus and PFC may contribute to cognitive and behavioral flexibility. These results suggest distinct roles for different forms of L-LTP and provide a link between activity-dependent BDNF expression and behavioral perseverance, a hallmark of several psychiatric disorders. PMID:23980178
Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs
Yin, Linlin; Maddison, Lisette A.; Li, Mingyu; Kara, Nergis; LaFave, Matthew C.; Varshney, Gaurav K.; Burgess, Shawn M.; Patton, James G.; Chen, Wenbiao
2015-01-01
Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. PMID:25855067
Fisher, Katie; Towler, John; Eimer, Martin
2016-01-08
It is frequently assumed that facial identity and facial expression are analysed in functionally and anatomically distinct streams within the core visual face processing system. To investigate whether expression and identity interact during the visual processing of faces, we employed a sequential matching procedure where participants compared either the identity or the expression of two successively presented faces, and ignored the other irrelevant dimension. Repetitions versus changes of facial identity and expression were varied independently across trials, and event-related potentials (ERPs) were recorded during task performance. Irrelevant facial identity and irrelevant expression both interfered with performance in the expression and identity matching tasks. These symmetrical interference effects show that neither identity nor expression can be selectively ignored during face matching, and suggest that they are not processed independently. N250r components to identity repetitions that reflect identity matching mechanisms in face-selective visual cortex were delayed and attenuated when there was an expression change, demonstrating that facial expression interferes with visual identity matching. These findings provide new evidence for interactions between facial identity and expression within the core visual processing system, and question the hypothesis that these two attributes are processed independently. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phillips, M L; Williams, L; Senior, C; Bullmore, E T; Brammer, M J; Andrew, C; Williams, S C; David, A S
1999-11-08
Several studies have demonstrated impaired facial expression recognition in schizophrenia. Few have examined the neural basis for this; none have compared the neural correlates of facial expression perception in different schizophrenic patient subgroups. We compared neural responses to facial expressions in 10 right-handed schizophrenic patients (five paranoid and five non-paranoid) and five normal volunteers using functional Magnetic Resonance Imaging (fMRI). In three 5-min experiments, subjects viewed alternating 30-s blocks of black-and-white facial expressions of either fear, anger or disgust contrasted with expressions of mild happiness. After scanning, subjects categorised each expression. All patients were less accurate in identifying expressions, and showed less activation to these stimuli than normals. Non-paranoids performed poorly in the identification task and failed to activate neural regions that are normally linked with perception of these stimuli. They categorised disgust as either anger or fear more frequently than paranoids, and demonstrated in response to disgust expressions activation in the amygdala, a region associated with perception of fearful faces. Paranoids were more accurate in recognising expressions, and demonstrated greater activation than non-paranoids to most stimuli. We provide the first evidence for a distinction between two schizophrenic patient subgroups on the basis of recognition of and neural response to different negative facial expressions.
Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted
2014-12-01
Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.
Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted
2014-01-01
Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102
Zhu, Qiang; Tan, Zhou; Zhao, Shufang; Huang, Hao; Zhao, Xiaofeng; Hu, Xuemei; Zhang, Yiping; Shields, Christopher B; Uetani, Noriko; Qiu, Mengsheng
2015-01-01
Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocyte undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals. PMID:26341907
Proteomic Characterization of Host Response to Yersinia pestis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chromy, B; Perkins, J; Heidbrink, J
Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct formore » the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.« less
Yun, Yeo Hong; Koo, Ja Sun
2015-01-01
Phenylalanine ammonia-lyase (PAL) gene is known to be expressed in plants, and is involved in the differentiation, growth and synthesis of secondary metabolites. However, its expression in fungi remains to be explored. To understand its expression in mushroom fungi, the PAL gene of the edible mushroom Flammulina velutipes (Fvpal) was cloned and characterized. The cloned Fvpal consists of 2,175 bp, coding for a polypeptide containing 724 amino acids and having 11 introns. The translated amino acid sequence of Fvpal shares a high identity (66%) with that of ectomycorrhizal fungus Tricholoma matsutake. Distinctively, the Fvpal expression in the mycelium was higher in minimal medium supplemented with L-tyrosine than with other aromatic amino acids. During cultivation of the mushroom on sawdust medium, Fvpal expression in the fruit body correspondingly increased as the mushroom grew. In the fruiting body, Fvpal was expressed more in the stipe than in the pileus. These results suggest that F. velutipes PAL activity differs in the different organs of the mushroom. Overall, this is first report to show that the PAL gene expression is associated with mushroom growth in fungi. PMID:26539050
Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.
2007-01-01
Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872
Developing a PTEN-ERG Signature to Improve Molecular Risk Stratification in Prostate Cancer
2017-10-01
that there exist distinctive molecular correlates of PTEN loss in the context of ETS-negative versus ETS-positive human prostate cancers and that...distinctive molecular correlates of PTEN loss in the context of ETS-negative versus ETS-positive human PCa and that these may drive prognosis...and MSKCC cohort, correlate these data with gene expression data from the same cohort to confirm ETS status and enable full gene expression analyses of
G-protein coupled receptor expression patterns delineate medulloblastoma subgroups
2013-01-01
Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways is a secondary benefit to identifying differential GPCR expression patterns in medulloblastoma tumors. PMID:24252460
Rodrigo, Juan P.; Menéndez, Sofía Tirados; Hermida-Prado, Francisco; Álvarez-Teijeiro, Saúl; Villaronga, M. Ángeles; Alonso-Durán, Laura; Vallina, Aitana; Martínez-Camblor, Pablo; Astudillo, Aurora; Suárez, Carlos; María García-Pedrero, Juana
2015-01-01
This study investigates the clinical significance of Anoctamin-1 gene mapping at 11q13 amplicon in both the development and progression of head and neck squamous cell carcinomas (HNSCC). ANO1 protein expression was evaluated by immunohistochemistry in a cohort of 372 surgically treated HNSCC patients and also in 35 laryngeal precancerous lesions. ANO1 gene amplification was determined by real-time PCR in all the laryngeal premalignancies and 60 of the HNSCCs, and molecular data correlated with clinical outcome. ANO1 gene amplification was frequently detected in both premalignant lesions (63%) and HNSCC tumours (58%), whereas concomitant ANO1 expression occurred at a much lower frequency (20 and 22%). Interestingly, laryngeal dysplasias harbouring ANO1 gene amplification showed a higher risk of malignant transformation (HR = 3.62; 95% CI 0.79–16.57; P = 0.097; Cox regression). ANO1 expression and gene amplification showed no significant associations with clinicopathological parameters in HNSCC. However, remarkably ANO1 expression differentially influenced patient survival depending on the tumour site. Collectively, this study provides original evidence demonstrating the distinctive impact of ANO1 expression on HNSCC prognosis depending on the tumour site. PMID:26498851
Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions.
Guo, Guangyu; Xu, Kun; Zhang, Xiaomei; Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu
2015-01-01
The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.
Specification of ion transport cells in the Xenopus larval skin
Quigley, Ian K.; Stubbs, Jennifer L.; Kintner, Chris
2011-01-01
Specialized epithelial cells in the amphibian skin play important roles in ion transport, but how they arise developmentally is largely unknown. Here we show that proton-secreting cells (PSCs) differentiate in the X. laevis larval skin soon after gastrulation, based on the expression of a `kidney-specific' form of the H+v-ATPase that localizes to the plasma membrane, orthologs of the Cl–/HCO –3 antiporters ae1 and pendrin, and two isoforms of carbonic anhydrase. Like PSCs in other species, we show that the expression of these genes is likely to be driven by an ortholog of foxi1, which is also sufficient to promote the formation of PSC precursors. Strikingly, the PSCs form in the skin as two distinct subtypes that resemble the alpha- and beta-intercalated cells of the kidney. The alpha-subtype expresses ae1 and localizes H+v-ATPases to the apical plasma membrane, whereas the beta-subtype expresses pendrin and localizes the H+v-ATPase cytosolically or basolaterally. These two subtypes are specified during early PSC differentiation by a binary switch that can be regulated by Notch signaling and by the expression of ubp1, a transcription factor of the grainyhead family. These results have implications for how PSCs are specified in vertebrates and become functionally heterogeneous. PMID:21266406
Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei
2016-01-01
Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666
Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions
Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu
2015-01-01
The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth. PMID:26371882
Hormone-dependent control of developmental timing through regulation of chromatin accessibility
Uyehara, Christopher M.; Nystrom, Spencer L.; Niederhuber, Matthew J.; Leatham-Jensen, Mary; Ma, Yiqin; Buttitta, Laura A.
2017-01-01
Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility. PMID:28536147
Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P H; Zhao, Chunyan; Dahlman-Wright, Karin
2015-04-10
The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression.
Qiao, Yichun; Shiue, Chiou-Nan; Zhu, Jian; Zhuang, Ting; Jonsson, Philip; Wright, Anthony P.H.; Zhao, Chunyan; Dahlman-Wright, Karin
2015-01-01
The molecular determinants of malignant cell behaviour in triple-negative breast cancer (TNBC) are poorly understood. Recent studies have shown that regulators of epithelial-mesenchymal transition (EMT) are potential therapeutic targets for TNBC. In this study, we demonstrate that the inflammatory cytokine TNFα induces EMT in TNBC cells via activation of AP-1 signaling and subsequently induces expression of the EMT regulator ZEB2. We also show that TNFα activates both the PI3K/Akt and MAPK/ERK pathways, which act upstream of AP-1. We further investigated in detail AP-1 regulation of ZEB2 expression. We show that two ZEB2 transcripts derived from distinct promoters are both expressed in breast cancer cell lines and breast tumor samples. Using the chromosome conformation capture assay, we demonstrate that AP-1, when activated by TNFα, binds to a site in promoter 1b of the ZEB2 gene where it regulates the expression of both promoter 1b and 1a, the latter via mediating long range chromatin interactions. Overall, this work provides a plausible mechanism for inflammation-induced metastatic potential in TNBC, involving a novel regulatory mechanism governing ZEB2 isoform expression. PMID:25762639
Castresana, C; de Carvalho, F; Gheysen, G; Habets, M; Inzé, D; Van Montagu, M
1990-01-01
The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection. PMID:2152158
Parrinello, Daniela; Sanfratello, Maria A; Vizzini, Aiti; Cammarata, Matteo
2015-03-01
Two distinct Ciona intestinalis phenoloxidases (CinPO1, 2) had previously been cloned and sequenced. The CinPO2 is involved in innate immunity and is expressed by inflammatory hemocytes that populate the tunic and pharynx vessels as a response to LPS inoculation. In situ hybridization and immunohistochemistry assays on histological section, showed that the expression of this gene and the produced protein are shared with oogenesis, embryogenesis and larval morphogenesis. Intriguingly, upregulation of gene transcription was found in the test cell layer that envelopes the ovary follicle, ovulated egg, and gastrula, as well as it was modulated in the zygotic nucleus of outer balstomers of 32-cell embryo, neurula presumptive epidermis tissue and larval mesenchyme. The anti-CinPO2 antibodies, specific for adult inflammatory cells, recognize epitopes in the cytoplasm of ovarian oocytes, ovulated eggs, development stages and larval mesenchyme. The overall findings disclose the precocious activation of the CinPO2 immunity-related gene, and show a developmentally programmed expression of this phenoloxidase. Furthermore, these findings support the multifunctional roles of immunity-related genes and allows us to explore new perspectives on ascidian development and immunity. © 2015 Wiley Periodicals, Inc.
Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2
NASA Astrophysics Data System (ADS)
Bunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.; Akram, Neelam; Vila-Costa, Maria; Palovaara, Joakim; Svensson, Lovisa; Holmfeldt, Karin; González, José M.; Calvo, Eva; Pelejero, Carles; Marrasé, Cèlia; Dopson, Mark; Gasol, Josep M.; Pinhassi, Jarone
2016-05-01
Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l-1) however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l-1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.
Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.
Hey, Ying-Ying; O'Neill, Helen C
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.
Lee, M M; Schiefelbein, J
2001-05-01
The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.
Zhao, Yafei; Zhang, Teng; Broholm, Suvi K; Tähtiharju, Sari; Mouhu, Katriina; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula
2016-09-01
The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. © 2016 American Society of Plant Biologists. All rights reserved.
The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status.
Xu, Wei; Jia, Shengxian; Xie, Ping; Zhong, Aimei; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J
2014-04-01
Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.
Chronic inflammation is a feature of Achilles tendinopathy and rupture.
Dakin, Stephanie Georgina; Newton, Julia; Martinez, Fernando O; Hedley, Robert; Gwilym, Stephen; Jones, Natasha; Reid, Hamish A B; Wood, Simon; Wells, Graham; Appleton, Louise; Wheway, Kim; Watkins, Bridget; Carr, Andrew Jonathan
2018-03-01
Recent investigation of human tissue and cells from positional tendons such as the rotator cuff has clarified the importance of inflammation in the development and progression of tendon disease. These mechanisms remain poorly understood in disease of energy-storing tendons such as the Achilles. Using tissue biopsies from patients, we investigated if inflammation is a feature of Achilles tendinopathy and rupture. We studied Achilles tendon biopsies from symptomatic patients with either mid-portion tendinopathy or rupture for evidence of abnormal inflammatory signatures. Tendon-derived stromal cells from healthy hamstring and diseased Achilles were cultured to determine the effects of cytokine treatment on expression of inflammatory markers. Tendinopathic and ruptured Achilles highly expressed CD14+ and CD68+ cells and showed a complex inflammation signature, involving NF-κB, interferon and STAT-6 activation pathways. Interferon markers IRF1 and IRF5 were highly expressed in tendinopathic samples. Achilles ruptures showed increased PTGS2 and interleukin-8 expression. Tendinopathic and ruptured Achilles tissues expressed stromal fibroblast activation markers podoplanin and CD106. Tendon cells isolated from diseased Achilles showed increased expression of pro-inflammatory and stromal fibroblast activation markers after cytokine stimulation compared with healthy hamstring tendon cells. Tissue and cells derived from tendinopathic and ruptured Achilles tendons show evidence of chronic (non-resolving) inflammation. The energy-storing Achilles shares common cellular and molecular inflammatory mechanisms with functionally distinct rotator cuff positional tendons. Differences seen in the profile of ruptured Achilles are likely to be attributable to a superimposed phase of acute inflammation and neo-vascularisation. Strategies that target chronic inflammation are of potential therapeutic benefit for patients with Achilles tendon disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Chronic inflammation is a feature of Achilles tendinopathy and rupture
Newton, Julia; Martinez, Fernando O; Hedley, Robert; Gwilym, Stephen; Jones, Natasha; Reid, Hamish A B; Wood, Simon; Wells, Graham; Appleton, Louise; Wheway, Kim; Watkins, Bridget; Carr, Andrew Jonathan
2018-01-01
Background Recent investigation of human tissue and cells from positional tendons such as the rotator cuff has clarified the importance of inflammation in the development and progression of tendon disease. These mechanisms remain poorly understood in disease of energy-storing tendons such as the Achilles. Using tissue biopsies from patients, we investigated if inflammation is a feature of Achilles tendinopathy and rupture. Methods We studied Achilles tendon biopsies from symptomatic patients with either mid-portion tendinopathy or rupture for evidence of abnormal inflammatory signatures. Tendon-derived stromal cells from healthy hamstring and diseased Achilles were cultured to determine the effects of cytokine treatment on expression of inflammatory markers. Results Tendinopathic and ruptured Achilles highly expressed CD14+ and CD68+ cells and showed a complex inflammation signature, involving NF-κB, interferon and STAT-6 activation pathways. Interferon markers IRF1 and IRF5 were highly expressed in tendinopathic samples. Achilles ruptures showed increased PTGS2 and interleukin-8 expression. Tendinopathic and ruptured Achilles tissues expressed stromal fibroblast activation markers podoplanin and CD106. Tendon cells isolated from diseased Achilles showed increased expression of pro-inflammatory and stromal fibroblast activation markers after cytokine stimulation compared with healthy hamstring tendon cells. Conclusions Tissue and cells derived from tendinopathic and ruptured Achilles tendons show evidence of chronic (non-resolving) inflammation. The energy-storing Achilles shares common cellular and molecular inflammatory mechanisms with functionally distinct rotator cuff positional tendons. Differences seen in the profile of ruptured Achilles are likely to be attributable to a superimposed phase of acute inflammation and neo-vascularisation. Strategies that target chronic inflammation are of potential therapeutic benefit for patients with Achilles tendon disease. PMID:29118051
Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana.
Abraham Juárez, María Jazmín; Hernández Cárdenas, Rocío; Santoyo Villa, José Natzul; O'Connor, Devin; Sluis, Aaron; Hake, Sarah; Ordaz-Ortiz, José; Terry, Leon; Simpson, June
2015-07-01
In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Profiling calcium signals of in vitro polarized human effector CD4+ T cells.
Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia
2018-06-01
Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance.
Sopeña-Torres, Sara; Jordá, Lucía; Sánchez-Rodríguez, Clara; Miedes, Eva; Escudero, Viviana; Swami, Sanjay; López, Gemma; Piślewska-Bednarek, Mariola; Lassowskat, Ines; Lee, Justin; Gu, Yangnan; Haigis, Sabine; Alexander, Danny; Pattathil, Sivakumar; Muñoz-Barrios, Antonio; Bednarek, Pawel; Somerville, Shauna; Schulze-Lefert, Paul; Hahn, Michael G; Scheel, Dierk; Molina, Antonio
2018-04-01
Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones. © 2018 Universidad Politécnica de Madrid (UPM) New Phytologist © 2018 New Phytologist Trust.
Functional Divergence of Platelet Protein Kinase C (PKC) Isoforms in Thrombus Formation on Collagen*
Gilio, Karen; Harper, Matthew T.; Cosemans, Judith M. E. M.; Konopatskaya, Olga; Munnix, Imke C. A.; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D.; Heemskerk, Johan W. M.; Poole, Alastair W.
2010-01-01
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen. PMID:20479008
Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen.
Gilio, Karen; Harper, Matthew T; Cosemans, Judith M E M; Konopatskaya, Olga; Munnix, Imke C A; Prinzen, Lenneke; Leitges, Michael; Liu, Qinghang; Molkentin, Jeffery D; Heemskerk, Johan W M; Poole, Alastair W
2010-07-23
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent alpha-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCalpha and PKCbeta, whereas the novel isoform, PKC, negatively regulates these events. PKCdelta also negatively regulates thrombus formation but not alpha-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCalpha or PKCbeta showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKC. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.
The Hedgehog processing pathway is required for NSCLC growth and survival
Rodriguez-Blanco, Jezabel; Schilling, Neal S.; Tokhunts, Robert; Giambelli, Camilla; Long, Jun; Liang Fei, Dennis; Singh, Samer; Black, Kendall E.; Wang, Zhiqiang; Galimberti, Fabrizio; Bejarano, Pablo A.; Elliot, Sharon; Glassberg, Marilyn K.; Nguyen, Dao M.; Lockwood, William W.; Lam, Wan L.; Dmitrovsky, Ethan; Capobianco, Anthony J.; Robbins, David J.
2013-01-01
Considerable interest has been generated from the results of recent clinical trials using SMOOTHENED (SMO) antagonists to inhibit the growth of HEDGEHOG (HH) signaling dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, SKINNY HEDGEHOG (SKN) or DISPATCHED-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently over-expressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand dependent cancers. PMID:22733134
Favor, Jack; Bradley, Alan; Conte, Nathalie; Janik, Dirk; Pretsch, Walter; Reitmeir, Peter; Rosemann, Michael; Schmahl, Wolfgang; Wienberg, Johannes; Zaus, Irmgard
2009-08-01
In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different from intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca(+2)-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions.
Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki
2017-09-01
Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.
Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family.
Guo, Chunlei; Guo, Rongrong; Xu, Xiaozhao; Gao, Min; Li, Xiaoqin; Song, Junyang; Zheng, Yi; Wang, Xiping
2014-04-01
WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I-III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments.
Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family
Guo, Chunlei; Guo, Rongrong; Wang, Xiping
2014-01-01
WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I–III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments. PMID:24510937
Analysis of touch used by occupational therapy practitioners in skilled nursing facilities.
Morris, Douglas; Henegar, J; Khanin, S; Oberle, G; Thacker, S
2014-09-01
Instrumental touch is identified as having purposeful physical contact in order to complete a task. Expressive touch is identified as warm, friendly physical contact and is not solely for performing a task. Expressive touch has been associated with improved client status, increased rapport and greater gains made during therapy. The purpose of the study was to observe the frequency of expressive and instrumental touch utilized by an occupational therapist during an occupational therapy session. Thirty-three occupational therapy professionals, including occupational therapists and occupational therapy assistants, employed at skilled nursing facilities in southwest Florida were observed. Data were collected on the Occupational Therapy Interaction Assessment. The results of the data analysis showed a positive relationship between the gender of the therapist and the frequency of expressive touch. The data also showed that a large majority of touches were instrumental touch and pertained to functional mobility. The results of the study can contribute to a better understanding of the holistic aspects of occupational therapy. By the use of more expressive touch, occupational therapy practitioners may have a positive, beneficial effect on both the client and the therapy process as a whole. Further research is needed to determine the effect an occupational therapy setting has on the frequency of instrumental and expressive touch. A larger sample size and a distinction between evaluation and treatment sessions would benefit future studies. Copyright © 2014 John Wiley & Sons, Ltd.
Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
Oliveri, Paola; Walton, Katherine D; Davidson, Eric H; McClay, David R
2006-11-01
The foxa gene is an integral component of the endoderm specification subcircuit of the endomesoderm gene regulatory network in the Strongylocentrotus purpuratus embryo. Its transcripts become confined to veg2, then veg1 endodermal territories, and, following gastrulation, throughout the gut. It is also expressed in the stomodeal ectoderm. gatae and otx genes provide input into the pregastrular regulatory system of foxa, and Foxa represses its own transcription, resulting in an oscillatory temporal expression profile. Here, we report three separate essential functions of the foxa gene: it represses mesodermal fate in the veg2 endomesoderm; it is required in postgastrular development for the expression of gut-specific genes; and it is necessary for stomodaeum formation. If its expression is reduced by a morpholino, more endomesoderm cells become pigment and other mesenchymal cell types, less gut is specified, and the larva has no mouth. Experiments in which blastomere transplantation is combined with foxa MASO treatment demonstrate that, in the normal endoderm, a crucial role of Foxa is to repress gcm expression in response to a Notch signal, and hence to repress mesodermal fate. Chimeric recombination experiments in which veg2, veg1 or ectoderm cells contained foxa MASO show which region of foxa expression controls each of the three functions. These experiments show that the foxa gene is a component of three distinct embryonic gene regulatory networks.
Yang, Ke; He, Peng; Dong, Shuang-Lin
2014-01-01
Abstract Chemosensory proteins (CSPs) play various roles in insect physiology including olfaction and development. The brown planthopper, Nilaparvata lugens Stål , is one of the most notorious rice pests worldwide. The wing-from variation and annually long distance migration imply that olfaction would play a key role in N. lugens behavior. In this study, full-length cDNAs of nine CSPs were cloned by the rapid amplification of cDNA ends procedure, and their expression profiles were determined by the quantitative real-time Polymerase Chain Reaction (qPCR), with regard to developmental stage, wing-form, gender, and tissues of short-wing adult. These NlugCSP genes showed distinct expression patterns, indicating different roles they play. In particular, NlugCSP5 was long wing form biased and highly expressed in female wings among tissues; NlugCSP1 was mainly expressed in male adults and abdomen; NlugCSP7 was widely expressed in chemosensory tissues but little in the nonchemosensory abdomen. The function of NlugCSP7 in olfaction was further explored by the competitive fluorescence binding assay using the recombinant protein. However, the recombinant NlugCSP7 showed no obvious binding with all tested volatile compounds, suggesting that it may participate in physiological processes other than olfaction. Our results provide bases and some important clues for the function of NlugCSPs . PMID:25527582
Tucker, Eric S; Lehtinen, Maria K; Maynard, Tom; Zirlinger, Mariela; Dulac, Catherine; Rawson, Nancy; Pevny, Larysa; Lamantia, Anthony-Samuel
2010-08-01
Neural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes - olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 - independent of Pbx co-factors - regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells.
Tucker, Eric S.; Lehtinen, Maria K.; Maynard, Tom; Zirlinger, Mariela; Dulac, Catherine; Rawson, Nancy; Pevny, Larysa; LaMantia, Anthony-Samuel
2010-01-01
Neural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes – olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 – independent of Pbx co-factors – regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells. PMID:20573694
Distinct Calcium Signaling Pathways Regulate Calmodulin Gene Expression in Tobacco1
van der Luit, Arnold H.; Olivari, Claudio; Haley, Ann; Knight, Marc R.; Trewavas, Anthony J.
1999-01-01
Cold shock and wind stimuli initiate Ca2+ transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca2+ pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca2+ transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca2+ signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca2+ dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca2+ signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm. PMID:10557218
NASA Technical Reports Server (NTRS)
Yamada, Atsuko; Martindale, Mark Q.
2002-01-01
Ctenophores are thoroughly modern animals whose ancestors are derived from a separate evolutionary branch than that of other eumetazoans. Their major longitudinal body axis is the oral-aboral axis. An apical sense organ, called the apical organ, is located at the aboral pole and contains a highly innervated statocyst and photodetecting cells. The apical organ integrates sensory information and controls the locomotory apparatus of ctenophores, the eight longitudinal rows of ctene/comb plates. In an effort to understand the developmental and evolutionary organization of axial properties of ctenophores we have isolated a forkhead gene from the Brain Factor 1 (BF-1) family. This gene, ctenoBF-1, is the first full-length nuclear gene reported from ctenophores. This makes ctenophores the most basal metazoan (to date) known to express definitive forkhead class transcription factors. Orthologs of BF-1 in vertebrates, Drosophila, and Caenorhabditis elegans are expressed in anterior neural structures. Surprisingly, in situ hybridizations with ctenoBF-1 antisense riboprobes show that this gene is not expressed in the apical organ of ctenophores. CtenoBF-1 is expressed prior to first cleavage. Transcripts become localized to the aboral pole by the 8-cell stage and are inherited by ectodermal micromeres generated from this region at the 16- and 32-cell stages. Expression in subsets of these cells persists and is seen around the edge of the blastopore (presumptive mouth) and in distinct ectodermal regions along the tentacular poles. Following gastrulation, stomodeal expression begins to fade and intense staining becomes restricted to two distinct domains in each tentacular feeding apparatus. We suggest that the apical organ is not homologous to the brain of bilaterians but that the oral pole of ctenophores corresponds to the anterior pole of bilaterian animals.
Cochain, Clément; Vafadarnejad, Ehsan; Arampatzi, Panagiota; Jaroslav, Pelisek; Winkels, Holger; Ley, Klaus; Wolf, Dennis; Saliba, Antoine-Emmanuel; Zernecke, Alma
2018-03-15
Rationale: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they ha ve been defined by the expression of a restricted number of markers. Objective: We have applied single-cell RNA-seq as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. Methods and Results: We performed single-cell RNA sequencing of total aortic CD45 + cells extracted from the non-diseased (chow fed) and atherosclerotic (11 weeks of high fat diet) aorta of Ldlr -/- mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, Resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortae, whereas monocytes, monocyte-derived dendritic cells (MoDC), and two populations of macrophages were almost exclusively detectable in atherosclerotic aortae, comprising Inflammatory macrophages showing enrichment in I l1b , and previously undescribed TREM2 hi macrophages. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these three macrophage subsets and MoDC, and uncovered putative functions of each cell type. Notably, TREM2 hi macrophages appeared to be endowed with specialized functions in lipid metabolism and catabolism, and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe -/- aortae, indicating relevance of our findings in different stages of atherosclerosis and mouse models. Conclusions: These data unprecedentedly uncovered the transcriptional landscape and phenotypic heterogeneity of aortic macrophages and MoDCs in atherosclerotic and identified previously unrecognized macrophage populations and their gene expression signature, suggesting specialized functions. Our findings will open up novel opportunities to explore distinct myeloid cell populations and their functions in atherosclerosis.
Erickson, L A; Yousef, O M; Jin, L; Lohse, C M; Pankratz, V S; Lloyd, R V
2000-09-01
In most cases, the histopathologic and cytologic distinction between Graves' disease and papillary thyroid carcinoma is relatively easy, but on occasion Graves' disease may simulate a thyroid papillary carcinoma. For example, papillary fronds with fibrovascular cores may be present in both Graves' disease and papillary carcinoma. p27kip1 (p27) is a cyclin-dependent kinase inhibitory protein that has been shown to be an independent prognostic factor in a variety of human tumors. Our previous studies of p27 expression in hyperplastic and neoplastic endocrine lesions showed that the level of p27 was quite different in these two conditions. To determine if this distinction could also be made between Graves' disease and papillary carcinoma, we analyzed expression of p27 and other cell cycle proteins in a series of cases of Graves' disease with papillary hyperplasia and a series of papillary thyroid carcinomas. Formalin-fixed paraffin-embedded tissues from 61 randomly selected patients with thyroid disease, including 29 cases of Graves' disease with papillary architectural features and 32 cases of papillary carcinoma, were analyzed for expression of p27, Ki-67, and DNA topoisomerase II alpha (topo II alpha) by immunostaining. The distribution of immunoreactivity was analyzed by quantifying the percentage of positive nuclei that was expressed as the labeling index (LI) plus or minus the standard error of the mean. The papillary hyperplasia of Graves' disease had a p27 LI of 68.2 +/- 3.1 (range, 24 to 88), whereas papillary carcinomas had a LI of 25.6 +/- 2.5 (range, 12 to 70) (P < .0001). No significant differences in Ki-67 or topo II alpha expression were identified between papillary hyperplasia in Graves' disease and papillary carcinoma. These results indicate that p27 protein expression is significantly higher in papillary hyperplasia of Graves' disease compared to papillary carcinoma, which may be diagnostically useful in difficult cases.
Functional role of Runx3 in the regulation of aggrecan expression during cartilage development.
Wigner, Nathan A; Soung, Do Y; Einhorn, Thomas A; Drissi, Hicham; Gerstenfeld, Louis C
2013-11-01
Runx2 and Runx3 are known to be expressed in the growth plate during endochondral bone formation. Here we addressed the functional role of Runx3 as distinct from Runx2 by using two models of postnatal bone repair: fracture healing that proceeds by an endochondral process and marrow ablation that proceeds by only an intramembranous process. Both Runx2 and Runx3 mRNAs were differentially up regulated during fracture healing. In contrast, only Runx2 showed increased expression after marrow ablation. During fracture healing, Runx3 was expressed earlier than Runx2, was concurrent with the period of chondrogenesis, and coincident with maximal aggrecan expression a protein associated with proliferating and permanent cartilage. Immunohistological analysis showed Runx3 protein was also expressed by chondrocytes in vivo. In contrast, Runx2 was expressed later during chondrocyte hypertrophy, and primary bone formation. The functional activities of Runx3 during chondrocyte differentiation were assessed by examining its regulatory actions on aggrecan gene expression. Aggrecan mRNA levels and aggrecan promoter activity were enhanced in response to the over-expression of either Runx2 and Runx3 in ATDC5 chondrogenic cell line, while sh-RNA knocked down of each Runx protein showed that only Runx3 knock down specifically suppressed aggrecan mRNA expression and promoter activity. ChIP assay demonstrated that Runx3 interactions were selective to sites within the aggrecan promoter and were only observed during early periods of chondrogenesis before hypertrophy. Our studies suggest that Runx3 positively regulates aggrecan expression and suggest that its function is more limited to cartilage development than to bone. In aggregate these data further suggest that the various members of the Runx transcription factors are involved in the coordination of chondrocyte development, maturation, and hypertrophy during endochondral bone formation. Copyright © 2013 Wiley Periodicals, Inc.
Gee, Katrina; Lim, Wilfred; Ma, Wei; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok
2002-11-15
Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.
Convergent evolution of heat-inducibility during subfunctionalization of the Hsp70 gene family
2013-01-01
Background Heat-shock proteins of the 70 kDa family (Hsp70s) are essential chaperones required for key cellular functions. In eukaryotes, four subfamilies can be distinguished according to their function and localisation in different cellular compartments: cytosol, endoplasmic reticulum, mitochondria and chloroplasts. Generally, multiple cytosol-type Hsp70s can be found in metazoans that show either constitutive expression and/or stress-inducibility, arguing for the evolution of different tasks and functions. Information about the hsp70 copy number and diversity in microbial eukaryotes is, however, scarce, and detailed knowledge about the differential gene expression in most protists is lacking. Therefore, we have characterised the Hsp70 gene family of Paramecium caudatum to gain insight into the evolution and differential heat stress response of the distinct family members in protists and to investigate the diversification of eukaryotic hsp70s focusing on the evolution of heat-inducibility. Results Eleven putative hsp70 genes could be detected in P. caudatum comprising homologs of three major Hsp70-subfamilies. Phylogenetic analyses revealed five evolutionarily distinct Hsp70-groups, each with a closer relationship to orthologous sequences of Paramecium tetraurelia than to another P. caudatum Hsp70-group. These highly diverse, paralogous groups resulted from duplications preceding Paramecium speciation, underwent divergent evolution and were subject to purifying selection. Heat-shock treatments were performed to test for differential expression patterns among the five Hsp70-groups as well as for a functional conservation within Paramecium. These treatments induced exceptionally high mRNA up-regulations in one cytosolic group with a low basal expression, indicative for the major heat inducible hsp70s. All other groups showed comparatively high basal expression levels and moderate heat-inducibility, signifying constitutively expressed genes. Comparative EST analyses for P. tetraurelia hsp70s unveiled a corresponding expression pattern, which supports a functionally conserved evolution of the Hsp70 gene family in Paramecium. Conclusions Our analyses suggest an independent evolution of the heat-inducible cytosol-type hsp70s in Paramecium and in its close relative Tetrahymena, as well as within higher eukaryotes. This result indicates convergent evolution during hsp70 subfunctionalization and implies that heat-inducibility evolved several times during the course of eukaryotic evolution. PMID:23433225
[Expression of c-kit in North African nasopharyngeal carcinomas: correlation with age and LMP1].
Charfi, S; Khabir, A; Ayadi, L; Mseddi, M; Makni, H; Gorbel, A; Daoud, J; Frikha, M; Jlidi, R; Busson, P; Boudawara, T S
2007-09-01
To determine the level and prognostic significance of c-kit expression in the two age groups of North African nasopharyngeal carcinomas. A retrospective study of 99 NPC specimens from Tunisian patients was investigated by immunohistochemistry. Immunohistochemical data were correlated with Epstein-Barr virus LMP1 expression and pathological, clinical and survival parameters. c-kit was detected in 79% of the cases for patients under 30 years of age (juvenile form) but in only 56% of specimens in patients over 30 years (P=0.039) and was significantly over-expressed for patients with lymph node involvement (P=0.015). LMP1 score was 5.78 (+/-1.84) for c-kit negative tumors compared to 8,23 (+/-2.39) for c-kit positive tumors (P=0.002). Multivariate analysis including age, lymph nodes involvement and LMP1 expression as co-variables, showed that only age (P=0.027) and LMP1 expression (P=0.005) were significantly correlated to the c-kit expression. c-kit is highly expressed in the juvenile form of North African nasopharyngeal carcinomas. There is a significant association between LMP1 and c-kit expression. The contrasted levels of C-kit expression in the two age groups strengthen the hypothesis that these clinical forms result from distinct oncogenic mechanisms.
Sugita, Bruna; Gill, Mandeep; Mahajan, Akanskha; Duttargi, Anju; Kirolikar, Saurabh; Almeida, Rodrigo; Regis, Kenny; Oluwasanmi, Olusayo L.; Marchi, Fabio; Marian, Catalin; Makambi, Kepher; Kallakury, Bhaskar; Sheahan, Laura; Cavalli, Iglenir J.; Ribeiro, Enilze M.; Madhavan, Subha; Boca, Simina; Gusev, Yuriy; Cavalli, Luciane R.
2016-01-01
Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78−0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature. PMID:27813494
Ozalvo, Rachel; Cabrera, Javier; Escobar, Carolina; Christensen, Shawn A; Borrego, Eli J; Kolomiets, Michael V; Castresana, Carmen; Iberkleid, Ionit; Brown Horowitz, Sigal
2014-05-01
The responses of two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, to infection by the sedentary nematodes root-knot nematode (Meloidogyne javanica) and cyst nematode (Heterodera schachtii) were analysed in transgenic Arabidopsis seedlings. The tissue localization of LOX3 and LOX4 gene expression using β-glucuronidase (GUS) reporter gene constructs showed local induction of LOX3 expression when second-stage juveniles reached the vascular bundle and during the early stages of plant-nematode interaction through gall and syncytia formation. Thin sections of nematode-infested knots indicated LOX3 expression in mature giant cells, and high expression in neighbouring cells and those surrounding the female body. LOX4 promoter was also activated by nematode infection, although the GUS signal weakened as infection and disease progressed. Homozygous insertion mutants lacking LOX3 were less susceptible than wild-type plants to root-knot nematode infection, as reflected by a decrease in female counts. Conversely, deficiency in LOX4 function led to a marked increase in females and egg mass number and in the female to male ratio of M. javanica and H. schachtii, respectively. The susceptibility of lox4 mutants was accompanied by increased expression of allene oxide synthase, allene oxide cyclase and ethylene-responsive transcription factor 4, and the accumulation of jasmonic acid, measured in the roots of lox4 mutants. This response was not found in lox3 mutants. Taken together, our results reveal that LOX4 and LOX3 interfere differentially with distinct metabolic and signalling pathways, and that LOX4 plays a major role in controlling plant defence against nematode infection. © 2013 BSPP AND JOHN WILEY & SONS LTD.
Safavi-Hemami, Helena; Hu, Hao; Gorasia, Dhana G.; Bandyopadhyay, Pradip K.; Veith, Paul D.; Young, Neil D.; Reynolds, Eric C.; Yandell, Mark; Olivera, Baldomero M.; Purcell, Anthony W.
2014-01-01
Cone snails are highly successful marine predators that use complex venoms to capture prey. At any given time, hundreds of toxins (conotoxins) are synthesized in the secretory epithelial cells of the venom gland, a long and convoluted organ that can measure 4 times the length of the snail's body. In recent years a number of studies have begun to unveil the transcriptomic, proteomic and peptidomic complexity of the venom and venom glands of a number of cone snail species. By using a combination of DIGE, bottom-up proteomics and next-generation transcriptome sequencing the present study identifies proteins involved in envenomation and conotoxin maturation, significantly extending the repertoire of known (poly)peptides expressed in the venom gland of these remarkable animals. We interrogate the molecular and proteomic composition of different sections of the venom glands of 3 specimens of the fish hunter Conus geographus and demonstrate regional variations in gene expression and protein abundance. DIGE analysis identified 1204 gel spots of which 157 showed significant regional differences in abundance as determined by biological variation analysis. Proteomic interrogation identified 342 unique proteins including those that exhibited greatest fold change. The majority of these proteins also exhibited significant changes in their mRNA expression levels validating the reliability of the experimental approach. Transcriptome sequencing further revealed a yet unknown genetic diversity of several venom gland components. Interestingly, abundant proteins that potentially form part of the injected venom mixture, such as echotoxins, phospholipase A2 and con-ikots-ikots, classified into distinct expression clusters with expression peaking in different parts of the gland. Our findings significantly enhance the known repertoire of venom gland polypeptides and provide molecular and biochemical evidence for the compartmentalization of this organ into distinct functional entities. PMID:24478445
Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric
2012-01-01
Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism. PMID:22457638
Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric
2012-01-01
Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.
Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki
2015-01-01
In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001
Cloning and analysis of fetal ovary microRNAs in cattle.
Tripurani, Swamy K; Xiao, Caide; Salem, Mohamed; Yao, Jianbo
2010-07-01
Ovarian folliculogenesis and early embryogenesis are complex processes, which require tightly regulated expression and interaction of a multitude of genes. Small endogenous RNA molecules, termed microRNAs (miRNAs), are involved in the regulation of gene expression during folliculogenesis and early embryonic development. To identify miRNAs in bovine oocytes/ovaries, a bovine fetal ovary miRNA library was constructed. Sequence analysis of random clones from the library identified 679 miRNA sequences, which represent 58 distinct bovine miRNAs. Of these distinct miRNAs, 42 are known bovine miRNAs present in the miRBase database and the remaining 16 miRNAs include 15 new bovine miRNAs that are homologous to miRNAs identified in other species, and one novel miRNA, which does not match any miRNAs in the database. The precursor sequences for 14 of the new 15 miRNAs as well as the novel miRNA were identified from the bovine genome database and their hairpin structures were predicted. Expression analysis of the 58 miRNAs in fetal ovaries in comparison to somatic tissue pools identified 8 miRNAs predominantly expressed in fetal ovaries. Further analysis of the eight miRNAs in germinal vesicle (GV) stage oocytes identified two miRNAs (bta-mir424 and bta-mir-10b), that are highly abundant in GV oocytes. Both miRNAs show similar expression patterns during oocyte maturation and preimplantation development of bovine embryos, being abundant in GV and MII stage oocytes, as well as in early stage embryos (until 16-cell stage). The amount of the novel miRNA is relatively small in oocytes and early cleavage embryos but greater in blastocysts, suggesting a role of this miRNA in blastocyst cell differentiation. Copyright 2010 Elsevier B.V. All rights reserved.
Sugita, Bruna; Gill, Mandeep; Mahajan, Akanskha; Duttargi, Anju; Kirolikar, Saurabh; Almeida, Rodrigo; Regis, Kenny; Oluwasanmi, Olusayo L; Marchi, Fabio; Marian, Catalin; Makambi, Kepher; Kallakury, Bhaskar; Sheahan, Laura; Cavalli, Iglenir J; Ribeiro, Enilze M; Madhavan, Subha; Boca, Simina; Gusev, Yuriy; Cavalli, Luciane R
2016-11-29
Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78-0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature.
Schaub, Christoph; Nagaso, Hideyuki; Jin, Hong; Frasch, Manfred
2012-01-01
Members of the T-Box gene family of transcription factors are important players in regulatory circuits that generate myogenic and cardiogenic lineage diversities in vertebrates. We show that during somatic myogenesis in Drosophila, the single ortholog of vertebrate Tbx1, optomotor-blind-related-gene-1 (org-1), is expressed in a small subset of muscle progenitors, founder cells and adult muscle precursors, where it overlaps with the products of the muscle identity genes ladybird (lb) and slouch (slou). In addition, org-1 is expressed in the lineage of the heart-associated alary muscles. org-1 null mutant embryos lack Lb and Slou expression within the muscle lineages that normally co-express org-1. As a consequence, the respective muscle fibers and adult muscle precursors are either severely malformed or missing, as are the alary muscles. To address the mechanisms that mediate these regulatory interactions between Org-1, Lb and Slou, we characterized distinct enhancers associated with somatic muscle expression of lb and slou. We demonstrate that these lineage- and stage-specific cis-regulatory modules (CRMs) bind Org-1 in vivo, respond to org-1 genetically and require T-box domain binding sites for their activation. In summary, we propose that org-1 is a common and direct upstream regulator of slou and lb in the developmental pathway of these two neighboring muscle lineages. Cross-repression between slou and lb and combinatorial activation of lineage-specific targets by Org-1–Slou and Org-1–Lb, respectively, then leads to the distinction between the two lineages. These findings provide new insights into the regulatory circuits that control the proper pattering of the larval somatic musculature in Drosophila. PMID:22318630
Schaub, Christoph; Nagaso, Hideyuki; Jin, Hong; Frasch, Manfred
2012-03-01
Members of the T-Box gene family of transcription factors are important players in regulatory circuits that generate myogenic and cardiogenic lineage diversities in vertebrates. We show that during somatic myogenesis in Drosophila, the single ortholog of vertebrate Tbx1, optomotor-blind-related-gene-1 (org-1), is expressed in a small subset of muscle progenitors, founder cells and adult muscle precursors, where it overlaps with the products of the muscle identity genes ladybird (lb) and slouch (slou). In addition, org-1 is expressed in the lineage of the heart-associated alary muscles. org-1 null mutant embryos lack Lb and Slou expression within the muscle lineages that normally co-express org-1. As a consequence, the respective muscle fibers and adult muscle precursors are either severely malformed or missing, as are the alary muscles. To address the mechanisms that mediate these regulatory interactions between Org-1, Lb and Slou, we characterized distinct enhancers associated with somatic muscle expression of lb and slou. We demonstrate that these lineage- and stage-specific cis-regulatory modules (CRMs) bind Org-1 in vivo, respond to org-1 genetically and require T-box domain binding sites for their activation. In summary, we propose that org-1 is a common and direct upstream regulator of slou and lb in the developmental pathway of these two neighboring muscle lineages. Cross-repression between slou and lb and combinatorial activation of lineage-specific targets by Org-1-Slou and Org-1-Lb, respectively, then leads to the distinction between the two lineages. These findings provide new insights into the regulatory circuits that control the proper pattering of the larval somatic musculature in Drosophila.
Discrete forms of amylose are synthesized by isoforms of GBSSI in pea.
Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C J M; Visser, Richard G F; Zeeman, Sam; Smith, Alison; Martin, Cathie
2002-08-01
Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses.
Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in PeaW⃞
Edwards, Anne; Vincken, Jean-Paul; Suurs, Luc C. J. M.; Visser, Richard G. F.; Zeeman, Sam; Smith, Alison; Martin, Cathie
2002-01-01
Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses. PMID:12172021
Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors
Chatzigeorgiou, Marios; Yoo, Sungjae; Watson, Joseph D.; Lee, Wei-Hsiang; Spencer, W. Clay; Kindt, Katie S.; Hwang, Sun Wook; Miller, David M.; Treinin, Millet; Driscoll, Monica; Schafer, William R.
2010-01-01
Summary Polymodal nociceptors detect noxious stimuli including harsh touch, toxic chemicals, and extremes of heat and cold. The molecular mechanisms by which nociceptors are able to sense multiple qualitatively distinct stimuli are not well-understood. We show here that the C. elegans PVD neurons are mulitidendritic nociceptors that respond to harsh touch as well as cold temperatures. The harsh touch modality specifically requires the DEG/ENaC proteins MEC-10 and DEGT-1, which represent putative components of a harsh touch mechanotransduction complex. By contrast, responses to cold require the TRPA-1 channel and are MEC-10- and DEGT-1-independent. Heterologous expression of C. elegans TRPA-1 can confer cold responsiveness to other C. elegans neurons or to mammalian cells, indicating that TRPA-1 is itself a cold sensor. These results show that C. elegans nociceptors respond to thermal and mechanical stimuli using distinct sets of molecules, and identify DEG/ENaC channels as potential receptors for mechanical pain. PMID:20512132
Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata.
Bradshaw, Brian; Thompson, Kerry; Frank, Uri
2015-04-17
Cnidarians possess remarkable powers of regeneration, but the cellular and molecular mechanisms underlying this capability are unclear. Studying the hydrozoan Hydractinia echinata we show that a burst of stem cell proliferation occurs following decapitation, forming a blastema at the oral pole within 24 hr. This process is necessary for head regeneration. Knocking down Piwi1, Vasa, Pl10 or Ncol1 expressed by blastema cells inhibited regeneration but not blastema formation. EdU pulse-chase experiments and in vivo tracking of individual transgenic Piwi1(+) stem cells showed that the cellular source for blastema formation is migration of stem cells from a remote area. Surprisingly, no blastema developed at the aboral pole after stolon removal. Instead, polyps transformed into stolons and then budded polyps. Hence, distinct mechanisms act to regenerate different body parts in Hydractinia. This model, where stem cell behavior can be monitored in vivo at single cell resolution, offers new insights for regenerative biology.
Cerebellar neurodegeneration in the absence of microRNAs
Schaefer, Anne; O'Carroll, Dónal; Tan, Chan Lek; Hillman, Dean; Sugimori, Mutsuyuki; Llinas, Rodolfo; Greengard, Paul
2007-01-01
Genome-encoded microRNAs (miRNAs) are potent regulators of gene expression. The significance of miRNAs in various biological processes has been suggested by studies showing an important role of these small RNAs in regulation of cell differentiation. However, the role of miRNAs in regulation of differentiated cell physiology is not well established. Mature neurons express a large number of distinct miRNAs, but the role of miRNAs in postmitotic neurons has not been examined. Here, we provide evidence for an essential role of miRNAs in survival of differentiated neurons. We show that conditional Purkinje cell–specific ablation of the key miRNA-generating enzyme Dicer leads to Purkinje cell death. Deficiency in Dicer is associated with progressive loss of miRNAs, followed by cerebellar degeneration and development of ataxia. The progressive neurodegeneration in the absence of Dicer raises the possibility of an involvement of miRNAs in neurodegenerative disorders. PMID:17606634
Comprehensive transcriptional map of primate brain development
Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.
2017-01-01
The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810
Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake.
Nakajima, Ken-ichiro; Cui, Zhenzhong; Li, Chia; Meister, Jaroslawna; Cui, Yinghong; Fu, Ou; Smith, Adam S; Jain, Shalini; Lowell, Bradford B; Krashes, Michael J; Wess, Jürgen
2016-01-08
Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity.
Evidence of drug-response heterogeneity rapidly generated from a single cancer cell.
Wang, Rong; Jin, Chengmeng; Hu, Xun
2017-06-20
One cancer cell line is believed to be composed of numerous clones with different drug sensitivity. We sought to investigate the difference of drug-response pattern in clones from a cell line or from a single cell. We showed that 22 clones derived from 4T1 cells were drastically different from each other with respect to drug-response pattern against 11 anticancer drugs and expression profile of 19 genes associated with drug resistance or sensitivity. Similar results were obtained using daughter clones derived from a single 4T1 cell. Each daughter clone showed distinct drug-response pattern and gene expression profile. Similar results were also obtained using Bcap37 cells. We conclude that a single cancer cell can rapidly produce a population of cells with high heterogeneity of drug response and the acquisition of drug-response heterogeneity is random.
T follicular helper and T follicular regulatory cells have different TCR specificity
Maceiras, Ana Raquel; Almeida, Silvia Cristina Paiva; Mariotti-Ferrandiz, Encarnita; Chaara, Wahiba; Jebbawi, Fadi; Six, Adrien; Hori, Shohei; Klatzmann, David; Faro, Jose; Graca, Luis
2017-01-01
Immunization leads to the formation of germinal centres (GCs) that contain both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T-cell receptor (TCR) specificity defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently on restimulation with the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization induces oligoclonal expansion of Tfh cells. By contrast, the Tfr pool has a TCR repertoire that more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially autoreactive TCRs to suppress autoimmunity. PMID:28429709
Using a periclinal chimera to unravel layer-specific gene expression in plants
Filippis, Ioannis; Lopez-Cobollo, Rosa; Abbott, James; Butcher, Sarah; Bishop, Gerard J
2013-01-01
Plant organs are made from multiple cell types, and defining the expression level of a gene in any one cell or group of cells from a complex mixture is difficult. Dicotyledonous plants normally have three distinct layers of cells, L1, L2 and L3. Layer L1 is the single layer of cells making up the epidermis, layer L2 the single cell sub-epidermal layer and layer L3 constitutes the rest of the internal cells. Here we show how it is possible to harvest an organ and characterise the level of layer-specific expression by using a periclinal chimera that has its L1 layer from Solanum pennellii and its L2 and L3 layers from Solanum lycopersicum. This is possible by measuring the level of the frequency of species-specific transcripts. RNA-seq analysis enabled the genome-wide assessment of whether a gene is expressed in the L1 or L2/L3 layers. From 13 277 genes that are expressed in both the chimera and the parental lines and with at least one polymorphism between the parental alleles, we identified 382 genes that are preferentially expressed in L1 in contrast to 1159 genes in L2/L3. Gene ontology analysis shows that many genes preferentially expressed in L1 are involved in cutin and wax biosynthesis, whereas numerous genes that are preferentially expressed in L2/L3 tissue are associated with chloroplastic processes. These data indicate the use of such chimeras and provide detailed information on the level of layer-specific expression of genes. PMID:23725542
Kale, Shiv D; Ayubi, Tariq; Chung, Dawoon; Tubau-Juni, Nuria; Leber, Andrew; Dang, Ha X; Karyala, Saikumar; Hontecillas, Raquel; Lawrence, Christopher B; Cramer, Robert A; Bassaganya-Riera, Josep
2017-12-06
Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.
ERIC Educational Resources Information Center
Davidson, Jane W.
2012-01-01
The research literature concerning gesture in musical performance increasingly reports that musically communicative and meaningful performances contain highly expressive bodily movements. These movements are involved in the generation of the musically expressive performance, but enquiry into the development of expressive bodily movement has been…
Kirchenbaum, Greg A.; Carter, Donald M.
2015-01-01
ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts. PMID:26559834
New insights into plant glycoside hydrolase family 32 in Agave species
Avila de Dios, Emmanuel; Gomez Vargas, Alan D.; Damián Santos, Maura L.; Simpson, June
2015-01-01
In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana. PMID:26300895
New insights into plant glycoside hydrolase family 32 in Agave species.
Avila de Dios, Emmanuel; Gomez Vargas, Alan D; Damián Santos, Maura L; Simpson, June
2015-01-01
In order to optimize the use of agaves for commercial applications, an understanding of fructan metabolism in these species at the molecular and genetic level is essential. Based on transcriptome data, this report describes the identification and molecular characterization of cDNAs and deduced amino acid sequences for genes encoding fructosyltransferases, invertases and fructan exohydrolases (FEH) (enzymes belonging to plant glycoside hydrolase family 32) from four different agave species (A. tequilana, A. deserti, A. victoriae-reginae, and A. striata). Conserved amino acid sequences and a hypervariable domain allowed classification of distinct isoforms for each enzyme type. Notably however neither 1-FFT nor 6-SFT encoding cDNAs were identified. In silico analysis revealed that distinct isoforms for certain enzymes found in a single species, showed different levels and tissue specific patterns of expression whereas in other cases expression patterns were conserved both within the species and between different species. Relatively high levels of in silico expression for specific isoforms of both invertases and fructosyltransferases were observed in floral tissues in comparison to vegetative tissues such as leaves and stems and this pattern was confirmed by Quantitative Real Time PCR using RNA obtained from floral and leaf tissue of A. tequilana. Thin layer chromatography confirmed the presence of fructans with degree of polymerization (DP) greater than DP three in both immature buds and fully opened flowers also obtained from A. tequilana.
Shi, X; Wang, Q; Gu, J; Xuan, Z; Wu, J I
2016-11-03
Recent large-scale genomic studies have classified medulloblastoma into four subtypes: Wnt, Shh, Group 3 and Group 4. Each is characterized by specific mutations and distinct epigenetic states. Previously, we showed that a chromatin regulator SMARCA4/Brg1 is required for Gli-mediated transcription activation in Sonic hedgehog (Shh) signaling. We report here that Brg1 controls a transcriptional program that specifically regulates Shh-type medulloblastoma growth. Using a mouse model of Shh-type medulloblastoma, we deleted Brg1 in precancerous progenitors and primary or transplanted tumors. Brg1 deletion significantly inhibited tumor formation and progression. Genome-wide expression analyses and binding experiments indicate that Brg1 specifically coordinates with key transcription factors including Gli1, Atoh1 and REST to regulate the expression of both oncogenes and tumor suppressors that are required for medulloblastoma identity and proliferation. Shh-type medulloblastoma displays distinct H3K27me3 properties. We demonstrate that Brg1 modulates activities of H3K27me3 modifiers to regulate the expression of medulloblastoma genes. Brg1-regulated pathways are conserved in human Shh-type medulloblastoma, and Brg1 is important for the growth of a human medulloblastoma cell line. Thus, Brg1 coordinates a genetic and epigenetic network that regulates the transcriptional program underlying the Shh-type medulloblastoma development.
Jeong, Yongsu; Epstein, Douglas J
2003-08-01
The establishment of the floor plate at the ventral midline of the CNS is dependent on an inductive signaling process mediated by the secreted protein Sonic hedgehog (Shh). To understand molecularly how floor plate induction proceeds we identified a Shh-responsive regulatory element that directs transgene reporter expression to the ventral midline of the CNS and notochord in a Shh-like manner and characterized critical cis-acting sequences regulating this element. Cross-species comparisons narrowed the activity of the Shh floor plate enhancer to an 88-bp sequence within intron 2 of Shh that included highly conserved binding sites matching the consensus for homeodomain, Tbx and Foxa transcription factors. Mutational analysis revealed that the homeodomain and Foxa binding sites are each required for activation of the Shh floor plate enhancer, whereas the Tbx site was required for repression in regions of the CNS where Shh is not normally expressed. We further show that Shh enhancer activity was detected in the mouse node from where the floor plate and notochord precursors derive. Shh reporter expression was restricted to the ventral (mesodermal) layer of the node in a pattern similar to endogenous Shh. X-gal-positive cells emerging from the node were only detected in the notochord lineage, suggesting that the floor plate and notochord arise from distinct precursors in the mouse node.
Sharma, Dipali; Saxena, Neeraj K.; Davidson, Nancy E.; Vertino, Paula M.
2010-01-01
Breast tumors expressing estrogen receptor-α (ER) respond well to therapeutic strategies using selective ER modulators, such as tamoxifen. However, ~ 30% of invasive breast cancers are hormone independent because they lack ER expression due to hypermethylation of ER promoter. Treatment of ER-negative breast cancer cells with demethylating agents [5-aza-2′-deoxycytidine (5-aza-dC)] and histone deacetylase (HDAC) inhibitors (trichostatin A) leads to expression of ER mRNA and functional protein. Here, we examined whether epigenetically reactivated ER is a target for tamoxifen therapy. Following treatment with trichostatin A and 5-aza-dC, the formerly unresponsive ER-negative MDA-MB-231 breast cancer cells became responsive to tamoxifen. Tamoxifen-mediated inhibition of cell growth in these cells is mediated at least in part by the tamoxifen-bound ER. Tamoxifen-bound reactivated ER induces transcriptional repression at estrogen-responsive genes by ordered recruitment of multiple distinct chromatin-modifying complexes. Using chromatin immunoprecipitation, we show recruitment of two different corepressor complexes to ER-responsive promoters in a mutually exclusive and sequential manner: the nuclear receptor corepressor-HDAC3 complex followed by nucleosome remodeling and histone deacetylation complex. The mechanistic insight provided by this study might help in designing therapeutic strategies directed toward epigenetic mechanisms in the prevention or treatment of breast cancer. PMID:16778215
Alternative splicing and promoter use in TFII-I genes
Makeyev, Aleksandr V.; Bayarsaihan, Dashzeveg
2008-01-01
TFII-I proteins are ubiquitously expressed transcriptional factors involved in both basal transcription and signal transduction activation or repression. TFII-I proteins are detected as early as at two-cell stage and exhibit distinct and dynamic expression patterns in developing embryos as well as mark regional variation in the adult mouse brain. Analysis of atypical small and rare chromosomal deletions at 7q11.23 points to TFII-I genes (GTF2I and GTF2IRD1) as the prime candidates responsible for craniofacial and cognitive abnormalities in the Williams-Beuren syndrome. TFII-I genes are often subjected to alternative splicing, which generates isoforms that that show different activities and play distinct biological roles. The coding regions of TFII-I genes are composed of more than 30 exons and are well conserved among vertebrates. However, their 5′ untranslated regions are not as well conserved and all poorly characterized. In the present work, we analyzed promoter regions of TFII-I genes and described their additional exons, as well as tested tissue specificity of both previously reported and novel alternatively spliced isoforms. Our comprehensive analysis leads to further elucidation of the functional heterogeneity of TFII-I proteins, provides hints on search for regulatory pathways governing their expression, and opens up possibilities for examining the effect of different haplotypes on their promoter functions. PMID:19111598