Sample records for show high binding

  1. Exploring high-affinity binding properties of octamer peptides by principal component analysis of tetramer peptides.

    PubMed

    Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki

    2017-02-01

    To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Identification and properties of steroid-binding proteins in nesting Chelonia mydas plasma.

    PubMed

    Ikonomopoulou, M P; Bradley, A J; Whittier, J M; Ibrahim, K

    2006-11-01

    We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4 degrees C with high affinity (K (a) = 1.49 +/- 0.09 x 10(9) M(-1); 0.17 +/- 0.02 x 10(7) M(-1)) and low binding capacity (B (max) = 3.24 +/- 0.84 x 10(-5) M; 0.33 +/- 0.06 x 10(-4) M). The binding affinity and capacity of testosterone at 23 and 36 degrees C, respectively were similar to those determined at 4 degrees C. However, oestradiol showed no binding activity at 36 degrees C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36 degrees C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.

  3. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing

    2013-09-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr 184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr 184 depends on local residues, we generated mutations in an α7/5HT 3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr 184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurementsmore » show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr 184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr 184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr 184 and local residues contributes to high-affinity subtype-selective α-btx binding.« less

  4. Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study

    PubMed Central

    Itakura, Yoko; Nakamura-Tsuruta, Sachiko; Kominami, Junko; Tateno, Hiroaki; Hirabayashi, Jun

    2017-01-01

    Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations. PMID:28556796

  5. Ap4A and ADP-beta-S binding to P2 purinoceptors present on rat brain synaptic terminals.

    PubMed Central

    Pintor, J.; Díaz-Rey, M. A.; Miras-Portugal, M. T.

    1993-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide stored and released from rat brain synaptic terminals presents two types of affinity binding sites in synaptosomes. When [3H]-Ap4A was used for binding studies a Kd value of 0.10 +/- 0.014 nM and a Bmax value of 16.6 +/- 1.2 fmol mg-1 protein were obtained for the high affinity binding site from the Scatchard analysis. The second binding site, obtained by displacement studies, showed a Ki value of 0.57 +/- 0.09 microM. 2. Displacement of [3H]-Ap4A by non-labelled Ap4A and P2-purinoceptor ligands showed a displacement order of Ap4A > adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S) > 5'-adenylyl-imidodiphosphate (AMP-PNP) > alpha,beta-methylene adenosine 5'-triphosphate (alpha,beta-MeATP) in both sites revealed by the Ki values of 0.017 nM, 0.030 nM, 0.058 nM and 0.147 nM respectively for the high affinity binding site and values of 0.57 microM, 0.87 microM, 2.20 microM and 4.28 microM respectively for the second binding site. 3. Studies of the P2-purinoceptors present in synaptosomes were also performed with [35S]-ADP-beta-S. This radioligand showed two binding sites the first with Kd and Bmax values of 0.11 +/- 0.022 nM and 3.9 +/- 2.1 fmol mg-1 of protein respectively for the high affinity binding site obtained from the Scatchard plot. The second binding site showed a Ki of 0.018 +/- 0.0035 microM obtained from displacement curves. 4. Competition studies with diadenosine polyphosphates of [35S]-ADP-beta-S binding showed a displacement order of Ap4A > Ap5A > Ap6A in the high affinity binding site and Ki values of 0.023 nM, 0.081 nM and 5.72 nM respectively.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8485620

  6. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus.

    PubMed

    Duan, Nuo; Wu, Shijia; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2012-04-25

    A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.

  7. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    PubMed Central

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  8. The binding properties of cycloxaprid on insect native nAChRs partially explain the low cross-resistance with imidacloprid in Nilaparvata lugens.

    PubMed

    Zhang, Yixi; Xu, Xiaoyong; Bao, Haibo; Shao, Xusheng; Li, Zhong; Liu, Zewen

    2018-06-06

    Neonicotinoids, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) to control Nilaparvata lugens, a major rice insect pest. High imidacloprid resistance has been reported in N. lugens in laboratory and in fields. Cycloxaprid, an oxabridged cis-nitromethylene neonicotinoid, showed high insecticidal activity against N. lugens and low cross-resistance in the imidacloprid resistant strains and field populations. Binding studies have demonstrated that imidacloprid had two binding sites with different affinities (Kd = 3.18 ± 0.43 pM and 1.78 ± 0.19 nM) in N. lugens nAChRs. Cycloxaprid was poor at displacing [ 3 H]imidacloprid at its high-affinity binding site (Ki = 159.38±20.43 nM), but quite efficient at the low-affinity binding site (Ki = 1.27±0.35 nM). These data showed that cycloxaprid had overlapping binding sites with imidacloprid only at its low-affinity binding site. Therefore, the low displacement ability of cycloxaprid against imidacloprid binding at its high affinity site could partially explain the low cross-resistance of cycloxaprid in the imidacloprid resistant populations. The high insecticidal activity, low cross-resistance and different binding properties on insect nAChRs of cycloxaprid demonstrating it a potential insecticide to control N. lugens and related insect pests, especially the ones with high resistance to neonicotinoids. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  10. Enzymes in Commercial Cellulase Preparations Bind Differently to Dioxane Extracted Lignins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarbrough, John M.; Mittal, Ashutosh; Katahira, Rui

    Commercial fungal cellulases used in biomass-to-biofuels processes can be grouped into three general classes: native, augmented, and engineered. To evaluate lignin binding affinities of different enzyme activities in various commercial cellulase formulations in order to determine if enzyme losses due to lignin binding can be modulated by using different enzymes of the same activity We used water:dioxane (1:9) to extract lignin from pretreated corn stover. Commercial cellulases were incubated with lignin and the unbound supernatants were evaluated for individual enzyme loss by SDS=PAGE and these were correlated with activity loss using various pNP-sugar substrates. Colorimetric assays for general glycosyl hydrolasemore » activities showed distinct differences in enzyme binding to lignin for each enzyme activity. Native systems demonstrated low binding of endo- and exo-cellulases, high binding of xylanase, and moderate ..beta..-glucosidase binding. Engineered cellulase mixtures exhibited low binding of exo-cellulases, very strong binding of endocellulases and ..beta..- glucosidase, and mixed binding of xylanase activity. The augmented cellulase had low binding of exocellulase, high binding of endocellulase and xylanase, and moderate binding of ..beta..-glucosidase activities. Bound and unbound activities were correlated with general molecular weight ranges of proteins as measured by loss of proteins bands in bound fractions on SDS-PAGE gels. Lignin-bound high molecular weight bands correlated with binding of ..beta..-glucosidase activity. While ..beta..-glucosidases demonstrated high binding in many cases, they have been shown to remain active. Bound low molecular weight bands correlated with xylanase activity binding. Contrary to other literature, exocellulase activity did not show strong lignin binding. The variation in enzyme activity binding between the three classes of cellulases preparations indicate that it is certainly possible to alter the binding of specific glycosyl hydrolase activities. It remains unclear whether loss of endocellulase activity to lignin binding is problematic for biomass conversion.« less

  11. Warfarin and Flavonoids Do Not Share the Same Binding Region in Binding to the IIA Subdomain of Human Serum Albumin.

    PubMed

    Rimac, Hrvoje; Dufour, Claire; Debeljak, Željko; Zorc, Branka; Bojić, Mirza

    2017-07-11

    Human serum albumin (HSA) binds a variety of xenobiotics, including flavonoids and warfarin. The binding of another ligand to the IIA binding site on HSA can cause warfarin displacement and potentially the elevation of its free concentration in blood. Studies dealing with flavonoid-induced warfarin displacement from HSA provided controversial results: estimated risk of displacement ranged from none to serious. To resolve these controversies, in vitro study of simultaneous binding of warfarin and eight different flavonoid aglycons and glycosides to HSA was carried out by fluorescence spectroscopy as well as molecular docking. Results show that warfarin and flavonoids do not share the same binding region in binding to HSA. Interactions were only observed at high warfarin concentrations not attainable under recommended dosing regimes. Docking experiments show that flavonoid aglycons and glycosides do not bind at warfarin high affinity sites, but rather to different regions within the IIA HSA subdomain. Thus, the risk of clinically significant warfarin-flavonoid interaction in binding to HSA should be regarded as negligible.

  12. High-Speed Lateral Flow Strategy for a Fast Biosensing with an Improved Selectivity and Binding Affinity.

    PubMed

    Cho, Dong Guk; Yoo, Haneul; Lee, Haein; Choi, Yeol Kyo; Lee, Minju; Ahn, Dong June; Hong, Seunghun

    2018-05-10

    We report a high-speed lateral flow strategy for a fast biosensing with an improved selectivity and binding affinity even under harsh conditions. In this strategy, biosensors were fixed at a location away from the center of a round shape disk, and the disk was rotated to create the lateral flow of a target solution on the biosensors during the sensing measurements. Experimental results using the strategy showed high reaction speeds, high binding affinity, and low nonspecific adsorptions of target molecules to biosensors. Furthermore, binding affinity between target molecules and sensing molecules was enhanced even in harsh conditions such as low pH and low ionic strength conditions. These results show that the strategy can improve the performance of conventional biosensors by generating high-speed lateral flows on a biosensor surface. Therefore, our strategy can be utilized as a simple but powerful tool for versatile bio and medical applications.

  13. Pot binding as a variable confounding plant phenotype: theoretical derivation and experimental observations.

    PubMed

    Sinclair, Thomas R; Manandhar, Anju; Shekoofa, Avat; Rosas-Anderson, Pablo; Bagherzadi, Laleh; Schoppach, Remy; Sadok, Walid; Rufty, Thomas W

    2017-04-01

    Theoretical derivation predicted growth retardation due to pot water limitations, i.e., pot binding. Experimental observations were consistent with these limitations. Combined, these results indicate a need for caution in high-throughput screening and phenotyping. Pot experiments are a mainstay in many plant studies, including the current emphasis on developing high-throughput, phenotyping systems. Pot studies can be vulnerable to decreased physiological activity of the plants particularly when pot volume is small, i.e., "pot binding". It is necessary to understand the conditions under which pot binding may exist to avoid the confounding influence of pot binding in interpreting experimental results. In this paper, a derivation is offered that gives well-defined conditions for the occurrence of pot binding based on restricted water availability. These results showed that not only are pot volume and plant size important variables, but the potting media is critical. Artificial potting mixtures used in many studies, including many high-throughput phenotyping systems, are particularly susceptible to the confounding influences of pot binding. Experimental studies for several crop species are presented that clearly show the existence of thresholds of plant leaf area at which various pot sizes and potting media result in the induction of pot binding even though there may be no immediate, visual plant symptoms. The derivation and experimental results showed that pot binding can readily occur in plant experiments if care is not given to have sufficiently large pots, suitable potting media, and maintenance of pot water status. Clear guidelines are provided for avoiding the confounding effects of water-limited pot binding in studying plant phenotype.

  14. The two envelope membrane glycoproteins of Tomato spotted wilt virus show differences in lectin-binding properties and sensitivities to glycosidases.

    PubMed

    Naidu, Rayapati A; Ingle, Caroline J; Deom, Carl M; Sherwood, John L

    2004-02-05

    Tomato spotted wilt virus (TSWV, Genus: Tospovirus, Family: Bunyaviridae) is a major constraint to the production of several different crops of agronomic and horticultural importance worldwide. The amino acid sequence of the two envelope membrane glycoproteins, designated as G(N) (N-terminal) and G(C) (C-terminal), of TSWV contain several tripeptide sequences, Asn-Xaa-Ser/Thr, suggesting that the proteins are N-glycosylated. In this study, the lectin-binding properties of the viral glycoproteins and their sensitivities to glycosidases were examined to obtain information on the nature of potential oligosaccharide moieties present on G(N) and G(C). The viral proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and probed by affinoblotting using a battery of biotinylated lectins with specificity to different oligosaccharide structures. G(C) showed strong binding with five mannose-binding lectins, four N-acetyllactosamine-binding lectins and one fucose-binding lectin. G(N) was resolved into two molecular masses and only the slow migrating form showed binding, albeit to a lesser extent than G(C), with three of the five mannose-binding lectins. The N-acetyllactosamine- and fucose-specific lectins did not bind to either molecular mass form of G(N). None of the galactose-, N-acetylgalactosamine-, or sialic acid-binding lectins tested showed binding specificity to G(C) or G(N). Treatment of the denatured virions with endoglycosidase H and peptide:N-glycosidase F (PNGase F) resulted in a significant decrease in the binding of G(C) to high mannose- and N-acetyllactosamine-specific lectins. However, no such differences in lectin binding were apparent with G(N). These results indicate the presence of N-linked oligosaccharides of high mannose- and complex-type on G(C) and possibly high mannose-type on G(N). Differences in the extent of binding of the two envelope glycoproteins to different lectins suggest that G(C) is likely to be more heavily N-glycosylated than G(N). No evidence was observed for the presence of O-linked oligosaccharides on G(N) or G(C).

  15. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of functionmore » and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.« less

  16. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less

  17. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  18. Imino proton exchange rates imply an induced-fit binding mechanism for the VEGF165-targeting aptamer, Macugen

    PubMed Central

    Lee, Joon-Hwa; Jucker, Fiona; Pardi, Arthur

    2008-01-01

    The 2′-fluoro/2′-O-methyl modified RNA aptamer Macugen is a potent inhibitor of the angiogenic regulatory protein, VEGF165. Macugen binds with high affinity to the heparin-binding domain (HBD) of VEGF165. Hydrogen exchange rates of the imino protons were measured for free Macugen and Macugen bound to the HBD or full-length VEGF to better understand the mechanism for high affinity binding. The results here show that the internal loop and hairpin loop of Macugen are highly dynamic in the free state and are greatly stabilized and/or protected from solvent upon protein binding. PMID:18485899

  19. Insight into the binding mechanism of imipenem to human serum albumin by spectroscopic and computational approaches.

    PubMed

    Rehman, Md Tabish; Shamsi, Hira; Khan, Asad U

    2014-06-02

    The mechanism of interaction between imipenem and HSA was investigated by various techniques like fluorescence, UV.vis absorbance, FRET, circular dichroism, urea denaturation, enzyme kinetics, ITC, and molecular docking. We found that imipenem binds to HSA at a high affinity site located in subdomain IIIA (Sudlow's site I) and a low affinity site located in subdomain IIA.IIB. Electrostatic interactions played a vital role along with hydrogen bonding and hydrophobic interactions in stabilizing the imipenem.HSA complex at subdomain IIIA, while only electrostatic and hydrophobic interactions were present at subdomain IIA.IIB. The binding and thermodynamic parameters obtained by ITC showed that the binding of imipenem to HSA was a spontaneous process (ΔGD⁰(D)= -32.31 kJ mol(-1) for high affinity site and ΔGD⁰(D) = -23.02 kJ mol(-1) for low affinity site) with binding constants in the range of 10(4)-10(5) M(-1). Spectroscopic investigation revealed only one binding site of imipenem on HSA (Ka∼10(4) M(-1)). FRET analysis showed that the binding distance between imipenem and HSA (Trp-214) was optimal (r = 4.32 nm) for quenching to occur. Decrease in esterase-like activity of HSA in the presence of imipenem showed that Arg-410 and Tyr-411 of subdomain IIIA (Sudlow's site II) were directly involved in the binding process. CD spectral analysis showed altered conformation of HSA upon imipenem binding. Moreover, the binding of imipenem to subdomain IIIA (Sudlow's site II) of HSA also affected its folding pathway as clear from urea-induced denaturation studies.

  20. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin

    PubMed Central

    Rooijakkers, Bart J. M.

    2018-01-01

    Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain’s sequence–function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed. PMID:29782536

  1. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    PubMed

    Rooijakkers, Bart J M; Ikonen, Martina S; Linder, Markus B

    2018-01-01

    Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  2. Recognition of Mannosylated Ligands and Influenza A Virus by Human Surfactant Protein D: Contributions of an Extended Site and Residue 343

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouch, E.; Hartshorn, K; Horlacher, T

    2009-01-01

    Surfactant protein D (SP-D) plays important roles in antiviral host defense. Although SP-D shows a preference for glucose/maltose, the protein also recognizes d-mannose and a variety of mannose-rich microbial ligands. This latter preference prompted an examination of the mechanisms of mannose recognition, particularly as they relate to high-mannose viral glycans. Trimeric neck plus carbohydrate recognition domains from human SP-D (hNCRD) preferred ?1-2-linked dimannose (DM) over the branched trimannose (TM) core, ?1-3 or ?1-6 DM, or d-mannose. Previous studies have shown residues flanking the carbohydrate binding site can fine-tune ligand recognition. A mutant with valine at 343 (R343V) showed enhanced bindingmore » to mannan relative to wild type and R343A. No alteration in affinity was observed for d-mannose or for ?1-3- or ?1-6-linked DM; however, substantially increased affinity was observed for ?1-2 DM. Both proteins showed efficient recognition of linear and branched subdomains of high-mannose glycans on carbohydrate microarrays, and R343V showed increased binding to a subset of the oligosaccharides. Crystallographic analysis of an R343V complex with 1,2-DM showed a novel mode of binding. The disaccharide is bound to calcium by the reducing sugar ring, and a stabilizing H-bond is formed between the 2-OH of the nonreducing sugar ring and Arg349. Although hNCRDs show negligible binding to influenza A virus (IAV), R343V showed markedly enhanced viral neutralizing activity. Hydrophobic substitutions for Arg343 selectively blocked binding of a monoclonal antibody (Hyb 246-05) that inhibits IAV binding activity. Our findings demonstrate an extended ligand binding site for mannosylated ligands and the significant contribution of the 343 side chain to specific recognition of multivalent microbial ligands, including high-mannose viral glycans.« less

  3. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  4. Autoradiographic analysis of the in vivo distribution of 3H-imipramine and 3H-desipramine in brain: Comparison to in vitro binding patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, G.E.; Paul, I.A.; Fassberg, J.B.

    1991-03-01

    Using high resolution autoradiographic techniques, the distribution of radioactivity in forebrain and brainstem was assessed after 4 injection of 3H-impramine or 3H-desipramine. Results were compared with regional binding of the drugs to brain sections in vitro. Similar topographic binding of 3H-imipramine and 3H-desipramine was observed in vitro among brain regions, except in the paraventricular nucleus of the hypothalamus and locus coeruleus, where binding was greater for 3H-desipramine. For both 3H-desipramine and 3H-imipramine, some brain regions that exhibited high binding in vitro also showed high accumulation after in vivo injection. However, certain regions that contained high densities of binding sites formore » the antidepressant drugs as measured by in vitro binding showed very low accumulation of radioactivity after in vivo treatment. Such regions included the dentate gyrus of the hippocampus, layer 1 of piriform cortex, caudate-putamen, pontine and midbrain central gray, and cerebellar granular layer. Compared to in vitro binding of the drugs, the distribution of imipramine and desipramine in vivo appears more anatomically selective. For imipramine, primary sites of action in vivo, as indicated by the topographic distribution in brain, appear to be the locus coeruleus, hippocampus, lateral septal nucleus, and amygdala. For desipramine, the greatest accumulation in vivo was found in the locus coeruleus, paraventricular nucleus of the hypothalamus, and anterior thalamic nuclei.« less

  5. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  6. Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation.

    PubMed

    Schneider, T D

    2001-12-01

    The sequence logo for DNA binding sites of the bacteriophage P1 replication protein RepA shows unusually high sequence conservation ( approximately 2 bits) at a minor groove that faces RepA. However, B-form DNA can support only 1 bit of sequence conservation via contacts into the minor groove. The high conservation in RepA sites therefore implies a distorted DNA helix with direct or indirect contacts to the protein. Here I show that a high minor groove conservation signature also appears in sequence logos of sites for other replication origin binding proteins (Rts1, DnaA, P4 alpha, EBNA1, ORC) and promoter binding proteins (sigma(70), sigma(D) factors). This finding implies that DNA binding proteins generally use non-B-form DNA distortion such as base flipping to initiate replication and transcription.

  7. Alignment-independent comparison of binding sites based on DrugScore potential fields encoded by 3D Zernike descriptors.

    PubMed

    Nisius, Britta; Gohlke, Holger

    2012-09-24

    Analyzing protein binding sites provides detailed insights into the biological processes proteins are involved in, e.g., into drug-target interactions, and so is of crucial importance in drug discovery. Herein, we present novel alignment-independent binding site descriptors based on DrugScore potential fields. The potential fields are transformed to a set of information-rich descriptors using a series expansion in 3D Zernike polynomials. The resulting Zernike descriptors show a promising performance in detecting similarities among proteins with low pairwise sequence identities that bind identical ligands, as well as within subfamilies of one target class. Furthermore, the Zernike descriptors are robust against structural variations among protein binding sites. Finally, the Zernike descriptors show a high data compression power, and computing similarities between binding sites based on these descriptors is highly efficient. Consequently, the Zernike descriptors are a useful tool for computational binding site analysis, e.g., to predict the function of novel proteins, off-targets for drug candidates, or novel targets for known drugs.

  8. [High non-specific binding of the beta(1) -selective radioligand 2-(125)I-ICI-H].

    PubMed

    Riemann, B; Law, M P; Kopka, K; Wagner, St; Luthra, S; Pike, V W; Neumann, J; Kirchhefer, U; Schmitz, W; Schober, O; Schäfers, M

    2003-08-01

    As results of cardiac biopsies suggest, myocardial beta(1) -adrenoceptor density is reduced in patients with chronic heart failure. However, changes in cardiac beta(2)-adrenoceptors vary. With suitable radiopharmaceuticals single photon emission computed tomography (SPECT) and positron emission tomography (PET) offer the opportunity to assess beta-adrenoceptors non-invasively. Among the novel racemic analogues of the established beta(1)-selective adrenoceptor antagonist ICI 89.406 the iodinated 2-I-ICI-H showed high affinity and selectivity to beta(1)-adrenoceptors in murine ventricular membranes. The aim of this study was its evaluation as a putative sub-type selective beta(1)-adrenergic radioligand in cardiac imaging. Competition studies in vitro and in vivo were used to investigate the kinetics of 2-I-ICI-H binding to cardiac beta-adrenoceptors in mice and rats. In addition, the radiosynthesis of 2-(125)I-ICI-H from the silylated precursor 2-SiMe(3)-ICI-H was established. The specific activity was 80 GBq/ micro mol, the radiochemical yield ranged from 70 to 80%. The unlabelled compound 2-I-ICI-H showed high beta(1)-selectivity and -affinity in the in vitro competition studies. In vivo biodistribution studies apparently showed low affinity to cardiac beta-adrenoceptors. The radiolabelled counterpart 2-(125)I-ICI-H showed a high degree of non-specific binding in vitro and no specific binding to cardiac beta(1)-adrenoceptors in vivo. Because of its high non-specific binding 2-(125)I-ICI-H is no suitable radiotracer for imaging in vivo.

  9. HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG.

    PubMed Central

    Churchill, M E; Jones, D N; Glaser, T; Hefner, H; Searles, M A; Travers, A A

    1995-01-01

    The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region. Images PMID:7720717

  10. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    Imaging fibrillar amyloid-β deposition in the human brain in vivo by positron emission tomography has improved our understanding of the time course of amyloid-β pathology in Alzheimer's disease. The most widely used amyloid-β imaging tracer so far is (11)C-Pittsburgh compound B, a thioflavin derivative but other (11)C- and (18)F-labelled amyloid-β tracers have been studied in patients with Alzheimer's disease and cognitively normal control subjects. However, it has not yet been established whether different amyloid tracers bind to identical sites on amyloid-β fibrils, offering the same ability to detect the regional amyloid-β burden in the brains. In this study, we characterized (3)H-Pittsburgh compound B binding in autopsied brain regions from 23 patients with Alzheimer's disease and 20 control subjects (aged 50 to 88 years). The binding properties of the amyloid tracers FDDNP, AV-45, AV-1 and BF-227 were also compared with those of (3)H-Pittsburgh compound B in the frontal cortices of patients with Alzheimer's disease. Saturation binding studies revealed the presence of high- and low-affinity (3)H-Pittsburgh compound B binding sites in the frontal cortex (K(d1): 3.5 ± 1.6 nM; K(d2): 133 ± 30 nM) and hippocampus (K(d1):5.6 ± 2.2 nM; K(d2): 181 ± 132 nM) of Alzheimer's disease brains. The relative proportion of high-affinity to low-affinity sites was 6:1 in the frontal cortex and 3:1 in the hippocampus. One control showed both high- and low-affinity (3)H-Pittsburgh compound B binding sites (K(d1): 1.6 nM; K(d2): 330 nM) in the cortex while the others only had a low-affinity site (K(d2): 191 ± 70 nM). (3)H-Pittsburgh compound B binding in Alzheimer's disease brains was higher in the frontal and parietal cortices than in the caudate nucleus and hippocampus, and negligible in the cerebellum. Competitive binding studies with (3)H-Pittsburgh compound B in the frontal cortices of Alzheimer's disease brains revealed high- and low-affinity binding sites for BTA-1 (Ki: 0.2 nM, 70 nM), florbetapir (1.8 nM, 53 nM) and florbetaben (1.0 nM, 65 nM). BF-227 displaced 83% of (3)H-Pittsburgh compound B binding, mainly at a low-affinity site (311 nM), whereas FDDNP only partly displaced (40%). We propose a multiple binding site model for the amyloid tracers (binding sites 1, 2 and 3), where AV-45 (florbetapir), AV-1 (florbetaben), and Pittsburgh compound B, all show nanomolar affinity for the high-affinity site (binding site 1), as visualized by positron emission tomography. BF-227 shows mainly binding to site 3 and FDDNP shows only some binding to site 2. Different amyloid tracers may provide new insight into the pathophysiological mechanisms in the progression of Alzheimer's disease.

  11. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots.

    PubMed

    Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian

    2018-07-06

    Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625 /S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.

  12. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian

    2018-07-01

    Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.

  13. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (ρL = 1820/μm2, KD = 120 μM) nanoparticle selective binding to cancer (ρR = 256/μm2) vs. healthy (ρR = 64/μm2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g

  14. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  15. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE PAGES

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...

    2016-03-09

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  16. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process.

    PubMed

    Kirchberg, Kristina; Kim, Tai-Yang; Möller, Martina; Skegro, Darko; Dasara Raju, Gayathri; Granzin, Joachim; Büldt, Georg; Schlesinger, Ramona; Alexiev, Ulrike

    2011-11-15

    Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins.

  17. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process

    PubMed Central

    Kirchberg, Kristina; Kim, Tai-Yang; Möller, Martina; Skegro, Darko; Dasara Raju, Gayathri; Granzin, Joachim; Büldt, Georg; Schlesinger, Ramona; Alexiev, Ulrike

    2011-01-01

    Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the “phosphate-sensor” of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins. PMID:22039220

  18. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    PubMed

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes.

    PubMed

    Smaczniak, Cezary; Muiño, Jose M; Chen, Dijun; Angenent, Gerco C; Kaufmann, Kerstin

    2017-08-01

    Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo- and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation. © 2017 American Society of Plant Biologists. All rights reserved.

  20. Biphasic association of T7 RNA polymerase and a nucleotide analogue, cibacron blue as a model to understand the role of initiating nucleotide in the mechanism of enzyme action.

    PubMed

    Pai, Sudipta; Das, Mili; Banerjee, Rahul; Dasgupta, Dipak

    2011-08-01

    T7 RNA polymerase (T7 RNAP) is an enzyme that utilizes ribonucleotides to synthesize the nascent RNA chain in a template-dependent manner. Here we have studied the interaction of T7 RNAP with cibacron blue, an anthraquinone monochlorotriazine dye, its effect on the function of the enzyme and the probable mode of binding of the dye. We have used difference absorption spectroscopy and isothermal titration calorimetry to show that the dye binds T7 RNAP in a biphasic manner. The first phase of the binding is characterized by inactivation of the enzyme. The second binding site overlaps with the common substrate-binding site of the enzyme. We have carried out docking experiment to map the binding site of the dye in the promoter bound protein. Competitive displacement of the dye from the high affinity site by labeled GTP and isothermal titration calorimetry of high affinity GTP bound enzyme with the dye suggests a strong correlation between the high affinity dye binding and the high affinity GTP binding in T7 RNAP reported earlier from our laboratory.

  1. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding

    NASA Astrophysics Data System (ADS)

    Rosilo, Henna; McKee, Jason R.; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P.; Ikkala, Olli; Kostiainen, Mauri A.

    2014-09-01

    Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications. Electronic supplementary information (ESI) available: CNC surface chain fraction and degree of substitution after BriBBr modification, NMR spectra of the SI-ATRP reaction mixture at 0 and 120 min, conversion of the DMAEMA monomer during SI-ATRP, DLS size distribution profiles of CNCs and CNC-g-P(QDMAEMA), TEM images of NoV-VLPs and their complexes with CNC-g-P(QDMAEMA) at 0 mM NaCl. See DOI: 10.1039/c4nr03584d

  2. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrP(C) to PrP(Sc).

    PubMed

    Pagadala, Nataraj S; Perez-Pineiro, Rolando; Wishart, David S; Tuszynski, Jack A

    2015-02-16

    To understand the pharmacophore properties of 2-aminothiazoles and design novel inhibitors against the prion protein, a highly predictive 3D quantitative structure-activity relationship (QSAR) has been developed by performing comparative molecular field analysis (CoMFA) and comparative similarity analysis (CoMSIA). Both CoMFA and CoMSIA maps reveal the presence of the oxymethyl groups in meta and para positions on the phenyl ring of compound 17 (N-[4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-yl]quinolin-2-amine), is necessary for activity while electro-negative nitrogen of quinoline is highly favorable to enhance activity. The blind docking results for these compounds show that the compound with quinoline binds with higher affinity than isoquinoline and naphthalene groups. Out of 150 novel compounds retrieved using finger print analysis by pharmacophoric model predicted based on five test sets of compounds, five compounds with diverse scaffolds were selected for biological evaluation as possible PrP inhibitors. Molecular docking combined with fluorescence quenching studies show that these compounds bind to pocket-D of SHaPrP near Trp145. The new antiprion compounds 3 and 6, which bind with the interaction energies of -12.1 and -13.2 kcal/mol, respectively, show fluorescence quenching with binding constant (Kd) values of 15.5 and 44.14 μM, respectively. Further fluorescence binding assays with compound 5, which is similar to 2-aminothiazole as a positive control, also show that the molecule binds to the pocket-D with the binding constant (Kd) value of 84.7 μM. Finally, both molecular docking and a fluorescence binding assay of noscapine as a negative control reveals the same binding site on the surface of pocket-A near a rigid loop between β2 and α2 interacting with Arg164. This high level of correlation between molecular docking and fluorescence quenching studies confirm that these five compounds are likely to act as inhibitors for prion propagation while noscapine might act as a prion accelerator from PrP(C) to PrP(Sc). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state

    PubMed Central

    Warfield, Becka M.

    2017-01-01

    RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics. PMID:28437473

  4. Sorption of Cr(III) and Cr(VI) to High and Low Pressure Synthetic Nano-Magnetite (Fe3O4)Particles

    PubMed Central

    Parsons, Jason G.; Hernandez, Jeffrey; Gonzalez, Christina M.; Gardea-Torresdey, J. L.

    2014-01-01

    The binding of Cr(III) and Cr(VI) to synthetic nano-magnetie particles synthesized under open vessel conditions and a microwave assisted hydrothermal synthesis techniques was investigated. Batch studies showed that the binding of both the Cr(III) and Cr(VI) bound to the nano-materials in a pH dependent manner. The Cr(III) maximized at binding at pH 4 and 100% binding. Similarly, the Cr(VI) ions showed a maximum binding of 100% at pH 4. The data from the time dependency studies showed for the most part the majority of the binding occurred within the first 5 minutes of contact with the nanomaterial and remained constant thereafter. In addition, the effects of the possible interferences were investigated which showed some effects on the binding of both Cr(III) and Cr(VI). However, the interferences never completely eliminated the chromium binding. Isotherm studies conducted at room temperature showed the microwave synthesized nanomaterials had a binding capacity of 1208 ± 43.9 mg/g and 555 ± 10.5 mg/g for Cr(VI) and Cr(III), respectively. However, the microwave assisted synthesized nanomaterials had capacities of 1705 ± 14.5 and 555± 10.5 mg/g for Cr(VI) and Cr(III), respectively. XANES studies showed the Cr(VI) was reduced to Cr(III), and the Cr(III) remained as Cr(III). In addition, the XANES studies indicated that the chromium remained coordinated in an octahedral arrangement of oxygen atoms. PMID:25097452

  5. Positively charged mini-protein Zbasic2 as a highly efficient silica binding module: opportunities for enzyme immobilization on unmodified silica supports.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-07-03

    Silica is a highly attractive support material for protein immobilization in a wide range of biotechnological and biomedical-analytical applications. Without suitable derivatization, however, the silica surface is not generally usable for attachment of proteins. We show here that Z(basic2) (a three α-helix bundle mini-protein of 7 kDa size that exposes clustered positive charges from multiple arginine residues on one side) functions as highly efficient silica binding module (SBM), allowing chimeras of target protein with SBM to become very tightly attached to underivatized glass at physiological pH conditions. We used two enzymes, d-amino acid oxidase and sucrose phosphorylase, to demonstrate direct immobilization of Z(basic2) protein from complex biological samples with extremely high selectivity. Immobilized enzymes displayed full biological activity, suggesting that their binding to the glass surface had occurred in a preferred orientation via the SBM. We also show that charge complementarity was the main principle of affinity between SBM and glass surface, and Z(basic2) proteins were bound in a very strong, yet fully reversible manner, presumably through multipoint noncovalent interactions. Z(basic2) proteins were immobilized on porous glass in a loading of 30 mg protein/g support or higher, showing that attachment via the SBM combines excellent binding selectivity with a technically useful binding capacity. Therefore, Z(basic2) and silica constitute a fully orthogonal pair of binding module and insoluble support for oriented protein immobilization, and this opens up new opportunities for the application of silica-based materials in the development of supported heterogeneous biocatalysts.

  6. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  7. Guiding plant virus particles to integrin-displaying cells

    NASA Astrophysics Data System (ADS)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors. Electronic supplementary information (ESI) available: Synthetic procedures and compound characterization data; assay procedures; additional confocal micrographs at different time points. See DOI: 10.1039/c2nr30571b

  8. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein.

    PubMed

    Amano, Ryo; Takada, Kenta; Tanaka, Yoichiro; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2016-11-15

    AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.

  9. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2.

    PubMed

    Tossavainen, Helena; Aitio, Olli; Hellman, Maarit; Saksela, Kalle; Permi, Perttu

    2016-07-29

    We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. High-throughput screening in two dimensions: binding intensity and off-rate on a peptide microarray.

    PubMed

    Greving, Matthew P; Belcher, Paul E; Cox, Conor D; Daniel, Douglas; Diehnelt, Chris W; Woodbury, Neal W

    2010-07-01

    We report a high-throughput two-dimensional microarray-based screen, incorporating both target binding intensity and off-rate, which can be used to analyze thousands of compounds in a single binding assay. Relative binding intensities and time-resolved dissociation are measured for labeled tumor necrosis factor alpha (TNF-alpha) bound to a peptide microarray. The time-resolved dissociation is fitted to a one-component exponential decay model, from which relative dissociation rates are determined for all peptides with binding intensities above background. We show that most peptides with the slowest off-rates on the microarray also have the slowest off-rates when measured by surface plasmon resonance (SPR). 2010 Elsevier Inc. All rights reserved.

  11. Existence of three subtypes of bradykinin B2 receptors in guinea pig.

    PubMed

    Seguin, L; Widdowson, P S; Giesen-Crouse, E

    1992-12-01

    We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site.

    PubMed

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-03-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  13. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, H.; Qiu, Y; Philo, J

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. Amore » new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.« less

  14. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric regulation and a conserved structural motif for the chloride-binding site

    PubMed Central

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666

  15. SMARTIV: combined sequence and structure de-novo motif discovery for in-vivo RNA binding data.

    PubMed

    Polishchuk, Maya; Paz, Inbal; Yakhini, Zohar; Mandel-Gutfreund, Yael

    2018-05-25

    Gene expression regulation is highly dependent on binding of RNA-binding proteins (RBPs) to their RNA targets. Growing evidence supports the notion that both RNA primary sequence and its local secondary structure play a role in specific Protein-RNA recognition and binding. Despite the great advance in high-throughput experimental methods for identifying sequence targets of RBPs, predicting the specific sequence and structure binding preferences of RBPs remains a major challenge. We present a novel webserver, SMARTIV, designed for discovering and visualizing combined RNA sequence and structure motifs from high-throughput RNA-binding data, generated from in-vivo experiments. The uniqueness of SMARTIV is that it predicts motifs from enriched k-mers that combine information from ranked RNA sequences and their predicted secondary structure, obtained using various folding methods. Consequently, SMARTIV generates Position Weight Matrices (PWMs) in a combined sequence and structure alphabet with assigned P-values. SMARTIV concisely represents the sequence and structure motif content as a single graphical logo, which is informative and easy for visual perception. SMARTIV was examined extensively on a variety of high-throughput binding experiments for RBPs from different families, generated from different technologies, showing consistent and accurate results. Finally, SMARTIV is a user-friendly webserver, highly efficient in run-time and freely accessible via http://smartiv.technion.ac.il/.

  16. Crystal Structures of the Scaffolding Protein LGN Reveal the General Mechanism by Which GoLoco Binding Motifs Inhibit the Release of GDP from Gαi *

    PubMed Central

    Jia, Min; Li, Jianchao; Zhu, Jinwei; Wen, Wenyu; Zhang, Mingjie; Wang, Wenning

    2012-01-01

    GoLoco (GL) motif-containing proteins regulate G protein signaling by binding to Gα subunit and acting as guanine nucleotide dissociation inhibitors. GLs of LGN are also known to bind the GDP form of Gαi/o during asymmetric cell division. Here, we show that the C-terminal GL domain of LGN binds four molecules of Gαi·GDP. The crystal structures of Gαi·GDP in complex with LGN GL3 and GL4, respectively, reveal distinct GL/Gαi interaction features when compared with the only high resolution structure known with GL/Gαi interaction between RGS14 and Gαi1. Only a few residues C-terminal to the conserved GL sequence are required for LGN GLs to bind to Gαi·GDP. A highly conserved “double Arg finger” sequence (RΨ(D/E)(D/E)QR) is responsible for LGN GL to bind to GDP bound to Gαi. Together with the sequence alignment, we suggest that the LGN GL/Gαi interaction represents a general binding mode between GL motifs and Gαi. We also show that LGN GLs are potent guanine nucleotide dissociation inhibitors. PMID:22952234

  17. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    PubMed

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  18. Diversity of the luciferin binding protein gene in bioluminescent dinoflagellates--insights from a new gene in Noctiluca scintillans and sequences from gonyaulacoid genera.

    PubMed

    Valiadi, Martha; Iglesias-Rodriguez, Maria Debora

    2014-01-01

    Dinoflagellate bioluminescence systems operate with or without a luciferin binding protein, representing two distinct modes of light production. However, the distribution, diversity, and evolution of the luciferin binding protein gene within bioluminescent dinoflagellates are not well known. We used PCR to detect and partially sequence this gene from the heterotrophic dinoflagellate Noctiluca scintillans and a group of ecologically important gonyaulacoid species. We report an additional luciferin binding protein gene in N. scintillans which is not attached to luciferase, further to its typical combined bioluminescence gene. This supports the hypothesis that a profound re-organization of the bioluminescence system has taken place in this organism. We also show that the luciferin binding protein gene is present in the genera Ceratocorys, Gonyaulax, and Protoceratium, and is prevalent in bioluminescent species of Alexandrium. Therefore, this gene is an integral component of the standard molecular bioluminescence machinery in dinoflagellates. Nucleotide sequences showed high within-strain variation among gene copies, revealing a highly diverse gene family comprising multiple gene types in some organisms. Phylogenetic analyses showed that, in some species, the evolution of the luciferin binding protein gene was different from the organism's general phylogenies, highlighting the complex evolutionary history of dinoflagellate bioluminescence systems. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  19. Intercellular Adhesion Molecule-5 Induces Dendritic Outgrowth by Homophilic Adhesion

    PubMed Central

    Tian, Li; Nyman, Henrietta; Kilgannon, Patrick; Yoshihara, Yoshihiro; Mori, Kensaku; Andersson, Leif C.; Kaukinen, Sami; Rauvala, Heikki; Gallatin, W. Michael; Gahmberg, Carl G.

    2000-01-01

    Intercellular adhesion molecule-5 (ICAM-5) is a dendritically polarized membrane glycoprotein in telencephalic neurons, which shows heterophilic binding to leukocyte β2-integrins. Here, we show that the human ICAM-5 protein interacts in a homophilic manner through the binding of the immunoglobulin domain 1 to domains 4–5. Surface coated ICAM-5-Fc promoted dendritic outgrowth and arborization of ICAM- 5–expressing hippocampal neurons. During dendritogenesis in developing rat brain, ICAM-5 was in monomer form, whereas in mature neurons it migrated as a high molecular weight complex. The findings indicate that its homophilic binding activity was regulated by nonmonomer/monomer transition. Thus, ICAM-5 displays two types of adhesion activity, homophilic binding between neurons and heterophilic binding between neurons and leukocytes. PMID:10893271

  20. Molecular and functional characterization of single-box high-mobility group B (HMGB) chromosomal protein from Aedes aegypti.

    PubMed

    de Abreu da Silva, Isabel Caetano; Vicentino, Amanda Roberta Revoredo; Dos Santos, Renata Coutinho; da Fonseca, Rodrigo Nunes; de Mendonça Amarante, Anderson; Carneiro, Vitor Coutinho; de Amorim Pinto, Marcia; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Bisch, Paulo Mascarello; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado

    2018-05-30

    High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis. Copyright © 2017. Published by Elsevier B.V.

  1. Down-regulation of tryptamine binding sites following chronic molindone administration. A comparison with responses of dopamine and 5-hydroxytryptamine receptors.

    PubMed

    Nguyen, T V; Juorio, A V

    1989-10-01

    The present study assessed changes of tryptamine, dopamine D2, 5-HT1 and 5-HT2 binding sites in rat brain following chronic treatment with low (5 mg/kg/day) and high (40 mg/kg/day) doses of molindone, a clinically effective psychotropic drug. The high-dose molindone treatment produced a decrease in the number of tryptamine binding sites while both high and low doses caused an increase in the number of dopamine D2 binding sites in the striatum. No significant changes were observed in either 5-HT1 or 5-HT2 binding sites in the cerebral cortex. Competition binding experiments showed that molindone was a potent inhibitor at dopamine D2 but less effective at tryptamine, 5-HT1 and 5-HT2 binding sites. The inhibition activity of molindone towards type A monoamine oxidase produced a significant increase in endogenous tryptamine accumulation rate which was much higher than that of dopamine and 5-HT. These findings suggest that the reduction in the number of tryptamine binding sites produced by chronic molindone administration is related to monoamine oxidase inhibition and that the increase in the number of dopamine D2 binding sites is correlated to receptor blocking activity of the drug.

  2. The 1.3 A resolution structure of the RNA tridecamer r(GCGUUUGAAACGC): metal ion binding correlates with base unstacking and groove contraction.

    PubMed

    Timsit, Youri; Bombard, Sophie

    2007-12-01

    Metal ions play a key role in RNA folding and activity. Elucidating the rules that govern the binding of metal ions is therefore an essential step for better understanding the RNA functions. High-resolution data are a prerequisite for a detailed structural analysis of ion binding on RNA and, in particular, the observation of monovalent cations. Here, the high-resolution crystal structures of the tridecamer duplex r(GCGUUUGAAACGC) crystallized under different conditions provides new structural insights on ion binding on GAAA/UUU sequences that exhibit both unusual structural and functional properties in RNA. The present study extends the repertory of RNA ion binding sites in showing that the two first bases of UUU triplets constitute a specific site for sodium ions. A striking asymmetric pattern of metal ion binding in the two equivalent halves of the palindromic sequence demonstrates that sequence and its environment act together to bind metal ions. A highly ionophilic half that binds six metal ions allows, for the first time, the observation of a disodium cluster in RNA. The comparison of the equivalent halves of the duplex provides experimental evidences that ion binding correlates with structural alterations and groove contraction.

  3. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration* ♦

    PubMed Central

    Koenig, Patrick; Lee, Chingwei V.; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F.; Fuh, Germaine

    2015-01-01

    The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. PMID:26088137

  4. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.

    PubMed

    Giannotti, Marina I; Cabeza de Vaca, Israel; Artés, Juan M; Sanz, Fausto; Guallar, Victor; Gorostiza, Pau

    2015-09-10

    The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal-binding site could be facilitated by the physical interaction with certain regions of the redox protein.

  5. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    PubMed Central

    Pasternak, Anna; Hernandez, Frank J.; Rasmussen, Lars M.; Vester, Birte; Wengel, Jesper

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation. PMID:20870750

  6. Factor h and properdin recognize different epitopes on renal tubular epithelial heparan sulfate.

    PubMed

    Zaferani, Azadeh; Vivès, Romain R; van der Pol, Pieter; Navis, Gerjan J; Daha, Mohamed R; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A; van den Born, Jacob

    2012-09-07

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope than properdin. Factor H was present on the urinary side of renal tubular cells in proteinuric, but not in normal renal tissues and colocalized with properdin in proteinuric kidneys. Factor H dose-dependently bound to proximal tubular epithelial cells (PTEC) in vitro. Preincubation of factor H with exogenous heparin and pretreatment of PTECs with heparitinase abolished the binding to PTECs. Surface plasmon resonance experiments showed high affinity of factor H for heparin and HS (K(D) values of 32 and 93 nm, respectively). Using a library of HS-like polysaccharides, we showed that chain length and high sulfation density are the most important determinants for glycosaminoglycan-factor H interaction and clearly differ from properdin-heparinoid interaction. Coincubation of properdin and factor H did not hamper HS/heparin binding of one another, indicating recognition of different nonoverlapping epitopes on HS/heparin by factor H and properdin. Finally we showed that certain low anticoagulant heparinoids can inhibit properdin binding to tubular HS, with a minor effect on factor H binding to tubular HS. As a result, these heparinoids can control the alternative complement pathway. In conclusion, factor H and properdin interact with different HS epitopes of PTECs. These interactions can be manipulated with some low anticoagulant heparinoids, which can be important for preventing complement-derived tubular injury in proteinuric renal diseases.

  7. Polar bear hemoglobin and human Hb A0: same 2,3-diphosphoglycerate binding site but asymmetry of the binding?

    PubMed

    Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J

    2002-11-01

    Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.

  8. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness.

    PubMed

    Calcagnoli, Federica; de Boer, Sietse F; Beiderbeck, Daniela I; Althaus, Monika; Koolhaas, Jaap M; Neumann, Inga D

    2014-03-15

    We recently demonstrated in male wild-type Groningen rats that enhancing brain oxytocin (OXT) levels acutely produces marked pro-social explorative and anti-aggressive effects. Moreover, these pharmacologically-induced changes are moderated by the individual's aggressive phenotype, suggesting an inverse relationship between aggressiveness and tonic endogenous OXT signaling properties. Aim of the present study was to verify the hypothesis that variations in OXT expression and/or OXT receptor (OXTR) binding in selected brain regions are associated with different levels or forms of aggression. To this end, male resident wild-type Groningen rats that repeatedly contested and dominated intruder conspecifics were categorized as being low aggressive, highly aggressive or excessively aggressive. Their brains were subsequently collected and quantified for OXT mRNA expression and OXTR binding levels. Our results showed that OXT mRNA expression in the hypothalamic paraventricular nucleus (PVN), but not in the supraoptic nucleus (SON), negatively correlates with the level of offensiveness. In particular, the excessively aggressive group showed a significantly lower OXT mRNA expression in the PVN as compared to both low and highly aggressive groups. Further, the excessively aggressive animals showed the highest OXTR binding in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). These findings demonstrate that male rats with excessively high levels and abnormal forms of aggressive behavior have diminished OXT transcription and enhanced OXTR binding capacities in specific nodes of the social behavioral brain circuitry. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Design and Synthesis of Piperazine Sulfonamide Cores Leading to Highly Potent HIV-1 Protease Inhibitors.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Schulz, Jurgen; Wiscount, Catherine M; Holloway, M Katharine; Loughran, H Marie; Manikowski, Jesse J; Su, Hua-Poo; Bennett, David J; Chang, Lehua; Chu, Xin-Jie; Crespo, Alejandro; Dwyer, Michael P; Keertikar, Kartik; Morriello, Gregori J; Stamford, Andrew W; Waddell, Sherman T; Zhong, Bin; Hu, Bin; Ji, Tao; Diamond, Tracy L; Bahnck-Teets, Carolyn; Carroll, Steven S; Fay, John F; Min, Xu; Morris, William; Ballard, Jeanine E; Miller, Michael D; McCauley, John A

    2017-12-14

    Using the HIV-1 protease binding mode of MK-8718 and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to MK-8718 .

  10. Interaction of xenobiotics with estrogen receptors α and β and a putative plasma sex hormone-binding globulin from channel catfish (Ictalurus punctatus)

    USGS Publications Warehouse

    Gale, William L.; Patino, Reynaldo; Maule, Alec G.

    2004-01-01

    Estrogens are important regulators of physiological functions. Although environmental contaminants (xenoestrogens) which interfere with estrogen signaling are of increasing concern, there is only limited information about their ability to interact with estrogen-binding proteins (SHBG) or receptors (ER). Recombinant ER?? and ?? were obtained after transient transfection of COS-7 cells with channel catfish ER cDNA. Plasma from adult female channel catfish was the source of SHBG. Tritiated estradiol ( 3H-E2) was used in standard radioligand-binding assays to characterize the binding properties of channel catfish SHBG (ccfSHBG) and to estimate the inhibition constants for various estrogenic compounds. Binding of 3H-E2 to ccfSHBG was saturable and of high affinity with a Kd (??SE) of 1.9??0.14nM and a Bmax of 14.3??2.4pmol/mg protein (n=3 assays). Additionally, ccfSHBG displayed binding specificity for androgens and estrogens. Endosulfan, 4-nonylphenol, and 4-octylphenol displaced 3H-E2 binding to ccfSHBG albeit only at very high concentrations, whereas dieldrin and atrazine showed little displacement activity even at the highest concentrations used. The synthetic estrogen ethynylestradiol had higher affinity than E2 for ccfSHBG. This finding differs from results with human and rainbow trout SHBG. The alkylphenolic compounds (4-octylphenol and 4-nonylphenol) displayed some ability to displace 3H-E2 binding from ER?? and ?? at high concentrations, but dieldrin and atrazine had little binding activity for both ER subtypes and endosulfan for ER??. The xenobiotics tested generally showed equivalent or greater affinity for ER?? than ER??, whereas natural estrogens had much greater affinity for ER?? than ER??. These observations suggest that results of studies using fish tissue ER extracts must be interpreted with caution, since both ER subtypes may be present, and that the binding of xenoestrogens to SHBG must be taken into account for proper assessment of endocrine disruption caused by environmental contaminants.

  11. Binding of high mobility group A proteins to the mammalian genome occurs as a function of AT-content

    PubMed Central

    Schübeler, Dirk

    2017-01-01

    Genomic location can inform on potential function and recruitment signals for chromatin-associated proteins. High mobility group (Hmg) proteins are of similar size as histones with Hmga1 and Hmga2 being particularly abundant in replicating normal tissues and in cancerous cells. While several roles for Hmga proteins have been proposed we lack a comprehensive description of their genomic location as a function of chromatin, DNA sequence and functional domains. Here we report such a characterization in mouse embryonic stem cells in which we introduce biotin-tagged constructs of wild-type and DNA-binding domain mutants. Comparative analysis of the genome-wide distribution of Hmga proteins reveals pervasive binding, a feature that critically depends on a functional DNA-binding domain and which is shared by both Hmga proteins. Assessment of the underlying queues instructive for this binding modality identifies AT richness, defined as high frequency of A or T bases, as the major criterion for local binding. Additionally, we show that other chromatin states such as those linked to cis-regulatory regions have little impact on Hmga binding both in stem and differentiated cells. As a consequence, Hmga proteins are preferentially found at AT-rich regions such as constitutively heterochromatic regions but are absent from enhancers and promoters arguing for a limited role in regulating individual genes. In line with this model, we show that genetic deletion of Hmga proteins in stem cells causes limited transcriptional effects and that binding is conserved in neuronal progenitors. Overall our comparative study describing the in vivo binding modality of Hmga1 and Hmga2 identifies the proteins’ preference for AT-rich DNA genome-wide and argues against a suggested function of Hmga at regulatory regions. Instead we discover pervasive binding with enrichment at regions of higher AT content irrespective of local variation in chromatin modifications. PMID:29267285

  12. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    PubMed Central

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  13. Sulfated Metabolites of Polychlorinated Biphenyls Are High-Affinity Ligands for the Thyroid Hormone Transport Protein Transthyretin

    PubMed Central

    Grimm, Fabian A.; Lehmler, Hans-Joachim; He, Xianran; Robertson, Larry W.

    2013-01-01

    Background: The displacement of l-thyroxine (T4) from binding sites on transthyretin (TTR) is considered a significant contributing mechanism in polychlorinated biphenyl (PCB)-induced thyroid disruption. Previous research has discovered hydroxylated PCB metabolites (OH-PCBs) as high-affinity ligands for TTR, but the binding potential of conjugated PCB metabolites such as PCB sulfates has not been explored. Objectives: We evaluated the binding of five lower-chlorinated PCB sulfates to human TTR and compared their binding characteristics to those determined for their OH-PCB precursors and for T4. Methods: We used fluorescence probe displacement studies and molecular docking simulations to characterize the binding of PCB sulfates to TTR. The stability of PCB sulfates and the reversibility of these interactions were characterized by HPLC analysis of PCB sulfates after their binding to TTR. The ability of OH-PCBs to serve as substrates for human cytosolic sulfotransferase 1A1 (hSULT1A1) was assessed by OH-PCB–dependent formation of adenosine-3´,5´-diphosphate, an end product of the sulfation reaction. Results: All five PCB sulfates were able to bind to the high-affinity binding site of TTR with equilibrium dissociation constants (Kd values) in the low nanomolar range (4.8–16.8 nM), similar to that observed for T4 (4.7 nM). Docking simulations provided corroborating evidence for these binding interactions and indicated multiple high-affinity modes of binding. All OH-PCB precursors for these sulfates were found to be substrates for hSULT1A1. Conclusions: Our findings show that PCB sulfates are high-affinity ligands for human TTR and therefore indicate, for the first time, a potential relevance for these metabolites in PCB-induced thyroid disruption. PMID:23584369

  14. Myelin-reactive “type B” T cells and T cells specific for low-affinity MHC-binding myelin peptides escape tolerance in HLA-DR transgenic mice

    PubMed Central

    Kawamura, Kazuyuki; McLaughlin, Katherine A.; Weissert, Robert; Forsthuber, Thomas G.

    2009-01-01

    Genes of the major histocompatibility complex (MHC) show the strongest genetic association with multiple sclerosis (MS) but the underlying mechanisms have remained unresolved. Here, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401 contribute to autoimmune central nervous system (CNS) demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon backcrossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific “type B” T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific “type B” T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and “type B” T cells can escape the induction of T cell tolerance and may promote MS. PMID:18713991

  15. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonistmore » (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.« less

  16. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.

    PubMed

    de Hoog, Hans-Peter M; Lin JieRong, Esther M; Banerjee, Sourabh; Décaillot, Fabien M; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.

  17. Conformational Antibody Binding to a Native, Cell-Free Expressed GPCR in Block Copolymer Membranes

    PubMed Central

    de Hoog, Hans-Peter M.; Lin JieRong, Esther M.; Banerjee, Sourabh; Décaillot, Fabien M.; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4. PMID:25329156

  18. Identification of new ligands for the methionine biosynthesis transcriptional regulator (MetJ) by FAC-MS.

    PubMed

    Martí-Arbona, Ricardo; Teshima, Munehiro; Anderson, Penelope S; Nowak-Lovato, Kristy L; Hong-Geller, Elizabeth; Unkefer, Clifford J; Unkefer, Pat J

    2012-01-01

    We have developed a high-throughput approach using frontal affinity chromatography coupled to mass spectrometry (FAC-MS) for the identification and characterization of the small molecules that modulate transcriptional regulator (TR) binding to TR targets. We tested this approach using the methionine biosynthesis regulator (MetJ). We used effector mixtures containing S-adenosyl-L-methionine (SAM) and S-adenosyl derivatives as potential ligands for MetJ binding. The differences in the elution time of different compounds allowed us to rank the binding affinity of each compound. Consistent with previous results, FAC-MS showed that SAM binds to MetJ with the highest affinity. In addition, adenine and 5'-deoxy-5'-(methylthio)adenosine bind to the effector binding site on MetJ. Our experiments with MetJ demonstrate that FAC-MS is capable of screening complex mixtures of molecules and identifying high-affinity binders to TRs. In addition, FAC-MS experiments can be used to discriminate between specific and nonspecific binding of the effectors as well as to estimate the dissociation constant (K(d)) for effector-TR binding. Copyright © 2012 S. Karger AG, Basel.

  19. Binding Leverage as a Molecular Basis for Allosteric Regulation

    PubMed Central

    Mitternacht, Simon; Berezovsky, Igor N.

    2011-01-01

    Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design. PMID:21935347

  20. Heptameric Targeting Ligands against EGFR and HER2 with High Stability and Avidity

    PubMed Central

    Kim, Dongwook; Yan, Yitang; Valencia, C. Alexander; Liu, Rihe

    2012-01-01

    Multivalency of targeting ligands provides significantly increased binding strength towards their molecular targets. Here, we report the development of a novel heptameric targeting system, with general applications, constructed by fusing a target-binding domain with the heptamerization domain of the Archaeal RNA binding protein Sm1 through a flexible hinge peptide. The previously reported affibody molecules against EGFR and HER2, ZEGFR and ZHER2, were used as target binding moieties. The fusion molecules were highly expressed in E. coli as soluble proteins and efficiently self-assembled into multimeric targeting ligands with the heptamer as the predominant form. We demonstrated that the heptameric molecules were resistant to protease-mediated digestion or heat- and SDS-induced denaturation. Surface plasmon resonance (SPR) analysis showed that both heptameric ZEGFR and ZHER2 ligands have a significantly enhanced binding strength to their target receptors with a nearly 100 to 1000 fold increase relative to the monomeric ligands. Cellular binding assays showed that heptameric ligands maintained their target-binding specificities similar to the monomeric forms towards their respective receptor. The non-toxic property of each heptameric ligand was demonstrated by the cell proliferation assay. In general,, the heptamerization strategy we describe here could be applied to the facile and efficient engineering of other protein domain- or short peptide-based affinity molecules to acquire significantly improved target-binding strengths with potential applications in the targeted delivery of various imaging or therapeutic agents.. PMID:22912791

  1. The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities.

    PubMed

    Jeske, Mandy; Bordi, Matteo; Glatt, Sebastian; Müller, Sandra; Rybin, Vladimir; Müller, Christoph W; Ephrussi, Anne

    2015-07-28

    In many animals, the germ plasm segregates germline from soma during early development. Oskar protein is known for its ability to induce germ plasm formation and germ cells in Drosophila. However, the molecular basis of germ plasm formation remains unclear. Here, we show that Oskar is an RNA-binding protein in vivo, crosslinking to nanos, polar granule component, and germ cell-less mRNAs, each of which has a role in germline formation. Furthermore, we present high-resolution crystal structures of the two Oskar domains. RNA-binding maps in vitro to the C-terminal domain, which shows structural similarity to SGNH hydrolases. The highly conserved N-terminal LOTUS domain forms dimers and mediates Oskar interaction with the germline-specific RNA helicase Vasa in vitro. Our findings suggest a dual function of Oskar in RNA and Vasa binding, providing molecular clues to its germ plasm function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Architecture of a Fur Binding Site: a Comparative Analysis

    PubMed Central

    Lavrrar, Jennifer L.; McIntosh, Mark A.

    2003-01-01

    Fur is an iron-binding transcriptional repressor that recognizes a 19-bp consensus site of the sequence 5′-GATAATGATAATCATTATC-3′. This site can be defined as three adjacent hexamers of the sequence 5′-GATAAT-3′, with the third being slightly imperfect (an F-F-F configuration), or as two hexamers in the forward orientation separated by one base pair from a third hexamer in the reverse orientation (an F-F-x-R configuration). Although Fur can bind synthetic DNA sequences containing the F-F-F arrangement, most natural binding sites are variations of the F-F-x-R arrangement. The studies presented here compared the ability of Fur to recognize synthetic DNA sequences containing two to four adjacent hexamers with binding to sequences containing variations of the F-F-x-R arrangement (including natural operator sequences from the entS and fepB promoter regions of Escherichia coli). Gel retardation assays showed that the F-F-x-R architecture was necessary for high-affinity Fur-DNA interactions and that contiguous hexamers were not recognized as effectively. In addition, the stoichiometry of Fur at each binding site was determined, showing that Fur interacted with its minimal 19-bp binding site as two overlapping dimers. These data confirm the proposed overlapping-dimer binding model, where the unit of interaction with a single Fur dimer is two inverted hexamers separated by a C:G base pair, with two overlapping units comprising the 19-bp consensus binding site required for the high-affinity interaction with two Fur dimers. PMID:12644489

  3. Negative Cooperativity in the EGF Receptor

    PubMed Central

    Pike, Linda J.

    2012-01-01

    Scatchard analyses of the binding of EGF to its receptor yield concave up Scatchard plots, indicative of some type of heterogenity in ligand binding affinity. This was typically interpreted as being due to the presence of two independent binding site–one of high affinity representing ≤10% of the receptor population and one of low affinity making up the bulk of the receptors. However, the concept of two independent binding sites is difficult to reconcile with the X-ray structures of the dimerized EGF receptor that show symmetric binding of the two ligands. A new approach to the analysis of 125I-EGF binding data combined with the structure of the singly-occupied Drosophila EGF receptor have now shown that this heterogeneity is due to the presence of negative cooperativity in the EGF receptor. Concerns that negative cooperativity precludes ligand-induced dimerization of the EGF receptor confuse the concepts of linkage cooperativity. Linkage refers to the effect of ligand on the assembly of dimers while cooperativity refers to the effect of ligand binding to one subunit on ligand binding to the other subunit within a preassembled dimer. Binding of EGF to its receptor is positively linked with dimer assembly but shows negative cooperativity within the dimer. PMID:22260659

  4. Mechanisms of zinc binding to the solute-binding protein AztC and transfer from the metallochaperone AztD.

    PubMed

    Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T

    2017-10-20

    Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Computational Design of Ligand Binding Proteins with High Affinity and Selectivity

    PubMed Central

    Dou, Jiayi; Doyle, Lindsey; Nelson, Jorgen W.; Schena, Alberto; Jankowski, Wojciech; Kalodimos, Charalampos G.; Johnsson, Kai; Stoddard, Barry L.; Baker, David

    2014-01-01

    The ability to design proteins with high affinity and selectivity for any given small molecule would have numerous applications in biosensing, diagnostics, and therapeutics, and is a rigorous test of our understanding of the physiochemical principles that govern molecular recognition phenomena. Attempts to design ligand binding proteins have met with little success, however, and the computational design of precise molecular recognition between proteins and small molecules remains an “unsolved problem”1. We describe a general method for the computational design of small molecule binding sites with pre-organized hydrogen bonding and hydrophobic interfaces and high overall shape complementary to the ligand, and use it to design protein binding sites for the steroid digoxigenin (DIG). Of 17 designs that were experimentally characterized, two bind DIG; the highest affinity design has the lowest predicted interaction energy and the most pre-organized binding site in the set. A comprehensive binding-fitness landscape of this design generated by library selection and deep sequencing was used to guide optimization of binding affinity to a picomolar level, and two X-ray co-crystal structures of optimized complexes show atomic level agreement with the design models. The designed binder has a high selectivity for DIG over the related steroids digitoxigenin, progesterone, and β-estradiol, which can be reprogrammed through the designed hydrogen-bonding interactions. Taken together, the binding fitness landscape, co-crystal structures, and thermodynamic binding parameters illustrate how increases in binding affinity can result from distal sequence changes that limit the protein ensemble to conformers making the most energetically favorable interactions with the ligand. The computational design method presented here should enable the development of a new generation of biosensors, therapeutics, and diagnostics. PMID:24005320

  6. Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in rat brain.

    PubMed

    Tomie, Arthur; Di Poce, Jason; Aguado, Allison; Janes, Amy; Benjamin, Daniel; Pohorecky, Larissa

    2003-06-13

    Effects of experience with Pavlovian autoshaping procedures on lever-press autoshaping conditioned response (CR) performance and 3H-8-OH-DPAT-labeled binding of 5-HT(1a) receptors as well as 125I-LSD-labeled binding of 5-HT(2a) receptors were evaluated in four groups of male Long-Evans hooded rats. Two groups of rats (Group Paired High CR and Group Paired Low CR) received Pavlovian autoshaping procedures wherein the presentation of a lever (conditioned stimulus, CS) was followed by the response-independent presentation of food (unconditioned stimulus, US). Rats in Group Paired High CR (n=12) showed more rapid CR acquisition and higher asymptotic levels of lever-press autoshaping CR performance relative to rats in Group Low CR (n=12). Group Omission (n=9) received autoshaping with an omission contingency, such that performing the lever-press autoshaping CR resulted in the cancellation the food US, while Group Random (n=9) received presentations of lever CS and food US randomly with respect to one another. Though Groups Omission and Random did not differ in lever-press autoshaping CR performance, Group Omission showed significantly lower levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in post-synaptic areas (frontal cortex, septum, caudate putamen), as well as significantly higher plasma corticosterone levels than Group Random. In addition, Group Random showed higher levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in pre-synaptic somatodendritic autoreceptors on dorsal raphe nucleus relative to each of the other three groups. Autoradiographic analysis of 125I-LSD-labeled 5-HT(2a) receptor binding revealed no significant differences between Groups Paired High CR and Paired Low CR or between Groups Omission and Random in any brain regions.

  7. The FOXP2 forkhead domain binds to a variety of DNA sequences with different rates and affinities.

    PubMed

    Webb, Helen; Steeb, Olga; Blane, Ashleigh; Rotherham, Lia; Aron, Shaun; Machanick, Philip; Dirr, Heini; Fanucchi, Sylvia

    2017-07-01

    FOXP2 is a member of the P subfamily of FOX transcription factors, the DNA-binding domain of which is the winged helix forkhead domain (FHD). In this work we show that the FOXP2 FHD is able to bind to various DNA sequences, including a novel sequence identified in this work, with different affinities and rates as detected using surface plasmon resonance. Combining the experimental work with molecular docking, we show that high-affinity sequences remain bound to the protein for longer, form a greater number of interactions with the protein and induce a greater structural change in the protein than low-affinity sequences. We propose a binding model for the FOXP2 FHD that involves three types of binding sequence: low affinity sites which allow for rapid scanning of the genome by the protein in a partially unstructured state; moderate affinity sites which serve to locate the protein near target sites and high-affinity sites which secure the protein to the DNA and induce a conformational change necessary for functional binding and the possible initiation of downstream transcriptional events. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    PubMed Central

    Velkov, Tony

    2013-01-01

    Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD) of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed. PMID:23476633

  9. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  10. Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae).

    PubMed

    Jin, Jun-Yan; Li, Zhao-Qun; Zhang, Ya-Nan; Liu, Nai-Yong; Dong, Shuang-Lin

    2014-07-01

    Pheromone binding proteins (PBPs) are thought to bind and transport hydrophobic sex pheromone molecules across the aqueous sensillar lymph to specific pheromone receptors on the dendritic membrane of olfactory neurons. A maximum of 3 PBP genes have been consistently identified in noctuid species, and each of them shares high identity with its counterparts in other species within the family. The functionality differences of the 3 proteins are poorly understood. In the present study, 3 PBP cDNAs (SinfPBP1, 2, 3) were identified from the pink rice borer, Sesamia inferens, for the first time. The quantitative real-time PCR indicated that the 3 PBPs displayed similar temporal but very different sex related expression profiles. Expression of SinfPBP1 and SinfPBP2 were highly and moderately male biased, respectively, while SinfPBP3 was slightly female biased, as SinfPBPs were expressed at very different levels (PBP1>PBP2≫PBP3) in male antennae, but at similar levels in female antennae. Furthermore, the 3 SinfPBPs displayed different ligand binding profiles in fluorescence competitive binding assays. SinfPBP1 exhibited high and similar binding affinities to all 3 sex pheromone components (Ki=0.72-1.60 μM), while SinfPBP2 showed selective binding to the alcohol and aldehyde components (Ki=0.78-1.71 μM), and SinfPBP3 showed no obvious binding to the 3 sex pheromone components. The results suggest that SinfPBP1 plays a major role in the reception of female sex pheromones in S. inferens, while SinfPBP3 plays a least role (if any) and SinfPBP2 functions as a recognizer of alcohol and aldehyde components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. In vitro evidence for RNA binding properties of the coat protein of prunus necrotic ringspot ilarvirus and their comparison to related and unrelated viruses.

    PubMed

    Pallás, V; Sánchez-Navarro, J A; Díez, J

    1999-01-01

    The RNA binding properties of the prunus necrotic ringspot virus (PNRSV) coat protein (CP) were demonstrated by northwestern and dot-blot analyses. The capability to bind PNRSV RNA 4 was compared with viruses representing three different interactions prevailing in the assembly and architecture of virions. The results showed that cucumber mosaic virus (CMV) and PNRSV CPs, which stabilise their virions mainly through RNA-protein interactions bound PNRSV RNA 4 even at very high salt concentrations. The CP of cherry leaf roll nepovirus, whose virions are predominantly stabilised by protein-protein interactions did not bind even at the lowest salt concentration tested. Finally the CP of carnation mottle carmovirus, that has an intermediate position in which both RNA-protein and protein-protein interactions are equally important showed a salt-dependent RNA binding.

  12. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration.

    PubMed

    Koenig, Patrick; Lee, Chingwei V; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F; Fuh, Germaine

    2015-09-04

    The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Design, Synthesis, and Biological Evaluation of Novel Type I1/2 p38α MAP Kinase Inhibitors with Excellent Selectivity, High Potency, and Prolonged Target Residence Time by Interfering with the R-Spine.

    PubMed

    Walter, Niklas M; Wentsch, Heike K; Bührmann, Mike; Bauer, Silke M; Döring, Eva; Mayer-Wrangowski, Svenja; Sievers-Engler, Adrian; Willemsen-Seegers, Nicole; Zaman, Guido; Buijsman, Rogier; Lämmerhofer, Michael; Rauh, Daniel; Laufer, Stefan A

    2017-10-12

    We recently reported 1a (skepinone-L) as a type I p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, as a type I inhibitor, it is entirely ATP-competitive and shows just a moderate residence time. Thus, the scope was to develop a new class of advanced compounds maintaining the structural binding features of skepinone-L scaffold like inducing a glycine flip at the hinge region and occupying both hydrophobic regions I and II. Extending this scaffold with suitable residues resulted in an interference with the kinase's R-Spine. By synthesizing 69 compounds, we could significantly prolong the target residence time with one example to 3663 s, along with an excellent selectivity score of 0.006 and an outstanding potency of 1.0 nM. This new binding mode was validated by cocrystallization, showing all binding interactions typifying type I 1 / 2 binding. Moreover, microsomal studies showed convenient metabolic stability of the most potent, herein reported representatives.

  14. Selection of staphylococcal enterotoxin B (SEB)-binding peptide using phage display technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soykut, Esra Acar; Dudak, Fahriye Ceyda; Boyaci, Ismail Hakki

    In this study, peptides were selected to recognize staphylococcal enterotoxin B (SEB) which cause food intoxication and can be used as a biological war agent. By using commercial M13 phage library, single plaque isolation of 38 phages was done and binding affinities were investigated with phage-ELISA. The specificities of the selected phage clones showing high affinity to SEB were checked by using different protein molecules which can be found in food samples. Furthermore, the affinities of three selected phage clones were determined by using surface plasmon resonance (SPR) sensors. Sequence analysis was realized for three peptides showing high binding affinitymore » to SEB and WWRPLTPESPPA, MNLHDYHRLFWY, and QHPQINQTLYRM amino acid sequences were obtained. The peptide sequence with highest affinity to SEB was synthesized with solid phase peptide synthesis technique and thermodynamic constants of the peptide-SEB interaction were determined by using isothermal titration calorimetry (ITC) and compared with those of antibody-SEB interaction. The binding constant of the peptide was determined as 4.2 {+-} 0.7 x 10{sup 5} M{sup -1} which indicates a strong binding close to that of antibody.« less

  15. A Cyclic Tetrapeptide (“Cyclodal”) and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists

    PubMed Central

    Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C.; Ge, Yang; Laferrière, André; Coderre, Terence J.; Schiller, Peter W.

    2016-01-01

    Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2′,6′-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) (“cyclodal”), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood–brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity. PMID:27676089

  16. The role of attention in binding visual features in working memory: evidence from cognitive ageing.

    PubMed

    Brown, Louise A; Brockmole, James R

    2010-10-01

    Two experiments were conducted to assess the costs of attentional load during a feature (colour-shape) binding task in younger and older adults. Experiment 1 showed that a demanding backwards counting task, which draws upon central executive/general attentional resources, reduced binding to a greater extent than individual feature memory, but the effect was no greater in older than in younger adults. Experiment 2 showed that presenting memory items sequentially rather than simultaneously, such that items are required to be maintained while new representations are created, selectively affects binding performance in both age groups. Although this experiment exhibited an age-related binding deficit overall, both age groups were affected by the attention manipulation to an equal extent. While a role for attentional processes in colour-shape binding was apparent across both experiments, manipulations of attention exerted equal effects in both age groups. We therefore conclude that age-related binding deficits neither emerge nor are exacerbated under conditions of high attentional load. Implications for theories of visual working memory and cognitive ageing are discussed.

  17. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals

    PubMed Central

    Vogeler, Susanne; Galloway, Tamara S.; Isupov, Michail

    2017-01-01

    Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor’s functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor’s ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a disruptive effect through a pathway excluding nuclear receptors or an indirect interaction. Our findings provide valuable information on potential mechanisms of molluscan nuclear receptors and the effects of environmental pollution on aquatic invertebrates. PMID:28426724

  18. Crystal Structure of PhnF, a GntR-Family Transcriptional Regulator of Phosphate Transport in Mycobacterium smegmatis

    PubMed Central

    Busby, Jason N.; Fritz, Georg; Moreland, Nicole J.; Cook, Gregory M.; Lott, J. Shaun; Baker, Edward N.

    2014-01-01

    Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains. PMID:25049090

  19. Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study

    PubMed Central

    Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2016-01-01

    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management. PMID:27782155

  20. Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study.

    PubMed

    Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2016-10-26

    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management.

  1. Mixed-mode sorption of hydroxylated atrazine degradation products to sell: A mechanism for bound residue

    USGS Publications Warehouse

    Lerch, R.N.; Thurman, E.M.; Kruger, E.L.

    1997-01-01

    This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.

  2. Understanding the Structural Ensembles of a Highly Extended Disordered Protein†

    PubMed Central

    Daughdrill, Gary W.; Kashtanov, Stepan; Stancik, Amber; Hill, Shannon E.; Helms, Gregory; Muschol, Martin

    2013-01-01

    Developing a comprehensive description of the equilibrium structural ensembles for intrinsically disordered proteins (IDPs) is essential to understanding their function. The p53 transactivation domain (p53TAD) is an IDP that interacts with multiple protein partners and contains numerous phosphorylation sites. Multiple techniques were used to investigate the equilibrium structural ensemble of p53TAD in its native and chemically unfolded states. The results from these experiments show that the native state of p53TAD has dimensions similar to a classical random coil while the chemically unfolded state is more extended. To investigate the molecular properties responsible for this behavior, a novel algorithm that generates diverse and unbiased structural ensembles of IDPs was developed. This algorithm was used to generate a large pool of plausible p53TAD structures that were reweighted to identify a subset of structures with the best fit to small angle X-ray scattering data. High weight structures in the native state ensemble show features that are localized to protein binding sites and regions with high proline content. The features localized to the protein binding sites are mostly eliminated in the chemically unfolded ensemble; while, the regions with high proline content remain relatively unaffected. Data from NMR experiments support these results, showing that residues from the protein binding sites experience larger environmental changes upon unfolding by urea than regions with high proline content. This behavior is consistent with the urea-induced exposure of nonpolar and aromatic side-chains in the protein binding sites that are partially excluded from solvent in the native state ensemble. PMID:21979461

  3. Ion-binding properties of Calnuc, Ca2+ versus Mg2+--Calnuc adopts additional and unusual Ca2+-binding sites upon interaction with G-protein.

    PubMed

    Kanuru, Madhavi; Samuel, Jebakumar J; Balivada, Lavanya M; Aradhyam, Gopala K

    2009-05-01

    Calnuc is a novel, highly modular, EF-hand containing, Ca(2+)-binding, Golgi resident protein whose functions are not clear. Using amino acid sequences, we demonstrate that Calnuc is a highly conserved protein among various organisms, from Ciona intestinalis to humans. Maximum homology among all sequences is found in the region that binds to G-proteins. In humans, it is known to be expressed in a variety of tissues, and it interacts with several important protein partners. Among other proteins, Calnuc is known to interact with heterotrimeric G-proteins, specifically with the alpha-subunit. Herein, we report the structural implications of Ca(2+) and Mg(2+) binding, and illustrate that Calnuc functions as a downstream effector for G-protein alpha-subunit. Our results show that Ca(2+) binds with an affinity of 7 mum and causes structural changes. Although Mg(2+) binds to Calnuc with very weak affinity, the structural changes that it causes are further enhanced by Ca(2+) binding. Furthermore, isothermal titration calorimetry results show that Calnuc and the G-protein bind with an affinity of 13 nm. We also predict a probable function for Calnuc, that of maintaining Ca(2+) homeostasis in the cell. Using Stains-all and terbium as Ca(2+) mimic probes, we demonstrate that the Ca(2+)-binding ability of Calnuc is governed by the activity-based conformational state of the G-protein. We propose that Calnuc adopts structural sites similar to the ones seen in proteins such as annexins, c2 domains or chromogrannin A, and therefore binds more calcium ions upon binding to Gialpha. With the number of organelle-targeted G-protein-coupled receptors increasing, intracellular communication mediated by G-proteins could become a new paradigm. In this regard, we propose that Calnuc could be involved in the downstream signaling of G-proteins.

  4. In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate

    PubMed Central

    Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver

    2011-01-01

    Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043

  5. Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor (Coleoptera).

    PubMed

    Pedersen, S A; Kristiansen, E; Andersen, R A; Zachariassen, K E

    2007-04-01

    The effect of cadmium (Cd) exposure on Cd-binding ligands was investigated for the first time in a beetle (Coleoptera), using the mealworm Tenebrio molitor (L) as a model species. Exposure to Cd resulted in an approximate doubling of the Cd-binding capacity of the protein extracts from whole animals. Analysis showed that the increase was mainly explained by the induction of a Cd-binding protein of 7134.5 Da, with non-metallothionein characteristics. Amino acid analysis and de novo sequencing revealed that the protein has an unusually high content of the acidic amino acids aspartic and glutamic acid that may explain how this protein can bind Cd even without cysteine residues. Similarities in the amino acid composition suggest it to belong to a group of little studied proteins often referred to as "Cd-binding proteins without high cysteine content". This is the first report on isolation and peptide sequence determination of such a protein from a coleopteran.

  6. Simultaneous Multiple MS Binding Assays Addressing D1 and D2 Dopamine Receptors.

    PubMed

    Schuller, Marion; Höfner, Georg; Wanner, Klaus T

    2017-10-09

    MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but use a non-labeled reporter ligand instead of a radioligand. In contrast to radioligand binding assays, MS Binding Assays offer-owing to the selectivity of mass spectrometric detection-the opportunity to monitor the binding of different reporter ligands at different targets simultaneously. The present study shows a proof of concept for this strategy as exemplified for MS Binding Assays selectively addressing D 1 and D 2 dopamine receptors in a single binding experiment. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method capable of quantifying both SCH23390 and raclopride, selectively addressing D 1 and D 2 receptors, respectively, was established and validated for this purpose. Based thereon, simultaneous saturation and competition experiments with SCH23390 and raclopride in the presence of both D 1 and D 2 receptors were performed and analyzed by LC-MS/MS within a single chromatographic cycle. The present study thus demonstrates the feasibility of this strategy and the high versatility of MS Binding Assays that appears to surpass that common for conventional radioligand binding assays. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Personality and intentional binding: an exploratory study using the narcissistic personality inventory

    PubMed Central

    Hascalovitz, Ann (Chen); Obhi, Sukhvinder S.

    2015-01-01

    When an individual estimates the temporal interval between a voluntary action and a consequent effect, their estimates are shorter than the real duration. This perceived shortening has been termed “intentional binding”, and is often due to a shift in the perception of a voluntary action forward towards the effect and a shift in the perception of the effect back towards the action. Despite much work on binding, there is virtually no consideration of individual/personality differences and how they affect it. Narcissism is a psychological trait associated with an inflated sense of self, and individuals higher in levels of subclinical narcissism tend to see themselves as highly effective agents. Conversely, lower levels of narcissism may be associated with a reduced sense of agency. In this exploratory study, to assess whether individuals with different scores on a narcissism scale are associated with differences in intentional binding, we compared perceived times of actions and effects (tones) between participants with high, middle, and low scores on the narcissistic personality inventory (NPI). We hypothesized that participants with higher scores would show increased binding compared to participants with lower scores. We found that participants in our middle and high groups showed a similar degree of binding, which was significantly greater than the level of binding shown by participants with the lowest scores. To our knowledge, these results are the first to demonstrate that different scores on a personality scale are associated with changes in the phenomenological experience of action, and therefore underscore the importance of considering individual/personality differences in the study of volition. Our results also reinforce the notion that intentional binding is related to agency experience. PMID:25698952

  8. Zn(II) stimulation of Fe(II)-activated repression in the iron-dependent repressor from Mycobacterium tuberculosis.

    PubMed

    Stapleton, Brian; Walker, Lawrence R; Logan, Timothy M

    2013-03-19

    Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.

  9. Screening for Protein-DNA Interactions by Automatable DNA-Protein Interaction ELISA

    PubMed Central

    Schüssler, Axel; Kolukisaoglu, H. Üner; Koch, Grit; Wallmeroth, Niklas; Hecker, Andreas; Thurow, Kerstin; Zell, Andreas; Harter, Klaus; Wanke, Dierk

    2013-01-01

    DNA-binding proteins (DBPs), such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI)-ELISA screen of an optimized double-stranded DNA (dsDNA) probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a deeper understanding of gene regulation in any organism of choice. PMID:24146751

  10. Interpretation of the Raji cell assay in sera containing anti-nuclear antibodies and immune complexes.

    PubMed Central

    Horsfall, A C; Venables, P J; Mumford, P A; Maini, R N

    1981-01-01

    The Raji cell assay is regarded as a test for the detection and quantitation of immune complexes. It is frequently positive in sera from patients with SLE. We have demonstrated a relationship between Raji cell binding and antibodies to DNA and soluble cellular antigens. In five sera containing high titres of antibodies of known single specificity, most of the Raji cell binding occurred in the 7S IgG fraction where the majority of anti-nuclear antibody was also found. When each of these sera was incubated with its specific antigen, Raji cell binding increased. Subsequent fractionation showed that this binding was in the high molecular weight fraction (greater than 200,000 daltons) and that Raji cell binding and antibody activity were abolished in the 7S fraction. These data confirm that Raji cell bind immune complexes but also indicate that 7S anti-nuclear antibodies may interact directly with Raji cells by an unknown mechanism. Therefore, in sera of patients with anti-nuclear antibodies, binding to Raji cells does not necessarily imply the presence of immune complexes alone. PMID:6975676

  11. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, M.; Ishii, S.

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reactionmore » time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.« less

  12. Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing

    PubMed Central

    Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2016-01-01

    Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039

  13. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation.

    PubMed

    Clark, Andrew G; Naufer, M Nabuan; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Paramanathan, Thayaparan; Williams, Mark C

    2018-02-06

    Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.

  14. Tracer diffusion in a sea of polymers with binding zones: mobile vs. frozen traps.

    PubMed

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-10-19

    We use molecular dynamics simulations to investigate the tracer diffusion in a sea of polymers with specific binding zones for the tracer. These binding zones act as traps. Our simulations show that the tracer can undergo normal yet non-Gaussian diffusion under certain circumstances, e.g., when the polymers with traps are frozen in space and the volume fraction and the binding strength of the traps are moderate. In this case, as the tracer moves, it experiences a heterogeneous environment and exhibits confined continuous time random walk (CTRW) like motion resulting in a non-Gaussian behavior. Also the long time dynamics becomes subdiffusive as the number or the binding strength of the traps increases. However, if the polymers are mobile then the tracer dynamics is Gaussian but could be normal or subdiffusive depending on the number and the binding strength of the traps. In addition, with increasing binding strength and number of polymer traps, the probability of the tracer being trapped increases. On the other hand, removing the binding zones does not result in trapping, even at comparatively high crowding. Our simulations also show that the trapping probability increases with the increasing size of the tracer and for a bigger tracer with the frozen polymer background the dynamics is only weakly non-Gaussian but highly subdiffusive. Our observations are in the same spirit as found in many recent experiments on tracer diffusion in polymeric materials and question the validity of using Gaussian theory to describe diffusion in a crowded environment in general.

  15. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function.

    PubMed

    Lindamulage, I Kalhari; Vu, Hai-Yen; Karthikeyan, Chandrabose; Knockleby, James; Lee, Yi-Fang; Trivedi, Piyush; Lee, Hoyun

    2017-08-31

    Agents targeting colchicine-binding pocket usually show a minimal drug-resistance issue, albeit often associated with high toxicity. Chalcone-based compounds, which may bind to colchicine-binding site, are found in many edible fruits, suggesting that they can be effective drugs with less toxicity. Therefore, we synthesized and examined 24 quinolone chalcone compounds, from which we identified ((E)-3-(3-(2-Methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one) (CTR-17) and ((E)-6-Methoxy-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one) (CTR-20) as promising leads. In particular, CTR-20 was effective against 65 different cancer cell lines originated from 12 different tissues, largely in a cancer cell-specific manner. We found that both CTR-17 and CTR-20 reversibly bind to the colchicine-binding pocket on β-tubulin. Interestingly however, both the CTRs were highly effective against multidrug-resistant cancer cells while colchicine, paclitaxel and vinblastine were not. Our study with CTR-20 showed that it overcomes multidrug-resistance through its ability to impede MRP1 function while maintaining strong inhibition against microtubule activity. Data from mice engrafted with the MDA-MB-231 triple-negative breast cancer cells showed that both CTR-17 and CTR-20 possess strong anticancer activity, alone or in combination with paclitaxel, without causing any notable side effects. Together, our data demonstrates that both the CTRs can be effective and safe drugs against many different cancers, especially against multidrug-resistant tumors.

  16. In Silico Molecular Interaction of Bisphenol Analogues with Human Nuclear Receptors Reveals their Stronger Affinity vs. Classical Bisphenol A.

    PubMed

    Sharma, Shikha; Ahmad, Shahzad; Faraz Khan, Mohemmed; Parvez, Suhel; Raisuddin, Sheikh

    2018-06-21

    Bisphenol A (BPA) is known for endocrine disrupting activity. In order to replace BPA a number of bisphenol analogues have been designed. However, their activity profile is poorly described and little information exists about their endocrine disrupting potential and interactions with nuclear receptors. An understanding of such interaction may unravel mechanism of their molecular action and provide valuable inputs for risk assessment. BPA binds and activates peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) which act as transcription factors and regulate genes involved in glucose, lipid, and cholesterol metabolism and adipogenesis. We studied binding efficiency of 18 bisphenol analogues and BPA with human PPARs and RXRs. Using Maestro Schrodinger 9.4, docking scores of bisphenols were compared with the known endogenous and exogenous ligands of hPPARs and hRXRs. BPA showed good binding efficiency. Several analogues also showed higher binding efficiency than BPA. BPPH which has high tendency to be absorbed in tissues showed the strongest binding with hPPARα, hPPARβ, hPPARγ and hRXRα whereas two of the most toxic bisphenols, BPM and BPAF showed strongest binding with hRXRβ and hRXRγ. Some of the bisphenol analogues showed a stronger binding affinity with PPAR and RXR compared to BPA implying that BPA substitutes may not be fully safe and chemico-biological interactions indicate their toxic potential. These results may also serve to plan further studies for determining safety profile of bisphenol analogues and be helpful in risk characterization.

  17. Urban Biomining: Biological Extraction of Metals and Materials from Electronics Waste Using a Synthetic Biology Approach

    NASA Astrophysics Data System (ADS)

    Urbina-Navarrete, J.; Rothschild, L.

    2016-12-01

    End-of-life electronics waste (e-waste) containing toxic and valuable materials is a rapidly progressing human health and environmental issue. Using synthetic biology tools, we have developed a recycling method for e-waste. Our innovation is to use a recombinant version of a naturally-occurring silica-degrading enzyme to depolymerize the silica in metal- and glass- containing e-waste components, and subsequently, to use engineered bacterial surfaces to bind and separate metals from a solution. The bacteria with bound metals can then be used as "bio-ink" to print new circuits using a novel plasma jet electronics printing technology. Here, we present the results from our initial studies that focus on the specificity of metal-binding motifs for a cognate metal. The candidate motifs that show high affinity and specificity will be engineered into bacterial surfaces for downstream applications in biologically-mediated metal recycling. Since the chemistry and role of Cu in metalloproteins is relatively well-characterized, we are using Cu as a proxy to elucidate metal and biological ligand interactions with various metals in e-waste. We assess the binding parameters of 3 representative classes of Cu-binding motifs using isothermal titration calorimetry; 1) natural motifs found in metalloproteins, 2) consensus motifs, and 3) rationally designed peptides that are predicted, in silico, to bind Cu. Our results indicate that naturally-occurring motifs have relative high affinity and specificity for Cu (association constant for Cu Ka 104 M-1, Zn Ka 103 M-1) when competing ions are present in the aqueous milieu. However, motifs developed through rational design by applying quantum mechanical methods that take into account complexation energies of the elemental binding partners and molecular geometry of the cognate metal, not only show high affinity for the cognate metal (Cu Ka 106 M-1), but they show specificity and discrimination against other metal ions that would be competitors for the same binding sites. This is an initial proof-of-concept study that focuses on Cu-binding; however the overall objective of this research is to have peptides that selectively bind many metals from e-waste and this would allow for the separation of the metals from a solution, at ambient temperatures and under non-toxic conditions.

  18. Dual inhibition of human type 4 phosphodiesterase isostates by (R, R)-(+/-)-methyl 3-acetyl-4-[3-(cyclopentyloxy)-4-methoxyphenyl]-3- methyl-1-pyrrolidinecarboxylate.

    PubMed

    Tian, G; Rocque, W J; Wiseman, J S; Thompson, I Z; Holmes, W D; Domanico, P L; Stafford, J A; Feldman, P L; Luther, M A

    1998-05-12

    Purified recombinant human type 4 phosphodiesterase B2B (HSPDE4B2B) exists in both a low- and a high-affinity state that bind (R)-rolipram with Kd's of ca. 500 and 1 nM, respectively [Rocque, W. J., Tian, G., Wiseman, J. S., Holmes, W. D., Thompson, I. Z., Willard, D. H., Patel, I. R., Wisely, G. B., Clay, W. C., Kadwell, S. H., Hoffman, C. R., and Luther, M. A. (1997) Biochemistry 36, 14250-14261]. Since the tissue distribution of the two isostates may be significantly different, development of inhibitors that effectively inhibit both forms may be advantageous pharmacologically. In this study, enzyme inhibition and binding of HSPDE4B2B by (R, R)-(+/-)-methyl 3-acetyl-4-[3-(cyclopentyloxy)-4-methoxyphenyl]-3-methyl-1-pyrrolidin ecarboxylate (1), a novel inhibitor of phosphodiesterase 4 (PDE 4), were investigated. Binding experiments demonstrated high-affinity binding of 1 to HSPDE4B2B with a stoichiometry of 1:1. Inhibition of PDE activity showed only a single transition with an observed Ki similar to the apparent Kd determined by the binding experiments. Deletional mutants of HSPDE4B2B, which have been shown to bind (R)-rolipram with low affinity, were shown to interact with 1 with high affinity, indistinguishable from the results obtained with the full-length enzyme. Bound 1 was completely displaced by (R)-rolipram, and the displacement showed a biphasic transition that resembles the biphasic inhibition of HSPDE4B2B by (R)-rolipram. Theoretical analysis of the two transitions exemplified in the interaction of (R)-rolipram with HSPDE4B2B indicated that the two isostates were nonexchangeable. Phosphorylation at serines 487 and 489 on HSPDE4B2B had no effect on the stoichiometry of binding, the affinity for binding, or the inhibition of the enzyme by 1. These data further illustrate the presence of two isostates in PDE 4 as shown previously for (R)-rolipram binding and inhibition. In contrast to (R)-rolipram, where only one of the two isostates of PDE 4 binds with high affinity, 1 is a potent, dual inhibitor of both of the isostates of PDE 4. Kinetic and thermodynamic models describing the interactions between the nonexchangeable isostates of PDE 4 and its ligands are discussed.

  19. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  20. Investigation of arc repressor DNA-binding specificity by comparative molecular dynamics simulations.

    PubMed

    Song, Wei; Guo, Jun-Tao

    2015-01-01

    Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.

  1. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    PubMed Central

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine. PMID:26741368

  3. Oxidation of a critical methionine modulates DNA binding of the Drosophila melanogaster high mobility group protein, HMG-D.

    PubMed

    Dow, L K; Changela, A; Hefner, H E; Churchill, M E

    1997-09-15

    HMG-D is a major high mobility group chromosomal protein present during early embryogenesis in Drosophila melanogaster. During overexpression and purification of HMG-D from E. coli, a key DNA binding residue, methionine 13, undergoes oxidation to methionine sulfoxide. Oxidation of this critical residue decreases the affinity of HMG-D for DNA by three-fold, altering the structure of the HMG-D-DNA complex without affecting the structure of the free protein. This work shows that minor modification of DNA intercalating residues may be used to fine tune the DNA binding affinity of HMG domain proteins.

  4. [125I]-GR231118: a high affinity radioligand to investigate neuropeptide Y Y1 and Y4 receptors

    PubMed Central

    Dumont, Yvan; Quirion, Rémi

    2000-01-01

    GR231118 (also known as 1229U91 and GW1229), a purported Y1 antagonist and Y4 agonist was radiolabelled using the chloramine T method. [125I]-GR231118 binding reached equilibrium within 10 min at room temperature and remained stable for at least 4 h. Saturation binding experiments showed that [125I]-GR231118 binds with very high affinity (Kd of 0.09–0.24 nM) in transfected HEK293 cells with the rat Y1 and Y4 receptor cDNA and in rat brain membrane homogenates. No specific binding sites could be detected in HEK293 cells transfected with the rat Y2 or Y5 receptor cDNA demonstrating the absence of significant affinity of GR231118 for these two receptor classes. Competition binding experiments revealed that specific [125I]-GR231118 binding in rat brain homogenates is most similar to that observed in HEK293 cells transfected with the rat Y1, but not rat Y4, receptor cDNA. Autoradiographic studies demonstrated that [125I]-GR231118 binding sites were fully inhibited by the Y1 antagonist BIBO3304 in most areas of the rat brain. Interestingly, high percentage of [125I]-GR231118/BIBO3304-insensitive binding sites were detected in few areas. These [125I]-GR231118/BIBO3304-insensitive binding sites likely represent labelling to the Y4 receptor subtype. In summary, [125I]-GR231118 is a new radiolabelled probe to investigate the Y1 and Y4 receptors; its major advantage being its high affinity. Using highly selective Y1 antagonists such as BIBO3304 or BIBP3226 it is possible to block the binding of [125I]-GR231118 to the Y1 receptor allowing for the characterization and visualization of the purported Y4 subtype. PMID:10694200

  5. Unusual Characteristics of the DNA Binding Domain of Epigenetic Regulatory Protein MeCP2 Determine Its Binding Specificity

    PubMed Central

    2015-01-01

    The protein MeCP2 mediates epigenetic regulation by binding methyl-CpG (mCpG) sites on chromatin. MeCP2 consists of six domains of which one, the methyl binding domain (MBD), binds mCpG sites in duplex DNA. We show that solution conditions with physiological or greater salt concentrations or the presence of nonspecific competitor DNA is necessary for the MBD to discriminate mCpG from CpG with high specificity. The specificity for mCpG over CpG is >100-fold under these solution conditions. In contrast, the MBD does not discriminate hydroxymethyl-CpG from CpG. The MBD is unusual among site-specific DNA binding proteins in that (i) specificity is not conferred by the enhanced affinity for the specific site but rather by suppression of its affinity for generic DNA, (ii) its specific binding to mCpG is highly electrostatic, and (iii) it takes up as well as displaces monovalent cations upon DNA binding. The MBD displays an unusually high affinity for single-stranded DNA independent of modification or sequence. In addition, the MBD forms a discrete dimer on DNA via a noncooperative binding pathway. Because the affinity of the second monomer is 1 order of magnitude greater than that of nonspecific binding, the MBD dimer is a unique molecular complex. The significance of these results in the context of neuronal function and development and MeCP2-related developmental disorders such as Rett syndrome is discussed. PMID:24828757

  6. High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface*

    PubMed Central

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W.; Linhardt, Robert J.; Sharp, Joshua S.

    2015-01-01

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613

  7. A solvent-dependent fluorescent detection method for Fe(3+) and Hg(2+) based on a rhodamine B derivative.

    PubMed

    Li, Xutian; Yin, Yue; Deng, Junjie; Zhong, Huixian; Tang, Jian; Chen, Zhi; Yang, Liting; Ma, Li-Jun

    2016-07-01

    A new rhodamine B-benzofurazan based fluorescent probe (1) for Fe(3+) and Hg(2+) was synthesized. In aqueous solution containing 30% (v/v) ethanol, probe 1 shows a high selective fluorescent enhancement recognition to Fe(3+) with a binding ratio of 1:1 (probe 1: Fe(3+)), when the concentration of Fe(3+) is less than that of the probe. When the concentration of Fe(3+) is higher than that of the probe, it shows fluorescent "turn-on" response to Fe(3+) by opening the rhodamine spirolactam with a binding ratio of 1:2 (probe 1: Fe(3+)). Furthermore, probe 1 displays a high selectivity and a hypersensitivity (detection limit is 4.4nM) to Hg(2+) with a binding ratio of 1:1 in ethanol. NMR and UV-vis experiments indicate that the different fluorescent recognition signals to Fe(3+) and Hg(2+) are derived from different binding modes of 1-Fe(3+) and 1-Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    PubMed

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  9. Low-stringency selection of TEM1 for BLIP shows interface plasticity and selection for faster binders

    PubMed Central

    Cohen-Khait, Ruth; Schreiber, Gideon

    2016-01-01

    Protein–protein interactions occur via well-defined interfaces on the protein surface. Whereas the location of homologous interfaces is conserved, their composition varies, suggesting that multiple solutions may support high-affinity binding. In this study, we examined the plasticity of the interface of TEM1 β-lactamase with its protein inhibitor BLIP by low-stringency selection of a random TEM1 library using yeast surface display. Our results show that most interfacial residues could be mutated without a loss in binding affinity, protein stability, or enzymatic activity, suggesting plasticity in the interface composition supporting high-affinity binding. Interestingly, many of the selected mutations promoted faster association. Further selection for faster binders was achieved by drastically decreasing the library–ligand incubation time to 30 s. Preequilibrium selection as suggested here is a novel methodology for specifically selecting faster-associating protein complexes. PMID:27956635

  10. [Ala12]MCD peptide: a lead peptide to inhibitors of immunoglobulin E binding to mast cell receptors.

    PubMed

    Buku, A; Condie, B A; Price, J A; Mezei, M

    2005-09-01

    An effort was made to discover mast cell degranulating (MCD) peptide analogs that bind with high affinity to mast cell receptors without triggering secretion of histamine or other mediators of the allergic reaction initiated by immunoglobulin E (IgE) after mast cell activation. Such compounds could serve as inhibitors of IgE binding to mast cell receptors. An alanine scan of MCD peptide reported previously showed that the analog [Ala12]MCD was 120-fold less potent in histamine-releasing activity and fivefold more potent in binding affinity to mast cell receptors than the parent MCD peptide. Because this analog showed marginal intrinsic activity and good binding affinity it was subsequently tested in the present study as an IgE inhibitor. In contrast to MCD peptide, [Ala12]MCD showed a 50% inhibition of IgE binding to the Fc epsilon RI alpha mast cell receptor by using rat basophilic leukemia (RBL-2H3) mast cells and fluorescence polarization. Furthermore, in a beta-hexosaminidase secretory assay, the peptide also showed a 50% inhibition of the secretion of this enzyme caused by IgE. An attempt was made to relate structural changes and biologic differences between the [Ala12]MCD analog and the parent MCD peptide. The present results show that [Ala12]MCD may provide a base for designing agents to prevent IgE/Fc epsilon RI alpha interactions and, consequently, allergic conditions.

  11. Pretargeting of carcinoembryonic antigen-expressing cancers with a trivalent bispecific fusion protein produced in myeloma cells.

    PubMed

    Rossi, Edmund A; Chang, Chien-Hsing; Losman, Michele J; Sharkey, Robert M; Karacay, Habibe; McBride, William; Cardillo, Thomas M; Hansen, Hans J; Qu, Zhengxing; Horak, Ivan D; Goldenberg, David M

    2005-10-01

    To characterize a novel trivalent bispecific fusion protein and evaluate its potential utility for pretargeted delivery of radionuclides to tumors. hBS14, a recombinant fusion protein that binds bispecifically to carcinoembryonic antigen (CEA) and the hapten, histamine-succinyl-glycine (HSG), was produced by transgenic myeloma cells and purified to near homogeneity in a single step using a novel HSG-based affinity chromatography system. Biochemical characterization included size-exclusion high-performance liquid chromatography (SE-HPLC), SDS-PAGE, and isoelectric focusing. Functional characterization was provided by BIAcore and SE-HPLC. The efficacy of hBS14 for tumor pretargeting was evaluated in CEA-expressing GW-39 human colon tumor-bearing nude mice using a bivalent HSG hapten (IMP-241) labeled with (111)In. Biochemical analysis showed that single-step affinity chromatography provided highly purified material. SE-HPLC shows a single protein peak consistent with the predicted molecular size of hBS14. SDS-PAGE analysis shows only two polypeptide bands, which are consistent with the calculated molecular weights of the hBS14 polypeptides. BIAcore showed the bispecific binding properties and suggested that hBS14 possesses two functional CEA-binding sites. This was supported by SE-HPLC immunoreactivity experiments. All of the data suggest that the structure of hBS14 is an 80 kDa heterodimer with one HSG and two CEA binding sites. Pretargeting experiments in the mouse model showed high uptake of radiopeptide in the tumor, with favorable tumor-to-nontumor ratios as early as 3 hours postinjection. The results indicate that hBS14 is an attractive candidate for use in a variety of pretargeting applications, particularly tumor therapy with radionuclides and drugs.

  12. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2017-09-01

    Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.

  13. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent 99mTc-Duramycin

    PubMed Central

    Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G.; Zhao, Ming

    2013-01-01

    Introduction 99mTc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99mTc-Duramycin and the target tissue. Methods High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague Dawley rats. Target binding and biodistribution of 99mTc-duramycin was captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99mTc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99mTc-Duramycin in normal and ischemic myocardial tissue. Results 99mTc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99mTc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99mTc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9 fold reduction in binding affinity. Conclusion 99mTc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99mTc-Duramycin as a novel PE-binding agent. PMID:22534031

  14. The transformed glucocorticoid receptor has a lower steroid-binding affinity than the nontransformed receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoto, Takayuki; Ohara-Nemoto, Yuko; Denis, M.

    1990-02-20

    High-salt treatment of cytosolic glucocorticoid receptor (GR) preparations reduces the steroid-binding ability of the receptor and induces the conversion of the receptor from a nontransformed (non-DNA-binding) 9S form to a transformed (DNA-binding) 4S entity. Therefore, the authors decided to investigate the possible relationship between these two phenomena. The binding of ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) to the 9S form was almost saturated at a concentration of 20 nM, whereas ({sup 3}H)TA was hardly bound to the 4S form at this concentration. The 4S form was efficiently labeled at 200 nM. Scatchard analysis of the GR showed the presence of twomore » types of binding sites. In the absence of molybdate, the ratio of the lower affinity site was increased, but the total number of binding sites was not modified. The GR with the low ({sup 3}H)TA-binding affinity bound to DNA-cellulose even in its unliganded state, whereas the form with the high affinity did not. These results indicate that the transformed GR has a reduced ({sup 3}H)TA-binding affinity as compared to the nontransformed GR. The steroid-binding domain (amino acids 477-777) and the DNA- and steroid-binding domains (amino acids 415-777) of the human GR were expressed in Escherichia coli as protein A fused proteins. Taken together, these results suggest that the component(s) associating with the nontransformed GR, possibly the heat shock protein hsp 90, play(s) an important role in stabilizing the GR in a high-affinity state for steroids.« less

  15. HMG I(Y) interferes with the DNA binding of NF-AT factors and the induction of the interleukin 4 promoter in T cells

    PubMed Central

    Klein-Hessling, Stefan; Schneider, Günter; Heinfling, Annette; Chuvpilo, Sergei; Serfling, Edgar

    1996-01-01

    HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells. PMID:8986808

  16. Modified high-affinity binding of Ni2+, Ca2+ and Zn2+ to natural mutants of human serum albumin and proalbumin.

    PubMed

    Kragh-Hansen, U; Brennan, S O; Minchiotti, L; Galliano, M

    1994-07-01

    High-affinity binding of radioactive Ni2+, Ca2+ and Zn2+ to six genetic albumin variants and to normal albumin isolated from the same heterozygote carriers was studied by equilibrium dialysis at pH 7.4. The three cations bind differently to albumin. Ni2+ binds to a site in the N-terminal region of the protein which is partially blocked by the presence of a propeptide as in proalbumin (proAlb) Varese (Arg-2-->His), proAlb Christchurch (Arg-1-->Gln) and proAlb Blenheim (Asp1-->Val) and by the presence of only an extra Arg residue (Arg-1) as in Arg-Alb and albumin (Alb) Redhill. The association constants are decreased by more than one order of magnitude in these cases, suggesting biological consequences for the ligand. The additional structural changes in Alb Redhill have no effect on Ni2+ binding. Finally, the modification of Alb Blenheim (Asp1-->Val) reduces the binding constant to 50%. Ca2+ binding is decreased to about 60-80% by the presence of a propeptide and the mutation Asp1-->Val. Arg-1 alone does not affect binding, whereas Alb Redhill binds Ca2+ more strongly than the normal protein (125%). In contrast with binding of Ni2+ and Ca2+, albumin shows heterogeneity with regard to binding of Zn2+, i.e. the number of high-affinity sites was calculated to be, on average, 0.43. The binding constant for Zn2+ is increased to 125% in the case of proAlb Varese, decreased to 50-60% for proAlb Christchurch and Alb Redhill but is normal for proAlb Blenheim, Alb Blenheim and Arg-Alb. The effects of the mutations on binding of Ca2+ and Zn2+ indicate that primary binding, when operative, is to as yet unidentified sites in domain I of the albumin molecule.

  17. Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.

    PubMed

    Nielsen, A D; Borch, K; Westh, P

    2000-06-15

    The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.

  18. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  19. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  20. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Y.; Li, H.; Li, Hua

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings,more » we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.« less

  1. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    PubMed Central

    Harada, Yoichiro; Li, Hua; Li, Huilin; Lennarz, William J.

    2009-01-01

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of ≈1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. PMID:19365066

  2. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    PubMed

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  3. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities

    PubMed Central

    Lee, Reiko T; Hsu, Tsui-Ling; Huang, Shau Ku; Hsieh, Shie-Liang; Wong, Chi-Huey; Lee, Yuan C

    2011-01-01

    C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Lex trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Lex less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Lex at all. PMID:21112966

  4. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities.

    PubMed

    Lee, Reiko T; Hsu, Tsui-Ling; Huang, Shau Ku; Hsieh, Shie-Liang; Wong, Chi-Huey; Lee, Yuan C

    2011-04-01

    C-type lectins (CTLs) are proteins that contain one or more carbohydrate-recognition domains (CRDs) that require calcium for sugar binding and share high degree of sequence homology and tertiary structure. CTLs whose CRD contain EPN (Glu-Pro-Asn) tripeptide motifs have potential to bind mannose (Man), N-acetylglucosamine (GlcNAc), glucose (Glc) and l-fucose (Fuc), whereas those with QPD (Glu-Pro-Asp) tripeptide motifs bind galactose (Gal) and N-acetylgalactosamine (GalNAc). We report here for the first time a direct comparison of monosaccharide (and some di- and trisaccharides)-binding characteristics of 11 EPX-containing (X = N, S or D) immune-related CTLs using a competition assay and an enzyme-linked immunosorbent assay, and neoglycoproteins as ligand. The EPX CTLs studied are DC-SIGN, L-SIGN, mSIGNR1, human and mouse mannose receptors, Langerin, BDCA-2, DCIR, dectin-2, MCL and MINCLE. We found that: (1) they all bound Man and Fuc; (2) binding of Glc and GlcNAc varied considerably among these lectins, but was always less than Man and Fuc; (3) in general, Gal and GalNAc were not bound. However, dectin-2, DCIR and MINCLE showed ability to bind Gal/GalNAc; (4) DC-SIGN, L-SIGN, mSIGNR1 and Langerin showed enhanced binding of Manα2Man over Man, whereas all others showed no enhancement; (5) DC-SIGN bound Le(x) trisaccharide structure, which has terminal Gal and Fuc residues, more avidly than Fuc, whereas L-SIGN, mSIGNR1, DCIR and MINCLE bound Le(x) less avidly than Fuc. BDCA-2, dectin-2, Langerin, MCL and mannose receptor did not bind Le(x) at all.

  5. Pheromone Binding Protein EhipPBP1 Is Highly Enriched in the Male Antennae of the Seabuckthorn Carpenterworm and Is Binding to Sex Pheromone Components

    PubMed Central

    Hu, Ping; Gao, Chenglong; Zong, Shixiang; Luo, Youqing; Tao, Jing

    2018-01-01

    The seabuckthorn carpenterworm moth Eogystia hippophaecolus is a major threat to seabuckthorn plantations, causing considerable ecological and economic losses in China. Transcriptomic analysis of E. hippophaecolus previously identified 137 olfactory proteins, including three pheromone-binding proteins (PBPs). We investigated the function of E. hippophaecolus PBP1 by studying its mRNA and protein expression profiles and its binding ability with different compounds. The highest levels of expression were in the antennae, particularly in males, with much lower levels of expression in the legs and external genitals. Recombinant PBP1 showed strong binding to sex-pheromone components, suggesting that antennal EhipPBP1 is involved in binding sex-pheromone components during pheromone communication. PMID:29755369

  6. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.

    PubMed

    Guo, Wei-Li; Huang, De-Shuang

    2017-08-22

    Transcription factors (TFs) are DNA-binding proteins that have a central role in regulating gene expression. Identification of DNA-binding sites of TFs is a key task in understanding transcriptional regulation, cellular processes and disease. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) enables genome-wide identification of in vivo TF binding sites. However, it is still difficult to map every TF in every cell line owing to cost and biological material availability, which poses an enormous obstacle for integrated analysis of gene regulation. To address this problem, we propose a novel computational approach, TFBSImpute, for predicting additional TF binding profiles by leveraging information from available ChIP-seq TF binding data. TFBSImpute fuses the dataset to a 3-mode tensor and imputes missing TF binding signals via simultaneous completion of multiple TF binding matrices with positional consistency. We show that signals predicted by our method achieve overall similarity with experimental data and that TFBSImpute significantly outperforms baseline approaches, by assessing the performance of imputation methods against observed ChIP-seq TF binding profiles. Besides, motif analysis shows that TFBSImpute preforms better in capturing binding motifs enriched in observed data compared with baselines, indicating that the higher performance of TFBSImpute is not simply due to averaging related samples. We anticipate that our approach will constitute a useful complement to experimental mapping of TF binding, which is beneficial for further study of regulation mechanisms and disease.

  7. Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified λ-carrageenan oligosaccharides.

    PubMed

    Niu, Ting-Ting; Zhang, Dong-Sheng; Chen, Hai-Min; Yan, Xiao-Jun

    2015-07-10

    Inhibitors of angiogenesis and tumor metastasis are increasingly emerging as promising agents for cancer therapy. Here, we report λ-carrageenan oligosaccharides (λ-COs), highly-sulfated oligosaccharides acting as a basic fibroblast growth factor (bFGF) antagonist and heparanase inhibitor. λ-COs with degree of polymerization (DP) from 2 to 8 degraded by λ-carrageenase were separated and purified. The structures were identified by mass spectrometry. The activities of λ-COs are closely related with DP. λ-COs showed no cytotoxicity, but inactivated bFGF-induced cell proliferation; among them, λ-carraheptaose showed highest capability. Only λ-carraheptaose can effectively bind to bFGF. Binding kinetics showed that λ-carraheptaose and suramin had different binding modes, i.e., suramin displayed a fast association and fast dissociation, but λ-carraheptaose exhibited a slow association and slow dissociation. In addition, λ-COs showed the highest heparanase inhibitory ability and abolished the endothelial cell invasion. Thus, λ-COs may provide a tool to develop of new carbohydrate-based therapeutics against cancer and angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Electrostatic Interactions Mediate Binding of Obscurin to Small Ankyrin 1: Biochemical and Molecular Modeling Studies

    PubMed Central

    Busby, Ben; Oashi, Taiji; Willis, Chris D.; Ackermann, Maegen A.; Kontrogianni-Konstantopoulos, Aikaterini; MacKerell, Alexander D.; Bloch, Robert J.

    2012-01-01

    Small ankyrin 1 (sAnk1; also Ank1.5) is an integral protein of the sarcoplasmic reticulum in skeletal and cardiac muscle cells, where it is thought to bind to the C-terminal region of obscurin, a large modular protein that surrounds the contractile apparatus. Using fusion proteins in vitro, in combination with site directed mutagenesis and surface plasmon resonance measurements, we previously showed that the binding site on sAnk1 for obscurin consists in part of six lysine and arginine residues. Here we show that four charged residues in the high affinity binding site on obscurin for sAnk1, between residues 6316-6345, consisting of three glutamates and a lysine, are necessary, but not sufficient, for this site on obscurin to bind with high affinity to sAnk1. We also identify specific complementary mutations in sAnk1 that can partially or completely compensate for the changes in binding caused by charge-switching mutations in obscurin. We used molecular modeling to develop structural models of residues 6322-6339 of obscurin bound to sAnk1. The models, based on a combination of Brownian and molecular dynamics simulations, predict that the binding site on sAnk1 for obscurin is organized as two ankyrin-like repeats, with the last α-helical segment oriented at an angle to the nearby helices, allowing lysine-6338 of obscurin to form an ionic interaction with aspartate-111 of sAnk1. This prediction was validated by double mutant cycle experiments. Our results are consistent with a model in which electrostatic interactions between specific pairs of side chains on obscurin and sAnk1 promote binding and complex formation. PMID:21333652

  9. Multi-site binding of epigallocatechin gallate to human serum albumin measured by NMR and isothermal titration calorimetry

    PubMed Central

    Eaton, Joshua D.

    2017-01-01

    The affinity of epigallocatechin gallate (EGCG) for human serum albumin (HSA) was measured in physiological conditions using NMR and isothermal titration calorimetry (ITC). NMR estimated the Ka (self-dissociation constant) of EGCG as 50 mM. NMR showed two binding events: strong (n1=1.8 ± 0.2; Kd1 =19 ± 12 μM) and weak (n2∼20; Kd2 =40 ± 20 mM). ITC also showed two binding events: strong (n1=2.5 ± 0.03; Kd1 =21.6 ± 4.0 μM) and weak (n2=9 ± 1; Kd2 =22 ± 4 mM). The two techniques are consistent, with an unexpectedly high number of bound EGCG. The strong binding is consistent with binding in the two Sudlow pockets. These results imply that almost all EGCG is transported in the blood bound to albumin and explains the wide tissue distribution and chemical stability of EGCG in vivo. PMID:28424370

  10. Characterization of rodent liver and kidney AVP receptors: pharmacologic evidence for species differences.

    PubMed

    Tahara, A; Tsukada, J; Ishii, N; Tomura, Y; Wada, K; Kusayama, T; Yatsu, T; Uchida, W; Tanaka, A

    1999-10-22

    Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.

  11. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals.

    PubMed

    Fung, Ho Yee Joyce; Fu, Szu-Chin; Chook, Yuh Min

    2017-03-10

    Nuclear export receptor CRM1 binds highly variable nuclear export signals (NESs) in hundreds of different cargoes. Previously we have shown that CRM1 binds NESs in both polypeptide orientations (Fung et al., 2015). Here, we show crystal structures of CRM1 bound to eight additional NESs which reveal diverse conformations that range from loop-like to all-helix, which occupy different extents of the invariant NES-binding groove. Analysis of all NES structures show 5-6 distinct backbone conformations where the only conserved secondary structural element is one turn of helix that binds the central portion of the CRM1 groove. All NESs also participate in main chain hydrogen bonding with human CRM1 Lys568 side chain, which acts as a specificity filter that prevents binding of non-NES peptides. The large conformational range of NES backbones explains the lack of a fixed pattern for its 3-5 hydrophobic anchor residues, which in turn explains the large array of peptide sequences that can function as NESs.

  12. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    PubMed

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  13. An incoherent feedforward loop facilitates adaptive tuning of gene expression.

    PubMed

    Hong, Jungeui; Brandt, Nathan; Abdul-Rahman, Farah; Yang, Ally; Hughes, Tim; Gresham, David

    2018-04-05

    We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression. © 2018, Hong et al.

  14. Binding of perlecan to transthyretin in vitro.

    PubMed Central

    Smeland, S; Kolset, S O; Lyon, M; Norum, K R; Blomhoff, R

    1997-01-01

    Transthyretin is one of two specific proteins involved in the transport of thyroid hormones in plasma; it possesses two binding sites for serum retinol-binding protein. In the present study we demonstrate that transthyretin also interacts in vitro with [35S]sulphate-labelled material from the medium of HepG2 cells. By using the same strategy as for purifying serum retinol-binding protein, [35S]sulphate-labelled medium was specifically eluted from a transthyretin-affinity column. Ion-exchange chromatography showed that the material was highly polyanionic, and its size and alkali susceptibility suggested that it was a proteoglycan. Structural analyses with chondroitinase ABC lyase and nitrous acid revealed that approx. 20% was chondroitin sulphate and 80% heparan sulphate. Immunoprecipitation showed that the [35S]sulphate-labelled material contained perlecan. Further analysis by binding studies revealed specific and saturable binding of 125I-transthyretin to perlecan-enriched Matrigel. Because inhibition of sulphation by treating HepG2 cells with sodium chlorate increased the affinity of the perlecan for transthyretin, and [3H]heparin was not retained by the transthyretin affinity column, the binding is probably mediated by the core protein and is not a protein-glycosaminoglycan interaction. Because perlecan is released from transthyretin in water, the binding might be due to hydrophobic interactions. PMID:9307034

  15. Structure of dual receptor binding to botulinum neurotoxin B.

    PubMed

    Berntsson, Ronnie P-A; Peng, Lisheng; Dong, Min; Stenmark, Pål

    2013-01-01

    Botulinum neurotoxins are highly toxic, and bind two receptors to achieve their high affinity and specificity for neurons. Here we present the first structure of a botulinum neurotoxin bound to both its receptors. We determine the 2.3-Å structure of a ternary complex of botulinum neurotoxin type B bound to both its protein receptor synaptotagmin II and its ganglioside receptor GD1a. We show that there is no direct contact between the two receptors, and that the binding affinity towards synaptotagmin II is not influenced by the presence of GD1a. The interactions of botulinum neurotoxin type B with the sialic acid 5 moiety of GD1a are important for the ganglioside selectivity. The structure demonstrates that the protein receptor and the ganglioside receptor occupy nearby but separate binding sites, thus providing two independent anchoring points.

  16. A specific l-tri-iodothyronine-binding protein in the cytosol fraction of human breast adipose tissue

    PubMed Central

    Rao, Marie Luise; Rao, Govind S.

    1982-01-01

    1. Binding of l-tri-[125I]iodothyronine to the cytosol fraction of normal human female breast adipose tissue was investigated by the charcoal adsorption method. Equilibrium of binding was reached after 120s at 25°C. 2. The l-tri-[125I]iodothyronine-binding component is a protein; this was confirmed by experiments in which binding was totally lost after heating the cytosol fraction for 10min at 100°C and in which binding was diminished after treatment with proteolytic enzymes and with thiol-group-blocking reagents. The binding protein was stable at −38°C for several months. 3. It displayed saturability, high affinity (apparent Kd 3.28nm) and a single class of binding sites. 4. High specificity for l-tri-iodothyronine and l-3,5-di-iodo-3′-isopropylthyronine was observed, whereas other iodothyronines were less effective in displacing l-tri-[125I]-iodothyronine from its binding site. 5. The binding of the hormone by the cytosol fraction did not show a pH optimum. 6. When cytosol fractions of adipose tissue from different females were subjected to radioimmunoassay for the determination of thyroxine-binding globulin a value of 0.304±0.11μg/mg of cytosol protein (mean±s.d., n=4) was obtained; the mean concentration in plasma was 0.309±0.07μg/mg of plasma protein (mean±s.d., n=3). 7. The Ka value of 6.3×108m−1 of l-tri-[125I]iodothyronine for binding to plasma, the similar thermalinactivation profiles of binding and the reactivity to thiol-group-blocking reagents were some properties common between the binding components from the cytosol fraction and plasma. 8. These results suggest that the cytosol fraction of human female breast adipose tissue contains thyroxine-binding globulin; the protein that binds l-tri-[125I]iodothyronine with high affinity and specificity appears to be similar to thyroxine-binding globulin. PMID:6289813

  17. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose*

    PubMed Central

    Nakamura, Akihiko; Tasaki, Tomoyuki; Ishiwata, Daiki; Yamamoto, Mayuko; Okuni, Yasuko; Visootsat, Akasit; Maximilien, Morice; Noji, Hiroyuki; Uchiyama, Taku; Samejima, Masahiro; Igarashi, Kiyohiko; Iino, Ryota

    2016-01-01

    Trichoderma reesei Cel6A (TrCel6A) is a cellobiohydrolase that hydrolyzes crystalline cellulose into cellobiose. Here we directly observed the reaction cycle (binding, surface movement, and dissociation) of single-molecule intact TrCel6A, isolated catalytic domain (CD), cellulose-binding module (CBM), and CBM and linker (CBM-linker) on crystalline cellulose Iα. The CBM-linker showed a binding rate constant almost half that of intact TrCel6A, whereas those of the CD and CBM were only one-tenth of intact TrCel6A. These results indicate that the glycosylated linker region largely contributes to initial binding on crystalline cellulose. After binding, all samples showed slow and fast dissociations, likely caused by the two different bound states due to the heterogeneity of cellulose surface. The CBM showed much higher specificity to the high affinity site than to the low affinity site, whereas the CD did not, suggesting that the CBM leads the CD to the hydrophobic surface of crystalline cellulose. On the cellulose surface, intact molecules showed slow processive movements (8.8 ± 5.5 nm/s) and fast diffusional movements (30–40 nm/s), whereas the CBM-Linker, CD, and a catalytically inactive full-length mutant showed only fast diffusional movements. These results suggest that both direct binding and surface diffusion contribute to searching of the hydrolysable point of cellulose chains. The duration time constant for the processive movement was 7.7 s, and processivity was estimated as 68 ± 42. Our results reveal the role of each domain in the elementary steps of the reaction cycle and provide the first direct evidence of the processive movement of TrCel6A on crystalline cellulose. PMID:27609516

  18. DNA-aptamers binding aminoglycoside antibiotics.

    PubMed

    Nikolaus, Nadia; Strehlitz, Beate

    2014-02-21

    Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  19. Identification of distant drug off-targets by direct superposition of binding pocket surfaces.

    PubMed

    Schumann, Marcel; Armen, Roger S

    2013-01-01

    Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target ("distant off-targets"). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target ("distant off-target").

  20. Identification of Distant Drug Off-Targets by Direct Superposition of Binding Pocket Surfaces

    PubMed Central

    Schumann, Marcel; Armen, Roger S.

    2013-01-01

    Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target (“distant off-targets”). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target (“distant off-target”). PMID:24391782

  1. Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses

    PubMed Central

    Hu, Qin; Si, Xiuhua April

    2018-01-01

    Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD) simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of high-polarity chemicals such as acrolein. PMID:29584651

  2. FINDSITE-metal: Integrating evolutionary information and machine learning for structure-based metal binding site prediction at the proteome level

    PubMed Central

    Brylinski, Michal; Skolnick, Jeffrey

    2010-01-01

    The rapid accumulation of gene sequences, many of which are hypothetical proteins with unknown function, has stimulated the development of accurate computational tools for protein function prediction with evolution/structure-based approaches showing considerable promise. In this paper, we present FINDSITE-metal, a new threading-based method designed specifically to detect metal binding sites in modeled protein structures. Comprehensive benchmarks using different quality protein structures show that weakly homologous protein models provide sufficient structural information for quite accurate annotation by FINDSITE-metal. Combining structure/evolutionary information with machine learning results in highly accurate metal binding annotations; for protein models constructed by TASSER, whose average Cα RMSD from the native structure is 8.9 Å, 59.5% (71.9%) of the best of top five predicted metal locations are within 4 Å (8 Å) from a bound metal in the crystal structure. For most of the targets, multiple metal binding sites are detected with the best predicted binding site at rank 1 and within the top 2 ranks in 65.6% and 83.1% of the cases, respectively. Furthermore, for iron, copper, zinc, calcium and magnesium ions, the binding metal can be predicted with high, typically 70-90%, accuracy. FINDSITE-metal also provides a set of confidence indexes that help assess the reliability of predictions. Finally, we describe the proteome-wide application of FINDSITE-metal that quantifies the metal binding complement of the human proteome. FINDSITE-metal is freely available to the academic community at http://cssb.biology.gatech.edu/findsite-metal/. PMID:21287609

  3. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm.

    PubMed

    Helledie, T; Antonius, M; Sorensen, R V; Hertzel, A V; Bernlohr, D A; Kølvraa, S; Kristiansen, K; Mandrup, S

    2000-11-01

    Peroxisome proliferator-activated receptors (PPARs) are activated by a variety of fatty acids, eicosanoids, and hypolipidemic and insulin-sensitizing drugs. Many of these compounds bind avidly to members of a family of small lipid-binding proteins, the fatty acid-binding proteins (FABPs). Fatty acids are activated to CoA esters, which bind with high affinity to the acyl-CoA-binding protein (ACBP). Thus, the availability of known and potential PPAR ligands may be regulated by lipid-binding proteins. In this report we show by transient transfection of CV-1 cells that coexpression of ACBP and adipocyte lipid-binding protein (ALBP) exerts a ligand- and PPAR subtype-specific attenuation of PPAR-mediated trans-activation, suggesting that lipid-binding proteins, when expressed at high levels, may function as negative regulators of PPAR activation by certain ligands. Expression of ACBP, ALBP, and keratinocyte lipid-binding protein (KLBP) is induced during adipocyte differentiation, a process during which PPARgamma plays a prominent role. We present evidence that endogenous ACBP, ALBP, and KLBP not only localize to the cytoplasm but also exhibit a prominent nuclear localization in 3T3-L1 adipocytes. In addition, forced expression of ACBP, ALBP, and KLBP in CV-1 cells resulted in a substantial accumulation of all three proteins in the nucleus. These results suggest that lipid-binding proteins, contrary to the general assumption, may exert their action in the nucleus as well as in the cytoplasm.

  4. The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites.

    PubMed

    Strotmeier, Jasmin; Gu, Shenyan; Jutzi, Stephan; Mahrhold, Stefan; Zhou, Jie; Pich, Andreas; Eichner, Timo; Bigalke, Hans; Rummel, Andreas; Jin, Rongsheng; Binz, Thomas

    2011-07-01

    The seven botulinum neurotoxins (BoNT) cause muscle paralysis by selectively cleaving core components of the vesicular fusion machinery. Their extraordinary activity primarily relies on highly specific entry into neurons. Data on BoNT/A, B, E, F and G suggest that entry follows a dual receptor interaction with complex gangliosides via an established ganglioside binding region and a synaptic vesicle protein. Here, we report high resolution crystal structures of the BoNT/C cell binding fragment alone and in complex with sialic acid. The WY-motif characteristic of the established ganglioside binding region was located on an exposed loop. Sialic acid was co-ordinated at a novel position neighbouring the binding pocket for synaptotagmin in BoNT/B and G and the sialic acid binding site in BoNT/D and TeNT respectively. Employing synaptosomes and immobilized gangliosides binding studies with BoNT/C mutants showed that the ganglioside binding WY-loop, the newly identified sialic acid-co-ordinating pocket and the area corresponding to the established ganglioside binding region of other BoNTs are involved in ganglioside interaction. Phrenic nerve hemidiaphragm activity tests employing ganglioside deficient mice furthermore evidenced that the biological activity of BoNT/C depends on ganglioside interaction with at least two binding sites. These data suggest a unique cell binding and entry mechanism for BoNT/C among clostridial neurotoxins. © 2011 Blackwell Publishing Ltd.

  5. [3H]aniracetam binds to specific recognition sites in brain membranes.

    PubMed

    Fallarino, F; Genazzani, A A; Silla, S; L'Episcopo, M R; Camici, O; Corazzi, L; Nicoletti, F; Fioretti, M C

    1995-08-01

    [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4 degrees C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of approximately 70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37 degrees C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  7. Functional Targets of the Monogenic Diabetes Transcription Factors HNF-1α and HNF-4α Are Highly Conserved Between Mice and Humans

    PubMed Central

    Boj, Sylvia F.; Servitja, Joan Marc; Martin, David; Rios, Martin; Talianidis, Iannis; Guigo, Roderic; Ferrer, Jorge

    2009-01-01

    OBJECTIVE The evolutionary conservation of transcriptional mechanisms has been widely exploited to understand human biology and disease. Recent findings, however, unexpectedly showed that the transcriptional regulators hepatocyte nuclear factor (HNF)-1α and -4α rarely bind to the same genes in mice and humans, leading to the proposal that tissue-specific transcriptional regulation has undergone extensive divergence in the two species. Such observations have major implications for the use of mouse models to understand HNF-1α– and HNF-4α–deficient diabetes. However, the significance of studies that assess binding without considering regulatory function is poorly understood. RESEARCH DESIGN AND METHODS We compared previously reported mouse and human HNF-1α and HNF-4α binding studies with independent binding experiments. We also integrated binding studies with mouse and human loss-of-function gene expression datasets. RESULTS First, we confirmed the existence of species-specific HNF-1α and -4α binding, yet observed incomplete detection of binding in the different datasets, causing an underestimation of binding conservation. Second, only a minor fraction of HNF-1α– and HNF-4α–bound genes were downregulated in the absence of these regulators. This subset of functional targets did not show evidence for evolutionary divergence of binding or binding sequence motifs. Finally, we observed differences between conserved and species-specific binding properties. For example, conserved binding was more frequently located near transcriptional start sites and was more likely to involve multiple binding events in the same gene. CONCLUSIONS Despite evolutionary changes in binding, essential direct transcriptional functions of HNF-1α and -4α are largely conserved between mice and humans. PMID:19188435

  8. Identification and Characterization of a Suite of Tumor Targeting Peptides for Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.

    2014-03-01

    Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071-40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands.

  9. Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.

  10. Identification and Characterization of a Suite of Tumor Targeting Peptides for Non-Small Cell Lung Cancer

    PubMed Central

    McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.

    2014-01-01

    Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071–40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands. PMID:24670678

  11. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describemore » the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.« less

  13. Evaluation of water binding, seed coat permeability and germination characteristics of wheat seeds equilibrated at different relative humidities.

    PubMed

    Chatterjee, Nabamita; Nagarajan, Shantha

    2006-08-01

    The relative binding of seed water and seed coat membrane stability were measured in two contrasting wheat (Triticum aestivum L) varieties, HDR 77 (drought-tolerant) and HD 2009 (susceptible) using seed water sorption isotherms, electrical conductivity (EC) of leachates and desorption-absorption isotherms. Analysis of sorption isotherm at 25 degrees C showed that the seeds of HDR 77 had significantly higher number of strong binding sites, with correspondingly greater amount of seed water as strongly bound water, as compared to HD 2009. Total number of binding sites was also higher in HDR 77 than HD 2009, which explained the better desiccation tolerance and higher capacity to bind water in seeds of HDR 77. EC of seed leachate in both varieties did not change with respect to change in equilibrium relative humidity (RII), indicating the general seed coat membrane stability of wheat seeds. However, absolute conductivity values were higher for HD 2009. showing its relatively porous seed coat membrane. Significantly lower area enclosed by the desorption-absorption isotherm loop in HDR 77, as compared to HD 2009 also indicated the greater membrane integrity of HDR 77. Germination and seedling vigour of HD 2009 were reduced when equilibrated over very low and very high RH. In contrast, germination and vigour in HDR 77 were maintained high, except at very high RH, indicating again its desiccation tolerance. Thus, the study demonstrated the relative drought tolerance of HDR 77, on the basis of seed water-binding characteristics and seed membrane stability. Seed membrane stability as measured by seed leachate conductivity or as area under dehydration-rehydration loop may be used as a preliminary screening test for drought tolerance in wheat.

  14. Single-Nucleotide-Specific Targeting of the Tf1 Retrotransposon Promoted by the DNA-Binding Protein Sap1 of Schizosaccharomyces pombe.

    PubMed

    Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R; McQueen, Philip G; Yang, Andrew X; Mizuguchi, Takeshi; Grewal, Shiv I S; Levin, Henry L

    2015-11-01

    Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and -9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. Copyright © 2015 by the Genetics Society of America.

  15. Single-Nucleotide-Specific Targeting of the Tf1 Retrotransposon Promoted by the DNA-Binding Protein Sap1 of Schizosaccharomyces pombe

    PubMed Central

    Hickey, Anthony; Esnault, Caroline; Majumdar, Anasuya; Chatterjee, Atreyi Ghatak; Iben, James R.; McQueen, Philip G.; Yang, Andrew X.; Mizuguchi, Takeshi; Grewal, Shiv I. S.; Levin, Henry L.

    2015-01-01

    Transposable elements (TEs) constitute a substantial fraction of the eukaryotic genome and, as a result, have a complex relationship with their host that is both adversarial and dependent. To minimize damage to cellular genes, TEs possess mechanisms that target integration to sequences of low importance. However, the retrotransposon Tf1 of Schizosaccharomyces pombe integrates with a surprising bias for promoter sequences of stress-response genes. The clustering of integration in specific promoters suggests that Tf1 possesses a targeting mechanism that is important for evolutionary adaptation to changes in environment. We report here that Sap1, an essential DNA-binding protein, plays an important role in Tf1 integration. A mutation in Sap1 resulted in a 10-fold drop in Tf1 transposition, and measures of transposon intermediates support the argument that the defect occurred in the process of integration. Published ChIP-Seq data on Sap1 binding combined with high-density maps of Tf1 integration that measure independent insertions at single-nucleotide positions show that 73.4% of all integration occurs at genomic sequences bound by Sap1. This represents high selectivity because Sap1 binds just 6.8% of the genome. A genome-wide analysis of promoter sequences revealed that Sap1 binding and amounts of integration correlate strongly. More important, an alignment of the DNA-binding motif of Sap1 revealed integration clustered on both sides of the motif and showed high levels specifically at positions +19 and −9. These data indicate that Sap1 contributes to the efficiency and position of Tf1 integration. PMID:26358720

  16. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    NASA Technical Reports Server (NTRS)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  17. Basic Residues of β-Sheet A Contribute to Heparin Binding and Activation of Vaspin (Serpin A12).

    PubMed

    Ulbricht, David; Oertwig, Kathrin; Arnsburg, Kristin; Saalbach, Anja; Pippel, Jan; Sträter, Norbert; Heiker, John T

    2017-01-20

    Many members of the serine protease inhibitor (serpin) family are activated by glycosaminoglycans (GAGs). Visceral adipose tissue-derived serpin (vaspin), serpin A12 of the serpin family, and its target protease kallikrein 7 (KLK7) are heparin-binding proteins, and inhibition of KLK7 by vaspin is accelerated by heparin. However, the nature of GAG binding to vaspin is not known. Here, we measured vaspin binding of various glycosaminoglycans and low molecular weight heparins by microscale thermophoresis and analyzed acceleration of protease inhibition by these molecules. In addition, basic residues contributing to heparin binding and heparin activation were identified by a selective labeling approach. Together, these data show that vaspin binds heparin with high affinity (K D = 21 ± 2 nm) and that binding takes place at a basic patch on top of β-sheet A and is different from other heparin-binding serpins. Mutation of basic residues decreased heparin binding and activation of vaspin. Similarly, reactive center loop insertion into sheet A decreased heparin binding because it disturbs the basic cluster. Finally, using vaspin-overexpressing keratinocyte cells, we show that a significant part of secreted vaspin is bound in the extracellular matrix on the cell surface. Together, basic residues of central β-sheet A contribute to heparin binding and activation of vaspin. Thus, binding to GAGs in the extracellular matrix can direct and regulate vaspin interaction with target proteases or other proteins and may play an important role in the various beneficial functions of vaspin in different tissues. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist.

    PubMed

    Chen, Jianyong; Collins, Gregory T; Levant, Beth; Woods, James; Deschamps, Jeffrey R; Wang, Shaomeng

    2011-08-11

    We have identified several ligands with high binding affinities to the dopamine D3 receptor and excellent selectivity over the D2 and D1 receptors. CJ-1639 (17) binds to the D3 receptor with a K(i) value of 0.50 nM and displays a selectivity of >5,000 times over D2 and D1 receptors in binding assays using dopamine receptors expressed in the native rat brain tissues. CJ-1639 binds to human D3 receptor with a K(i) value of 3.61 nM and displays over >1000-fold selectivity over human D1 and D2 receptors. CJ-1639 is active at 0.01 mg/kg at the dopamine D3 receptor in the rat and only starts to show a modest D2 activity at doses as high as 10 mg/kg. CJ-1639 is the most potent and selective D3 full agonist reported to date.

  19. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody.

    PubMed

    Paula, Stefan; Tabet, Michael R; Farr, Carol D; Norman, Andrew B; Ball, W James

    2004-01-01

    Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.

  20. Affinity States of Striatal Dopamine D2 Receptors in Antipsychotic-Free Patients with Schizophrenia

    PubMed Central

    Kubota, Manabu; Nagashima, Tomohisa; Takano, Harumasa; Kodaka, Fumitoshi; Fujiwara, Hironobu; Takahata, Keisuke; Moriguchi, Sho; Higuchi, Makoto; Okubo, Yoshiro; Takahashi, Hidehiko; Ito, Hiroshi

    2017-01-01

    Abstract Background Dopamine D2 receptors are reported to have high-affinity (D2High) and low-affinity (D2Low) states. Although an increased proportion of D2High has been demonstrated in animal models of schizophrenia, few clinical studies have investigated this alteration of D2High in schizophrenia in vivo. Methods Eleven patients with schizophrenia, including 10 antipsychotic-naive and 1 antipsychotic-free individuals, and 17 healthy controls were investigated. Psychopathology was assessed by Positive and Negative Syndrome Scale, and a 5-factor model was used. Two radioligands, [11C]raclopride and [11C]MNPA, were employed to quantify total dopamine D2 receptor and D2High, respectively, in the striatum by measuring their binding potentials. Binding potential values of [11C]raclopride and [11C]MNPA and the binding potential ratio of [11C]MNPA to [11C]raclopride in the striatal subregions were statistically compared between the 2 diagnostic groups using multivariate analysis of covariance controlling for age, gender, and smoking. Correlations between binding potential and Positive and Negative Syndrome Scale scores were also examined. Results Multivariate analysis of covariance demonstrated a significant effect of diagnosis (schizophrenia and control) on the binding potential ratio (P=.018), although the effects of diagnosis on binding potential values obtained with either [11C]raclopride or [11C]MNPA were nonsignificant. Posthoc test showed that the binding potential ratio was significantly higher in the putamen of patients (P=.017). The Positive and Negative Syndrome Scale “depressed” factor in patients was positively correlated with binding potential values of both ligands in the caudate. Conclusions The present study indicates the possibilities of: (1) a higher proportion of D2High in the putamen despite unaltered amounts of total dopamine D2 receptors; and (2) associations between depressive symptoms and amounts of caudate dopamine D2 receptors in patients with schizophrenia. PMID:29016872

  1. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks

    PubMed Central

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long – range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions. PMID:27857564

  2. The role of charged surface residues in the binding ability of small hubs in protein-protein interaction networks.

    PubMed

    Patil, Ashwini; Nakamura, Haruki

    2007-01-01

    Hubs are highly connected proteins in a protein-protein interaction network. Previous work has implicated disordered domains and high surface charge as the properties significant in the ability of hubs to bind multiple proteins. While conformational flexibility of disordered domains plays an important role in the binding ability of large hubs, high surface charge is the dominant property in small hubs. In this study, we further investigate the role of the high surface charge in the binding ability of small hubs in the absence of disordered domains. Using multipole expansion, we find that the charges are highly distributed over the hub surfaces. Residue enrichment studies show that the charged residues in hubs are more prevalent on the exposed surface, with the exception of Arg, which is predominantly found at the interface, as compared to non-hubs. This suggests that the charged residues act primarily from the exposed surface rather than the interface to affect the binding ability of small hubs. They do this through (i) enhanced intra-molecular electrostatic interactions to lower the desolvation penalty, (ii) indirect long - range intermolecular interactions with charged residues on the partner proteins for better complementarity and electrostatic steering, and (iii) increased solubility for enhanced diffusion-controlled rate of binding. Along with Arg, we also find a high prevalence of polar residues Tyr, Gln and His and the hydrophobic residue Met at the interfaces of hubs, all of which have the ability to form multiple types of interactions, indicating that the interfaces of hubs are optimized to participate in multiple interactions.

  3. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. atmore » 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.« less

  4. Optically degradable dendrons for temporary adhesion of proteins to DNA.

    PubMed

    Kostiainen, Mauri A; Kotimaa, Juha; Laukkanen, Marja-Leena; Pavan, Giovanni M

    2010-06-18

    Experimental studies and molecular dynamics modeling demonstrate that multivalent dendrons can be used to temporarily glue proteins and DNA together with high affinity. We describe N-maleimide-cored polyamine dendrons that can be conjugated with free cysteine residues on protein surfaces through 1,4-conjugate addition to give one-to-one protein-polymer conjugates. We used a genetically engineered cysteine mutant of class II hydrophobin (HFBI) and a single-chain Fragment variable (scFv) antibody as model proteins for the conjugation reactions. The binding affinity of the protein-dendron conjugates towards DNA was experimentally assessed by using the ethidium bromide displacement assay. The binding was found to depend on the generation of the dendron, with the second generation having a stronger affinity than the first generation. Thermodynamic parameters of the binding were obtained from molecular dynamics modeling, which showed that the high binding affinity for each system is almost completely driven by a strong favorable binding enthalpy that is opposed by unfavorable binding entropy. A short exposure to UV (lambda approximately 350 nm) can cleave the photolabile o-nitrobenzyl-linked binding ligands from the surface of the dendron, which results in loss of the multivalent binding interactions and triggers the release of the DNA and protein. The timescale of the release is very rapid and the binding partners can be efficiently released after 3 min of UV exposure.

  5. Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides.

    PubMed

    Karttunen, Mikko; Choy, Wing-Yiu; Cino, Elio A

    2018-06-07

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor and principal regulator of the antioxidant pathway. The Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) binds to motifs in the N-terminal region of Nrf2, promoting its degradation. There is interest in developing ligands that can compete with Nrf2 for binding to Kelch, thereby activating its transcriptional activities and increasing antioxidant levels. Using experimental Δ G bind values of Kelch-binding motifs determined previously, a revised hydrophobicity-based model was developed for estimating Δ G bind from amino acid sequence and applied to rank potential uncharacterized Kelch-binding motifs identified from interaction databases and BLAST searches. Model predictions and molecular dynamics (MD) simulations suggested that full-length MAD2A binds Kelch more favorably than a high-affinity 20-mer Nrf2 E78P peptide, but that the motif in isolation is not a particularly strong binder. Endeavoring to develop shorter peptides for activating Nrf2, new designs were created based on the E78P peptide, some of which showed considerable propensity to form binding-competent structures in MD, and were predicted to interact with Kelch more favorably than the E78P peptide. The peptides could be promising new ligands for enhancing the oxidative stress response.

  6. Measles Virus (MV) Nucleoprotein Binds to a Novel Cell Surface Receptor Distinct from FcγRII via Its C-Terminal Domain: Role in MV-Induced Immunosuppression

    PubMed Central

    Laine, David; Trescol-Biémont, Marie-Claude; Longhi, Sonia; Libeau, Geneviève; Marie, Julien C.; Vidalain, Pierre-Olivier; Azocar, Olga; Diallo, Adama; Canard, Bruno; Rabourdin-Combe, Chantal; Valentin, Hélène

    2003-01-01

    During acute measles virus (MV) infection, an efficient immune response occurs, followed by a transient but profound immunosuppression. MV nucleoprotein (MV-N) has been reported to induce both cellular and humoral immune responses and paradoxically to account for immunosuppression. Thus far, this latter activity has been attributed to MV-N binding to human and murine FcγRII. Here, we show that apoptosis of MV-infected human thymic epithelial cells (TEC) allows the release of MV-N in the extracellular compartment. This extracellular N is then able to bind either to MV-infected or uninfected TEC. We show that recombinant MV-N specifically binds to a membrane protein receptor, different from FcγRII, highly expressed on the cell surface of TEC. This new receptor is referred to as nucleoprotein receptor (NR). In addition, different Ns from other MV-related morbilliviruses can also bind to FcγRII and/or NR. We show that the region of MV-N responsible for binding to NR maps to the C-terminal fragment (NTAIL). Binding of MV-N to NR on TEC triggers sustained calcium influx and inhibits spontaneous cell proliferation by arresting cells in the G0 and G1 phases of the cell cycle. Finally, MV-N binds to both constitutively expressed NR on a large spectrum of cells from different species and to human activated T cells, leading to suppression of their proliferation. These results provide evidence that MV-N, after release in the extracellular compartment, binds to NR and thereby plays a role in MV-induced immunosuppression. PMID:14557619

  7. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane.

    PubMed

    Welbourn, Elizabeth M; Wilson, Michael T; Yusof, Ashril; Metodiev, Metodi V; Cooper, Chris E

    2017-02-01

    Covalent hemoglobin binding to membranes leads to band 3 (AE1) clustering and the removal of erythrocytes from the circulation; it is also implicated in blood storage lesions. Damaged hemoglobin, with the heme being in a redox and oxygen-binding inactive hemichrome form, has been implicated as the binding species. However, previous studies used strong non-physiological oxidants. In vivo hemoglobin is constantly being oxidised to methemoglobin (ferric), with around 1% of hemoglobin being in this form at any one time. In this study we tested the ability of the natural oxidised form of hemoglobin (methemoglobin) in the presence or absence of the physiological oxidant hydrogen peroxide to initiate membrane binding. The higher the oxidation state of hemoglobin (from Fe(III) to Fe(V)) the more binding was observed, with approximately 50% of this binding requiring reactive sulphydryl groups. The hemoglobin bound was in a high molecular weight complex containing spectrin, ankyrin and band 4.2, which are common to one of the cytoskeletal nodes. Unusually, we showed that hemoglobin bound in this way was redox active and capable of ligand binding. It can initiate lipid peroxidation showing the potential to cause cell damage. In vivo oxidative stress studies using extreme endurance exercise challenges showed an increase in hemoglobin membrane binding, especially in older cells with lower levels of antioxidant enzymes. These are then targeted for destruction. We propose a model where mild oxidative stress initiates the binding of redox active hemoglobin to the membrane. The maximum lifetime of the erythrocyte is thus governed by the redox activity of the cell; from the moment of its release into the circulation the timer is set. Copyright © 2016. Published by Elsevier Inc.

  8. Synaptosomal binding of 125I-labelled daboiatoxin, a new PLA2 neurotoxin from the venom of Daboia russelli siamensis.

    PubMed

    Maung-Maung-Thwin; Gopalakrishnakone, P; Yuen, R; Tan, C H

    1996-02-01

    Daboiatoxin (DbTx), the PLA2 neurotoxin from Daboia russelli siamensis venom, was shown to bind specifically and saturably to rat cerebrocortical synaptosomes and synaptic membrane fragments. Two families of binding sites were detected by equilibrium binding analysis in the presence and absence of Ca2+. Scatchard analysis of biphasic plateaus revealed Kdl 5 nM and Bmax1, 6 pmoles/mg protein, and Kd2 80 nM and Bmax2 20 pmoles/mg protein, respectively, for the high- and low-affinity binding sites. The binding of 125I-DbTx to synaptosomes did not show marked dependence on Ca2+, Mg2+, Co2+ and Sr2+. Native DbTx was the only strong competitor to 125I-DbTx synaptosomal binding (IC50 12.5 nM, KI 5.5 nM). Two other crotalid PLA2 neurotoxins, crotoxin CB and mojave toxin basic subunit, and nontoxic C. Atrox PLA2 enzyme, were relatively weaker inhibitors, while two viperid PLA2 neurotoxins, ammodytoxin A and VRV PL V, were very weak inhibitors. Crotoxin CA was a poor inhibitor even at microM concentrations, whereas no inhibitory effect at all was observed with crotoxin CACB, ammodytoxin C, VRV PL VIIIa, taipoxin, beta-bungarotoxin, or with PLA2 enzymes from N. naja venom, E. schistosa venom, bee venom and porcine pancreas. All other pharmacologically active ligands examined (epinephrine, norepinephrine, histamine, choline, dopamine, serotonin, GABA, naloxone, WB-4101, atropine, hexamethonium and alpha-bun-garotoxin) also failed to interfere with 125I-DbTx binding. As those competitors that showed partial inhibition were effective only at microM concentration range compared to the Kd (5 nM) of 125I-DbTx synaptosomal binding, DbTx could well recognize a different neuronal binding site. Rabbit anti-DbTx polyclonal antisera completely blocked the specific binding. When a range of Ca2+ and K+ channels modulators were examined, Ca2+ channel blockers (omega-conotoxins GVIA and MVIIC, taicatoxin, calciseptine and nitrendiprene) did not affect the binding even at high concentrations, while charybdotoxin was the only K+ channel effector that could partially displace 125I-DbTx synaptosomal binding amongst the K+ channel blockers tested (apamin, dendrotoxin-I, iberiotoxin, MCD-peptide, 4-aminopyridine and tetraethylammonium), suggesting that neither K+ nor Ca2+ channels are associated with DbTx binding sites.

  9. Molecular analysis of the differential hepatic expression of rat kininogen family genes.

    PubMed Central

    Chen, H M; Liao, W S

    1993-01-01

    Serum concentration of rat T1 kininogen increases 20- to 30-fold in response to acute inflammation, an induced hepatic synthesis regulated primarily at the transcriptional level. We have demonstrated by transient transfection analyses that rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs are highly responsive to interleukin-6 and dexamethasone. In these studies we examined the regulation of a highly homologous K kininogen gene promoter and showed that it is minimally induced under identical conditions. The basal expression of the KK/CAT construct was, however, five- to sevenfold higher than that of the analogous T1K/CAT construct. Promoter-swapping experiments to examine the molecular basis of this differentially regulated basal expression showed that at least two K kininogen promoter regions are important for conferring its high basal expression: a distal 19-bp region (C box) constituted a binding site for C/EBP family proteins, and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor 3 (HNF-3). While the C box in the K kininogen promoter was able to interact with C/EBP transcription factors, the T1 kininogen promoter C box could not. In addition, HNF-3 binding sites of the K kininogen promoter demonstrated stronger affinities than those of the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and are known to enhance transcription of liver-specific genes, these differences in their binding activities thus accounted for the K kininogen gene's higher basal expression. Our studies demonstrated that evolutionary divergence of a few critical nucleotides may lead to subtle changes in the binding affinities of a transcription factor to its recognition site, profoundly altering expression of the downstream gene. Images PMID:8413271

  10. Conformational changes induced in the eukaryotic translation initiation factor eIF4E by a clinically relevant inhibitor, ribavirin triphosphate

    PubMed Central

    Volpon, Laurent; Osborne, Michael J.; Zahreddine, Hiba; Romeo, Andrea A.; Borden, Katherine L.B.

    2013-01-01

    The eukaryotic translation initiation factor eIF4E is highly elevated in human cancers including acute myeloid leukemia (AML). A potential anticancer agent, ribavirin, targets eIF4E activity in AML patients corresponding to clinical responses. To date, ribavirin is the only direct inhibitor of eIF4E to reach clinical trials. We showed that ribavirin acts as a competitive inhibitor of the methyl 7-guanosine (m7G) cap, the natural ligand of eIF4E. Here we examine the conformational changes occurring in human eIF4E upon binding the active metabolite of ribavirin, ribavirin triphosphate (RTP). Our NMR data revealed an unexpected concentration dependence on RTP affinity for eIF4E. We observed NMR spectra characteristic of tight binding at low micromolar concentrations (2-5μM eIF4E) but much weaker affinity at more typical NMR concentrations (50-200μM). Comparison of chemical shift perturbation and line broadening suggest that the two eIF4E-RTP complexes differ in the precise positioning of RTP within the cap binding pocket, with the high affinity complex showing more extensive changes to the central β-sheet and dorsal surface of eIF4E, similar to m7G cap. The differences between high and low affinity complexes arise due to concentration dependent aggregation of eIF4E and RTP. Given the intracellular concentrations of eIF4E and RTP and the differential binding toward the W56A eIF4E mutant the high affinity complex is the most physiologically relevant. In summary, these findings demonstrate that RTP binds in the cap-binding site but also suggests new features of this pocket that should be considered in both drug design efforts and reveal new insights into ligand eIF4E recognition. PMID:23583375

  11. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  12. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.; Gatley, J.; Gifford, A.

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with amore » half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.« less

  13. Synthesis of photothermal nanocomposites and their application to antibacterial assays

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Wang, Chun; Wang, Xiaoyu; Li, Lidong

    2018-04-01

    In this work, we report a novel gold nanorod (AuNR)-based nanocomposite that shows strong binding to bacterium and high antibacterial efficiency. The AuNRs were used as a photothermal material to transform near-infrared radiation (NIR) into heat. We selected poly (acrylic acid) to modify the surface of the AuNRs based on a simple self-assembly method. After conjugation of the bacterium-binding molecule vancomycin, the nanocomposites were capable of efficiently gathering on the cell walls of bacteria. The nanocomposites exhibited a high bacterial inhibition capability owing to NIR-induced heat generation in situ. Therefore, the prepared photothermal nanocomposites show great potential for use in antibacterial assays.

  14. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine

    PubMed Central

    Jiang, Shuai; Chen, Yijie; Wang, Man; Yin, Yalin; Pan, Yongfu; Gu, Bianli; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    A novel lectin was isolated from the mushroom Agrocybe aegerita (designated AAL-2) by affinity chromatography with GlcNAc (N-acetylglucosamine)-coupled Sepharose 6B after ammonium sulfate precipitation. The AAL-2 coding sequence (1224 bp) was identified by performing a homologous search of the five tryptic peptides identified by MS against the translated transcriptome of A. aegerita. The molecular mass of AAL-2 was calculated to be 43.175 kDa from MS, which was consistent with the data calculated from the amino acid sequence. To analyse the carbohydrate-binding properties of AAL-2, a glycan array composed of 465 glycan candidates was employed, and the result showed that AAL-2 bound with high selectivity to terminal non-reducing GlcNAc residues, and further analysis revealed that AAL-2 bound to terminal non-reducing GlcNAc residues with higher affinity than previously well-known GlcNAc-binding lectins such as WGA (wheatgerm agglutinin) and GSL-II (Griffonia simplicifolia lectin-II). ITC (isothermal titration calorimetry) showed further that GlcNAc bound to AAL-2 in a sequential manner with moderate affinity. In the present study, we also evaluated the anti-tumour activity of AAL-2. The results showed that AAL-2 could bind to the surface of hepatoma cells, leading to induced cell apoptosis in vitro. Furthermore, AAL-2 exerted an anti-hepatoma effect via inhibition of tumour growth and prolongation of survival time of tumour-bearing mice in vivo. PMID:22268569

  15. Two-Component System RgfA/C Activates the fbsB Gene Encoding Major Fibrinogen-Binding Protein in Highly Virulent CC17 Clone Group B Streptococcus

    PubMed Central

    Safadi, Rim Al; Mereghetti, Laurent; Salloum, Mazen; Lartigue, Marie-Frédérique; Virlogeux-Payant, Isabelle; Quentin, Roland; Rosenau, Agnès

    2011-01-01

    Group B streptococcus (GBS) strains with the highest ability to bind to human fibrinogen belong to the highly invasive clonal complex (CC) 17. To investigate the fibrinogen-binding mechanisms of CC17 strains, we determined the prevalence of fibrinogen-binding genes (fbsA and fbsB), and fbs regulator genes (rogB encoding an fbsA activator, rovS encoding an fbsA repressor and rgf encoding a two-component system [TCS] whose role on fbs genes was not determined yet) in a collection of 134 strains representing the major CCs of the species. We showed that specific gene combinations were related to particular CCs; only CC17 strains contained the fbsA, fbsB, and rgf genes combination. Non polar rgfAC deletion mutants of three CC17 serotype III strains were constructed. They showed a 3.2- to 5.1-fold increase of fbsA transcripts, a 4.8- to 6.7-fold decrease of fbsB transcripts, and a 52% to 68% decreased fibrinogen-binding ability, demonstrating that the RgfA/RgfC TCS inhibits the fbsA gene and activates the fbsB gene. The relative contribution of the two fbs genes in fibrinogen-binding ability was determined by constructing isogenic fbsA, fbsB, deletion mutants of the three CC17 strains. The ability to bind to fibrinogen was reduced by 49% to 57% in ΔfbsA mutants, and by 78% to 80% in ΔfbsB mutants, suggesting that FbsB protein plays a greater role in the fibrinogen-binding ability of CC17 strains. Moreover, the relative transcription level of fbsB gene was 9.2- to 12.7-fold higher than that of fbsA gene for the three wild type strains. Fibrinogen-binding ability could be restored by plasmid-mediated expression of rgfAC, fbsA, and fbsB genes in the corresponding deletion mutants. Thus, our results demonstrate that a specific combination of fbs genes and fbs regulator genes account for the high fibrinogen-binding ability of CC17 strains that may participate to their enhanced invasiveness for neonates as compared to strains of other CCs. PMID:21326613

  16. Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.).

    PubMed

    Tian, Z; Zhang, Y

    2016-12-01

    A full-length cDNA encoding Cydia pomonella pheromone binding protein 1 (CpomPBP1) was cloned and characterized. CpomPBP1, possessing the typical characteristics of lepidopteran odorant binding proteins, was detected to be specifically expressed in the antennae of male and female moths at the mRNA and protein level. Soluble recombinant CpomPBP1 was subjected to in vitro binding to analyse its binding properties and to search for potentially active semiochemicals. A competitive binding assay showed that three 12-carbon ligands, codlemone, 1-dodecanol and E,E-2,4-dodecadienal, were able to bind to CpomPBP1 in decreasing order of affinity. Moreover, unlike the wild-type CpomPBP1, the C-terminus truncated CpomPBP1 exhibited high affinity to ligands even in an acidic environment, suggesting that the C-terminus plays a role in preventing ligands from binding to CpomPBP1 in a lower pH environment. © 2016 The Royal Entomological Society.

  17. Isolation of an Aptamer that Binds Specifically to E. coli

    PubMed Central

    Cleto, Fernanda; Krieger, Marco Aurélio; Cardoso, Josiane

    2016-01-01

    Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies. PMID:27104834

  18. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass.

    PubMed

    Chai, Kian Piaw; Othman, Noor Farhan Binti; Teh, Aik-Hong; Ho, Kok Lian; Chan, Kok-Gan; Shamsir, Mohd Shahir; Goh, Kian Mau; Ng, Chyan Leong

    2016-03-15

    A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca(2+) ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca(2+) ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite.

  19. The role of CH/π interactions in the high affinity binding of streptavidin and biotin.

    PubMed

    Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi

    2017-08-01

    The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules

    PubMed Central

    Gaillard, Jeremie; Ramabhadran, Vinay; Neumanne, Emmanuelle; Gurel, Pinar; Blanchoin, Laurent; Vantard, Marylin; Higgs, Henry N.

    2011-01-01

    A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (Kd < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements. PMID:21998204

  1. Transcriptional activation of the Escherichia coli adaptive response gene aidB is mediated by binding of methylated Ada protein. Evidence for a new consensus sequence for Ada-binding sites.

    PubMed

    Landini, P; Volkert, M R

    1995-04-07

    The Escherichia coli aidB gene is part of the adaptive response to DNA methylation damage. Genes belonging to the adaptive response are positively regulated by the ada gene; the Ada protein acts as a transcriptional activator when methylated in one of its cysteine residues at position 69. Through DNaseI protection assays, we show that methylated Ada (meAda) is able to bind a DNA sequence between 40 and 60 base pairs upstream of the aidB transcriptional startpoint. Binding of meAda is necessary to activate transcription of the adaptive response genes; accordingly, in vitro transcription of aidB is dependent on the presence of meAda. Unmethylated Ada protein shows no protection against DNaseI digestion in the aidB promoter region nor does it promote aidB in vitro transcription. The aidB Ada-binding site shows only weak homology to the proposed consensus sequences for Ada-binding sites in E. coli (AAANNAA and AAAGCGCA) but shares a higher degree of similarity with the Ada-binding regions from other bacterial species, such as Salmonella typhimurium and Bacillus subtilis. Based on the comparison of five different Ada-dependent promoter regions, we suggest that a possible recognition sequence for meAda might be AATnnnnnnG-CAA. Higher concentrations of Ada are required for the binding of aidB than for the ada promoter, suggesting lower affinity of the protein for the aidB Ada-binding site. Common features in the Ada-binding regions of ada and aidB are a high A/T content, the presence of an inverted repeat structure, and their position relative to the transcriptional start site. We propose that these elements, in addition to the proposed recognition sequence, are important for binding of the Ada protein.

  2. Identification and characterization of Hoxa9 binding sites in hematopoietic cells

    PubMed Central

    Huang, Yongsheng; Sitwala, Kajal; Bronstein, Joel; Sanders, Daniel; Dandekar, Monisha; Collins, Cailin; Robertson, Gordon; MacDonald, James; Cezard, Timothee; Bilenky, Misha; Thiessen, Nina; Zhao, Yongjun; Zeng, Thomas; Hirst, Martin; Hero, Alfred; Jones, Steven

    2012-01-01

    The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia. PMID:22072553

  3. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis

    PubMed Central

    Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus

    2016-01-01

    Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E+) and acquire a high-affinity conformation with an ‘open' headpiece (H+). The canonical switchblade model of integrin activation proposes that the E+ conformation precedes H+, and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E−H+ conformation. E−H+ β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation. PMID:27578049

  4. Tea Dietary Fiber Improves Serum and Hepatic Lipid Profiles in Mice Fed a High Cholesterol Diet.

    PubMed

    Guo, Wenxin; Shu, Yang; Yang, Xiaoping

    2016-06-01

    Tea dietary fiber (TDF) was prepared from tea residues and modified to get cellulose-modified TDF (CTDF) by cellulase or micronized TDF (MTDF) by ultrafine grinding. The in vitro lipid-binding capacities of the three fibers and their effects on serum and hepatic lipid profiles in mice fed a high cholesterol diet were evaluated. The results showed that the three fibers had excellent lipid-binding capacities, and the cholesterol- and sodium cholate-binding capacities of CTDF and MTDF were significantly higher than those of TDF. Animal studies showed that, compared to model control, the three fibers significantly decreased mice average daily gain, gain: feed, and liver index, reduced total cholesterol (TC), triglyceride, and low density lipoprotein-cholesterol of serum and liver, increased serum and hepatic high density lipoprotein-cholesterol to TC ratio, and promoted the excretion of fecal lipids, and they also significantly increased the activities of superoxide dismutase and glutathione peroxidase of serum and liver, and decreased lipid peroxidation; moreover, the effects of CTDF and MTDF were better than that of TDF. It was concluded that the three fibers could improve serum and hepatic lipid profiles in mice fed a high cholesterol diet and the mechanism of action might be due to the promotion of fecal excretion of lipids through their lipid-binding ability and the inhibition of lipid peroxidation. These findings suggest that tea dietary fiber has the potential to be used as a functional ingredient to control cardiovascular disease.

  5. Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9 H -pyrimido[4,5- b ]indol-7-yl)-3,5-dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yujun; Bai, Longchuan; Liu, Liu

    We have designed and synthesized 9H-pyrimido[4,5-b]indole-containing compounds to obtain potent and orally bioavailable BET inhibitors. By incorporation of an indole or a quinoline moiety to the 9H-pyrimido[4,5-b]indole core, we identified a series of small molecules showing high binding affinities to BET proteins and low nanomolar potencies in inhibition of cell growth in acute leukemia cell lines. One such compound, 4-(6-methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethylisoxazole (31) has excellent microsomal stability and good oral pharmacokinetics in rats and mice. Orally administered, 31 achieves significant antitumor activity in the MV4;11 leukemia and MDA-MB-231 triple-negative breast cancer xenograft models in mice. Determination of the cocrystal structure of 31more » with BRD4 BD2 provides a structural basis for its high binding affinity to BET proteins. Testing its binding affinities against other bromodomain-containing proteins shows that 31 is a highly selective inhibitor of BET proteins. Our data show that 31 is a potent, selective, and orally active BET inhibitor.« less

  6. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity. © 2014 John Wiley & Sons A/S.

  7. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    PubMed Central

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  8. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    PubMed Central

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  9. Binding of manganese(II) to a tertiary stabilized hammerhead ribozyme as studied by electron paramagnetic resonance spectroscopy

    PubMed Central

    KISSELEVA, NATALIA; KHVOROVA, ANASTASIA; WESTHOF, ERIC; SCHIEMANN, OLAV

    2005-01-01

    Electron paramagnetic resonance (EPR) spectroscopy is used to study the binding of MnII ions to a tertiary stabilized hammer-head ribozyme (tsHHRz) and to compare it with the binding to the minimal hammerhead ribozyme (mHHRz). Continuous wave EPR measurements show that the tsHHRz possesses a single high-affinity MnII binding site with a KD of ≤10 nM at an NaCl concentration of 0.1 M. This dissociation constant is at least two orders of magnitude smaller than the KD determined previously for the single high-affinity MnII site in the mHHRz. In addition, whereas the high-affinity MnII is displaced from the mHHRz upon binding of the aminoglycoside antibiotic neomycin B, it is not from the tsHHRz. Despite these pronounced differences in binding, a comparison between the electron spin echo envelope modulation and hyperfine sublevel correlation spectra of the minimal and tertiary stabilized HHRz demonstrates that the structure of both binding sites is very similar. This suggests that the MnII is located in both ribozymes between the bases A9 and G10.1 of the sheared G · A tandem base pair, as shown previously and in detail for the mHHRz. Thus, the much stronger MnII binding in the tsHHRz is attributed to the interaction between the two external loops, which locks in the RNA fold, trapping the MnII in the tightly bound conformation, whereas the absence of long-range loop–loop interactions in the mHHRz leads to more dynamical and open conformations, decreasing MnII binding. PMID:15611296

  10. Pharmacokinetics of warfarin in rats: role of serum protein binding and tissue distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, W.K.

    The purpose of this study was to explore the role of serum protein binding and tissue distribution in the non-linear pharmacokinetics of warfarin in rats. The first phase of the research was an attempt to elucidate the causes of intersubject differences in serum protein binding of warfarin in rats. It was found that the distribution of S-warfarin between blood and liver, kidneys, muscle, or fatty tissue was non-linear. Based on the tissue distribution data obtained, a physiologically-based pharmacokinetic model was developed to describe the time course of S-warfarin concentrations in the serum and tissues of rats. The proposed model wasmore » able to display the dose-dependent pharmacokinetics of warfarin in rats. Namely a lower clearance and a smaller apparent volume of distribution with increasing dose, which appear to be due to the presence of capacity-limited, high-affinity binding sites for warfarin in various tissues. To determine if the binding of warfarin to the high-affinity binding sites in the liver of rats is reversible, concentrations of S-warfarin in the liver and serum of rats were monitored for a very long time after an intravenous injection of a 1 mg/kg dose. In another study in rats, non-radioactive warfarin was found to be able to displace tissue-bound C/sup 14/-warfarin which was administered about 200 hours before the i.v. injection of the non-radioactive warfarin, showing that the binding of warfarin to the high-affinity binding sites in the body is persistent and reversible.« less

  11. Red Light-enhanced Phytochrome Pelletability

    PubMed Central

    Pratt, Lee H.; Marmé, Dieter

    1976-01-01

    Red light-enhanced pelletability of phytochrome was observed in extracts of all 11 plants tested: Avena sativa L., Secale cereale L., Zea mays L., Cucurbita pepo L., Sinapis alba L., Pisum sativum L., Helianthus anuus L., Raphanus sativus L., Glycine max (L.) Merr., Phaseolus vulgaris L., and Lupinus albus L. This enhanced pelletability was observed in all 11 plants following in situ irradiation (in vivo binding) but only in Sinapis and Cucurbita after irradiation of crude extracts (in vitro binding). In vivo binding was not strongly dependent upon pH and, with few exceptions, was not markedly sensitive to high salt concentration, whereas in vitro binding was completely reversed by both high pH and high salt concentration. However, both binding phenomena were observed only with a divalent cation in the extract buffer. In vivo binding was further characterized using Avena which showed an increase in pelletability from less than 10% in dark control extracts to more than 60% in extracts of red light-irradiated shoots. The half-life for binding was 40 seconds at 0.5 C and was strongly temperature-dependent, binding being complete within 5 to 10 sec at 22 C. If pelletable phytochrome in the far red-absorbing form was photoconverted back to the red-absorbing form in situ, phytochrome was released from the pelletable condition with a half-life of 25 minutes at 25 C and 100 minutes at both 13 C and 3 C. No cooperativity in red light-enhanced pelletability with respect to phytochrome-far red-absorbing form was observed. PMID:16659745

  12. HMGB1 Protein Binds to Influenza Virus Nucleoprotein and Promotes Viral Replication

    PubMed Central

    Moisy, Dorothée; Avilov, Sergiy V.; Jacob, Yves; Laoide, Brid M.; Ge, Xingyi; Baudin, Florence; Jestin, Jean-Luc

    2012-01-01

    Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses. PMID:22696656

  13. Expression cloning and characterization of a novel gene that encodes the RNA-binding protein FAU-1 from Pyrococcus furiosus.

    PubMed Central

    Kanai, Akio; Oida, Hanako; Matsuura, Nana; Doi, Hirofumi

    2003-01-01

    We systematically screened a genomic DNA library to identify proteins of the hyperthermophilic archaeon Pyrococcus furiosus using an expression cloning method. One gene product, which we named FAU-1 (P. furiosus AU-binding), demonstrated the strongest binding activity of all the genomic library-derived proteins tested against an AU-rich RNA sequence. The protein was purified to near homogeneity as a 54 kDa single polypeptide, and the gene locus corresponding to this FAU-1 activity was also sequenced. The FAU-1 gene encoded a 472-amino-acid protein that was characterized by highly charged domains consisting of both acidic and basic amino acids. The N-terminal half of the gene had a degree of similarity (25%) with RNase E from Escherichia coli. Five rounds of RNA-binding-site selection and footprinting analysis showed that the FAU-1 protein binds specifically to the AU-rich sequence in a loop region of a possible RNA ligand. Moreover, we demonstrated that the FAU-1 protein acts as an oligomer, and mainly as a trimer. These results showed that the FAU-1 protein is a novel heat-stable protein with an RNA loop-binding characteristic. PMID:12614195

  14. Searching for transcription factor binding sites in vector spaces

    PubMed Central

    2012-01-01

    Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular transcription factor, one usually has to compare a handful of methods. Hence, it is highly desirable for a method to perform automatic optimization for individual transcription factors. Results We proposed to search for transcription factor binding sites in vector spaces. This framework allows us to identify the best method for each individual transcription factor. We further introduced two novel methods, the negative-to-positive vector (NPV) and optimal discriminating vector (ODV) methods, to construct query vectors to search for binding sites in vector spaces. Extensive cross-validation experiments showed that the proposed methods significantly outperformed the ungapped likelihood under positional background method, a state-of-the-art method, and the widely-used position-specific scoring matrix method. We further demonstrated that motif subtypes of a TF can be readily identified in this framework and two variants called the k NPV and k ODV methods benefited significantly from motif subtype identification. Finally, independent validation on ChIP-seq data showed that the ODV and NPV methods significantly outperformed the other compared methods. Conclusions We conclude that the proposed framework is highly flexible. It enables the two novel methods to automatically identify a TF-specific subspace to search for binding sites. Implementations are available as source code at: http://biogrid.engr.uconn.edu/tfbs_search/. PMID:23244338

  15. E2 Proteins from High- and Low-Risk Human Papillomavirus Types Differ in Their Ability To Bind p53 and Induce Apoptotic Cell Death

    PubMed Central

    Parish, Joanna L.; Kowalczyk, Anna; Chen, Hsin-Tien; Roeder, Geraldine E.; Sessions, Richard; Buckle, Malcolm; Gaston, Kevin

    2006-01-01

    The E2 proteins from oncogenic (high-risk) human papillomaviruses (HPVs) can induce apoptotic cell death in both HPV-transformed and non-HPV-transformed cells. Here we show that the E2 proteins from HPV type 6 (HPV6) and HPV11, two nononcogenic (low-risk) HPV types, fail to induce apoptosis. Unlike the high-risk HPV16 E2 protein, these low-risk E2 proteins fail to bind p53 and fail to induce p53-dependent transcription activation. Interestingly, neither the ability of p53 to activate transcription nor the ability of p53 to bind DNA, are required for HPV16 E2-induced apoptosis in non-HPV-transformed cells. However, mutations that reduce the binding of the HPV16 E2 protein to p53 inhibit E2-induced apoptosis in non-HPV-transformed cells. In contrast, the interaction between HPV16 E2 and p53 is not required for this E2 protein to induce apoptosis in HPV-transformed cells. Thus, our data suggest that this high-risk HPV E2 protein induces apoptosis via two pathways. One pathway involves the binding of E2 to p53 and can operate in both HPV-transformed and non-HPV-transformed cells. The second pathway requires the binding of E2 to the viral genome and can only operate in HPV-transformed cells. PMID:16611918

  16. The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2.

    PubMed

    Saito, Motoki; Ishikawa, Fuyuki

    2002-09-20

    Although mammalian MBD3 contains the mCpG-binding domain (MBD) and is highly homologous with the authentic mCpG-binding protein MBD2, it was reported that the protein does not bind to mCpG specifically. Using recombinant human wild type and mutant MBD3 proteins, we demonstrated that atypical amino acids found in MBD3 MBD, namely, His-30 and Phe-34, are responsible for the inability of MBD3 to bind to mCpG. Interestingly, although H30K/F34Y MBD3 mutant protein binds to mCpG efficiently in vitro, it was not localized at the mCpG-rich pericentromeric regions in mouse cells. We also showed that Y34F MBD2b MBD, which possesses not the mCpG-specific DNA-binding activity but the nonspecific DNA-binding activity, was localized at the pericentromeric regions. These results suggested that the mCpG-specific DNA-binding activity is largely dispensable, and another factor(s) is required for the localization of MBD proteins in vivo. MBD3 was identified as a component of the NuRD/Mi2 complex that shows chromatin remodeling and histone deacetylase activities. We demonstrated that MBD3 MBD is necessary and sufficient for binding to HDAC1 and MTA2, two components of the NuRD/Mi2 complex. It was therefore suggested that mCpG-binding-defective MBD3 has evolutionarily conserved its MBD because of the secondary role played by the MBD in protein-protein interactions.

  17. Comprehensive Interrogation of Natural TALE DNA Binding Modules and Transcriptional Repressor Domains

    PubMed Central

    Cong, Le; Zhou, Ruhong; Kuo, Yu-chi; Cunniff, Margaret; Zhang, Feng

    2012-01-01

    Transcription activator-like effectors (TALE) are sequence-specific DNA binding proteins that harbor modular, repetitive DNA binding domains. TALEs have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the TALE toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat variable diresidue (RVD) Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective TALE transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using TALEs. PMID:22828628

  18. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding.

    PubMed

    Zhou, Zhanping; Zhao, Shuangzhi; Liu, Yang; Chang, Zhengying; Ma, Yanhe; Li, Jian; Song, Jiangning

    2016-11-01

    The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.

  19. Insights into positive and negative requirements for protein-protein interactions by crystallographic analysis of the beta-lactamase inhibitory proteins BLIP, BLIP-I, and BLP.

    PubMed

    Gretes, Michael; Lim, Daniel C; de Castro, Liza; Jensen, Susan E; Kang, Sung Gyun; Lee, Kye Joon; Strynadka, Natalie C J

    2009-06-05

    Beta-lactamase inhibitory protein (BLIP) binds a variety of beta-lactamase enzymes with wide-ranging specificity. Its binding mechanism and interface interactions are a well-established model system for the characterization of protein-protein interactions. Published studies have examined the binding of BLIP to diverse target beta-lactamases (e.g., TEM-1, SME-1, and SHV-1). However, apart from point mutations of amino acid residues, variability on the inhibitor side of this enzyme-inhibitor interface has remained unexplored. Thus, we present crystal structures of two likely BLIP relatives: (1) BLIP-I (solved alone and in complex with TEM-1), which has beta-lactamase inhibitory activity very similar to that of BLIP; and (2) beta-lactamase-inhibitory-protein-like protein (BLP) (in two apo forms, including an ultra-high-resolution structure), which is unable to inhibit any tested beta-lactamase. Despite categorical differences in species of origin and function, BLIP-I and BLP share nearly identical backbone conformations, even at loop regions differing in BLIP. We describe interacting residues and provide a comparative structural analysis of the interactions formed at the interface of BLIP-I.TEM-1 versus those formed at the interface of BLIP.TEM-1. Along with initial attempts to functionally characterize BLP, we examine its amino acid residues that structurally correspond to BLIP/BLIP-I binding hotspots to explain its inability to bind and inhibit TEM-1. We conclude that the BLIP family fold is a robust and flexible scaffold that permits the formation of high-affinity protein-protein interactions while remaining highly selective. Comparison of the two naturally occurring, distinct binding interfaces built upon this scaffold (BLIP and BLIP-I) shows that there is substantial variation possible in the subnanomolar binding interaction with TEM-1. The corresponding (non-TEM-1-binding) BLP surface shows that numerous favorable backbone-backbone/backbone-side-chain interactions with a protein partner can be negated by the presence of a few, strongly unfavorable interactions, especially electrostatic repulsions.

  20. Specificity and Affinity Quantification of Flexible Recognition from Underlying Energy Landscape Topography

    PubMed Central

    Chu, Xiakun; Wang, Jin

    2014-01-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition. PMID:25144525

  1. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    PubMed

    Chu, Xiakun; Wang, Jin

    2014-08-01

    Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less) flexibility leads to weaker (stronger) coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  2. Studies of the mechanism of selectivity of protein tyrosine phosphatase 1B (PTP1B) bidentate inhibitors using molecular dynamics simulations and free energy calculations.

    PubMed

    Fang, Lei; Zhang, Huai; Cui, Wei; Ji, Mingjun

    2008-10-01

    Bidentate inhibitors of protein tyrosine phosphatase 1B (PTP1B) are considered as a group of ideal inhibitors with high binding potential and high selectivity in treating type II diabetes. In this paper, the binding models of five bidentate inhibitors to PTP1B, TCPTP, and SHP-2 were investigated and compared by using molecular dynamics (MD) simulations and free energy calculations. The binding free energies were computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology. The calculation results show that the predicted free energies of the complexes are well consistent with the experimental data. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) free energy decomposition analysis indicates that the residues ARG24, ARG254, and GLN262 in the second binding site of PTP1B are essential for the high selectivity of inhibitors. Furthermore, the residue PHE182 close to the active site is also important for the selectivity and the binding affinity of the inhibitors. According to our analysis, it can be concluded that in most cases the polarity of the portion of the inhibitor that binds to the second binding site of the protein is positive to the affinity of the inhibitors while negative to the selectivity of the inhibitors. We expect that the information we obtained here can help to develop potential PTP1B inhibitors with more promising specificity.

  3. Fluorescence emission and polarization analyses for evaluating binding of ruthenium metalloglycoclusters to lectins and tetanus toxin C-fragment

    NASA Astrophysics Data System (ADS)

    Okada, Tomoko; Minoura, Norihiko

    2011-03-01

    We develop a fluorescent ruthenium metalloglycocluster for use as a powerful molecular probe in evaluating the binding between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analyses. Changes in the FE and FP of these metalloglycoclusters are measured following the addition of lectin [peanut agglutinin (PNA), Ricinus communis agglutinin 120, Concanavalin A (ConA), or wheat germ agglutinin] or tetanus toxin c-fragment (TCF). After the addition of PNA, the FE spectrum of [Ru(bpy-2Gal)3] shows a new emission peak and the FP value of [Ru(bpy-2Gal)3] increases. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] shows a new emission peak and the FP value increases on addition of ConA. Because other combinations of metalloglycoclusters and lectins show little change, specific binding of galactose to PNA and that of glucose to ConA are confirmed by the FE and FP measurements. Resulting dissociation constants (Kd) prove that the metalloglycoclusters with highly clustered carbohydrates show higher affinity for the respective lectins than those with less clustered carbohydrates. Furthermore, specific binding of [Ru(bpy-2Gal)3] to TCF was confirmed by the FP measurement.

  4. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides

    PubMed Central

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-01-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427

  5. Comparison of biological activities of human antithrombins with high-mannose or complex-type nonfucosylated N-linked oligosaccharides.

    PubMed

    Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo

    2016-05-01

    The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. © The Author 2016. Published by Oxford University Press.

  6. Actions of 2-methylpiperidine (MP) and its interactions with (-)-nicotine (N) in the dog and rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.W.; Martin, W.R.; Bostwick, M.

    1986-03-01

    (+/-)-MP is a highly specific drug for enhancing the binding of (+/-)-(/sup 3/H)N in the rat brain P/sub 2/ preparation. Competition studies employing (+/-)-(/sup 3/H)N as the labelled ligand show that this activity resides in the (+) isomer. Saturation studies employing (+/-)-(/sup 3/H)MP indicate that it binds to a very high affinity site which is presumed to be an up-regulatory site. Studies were conducted where (+/-)-MP was injected through an implanted cannula into the 4th ventricle of intact beagle-type dogs. (+/-)-MP, like low doses of (+)-N, another drug which has specificity in enhancing the binding of (+/-)-, and (-)- andmore » (+)-(/sup 3/H)N, produced EEG synchronization and miosis. (-)-N produced analgesia where as (+/-)-MP produced hyperalgesia. In the urethane-pentobarbital anethetized rats, the i.v. infusion of (+)-MP (600 ..mu..g/kg/min for 10 min), had no effect on heart rate, blood pressure or respiration. Pretreatment with (+)-MP delayed and decreased the bradycardia, vasodepression, and enhanced tidal volume produced by (-)-N infusion (60 ..mu..g/kg/min). These data show that the pharmacologic actions of MP are different from (-)-N and hexamethonium and that MP, which enhances the binding of (+/-)- and (-)-(/sup 3/H)N at the high affinity site, appears to exert opposite effects to and antagonistic effects against (-)-N.« less

  7. Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent (99m)Tc-Duramycin.

    PubMed

    Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G; Zhao, Ming

    2012-08-01

    (99m)Tc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between (99m)Tc-Duramycin and the target tissue. High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague-Dawley rats. Target binding and biodistribution of (99m)Tc-duramycin were captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of (99m)Tc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of (99m)Tc-Duramycin in normal and ischemic myocardial tissue. (99m)Tc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to (99m)Tc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for (99m)Tc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9-fold reduction in binding affinity. (99m)Tc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of (99m)Tc-Duramycin as a novel PE-binding agent. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    NASA Astrophysics Data System (ADS)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-02-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways.

  9. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  10. A map of human PRDM9 binding provides evidence for novel behaviors of PRDM9 and other zinc-finger proteins in meiosis

    PubMed Central

    Noor, Nudrat; Bitoun, Emmanuelle; Tumian, Afidalina; Imbeault, Michael; Chapman, J Ross; Aricescu, A Radu

    2017-01-01

    PRDM9 binding localizes almost all meiotic recombination sites in humans and mice. However, most PRDM9-bound loci do not become recombination hotspots. To explore factors that affect binding and subsequent recombination outcomes, we mapped human PRDM9 binding sites in a transfected human cell line and measured PRDM9-induced histone modifications. These data reveal varied DNA-binding modalities of PRDM9. We also find that human PRDM9 frequently binds promoters, despite their low recombination rates, and it can activate expression of a small number of genes including CTCFL and VCX. Furthermore, we identify specific sequence motifs that predict consistent, localized meiotic recombination suppression around a subset of PRDM9 binding sites. These motifs strongly associate with KRAB-ZNF protein binding, TRIM28 recruitment, and specific histone modifications. Finally, we demonstrate that, in addition to binding DNA, PRDM9's zinc fingers also mediate its multimerization, and we show that a pair of highly diverged alleles preferentially form homo-multimers. PMID:29072575

  11. A high-resolution structure of the DNA-binding domain of AhrC, the arginine repressor/activator protein from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.

    2007-11-01

    The structure of the winged helix–turn–helix DNA-binding domain of AhrC has been determined at 1.0 Å resolution. The largely hydrophobic β-wing shows high B factors and may mediate the dimer interface in operator complexes. In Bacillus subtilis the concentration of l-arginine is controlled by the transcriptional regulator AhrC, which interacts with 18 bp DNA operator sites called ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a 100 kDa homohexamer, with each subunit having two domains. The C-terminal domains form the core, mediating intersubunit interactions and binding of the co-repressor l-arginine, whilst the N-terminal domains containmore » a winged helix–turn–helix DNA-binding motif and are arranged around the periphery. The N-terminal domain of AhrC has been expressed, purified and characterized and it has been shown that the fragment still binds DNA operators as a recombinant monomer. The DNA-binding domain has also been crystallized and the crystal structure refined to 1.0 Å resolution is presented.« less

  12. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis.

    PubMed

    Liu, Chune; Yang, Zhihong; Wu, Jianguo; Zhang, Li; Lee, Sangmin; Shin, Dong-Ju; Tran, Melanie; Wang, Li

    2018-05-01

    H19 is an imprinted long noncoding RNA abundantly expressed in embryonic liver and repressed after birth. We show that H19 serves as a lipid sensor by synergizing with the RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to modulate hepatic metabolic homeostasis. H19 RNA interacts with PTBP1 to facilitate its association with sterol regulatory element-binding protein 1c mRNA and protein, leading to increased stability and nuclear transcriptional activity. H19 and PTBP1 are up-regulated by fatty acids in hepatocytes and in diet-induced fatty liver, which further augments lipid accumulation. Ectopic expression of H19 induces steatosis and pushes the liver into a "pseudo-fed" state in response to fasting by promoting sterol regulatory element-binding protein 1c protein cleavage and nuclear translocation. Deletion of H19 or knockdown of PTBP1 abolishes high-fat and high-sucrose diet-induced steatosis. Our study unveils an H19/PTBP1/sterol regulatory element-binding protein 1 feedforward amplifying signaling pathway to exacerbate the development of fatty liver. (Hepatology 2018;67:1768-1783). © 2017 by the American Association for the Study of Liver Diseases.

  13. Association of Ulex europaeus agglutinin I binding with invasion in endometrial carcinoma.

    PubMed

    Ambros, R A; Kurman, R J

    1993-10-01

    Ulex europaeus agglutinin I (UEA-I), a lectin which specifically binds L-fucose, has been shown to extensively bind endometrial carcinoma cells but not benign endometrial glands. Patterns of UEA-I binding were examined in five cases of uteri containing proliferative endometrium, five cases of endometrial hyperplasia, and 54 cases of endometrioid (typical) carcinoma of the endometrium and correlated with the histologic features of the tumor and its behavior. Whereas proliferative endometrium showed luminal staining only, diffuse cytoplasmic staining was frequently seen in hyperplasia and carcinoma. Carcinomas with a high percentage of tumor cells staining with UEA-I tended to be high-grade with a greater tendency to deep myometrial and vascular invasion than tumors with little or no staining. By univariate survival analysis, the extent of UEA-I binding was found to correlate with patient survival. By multivariate analysis, however, survival correlated most closely with the presence of deep myometrial and vascular invasion, and UEA-I binding was not found to be an independent prognostic indicator. This study suggests that increased fucosylation of proteins in endometrioid cancer cells may play a role in myometrial and vascular invasion.

  14. Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-associated Virus

    PubMed Central

    Zhang, Fuming; Aguilera, Javier; Beaudet, Julie M.; Xie, Qing; Lerch, Thomas F.; Davulcu, Omar; Colón, Wilfredo; Chapman, Michael S.; Linhardt, Robert J.

    2013-01-01

    Adeno-associated virus (AAV) is a key candidate in the development of gene therapy. In this report, we used surface plasmon resonance spectroscopy to study the interaction between AAV and heparin and other glycosaminoglycans. Surface plasmon resonance results revealed that heparin binds to AAV with extremely high affinity. Solution competition studies shows that AAV binding to heparin is chain length dependent. AAV prefers to bind full chain heparin. All sulfo groups (especially N-sulfo and 6-O-sulfo groups) on heparin are important for the AAV- heparin interaction. Higher levels of sulfo group substitution in GAGs enhance their binding affinities. Atomic force microscopy was also performed to image AAV-2 complexed with heparin. PMID:23952613

  15. In vitro hypoglycemic and cholesterol lowering effects of dietary fiber prepared from cocoa (Theobroma cacao L.) shells.

    PubMed

    Nsor-Atindana, John; Zhong, Fang; Mothibe, Kebitsamang Joseph

    2012-10-01

    Three dietary fiber (DF) powders; soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and total dietary fiber (TDF) were prepared from cocoa bean shells (CBS) by enzymatic treatment. These DFs were evaluated for their effects on glucose adsorption, glucose diffusion, starch hydrolysis, cholesterol binding, sodium cholate binding and oil binding capacities using in vitro model systems by simulating gastric intestinal conditions. The results showed that SDF generally exhibited significantly (p < 0.05) higher glucose adsorption capacity (GAC), α-amylase inhibition activity, cholesterol and sodium cholate binding capacity, but less significant (>0.05) glucose dialysis retardation index (GDRI) and oil binding capacity, when compared with IDF and TDF which both showed similar effects. Moreover, it was discovered that the three CBS dietary fiber powders contained intrinsic antioxidants (phenolic compounds). The study suggested that CBS could be an alternative cheap source of DF with additional benefits. Thus, CBS fibers could be incorporated as low calorie bulk ingredients in high-fiber diet to reduce calorie and cholesterol levels and control blood glucose level.

  16. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling

    PubMed Central

    Müller, Jennifer; Obermeier, Ingrid; Wöhner, Miriam; Brandl, Carolin; Mrotzek, Sarah; Angermüller, Sieglinde; Maity, Palash C.; Reth, Michael; Nitschke, Lars

    2013-01-01

    A high proportion of human B cells carry B-cell receptors (BCRs) that are autoreactive. Inhibitory receptors such as CD22 can downmodulate autoreactive BCR responses. With its extracellular domain, CD22 binds to sialic acids in α2,6 linkages in cis, on the surface of the same B cell or in trans, on other cells. Sialic acids are self ligands, as they are abundant in vertebrates, but are usually not expressed by pathogens. We show that cis-ligand binding of CD22 is crucial for the regulation of B-cell Ca2+ signaling by controlling the CD22 association to the BCR. Mice with a mutated CD22 ligand-binding domain of CD22 showed strongly reduced Ca2+ signaling. In contrast, mice with mutated CD22 immunoreceptor tyrosine-based inhibition motifs have increased B-cell Ca2+ responses, increased B-cell turnover, and impaired survival of the B cells. Thus, the CD22 ligand-binding domain has a crucial function in regulating BCR signaling, which is relevant for controlling autoimmunity. PMID:23836650

  17. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling.

    PubMed

    Müller, Jennifer; Obermeier, Ingrid; Wöhner, Miriam; Brandl, Carolin; Mrotzek, Sarah; Angermüller, Sieglinde; Maity, Palash C; Reth, Michael; Nitschke, Lars

    2013-07-23

    A high proportion of human B cells carry B-cell receptors (BCRs) that are autoreactive. Inhibitory receptors such as CD22 can downmodulate autoreactive BCR responses. With its extracellular domain, CD22 binds to sialic acids in α2,6 linkages in cis, on the surface of the same B cell or in trans, on other cells. Sialic acids are self ligands, as they are abundant in vertebrates, but are usually not expressed by pathogens. We show that cis-ligand binding of CD22 is crucial for the regulation of B-cell Ca(2+) signaling by controlling the CD22 association to the BCR. Mice with a mutated CD22 ligand-binding domain of CD22 showed strongly reduced Ca(2+) signaling. In contrast, mice with mutated CD22 immunoreceptor tyrosine-based inhibition motifs have increased B-cell Ca(2+) responses, increased B-cell turnover, and impaired survival of the B cells. Thus, the CD22 ligand-binding domain has a crucial function in regulating BCR signaling, which is relevant for controlling autoimmunity.

  18. Activation of RXR–PPAR heterodimers by organotin environmental endocrine disruptors

    PubMed Central

    le Maire, Albane; Grimaldi, Marina; Roecklin, Dominique; Dagnino, Sonia; Vivat-Hannah, Valérie; Balaguer, Patrick; Bourguet, William

    2009-01-01

    The nuclear receptor retinoid X receptor-α (RXR-α)–peroxisome proliferator-activated receptor-γ (PPAR-γ) heterodimer was recently reported to have a crucial function in mediating the deleterious effects of organotin compounds, which are ubiquitous environmental contaminants. However, because organotins are unrelated to known RXR-α and PPAR-γ ligands, the mechanism by which these compounds bind to and activate the RXR-α–PPAR-γ heterodimer at nanomolar concentrations has remained elusive. Here, we show that tributyltin (TBT) activates all three RXR–PPAR-α, -γ, -δ heterodimers, primarily through its interaction with RXR. In addition, the 1.9 Å resolution structure of the RXR-α ligand-binding domain in complex with TBT shows a covalent bond between the tin atom and residue Cys 432 of helix H11. This interaction largely accounts for the high binding affinity of TBT, which only partly occupies the RXR-α ligand-binding pocket. Our data allow an understanding of the binding and activation properties of the various organotins and suggest a mechanism by which these tin compounds could affect other nuclear receptor signalling pathways. PMID:19270714

  19. Phosphorylation Determines the Calmodulin-mediated Ca2+ Response and Water Permeability of AQP0*

    PubMed Central

    Kalman, Katalin; Németh-Cahalan, Karin L.; Froger, Alexandrine; Hall, James E.

    2008-01-01

    In Xenopus oocytes, the water permeability of AQP0 (Pf) increases with removal of external calcium, an effect that is mediated by cytoplasmic calmodulin (CaM) bound to the C terminus of AQP0. To investigate the effects of serine phosphorylation on CaM-mediated Ca2+ regulation of Pf, we tested the effects of kinase activation, CaM inhibition, and a series of mutations in the C terminus CaM binding site. Calcium regulation of AQP0 Pf manifests four distinct phenotypes: Group 1, with high Pf upon removal of external Ca2+ (wild-type, S229N, R233A, S235A, S235K, K238A, and R241E); Group 2, with high Pf in elevated (5 mm) external Ca2+ (S235D and R241A); Group 3, with high Pf and no Ca2+ regulation (S229D, S231N, S231D, S235N, and S235N/I236S); and Group 4, with low Pf and no Ca2+ regulation (protein kinase A and protein kinase C activators, S229D/S235D and S235N/I236S). Within each group, we tested whether CaM binding mediates the phenotype, as shown previously for wild-type AQP0. In the presence of calmidazolium, a CaM inhibitor, S235D showed high Pf and no Ca2+ regulation, suggesting that S235D still binds CaM. Contrarily, S229D showed a decrease in recruitment of CaM, suggesting that S229D is unable to bind CaM. Taken together, our results suggest a model in which CaM acts as an inhibitor of AQP0 Pf. CaM binding is associated with a low Pf state, and a lack of CaM binding is associated with a high Pf state. Pathological conditions of inappropriate phosphorylation or calcium/CaM regulation could induce Pf changes contributing to the development of a cataract. PMID:18508773

  20. Interaction of Sulforaphane with DNA and RNA

    PubMed Central

    Abassi Joozdani, Farzaneh; Yari, Faramarz; Abassi Joozdani, Parvaneh; Nafisi, Shohreh

    2015-01-01

    Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN–DNA and -RNA complexes by Fourier transform infrared (FTIR) and UV–Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2), while RNA binding is through G, U, A bases with some degree of SFN–phosphate (PO2) interaction. Overall binding constants were estimated to be K(SFN–DNA)=3.01 (± 0.035)×104 M-1 and K(SFN–RNA)= 6.63 (±0.042)×103 M-1. At high SFN concentration (SFN/RNA = 1/1), DNA conformation changed from B to A occurred, while RNA remained in A-family structure. PMID:26030290

  1. Identical linkage and cooperativity of oxygen and carbon monoxide binding to Octopus dofleini hemocyanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, P.R.; Gill, S.J.; Miller, K.I.

    1989-02-21

    Employment of high-precision thin-layer methods has enabled detailed functional characterization of oxygen and carbon monoxide binding for (1) the fully assembled form with 70 binding sites and (2) the isolated chains with 7 binding sites of octopus dofleini hemocyanin. The striking difference in the cooperativities of the two ligands for the assembled decamer is revealed through an examination of the binding capacities and the partition coefficient, determined as functions of the activities of both ligands. A global analysis of the data sets supported by a two-state allosteric model assuming an allosteric unit of 7. Higher level allosteric interactions were notmore » indicated. This contrasts to results obtained for arthropod hemocyanins. Oxygen and carbon monoxide experiments performed on the isolated subunit chain confirmed the presence of functional heterogeneity reported previously. The analysis shows two types of binding sites in the ratio of 4:3.« less

  2. Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer.

    PubMed

    Su, Ke; Hu, Pengchao; Wang, Xiaolan; Kuang, Changchun; Xiang, Qingmin; Yang, Fang; Xiang, Jin; Zhu, Shan; Wei, Lei; Zhang, Jingwei

    2016-07-19

    Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent.

  3. Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer

    PubMed Central

    Wang, Xiaolan; Kuang, Changchun; Xiang, Qingmin; Yang, Fang; Xiang, Jin; Zhu, Shan; Wei, Lei; Zhang, Jingwei

    2016-01-01

    Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent. PMID:27322681

  4. Comparison of 99mTc-UBI 29-41, 99mTc-Ciprofloxacin, 99mTc-Ciprofloxacin dithiocarbamate and 111In-biotin for targeting experimental Staphylococcus aureus and Escherichia coli foreign-body infections: an ex-vivo study.

    PubMed

    Auletta, Sveva; Baldoni, Daniela; Varani, Michela; Galli, Filippo; Hajar, Iman A; Duatti, Adriano; Ferro-Flores, Guillermina; Trampuz, Andrej; Signore, Alberto

    2017-08-28

    Diagnosis of implant-associated infection is challenging. Several radiopharmaceuticals have been described but direct comparisons are limited. Here we compared in vitro and in an animal model 99mTc-UBI, 99mTc-Ciprofloxacin, 99mTcN-CiproCS2 and 111In-DTPA-biotin for targeting E. coli (ATCC 25922) and S. aureus (ATCC 43335). Stability controls were performed with the labelled radiopharmaceuticals during 6 h in saline and serum. The in vitro binding to viable or killed bacteria was evaluated at 37 °C and 4 °C. For in vivo studies, Teflon cages were subcutaneously implanted in mice, followed by percutaneous infection. Biodistribution of i.v. injected radiolabelled radiopharmaceuticals were evaluated during 24 h in cages and dissected tissues. Labelling efficiency of all radiopharmaceuticals ranged between 94% and 98%, with high stability both in saline and in human serum. In vitro binding assays displayed a rapid but poor bacterial binding for all tested agents. Similar binding kinetic occurred also with heat-killed and ethanol-killed bacteria. In the tissue cage model, infection was detected at different time points: 99mTc-UBI and 99mTcN-CiproCS2 showed higher infected cage/sterile cage ratio at 24 h for both E. coli and S. aureus; 99mTc-Ciprofloxacin at 24 h for both E. coli and at 4 h for S. aureus; 111In-DTPA-biotin accumulates faster in both E. coli and S. aureus infected cages. 99mTc-UBI, 99mTcN-CiproCS2 showed poor in vitro binding but good in vivo binding to E. coli only. 111In-DTPA-biotin showed poor in vitro binding but good in vivo binding to S. aureus and poor to E. coli. 99mTc-Ciprofloxacin showed poor in vitro binding but good in vivo binding to all tested bacteria. The mechanism of accumulation in infected sites remains to be elucidated.

  5. Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies.

    PubMed

    Kong, Xiaotian; Sun, Huiyong; Pan, Peichen; Tian, Sheng; Li, Dan; Li, Youyong; Hou, Tingjun

    2016-01-21

    Due to the high sequence identity of the binding pockets of cyclin-dependent kinases (CDKs), designing highly selective inhibitors towards a specific CDK member remains a big challenge. 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine derivatives are effective inhibitors of CDKs, among which the most promising inhibitor 12u demonstrates high binding affinity to CDK9 and attenuated binding affinity to other homologous kinases, such as CDK2. In this study, in order to rationalize the principle of the binding preference towards CDK9 over CDK2 and to explore crucial information that may aid the design of selective CDK9 inhibitors, MM/GBSA calculations based on conventional molecular dynamics (MD) simulations and enhanced sampling simulations (umbrella sampling and steered MD simulations) were carried out on two representative derivatives (12u and 4). The calculation results show that the binding specificity of 12u to CDK9 is primarily controlled by conformational change of the G-loop and variation of the van der Waals interactions. Furthermore, the enhanced sampling simulations revealed the different reaction coordinates and transient interactions of inhibitors 12u and 4 as they dissociate from the binding pockets of CDK9 and CDK2. The physical principles obtained from this study may facilitate the discovery and rational design of novel and specific inhibitors of CDK9.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurzburg, Beth A.; Kim, Beomkyu; Tarchevskaya, Svetlana S.

    IgE antibodies interact with the high affinity IgE Fc receptor, FcϵRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcϵRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of anmore » IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcϵRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.« less

  7. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    PubMed

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  8. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    PubMed Central

    Wenger, Aaron M.; Clarke, Shoa L.; Guturu, Harendra; Chen, Jenny; Schaar, Bruce T.; McLean, Cory Y.; Bejerano, Gill

    2013-01-01

    The human genome encodes 1500–2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells. PMID:23382538

  9. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    PubMed

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  10. Information analysis of sequences that bind the replication initiator RepA | Center for Cancer Research

    Cancer.gov

    The tall letters represent the highly conserved bases in DNA binding sites of several prokaryotic repressors and activators. Conservation is strongest where major grooves of the double helical DNA (represented by crests of a cosine wave) face the protein. This shows that conservation analysis alone can be used to predict the face of DNA that contacts the proteins.

  11. Using high throughput screening to define virus clearance by chromatography resins.

    PubMed

    Connell-Crowley, Lisa; Larimore, Elizabeth A; Gillespie, Ron

    2013-07-01

    High throughput screening (HTS) of chromatography resins can accelerate downstream process development by rapidly providing information on product and impurity partitioning over a wide range of experimental conditions. In addition to the removal of typical product and process-related impurities, chromatography steps are also used to remove potential adventitious viral contaminants and non-infectious retrovirus-like particles expressed by rodent cell lines used for production. This article evaluates the feasibility of using HTS in a 96-well batch-binding format to study removal of the model retrovirus xenotropic murine leukemia virus (xMuLV) from product streams. Two resins were examined: the anion exchange resin Q Sepharose Fast Flow™ (QSFF) and Capto adhere™, a mixed mode resin. QSFF batch-binding HTS data was generated using two mAbs at various pHs, NaCl concentrations, and levels of impurities. Comparison of HTS data to that generated using the column format showed good agreement with respect to virus retentation at different pHs, NaCl concentrations and impurity levels. Results indicate that NaCl concentration and impurity level, but not pH, are key parameters that can impact xMuLV binding to both resins. Binding of xMuLV to Capto adhere appeared to tolerate higher levels of NaCl and impurity than QSFF, and showed some product-specific impact on binding that was not observed with QSFF. Overall, the results demonstrate that the 96-well batch-binding HTS technique can be an effective tool for rapidly defining conditions for robust virus clearance on chromatographic resins. Copyright © 2013 Wiley Periodicals, Inc.

  12. Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizrahy, Shoshy; Goldsmith, Meir; Leviatan-Ben-Arye, Shani; Kisin-Finfer, Einat; Redy, Orit; Srinivasan, Srimeenakshi; Shabat, Doron; Godin, Biana; Peer, Dan

    2014-03-01

    Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, <10 kDa) HA has been reported to provoke inflammatory responses, such as induction of cytokines, chemokines, reactive nitrogen species and growth factors. Herein, we prepared and characterized two types of HA coated (LMw and HMw) lipid-based targeted and stabilized nanoparticles (tsNPs) and tested their binding to tumor cells expressing the HA receptor (CD44), systemic immunotoxicity, and biodistribution in tumor bearing mice. In vitro, the Mw of the surface anchored HA had a significant influence on the affinity towards CD44 on B16F10 murine melanoma cells. LMw HA-tsNPs exhibited weak binding, while binding of tsNPs coated with HMw HA was characterized by high binding. Both types of tsNPs had no measured effect on cytokine induction in vivo following intravenous administration to healthy C57BL/6 mice suggesting no immune activation. HMw HA-tsNPs showed enhanced circulation time and tumor targeting specificity, mainly by accumulating in the tumor and its vicinity compared with LMw HA-tsNPs. Finally, we show that methotrexate (MTX), a drug commonly used in cancer chemotherapy, entrapped in HMw HA-tsNPs slowly diffused from the particles with a half-life of 13.75 days, and improved the therapeutic outcome in a murine B16F10 melanoma model compared with NPs suggesting an active cellular targeting beyond the Enhanced Permeability and Retention (EPR) effect. Taken together, these findings have major implications for the use of high molecular weight HA in nanomedicine as a selective and safe active cellular targeting moiety.Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, <10 kDa) HA has been reported to provoke inflammatory responses, such as induction of cytokines, chemokines, reactive nitrogen species and growth factors. Herein, we prepared and characterized two types of HA coated (LMw and HMw) lipid-based targeted and stabilized nanoparticles (tsNPs) and tested their binding to tumor cells expressing the HA receptor (CD44), systemic immunotoxicity, and biodistribution in tumor bearing mice. In vitro, the Mw of the surface anchored HA had a significant influence on the affinity towards CD44 on B16F10 murine melanoma cells. LMw HA-tsNPs exhibited weak binding, while binding of tsNPs coated with HMw HA was characterized by high binding. Both types of tsNPs had no measured effect on cytokine induction in vivo following intravenous administration to healthy C57BL/6 mice suggesting no immune activation. HMw HA-tsNPs showed enhanced circulation time and tumor targeting specificity, mainly by accumulating in the tumor and its vicinity compared with LMw HA-tsNPs. Finally, we show that methotrexate (MTX), a drug commonly used in cancer chemotherapy, entrapped in HMw HA-tsNPs slowly diffused from the particles with a half-life of 13.75 days, and improved the therapeutic outcome in a murine B16F10 melanoma model compared with NPs suggesting an active cellular targeting beyond the Enhanced Permeability and Retention (EPR) effect. Taken together, these findings have major implications for the use of high molecular weight HA in nanomedicine as a selective and safe active cellular targeting moiety. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06102g

  13. Intravenous infusion of phage-displayed antibody library in human cancer patients: enrichment and cancer-specificity of tumor-homing phage-antibodies.

    PubMed

    Shukla, Girja S; Krag, David N; Peletskaya, Elena N; Pero, Stephanie C; Sun, Yu-Jing; Carman, Chelsea L; McCahill, Laurence E; Roland, Thomas A

    2013-08-01

    Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 10(11) TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0-5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.

  14. Individual differences in schedule-induced polydipsia: neuroanatomical dopamine divergences.

    PubMed

    Pellón, Ricardo; Ruíz, Ana; Moreno, Margarita; Claro, Francisco; Ambrosio, Emilio; Flores, Pilar

    2011-02-02

    Autoradiography analysis of D1 and D2 dopamine receptors and c-Fos activity were performed in brain of rats classified as low drinkers (LD) and high drinkers (HD) according to schedule-induced polydipsia (SIP) performance. Previous studies have shown that groups selected according to their rate of drinking in SIP differ in behavioral response to dopaminergic drugs. This study reports differences between LD and HD rats in dopamine D1 and D2 receptor binding through different mesocorticolimbic brain areas. LD and HD rats showed opposite patterns of binding in dopamine D1 and D2 receptors in the nucleus accumbens, medial prefrontal cortex, amygdala, ventral tegmental area and substantia nigra. Whereas LD rats showed higher binding than HD rats for D1 receptors, HD rats showed higher binding than LD rats for D2 receptors (except in substantia nigra that were roughly similar). These neuroanatomical differences in dopamine receptor binding were also associated with an elevated c-Fos count in the medial prefrontal cortex of HD rats. In tandem with previous evidence, our results suggest a different dopaminergic function between LD and HD, and points to SIP as a behavioral model for distinguishing populations possibly vulnerable to dopaminergic function disorders. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Solubilization and purification of melatonin receptors from lizard brain.

    PubMed

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  16. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin

    PubMed Central

    Fago, Angela; Malte, Hans; Storz, Jay F.; Gorr, Thomas A.

    2013-01-01

    In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3−), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3− levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3− binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues. PMID:23720132

  17. Hoxa2 Selectively Enhances Meis Binding to Change a Branchial Arch Ground State

    PubMed Central

    Amin, Shilu; Donaldson, Ian J.; Zannino, Denise A.; Hensman, James; Rattray, Magnus; Losa, Marta; Spitz, François; Ladam, Franck; Sagerström, Charles; Bobola, Nicoletta

    2015-01-01

    Summary Hox transcription factors (TFs) are essential for vertebrate development, but how these evolutionary conserved proteins function in vivo remains unclear. Because Hox proteins have notoriously low binding specificity, they are believed to bind with cofactors, mainly homeodomain TFs Pbx and Meis, to select their specific targets. We mapped binding of Meis, Pbx, and Hoxa2 in the branchial arches, a series of segments in the developing vertebrate head. Meis occupancy is largely similar in Hox-positive and -negative arches. Hoxa2, which specifies second arch (IIBA) identity, recognizes a subset of Meis prebound sites that contain Hox motifs. Importantly, at these sites Meis binding is strongly increased. This enhanced Meis binding coincides with active enhancers, which are linked to genes highly expressed in the IIBA and regulated by Hoxa2. These findings show that Hoxa2 operates as a tissue-specific cofactor, enhancing Meis binding to specific sites that provide the IIBA with its anatomical identity. PMID:25640223

  18. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGES

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; ...

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  19. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  20. Characterization and screening of IgG binding to the neonatal Fc receptor

    PubMed Central

    Neuber, Tobias; Frese, Katrin; Jaehrling, Jan; Jäger, Sebastian; Daubert, Daniela; Felderer, Karin; Linnemann, Mechthild; Höhne, Anne; Kaden, Stefan; Kölln, Johanna; Tiller, Thomas; Brocks, Bodo; Ostendorp, Ralf; Pabst, Stefan

    2014-01-01

    The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding. PMID:24802048

  1. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible.

    PubMed

    Booij, Jan; de Bruin, Kora; de Win, Maartje M L; Lavini, Cristina; den Heeten, Gerard J; Habraken, Jan B A

    2003-08-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand (123)I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [(123)I]FP-CIT binding ratios of the test/retest studies were 1.7 +/- 0.2 and 1.6 +/- 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [(123)I]FP-CIT binding ratios in rats is highly reproducible.

  2. Expression, subcellular localization and regulation of sigma receptor in retinal Müller cells

    PubMed Central

    Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P.; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Purpose Sigma receptors (σR) are non-opioid, non-phencyclidine binding sites with robust neuroprotective properties. σR1 is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity and regulation of σR1 in retinal Müller cells. Methods Primary mouse Müller cells (1°MC) were analyzed by RT-PCR, immunoblotting and immunocytochemistry for the expression of σR1 and data were compared to the rat Müller cell line, rMC-1 and rat ganglion cell line, RGC-5. Confocal microscopy was used to determine the subcellular σR1 location in 1°MC. Membranes prepared from these cells were used for binding assays using [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various σR1 ligands to compete with σR1 binding and the effects of nitric oxide (NO) and reactive oxygen species (ROS) donors on binding were examined. Results σR1 is expressed in 1°MC and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in 1°MCs, rMC-1 and RGC-5 cells, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells and the binding was similarly robust in 1°MC. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of σR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased σR1 binding activity. Conclusions Müller cells express σR1 and demonstrate robust σR1 binding activity, which is inhibited by σR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind σR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy. PMID:17122151

  3. Expression, subcellular localization, and regulation of sigma receptor in retinal muller cells.

    PubMed

    Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B

    2006-12-01

    Sigma receptors (sigmaRs) are nonopioid, nonphencyclidine binding sites with robust neuroprotective properties. Type 1 sigmaR1 (sigmaR1) is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity, and regulation of sigmaR1 in retinal Müller cells. Primary mouse Müller cells (MCs) were analyzed by RT-PCR, immunoblotting, and immunocytochemistry for the expression of sigmaR1, and data were compared with those of the rat Müller cell line (rMC-1) and the rat ganglion cell line (RGC-5). Confocal microscopy was used to determine the subcellular sigmaR1 location in primary mouse MCs. Membranes prepared from these cells were used for binding assays with [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various sigmaR1 ligands to compete with sigmaR1 binding, and the effects of donated nitric oxide (NO) and reactive oxygen species (ROS) on binding were examined. sigmaR1 is expressed in primary mouse MCs and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in primary mouse MCs, rMC-1, and RGC-5, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells, and the binding was similarly robust in primary mouse MCs. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of sigmaR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased sigmaR1 binding activity. MCs express sigmaR1 and demonstrate robust sigmaR1 binding activity, which is inhibited by sigmaR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind sigmaR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy.

  4. THE EFFECTS OF TYPE II BINDING ON METABOLIC STABILITY AND BINDING AFFINITY IN CYTOCHROME P450 CYP3A4

    PubMed Central

    Peng, Chi-Chi; Pearson, Josh T.; Rock, Dan A.; Joswig-Jones, Carolyn A.; Jones, Jeffrey P.

    2010-01-01

    One goal in drug design is to decrease clearance due to metabolism. It has been suggested that a compound’s metabolic stability can be increased by incorporation of a sp2 nitrogen into an aromatic ring. Nitrogen incorporation is hypothesized to increase metabolic stability by coordination of nitrogen to the heme iron (termed type II binding). However, questions regarding binding affinity, metabolic stability, and how metabolism of type II binders occurs remain unanswered. Herein, we use pyridinyl quinoline-4-carboxamide analogs to answer these questions. We show that type II binding can have a profound influence on binding affinity for CYP3A4, and the difference in binding affinity can be as high as 1,200 fold. We also find that type II binding compounds can be extensively metabolized, which is not consistent with the dead-end complex kinetic model assumed for type II binders. Two alternate kinetic mechanisms are presented to explain the results. The first involves a rapid equilibrium between the type II bound substrate and a metabolically oriented binding mode. The second involves direct reduction of the nitrogen-coordinated heme followed by oxygen binding. PMID:20346909

  5. Allosteric binding sites in Rab11 for potential drug candidates

    PubMed Central

    2018-01-01

    Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286

  6. A low-complexity region in the YTH domain protein Mmi1 enhances RNA binding.

    PubMed

    Stowell, James A W; Wagstaff, Jane L; Hill, Chris H; Yu, Minmin; McLaughlin, Stephen H; Freund, Stefan M V; Passmore, Lori A

    2018-06-15

    Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding. © 2018 Stowell et al.

  7. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.

    2012-01-01

    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  8. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent.

    PubMed

    Mulholland, Kelly; Siddiquei, Farzana; Wu, Chun

    2017-07-19

    RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.

  9. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions

    PubMed Central

    Joseph, Prem Raj B.; Mosier, Philip D.; Desai, Umesh R.; Rajarathnam, Krishna

    2015-01-01

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8–GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer–GAG interactions and function. PMID:26371375

  10. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiao-Min, E-mail: rxm200318@gmail.com; Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn; Gao, Yu, E-mail: francesscototti@gmail.com

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effectmore » on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2′-OH-BDE-28, 3′-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3′-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. - Highlights: ► Thyroid hormone (TH) activity of OH-PBDEs with different Br number was evaluated. ► Four different experimental approaches were employed to investigate the mechanism. ► Low-brominated OH-PBDEs were agonists, but high-brominated ones were antagonists. ► Low-brominated OH-PBDEs bind to TH receptor differently than high-brominated ones.« less

  11. Identification of cross-reactive proteins amongst different Curvularia species.

    PubMed

    Gupta, Ratna; Singh, Bhanu P; Sridhara, Susheela; Gaur, Shailendra N; Kumar, Raj; Chaudhary, Vijay K; Arora, Naveen

    2002-01-01

    Curvularia lunata is an important inhalant allergen. The present study was undertaken to investigate the shared IgG- and IgE-binding components among seven Curvularia species prevalent in the aerospora. Seven different Curvularia species were grown in a semisynthetic medium for 13 days. The extracts were analyzed by SDS-PAGE, immunoblot and ELISA/immunoblot inhibition using sera from C. lunata-positive patients and anti-C. lunata rabbit serum. Different Curvularia species showed 11-19 protein bands on SDS-PAGE. Proteins of 12, 20, 31, 45, 53, 78 and 97 kD were present in all the species. Eight out of 98 nasobronchial patients exhibited positive skin tests to C. lunata and to at least five Curvularia species. ELISA using these sera showed IgE binding with Curvularia species. Immunoblot using pooled anti-C. lunata sera from patients showed 5-12 allergenic proteins. Proteins of 12, 31, 45, 53 and 78 kD showed IgE binding in Curvularia species. Antibodies against C. lunata detected 6-14 antigenic proteins on immunoblot. Proteins of 31, 45 and 53 kD showed IgG binding in all the species. Proteins of 31 and 53 kD showed complete IgE/IgG binding inhibition. IgE/IgG ELISA inhibition showed dose-dependent inhibition in Curvularia species. C. lunata extract required 0.17 and 0.11 microg of protein for 50% IgE and IgG inhibition, respectively. C. clavata and C. pallescens required 10 times more protein to exhibit the same inhibition and other species required similar protein levels as those required by C. lunata. A high degree of cross-reactivity was observed between C. lunata and the six other Curvularia species tested. C. lunata and C. senegalensis shared maximum allergenic and antigenic components.

  12. Prenatal Stress as a Risk-and an Opportunity-Factor.

    PubMed

    Hartman, Sarah; Freeman, Sara M; Bales, Karen L; Belsky, Jay

    2018-04-01

    Two separate lines of research indicate (a) that prenatal stress is associated with heightened behavioral and physiological reactivity and (b) that these postnatal phenotypes are associated with increased susceptibility to both positive and negative developmental experiences. Therefore, prenatal stress may increase sensitivity to the rearing environment. We tested this hypothesis by manipulating prenatal stress and rearing-environment quality, using a cross-fostering paradigm, in prairie voles. Results showed that prenatally stressed voles, as adults, displayed the highest behavioral and physiological reactivity when cross-fostered to low-contact (i.e., low-quality) rearing but the lowest behavioral and physiological reactivity when cross-fostered to high-contact (i.e., high-quality) rearing; non-prenatally stressed voles showed no effect of rearing condition. Additionally, while neither prenatal stress nor rearing condition affected oxytocin receptor binding, prenatally stressed voles cross-fostered to high-contact rearing showed the highest vasopressin-1a receptor binding in the amygdala. Results indicate that prenatal stress induces greater environmental sensitivity, making it both a risk and an opportunity factor.

  13. [Preparation of anti-hCG single domain antibody by antibody grafting technique using an antigen-binding peptide].

    PubMed

    Peng, Jing; Wang, Qiong; Cheng, Xiaoling; Liu, Mengwen; Wang, Mei; Xin, Huawei

    2018-04-25

    We used the antibody grafting technology to prepare anti-hCG single-domain antibodies on the basis of antigen-binding peptide to simplify the single-domain antibody preparation process and improving the biochemical stability of peptide. By using a universal single-domain antibody backbone (cAbBCII10), CDR1 or CDR3 was replaced by the hCG-binding peptide, and the grafted antibody gene sequences were synthesized and cloned into the prokaryotic expression vector pET30a(+) in fusion with a C-terminal sfGFP gene, i.e. pET30a-(His6)-cAbBCII10-CDR1/hCGBP1-sfGFP and pET30a-(His6)-cAbBCII10-CDR3/hCGBP3-sfGFP. The recombinant plasmids were transformed into E. coli BL21(DE3), and the fusion proteins were induced by IPTG. Highly soluble recombinant fusion proteins were obtained and purified by Ni-NTA affinity column. SDS-PAGE confirmed the purified protein as the target protein. The antigen-antibody binding assay showed that both the CDR1 and CDR3 grafted antibodies have hCG-binding activities. While the titers of the two grafted antibodies were similar, the binding affinity of CDR3 grafted antibody was higher than that of CDR1 grafted protein (about 2-3 times). The grafted antibodies retained the relatively high biochemical stability of the single-domain antibody backbone and were relatively thermostable and alkaline tolerant. The obtained antibodies also had a relatively high antigen-binding specificity to hCG. This study provided a reliable experimental basis for further optimization of anti-hCG single domain antibody by antibody grafting technology using antigen-binding peptide.

  14. The use of one-bead one-compound combinatorial library technology to discover high-affinity αvβ3 integrin and cancer targeting RGD ligands with a build-in handle

    PubMed Central

    Xiao, Wenwu; Wang, Yan; Lau, Edmond Y.; Luo, Juntao; Yao, Nianhuan; Shi, Changying; Meza, Leah; Tseng, Harry; Maeda, Yoshiko; Kumaresan, Pappanaicken; Liu, Ruiwu; Lightstone, Felice C.; Takada, Yoshikazu; Lam, Kit S.

    2012-01-01

    The αvβ3 integrin, expressed on the surface of various normal and cancer cells, is involved in numerous physiological processes such as angiogenesis, apoptosis, and bone resorption. Because this integrin plays a key role in angiogenesis and metastasis of human tumors, αvβ3 integrin ligands are of great interest to advances in targeted-therapy and cancer imaging. In this report, one-bead-one-compound (OBOC) combinatorial libraries containing the RGD motif were designed and screened against K562 myeloid leukemia cells that had been transfected with human αvβ3 integrin gene. Cyclic peptide LXW7 was identified as a leading ligand with a build-in handle that binds specifically to αvβ3 and showed comparable binding affinity (IC50 = 0.68±0.08 μM) to some of the well-known RGD “head-to-tail” cyclic pentapeptide ligands reported in the literature. The biotinylated form of LXW7 ligand showed similar binding strength as LXW7 against αvβ3 integrin, whereas biotinylated RGD cyclopentapeptide ligands revealed a 2 to 8 fold weaker binding affinity than their free forms. LXW7 was able to bind to both U-87MG glioblastoma and A375M melanoma cell lines, both of which express high levels of αvβ3 integrin. In vivo and ex vivo optical imaging studies with biotinylated-ligand/streptavidin-Cy5.5 complex in nude mice bearing U-87MG or A375M xenografts revealed preferential uptake of biotinylated LXW7 in tumor. When compared with biotinylated RGD cyclopentapeptide ligands, biotinylated LXW7 showed higher tumor uptake but lower liver uptake. PMID:20858725

  15. Surfactant-free Colloidal Particles with Specific Binding Affinity

    PubMed Central

    2017-01-01

    Colloidal particles with specific binding affinity are essential for in vivo and in vitro biosensing, targeted drug delivery, and micrometer-scale self-assembly. Key to these techniques are surface functionalizations that provide high affinities to specific target molecules. For stabilization in physiological environments, current particle coating methods rely on adsorbed surfactants. However, spontaneous desorption of these surfactants typically has an undesirable influence on lipid membranes. To address this issue and create particles for targeting molecules in lipid membranes, we present here a surfactant-free coating method that combines high binding affinity with stability at physiological conditions. After activating charge-stabilized polystyrene microparticles with EDC/Sulfo-NHS, we first coat the particles with a specific protein and subsequently covalently attach a dense layer of poly(ethyelene) glycol. This polymer layer provides colloidal stability at physiological conditions as well as antiadhesive properties, while the protein coating provides the specific affinity to the targeted molecule. We show that NeutrAvidin-functionalized particles bind specifically to biotinylated membranes and that Concanavalin A-functionalized particles bind specifically to the glycocortex of Dictyostelium discoideum cells. The affinity of the particles changes with protein density, which can be tuned during the coating procedure. The generic and surfactant-free coating method reported here transfers the high affinity and specificity of a protein onto colloidal polystyrene microparticles. PMID:28847149

  16. Characterization of the mouse junD promoter--high basal level activity due to an octamer motif.

    PubMed Central

    de Groot, R P; Karperien, M; Pals, C; Kruijer, W

    1991-01-01

    The product of the junD gene belongs to the Jun/Fos family of nuclear DNA binding transcription factors. This family regulates the expression of TPA responsive genes by binding to the TPA responsive element (TRE). Unlike its counterparts c-jun and junB, junD expression is hardly inducible by growth factors and phorbol esters. In fact, junD is constitutively expressed at high levels in a wide variety of cells. To unravel the molecular mechanisms underlying constitutive junD expression, we have cloned and characterized the mouse junD promoter. We show that the high constitutive expression is caused by multiple cis-acting elements in its promoter, including an SP1 binding site, an octamer motif, a CAAT box, a Zif268 binding site and a TRE-like sequence. The octamer motif is the major determinant of junD promoter activity, while somewhat smaller contributions are made by the TRE and Zif268 binding site. The SP1 and CAAT box are shown to be of minor importance. The junD TRE is in its behavior indistinguishable from previously identified TREs. However, the junD promoter is not TPA inducible due to the presence of the octamer motif. Images PMID:1714380

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xueqing; Chang, Bianca W.; Mans, Ben J.

    Biogenic amine-binding proteins mediate the anti-inflammatory and antihemostatic activities of blood-feeding insect saliva. The structure of the amine-binding protein from R. prolixus reveals the interaction of biogenic amine ligands with the protein. Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus,more » a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity.« less

  18. Detection of angiotensin II binding to single adrenal zona glomerulosa cells by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    McCoy, Michael J.; Habermann, Timothy J.; Hanke, Craig J.; Adar, Fran; Campbell, William B.; Nithipatikom, Kasem

    1999-04-01

    We developed a confocal Raman microspectroscopic technique to study ligand-receptor bindings in single cells using Raman-labeled ligands and surface-enhanced Raman scattering (SERS). The adrenal zona glomerulosa (ZG) cells were used as a model in this study. ZG cells have a high density of angiotensin II (AII) receptors on the cellular membrane. There are two identified subtypes of AII receptors,namely AT1 and AT2 receptors. AII is a peptidic hormone, which upon binding to its receptors, stimulates the release of aldosterone from ZG cells. The cellular localization of these receptors subtypes was detected in single ZG cells by using immunocomplexation of receptors with specific antibodies and confocal Raman microspectroscopy. In the binding study, we used biotin-labeled AII to bind to its receptors in ZG cells. Then, avidin and Raman-labeled AII. The binding was measure directly on the single ZG cells. The results showed that the binding was displaced with unlabeled AII and specific AII antagonists. This is a rapid and sensitive technique for detection of cellular ligand bindings as well as antagonists screening in drug discovery.

  19. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    PubMed

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Structural and Physical Basis for Anti-IgE Therapy

    NASA Astrophysics Data System (ADS)

    Wright, Jon D.; Chu, Hsing-Mao; Huang, Chun-Hsiang; Ma, Che; Wen Chang, Tse; Lim, Carmay

    2015-06-01

    Omalizumab, an anti-IgE antibody, used to treat severe allergic asthma and chronic idiopathic urticaria, binds to IgE in blood or membrane-bound on B lymphocytes but not to IgE bound to its high (FcɛRI) or low (CD23) affinity receptor. Mutagenesis studies indicate overlapping FcɛRI and omalizumab-binding sites in the Cɛ3 domain, but crystallographic studies show FcɛRI and CD23-binding sites that are far apart, so how can omalizumab block IgE from binding both receptors? We report a 2.42-Å omalizumab-Fab structure, a docked IgE-Fc/omalizumab-Fab structure consistent with available experimental data, and the free energy contributions of IgE residues to binding omalizumab, CD23, and FcɛRI. These results provide a structural and physical basis as to why omalizumab cannot bind receptor-bound IgE and why omalizumab-bound IgE cannot bind to CD23/FcɛRI. They reveal the key IgE residues and their roles in binding omalizumab, CD23, and FcɛRI.

  1. Quantitative analysis of rat brain alpha 2-receptors discriminated by [3H]clonidine and [3H]rauwolscine.

    PubMed

    Asakura, M; Tsukamoto, T; Imafuku, J; Matsui, H; Ino, M; Hasegawa, K

    1984-10-30

    Quantitative analysis of direct ligand binding of both [3H]clonidine and [3H]rauwolscine to the rat cerebral cortex alpha 2-receptors indicates the existence of two affinity states of the same receptor populations. In the presence of Mn2+, the high affinity state of [3H]clonidine binding was increased, whereas the high affinity state of [3H]rauwolscine binding was reduced. By contrast, GTP in micromolar ranges caused a decrease of the agonist high affinity state and an increase of the antagonist high affinity state. The total receptor sites and the respective separate affinities for both radioligands were approximately equal to their control values under all conditions, indicating that Mn2+ and GTP modulate the proportion of the two affinity states of the receptor. These results can be incorporated into a two-step, ternary complex model involving a guanine nucleotide binding protein (N protein) for the agonist and antagonist interaction with the alpha 2-receptor. Furthermore, the effects of GTP on the interaction of both ligands with the two affinity states can be mimicked by EDTA. It is suggested that divalent cations induce the formation of the receptor-N protein binary complex showing high affinity for agonists and low affinity for antagonists.

  2. Isolation and characterization of a new zinc-binding protein from albacore tuna plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyke, B.; Hegenauer, J.; Saltman, P.

    1987-06-02

    The protein responsible for sequestering high levels of zinc in the plasma of the albacore tuna (Thunnus alalunga) has been isolated by sequential chromatography. The glycoprotein has a molecular weight of 66,000. Approximately 8.2% of its amino acid residues are histidines. Equilibrium dialysis experiments show it to bind 3 mol of zinc/mol of protein. The stoichiometric constant for the association of zinc with a binding site containing three histidines was determined to be 10/sup 9.4/. This protein is different from albumin and represents a previously uncharacterized zinc transport protein.

  3. Solid-binding peptides: smart tools for nanobiotechnology.

    PubMed

    Care, Andrew; Bergquist, Peter L; Sunna, Anwar

    2015-05-01

    Over the past decade, solid-binding peptides (SBPs) have been used increasingly as molecular building blocks in nanobiotechnology. These peptides show selectivity and bind with high affinity to the surfaces of a diverse range of solid materials including metals, metal oxides, metal compounds, magnetic materials, semiconductors, carbon materials, polymers, and minerals. They can direct the assembly and functionalisation of materials, and have the ability to mediate the synthesis and construction of nanoparticles and complex nanostructures. As the availability of newly synthesised nanomaterials expands rapidly, so too do the potential applications for SBPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    PubMed

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  5. Formin and capping protein together embrace the actin filament in a ménage à trois

    PubMed Central

    Shekhar, Shashank; Kerleau, Mikael; Kühn, Sonja; Pernier, Julien; Romet-Lemonne, Guillaume; Jégou, Antoine; Carlier, Marie-France

    2015-01-01

    Proteins targeting actin filament barbed ends play a pivotal role in motile processes. While formins enhance filament assembly, capping protein (CP) blocks polymerization. On their own, they both bind barbed ends with high affinity and very slow dissociation. Their barbed-end binding is thought to be mutually exclusive. CP has recently been shown to be present in filopodia and controls their morphology and dynamics. Here we explore how CP and formins may functionally coregulate filament barbed-end assembly. We show, using kinetic analysis of individual filaments by microfluidics-assisted fluorescence microscopy, that CP and mDia1 formin are able to simultaneously bind barbed ends. This is further confirmed using single-molecule imaging. Their mutually weakened binding enables rapid displacement of one by the other. We show that formin FMNL2 behaves similarly, thus suggesting that this is a general property of formins. Implications in filopodia regulation and barbed-end structural regulation are discussed. PMID:26564775

  6. Molecular dynamics and binding selectivity of nucleotides and polynucleotide substrates with EIF2C2/Ago2 PAZ domain.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2018-02-01

    RNA interference (RNAi) constitutes a major target in drug discovery. Recently, we reported that the Argonaute protein 2 (Ago2) PAZ domain selectively binds with all ribonucleotides except adenine and poorly recognizes deoxyribonucleotides. The binding properties of the PAZ domain with polynucleotides and the molecular mechanisms of substrates' selectivity remains unclear. In this study, the binding potencies of polynucleotides and the associated conformational and dynamic changes in PAZ domain are investigated. Coinciding with nucleotides' binding profile with the PAZ domain, polyuridylate (PolyU) and polycytidylate (PolyC) were potent binders. However, K dPolyU and K dPolyC were 15.8 and 9.3μM, respectively. In contrast, polyadenylate (PolyA) binding was not detectable. Molecular dynamics (MD) simulation revealed the highest change in root mean square deviation (RMSD) with ApoPAZ or PAZ domain bound with experimentally approved, low affinity substrates, whereas stronger binding substrates such as UMP or PolyU showed minimal RMSD changes. The loop between α3 and β5 in the β-hairpin subdomain showed the most responsive change in RMSD, being highly movable in the ApoPAZ and PAZ-AMP complex. Favorable substrate recognition was associate with moderate change in secondary structure content. In conclusion, the PAZ domain retains differential substrate selectivity associated with corresponding dynamic and structural changes upon binding. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities

    PubMed Central

    Petrič, Andrej; Johnson, Scott A.; Pham, Hung V.; Li, Ying; Čeh, Simon; Golobič, Amalija; Agdeppa, Eric D.; Timbol, Gerald; Liu, Jie; Keum, Gyochang; Satyamurthy, Nagichettiar; Kepe, Vladimir; Houk, Kendall N.; Barrio, Jorge R.

    2012-01-01

    The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-β (Aβ) and other amyloid aggregates present in Alzheimer’s disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aβ aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aβ aggregates (520 nM Ki) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM Ki). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aβ peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel. PMID:23012452

  8. The IκBα/NF-κB complex has two hot spots, one at either end of the interface

    PubMed Central

    Bergqvist, Simon; Ghosh, Gourisankar; Komives, Elizabeth A.

    2008-01-01

    IκBα binds to and inhibits the transcriptional activity of NF-κB family members via its ankyrin repeat (AR) domain. The binding affinity of IκBα with NF-κB(p50/p65) heterodimers and NF-κB(p65/65) homodimers is in the picomolar range, and in the cell, this results in long half-lives of the complexes. Direct binding experiments have been performed using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) on a series of truncations and mutations in order to understand what regions of the interface are most important for the tight binding affinity of this complex. We previously showed that interactions between residues 305 and 321 of NF-κB(p65) with the first AR of IκBα are critical for the binding energy. Interactions in this region are responsible for more than 7 kcal/mol of the binding energy. Here we show equally drastic consequences for the binding energy occur upon truncation of even a few residues at the C terminus of IκBα. Thus, the interface actually has two hot spots, one at either end of the elongated and large surface of interaction. These results suggest a “squeeze” mechanism that leads to the extremely high affinity of the IκBα•NF-κB complex through stabilization of the ankyrin repeat domain. PMID:18824506

  9. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex*

    PubMed Central

    Douglas, Max E.

    2016-01-01

    Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly (“G1-like”) and high affinity recruitment when CMG assembly takes place (“S-phase-like”). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. PMID:26719337

  10. Structure of the Ebola VP35 interferon inhibitory domain.

    PubMed

    Leung, Daisy W; Ginder, Nathaniel D; Fulton, D Bruce; Nix, Jay; Basler, Christopher F; Honzatko, Richard B; Amarasinghe, Gaya K

    2009-01-13

    Ebola viruses (EBOVs) cause rare but highly fatal outbreaks of viral hemorrhagic fever in humans, and approved treatments for these infections are currently lacking. The Ebola VP35 protein is multifunctional, acting as a component of the viral RNA polymerase complex, a viral assembly factor, and an inhibitor of host interferon (IFN) production. Mutation of select basic residues within the C-terminal half of VP35 abrogates its dsRNA-binding activity, impairs VP35-mediated IFN antagonism, and attenuates EBOV growth in vitro and in vivo. Because VP35 contributes to viral escape from host innate immunity and is required for EBOV virulence, understanding the structural basis for VP35 dsRNA binding, which correlates with suppression of IFN activity, is of high importance. Here, we report the structure of the C-terminal VP35 IFN inhibitory domain (IID) solved to a resolution of 1.4 A and show that VP35 IID forms a unique fold. In the structure, we identify 2 basic residue clusters, one of which is important for dsRNA binding. The dsRNA binding cluster is centered on Arg-312, a highly conserved residue required for IFN inhibition. Mutation of residues within this cluster significantly changes the surface electrostatic potential and diminishes dsRNA binding activity. The high-resolution structure and the identification of the conserved dsRNA binding residue cluster provide opportunities for antiviral therapeutic design. Our results suggest a structure-based model for dsRNA-mediated innate immune antagonism by Ebola VP35 and other similarly constructed viral antagonists.

  11. DNA aptamers for the detection of Haemophilus influenzae type b by cell SELEX.

    PubMed

    Bitaraf, F S; Rasooli, I; Mousavi Gargari, S L

    2016-03-01

    Haemophilus influenzae type b (Hib) causes acute bacterial meningitis (ABM) in children, with a mortality rate of about 3-6 % of the affected patients. ABM can lead to death during a period of hours to several days and, hence, rapid and early detection of the infection is crucial. Aptamers, the short single-stranded DNA or RNA with high affinity to target molecules, are selected by a high-flux screening technique known as in vitro screening and systematic evolution of ligands by exponential enrichment technology (SELEX). In this study, whole-cell SELEX was applied for the selection of target-specific aptamers with high affinity to Hib. ssDNA aptamers prepared by lambda exonuclease were incubated with the target cells (Hib). The aptameric binding rate to Hib was characterized for binding affinity after seven SELEX rounds by flow cytometry. The aptamers with higher binding affinity were cloned. Four of 68 aptamer clones were selected for sequencing. The dissociation constant (Kd) of the high-affinity aptamer clones 45 and 63 were 47.10 and 28.46 pM, respectively. These aptamers did not bind to other bacterial species, including the seven meningitis-causing bacteria. They showed distinct affinity to various H. influenzae strains only. These aptamers showed the highest affinity to Hib and the lowest affinity to H. influenzae type c and to other meningitis-causing bacteria. Clone 63 could detect Hib in patients' cerebrospinal fluid (CSF) samples at 60 colony-forming units (CFU)/mL. The results indicate applicability of the aptamers for rapid and early detection of infections brought about by Hib.

  12. Selection and Neutral Mutations Drive Pervasive Mutability Losses in Long-Lived Anti-HIV B-Cell Lineages

    PubMed Central

    Vieira, Marcos C; Zinder, Daniel; Cobey, Sarah

    2018-01-01

    Abstract High-affinity antibodies arise within weeks of infection from the evolution of B-cell receptors under selection to improve antigen recognition. This rapid adaptation is enabled by the distribution of highly mutable “hotspot” motifs in B-cell receptor genes. High mutability in antigen-binding regions (complementarity determining regions [CDRs]) creates variation in binding affinity, whereas low mutability in structurally important regions (framework regions [FRs]) may reduce the frequency of destabilizing mutations. During the response, loss of mutational hotspots and changes in their distribution across CDRs and FRs are predicted to compromise the adaptability of B-cell receptors, yet the contributions of different mechanisms to gains and losses of hotspots remain unclear. We reconstructed changes in anti-HIV B-cell receptor sequences and show that mutability losses were ∼56% more frequent than gains in both CDRs and FRs, with the higher relative mutability of CDRs maintained throughout the response. At least 21% of the total mutability loss was caused by synonymous mutations. However, nonsynonymous substitutions caused most (79%) of the mutability loss in CDRs. Because CDRs also show strong positive selection, this result suggests that selection for mutations that increase binding affinity contributed to loss of mutability in antigen-binding regions. Although recurrent adaptation to evolving viruses could indirectly select for high mutation rates, we found no evidence of indirect selection to increase or retain hotspots. Our results suggest mutability losses are intrinsic to both the neutral and adaptive evolution of B-cell populations and might constrain their adaptation to rapidly evolving pathogens such as HIV and influenza. PMID:29688540

  13. Modeling of Arylamide Helix Mimetics in the p53 Peptide Binding Site of hDM2 Suggests Parallel and Anti-Parallel Conformations Are Both Stable

    PubMed Central

    Fuller, Jonathan C.; Jackson, Richard M.; Edwards, Thomas A.; Wilson, Andrew J.; Shirts, Michael R.

    2012-01-01

    The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix. PMID:22916232

  14. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  15. The Myelin and Lymphocyte Protein MAL Is Required for Binding and Activity of Clostridium perfringens ε-Toxin

    PubMed Central

    Oo, Myat Lin; Anrather, Josef; Schaeren-Wiemers, Nicole; Alonso, Miguel A.; Fischetti, Vincent A.; McClain, Mark S.; Vartanian, Timothy

    2015-01-01

    Clostridium perfringens ε-toxin (ETX) is a potent pore-forming toxin responsible for a central nervous system (CNS) disease in ruminant animals with characteristics of blood-brain barrier (BBB) dysfunction and white matter injury. ETX has been proposed as a potential causative agent for Multiple Sclerosis (MS), a human disease that begins with BBB breakdown and injury to myelin forming cells of the CNS. The receptor for ETX is unknown. Here we show that both binding of ETX to mammalian cells and cytotoxicity requires the tetraspan proteolipid Myelin and Lymphocyte protein (MAL). While native Chinese Hamster Ovary (CHO) cells are resistant to ETX, exogenous expression of MAL in CHO cells confers both ETX binding and susceptibility to ETX-mediated cell death. Cells expressing rat MAL are ~100 times more sensitive to ETX than cells expressing similar levels of human MAL. Insertion of the FLAG sequence into the second extracellular loop of MAL abolishes ETX binding and cytotoxicity. ETX is known to bind specifically and with high affinity to intestinal epithelium, renal tubules, brain endothelial cells and myelin. We identify specific binding of ETX to these structures and additionally show binding to retinal microvasculature and the squamous epithelial cells of the sclera in wild-type mice. In contrast, there is a complete absence of ETX binding to tissues from MAL knockout (MAL-/-) mice. Furthermore, MAL-/- mice exhibit complete resistance to ETX at doses in excess of 1000 times the symptomatic dose for wild-type mice. We conclude that MAL is required for both ETX binding and cytotoxicity. PMID:25993478

  16. The Myelin and Lymphocyte Protein MAL Is Required for Binding and Activity of Clostridium perfringens ε-Toxin.

    PubMed

    Rumah, Kareem Rashid; Ma, Yinghua; Linden, Jennifer R; Oo, Myat Lin; Anrather, Josef; Schaeren-Wiemers, Nicole; Alonso, Miguel A; Fischetti, Vincent A; McClain, Mark S; Vartanian, Timothy

    2015-05-01

    Clostridium perfringens ε-toxin (ETX) is a potent pore-forming toxin responsible for a central nervous system (CNS) disease in ruminant animals with characteristics of blood-brain barrier (BBB) dysfunction and white matter injury. ETX has been proposed as a potential causative agent for Multiple Sclerosis (MS), a human disease that begins with BBB breakdown and injury to myelin forming cells of the CNS. The receptor for ETX is unknown. Here we show that both binding of ETX to mammalian cells and cytotoxicity requires the tetraspan proteolipid Myelin and Lymphocyte protein (MAL). While native Chinese Hamster Ovary (CHO) cells are resistant to ETX, exogenous expression of MAL in CHO cells confers both ETX binding and susceptibility to ETX-mediated cell death. Cells expressing rat MAL are ~100 times more sensitive to ETX than cells expressing similar levels of human MAL. Insertion of the FLAG sequence into the second extracellular loop of MAL abolishes ETX binding and cytotoxicity. ETX is known to bind specifically and with high affinity to intestinal epithelium, renal tubules, brain endothelial cells and myelin. We identify specific binding of ETX to these structures and additionally show binding to retinal microvasculature and the squamous epithelial cells of the sclera in wild-type mice. In contrast, there is a complete absence of ETX binding to tissues from MAL knockout (MAL-/-) mice. Furthermore, MAL-/- mice exhibit complete resistance to ETX at doses in excess of 1000 times the symptomatic dose for wild-type mice. We conclude that MAL is required for both ETX binding and cytotoxicity.

  17. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  18. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. In this paper, we describe a strategy for designing oligomers containing both α- and β-amino acid residues (“α/β-peptides”) that mimic several peptides derived from the three-helix bundle “Z-domain” scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF 165-induced proliferation of human umbilical vein endothelialmore » cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Finally, such reagents would be useful for diagnostic and therapeutic applications.« less

  19. High-throughput Screening Identification of Poliovirus RNA-dependent RNA Polymerase Inhibitors

    PubMed Central

    Campagnola, Grace; Gong, Peng; Peersen, Olve B.

    2011-01-01

    Viral RNA-dependent RNA polymerase (RdRP) enzymes are essential for the replication of positive-strand RNA viruses and established targets for the development of selective antiviral therapeutics. In this work we have carried out a high-throughput screen of 154,267 compounds to identify poliovirus polymerase inhibitors using a fluorescence based RNA elongation assay. Screening and subsequent validation experiments using kinetic methods and RNA product analysis resulted in the identification of seven inhibitors that affect the RNA binding, initiation, or elongation activity of the polymerase. X-ray crystallography data show clear density for five of the compounds in the active site of the poliovirus polymerase elongation complex. The inhibitors occupy the NTP binding site by stacking on the priming nucleotide and interacting with the templating base, yet competition studies show fairly weak IC50 values in the low μM range. A comparison with nucleotide bound structures suggests that weak binding is likely due to the lack of a triphosphate group on the inhibitors. Consequently, the inhibitors are primarily effective at blocking polymerase initiation and do not effectively compete with NTP binding during processive elongation. These findings are discussed in the context of the polymerase elongation complex structure and allosteric control of the viral RdRP catalytic cycle. PMID:21722674

  20. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold

    DOE PAGES

    Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; ...

    2015-03-30

    Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. In this paper, we describe a strategy for designing oligomers containing both α- and β-amino acid residues (“α/β-peptides”) that mimic several peptides derived from the three-helix bundle “Z-domain” scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF 165-induced proliferation of human umbilical vein endothelialmore » cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Finally, such reagents would be useful for diagnostic and therapeutic applications.« less

  1. Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13

    PubMed Central

    Obodo, Udochukwu C.; Epum, Esther A.; Platts, Margaret H.; Seloff, Jacob; Dahlson, Nicole A.; Velkovsky, Stoycho M.; Paul, Shira R.

    2016-01-01

    DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition. PMID:27044869

  2. A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats

    NASA Technical Reports Server (NTRS)

    Safadi, F.; Reddy, V. S.; Reddy, A. S.

    2000-01-01

    Calcium is essential for pollen germination and pollen tube growth. A large body of information has established a link between elevation of cytosolic Ca(2+) at the pollen tube tip and its growth. Since the action of Ca(2+) is primarily mediated by Ca(2+)-binding proteins such as calmodulin (CaM), identification of CaM-binding proteins in pollen should provide insights into the mechanisms by which Ca(2+) regulates pollen germination and tube growth. In this study, a CaM-binding protein from maize pollen (maize pollen calmodulin-binding protein, MPCBP) was isolated in a protein-protein interaction-based screening using (35)S-labeled CaM as a probe. MPCBP has a molecular mass of about 72 kDa and contains three tetratricopeptide repeats (TPR) suggesting that it is a member of the TPR family of proteins. MPCBP protein shares a high sequence identity with two hypothetical TPR-containing proteins from Arabidopsis. Using gel overlay assays and CaM-Sepharose binding, we show that the bacterially expressed MPCBP binds to bovine CaM and three CaM isoforms from Arabidopsis in a Ca(2+)-dependent manner. To map the CaM-binding domain several truncated versions of the MPCBP were expressed in bacteria and tested for their ability to bind CaM. Based on these studies, the CaM-binding domain was mapped to an 18-amino acid stretch between the first and second TPR regions. Gel and fluorescence shift assays performed with CaM and a CaM-binding synthetic peptide further confirmed MPCBP binding to CaM. Western, Northern, and reverse transcriptase-polymerase chain reaction analysis have shown that MPCBP expression is specific to pollen. MPCBP was detected in both soluble and microsomal proteins. Immunoblots showed the presence of MPCBP in mature and germinating pollen. Pollen-specific expression of MPCBP, its CaM-binding properties, and the presence of TPR motifs suggest a role for this protein in Ca(2+)-regulated events during pollen germination and growth.

  3. Dynein and dynactin leverage their bivalent character to form a high-affinity interaction.

    PubMed

    Siglin, Amanda E; Sun, Shangjin; Moore, Jeffrey K; Tan, Sarah; Poenie, Martin; Lear, James D; Polenova, Tatyana; Cooper, John A; Williams, John C

    2013-01-01

    Cytoplasmic dynein and dynactin participate in retrograde transport of organelles, checkpoint signaling and cell division. The principal subunits that mediate this interaction are the dynein intermediate chain (IC) and the dynactin p150(Glued); however, the interface and mechanism that regulates this interaction remains poorly defined. Herein, we use multiple methods to show the N-terminus of mammalian dynein IC, residues 10-44, is sufficient for binding p150(Glued). Consistent with this mapping, monoclonal antibodies that antagonize the dynein-dynactin interaction also bind to this region of the IC. Furthermore, double and triple alanine point mutations spanning residues 6 to 19 in the yeast IC homolog, Pac11, produce significant defects in spindle positioning. Using the same methods we show residues 381 to 530 of p150(Glued) form a minimal fragment that binds to the dynein IC. Sedimentation equilibrium experiments indicate that these individual fragments are predominantly monomeric, but admixtures of the IC and p150(Glued) fragments produce a 2:2 complex. This tetrameric complex is sensitive to salt, temperature and pH, suggesting that the binding is dominated by electrostatic interactions. Finally, circular dichroism (CD) experiments indicate that the N-terminus of the IC is disordered and becomes ordered upon binding p150(Glued). Taken together, the data indicate that the dynein-dynactin interaction proceeds through a disorder-to-order transition, leveraging its bivalent-bivalent character to form a high affinity, but readily reversible interaction.

  4. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis*

    PubMed Central

    Ho, Ngoc Anh Thu; Dawes, Stephanie S.; Crowe, Adam M.; Casabon, Israël; Gao, Chen; Kendall, Sharon L.; Baker, Edward N.; Eltis, Lindsay D.; Lott, J. Shaun

    2016-01-01

    Cholesterol can be a major carbon source for Mycobacterium tuberculosis during infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, including kstR, are either induced during infection or are essential for survival of M. tuberculosis in vivo. In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50 for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release. PMID:26858250

  5. Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments.

    PubMed

    Du, Huihui; Peacock, Caroline L; Chen, Wenli; Huang, Qiaoyun

    2018-09-01

    Adsorption and coprecipitation of organic matter with iron (hydr)oxides can alter iron (hydr)oxide surface properties and their reactivity towards nutrient elements and heavy metals. Organo-mineral composites were synthesized using humic acid (HA) and iron oxide, during coprecipitation with ferrihydrite (Fh) and adsorption to pre-formed Fh with two C loadings. The Fh-HA coprecipitated composites have a higher C content and smaller surface area compared to the equivalent adsorbed composites. NanoSIMS shows there is a high degree of spatial correlation between Fe and C for both composites, but C distribution is more uniform in the coprecipitated composites. The C 1s NEXAFS reveals a similar C composition between the Fh-HA coprecipitated and adsorbed composites. However composites at high carbon loading are more enriched in aromatic C, likely due to preferential binding of carboxyl functional groups on aromatic rings in the HA. The amount of Cd sorbed is independent of the composite type, either coprecipitated or adsorbed, but is a function of the C loading. Composites with low C loading show Cd sorption that is almost identical to pure Fh, while composites with high C loading show Cd sorption that is intermediate between pure Fh and pure HA, with sorption significantly enhanced over pure Fh at pH < 6.5. A bidentate edge-sharing binding was identified for Cd on pure Fh and Cd-carboxyl binding on pure HA. These findings have significant implications not only for the sequestration of Cd in contaminated environments but also the coupled biogeochemical cycling of Cd, Fe and C in the critical zone. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  6. Immune complexes and Ross River virus disease (epidemic polyarthritis).

    PubMed

    Fraser, J R; Cunningham, A L; Mathews, J D; Riglar, A

    1988-01-01

    Immune complexes were sought in serum and synovial fluid in Ross River virus disease (epidemic polyarthritis). Multiple samples from 15 patients showing varied degrees of disease activity over a 3 month period were analysed for their content of complement components C3 and C4, and for C1q solid-phase and Raji cell binding activity. Levels of C3 and C1q binding activity were normal. C4 and Raji cell binding activity were normal except for three high levels of Raji cell binding, of which two were accompanied by low levels of C4, with normal C3 and C1q binding. Synovial fluid showed anomalous Raji cell reactivity of uncertain significance. Conglutinin solid-phase binding activity and IgG rheumatoid factor were compared in the serum of 20 patients during active disease and after recovery. The results were identical and within the normal range in both phases. One patient developed IgM rheumatoid factor in a low titre late in his illness. Although these findings do not entirely exclude a role for immune complexes formed at the onset in the circulation or tissues, it is concluded from this and other evidence that circulating complexes are not commonly responsible for the persistence of syndromes in this disease.

  7. Pyrene maleimide as a probe of microenvironmental and dynamics properties of protein binding sites

    NASA Astrophysics Data System (ADS)

    Benci, S.; Vaccari, S.; Schianchi, G.; Locatelli, Donata; Vaghi, P.; Bottiroli, Giovanni F.

    1995-01-01

    N-(1-Pyrene)maleimide is highly fluorescent upon covalent binding with sulfhydryl and amino groups of the proteins. Multiexponential fluorescence decays were observed for the dye bound to different proteins even when a single binding site is involved. The lack of information about the fluorescence decay of free dye does not allow to define the variations of fluorescence parameter following the conjugation and their correlation with the binding properties of the fluorophore. In this work, a study of the fluorescence of the probe, free in solution, bound to different antibodies and to the antigen-antibody complex both in solution and in cell, has been performed. The experimental results showed that chemico-physical properties of the medium influence the fluorescence decay of the probe in both the free and bound forms, although to a different extent. The variations of fluorescence decay and anisotropy of the bound probe are related to the electronic characteristics of microenvironment and show an increased stabilization of the probe binding site with the increasing complexity of the substrate. The sensitivity of the fluorescence properties of the probe to the binding site environment opens interesting perspectives concerning the application of Py- maleimide fluorochromization to assess the degree of specificity of immunocytochemical labelling.

  8. Dynamics of TBP binding to the TATA box

    NASA Astrophysics Data System (ADS)

    Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.

    2008-02-01

    Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.

  9. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    PubMed Central

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  10. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2.

    PubMed

    Rodgers, K K; Villey, I J; Ptaszek, L; Corbett, E; Schatz, D G; Coleman, J E

    1999-07-15

    RAG1 and RAG2 are the two lymphoid-specific proteins required for the cleavage of DNA sequences known as the recombination signal sequences (RSSs) flanking V, D or J regions of the antigen-binding genes. Previous studies have shown that RAG1 alone is capable of binding to the RSS, whereas RAG2 only binds as a RAG1/RAG2 complex. We have expressed recombinant core RAG1 (amino acids 384-1008) in Escherichia coli and demonstrated catalytic activity when combined with RAG2. This protein was then used to determine its oligomeric forms and the dissociation constant of binding to the RSS. Electrophoretic mobility shift assays show that up to three oligomeric complexes of core RAG1 form with a single RSS. Core RAG1 was found to exist as a dimer both when free in solution and as the minimal species bound to the RSS. Competition assays show that RAG1 recognizes both the conserved nonamer and heptamer sequences of the RSS. Zinc analysis shows the core to contain two zinc ions. The purified RAG1 protein overexpressed in E.coli exhibited the expected cleavage activity when combined with RAG2 purified from transfected 293T cells. The high mobility group protein HMG2 is stably incorporated into the recombinant RAG1/RSS complex and can increase the affinity of RAG1 for the RSS in the absence of RAG2.

  11. Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species

    PubMed Central

    Trapnell, Cole; Davidson, Stuart; Pachter, Lior; Chu, Hou Cheng; Tonkin, Leath A.; Biggin, Mark D.; Eisen, Michael B.

    2010-01-01

    Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances. PMID:20351773

  12. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation.

    PubMed

    Baht, Gurpreet S; Hunter, Graeme K; Goldberg, Harvey A

    2008-09-01

    In bone, hydroxyapatite (HA) crystals are deposited onto the type I collagen scaffold by a mechanism that has yet to be elucidated. Bone sialoprotein (BSP) is an acidic phosphoprotein that is expressed at high levels in mineralized tissues, capable of binding type I collagen, and nucleating HA. Both bone-extracted and recombinant BSP (rBSP) bind with equal affinity to collagen. The nature of the BSP-collagen interaction and its role in HA nucleation are not known. We have used a solid-phase binding assay and affinity chromatography to characterize the BSP-collagen interaction. rBSP-binding affinities of triple-helical and fibrillar type I collagen were similar (K(D) approximately 13 nM), while that of heat-denatured type I collagen was lower (K(D) approximately 44 nM), indicating the importance of triple-helical structure in binding BSP. Pepsin treatment of collagen had no effect on rBSP binding, demonstrating that the telopeptides of collagen are not involved. The majority of collagen-bound rBSP was eluted by acetonitrile, indicating that hydrophobic interactions are principally responsible for binding. Using an HA-nucleation assay, it was shown that rBSP is ten-fold more potent in reconstituted fibrillar collagen gels than in agarose gels. Nucleating potency of a non-collagen-binding, HA-nucleating peptide [rBSP(134-206)] showed no difference in the two gel systems. The work here shows that optimal binding of rBSP requires collagen to be in a native, triple-helical structure, does not require the telopeptides, and is stabilized by hydrophobic interactions. Upon binding to collagen, rBSP displays an increase in nucleation potency, implying a co-operative effect of BSP and collagen in mineral formation.

  13. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.

  14. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.

    PubMed

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A

    2015-10-22

    The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Plasticity of an Ultrafast Interaction between Nucleoporins and Nuclear Transport Receptors

    PubMed Central

    Milles, Sigrid; Mercadante, Davide; Aramburu, Iker Valle; Jensen, Malene Ringkjøbing; Banterle, Niccolò; Koehler, Christine; Tyagi, Swati; Clarke, Jane; Shammas, Sarah L.; Blackledge, Martin; Gräter, Frauke; Lemke, Edward A.

    2015-01-01

    Summary The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. PMID:26456112

  16. Massively parallel de novo protein design for targeted therapeutics.

    PubMed

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J; Hicks, Derrick R; Vergara, Renan; Murapa, Patience; Bernard, Steffen M; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T; Koday, Merika T; Jenkins, Cody M; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M; Fernández-Velasco, D Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A; Fuller, Deborah H; Baker, David

    2017-10-05

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  17. Massively parallel de novo protein design for targeted therapeutics

    NASA Astrophysics Data System (ADS)

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2017-10-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37-43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing.

  18. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation

    PubMed Central

    Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I.; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria

    2016-01-01

    The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 when bound to yeast TBP, together with mutational data. The yTAF1-TAND1, which in itself acts as a transcriptional activator, binds into the DNA-binding TBP concave surface by presenting similar anchor residues to TBP as E. coli Mot1 but from a distinct structural scaffold. Furthermore, we show how yTAF1-TAND2 employs an aromatic and acidic anchoring pattern to bind a conserved yTBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides compelling insight into the competitive multiprotein TBP interplay critical to transcriptional regulation. PMID:23851461

  19. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation.

    PubMed

    Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria

    2013-08-01

    The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.

  20. Massively parallel de novo protein design for targeted therapeutics

    PubMed Central

    Chevalier, Aaron; Silva, Daniel-Adriano; Rocklin, Gabriel J.; Hicks, Derrick R.; Vergara, Renan; Murapa, Patience; Bernard, Steffen M.; Zhang, Lu; Lam, Kwok-Ho; Yao, Guorui; Bahl, Christopher D.; Miyashita, Shin-Ichiro; Goreshnik, Inna; Fuller, James T.; Koday, Merika T.; Jenkins, Cody M.; Colvin, Tom; Carter, Lauren; Bohn, Alan; Bryan, Cassie M.; Fernández-Velasco, D. Alejandro; Stewart, Lance; Dong, Min; Huang, Xuhui; Jin, Rongsheng; Wilson, Ian A.; Fuller, Deborah H.; Baker, David

    2018-01-01

    De novo protein design holds promise for creating small stable proteins with shapes customized to bind therapeutic targets. We describe a massively parallel approach for designing, manufacturing and screening mini-protein binders, integrating large-scale computational design, oligonucleotide synthesis, yeast display screening and next-generation sequencing. We designed and tested 22,660 mini-proteins of 37–43 residues that target influenza haemagglutinin and botulinum neurotoxin B, along with 6,286 control sequences to probe contributions to folding and binding, and identified 2,618 high-affinity binders. Comparison of the binding and non-binding design sets, which are two orders of magnitude larger than any previously investigated, enabled the evaluation and improvement of the computational model. Biophysical characterization of a subset of the binder designs showed that they are extremely stable and, unlike antibodies, do not lose activity after exposure to high temperatures. The designs elicit little or no immune response and provide potent prophylactic and therapeutic protection against influenza, even after extensive repeated dosing. PMID:28953867

  1. Engineering vanilloid-sensitivity into the rat TRPV2 channel

    PubMed Central

    Zhang, Feng; Hanson, Sonya M; Jara-Oseguera, Andres; Krepkiy, Dmitriy; Bae, Chanhyung; Pearce, Larry V; Blumberg, Peter M; Newstead, Simon; Swartz, Kenton J

    2016-01-01

    The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (>50°C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1. Here we use biochemical and electrophysiological approaches to investigate the resiniferatoxin(RTx) binding site in TRPV1 and to explore the functional relationships between TRPV1 and TRPV2. Collectively, our results support the interaction of vanilloids with the proposed RTx binding pocket, and demonstrate an allosteric influence of a tarantula toxin on vanilloid binding. Moreover, we show that sensitivity to RTx can be engineered into TRPV2, demonstrating that the gating and permeation properties of this channel are similar to TRPV1. DOI: http://dx.doi.org/10.7554/eLife.16409.001 PMID:27177419

  2. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass

    PubMed Central

    Chai, Kian Piaw; Othman, Noor Farhan Binti; Teh, Aik-Hong; Ho, Kok Lian; Chan, Kok-Gan; Shamsir, Mohd Shahir; Goh, Kian Mau; Ng, Chyan Leong

    2016-01-01

    A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca2+ ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca2+ ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite. PMID:26975884

  3. Engineering vanilloid-sensitivity into the rat TRPV2 channel.

    PubMed

    Zhang, Feng; Hanson, Sonya M; Jara-Oseguera, Andres; Krepkiy, Dmitriy; Bae, Chanhyung; Pearce, Larry V; Blumberg, Peter M; Newstead, Simon; Swartz, Kenton J

    2016-05-13

    The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (>50°C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1. Here we use biochemical and electrophysiological approaches to investigate the resiniferatoxin(RTx) binding site in TRPV1 and to explore the functional relationships between TRPV1 and TRPV2. Collectively, our results support the interaction of vanilloids with the proposed RTx binding pocket, and demonstrate an allosteric influence of a tarantula toxin on vanilloid binding. Moreover, we show that sensitivity to RTx can be engineered into TRPV2, demonstrating that the gating and permeation properties of this channel are similar to TRPV1.

  4. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    PubMed

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  5. High-capacity composite adsorbents for nucleic acids.

    PubMed

    Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof

    2011-08-05

    Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Neuronal entry and high neurotoxicity of botulinum neurotoxin A require its N-terminal binding sub-domain

    PubMed Central

    Wang, Jiafu; Meng, Jianghui; Nugent, Marc; Tang, Minhong; Dolly, J. Oliver

    2017-01-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known, due to inhibiting the neuronal release of acetylcholine and causing flaccid paralysis. Most BoNT serotypes target neurons by binding to synaptic vesicle proteins and gangliosides via a C-terminal binding sub-domain (HCC). However, the role of their conserved N-terminal sub-domain (HCN) has not been established. Herein, we created a mutant form of recombinant BoNT/A lacking HCN (rAΔHCN) and showed that the lethality of this mutant is reduced 3.3 × 104-fold compared to wild-type BoNT/A. Accordingly, low concentrations of rAΔHCN failed to bind either synaptic vesicle protein 2C or neurons, unlike the high-affinity neuronal binding obtained with 125I-BoNT/A (Kd = 0.46 nM). At a higher concentration, rAΔHCN did bind to cultured sensory neurons and cluster on the surface, even after 24 h exposure. In contrast, BoNT/A became internalised and its light chain appeared associated with the plasmalemma, and partially co-localised with vesicle-associated membrane protein 2 in some vesicular compartments. We further found that a point mutation (W985L) within HCN reduced the toxicity over 10-fold, while this mutant maintained the same level of binding to neurons as wild type BoNT/A, suggesting that HCN makes additional contributions to productive internalization/translocation steps beyond binding to neurons. PMID:28295026

  7. Locating herpesvirus Bcl-2 homologs in the specificity landscape of anti-apoptotic Bcl-2 proteins

    PubMed Central

    Foight, Glenna Wink; Keating, Amy E.

    2015-01-01

    Viral homologs of the anti-apoptotic Bcl-2 proteins are highly diverged from their mammalian counterparts, yet they perform overlapping functions by binding and inhibiting BH3 motif-containing proteins. We investigated the BH3 binding properties of the herpesvirus Bcl-2 homologs KSBcl-2, BHRF1, and M11, as they relate to those of the human Bcl-2 homologs Mcl-1, Bfl-1, Bcl-w, Bcl-xL, and Bcl-2. Analysis of the sequence and structure of the BH3 binding grooves showed that, despite low sequence identity, M11 has structural similarities to Bcl-xL, Bcl-2, and Bcl-w. BHRF1 and KSBcl-2 are more structurally similar to Mcl-1 than to the other human proteins. Binding to human BH3-like peptides showed that KSBcl-2 has similar specificity to Mcl-1, and BHRF1 has a restricted binding profile; M11 binding preferences are distinct from those of Bcl-xL, Bcl-2 and Bcl-w. Because KSBcl-2 and BHRF1 are from human herpesviruses associated with malignancies, we screened computationally designed BH3 peptide libraries using bacterial surface display to identify selective binders of KSBcl-2 or BHRF1. The resulting peptides bound to KSBcl-2 and BHRF1 in preference to Bfl-1, Bcl-w, Bcl-xL, and Bcl-2, but showed only modest specificity over Mcl-1. Rational mutagenesis increased specificity against Mcl-1, resulting in a peptide with a dissociation constant of 2.9 nM for binding to KSBcl-2 and >1000-fold specificity over human Bcl-2 proteins, and a peptide with >70-fold specificity for BHRF1. In addition to providing new insights into viral Bcl-2 binding specificity, this study will inform future work analyzing the interaction properties of homologous binding domains and designing specific protein interaction partners. PMID:26009469

  8. DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315

    PubMed Central

    Polevoda, Bogdan; Joseph, Rebecca; Friedman, Alan E.; Bennett, Ryan P.; Greiner, Rebecca; De Zoysa, Thareendra; Stewart, Ryan A.; Smith, Harold C.

    2017-01-01

    APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181–194, 314–320, and 345–374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity. PMID:28381554

  9. Human H3N2 Influenza Viruses Isolated from 1968 To 2012 Show Varying Preference for Receptor Substructures with No Apparent Consequences for Disease or Spread

    PubMed Central

    Gulati, Shelly; Smith, David F.; Cummings, Richard D.; Couch, Robert B.; Griesemer, Sara B.; St. George, Kirsten; Webster, Robert G.; Air, Gillian M.

    2013-01-01

    It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2–6 to the next sugar, that avian influenza viruses bind glycans containing the α2–3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2–6(Galβ1–4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2–3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2–3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population. PMID:23805213

  10. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less

  11. The effect of Berberine on the secondary structure of human serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo

    2005-05-01

    The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).

  12. Nickel binding to NikA: an additional binding site reconciles spectroscopy, calorimetry and crystallography.

    PubMed

    Addy, Christine; Ohara, Masato; Kawai, Fumihiro; Kidera, Akinori; Ikeguchi, Mitsunori; Fuchigami, Sotaro; Osawa, Masanori; Shimada, Ichio; Park, Sam-Yong; Tame, Jeremy R H; Heddle, Jonathan G

    2007-02-01

    Intracellular nickel is required by Escherichia coli as a cofactor for a number of enzymes and is necessary for anaerobic respiration. However, high concentrations of nickel are toxic, so both import and export systems have evolved to control the cellular level of the metal. The nik operon in E. coli encodes a nickel-uptake system that includes the periplasmic nickel-binding protein NikA. The crystal structures of wild-type NikA both bound to nickel and in the apo form have been solved previously. The liganded structure appeared to show an unusual interaction between the nickel and the protein in which no direct bonds are formed. The highly unusual nickel coordination suggested by the crystal structure contrasted strongly with earlier X-ray spectroscopic studies. The known nickel-binding site has been probed by extensive mutagenesis and isothermal titration calorimetry and it has been found that even large numbers of disruptive mutations appear to have little effect on the nickel affinity. The crystal structure of a binding-site mutant with nickel bound has been solved and it is found that nickel is bound to two histidine residues at a position distant from the previously characterized binding site. This novel site immediately resolves the conflict between the crystal structures and other biophysical analyses. The physiological relevance of the two binding sites is discussed.

  13. Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashuba, Elena; Yurchenko, Mariya; Szirak, Krisztina

    Epstein-Barr virus (EBV) transforms resting human B cells into immortalized immunoblasts. EBV-encoded nuclear antigens EBNA-5 (also called EBNA-LP) is one of the earliest viral proteins expressed in freshly infected B cells. We have recently shown that EBNA-5 binds p14ARF, a nucleolar protein that regulates the p53 pathway. Here, we report the identification of another protein with partially nucleolar localization, the v-fos transformation effector Fte-1 (Fte-1/S3a), as an EBNA-5 binding partner. In transfected cells, Fte-1/S3a and EBNA-5 proteins showed high levels of colocalization in extranucleolar inclusions. Fte-1/S3a has multiple biological functions. It enhances v-fos-mediated cellular transformation and is part of themore » small ribosomal subunit. It also interacts with the transcriptional factor CHOP and apoptosis regulator poly(ADP-ribose) polymerase (PARP). Fte-1/S3a is regularly expressed at high levels in both tumors and cancer cell lines. Its high expression favors the maintenance of malignant phenotype and undifferentiated state, whereas its down-regulation is associated with cellular differentiation and growth arrest. Here, we show that EBV-induced B cell transformation leads to the up-regulation of Fte-1/S3a. We suggest that EBNA-5 through binding may influence the growth promoting, differentiation inhibiting, or apoptosis regulating functions of Fte-1/S3a.« less

  14. A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin.

    PubMed

    Strack, Martin; Bedini, Andrea; Yip, King T; Lombardi, Sara; Siegmund, Daniel; Stoll, Raphael; Spampinato, Santi M; Metzler-Nolte, Nils

    2016-10-04

    Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the μ-selective opioid peptide dermorphin and the μ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the μ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Virtual screening of potential inhibitors from TCM for the CPSF30 binding site on the NS1A protein of influenza A virus.

    PubMed

    Ai, Haixin; Zhang, Li; Chang, Alan K; Wei, Hongyun; Che, Yuchen; Liu, Hongsheng

    2014-03-01

    Inhibition of CPSF30 function by the effector domain of influenza A virus of non-structural protein 1 (NS1A) protein plays a critical role in the suppression of host key antiviral response. The CPSF30-binding site of NS1A appears to be a very attractive target for the development of new drugs against influenza A virus. In this study, structure-based molecular docking was utilized to screen more than 30,000 compounds from a Traditional Chinese Medicine (TCM) database. Four drug-like compounds were selected as potential inhibitors for the CPSF30-binding site of NS1A. Docking conformation analysis results showed that these potential inhibitors could bind to the CPSF30-binding site with strong hydrophobic interactions and weak hydrogen bonds. Molecular dynamics simulations and MM-PBSA calculations suggested that two of the inhibitors, compounds 32056 and 31674, could stably bind to the CPSF30-binding site with high binding free energy. These two compounds could be modified to achieve higher binding affinity, so that they may be used as potential leads in the development of new anti-influenza drugs.

  16. Characterization of the [125I]-neurokinin A binding site in the circular muscle of human colon

    PubMed Central

    Warner, Fiona J; Comis, Alfio; Miller, Robert C; Burcher, Elizabeth

    1999-01-01

    Neurokinin A (NKA) is a potent contractile agonist of human colon circular muscle. These responses are mediated predominantly through tachykinin NK2 receptors. In the present study, the NK2 receptor radioligand [125I]-NKA has been used to characterize binding sites in this tissue, using tachykinin agonists and antagonists. 125INKA labelled a single, high affinity binding site. Specific binding (95% of total binding) of [125I]-NKA was saturable (KD 0.47±0.05 nM), of high capacity (Bmax 2.1±0.1 fmol mg−1 wet weight tissue) and reversible (kinetically derived KD 0.36±0.07 nM). The rank order of agonists competing for the [125I]-NKA binding site was neuropeptide γ (NPγ)≥NKA≥[Lys5,MeLeu9,Nle10]NKA (4–10) (NK2 agonist)>>substance P (SP)>neurokinin B (NKB)≥[Pro9]SP (NK1 agonist)>>senktide (NK3 agonist), indicating binding to an NK2 site. The nonpeptide selective NK2 antagonist SR48968 showed higher affinity for the [125I]-NKA site than selective peptide NK2 antagonists. The rank order of potency for NK2 antagonists was SR48968≥MEN11420>GR94800≥MEN10627>MEN10376≥R396. The NK1 antagonist SR140333 was a weak competitor. The competition curve for SP could be resolved into two sites. When experiments were repeated in the presence of SR140333 (0.1 μM), the curve for SP became monophasic and showed a significant shift to the right, whereas curves to NKA and NKB were unaffected. In conclusion, binding of the radioligand [125I]-NKA to membranes from circular muscle is predominantly to the NK2 receptor. There may be a small component of binding to the NK1 receptor. The NK2 receptor mediates circular muscle contraction, whereas the role of the NK1 receptor in circular muscle is unclear. PMID:10455255

  17. NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.

    PubMed

    Su, Xun-Cheng; Ozawa, Kiyoshi; Yagi, Hiromasa; Lim, Siew P; Wen, Daying; Ekonomiuk, Dariusz; Huang, Danzhi; Keller, Thomas H; Sonntag, Sebastian; Caflisch, Amedeo; Vasudevan, Subhash G; Otting, Gottfried

    2009-08-01

    The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2B-NS3 protease which were discovered using high-throughput in vitro screening. Binding to the substrate-binding sites S1 and S3 is confirmed by intermolecular NOEs and comparison with the binding mode of a previously identified low molecular mass inhibitor. Our results show that all these inhibitors act by occupying the substrate-binding site of the protease rather than by an allosteric mechanism. In addition, the NS2B polypeptide chain was found to be positioned near the substrate-binding site, as observed previously in crystal structures of the protease in complex with peptide inhibitors or bovine pancreatic trypsin inhibitor. This indicates that the new low molecular mass compounds, although inhibiting the protease, also promote the proteolytically active conformation of NS2B, which is very different from the crystal structure of the protein without inhibitor.

  18. Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    PubMed Central

    Mbanefo, Evaristus Chibunna; Kikuchi, Mihoko; Huy, Nguyen Tien; Shuaibu, Mohammed Nasir; Cherif, Mahamoud Sama; Yu, Chuanxin; Wakao, Masahiro; Suda, Yasuo; Hirayama, Kenji

    2014-01-01

    Background We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. Methodology/Principal Findings Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10−6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. Conclusions The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted. PMID:24416467

  19. Structural changes induced by binding of the high-mobility group I protein to a mouse satellite DNA sequence.

    PubMed Central

    Slama-Schwok, A; Zakrzewska, K; Léger, G; Leroux, Y; Takahashi, M; Käs, E; Debey, P

    2000-01-01

    Using spectroscopic methods, we have studied the structural changes induced in both protein and DNA upon binding of the High-Mobility Group I (HMG-I) protein to a 21-bp sequence derived from mouse satellite DNA. We show that these structural changes depend on the stoichiometry of the protein/DNA complexes formed, as determined by Job plots derived from experiments using pyrene-labeled duplexes. Circular dichroism and melting temperature experiments extended in the far ultraviolet range show that while native HMG-I is mainly random coiled in solution, it adopts a beta-turn conformation upon forming a 1:1 complex in which the protein first binds to one of two dA.dT stretches present in the duplex. HMG-I structure in the 1:1 complex is dependent on the sequence of its DNA target. A 3:1 HMG-I/DNA complex can also form and is characterized by a small increase in the DNA natural bend and/or compaction coupled to a change in the protein conformation, as determined from fluorescence resonance energy transfer (FRET) experiments. In addition, a peptide corresponding to an extended DNA-binding domain of HMG-I induces an ordered condensation of DNA duplexes. Based on the constraints derived from pyrene excimer measurements, we present a model of these nucleated structures. Our results illustrate an extreme case of protein structure induced by DNA conformation that may bear on the evolutionary conservation of the DNA-binding motifs of HMG-I. We discuss the functional relevance of the structural flexibility of HMG-I associated with the nature of its DNA targets and the implications of the binding stoichiometry for several aspects of chromatin structure and gene regulation. PMID:10777751

  20. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.

    PubMed

    Modi, Vivek; Lama, Dilraj; Sankararamakrishnan, Ramasubbu

    2013-01-01

    The anti-apoptotic protein Bfl-1, also known as A1, belongs to the Bcl-2 family of proteins and interacts with pro-apoptotic Bcl-2 counterparts to regulate programmed cell death. As demonstrated for other anti-apoptotic Bcl-2 proteins, Bfl-1/A1 has also been shown to be overexpressed in various human cancers and hence they are attractive targets for anticancer drugs. Peptides derived from the BH3 region of pro-apoptotic Bcl-2 proteins have been shown to elicit similar biological response as that of parent proteins. BH3 peptides from different pro-apoptotic proteins have wide range of affinities for Bfl-1/A1. Experimentally determined complex structures show that the hydrophobic side of amphipathic BH3 peptides binds to the hydrophobic groove formed by the α-helical bundle of Bfl-1/A1 protein. Apart from the length and amino acid composition, a BH3 peptide's ability to form a stable helical structure has been suggested to be important for its high binding affinity. Molecular dynamics simulations of three BH3 peptides derived from the pro-apoptotic proteins Bak, Bid, and Bmf were carried out each for a period of at least 100 ns after 2 ns equilibration run. The length of simulated BH3 peptides varied from 22 to 24 residues and their binding affinities for Bfl-1/A1 varied from 1 to 180 nM. Our results show that the hydrophobic residues from the hydrophobic face of BH3 peptides tend to cluster together quickly to avoid being exposed to the solvent. This resulted in either reduction of helix length or complete loss of helical character. Bak and Bid BH3 peptides with high affinities for Bf1-1/A1 have stable helical segments in the N-terminal region. The highly conserved Leu residue lies just outside the helical region at the C-terminal end. Capping interactions arising out of N-cap residues seem to be extremely important to maintain the helical stability. Favorable hydrophilic interactions between residues also give further stability to the helix fragment and at least one of the interacting residues resides within the helical region. Bmf BH3 peptide with a weaker binding affinity for Bmf-1/A1 completely lost its helical character at the end of 100 ns production run and a further 50 ns simulation showed that the Bmf peptide continues to remain in random conformation. The present study clearly establishes a link between a BH3 peptide's ability to form a stable helical segment and its high binding affinity for an anti-apoptotic protein. To further test this hypothesis, we simulated a mutant Bmf peptide for 100 ns in which two residues R129 and H146 were substituted by Asn in silico in the wild-type peptide. Introduction of N-terminal Asn clearly enabled the formation of capping interactions at the N-terminus and resulted in a stable N-terminal helical segment. This demonstrates that the knowledge of interactions that help to maintain stable helical segments in a high-affinity BH3 peptide will help in designing highly specific peptide-based drugs/inhibitors. Such molecules will have the ability to bind a particular anti-apoptotic protein with high affinity.

  1. The N-Terminal Domain of the Flo1 Flocculation Protein from Saccharomyces cerevisiae Binds Specifically to Mannose Carbohydrates ▿

    PubMed Central

    Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.

    2011-01-01

    Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009

  2. Comparison of Nerve Growth Factor Receptor Binding Models Using Heterodimeric Muteins

    PubMed Central

    Mehta, Hrishikesh M.; Woo, Sang B.; Neet, Kenneth E.

    2013-01-01

    Nerve growth factor (NGF) is a homodimer that binds to two distinct receptor types, TrkA and p75, to support survival and differentiation of neurons. The high-affinity binding on the cell surface is believed to involve a heteroreceptor complex, but its exact nature is unclear. We developed a heterodimer (heteromutein) of two NGF muteins that can bind p75 and TrkA on opposite sides of the heterodimer, but not two TrkA receptors. Previously described muteins are Δ9/13 that is TrkA negative and 7-84-103 that is signal selective through TrkA. The heteromutein (Htm1) was used to study the heteroreceptor complex formation and function, in the putative absence of NGF-induced TrkA dimerization. Cellular binding assays indicated that Htm1 does not bind TrkA as efficiently as wild-type (wt) NGF but has better affinity than either homodimeric mutein. Htm1, 7-84-103, and Δ9/13 were each able to compete for cold-temperature, cold-chase stable binding on PC12 cells, indicating that binding to p75 was required for a portion of this high-affinity binding. Survival, neurite outgrowth, and MAPK signaling in PC12 cells also showed a reduced response for Htm1, compared with wtNGF, but was better than the parent muteins in the order wtNGF > Htm1 > 7-84-103 >> Δ9/13. Htm1 and 7-84-103 demonstrated similar levels of survival on cells expressing only TrkA. In the longstanding debate on the NGF receptor binding mechanism, our data support the ligand passing of NGF from p75 to TrkA involving a transient heteroreceptor complex of p75-NGF-TrkA. PMID:22903500

  3. Kinetic contribution to extracellular Na+/K+ selectivity in the Na+/K+ pump.

    PubMed

    Vleeskens, Elizabeth; Clarke, Ronald J

    2018-05-01

    The sodium potassium pump (Na + ,K + -ATPase) shows a high selectivity for K + over Na + binding from the extracellular medium. To understand the K + selectivity in the presence of a high concentration of competing Na + ions requires consideration of more than just ion binding affinities. Here, equilibrium-based calculations of the extracellular occupation of the Na + ,K + -ATPase transport sites by Na + and K + are compared to fluxes through Na + and K + transport pathways. The results show that, under physiological conditions, there is a 332-fold selectivity for pumping of K + from the extracellular medium into the cytoplasm relative to Na + , whereas equilibrium calculations alone predict only a 7.5-fold selectivity for K + . Thus, kinetic effects make a major contribution to the determination of extracellular K + selectivity.

  4. Ecdysteroid 7,9(11)-dien-6-ones as potential photoaffinity labels for ecdysteroid binding proteins

    PubMed Central

    Bourne, Pauline C.; Whiting, Pensri; Dhadialla, Tarlochan S.; Hormann, Robert E.; Girault, Jean-Pierre; Harmatha, Juraj; Lafont, René; Dinan, Laurence

    2002-01-01

    Three ecdysteroid 7,9(11)-dien-7-ones (dacryhainansterone, 25-hydroxydacryhainansterone and kaladasterone) were prepared by dehydration of the corresponding 11a-hydroxy ecdysteroids (ajugasterone C, turkesterone and muristerone A, respectively). The biological activities of the dienones in the Drosophila melanogaster BII cell bioassay, which reflect the affinity for the ecdysteroid receptor complex, showed that the dienones retain high biological activity. Irradiation at 350 nm of the ecdysteroid dienones (100 nM) with bacterially-expressed dipteran and lepidopteran ecdysteroid receptor proteins (DmEcR/DmUSP or CfEcR/CfUSP), followed by loading with [3H]ponasterone A revealed that irradiation of dacryhainansterone or kaladasterone resulted in blocking of >70% of the specific binding sites. Thus, ecdysteroid dienones show considerable potential as photoaffinity analogues for ecdysteroid binding proteins. PMID:15455045

  5. Iron Binding at Specific Sites within the Octameric HbpS Protects Streptomycetes from Iron-Mediated Oxidative Stress

    PubMed Central

    Wedderhoff, Ina; Kursula, Inari; Groves, Matthew R.; Ortiz de Orué Lucana, Darío

    2013-01-01

    The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress. PMID:24013686

  6. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.

    PubMed

    Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo

    2017-03-01

    In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.

  8. Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.

    PubMed

    Nallapareddy, Sreedhar R; Sillanpää, Jouko; Ganesh, Vannakambadi K; Höök, Magnus; Murray, Barbara E

    2007-06-01

    Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P < 0.0001). Blocking Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

  9. Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules

    DOE PAGES

    Lee, Somin Eunice; Chen, Qian; Bhat, Ramray; ...

    2015-06-03

    Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Lastly, such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.

  10. HPLC analysis of functionalized poly(amidoamine) dendrimers and the interaction between a folate-dendrimer conjugate and folate binding protein.

    PubMed

    Shi, Xiangyang; Bi, Xiangdong; Ganser, T Rose; Hong, Seungpyo; Myc, Lukasz A; Desai, Ankur; Holl, Mark M Banaszak; Baker, James R

    2006-07-01

    Poly(amidoamine) (PAMAM) dendrimers of different generations with carboxyl, acetyl, and hydroxyl terminal groups and a folic acid (FA)-dendrimer conjugate were separated and analyzed using reverse-phase high performance liquid chromatography (HPLC). Analysis of both the individual PAMAM derivatives and the separation of mixed generations can be achieved using a linear gradient 0-50% acetonitrile (ACN) (balance water) within 40 min. We also show that PAMAMs with defined acetylation and carboxylation degrees can be analyzed using HPLC. Furthermore, a generation 5 dendrimer-FA conjugate (G5.75Ac-FA4; Ac denotes acetyl) was analyzed and its specific binding with a bovine folic acid binding protein (FBP) was monitored. The HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicate the formation of three complexes after the binding of G5.75Ac-FA4 with FBP. Dendrimers with FA moieties show much higher specific binding capability with FBP than those without FA moieties. Findings from this study indicate that HPLC is an effective technique not only for characterization and separation of functionalized PAMAM dendrimers and conjugates but also for investigation of the interaction between dendrimers and biomolecules.

  11. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine–purine inversion site of an RNA duplex

    PubMed Central

    Toh, Desiree-Faye Kaixin; Devi, Gitali; Patil, Kiran M.; Qu, Qiuyu; Maraswami, Manikantha; Xiao, Yunyun; Loh, Teck Peng; Zhao, Yanli; Chen, Gang

    2016-01-01

    RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson–Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent. PMID:27596599

  12. The interaction of HMGB1 and linker histones occurs through their acidic and basic tails.

    PubMed

    Cato, Laura; Stott, Katherine; Watson, Matthew; Thomas, Jean O

    2008-12-31

    H1 and HMGB1 bind to linker DNA in chromatin, in the vicinity of the nucleosome dyad. They appear to have opposing effects on the nucleosome, H1 stabilising it by "sealing" two turns of DNA around the octamer, and HMGB1 destabilising it, probably by bending the adjacent DNA. Their presence in chromatin might be mutually exclusive. Displacement/replacement of one by the other as a result of their highly dynamic binding in vivo might, in principle, involve interactions between them. Chemical cross-linking and gel-filtration show that a 1:1 linker histone/HMGB1 complex is formed, which persists at physiological ionic strength, and that complex formation requires the acidic tail of HMGB1. NMR spectroscopy shows that the linker histone binds, predominantly through its basic C-terminal domain, to the acidic tail of HMGB1, thereby disrupting the interaction of the tail with the DNA-binding faces of the HMG boxes. A potential consequence of this interaction is enhanced DNA binding by HMGB1, and concomitantly lowered affinity of H1 for DNA. In a chromatin context, this might facilitate displacement of H1 by HMGB1.

  13. Engineering Visual Arrestin-1 with Special Functional Characteristics*

    PubMed Central

    Vishnivetskiy, Sergey A.; Chen, Qiuyan; Palazzo, Maria C.; Brooks, Evan K.; Altenbach, Christian; Iverson, Tina M.; Hubbell, Wayne L.; Gurevich, Vsevolod V.

    2013-01-01

    Arrestin-1 preferentially binds active phosphorylated rhodopsin. Previously, a mutant with enhanced binding to unphosphorylated active rhodopsin (Rh*) was shown to partially compensate for lack of rhodopsin phosphorylation in vivo. Here we showed that reengineering of the receptor binding surface of arrestin-1 further improves the binding to Rh* while preserving protein stability. In mammals, arrestin-1 readily self-associates at physiological concentrations. The biological role of this phenomenon can only be elucidated by replacing wild type arrestin-1 in living animals with a non-oligomerizing mutant retaining all other functions. We demonstrate that constitutively monomeric forms of arrestin-1 are sufficiently stable for in vivo expression. We also tested the idea that individual functions of arrestin-1 can be independently manipulated to generate mutants with the desired combinations of functional characteristics. Here we showed that this approach is feasible; stable forms of arrestin-1 with high Rh* binding can be generated with or without the ability to self-associate. These novel molecular tools open the possibility of testing of the biological role of arrestin-1 self-association and pave the way to elucidation of full potential of compensational approach to gene therapy of gain-of-function receptor mutations. PMID:23250748

  14. Physical constraints determine the logic of bacterial promoter architectures

    PubMed Central

    Ezer, Daphne; Zabet, Nicolae Radu; Adryan, Boris

    2014-01-01

    Site-specific transcription factors (TFs) bind to their target sites on the DNA, where they regulate the rate at which genes are transcribed. Bacterial TFs undergo facilitated diffusion (a combination of 3D diffusion around and 1D random walk on the DNA) when searching for their target sites. Using computer simulations of this search process, we show that the organization of the binding sites, in conjunction with TF copy number and binding site affinity, plays an important role in determining not only the steady state of promoter occupancy, but also the order at which TFs bind. These effects can be captured by facilitated diffusion-based models, but not by standard thermodynamics. We show that the spacing of binding sites encodes complex logic, which can be derived from combinations of three basic building blocks: switches, barriers and clusters, whose response alone and in higher orders of organization we characterize in detail. Effective promoter organizations are commonly found in the E. coli genome and are highly conserved between strains. This will allow studies of gene regulation at a previously unprecedented level of detail, where our framework can create testable hypothesis of promoter logic. PMID:24476912

  15. Insights into the functional role of protonation states in the HIV-1 protease-BEA369 complex: molecular dynamics simulations and free energy calculations.

    PubMed

    Chen, Jianzhong; Yang, Maoyou; Hu, Guodong; Shi, Shuhua; Yi, Changhong; Zhang, Qinggang

    2009-10-01

    The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method combined with molecular dynamics (MD) simulations were used to investigate the functional role of protonation in human immunodeficiency virus type 1 (HIV-1) protease complexed with the inhibitor BEA369. Our results demonstrate that protonation of two aspartic acids (Asp25/Asp25') has a strong influence on the dynamics behavior of the complex, the binding free energy of BEA369, and inhibitor-residue interactions. Relative binding free energies calculated using the MM-PBSA method show that protonation of Asp25 results in the strongest binding of BEA369 to HIV-1 protease. Inhibitor-residue interactions computed by the theory of free energy decomposition also indicate that protonation of Asp25 has the most favorable effect on binding of BEA369. In addition, hydrogen-bond analysis based on the trajectories of the MD simulations shows that protonation of Asp25 strongly influences the water-mediated link of a conserved water molecule, Wat301. We expect that the results of this study will contribute significantly to binding calculations for BEA369, and to the design of high affinity inhibitors.

  16. Glycosylphosphatidylinositol-anchored high density lipoprotein–binding protein 1 plays a critical role in the lipolytic processing of chylomicrons

    PubMed Central

    Beigneux, Anne P.; Davies, Brandon S. J.; Gin, Peter; Weinstein, Michael M.; Farber, Emily; Qiao, Xin; Peale, Franklin; Bunting, Stuart; Walzem, Rosemary L.; Wong, Jinny S.; Blaner, William S.; Ding, Zhi-Ming; Melford, Kristan; Wongsiriroj, Nuttaporn; Shu, Xiao; de Sauvage, Fred; Ryan, Robert O.; Fong, Loren G.; Bensadoun, André; Young, Stephen G.

    2007-01-01

    Summary The triglycerides in chylomicrons are hydrolyzed by lipoprotein lipase (LpL) along the luminal surface of the capillaries. However, the endothelial cell molecule that facilitates chylomicron processing by LpL has not yet been defined. Here, we show that glycosylphosphatidylinositol-anchored high density lipoprotein–binding protein 1 (GPIHBP1) plays a critical role in the lipolytic processing of chylomicrons. Gpihbp1-deficient mice exhibit a striking accumulation of chylomicrons in the plasma, even on a low-fat diet, resulting in milky plasma and plasma triglyceride levels as high as 5,000 mg/dl. Normally, Gpihbp1 is expressed highly in heart and adipose tissue, the same tissues that express high levels of LpL. In these tissues, GPIHBP1 is located on the luminal face of the capillary endothelium. Expression of GPIHBP1 in cultured cells confers the ability to bind both LpL and chylomicrons. These studies strongly suggest that GPIHBP1 is an important platform for the LpL-mediated processing of chylomicrons in capillaries. PMID:17403372

  17. Evaluation of the endotoxin binding efficiency of clay minerals using the Limulus Amebocyte lysate test: an in vitro study

    PubMed Central

    2014-01-01

    Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials. PMID:24383578

  18. Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C 2 A domain in asynchronous neurotransmitter release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voleti, Rashmi; Tomchick, Diana R.; Südhof, Thomas C.

    Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturatingmore » conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of L-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.« less

  19. Prediction of Carbohydrate Binding Sites on Protein Surfaces with 3-Dimensional Probability Density Distributions of Interacting Atoms

    PubMed Central

    Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404

  20. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe

    2018-01-01

    Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of sufficiently high quality are available.

  1. Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21

    PubMed Central

    Wang, Yuefeng; Fisher, John C.; Mathew, Rose; Ou, Li; Otieno, Steve; Sublett, Jack; Xiao, Limin; Chen, Jianhan; Roussel, Martine F.; Kriwacki, Richard W.

    2011-01-01

    Traditionally, well-defined three-dimensional structure was thought to be essential for protein function. However, myriad biological functions are performed by highly dynamic, intrinsically disordered proteins (IDPs). IDPs often fold upon binding their biological targets and frequently exhibit “binding diversity” by targeting multiple ligands. We sought to understand the physical basis of IDP binding diversity and herein report that the cyclin-dependent kinase (Cdk) inhibitor, p21Cip1, adaptively binds to and inhibits the various Cdk/cyclin complexes that regulate eukaryotic cell division. Based on results from NMR spectroscopy, and biochemical and cellular assays, we show that structural adaptability of a helical sub-domain within p21 termed LH enables two other sub-domains termed D1 and D2 to specifically bind conserved surface features of the cyclin and Cdk subunits, respectively, within otherwise structurally distinct Cdk/cyclin complexes. Adaptive folding upon binding is likely to mediate the diverse biological functions of the thousands of IDPs present in eukaryotes. PMID:21358637

  2. Controlled rotation of the F1-ATPase reveals differential and continuous binding changes for ATP synthesis

    PubMed Central

    Adachi, Kengo; Oiwa, Kazuhiro; Yoshida, Masasuke; Nishizaka, Takayuki; Kinosita, Kazuhiko

    2012-01-01

    F1-ATPase is an ATP-driven rotary molecular motor that synthesizes ATP when rotated in reverse. To elucidate the mechanism of ATP synthesis, we imaged binding and release of fluorescently labelled ADP and ATP while rotating the motor in either direction by magnets. Here we report the binding and release rates for each of the three catalytic sites for 360° of the rotary angle. We show that the rates do not significantly depend on the rotary direction, indicating ATP synthesis by direct reversal of the hydrolysis-driven rotation. ADP and ATP are discriminated in angle-dependent binding, but not in release. Phosphate blocks ATP binding at angles where ADP binding is essential for ATP synthesis. In synthesis rotation, the affinity for ADP increases by >104, followed by a shift to high ATP affinity, and finally the affinity for ATP decreases by >104. All these angular changes are gradual, implicating tight coupling between the rotor angle and site affinities. PMID:22929779

  3. Detecting cooperative sequences in the binding of RNA Polymerase-II

    NASA Astrophysics Data System (ADS)

    Glass, Kimberly; Rozenberg, Julian; Girvan, Michelle; Losert, Wolfgang; Ott, Ed; Vinson, Charles

    2008-03-01

    Regulation of the expression level of genes is a key biological process controlled largely by the 1000 base pair (bp) sequence preceding each gene (the promoter region). Within that region transcription factor binding sites (TFBS), 5-10 bp long sequences, act individually or cooperate together in the recruitment of, and therefore subsequent gene transcription by, RNA Polymerase-II (RNAP). We have measured the binding of RNAP to promoters on a genome-wide basis using Chromatin Immunoprecipitation (ChIP-on-Chip) microarray assays. Using all 8-base pair long sequences as a test set, we have identified the DNA sequences that are enriched in promoters with high RNAP binding values. We are able to demonstrate that virtually all sequences enriched in such promoters contain a CpG dinucleotide, indicating that TFBS that contain the CpG dinucleotide are involved in RNAP binding to promoters. Further analysis shows that the presence of pairs of CpG containing sequences cooperate to enhance the binding of RNAP to the promoter.

  4. Pyrrole-Based Antitubulin Agents: Two Distinct Binding Modalities Are Predicted for C-2 Analogues in the Colchicine Site

    PubMed Central

    2011-01-01

    3,5-Dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogues were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structure–activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design. PMID:22611477

  5. The influence of action-outcome delay and arousal on sense of agency and the intentional binding effect.

    PubMed

    Wen, Wen; Yamashita, Atsushi; Asama, Hajime

    2015-11-01

    The sense of agency refers to the feeling of being able to initiate and control events through one's actions. The "intentional binding" effect (Haggard, Clark, & Kalogeras, 2002), refers to a subjective compression of the temporal interval between actions and their effects. The present study examined the influence of action-outcome delays and arousal on both the subjective judgment of agency and the intentional binding effect. In the experiment, participants pressed a key to trigger a central square to jump after various delays. A red central square was used in the high-arousal condition. Results showed that a longer interval between actions and their effects was associated with a lower sense of agency but a stronger intentional binding effect. Furthermore, although arousal enhanced the intentional binding effect, it did not influence the judgment of agency. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Binding of /sup 125/I-hCG to rainbow trout (Salmo gairdneri) testis in vitro. [Human Chorionic Gonadotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaghecke, R.

    1983-02-01

    Homogenates of maturing rainbow trout testes show specific binding sites for /sup 125/I-labeled hCG (. /sup 125/I-labeled hCG). The binding is competitively inhibited by unlabeled hCG and by a hypophyseal extract of rainbow trout. It could be demonstrated that the tissue /sup 125/I-hCG binding specificity is restricted to the gonadal preparation. The trout testis was characterized by determining affinity and capacity from Scatchard plot analysis giving a high constant of dissociation Kd 3.65 x 10(-10)/M and a low binding capacity of 0.88 x 10(-15) M/mg tissue. The test system is markedly dependent on temperature, incubation-time, and pH. The maximum bindingmore » was found at 37 degrees during 2 hr of incubation in a buffer of pH 7.5.« less

  7. Pyrrole-Based Antitubulin Agents: Two Distinct Binding Modalities are Predicted for C-2 Analogs in the Colchicine Site.

    PubMed

    Da, Chenxiao; Telang, Nakul; Barelli, Peter; Jia, Xin; Gupton, John T; Mooberry, Susan L; Kellogg, Glen E

    2012-01-12

    3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogs were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structural-activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design.

  8. Non-B-DNA structures on the interferon-beta promoter?

    PubMed

    Robbe, K; Bonnefoy, E

    1998-01-01

    The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.

  9. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  10. Pyrene-nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies.

    PubMed

    Jabłoński, Artur; Fritz, Yannic; Wagenknecht, Hans-Achim; Czerwieniec, Rafał; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof; Kowalski, Konrad

    2017-01-01

    Fluorescent pyrene-linker-nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene-C(O)CH 2 CH 2 -thymine ( 2 ) conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T 10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base-base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T 10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA) 10 -T 10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells.

  11. A Human Lectin Microarray for Sperm Surface Glycosylation Analysis *

    PubMed Central

    Sun, Yangyang; Cheng, Li; Gu, Yihua; Xin, Aijie; Wu, Bin; Zhou, Shumin; Guo, Shujuan; Liu, Yin; Diao, Hua; Shi, Huijuan; Wang, Guangyu; Tao, Sheng-ce

    2016-01-01

    Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays. PMID:27364157

  12. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    PubMed

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  13. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  14. Tropical soils in Mato Grosso, Brazil, retain high phosphorus (P) binding capacity after 30 years of intensive fertilization and will remain a P sink for another 50-160 years.

    NASA Astrophysics Data System (ADS)

    Porder, S.; Roy, E.; Willig, E.; Martinelli, L. A.; Pegorini, L.; Richards, P.; Spera, S. A.; Vazquez, F. F.

    2016-12-01

    Intensification of tropical agriculture is one way to meet increasing global food demand, but tropical soils often require more phosphorus (P) fertilizer than those in the world's traditional breadbaskets. Recent studies from Europe suggest that P fertilizer additions will eventually saturate soil P binding capacity, and can build a soil P bank upon which future crop production can draw. We tested this hypothesis in Mato Grosso, Brazil, where highly mechanized agriculture produces 9% of the world's soy harvest on soils with high P binding capacity. In this region, P fertilizer inputs typically exceed harvests by 10kg P/ha, and our expectation was that total P and available P would increase, and P binding capacity would decrease, with time in cultivation. To test this hypothesis, we measured P availability, binding, and accumulation on 31 fields ranging from 0-31 years in intensive production. We also estimated the number of years in production that would be required to saturate the soils with P, since after that time P additions could be reduced to equal harvest P removal. As expected, our data show increasing P availability, and decreasing P binding capacity, over time. A multiple regression including only soil [SiO2] (a proxy for both mineralogy and texture) and years in production explained 87, 63 and 91% of the observed variation in total P, Bray-extractable P, and P sorption capacity, respectively. However, the effect of [SiO2], and thus texture and mineralogy, was 1.7, 1.2, and 4.9 times more important in predicting our dependent variables than was years in production. Despite fertilizer inputs in excess of harvest removals, the reduction in P binding capacity is slow, and we estimate it will take between 50-160 years for fertilizer inputs to saturate the P binding capacity of these soils. These results suggest that the P tax imposed by high P binding soils in the tropics will impose substantial material costs to tropical farmers in the coming decades, and may influence their capacity to intensify food production to meet growing food demands.

  15. High-Density IgE Recognition of the Major Grass Pollen Allergen Phl p 1 Revealed with Single-Chain IgE Antibody Fragments Obtained by Combinatorial Cloning

    PubMed Central

    Madritsch, Christoph; Gadermaier, Elisabeth; Roder, Uwe W.; Lupinek, Christian; Valenta, Rudolf; Flicker, Sabine

    2015-01-01

    The timothy grass pollen allergen Phl p 1 belongs to the group 1 of highly cross-reactive grass pollen allergens with a molecular mass of ~25–30 kDa. Group 1 allergens are recognized by >95% of grass pollen allergic patients. We investigated the IgE recognition of Phl p 1 using allergen-specific IgE-derived single-chain variable Ab fragments (IgE-ScFvs) isolated from a combinatorial library constructed from PBMCs of a grass pollen–allergic patient. IgE-ScFvs reacted with recombinant Phl p 1 and natural group 1 grass pollen allergens. Using synthetic Phl p 1–derived peptides, the binding sites of two ScFvs were mapped to the N terminus of the allergen. In surface plasmon resonance experiments they showed comparable high-affinity binding to Phl p 1 as a complete human IgE-derived Ab recognizing the allergens’ C terminus. In a set of surface plasmon resonance experiments simultaneous allergen recognition of all three binders was demonstrated. Even in the presence of the three binders, allergic patients’ polyclonal IgE reacted with Phl p 1, indicating high-density IgE recognition of the Phl p 1 allergen. Our results show that multiple IgE Abs can bind with high density to Phl p 1, which may explain the high allergenic activity and sensitizing capacity of this allergen. PMID:25637023

  16. Characterization and localization of /sup 3/H-arginine8-vasopressin binding to rat kidney and brain tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorsa, D.M.; Majumdar, L.A.; Petracca, F.M.

    Anatomic, behavioral and pharmacologic evidence suggests that arginine8-vasopressin (AVP) serves as a CNS neurotransmitter or neuromodulator. AVP binding to membrane and tissue slice preparations from brain and kidney was characterized, and the anatomical distribution of these binding sites was examined. Conditions for the binding assay were optimized using kidney medullary tissue. Binding of /sup 3/H-AVP (S.A. . 30-51 Ci/mmol, NEN) to brain and kidney membranes and tissue slices was saturable, temperature dependent, linearly related to protein concentration (or number of tissue slices), reversible, and specific since the ability of cold AVP to displace /sup 3/H-AVP from binding was greater thanmore » oxytocin and other related peptide fragments. Autoradiographic localization of /sup 3/H-AVP binding was restricted to kidney medullary tissue. In brain tissue, /sup 3/H-AVP binding was found to occur in concentrated foci. Brainstem areas such as the nucleus tractus solitarius (NTS) showed a high density of AVP binding sites. Since local injections of AVP into the NTS have been shown to influence blood pressure, the present study presents the first anatomical evidence for the presence of AVP specific binding sites which might mediate this effect.« less

  17. Mutant botrocetin-2 inhibits von Willebrand factor-induced platelet agglutination.

    PubMed

    Matsui, T; Hori, A; Hamako, J; Matsushita, F; Ozeki, Y; Sakurai, Y; Hayakawa, M; Matsumoto, M; Fujimura, Y

    2017-03-01

    Essentials Botrocetin-2 (Bot2) binds to von Willebrand factor (VWF) and induces platelet agglutination. We identified Bot2 residues that are required for binding to VWF and glycoprotein (GP) Ib. We produced a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Mutant Bot2 could be used as a potential anti-thrombotic reagent to block VWF-GPIb interaction. Background Botrocetin-2 (Bot2) is a botrocetin-like protein composed of α and β subunits that have been cloned from the snake Bothrops jararaca. Bot2 binds specifically to von Willebrand factor (VWF), and the complex induces glycoprotein (GP) Ib-dependent platelet agglutination. Objectives To exploit Bot2's VWF-binding capacity in order to attempt to create a mutant Bot2 that binds to VWF but inhibits platelet agglutination. Methods and Results Several point mutations were introduced into Bot2 cDNA, and the recombinant protein (recombinant Bot2 [rBot2]) was purified on an anti-botrocetin column. The mutant rBot2 with either Ala at Asp70 in the β subunit (Aspβ70Ala), or Argβ115Ala and Lysβ117Ala, showed reduced platelet agglutination-inducing activity. rBot2 with Aspβ70Ala showed little binding activity towards immobilized VWF on an ELISA plate, whereas rBot2 with Argβ115Ala/Lysβ117Ala showed reduced binding activity towards GPIb (glycocalicin) after forming a complex with VWF. rBot2 point-mutated to oppositely charged Glu at both Argβ115 and Lysβ117 showed normal binding activity towards VWF but no platelet-agglutinating activity. Furthermore, this doubly mutated protein inhibited ristocetin-induced or high shear stress-induced platelet aggregation, and restrained thrombus formation under flow conditions. Conclusions Asp70 in the β subunit of botrocetin is important for VWF binding, and Arg115 and Lys117 in the β subunit are essential for interaction with GPIb. Doubly mutated rBot2, with Argβ115Glu and Lysβ117Glu, repels GPIb and might have potential as an antithrombotic reagent that specifically blocks VWF function. This is the first report on an artificial botrocetin that can inhibit the VWF-GPIb interaction. © 2017 International Society on Thrombosis and Haemostasis.

  18. Bone morphogenetic protein-binding endothelial regulator of liver sinusoidal endothelial cells induces iron overload in a fatty liver mouse model.

    PubMed

    Hasebe, Takumu; Tanaka, Hiroki; Sawada, Koji; Nakajima, Shunsuke; Ohtake, Takaaki; Fujiya, Mikihiro; Kohgo, Yutaka

    2017-03-01

    Non-alcoholic fatty liver disease (NAFLD) is frequently accompanied by iron overload. However, because of the complex hepcidin-regulating molecules, the molecular mechanism underlying iron overload remains unknown. To identify the key molecule involved in NAFLD-associated iron dysregulation, we performed whole-RNA sequencing on the livers of obese mice. Male C57BL/6 mice were fed a regular or high-fat diet for 16 or 48 weeks. Internal iron was evaluated by plasma iron, ferritin or hepatic iron content. Whole-RNA sequencing was performed by transcriptome analysis using semiconductor high-throughput sequencer. Mouse liver tissues or isolated hepatocytes and sinusoidal endothelial cells were used to assess the expression of iron-regulating molecules. Mice fed a high-fat diet for 16 weeks showed excess iron accumulation. Longer exposure to a high-fat diet increased hepatic fibrosis and intrahepatic iron accumulation. A pathway analysis of the sequencing data showed that several inflammatory pathways, including bone morphogenetic protein (BMP)-SMAD signaling, were significantly affected. Sequencing analysis showed 2314 altered genes, including decreased mRNA expression of the hepcidin-coding gene Hamp. Hepcidin protein expression and SMAD phosphorylation, which induces Hamp, were found to be reduced. The expression of BMP-binding endothelial regulator (BMPER), which inhibits BMP-SMAD signaling by binding BMP extracellularly, was up-regulated in fatty livers. In addition, immunohistochemical and cell isolation analyses showed that BMPER was primarily expressed in the liver sinusoidal endothelial cells (LSECs) rather than hepatocytes. BMPER secretion by LSECs inhibits BMP-SMAD signaling in hepatocytes and further reduces hepcidin protein expression. These intrahepatic molecular interactions suggest a novel molecular basis of iron overload in NAFLD.

  19. Spectroscopic studies on the active site of hydroperoxide lyase; the influence of detergents on its conformation.

    PubMed

    Noordermeer, M A; Veldink, G A; Vliegenthart, J F

    2001-02-02

    Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spectra confirmed its classification as a cytochrome P450 enzyme. The positive influence of detergents on the enzyme activity is paralleled by a spin state transition of the heme Fe(III) from low to high spin. EPR and CD spectra showed that detergents induce a subtle conformational change, which might result in improved substrate binding. Because hydroperoxide lyase is thought to be a membrane bound protein and detergents mimic a membrane environment, the more active, high spin form likely represents the in vivo conformation. Furthermore, the spin state appeared to be temperature-dependent, with the low spin state favored at low temperature. Point mutants of the highly conserved cysteine in domain D indicated that this residue might be involved in heme binding.

  20. Nanomechanical mapping of first binding steps of a virus to animal cells

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Newton, Richard; Schubert, Rajib; Martinez-Martin, David; Delguste, Martin; Roska, Botond; Müller, Daniel J.

    2017-02-01

    Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (<50 nm). We present theoretical approaches to contour the free-energy landscape of early binding events between an engineered virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.

  1. Interaction entropy for protein-protein binding

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  2. Interaction entropy for protein-protein binding.

    PubMed

    Sun, Zhaoxi; Yan, Yu N; Yang, Maoyou; Zhang, John Z H

    2017-03-28

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interactionentropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interactionentropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  3. Size-dependent protein segregation at membrane interfaces

    PubMed Central

    Schmid, Eva M; Bakalar, Matthew H; Choudhuri, Kaushik; Weichsel, Julian; Ann, HyoungSook; Geissler, Phillip L; Dustin, Michael L; Fletcher, Daniel A

    2016-01-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane protein organization, such as E-cadherin enrichment in epithelial junctional complexes and CD45 exclusion from the signaling foci of immunological synapses. To isolate the role of protein size in these processes, we reconstituted membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between binding and non-binding proteins can dramatically alter their organization at membrane interfaces in the absence of active contributions from the cytoskeleton, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally-driven membrane height fluctuations that transiently limit access to the interface. This simple, sensitive, and highly effective means of passively segregating proteins has implications for signaling at cell-cell junctions and protein sorting at intracellular contact points between membrane-bound organelles. PMID:27980602

  4. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckel, M.E.; Freund-Mercier, M.J.

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experimentsmore » showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.« less

  5. Odorant-binding proteins from a primitive termite.

    PubMed

    Ishida, Yuko; Chiang, Vicky P; Haverty, Michael I; Leal, Walter S

    2002-09-01

    Hitherto, odorant-binding proteins (OBPs) have been identified from insects belonging to more highly evolved insect orders (Lepidoptera, Coleoptera, Diptera, Hymenoptera, and Hemiptera), whereas only chemosensory proteins have been identified from more primitive species, such as orthopteran and phasmid species. Here, we report for the first time the isolation and cloning of odorant-binding proteins from a primitive termite species, the dampwood termite. Zootermopsis nevadensis nevadensis (Isoptera: Termopsidae). A major antennae-specific protein was detected by native PAGE along with four other minor proteins, which were also absent in the extract from control tissues (hindlegs). Multiple cDNA cloning led to the full characterization of the major antennae-specific protein (ZnevOBP1) and to the identification of two other antennae-specific cDNAs, encoding putative odorant-binding proteins (ZnevOBP2 and ZnevOBP3). N-terminal amino acid sequencing of the minor antennal bands and cDNA cloning showed that olfaction in Z. n. nevadensis may involve multiple odorant-binding proteins. Database searches suggest that the OBPs from this primitive termite are homologues of the pheromone-binding proteins from scarab beetles and antennal-binding proteins from moths.

  6. Autoradiographic analysis of binding sites for sup 125 I-Bolton-Hunter-substance P in the human eye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieselbach, G.F.; Ragaut, R.; Knaus, H.G.

    1990-07-01

    Substance P is known to exert potent effects in peripheral tissues, and is thought to be important for ocular function. The mechanism of action of substance P in the human eye is not known. As a basis for biochemical characterization specific binding of {sup 125}I-Bolton-Hunter-substance P was demonstrated in the human eye using autoradiographic methods. Biochemical characterization on slide-mounted tissue preparations showed that binding was saturable with a KD of 0.27 +/- 0.1 nmol/l. Specific binding occurred at comparable autoradiographic densities to both human retina and choroid. Substance P and its carboxyterminal fragment, substance P(3-11), were shown to be highlymore » potent in binding competition experiments against {sup 125}I-Bolton-Hunter-substance P. Similar concentrations of substance P(1-9), neurokinin A and neurokinin B failed to significantly alter specific binding of {sup 125}I-Bolton-Hunter-substance P. The results indicate expression of high affinity substance P binding sites in human retina and choroid.« less

  7. Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain.

    PubMed

    Legendre-Guillemin, Valerie; Metzler, Martina; Lemaire, Jean-Francois; Philie, Jacynthe; Gan, Lu; Hayden, Michael R; McPherson, Peter S

    2005-02-18

    Huntingtin interacting protein 1 (HIP1) is a component of clathrin coats. We previously demonstrated that HIP1 promotes clathrin assembly through its central helical domain, which binds directly to clathrin light chains (CLCs). To better understand the relationship between CLC binding and clathrin assembly we sought to dissect this interaction. Using C-terminal deletion constructs of the HIP1 helical domain, we identified a region between residues 450 and 456 that is required for CLC binding. Within this region, point mutations showed the importance of residues Leu-451, Leu-452, and Arg-453. Mutants that fail to bind CLC are unable to promote clathrin assembly in vitro but still mediate HIP1 homodimerization and heterodimerization with the family member HIP12/HIP1R. Moreover, HIP1 binding to CLC is necessary for HIP1 targeting to clathrin-coated pits and clathrin-coated vesicles. Interestingly, HIP1 binds to a highly conserved region of CLC previously demonstrated to regulate clathrin assembly. These results suggest a role for HIP1/CLC interactions in the regulation of clathrin assembly.

  8. Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies.

    PubMed

    Ali, M Rejwan; Sadoqi, Mostafa; Møller, Simon G; Boutajangout, Allal; Mezei, Mihaly

    2017-09-01

    In this report we assessed by docking and molecular dynamics the binding mechanisms of three FDA-approved Alzheimer drugs, inhibitors of the enzyme acetylcholinesterase (AChE): donepezil, galantamine and rivastigmine. Dockings by the softwares Autodock-Vina, PatchDock and Plant reproduced the docked conformations of the inhibitor-enzyme complexes within 2Å of RMSD of the X-ray structure. Free-energy scores show strong affinity of the inhibitors for the enzyme binding pocket. Three independent Molecular Dynamics simulation runs indicated general stability of donepezil, galantamine and rivastigmine in their respective enzyme binding pocket (also referred to as gorge) as well as the tendency to form hydrogen bonds with the water molecules. The binding of rivastigmine in the Torpedo California AChE binding pocket is interesting as it eventually undergoes carbamylation and breaks apart according to the X-ray structure of the complex. Similarity search in the ZINC database and targeted docking on the gorge region of the AChE enzyme gave new putative inhibitor molecules with high predicted binding affinity, suitable for potential biophysical and biological assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Solubilization and purification of melatonin receptors from lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less

  10. Degenerate Pax2 and Senseless binding motifs improve detection of low-affinity sites required for enhancer specificity

    PubMed Central

    Zandvakili, Arya; Campbell, Ian; Weirauch, Matthew T.

    2018-01-01

    Cells use thousands of regulatory sequences to recruit transcription factors (TFs) and produce specific transcriptional outcomes. Since TFs bind degenerate DNA sequences, discriminating functional TF binding sites (TFBSs) from background sequences represents a significant challenge. Here, we show that a Drosophila regulatory element that activates Epidermal Growth Factor signaling requires overlapping, low-affinity TFBSs for competing TFs (Pax2 and Senseless) to ensure cell- and segment-specific activity. Testing available TF binding models for Pax2 and Senseless, however, revealed variable accuracy in predicting such low-affinity TFBSs. To better define parameters that increase accuracy, we developed a method that systematically selects subsets of TFBSs based on predicted affinity to generate hundreds of position-weight matrices (PWMs). Counterintuitively, we found that degenerate PWMs produced from datasets depleted of high-affinity sequences were more accurate in identifying both low- and high-affinity TFBSs for the Pax2 and Senseless TFs. Taken together, these findings reveal how TFBS arrangement can be constrained by competition rather than cooperativity and that degenerate models of TF binding preferences can improve identification of biologically relevant low affinity TFBSs. PMID:29617378

  11. Structure of calmodulin complexed with an olfactory CNG channel fragment and role of the central linker: residual dipolar couplings to evaluate calmodulin binding modes outside the kinase family.

    PubMed

    Contessa, Gian Marco; Orsale, Maria; Melino, Sonia; Torre, Vincent; Paci, Maurizio; Desideri, Alessandro; Cicero, Daniel O

    2005-03-01

    The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.

  12. A molecular catalyst for water oxidation that binds to metal oxide surfaces

    PubMed Central

    Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  13. DR-78, a novel Drosophila melanogaster genomic DNA fragment highly homologous to the DNA-binding domain of thyroid hormone-retinoic acid-vitamin D receptor subfamily.

    PubMed

    Martín-Blanco, E; Kornberg, T B

    1993-11-16

    Degenerate oligodeoxyribonucleotides were designed for both ends of the DNA-binding domain of members of the nuclear receptor superfamily. PCR amplified Drosophila melanogaster DNA was purified and cloned (DR plasmids). Genomic lambda DASH clones were identified at high stringency with an amplified DR-78 plasmid DNA and isolated. The partial sequence shows a very probable open reading frame which would encode a peptide highly homologous to members of the thyroid hormone-retinoic acid-vitamin D receptor subfamily. The fragment corresponds to a single copy gene and was mapped at position 78D of chromosome three by in situ hybridization.

  14. Discovery of a novel general anesthetic chemotype using high-throughput screening.

    PubMed

    McKinstry-Wu, Andrew R; Bu, Weiming; Rai, Ganesha; Lea, Wendy A; Weiser, Brian P; Liang, David F; Simeonov, Anton; Jadhav, Ajit; Maloney, David J; Eckenhoff, Roderic G

    2015-02-01

    The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-aminoanthracene-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. From an initial chemical library of more than 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-aminoanthracene binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based on a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. The authors demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype.

  15. Electrical detection of single viruses

    NASA Astrophysics Data System (ADS)

    Patolsky, Fernando; Zheng, Gengfeng; Hayden, Oliver; Lakadamyali, Melike; Zhuang, Xiaowei; Lieber, Charles M.

    2004-09-01

    We report direct, real-time electrical detection of single virus particles with high selectivity by using nanowire field effect transistors. Measurements made with nanowire arrays modified with antibodies for influenza A showed discrete conductance changes characteristic of binding and unbinding in the presence of influenza A but not paramyxovirus or adenovirus. Simultaneous electrical and optical measurements using fluorescently labeled influenza A were used to demonstrate conclusively that the conductance changes correspond to binding/unbinding of single viruses at the surface of nanowire devices. pH-dependent studies further show that the detection mechanism is caused by a field effect, and that the nanowire devices can be used to determine rapidly isoelectric points and variations in receptor-virus binding kinetics for different conditions. Lastly, studies of nanowire devices modified with antibodies specific for either influenza or adenovirus show that multiple viruses can be selectively detected in parallel. The possibility of large-scale integration of these nanowire devices suggests potential for simultaneous detection of a large number of distinct viral threats at the single virus level.

  16. The Hippocampus Supports High-Resolution Binding in the Service of Perception, Working Memory and Long-Term Memory

    PubMed Central

    Yonelinas, Andrew P.

    2013-01-01

    It is well established that the hippocampus plays a critical role in our ability to recollect past events. A number of recent studies have indicated that the hippocampus may also play a critical role in working memory and perception, but these results have been highly controversial because other similar studies have failed to find evidence for hippocampal involvement. Thus, the precise role that the hippocampus plays in cognition is still debated. In the current paper, I propose that the hippocampus supports the generation and utilization of complex high-resolution bindings that link together the qualitative aspects that make up an event; these bindings are essential for recollection, and they can also contribute to performance across a variety of tasks including perception and working memory. An examination of the existing patient literature provides support for this proposal by showing that hippocampal damage leads to impairments on perception and working memory tasks that require complex high-resolution bindings. Conversely, hippocampal damage is much less likely to lead to impairments on tasks that require only low-resolution or simple associations/relations. The current proposal can be distinguished from earlier accounts of hippocampal function, and it generates a number of novel predictions that can be tested in future studies. PMID:23721964

  17. Efficient T-cell receptor signaling requires a high-affinity interaction between the Gads C-SH3 domain and the SLP-76 RxxK motif.

    PubMed

    Seet, Bruce T; Berry, Donna M; Maltzman, Jonathan S; Shabason, Jacob; Raina, Monica; Koretzky, Gary A; McGlade, C Jane; Pawson, Tony

    2007-02-07

    The relationship between the binding affinity and specificity of modular interaction domains is potentially important in determining biological signaling responses. In signaling from the T-cell receptor (TCR), the Gads C-terminal SH3 domain binds a core RxxK sequence motif in the SLP-76 scaffold. We show that residues surrounding this motif are largely optimized for binding the Gads C-SH3 domain resulting in a high-affinity interaction (K(D)=8-20 nM) that is essential for efficient TCR signaling in Jurkat T cells, since Gads-mediated signaling declines with decreasing affinity. Furthermore, the SLP-76 RxxK motif has evolved a very high specificity for the Gads C-SH3 domain. However, TCR signaling in Jurkat cells is tolerant of potential SLP-76 crossreactivity, provided that very high-affinity binding to the Gads C-SH3 domain is maintained. These data provide a quantitative argument that the affinity of the Gads C-SH3 domain for SLP-76 is physiologically important and suggest that the integrity of TCR signaling in vivo is sustained both by strong selection of SLP-76 for the Gads C-SH3 domain and by a capacity to buffer intrinsic crossreactivity.

  18. Promiscuity and selectivity of small-molecule inhibitors across TAM receptor tyrosine kinases in pediatric leukemia.

    PubMed

    Liu, Mao-Hua; Chen, Shi-Bing; Yu, Juan; Liu, Cheng-Jun; Zhang, Xiao-Jing

    2017-08-01

    The TAM receptor tyrosine kinase family member Mer has been recognized as an attractive therapeutic target for pediatric leukemia. Beside Mer the family contains other two kinases, namely, Tyro3 and Axl, which are highly homologues with Mer and thus most existing small-molecule inhibitors show moderate or high promiscuity across the three kinases. Here, the structural basis and energetic property of selective binding of small-molecule inhibitors to the three kinases were investigated at molecular level. It is found that the selectivity is primarily determined by the size, shape and configuration of kinase's ATP-binding site; the Mer and Axl possess a small, closed active pocket as compared to the bulky, open pocket of Tyro3. The location and conformation of active-site residues of Mer and Axl are highly consistent, suggesting that small-molecule inhibitors generally have a low Mer-over-Axl selectivity and a high Mer-over-Tyro3 selectivity. We demonstrated that the difference in ATP binding potency to the three kinases is also responsible for inhibitor selectivity. We also found that the long-range interactions and allosteric effect arising from rest of the kinase's active site can indirectly influence inhibitor binding and selectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.

    PubMed

    Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei; Li, Lu; Pei, Songfeng; Gentle, Ian Ross; Li, Feng; Cheng, Hui-Ming

    2013-06-25

    Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.

  20. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.

    PubMed

    Hu, Xiuzhen; Dong, Qiwen; Yang, Jianyi; Zhang, Yang

    2016-11-01

    More than half of proteins require binding of metal and acid radical ions for their structure and function. Identification of the ion-binding locations is important for understanding the biological functions of proteins. Due to the small size and high versatility of the metal and acid radical ions, however, computational prediction of their binding sites remains difficult. We proposed a new ligand-specific approach devoted to the binding site prediction of 13 metal ions (Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Ca 2+ , Mg 2+ , Mn 2+ , Na + , K + ) and acid radical ion ligands (CO3 2- , NO2 - , SO4 2- , PO4 3- ) that are most frequently seen in protein databases. A sequence-based ab initio model is first trained on sequence profiles, where a modified AdaBoost algorithm is extended to balance binding and non-binding residue samples. A composite method IonCom is then developed to combine the ab initio model with multiple threading alignments for further improving the robustness of the binding site predictions. The pipeline was tested using 5-fold cross validations on a comprehensive set of 2,100 non-redundant proteins bound with 3,075 small ion ligands. Significant advantage was demonstrated compared with the state of the art ligand-binding methods including COACH and TargetS for high-accuracy ion-binding site identification. Detailed data analyses show that the major advantage of IonCom lies at the integration of complementary ab initio and template-based components. Ion-specific feature design and binding library selection also contribute to the improvement of small ion ligand binding predictions. http://zhanglab.ccmb.med.umich.edu/IonCom CONTACT: hxz@imut.edu.cn or zhng@umich.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. A Novel Selective Inverse Agonist of the CB2 Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies.

    PubMed

    Martella, Andrea; Sijben, Huub; Rufer, Arne C; Grether, Uwe; Fingerle, Juergen; Ullmer, Christoph; Hartung, Thomas; IJzerman, Adriaan P; van der Stelt, Mario; Heitman, Laura H

    2017-10-01

    The endocannabinoid system, and in particular the cannabinoid type 2 receptor (CB2R), raised the interest of many medicinal chemistry programs for its therapeutic relevance in several (patho)physiologic processes. However, the physico-chemical properties of tool compounds for CB2R (e.g., the radioligand [ 3 H]CP55,940) are not optimal, despite the research efforts in developing effective drugs to target this system. At the same time, the importance of drug-target binding kinetics is growing since the kinetic binding profile of a ligand may provide important insights for the resulting in vivo efficacy. In this context we synthesized and characterized [ 3 H]RO6957022, a highly selective CB2R inverse agonist, as a radiolabeled tool compound. In equilibrium and kinetic binding experiments [ 3 H]RO6957022 showed high affinity for human CB2R with fast association ( k on ) and moderate dissociation ( k off ) kinetics. To demonstrate the robustness of [ 3 H]RO6957022 binding, affinity studies were carried out for a wide range of CB2R reference ligands, spanning the range of full, partial, and inverse agonists. Finally, we used [ 3 H]RO6957022 to study the kinetic binding profiles (i.e., k on and k off values) of selected synthetic and endogenous (i.e., 2-arachidonoylglycerol, anandamide, and noladin ether) CB2R ligands by competition association experiments. All tested ligands, and in particular the endocannabinoids, displayed distinct kinetic profiles, shedding more light on their mechanism of action and the importance of association rates in the determination of CB2R affinity. Altogether, this study shows that the use of a novel tool compound, i.e., [ 3 H]RO6957022, can support the development of novel ligands with a repertoire of kinetic binding profiles for CB2R. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  2. A High Affinity Red Fluorescence and Colorimetric Probe for Amyloid β Aggregates

    NASA Astrophysics Data System (ADS)

    Rajasekhar, K.; Narayanaswamy, Nagarjun; Murugan, N. Arul; Kuang, Guanglin; Ågren, Hans; Govindaraju, T.

    2016-04-01

    A major challenge in the Alzheimer’s disease (AD) is its timely diagnosis. Amyloid β (Aβ) aggregates have been proposed as the most viable biomarker for the diagnosis of AD. Here, we demonstrate hemicyanine-based benzothiazole-coumarin (TC) as a potential probe for the detection of highly toxic Aβ42 aggregates through switch-on, enhanced (~30 fold) red fluorescence (Emax = 654 nm) and characteristic colorimetric (light red to purple) optical outputs. Interestingly, TC exhibits selectivity towards Aβ42 fibrils compared to other abnormal protein aggregates. TC probe show nanomolar binding affinity (Ka = 1.72 × 107 M-1) towards Aβ42 aggregates and also displace ThT bound to Aβ42 fibrils due to its high binding affinity. The Aβ42 fibril-specific red-shift in the absorption spectra of TC responsible for the observed colorimetric optical output has been attributed to micro-environment change around the probe from hydrophilic-like to hydrophobic-like nature. The binding site, binding energy and changes in optical properties observed for TC upon interaction with Aβ42 fibrils have been further validated by molecular docking and time dependent density functional theory studies.

  3. In vivo detection of amyloid plaques in the mouse brain using the near-infrared fluorescence probe THK-265.

    PubMed

    Okamura, Nobuyuki; Mori, Masanori; Furumoto, Shozo; Yoshikawa, Takeo; Harada, Ryuichi; Ito, Satoshi; Fujikawa, Yosuke; Arai, Hiroyuki; Yanai, Kazuhiko; Kudo, Yukitsuka

    2011-01-01

    Noninvasive detection of amyloid-β (Aβ) deposits in the brain would be beneficial for an early and presymptomatic diagnosis of Alzheimer's disease (AD). We developed THK-265 as a candidate near-infrared fluorescence (NIRF) probe for the in vivo detection of amyloid deposits in the brain. The maximal emission wavelength of THK-265 was greater than 650nm and it showed high quantum yield and molar absorption coefficients. A fluorescence binding assay showed its high binding affinity to Aβ fibrils (Kd = 97 nM). THK-265 clearly stained amyloid plaques in AD neocortical brain sections and showed a moderate log p value (1.8). After intravenous administration of THK-265 in amyloid-β protein precursor (AβPP) transgenic mice, amyloid deposits in the brain were clearly labeled with THK-265. Furthermore, in vivo NIRF imaging demonstrated significantly higher fluorescence intensity in the brains of AβPP transgenic mice than in those of wild-type mice. As THK-265 showed profound hyperchromic effect upon binding to Aβ fibrils, good discrimination between AβPP transgenic and wild-type mice was demonstrated even early after THK-265 administration. Furthermore, the fluorescence intensity of THK-265 correlated with amyloid plaque burden in the brains of AβPP transgenic mice. These findings strongly support the usefulness of THK-265 as an NIRF imaging probe for the noninvasive measurement of brain amyloid load.

  4. Comparative study of thiophilic functionalised matrices for polyclonal F(ab')2 purification.

    PubMed

    Kumpalume, Peter; Slater, Nigel K H

    2004-01-02

    Thiophilic adsorbents have been developed using divinyl sulfone or epoxy activated Streamline quartz base matrix. Their capacity and selectivity for binding polyclonal F(ab')2 fragments generated by whole serum proteolysis was tested. Except for epoxy activated guanidine, all the adsorbents displayed high selectivity for F(ab')2 with dynamic binding capacities ranging from 3 to 10 mg/ml of adsorbent. Thiol immobilised ligands adsorbed more F(ab')2 and the recovery was equal to or more than that from amino immobilised ligands. All adsorbents showed good selectivity for IgG and the dynamic binding capacities were better than for F(ab')2.

  5. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS.

    PubMed

    Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2016-06-03

    Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Adherence of oral streptococci: evidence for nonspecific adsorption to saliva-coated hydroxylapatite surfaces.

    PubMed Central

    Staat, R H; Peyton, J C

    1984-01-01

    It is proposed that binding of oral streptococci to saliva-coated hydroxylapatite (SHA) surfaces is a multifactorial process involving both specific and nonspecific receptors. In this context, specific binding is described as a high-affinity, saturable interaction between the cell and binding surface. Conversely, nonspecific binding is considered to be a nonsaturable, generalized, low-affinity reaction. Experimental differentiation of specific binding from nonspecific binding was achieved with a competition assay which utilized a large excess of nonradiolabeled bacteria to compete with the 3H-labeled cells for attachment to receptors on 1.5 mg of SHA crystals. Competition assays of Streptococcus sanguis and Streptococcus mitis adhesion clearly demonstrated that the total binding isotherm was composed of a saturable specific binding reaction and a minor nonspecific binding component. This was further substantiated by analysis of nonlinear Scatchard plots of the total binding data. The competition data for Streptococcus mutans binding indicated that ca. 50% of the S. mutans binding appeared to be specific, although saturation of the SHA surfaces with bacterial cells could not be demonstrated. Experiments measuring desorption of radiolabeled cells from SHA crystals into buffer showed that ca. 50% of the bound S. mutans cells were removed after 4 h, whereas less than 5% of the S. sanguis cells were eluted from the SHA surfaces. The kinetics of attachment were studied by using an extract of Persea americana as a noncompetitive inhibitor of adherence. The total cell binding data for these experiments suggested a very rapid binding reaction followed by a slower rate of attachment. It was concluded from these three different experimental approaches that adherence of selected oral streptococci to SHA surfaces involves specific, high-affinity and nonspecific, low-affinity binding reactions. The concept is developed that in vitro streptococcal attachment to SHA can be described as a two-reaction process in which the low-affinity interaction of the cell with the SHA surface precedes the establishment of the stronger, specific bonds needed for the maintenance of streptococci in the oral cavity. PMID:6327530

  7. Influence of alcoholism and cholesterol on TSPO binding in brain: PET [11C]PBR28 studies in humans and rodents.

    PubMed

    Kim, Sung Won; Wiers, Corinde E; Tyler, Ryan; Shokri-Kojori, Ehsan; Jang, Yeon Joo; Zehra, Amna; Freeman, Clara; Ramirez, Veronica; Lindgren, Elsa; Miller, Gregg; Cabrera, Elizabeth A; Stodden, Tyler; Guo, Min; Demiral, Şükrü B; Diazgranados, Nancy; Park, Luke; Liow, Jeih-San; Pike, Victor; Morse, Cheryl; Vendruscolo, Leandro F; Innis, Robert B; Koob, George F; Tomasi, Dardo; Wang, Gene-Jack; Volkow, Nora D

    2018-05-03

    Neuroinflammation appears to contribute to neurotoxicity observed with heavy alcohol consumption. To assess whether chronic alcohol results in neuroinflammation we used PET and [ 11 C]PBR28, a ligand that binds to the 18-kDa translocator protein (TSPO), to compare participants with an alcohol use disorder (AUD: n = 19) with healthy controls (HC: n = 17), and alcohol-dependent (n = 9) with -nondependent rats (n = 10). Because TSPO is implicated in cholesterol's transport for steroidogenesis, we investigated whether plasma cholesterol levels influenced [ 11 C]PBR28 binding. [ 11 C]PBR28 binding did not differ between AUD and HC. However, when separating by TSPO genotype rs6971, we showed that medium-affinity binders AUD participants showed lower [ 11 C]PBR28 binding than HC in regions of interest (whole brain, gray and white matter, hippocampus, and thalamus), but no group differences were observed in high-affinity binders. Cholesterol levels inversely correlated with brain [ 11 C]PBR28 binding in combined groups, due to a correlation in AUD participants. In rodents, we observed no differences in brain [ 11 C]PBR28 uptake between alcohol-dependent and -nondependent rats. These findings, which are consistent with two previous [ 11 C]PBR28 PET studies, may indicate lower activation of microglia in AUD, whereas failure to observe alcohol effects in the rodent model indicate that species differences do not explain the discrepancy with prior rodent autoradiographic studies reporting increases in TSPO binding with chronic alcohol. However, reduced binding in AUD participants could also reflect competition from endogenous TSPO ligands such as cholesterol; and since the rs6971 polymorphism affects the cholesterol-binding domain of TSPO this could explain why differences were observed only in medium-affinity binders.

  8. Application of hollow fiber-supported liquid-phase microextraction coupled with HPLC for the determination of guaifenesin enantiomer-protein binding.

    PubMed

    Hatami, Mehdi; Farhadi, Khalil

    2012-07-01

    A hollow fiber liquid-phase microextraction technique coupled with high-performance liquid chromatography with fluorescence detection was employed for determination and evaluation of the binding characteristics of drugs to bovine serum albumin (BSA). Enantiomers of guaifenesin (an expectorant drug) were investigated as a model system. After optimization of some influencing parameters on microextraction, the proposed method was used for calculation of the target drug distribution coefficient between n-octanol and the buffer solution as well as study of drug-BSA binding in physiological conditions. The developed method shows a new, improved and simple procedure for determination of free drug concentration in biological fluids and the extent of drug-protein binding. Copyright © 2011 John Wiley & Sons, Ltd.

  9. TF1, the bacteriophage SPO1-encoded type II DNA-binding protein, is essential for viral multiplication.

    PubMed

    Sayre, M H; Geiduschek, E P

    1988-09-01

    The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.

  10. A maximum entropy model for chromatin structure

    NASA Astrophysics Data System (ADS)

    Farre, Pau; Emberly, Eldon; Emberly Group Team

    The DNA inside the nucleus of eukaryotic cells shows a variety of conserved structures at different length scales These structures are formed by interactions between protein complexes that bind to the DNA and regulate gene activity. Recent high throughput sequencing techniques allow for the measurement both of the genome wide contact map of the folded DNA within a cell (HiC) and where various proteins are bound to the DNA (ChIP-seq). In this talk I will present a maximum-entropy method capable of both predicting HiC contact maps from binding data, and binding data from HiC contact maps. This method results in an intuitive Ising-type model that is able to predict how altering the presence of binding factors can modify chromosome conformation, without the need of polymer simulations.

  11. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    PubMed

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  12. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  13. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites.

  14. Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection*

    PubMed Central

    Sobotka, Roman; Kish, Elizabeth; Shukla, Mahendra Kumar; Pascal, Andrew A.; Polívka, Tomáš; Robert, Bruno

    2017-01-01

    Cyanobacteria possess a family of one-helix high light-inducible proteins (Hlips) that are homologous to light-harvesting antenna of plants and algae. An Hlip protein, high light-inducible protein D (HliD) purified as a small complex with the Ycf39 protein is evaluated using resonance Raman spectroscopy. We show that the HliD binds two different β-carotenes, each present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 489 and 522 nm, respectively. Both populations of β-carotene molecules were in all-trans configuration and the absorption position of the farthest blue-shifted β-carotene was attributed entirely to the polarizability of the environment in its binding pocket. In contrast, the absorption maximum of the red-shifted β-carotene was attributed to two different factors: the polarizability of the environment in its binding pocket and, more importantly, to the conformation of its β-rings. This second β-carotene has highly twisted β-rings adopting a flat conformation, which implies that the effective conjugation length N is extended up to 10.5 modifying the energetic levels. This increase in N will also result in a lower S1 energy state, which may provide a permanent energy dissipation channel. Analysis of the carbonyl stretching region for chlorophyll a excitations indicates that the HliD binds six chlorophyll a molecules in five non-equivalent binding sites, with at least one chlorophyll a presenting a slight distortion to its macrocycle. The binding modes and conformations of HliD-bound pigments are discussed with respect to the known structures of LHCII and CP29. PMID:27994060

  15. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity

    PubMed Central

    Korkuć, Paula; Walther, Dirk

    2015-01-01

    To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites. PMID:26442281

  16. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene

    PubMed Central

    Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2016-01-01

    Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30–60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. PMID:27006398

  17. Dynamics, Conformational Entropy, and Frustration in Protein-Protein Interactions Involving an Intrinsically Disordered Protein Domain.

    PubMed

    Lindström, Ida; Dogan, Jakob

    2018-05-18

    Intrinsically disordered proteins (IDPs) are abundant in the eukaryotic proteome. However, little is known about the role of subnanosecond dynamics and the conformational entropy that it represents in protein-protein interactions involving IDPs. Using nuclear magnetic resonance side chain and backbone relaxation, stopped-flow kinetics, isothermal titration calorimetry, and computational studies, we have characterized the interaction between the globular TAZ1 domain of the CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2). We show that the TAZ1/TAD-STAT2 complex retains considerable subnanosecond motions, with TAD-STAT2 undergoing only a partial disorder-to-order transition. We report here the first experimental determination of the conformational entropy change for both binding partners in an IDP binding interaction and find that the total change even exceeds in magnitude the binding enthalpy and is comparable to the contribution from the hydrophobic effect, demonstrating its importance in the binding energetics. Furthermore, we show that the conformational entropy change for TAZ1 is also instrumental in maintaining a biologically meaningful binding affinity. Strikingly, a spatial clustering of very high amplitude motions and a cluster of more rigid sites in the complex exist, which through computational studies we found to overlap with regions that experience energetic frustration and are less frustrated, respectively. Thus, the residual dynamics in the bound state could be necessary for faster dissociation, which is important for proteins that interact with multiple binding partners.

  18. Effect of redox partner binding on CYP101D1 conformational dynamics.

    PubMed

    Batabyal, Dipanwita; Poulos, Thomas L

    2018-06-01

    We have compared the thermodynamics of substrate and redox partner binding of P450cam to its close homologue, CYP101D1, using isothermal titration calorimetry (ITC). CYP101D1 binds camphor about 10-fold more weakly than P450cam which is consistent with the inability of camphor to cause a complete low- to high-spin shift in CYP101D1. Even so molecular dynamics simulations show that camphor is very stable in the CYP101D1 active site similar to P450cam. ITC data on the binding of the CYP101D1 ferredoxin redox partner (abbreviated Arx) shows that the substrate-bound closed state of CYP101D1 binds Arx more tightly than the substrate-free open form. This is just the opposite to P450cam where Pdx (ferredoxin redox partner of P450cam) favors binding to the P450cam open state. In addition, CYP101D1-Arx binding has a large negative ΔS while the P450cam-Pdx has a much smaller ΔS indicating that interactions at the docking interface are different. The most obvious difference is that PDX D38 which forms an important ion pair with P450cam R112 at the center of the interface is Arx L39 in Arx. This suggests that Arx may adopt a different orientation than Pdx in order to optimize nonpolar interactions with Arx L39 . Copyright © 2018. Published by Elsevier Inc.

  19. Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families.

    PubMed

    Garcia, Mario D; Nouwens, Amanda; Lonhienne, Thierry G; Guddat, Luke W

    2017-02-14

    Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted "S"-shaped conformation when bound to A. thaliana AHAS ( At AHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors.

  20. Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families

    PubMed Central

    Nouwens, Amanda; Lonhienne, Thierry G.; Guddat, Luke W.

    2017-01-01

    Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted “S”-shaped conformation when bound to A. thaliana AHAS (AtAHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors. PMID:28137884

  1. Lipid A binding sites in membranes of macrophage tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, R.Y.; Golenbock, D.T.; Raetz, C.R.

    1988-10-15

    Lipopolysaccharide affects a variety of eukaryotic cells and mammalian organisms. These actions are involved in the pathogenesis of Gram-negative septicemia. Many of the actions of lipopolysaccharide are believed to be caused by its active moiety, lipid A. Our laboratory has previously identified a bioactive lipid A precursor, termed lipid IVA, which can be labeled with 32P of high specific activity and purified. In this work we have used the labeled probe, 4'-32P-lipid IVA, to develop a novel assay for the specific binding of lipid IVA to whole cells. We have also demonstrated its use in a ligand blotting assay ofmore » immobilized cellular proteins. Using the whole cell assay, we show that 4'-32P-lipid IVA specifically binds to RAW 264.7 macrophage-like cultured cells. The binding is saturable, is inhibited with excess unlabeled lipid IVA, and is proteinase K-sensitive. It displays cellular and pharmacological specificity. Using the ligand blotting assay, we show that several RAW 264.7 cell proteins can bind 4'-32P-lipid IVA. The two principal binding proteins have Mr values of 31 and 95 kDa, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Fractionation studies indicate that the 31-kDa protein is enriched in the nuclear fraction and may be a histone, whereas the 95-kDa protein is enriched in the membrane fraction. The binding assays that we have developed should lead to a clearer understanding of lipid A/animal cell interactions.« less

  2. Recruitment of Mcm10 to Sites of Replication Initiation Requires Direct Binding to the Minichromosome Maintenance (MCM) Complex.

    PubMed

    Douglas, Max E; Diffley, John F X

    2016-03-11

    Mcm10 is required for the initiation of eukaryotic DNA replication and contributes in some unknown way to the activation of the Cdc45-MCM-GINS (CMG) helicase. How Mcm10 is localized to sites of replication initiation is unclear, as current models indicate that direct binding to minichromosome maintenance (MCM) plays a role, but the details and functional importance of this interaction have not been determined. Here, we show that purified Mcm10 can bind both DNA-bound double hexamers and soluble single hexamers of MCM. The binding of Mcm10 to MCM requires the Mcm10 C terminus. Moreover, the binding site for Mcm10 on MCM includes the Mcm2 and Mcm6 subunits and overlaps that for the loading factor Cdt1. Whether Mcm10 recruitment to replication origins depends on CMG helicase assembly has been unclear. We show that Mcm10 recruitment occurs via two modes: low affinity recruitment in the absence of CMG assembly ("G1-like") and high affinity recruitment when CMG assembly takes place ("S-phase-like"). Mcm10 that cannot bind directly to MCM is defective in both modes of recruitment and is unable to support DNA replication. These findings indicate that Mcm10 is localized to replication initiation sites by directly binding MCM through the Mcm10 C terminus. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel.

    PubMed

    Henry, Pauline C; Kanelis, Voula; O'Brien, M Christine; Kim, Brian; Gautschi, Ivan; Forman-Kay, Julie; Schild, Laurent; Rotin, Daniela

    2003-05-30

    The epithelial Na+ channel (alphabetagammaENaC) regulates salt and fluid homeostasis and blood pressure. Each ENaC subunit contains a PY motif (PPXY) that binds to the WW domains of Nedd4, a Hect family ubiquitin ligase containing 3-4 WW domains and usually a C2 domain. It has been proposed that Nedd4-2, but not Nedd4-1, isoforms can bind to and suppress ENaC activity. Here we challenge this notion and show that, instead, the presence of a unique WW domain (WW3*) in either Nedd4-2 or Nedd4-1 determines high affinity interactions and the ability to suppress ENaC. WW3* from either Nedd4-2 or Nedd4-1 binds ENaC-PY motifs equally well (e.g. Kd approximately 10 microm for alpha- or betaENaC, 3-6-fold higher affinity than WW4), as determined by intrinsic tryptophan fluorescence. Moreover, dNedd4-1, which naturally contains a WW3* instead of WW2, is able to suppress ENaC function equally well as Nedd4-2. Homology models of the WW3*.betaENaC-PY complex revealed that a Pro and Ala conserved in all WW3*, but not other Nedd4-WW domains, help form the binding pocket for PY motif prolines. Extensive contacts are formed between the betaENaC-PY motif and the Pro in WW3*, and the small Ala creates a large pocket to accommodate the peptide. Indeed, mutating the conserved Pro and Ala in WW3* reduces binding affinity 2-3-fold. Additionally, we demonstrate that mutations in PY motif residues that form contacts with the WW domain based on our previously solved structure either abolish or severely reduce binding affinity to the WW domain and that the extent of binding correlates with the level of ENaC suppression. Independently, we show that a peptide encompassing the PY motif of sgk1, previously proposed to bind to Nedd4-2 and alter its ability to regulate ENaC, does not bind (or binds poorly) the WW domains of Nedd4-2. Collectively, these results suggest that high affinity of WW domain-PY-motif interactions rather than affiliation with Nedd4-1/Nedd-2 is critical for ENaC suppression by Nedd4 proteins.

  4. Two classes of ouabain binding sites in ferret heart and two forms of Na+-K+-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Y.C.; Akera, T.

    1987-05-01

    In partially purified Na+-K+-adenosinetriphosphatase (ATPase) obtained from ferret heart, ouabain produced a monophasic inhibition curve; however, the curve spanned over 5 logarithmic units, indicating the presence of more than one classes of enzyme. (/sup 3/H)ouabain binding studies revealed high-and low-affinity binding sites in approximately equal abundance, with apparent dissociation constants of 10 and 230 nM, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of phosphoenzyme formed from (gamma-/sup 32/P)ATP showed two distinct K+-sensitive bands of approximately 100,000 molecular weight. Phosphoenzyme formation from the high-molecular-weight alpha(+) form was selectively inhibited by N-ethylmaleimide. Ouabain caused a 50% inhibition of phosphorylation of the alpha(+) formmore » at 40 nM and the lower-molecular-weight alpha form at 300 nM. In papillary muscle preparations, 1-30 nM ouabain produced a modest positive inotropic effect that reached an apparent plateau at 30 nM. Further increases in ouabain concentrations, however, produced additional and prominent inotropic effects at 0.1-10 microM. These results indicate for the first time in cardiac muscle that the high- and low-affinity ouabain binding sites are associated with the alpha(+) and alpha forms of the Na+-K+-ATPase, respectively, and that binding of ouabain to either of these sites causes enzyme inhibition and the positive inotropic effect.« less

  5. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands

    PubMed Central

    Marino, Michael; Banerjee, Manidipa; Jonquières, Renaud; Cossart, Pascale; Ghosh, Partho

    2002-01-01

    InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion. PMID:12411480

  6. Substrate-induced stable enzyme-inhibitor complex formation allows tight binding of novel 2-aminopyrimidin-4(3H)-ones to drug-resistant HIV-1 reverse transcriptase mutants.

    PubMed

    Samuele, Alberta; Facchini, Marcella; Rotili, Dante; Mai, Antonello; Artico, Marino; Armand-Ugón, Mercedes; Esté, José A; Maga, Giovanni

    2008-09-01

    We recently reported the synthesis and biological evaluation of a novel series of 5-alkyl-2-(N,N-disubstituted)amino-6-(2,6-difluorophenylalkyl)-3,4-dihydropyrimidin-4(3H)-ones (F(2)-N,N-DABOs). These compounds are highly active against both wild-type HIV-1 and the K103N, Y181C, and Y188L mutant strains. Herein we present novel 6-(2-chloro-6-fluorophenylalkyl)-N,N-DABO (2-Cl-6-F-N,N-DABO) derivatives and investigate the molecular basis for their high-affinity binding to HIV-1 reverse transcriptase (RT). Our results show that the new compounds display higher association rates than the difluoro derivatives toward wild-type HIV-1 RT or drug-resistant RT mutant forms. We also show that they preferentially associate to either the free enzyme or the enzyme-nucleic acid binary complex, and that this binding is stabilized upon formation of the ternary complex between HIV-1 RT and both the nucleic acid and nucleotide substrates. Interestingly, one compound showed dissociation rates from the ternary complex with RT mutants K103N and Y181I 10-20-fold slower than from the corresponding complex with wild-type RT.

  7. A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyburn, Tasia M.; Bensing, Barbara A.; Xiong, Yan Q.

    2014-10-02

    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIb{alpha}. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB{sub BR}), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB{sub BR} structure revealed that it is comprised of three independently folded subdomains or modules: (1)more » an Ig-fold resembling a CnaA domain from prokaryotic pathogens; (2) a second Ig-fold resembling the binding region of mammalian Siglecs; (3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIb{alpha}. Further examination of purified GspB{sub BR}-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.« less

  8. Nanobody Binding to a Conserved Epitope Promotes Norovirus Particle Disassembly

    PubMed Central

    Koromyslova, Anna D.

    2014-01-01

    ABSTRACT Human noroviruses are icosahedral single-stranded RNA viruses. The capsid protein is divided into shell (S) and protruding (P) domains, which are connected by a flexible hinge region. There are numerous genetically and antigenically distinct noroviruses, and the dominant strains evolve every other year. Vaccine and antiviral development is hampered by the difficulties in growing human norovirus in cell culture and the continually evolving strains. Here, we show the X-ray crystal structures of human norovirus P domains in complex with two different nanobodies. One nanobody, Nano-85, was broadly reactive, while the other, Nano-25, was strain specific. We showed that both nanobodies bound to the lower region on the P domain and had nanomolar affinities. The Nano-85 binding site mainly comprised highly conserved amino acids among the genetically distinct genogroup II noroviruses. Several of the conserved residues also were recognized by a broadly reactive monoclonal antibody, which suggested this region contained a dominant epitope. Superposition of the P domain nanobody complex structures into a cryoelectron microscopy particle structure revealed that both nanobodies bound at occluded sites on the particles. The flexible hinge region, which contained ∼10 to 12 amino acids, likely permitted a certain degree of P domain movement on the particles in order to accommodate the nanobodies. Interestingly, the Nano-85 binding interaction with intact particles caused the particles to disassemble in vitro. Altogether, these results suggested that the highly conserved Nano-85 binding epitope contained a trigger mechanism for particle disassembly. Principally, this epitope represents a potential site of norovirus vulnerability. IMPORTANCE We characterized two different nanobodies (Nano-85 and Nano-25) that bind to human noroviruses. Both nanobodies bound with high affinities to the lower region of the P domain, which was occluded on intact particles. Nano-25 was specific for GII.10, whereas Nano-85 bound several different GII genotypes, including GII.4, GII.10, and GII.12. We showed that Nano-85 was able to detect norovirus virions in clinical stool specimens using a sandwich enzyme-linked immunosorbent assay. Importantly, we found that Nano-85 binding to intact particles caused the particles to disassemble. We believe that with further testing, Nano-85 not only will work as a diagnostic reagent in norovirus detection systems but also could function as a broadly reactive GII norovirus antiviral. PMID:25520510

  9. Study on the interaction between typical phthalic acid esters (PAEs) and human haemoglobin (hHb) by molecular docking.

    PubMed

    Tan, Songwen; Wang, Donglin; Chi, Zhenxing; Li, Weiguo; Shan, Ye

    2017-07-01

    This work has evaluated the binding force between hHb and typcial PAEs (DMP, DEP, DPRP, DBP, DIBP, DHP and DPHP) using molecule docking technique. The DPHP with 3 aromatic rings has the strongest binding (-ΔG binding : 6.0kcalmol -1 ) than other PAEs (-ΔG binding : 2.91∼4.48kcalmol -1 ). The DMP with the lowest molecular weight has a high binding force (-ΔG binding : 4.48kcalmol -1 ), while the DHP with the highest molecular weight has the lowest binding force (-ΔG binding : 2.91kcalmol -1 ). When the length of side chain increases, the binding force trend to decrease, regarding the VDW forces and H-bonding. The lgK ow -ΔG binding plotting figure shows that a higher K ow value is accompanied by a lower binding force. The aromatic ring existed in PAEs largely increases the binding force between the hHb and the PAEs. On the other hand, the PAEs with higher number of carbon, meaning a higher hydrophobicity, can enter into the hydrophobic space of hHb centre deeper and bond to different position. The aromatic ring decreases the depth of binding position in the hydrophobic space. This work provides basic data and a theoretical method to assess the transport and accumulation of PAEs in human body, and the cytotoxicity of PAEs to hBRCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  11. Novel Mechanism of Hemin Capture by Hbp2, the Hemoglobin-binding Hemophore from Listeria monocytogenes*

    PubMed Central

    Malmirchegini, G. Reza; Sjodt, Megan; Shnitkind, Sergey; Sawaya, Michael R.; Rosinski, Justin; Newton, Salete M.; Klebba, Phillip E.; Clubb, Robert T.

    2014-01-01

    Iron is an essential nutrient that is required for the growth of the bacterial pathogen Listeria monocytogenes. In cell cultures, this microbe secretes hemin/hemoglobin-binding protein 2 (Hbp2; Lmo2185) protein, which has been proposed to function as a hemophore that scavenges heme from the environment. Based on its primary sequence, Hbp2 contains three NEAr transporter (NEAT) domains of unknown function. Here we show that each of these domains mediates high affinity binding to ferric heme (hemin) and that its N- and C-terminal domains interact with hemoglobin (Hb). The results of hemin transfer experiments are consistent with Hbp2 functioning as an Hb-binding hemophore that delivers hemin to other Hbp2 proteins that are attached to the cell wall. Surprisingly, our work reveals that the central NEAT domain in Hbp2 binds hemin even though its primary sequence lacks a highly conserved YXXXY motif that is used by all other previously characterized NEAT domains to coordinate iron in the hemin molecule. To elucidate the mechanism of hemin binding by Hbp2, we determined crystal structures of its central NEAT domain (Hbp2N2; residues 183–303) in its free and hemin-bound states. The structures reveal an unprecedented mechanism of hemin binding in which Hbp2N2 undergoes a major conformational rearrangement that facilitates metal coordination by a non-canonical tyrosine residue. These studies highlight previously unrecognized plasticity in the hemin binding mechanism of NEAT domains and provide insight into how L. monocytogenes captures heme iron. PMID:25315777

  12. Hit to lead account of the discovery of a new class of inhibitors of Pim kinases and crystallographic studies revealing an unusual kinase binding mode.

    PubMed

    Qian, Kevin; Wang, Lian; Cywin, Charles L; Farmer, Bennett T; Hickey, Eugene; Homon, Carol; Jakes, Scott; Kashem, Mohammed A; Lee, George; Leonard, Scott; Li, Jun; Magboo, Ronald; Mao, Wang; Pack, Edward; Peng, Charlene; Prokopowicz, Anthony; Welzel, Morgan; Wolak, John; Morwick, Tina

    2009-04-09

    A series of inhibitors of Pim-2 kinase identified by high-throughput screening is described. Details of the hit validation and lead generation process and structure-activity relationship (SAR) studies are presented. Disclosure of an unconventional binding mode for 1, as revealed by X-ray crystallography using the highly homologous Pim-1 protein, is also presented, and observed binding features are shown to correlate with the Pim-2 SAR. While highly selective within the kinase family, the series shows similar potency for both Pim-1 and Pim-2, which was expected on the basis of homology, but unusual in light of reports in the literature documenting a bias for Pim-1. A rationale for these observations based on Pim-1 and Pim-2 K(M(ATP)) values is suggested. Some interesting cross reactivity with casein kinase-2 was also identified, and structural features which may contribute to the association are discussed.

  13. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination.

    PubMed

    Ren, Xiao-Min; Guo, Liang-Hong; Gao, Yu; Zhang, Bin-Tian; Wan, Bin

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2'-OH-BDE-28, 3'-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3'-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Comparison of phosphodiesterase 10A, dopamine receptors D1 and D2 and dopamine transporter ligand binding in the striatum of the R6/2 and BACHD mouse models of Huntington's disease.

    PubMed

    Miller, Silke; Hill Della Puppa, Geraldine; Reidling, Jack; Marcora, Edoardo; Thompson, Leslie M; Treanor, James

    2014-01-01

    Phosphodiesterase 10A (PDE10A) is expressed at high levels in the striatum and has been proposed both as a biomarker for Huntington's disease pathology and as a target for intervention. PDE10A radiotracers have been successfully used to measure changes in binding density in Huntington's disease patients, but little is known about PDE10A binding in mouse models that are used extensively to model pathology and test therapeutic interventions. Our study investigated changes in PDE10A binding using the selective tracer 3H-7980 at specific ages of two Huntington's disease transgenic mouse models: R6/2, a short-lived model carrying exon-1 of mutant HTT and BACHD, a longer-lived model carrying full-length mutant HTT. PDE10A binding was compared to binding of known markers of striatal atrophy in Huntington's disease, e.g. dopamine transporter (DAT) and dopamine receptors D1 and D2. We found that in the R6/2 model at 6 weeks of age, mice showed high variability of binding, however binding of all ligands was significantly decreased at 8 and 12 weeks of age. In contrast, no changes were detectable in the BACHD model at 8, 10 or 12 month of age. These findings suggest that radiotracer binding of PDE10A, DAT, D1 and D2 receptor in the R6/2 model may be a good indicator of striatal pathological changes that are observed in Huntington's disease patients, and that the first 12 months in the BACHD model may be more reflective of early stages of the disease.

  15. Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule

    PubMed Central

    Sugahara, Kazuyuki; Thimmaiah, Kuntebommanahalli N.; Bid, Hemant K.; Houghton, Peter J.; Rangappa, Kanchugarakoppal S.

    2012-01-01

    The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor. PMID:22916091

  16. Analysis of nucleoside-binding proteins by ligand-specific elution from dye resin: application to Mycobacterium tuberculosis aldehyde dehydrogenases.

    PubMed

    Kim, Chang-Yub; Webster, Cecelia; Roberts, Justin K M; Moon, Jin Ho; Alipio Lyon, Emily Z; Kim, Heungbok; Yu, Minmin; Hung, Li-Wei; Terwilliger, Thomas C

    2009-12-01

    We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were previously shown to be specifically eluted from a Cibacron Blue F3GA dye resin with nucleosides. In this study we characterized the nucleoside-binding specificity of one of these ALDH isozymes (recombinant Mtb Rv0223c) and compared these biochemical results with co-crystallization experiments with different Rv0223c-nucleoside pairings. We found that the strongly interacting ligands (NAD and NADH) aided formation of high-quality crystals, permitting solution of the first Mtb ALDH (Rv0223c) structure. Other nucleoside ligands (AMP, FAD, adenosine, GTP and NADP) exhibited weaker binding to Rv0223c, and produced co-crystals diffracting to lower resolution. Difference electron density maps based on crystals of Rv0223c with various nucleoside ligands show most share the binding site where the natural ligand NAD binds. From the high degree of similarity of sequence and structure compared to human mitochondrial ALDH-2 (BLAST Z-score = 53.5 and RMSD = 1.5 A), Rv0223c appears to belong to the ALDH-2 class. An altered oligomerization domain in the Rv0223c structure seems to keep this protein as monomer whereas native human ALDH-2 is a multimer.

  17. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta

    PubMed Central

    Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site positions, we find high ATP affinities for both Hb isoforms, suggesting an alternative and stronger binding site for ATP. The high ATP affinities indicate that, although ATP levels decrease in red blood cells of turtles acclimating to anoxia, the O2 affinity would remain largely unchanged, as confirmed by O2-binding measurements of untreated hemolysates from normoxic and anoxic turtles. Thus, the increase in blood-O2 affinity that accompanies winter acclimation is mainly attributable to a decrease in temperature rather than in concentrations of organic phosphates. This is the first extensive study on freshwater turtle Hb isoforms, providing molecular evidence for adaptive changes in O2 transport associated with acclimation to severe hypoxia. PMID:23986362

  18. Free-energy relationships in ion channels activated by voltage and ligand

    PubMed Central

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  19. Lessons from the Crystal Structure of the S. aureus Surface Protein Clumping Factor A in Complex With Tefibazumab, an Inhibiting Monoclonal Antibody.

    PubMed

    Ganesh, Vannakambadi K; Liang, Xiaowen; Geoghegan, Joan A; Cohen, Ana Luisa V; Venugopalan, Nagarajan; Foster, Timothy J; Hook, Magnus

    2016-11-01

    The Staphylococcus aureus fibrinogen binding MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules), ClfA (clumping factor A) is an important virulence factor in staphylococcal infections and a component of several vaccines currently under clinical evaluation. The mouse monoclonal antibody aurexis (also called 12-9), and the humanized version tefibazumab are therapeutic monoclonal antibodies targeting ClfA that in combination with conventional antibiotics were effective in animal models but showed less impressive efficacy in a limited Phase II clinical trial. We here report the crystal structure and a biochemical characterization of the ClfA/tefibazumab (Fab) complex. The epitope for tefibazumab is located to the "top" of the N3 subdomain of ClfA and partially overlaps with a previously unidentified second binding site for fibrinogen. A high-affinity binding of ClfA to fibrinogen involves both an interaction at the N3 site and the previously identified docking of the C-terminal segment of the fibrinogen γ-chain in the N2N3 trench. Although tefibazumab binds ClfA with high affinity we observe a modest IC 50 value for the inhibition of fibrinogen binding to the MSCRAMM. This observation, paired with a common natural occurring variant of ClfA that is not effectively recognized by the mAb, may partly explain the modest effect tefibazumab showed in the initial clinic trail. This information will provide guidance for the design of the next generation of therapeutic anti-staphylococcal mAbs targeting ClfA. Copyright © 2016. Published by Elsevier B.V.

  20. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    PubMed Central

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  1. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    PubMed

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  2. Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry.

    PubMed

    van Andel, Esther; de Bus, Ian; Tijhaar, Edwin J; Smulders, Maarten M J; Savelkoul, Huub F J; Zuilhof, Han

    2017-11-08

    Micron- and nano-sized particles are extensively used in various biomedical applications. However, their performance is often drastically hampered by the nonspecific adsorption of biomolecules, a process called biofouling, which can cause false-positive and false-negative outcomes in diagnostic tests. Although antifouling coatings have been extensively studied on flat surfaces, their use on micro- and nanoparticles remains largely unexplored, despite the widespread experimental (specifically, clinical) uncertainties that arise because of biofouling. Here, we describe the preparation of magnetic micron-sized beads coated with zwitterionic sulfobetaine polymer brushes that display strong antifouling characteristics. These coated beads can then be equipped with recognition elements of choice, to enable the specific binding of target molecules. First, we present a proof of principle with biotin-functionalized beads that are able to specifically bind fluorescently labeled streptavidin from a complex mixture of serum proteins. Moreover, we show the versatility of the method by demonstrating that it is also possible to functionalize the beads with mannose moieties to specifically bind the carbohydrate-binding protein concanavalin A. Flow cytometry was used to show that thus-modified beads only bind specifically targeted proteins, with minimal/near-zero nonspecific protein adsorption from other proteins that are present. These antifouling zwitterionic polymer-coated beads, therefore, provide a significant advancement for the many bead-based diagnostic and other biosensing applications that require stringent antifouling conditions.

  3. Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry

    PubMed Central

    2017-01-01

    Micron- and nano-sized particles are extensively used in various biomedical applications. However, their performance is often drastically hampered by the nonspecific adsorption of biomolecules, a process called biofouling, which can cause false-positive and false-negative outcomes in diagnostic tests. Although antifouling coatings have been extensively studied on flat surfaces, their use on micro- and nanoparticles remains largely unexplored, despite the widespread experimental (specifically, clinical) uncertainties that arise because of biofouling. Here, we describe the preparation of magnetic micron-sized beads coated with zwitterionic sulfobetaine polymer brushes that display strong antifouling characteristics. These coated beads can then be equipped with recognition elements of choice, to enable the specific binding of target molecules. First, we present a proof of principle with biotin-functionalized beads that are able to specifically bind fluorescently labeled streptavidin from a complex mixture of serum proteins. Moreover, we show the versatility of the method by demonstrating that it is also possible to functionalize the beads with mannose moieties to specifically bind the carbohydrate-binding protein concanavalin A. Flow cytometry was used to show that thus-modified beads only bind specifically targeted proteins, with minimal/near-zero nonspecific protein adsorption from other proteins that are present. These antifouling zwitterionic polymer-coated beads, therefore, provide a significant advancement for the many bead-based diagnostic and other biosensing applications that require stringent antifouling conditions. PMID:29064669

  4. Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching

    PubMed Central

    Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W.; Knoch, Tobias A.; Waldeck, Waldemar; Langowski, Jörg

    2003-01-01

    Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of ∼13 s. PMID:12719264

  5. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.

    PubMed

    Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W; Knoch, Tobias A; Waldeck, Waldemar; Langowski, Jörg

    2003-05-01

    Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.

  6. Binding of calcium and target peptide to calmodulin-like protein CML19, the centrin 2 of Arabidopsis thaliana.

    PubMed

    La Verde, Valentina; Trande, Matteo; D'Onofrio, Mariapina; Dominici, Paola; Astegno, Alessandra

    2018-03-01

    Calmodulin-like protein 19 (CML19) is an Arabidopsis centrin that modulates nucleotide excision repair (NER) by binding to RAD4 protein, the Arabidopsis homolog of human Xeroderma pigmentosum complementation group C protein. Although the necessity of CML19 as a part of the RAD4 plant recognition complex for functional NER is known at a cellular level, little is known at a molecular level. Herein, we used a combination of biophysical and biochemical approaches to investigate the structural and ion and target-peptide binding properties of CML19. We found that CML19 possesses four Ca 2+ -specific binding sites, two of high affinity in the N-terminal domain and two of low affinity in the C-terminal domain. Binding of Ca 2+ to CML19 increases its alpha-helix content, stabilizes the tertiary structure, and triggers a conformational change, resulting in the exposure of a hydrophobic patch instrumental for target protein recognition. Using bioinformatics tools we identified a CML19-binding site at the C-terminus of RAD4, and through in vitro binding experiments we analyzed the interaction between a 17-mer peptide representing this site and CML19. We found that the peptide shows a high affinity for CML19 in the presence of Ca 2+ (stoichiometry 1:1) and the interaction primarily involves the C-terminal half of CML19. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein

    PubMed Central

    Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung

    2012-01-01

    Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519

  8. Analysis of nanoparticle–protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins

    PubMed Central

    Ali, Neserin; Mattsson, Karin; Rissler, Jenny; Karlsson, Helen Marg; Svensson, Christian R.; Gudmundsson, Anders; Lindh, Christian H.; Jönsson, Bo A. G.; Cedervall, Tommy; Kåredal, Monica

    2016-01-01

    Abstract Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UFWF and Fe2O3 particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona. PMID:26186033

  9. Graphene-Based Liquid-Gated Field Effect Transistor for Biosensing: Theory and Experiments

    PubMed Central

    Reiner-Rozman, Ciril; Larisika, Melanie; Nowak, Christoph; Knoll, Wolfgang

    2015-01-01

    We present an experimental and theoretical characterization for reduced Graphene-Oxide (rGO) based FETs used for biosensing applications. The presented approach shows a complete result analysis and theoretically predictable electrical properties. The formulation was tested for the analysis of the device performance in the liquid gate mode of operation with variation of the ionic strength and pH-values of the electrolytes in contact with the FET. The dependence on the Debye length was confirmed experimentally and theoretically, utilizing the Debye length as a working parameter and thus defining the limits of applicability for the presented rGO-FETs. Furthermore, the FETs were tested for the sensing of biomolecules (bovine serum albumin (BSA) as reference) binding to gate-immobilized anti-BSA antibodies and analyzed using the Langmuir binding theory for the description of the equilibrium surface coverage as a function of the bulk (analyte) concentration. The obtained binding coefficients for BSA are found to be same as in results from literature, hence confirming the applicability of the devices. The FETs used in the experiments were fabricated using wet-chemically synthesized graphene, displaying high electron and hole mobility (μ) and provide the strong sensitivity also for low potential changes (by change of pH, ion concentration, or molecule adsorption). The binding coefficient for BSA-anti-BSA interaction shows a behavior corresponding to the Langmuir adsorption theory with a Limit of Detection (LOD) in the picomolar concentration range. The presented approach shows high reproducibility and sensitivity and a good agreement of the experimental results with the calculated data. PMID:25791463

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Tu, Xingchen; Wang, Hao

    The electronic efficiency and binding energy of contacts formed between graphene electrodes and poly-aromatic hydrocarbon (PAH) anchoring groups have been investigated by the non-equilibrium Green’s function formalism combined with density functional theory. Our calculations show that PAH molecules always bind in the interior and at the edge of graphene in the AB stacking manner, and that the binding energy increases following the increase of the number of carbon and hydrogen atoms constituting the PAH molecule. When we move to analyzing the electronic transport properties of molecular junctions with a six-carbon alkyne chain as the central molecule, the electronic efficiency ofmore » the graphene-PAH contacts is found to depend on the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the corresponding PAH anchoring group, rather than its size. To be specific, the smaller is the HOMO-LUMO gap of the PAH anchoring group, the higher is the electronic efficiency of the graphene-PAH contact. Although the HOMO-LUMO gap of a PAH molecule depends on its specific configuration, PAH molecules with similar atomic structures show a decreasing trend for their HOMO-LUMO gap as the number of fused benzene rings increases. Therefore, graphene-conjugated molecule-graphene junctions with high-binding and high-conducting graphene-PAH contacts can be realized by choosing appropriate PAH anchor groups with a large area and a small HOMO-LUMO gap.« less

  11. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    PubMed

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  12. Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster

    PubMed Central

    Maier, Dieter; Kurth, Patricia; Schulz, Adriana; Russell, Andrew; Yuan, Zhenyu; Gruber, Kim; Kovall, Rhett A.; Preiss, Anette

    2011-01-01

    In metazoans, the highly conserved Notch pathway drives cellular specification. On receptor activation, the intracellular domain of Notch assembles a transcriptional activator complex that includes the DNA-binding protein CSL, a composite of human C-promoter binding factor 1, Suppressor of Hairless of Drosophila melanogaster [Su(H)], and lin-12 and Glp-1 phenotype of Caenorhabditis elegans. In the absence of ligand, CSL represses Notch target genes. However, despite the structural similarity of CSL orthologues, repression appears largely diverse between organisms. Here we analyze the Notch repressor complex in Drosophila, consisting of the fly CSL protein, Su(H), and the corepressor Hairless, which recruits general repressor proteins. We show that the C-terminal domain of Su(H) is necessary and sufficient for forming a high-affinity complex with Hairless. Mutations in Su(H) that affect interactions with Notch and Mastermind have no effect on Hairless binding. Nonetheless, we demonstrate that Notch and Hairless compete for CSL in vitro and in cell culture. In addition, we identify a site in Hairless that is crucial for binding Su(H) and subsequently show that this Hairless mutant is strongly impaired, failing to properly assemble the repressor complex in vivo. Finally, we demonstrate Hairless-mediated inhibition of Notch signaling in a cell culture assay, which hints at a potentially similar repression mechanism in mammals that might be exploited for therapeutic purposes. PMID:21737682

  13. Competitive counterion complexation allows the true host : guest binding constants from a single titration by ionic receptors.

    PubMed

    Pessêgo, Márcia; Basílio, Nuno; Muñiz, M Carmen; García-Río, Luis

    2016-07-06

    Counterion competitive complexation is a background process currently ignored by using ionic hosts. Consequently, guest binding constants are strongly affected by the design of the titration experiments in such a way that the results are dependent on the guest concentration and on the presence of added salts, usually buffers. In the present manuscript we show that these experimental difficulties can be overcome by just considering the counterion competitive complexation. Moreover a single titration allows us to obtain not only the true binding constants but also the stoichiometry of the complex showing the formation of 1 : 1 : 1 (host : guest : counterion) complexes. The detection of high stoichiometry complexes is not restricted to a single titration experiment but also to a displacement assay where both competitive and competitive-cooperative complexation models are taken into consideration.

  14. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    NASA Astrophysics Data System (ADS)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  15. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.

    PubMed

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-15

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Separation and Identification of Anthocyanins Extracted from Blueberry Wine Lees and Pigment Binding Properties toward β-Glucosidase.

    PubMed

    Wu, Qian; Zhang, Yang; Tang, Hu; Chen, Yashu; Xie, Bijun; Wang, Chao; Sun, Zhida

    2017-01-11

    Anthocyanins were isolated from blueberry wine lees using Sephadex LH-20 column chromatography and semipreparative high-performance liquid chromatography (semipreparative HPLC) and then identified by HPLC-DAD-ESI-MS/MS. Our results show that malvidin-3-hexose (Mv-3-hex) and malvidin-3-(6'acetyl)-hexose (Mv-3-ace-hex) are the major components in the anthocyanin extracts of blueberry wine lees (>90%). The binding characteristics of Mv-3-hex and Mv-3-ace-hex with β-glucosidase were investigated by fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking. Spectroscopic analysis revealed that β-glucosidase fluorescence quenched by Mv-3-hex and Mv-3-ace-hex follows a static mode. Binding of Mv-3-hex and Mv-3-ace-hex to β-glucosidase mainly depends on electrostatic force. The result from CD spectra shows that adaptive structure rearrangement and increase of β-sheet structure occur only in the presence of Mv-3-ace-hex. A molecular docking study suggests that Mv-3-ace-hex has stronger binding with β-glucosidase than Mv-3-hex.

  17. Haematoporphyrin and OO'-diacetylhaematoporphyrin binding by serum and cellular proteins. Implications for the clearance of these photochemotherapeutic agents by cells.

    PubMed Central

    Smith, A; Neuschatz, T

    1983-01-01

    Haematoporphyrin derivative (HpD), a mixture of porphyrins, is currently used as a photochemotherapeutic agent in the treatment of neoplasias. The interaction of purified components of HpD with serum and cellular proteins was investigated using absorption and fluorescence spectroscopy. The interactions of haematoporphyrin and OO'-diacetylhaematoporphyrin with human albumin and with haemopexin, the two major serum porphyrin-binding proteins, show stoichiometries of 1 mol of porphyrin bound per mol of protein. The apparent dissociation constants, Kd, are in the range of 1-2 microM for albumin and 3-4 microM for haemopexin. These two major components of HpD would, after intravenous injection, bind to albumin and circulate in serum as albumin complexes. Free porphyrin rather than porphyrin bound to albumin interacts with Morris hepatoma tissue culture cells. A rapid high-affinity saturable transport system operates at free porphyrin concentrations of less than 2 microM. In addition, fluorescence spectra show that components in rat liver cytosol can bind haematoporphyrin and OO'-diacetylhaematoporphyrin and distinguish these binders from those present in rat serum. PMID:6225429

  18. Kinetic and thermodynamic studies of bovine serum albumin interaction with ascorbyl palmitate and ascorbyl stearate food additives using surface plasmon resonance.

    PubMed

    Fathi, Farzaneh; Mohammadzadeh-Aghdash, Hossein; Sohrabi, Yousef; Dehghan, Parvin; Ezzati Nazhad Dolatabadi, Jafar

    2018-04-25

    Ascorbyl palmitate (AP) and ascorbyl stearate (AS) are examples of food additives, which have extensive use in food industry. In this study, we evaluated the interaction of bovine serum albumin (BSA) with AP and AS using surface plasmon resonance (SPR). In order to immobilize BSA, carboxymethyl dextran hydrogel (CMD) Au chip was used. After activation of carboxylic groups, BSA was immobilized onto the CMD chip through covalent amide binding formation. AP and AS binding to immobilized BSA at different concentrations was assessed. The dose-response sensorgrams of BSA upon increasing concentration of AP and AS have been shown. The low value of equilibrium dissociation constant or affinity unit (K D ) showed high affinity of both AP and AS to BSA. The K D value for binding of AP and AS to BSA were 4.09 × 10 -5 and 1.89 × 10 -5 , at 25 °C. Overall, the attained results showed that AP and AS molecules can bind to BSA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cysteine Protease-Binding Protein Family 6 Mediates the Trafficking of Amylases to Phagosomes in the Enteric Protozoan Entamoeba histolytica

    PubMed Central

    Furukawa, Atsushi; Nakada-Tsukui, Kumiko

    2013-01-01

    Phagocytosis plays a pivotal role in nutrient acquisition and evasion from the host defense systems in Entamoeba histolytica, the intestinal protozoan parasite that causes amoebiasis. We previously reported that E. histolytica possesses a unique class of a hydrolase receptor family, designated the cysteine protease-binding protein family (CPBF), that is involved in trafficking of hydrolases to lysosomes and phagosomes, and we have also reported that CPBF1 and CPBF8 bind to cysteine proteases or β-hexosaminidase α-subunit and lysozymes, respectively. In this study, we showed by immunoprecipitation that CPBF6, one of the most highly expressed CPBF proteins, specifically binds to α-amylase and γ-amylase. We also found that CPBF6 is localized in lysosomes, based on immunofluorescence imaging. Immunoblot and proteome analyses of the isolated phagosomes showed that CPBF6 mediates transport of amylases to phagosomes. We also demonstrated that the carboxyl-terminal cytosolic region of CPBF6 is engaged in the regulation of the trafficking of CPBF6 to phagosomes. Our proteome analysis of phagosomes also revealed new potential phagosomal proteins. PMID:23509141

  20. A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata.

    PubMed

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5' flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster.

  1. Pervasive Targeting of Nascent Transcripts by Hfq.

    PubMed

    Kambara, Tracy K; Ramsey, Kathryn M; Dove, Simon L

    2018-05-01

    Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata

    PubMed Central

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster. PMID:25099698

  3. Diminished hepatic growth hormone receptor binding in sex-linked dwarf broiler and leghorn chickens.

    PubMed

    Leung, F C; Styles, W J; Rosenblum, C I; Lilburn, M S; Marsh, J A

    1987-02-01

    Hepatic growth hormone (GH) receptor binding was compared in normal and sex-linked dwarfs (SLD) from both Hubbard and Cornell strain chickens. At 6, 8, and 20 weeks of age, hepatic GH receptor binding in the Hubbard SLD chickens was significantly lower than that of normal fast-growing birds. At 20 weeks of age, only 2 of 22 SLD chickens in the Hubbard broiler strain showed positive binding at a high enough level to allow for Scatchard analysis. The affinity constants and binding capacities of these two SLD chickens were numerically (but not significantly) lower than those of the normal fast-growing birds. We further examined hepatic GH receptor binding in two closely related White Leghorn strains of chickens that have been maintained as closed breeding populations for many years. We observed no detectable hepatic GH binding in the Cornell SLD chickens (N = 20), as compared to the normal-growing control strain (K strain). In both SLD strains, pretreatment with 4 M MgCl2 did not enhance GH binding, suggesting that there was no endogenous GH binding to the receptor. Based on these data, we suggest that the lack, or greatly reduced number, of GH receptors may be a major contributing factor to the dwarfism observed in these strains.

  4. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  5. Dynamic binding of replication protein a is required for DNA repair

    PubMed Central

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.

    2016-01-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  6. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  7. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  8. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGES

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; ...

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  9. Novel high-performance purification protocol of recombinant CNBP suitable for biochemical and biophysical characterization.

    PubMed

    Challier, Emilse; Lisa, María-Natalia; Nerli, Bibiana B; Calcaterra, Nora B; Armas, Pablo

    2014-01-01

    Cellular nucleic acid binding protein (CNBP) is a highly conserved multi-zinc knuckle protein that enhances c-MYC expression, is related to certain human muscular diseases and is required for proper rostral head development. CNBP binds to single-stranded DNA (ssDNA) and RNA and acts as nucleic acid chaperone. Despite the advances made concerning CNBP biological roles, a full knowledge about the structure-function relationship has not yet been achieved, likely due to difficulty in obtaining pure and tag-free CNBP. Here, we report a fast, simple, reproducible, and high-performance expression and purification protocol that provides recombinant tag-free CNBP from Escherichia coli cultures. We determined that tag-free CNBP binds its molecular targets with higher affinity than tagged-CNBP. Furthermore, fluorescence spectroscopy revealed the presence of a unique and conserved tryptophan, which is exposed to the solvent and involved, directly or indirectly, in nucleic acid binding. Size-exclusion HPLC revealed that CNBP forms homodimers independently of nucleic acid binding and coexist with monomers as non-interconvertible forms or in slow equilibrium. Circular dichroism spectroscopy showed that CNBP has a secondary structure dominated by random-coil and β-sheet coincident with the sequence-predicted repetitive zinc knuckles motifs, which folding is required for CNBP structural stability and biochemical activity. CNBP structural stability increased in the presence of single-stranded nucleic acid targets similar to other unstructured nucleic acid chaperones. Altogether, data suggest that CNBP is a flexible protein with interspersed structured zinc knuckles, and acquires a more rigid structure upon nucleic acid binding. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria

    2016-08-15

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP 2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL -) with a distinct second site is required for high PIP 2sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP 2sensitivity, even in the absence of PL -. Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP 2(2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domainmore » (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL -binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP 2site and explaining the positive allostery between PL -binding and PIP 2sensitivity.« less

  11. Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity

    PubMed Central

    2014-01-01

    The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356

  12. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.

    PubMed

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G

    2016-09-01

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. © 2016 Lee et al.

  13. High-resolution mapping of heterochromatin redistribution in a Drosophila position-effect variegation model.

    PubMed

    Vogel, Maartje J; Pagie, Ludo; Talhout, Wendy; Nieuwland, Marja; Kerkhoven, Ron M; van Steensel, Bas

    2009-01-29

    Position-effect variegation (PEV) is the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. white-mottled X-chromosomal inversions in Drosophila are classic PEV models that show variegation of the eye color gene white due to its relocation next to pericentric heterochromatin. It has been suggested that in these models the spreading of heterochromatin across the rearrangement breakpoint causes the silencing of white. However, the extent of this spreading and the precise pattern of heterochromatin redistribution have remained unclear. To obtain insight into the mechanism of PEV, we constructed high-resolution binding maps of Heterochromatin Protein 1 (HP1) on white-mottled chromosomes. We find that HP1 invades euchromatin across the inversion breakpoints over approximately 175 kb and approximately 30 kb, causing de novo association of HP1 with 20 genes. However, HP1 binding levels in these regions show substantial local variation, and white is the most strongly bound gene. Remarkably, white is also the only gene that is detectably repressed by heterochromatin. Furthermore, we find that HP1 binding to the invaded region is particularly sensitive to the dosage of the histone methyltransferase Su(var)3-9, indicating that the de novo formed heterochromatin is less stable than naturally occurring constitutive heterochromatin. Our molecular maps demonstrate that heterochromatin can invade a normally euchromatic region, yet the strength of HP1 binding and effects on gene expression are highly dependent on local context. Our data suggest that the white gene has an unusual intrinsic affinity for heterochromatin, which may cause this gene to be more sensitive to PEV than most other genes.

  14. Characterization of little skate (Leucoraja erinacea) recombinant transthyretin: Zinc-dependent 3,3',5-triiodo-l-thyronine binding.

    PubMed

    Suzuki, Shunsuke; Kasai, Kentaro; Yamauchi, Kiyoshi

    2015-01-01

    Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. First Penicillin-Binding Protein Occupancy Patterns of β-Lactams and β-Lactamase Inhibitors in Klebsiella pneumoniae.

    PubMed

    Sutaria, Dhruvitkumar S; Moya, Bartolome; Green, Kari B; Kim, Tae Hwan; Tao, Xun; Jiao, Yuanyuan; Louie, Arnold; Drusano, George L; Bulitta, Jürgen B

    2018-06-01

    Penicillin-binding proteins (PBPs) are the high-affinity target sites of all β-lactam antibiotics in bacteria. It is well known that each β-lactam covalently binds to and thereby inactivates different PBPs with various affinities. Despite β-lactams serving as the cornerstone of our therapeutic armamentarium against Klebsiella pneumoniae , PBP binding data are missing for this pathogen. We aimed to generate the first PBP binding data on 13 chemically diverse and clinically relevant β-lactams and β-lactamase inhibitors in K. pneumoniae PBP binding was determined using isolated membrane fractions from K. pneumoniae strains ATCC 43816 and ATCC 13883. Binding reactions were conducted using β-lactam concentrations from 0.0075 to 256 mg/liter (or 128 mg/liter). After β-lactam exposure, unbound PBPs were labeled by Bocillin FL. Binding affinities (50% inhibitory concentrations [IC 50 ]) were reported as the β-lactam concentrations that half-maximally inhibited Bocillin FL binding. PBP occupancy patterns by β-lactams were consistent across both strains. Carbapenems bound to all PBPs, with PBP2 and PBP4 as the highest-affinity targets (IC 50 , <0.0075 mg/liter). Preferential PBP2 binding was observed by mecillinam (amdinocillin; IC 50 , <0.0075 mg/liter) and avibactam (IC 50 , 2 mg/liter). Aztreonam showed high affinity for PBP3 (IC 50 , 0.06 to 0.12 mg/liter). Ceftazidime bound PBP3 at low concentrations (IC 50 , 0.06 to 0.25 mg/liter) and PBP1a/b at higher concentrations (4 mg/liter), whereas cefepime bound PBPs 1 to 4 at more even concentrations (IC 50 , 0.015 to 2 mg/liter). These PBP binding data on a comprehensive set of 13 clinically relevant β-lactams and β-lactamase inhibitors in K. pneumoniae enable, for the first time, the rational design and optimization of double β-lactam and β-lactam-β-lactamase inhibitor combinations. Copyright © 2018 American Society for Microbiology.

  16. Highly Increased 125I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst2 Targeting in Human Cancers.

    PubMed

    Reubi, Jean Claude; Waser, Beatrice; Mäcke, Helmut; Rivier, Jean

    2017-02-01

    There is recent in vitro and in vivo evidence that somatostatin receptor subtype 2 (sst 2 ) antagonists are better tools to target neuroendocrine tumors (NETs) than sst 2 agonists. Indeed, antagonists bind to a greater number of sst 2 sites than agonists. Whether sst 2 antagonists could be used successfully to target non-NETs, expressing low sst 2 density, is unknown. Here, we compare quantitatively 125 I-JR11 sst 2 antagonist binding in vitro with that of the sst 2 agonist 125 I-Tyr 3 -octreotide in large varieties of non-NET and NET. In vitro receptor autoradiography was performed with 125 I-JR11 and 125 I-Tyr 3 -octreotide in cancers from prostate, breast, colon, kidney, thyroid, and lymphoid tissues as well as NETs as reference. In general, 125 I-JR11 binds to many more sst 2 sites than 125 I-Tyr 3 -octreotide. In 13 breast cancers, 8 had a low binding (mean density, 844 ± 168 dpm/mg of tissue) with the agonist whereas 12 had a high binding (mean density, 4,447 ± 1,128 dpm/mg of tissue) with the antagonist. All 12 renal cell cancers showed a low binding of sst 2 with the agonist (mean density, 348 ± 49 dpm/mg of tissue) whereas all cases had a high sst 2 binding with the antagonist (mean density, 3,777 ± 582 dpm/mg of tissue). One of 5 medullary thyroid cancers was positive with the agonist, whereas 5 of 5 were positive with the antagonist. In 15 non-Hodgkin lymphomas, many more sst 2 sites were labeled with the antagonist than with the agonist. In 14 prostate cancers, none had sst 2 binding with the agonist and only 4 had a weak binding with the antagonist. None of 17 colon cancers showed sst 2 sites with the agonist, and only 3 cases were weakly positive with the antagonist. In the various tumor types, adjacent sst 2 -expressing tissues such as vessels, lymphocytes, nerves, mucosa, or stroma were more strongly labeled with the antagonist than with the agonist. The reference NET cases, incubated with a smaller amount of tracer, were also found to have many more sst 2 sites measured with the antagonist. All renal cell cancers and most breast cancers, non-Hodgkin lymphomas, and medullary thyroid cancers represent novel indications for the in vivo radiopeptide targeting of sst 2 by sst 2 antagonists, comparable to NET radiotargeting with sst 2 agonists. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  17. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.

    PubMed

    Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2010-02-05

    This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow (1 mL min(-1)) of 0.2 mM sodium cholate solution. Copyright 2009 Elsevier B.V. All rights reserved.

  18. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    PubMed

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2) g(-1) and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  19. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    PubMed Central

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  20. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.

    PubMed

    Keeran, Nisha S; Ganesan, G; Parida, Ajay K

    2017-04-01

    Heavy metal pollution of agricultural soils is one of the most severe ecological problems in the world. Prosopis juliflora, a phreatophytic tree species, grows well in heavy metal laden industrial sites and is known to accumulate heavy metals. Heavy Metal ATPases (HMAs) are ATP driven heavy metal pumps that translocate heavy metals across biological membranes thus helping the plant in heavy metal tolerance and phytoremediation. In the present study we have isolated and characterized a novel 28.9 kDa heavy metal ATPase peptide (PjHMT) from P. juliflora which shows high similarity to the C-terminal region of P 1B ATPase HMA1. It also shows the absence of the invariant signature sequence DKTGT, and the metal binding CPX motif but the presence of conserved regions like MVGEGINDAPAL (ATP binding consensus sequence), HEGGTLLVCLNS (metal binding domain) and MLTGD, GEGIND and HEGG motifs which play important roles in metal transport or ATP binding. PjHMT, was found to be upregulated under cadmium and zinc stress. Heterologous expression of PjHMT in yeast showed a higher accumulation and tolerance of heavy metals in yeast. Further, transgenic tobacco plants constitutively expressing PjHMT also showed increased accumulation and tolerance to cadmium. Thus, this study suggests that the transport peptide from P. juliflora may have an important role in Cd uptake and thus in phytoremediation.

  1. Binding of GDNF and neurturin to human GDNF family receptor alpha 1 and 2. Influence of cRET and cooperative interactions.

    PubMed

    Cik, M; Masure, S; Lesage, A S; Van Der Linden, I; Van Gompel, P; Pangalos, M N; Gordon, R D; Leysen, J E

    2000-09-08

    The members of the glial cell line-derived neurotrophic factor (GDNF) family signal via binding to the glycosyl phosphatidylinositol-anchored membrane proteins, the GDNF family receptors alpha (GFRalpha), and activation of cRET. We performed a detailed analysis of the binding of GDNF and neurturin to their receptors and investigated the influence of cRET on the binding affinities. We show that the rate of dissociation of (125)I-GDNF from GFRalpha1 is increased in the presence of 50 nm GDNF, an effect that can be explained by the occurrence of negative cooperativity. Scatchard plots of the ligand concentration binding isotherms reveal a pronounced downward curvature at low (125)I-GDNF concentrations suggesting the presence of positive cooperativity. This effect is observed in the range of GDNF concentrations responsible for biological activity (1-20 pm) and may have an important role in cRET-independent signaling. A high affinity site with a K(D) of 11 pm for (125)I-GDNF is detected only when GFRalpha1 is co-expressed with cRET at a DNA ratio of 1:3. These results suggest an interaction of GFRalpha1 and cRET in the absence of GDNF and demonstrate that the high affinity binding can be measured only when cRET is present.

  2. Histamine-binding capacities of different natural zeolites: a comparative study.

    PubMed

    Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried

    2018-06-07

    Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.

  3. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  4. Evaluation of 111In-labeled EPep and FibPep as tracers for fibrin SPECT imaging.

    PubMed

    Starmans, Lucas W E; van Duijnhoven, Sander M J; Rossin, Raffaella; Berben, Monique; Aime, Silvio; Daemen, Mat J A P; Nicolay, Klaas; Grüll, Holger

    2013-11-04

    Fibrin targeting is an attractive strategy for nuclear imaging of thrombosis, atherosclerosis and cancer. Recently, FibPep, an (111)In-labeled fibrin-binding peptide, was established as a tracer for fibrin SPECT imaging and was reported to allow sensitive detection of minute thrombi in mice using SPECT. In this study, we developed EPep, a novel (111)In-labeled fibrin-binding peptide containing the fibrin-binding domain of the clinically verified EP-2104R peptide, and sought to compare the potential of EPep and FibPep as tracers for fibrin SPECT imaging. In vitro, both EPep and FibPep showed high stability in serum, but were less stable in liver and kidney homogenate assays. Both peptide probes displayed comparable affinities toward human and mouse derived fibrin (Kd ≈ 1 μM), and similarly to FibPep, EPep showed fast blood clearance, low nontarget uptake and high thrombus uptake (6.8 ± 1.2% ID g(-1)) in a mouse carotid artery thrombosis model. Furthermore, EPep showed a similar affinity toward rat derived fibrin (Kd ≈ 1 μM), displayed high thrombus uptake in a rat carotid artery thrombosis model (0.74 ± 0.39% ID g(-1)), and allowed sensitive detection of thrombosis in rats using SPECT. In contrast, FibPep displayed a significantly lower affinity toward rat derived fibrin (Kd ≈ 14 μM) and low uptake in rat thrombi (0.06 ± 0.02% ID g(-1)) and did not allow clear visualization of carotid artery thrombosis in rats using SPECT. These results were confirmed ex vivo by autoradiography, which showed a 7-fold higher ratio of activity in the thrombus over the contralateral carotid artery for EPep in comparison to FibPep. These findings suggest that the FibPep binding fibrin epitope is not fully homologous between humans and rats, and that preclinical rat models of disease should not be employed to gauge the clinical potential of FibPep. In conclusion, both peptides showed approximately similar metabolic stability and affinity toward human and mouse derived fibrin, and displayed high thrombus uptake in a mouse carotid artery thrombosis model. Therefore, both EPep and FibPep are promising fibrin targeted tracers for translation into clinical settings to serve as novel tools for molecular imaging of fibrin.

  5. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    PubMed

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  6. The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction.

    PubMed

    Ho, Ruoya; Stroupe, Christopher

    2016-10-01

    Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    PubMed

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  8. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans.

  9. Fluorenone based fluorescent probe for selective "turn-on" detection of pyrophosphate and alanine

    NASA Astrophysics Data System (ADS)

    Daniel Thangadurai, T.; Nithya, I.; Manjubaashini, N.; Bhuvanesh, N.; Bharathi, G.; Nandhakumar, R.; Nataraj, D.

    2018-06-01

    To sense biologically important entities with different size and dimensions, a fluorenone based fluorescent receptor was designed and synthesized. Probe 1 displayed a distinct fluorescence enhancement emission at 565 nm for pyrophosphate and 530 nm for alanine in polar solvent. The fluorescence titration experiments confirm 1:1 stoichiometric ratio with high-binding constant and very low limit of detection (LoD) values. Receptor 1 showed a highly selective and sensitive recognition to HP2O73 - and to alanine over other competitive anions and amino acids. In addition, the fluorescence lifetime measurement and reversible binding study results support the practical importance of 1.

  10. Structure-Based Design of Novel Dihydroalkoxybenzyloxopyrimidine Derivatives as Potent Nonnucleoside Inhibitors of the Human Immunodeficiency Virus Reverse Transcriptase

    PubMed Central

    Sudbeck, Elise A.; Mao, Chen; Vig, Rakesh; Venkatachalam, T. K.; Tuel-Ahlgren, Lisa; Uckun, Fatih M.

    1998-01-01

    Two highly potent dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the nonnucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been designed based on the structure of the NNI binding pocket and tested for anti-HIV activity. Our lead DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one, elicited potent inhibitory activity against purified recombinant HIV RT and abrogated HIV replication in peripheral blood mononuclear cells at nanomolar concentrations (50% inhibitory concentration, <1 nM) but showed no detectable cytotoxicity at concentrations as high as 100 μM. PMID:9835518

  11. Protein-RNA specificity by high-throughput principal component analysis of NMR spectra.

    PubMed

    Collins, Katherine M; Oregioni, Alain; Robertson, Laura E; Kelly, Geoff; Ramos, Andres

    2015-03-31

    Defining the RNA target selectivity of the proteins regulating mRNA metabolism is a key issue in RNA biology. Here we present a novel use of principal component analysis (PCA) to extract the RNA sequence preference of RNA binding proteins. We show that PCA can be used to compare the changes in the nuclear magnetic resonance (NMR) spectrum of a protein upon binding a set of quasi-degenerate RNAs and define the nucleobase specificity. We couple this application of PCA to an automated NMR spectra recording and processing protocol and obtain an unbiased and high-throughput NMR method for the analysis of nucleobase preference in protein-RNA interactions. We test the method on the RNA binding domains of three important regulators of RNA metabolism. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells.

    PubMed

    Ju, Yi; Cui, Jiwei; Sun, Huanli; Müllner, Markus; Dai, Yunlu; Guo, Junling; Bertleff-Zieschang, Nadja; Suma, Tomoya; Richardson, Joseph J; Caruso, Frank

    2016-06-13

    We engineered metal-phenolic capsules with both high targeting and low nonspecific cell binding properties. The capsules were prepared by coating phenolic-functionalized hyaluronic acid (HA) and poly(ethylene glycol) (PEG) on calcium carbonate templates, followed by cross-linking the phenolic groups with metal ions and removing the templates. The incorporation of HA significantly enhanced binding and association with a CD44 overexpressing (CD44+) cancer cell line, while the incorporation of PEG reduced nonspecific interactions with a CD44 minimal-expressing (CD44-) cell line. Moreover, high specific targeting to CD44+ cells can be balanced with low nonspecific binding to CD44- cells simply by using an optimized feed-ratio of HA and PEG to vary the content of HA and PEG incorporated into the capsules. Loading an anticancer drug (i.e., doxorubicin) into the obtained capsules resulted in significantly higher cytotoxicity to CD44+ cells but lower cytotoxicity to CD44- cells.

  13. Aptamer antagonists of myelin-derived inhibitors promote axon growth.

    PubMed

    Wang, Yuxuan; Khaing, Zin Z; Li, Na; Hall, Brad; Schmidt, Christine E; Ellington, Andrew D

    2010-03-16

    Myelin of the adult central nervous system (CNS) is one of the major sources of inhibitors of axon regeneration following injury. The three known myelin-derived inhibitors (Nogo, MAG, and OMgp) bind with high affinity to the Nogo-66 receptor (NgR) on axons and limit neurite outgrowth. Here we show that RNA aptamers can be generated that bind with high affinity to NgR, compete with myelin-derived inhibitors for binding to NgR, and promote axon elongation of neurons in vitro even in the presence of these inhibitors. Aptamers may have key advantages over protein antagonists, including low immunogenicity and the possibility of ready modification during chemical synthesis for stability, signaling, or immobilization. This first demonstration that aptamers can directly influence neuronal function suggests that aptamers may prove useful for not only healing spinal cord and other neuronal damage, but may be more generally useful as neuromodulators.

  14. Aptamer Antagonists of Myelin-Derived Inhibitors Promote Axon Growth

    PubMed Central

    Wang, Yuxuan; Khaing, Zin Z.; Li, Na; Hall, Brad; Schmidt, Christine E.; Ellington, Andrew D.

    2010-01-01

    Myelin of the adult central nervous system (CNS) is one of the major sources of inhibitors of axon regeneration following injury. The three known myelin-derived inhibitors (Nogo, MAG, and OMgp) bind with high affinity to the Nogo-66 receptor (NgR) on axons and limit neurite outgrowth. Here we show that RNA aptamers can be generated that bind with high affinity to NgR, compete with myelin-derived inhibitors for binding to NgR, and promote axon elongation of neurons in vitro even in the presence of these inhibitors. Aptamers may have key advantages over protein antagonists, including low immunogenicity and the possibility of ready modification during chemical synthesis for stability, signaling, or immobilization. This first demonstration that aptamers can directly influence neuronal function suggests that aptamers may prove useful for not only healing spinal cord and other neuronal damage, but may be more generally useful as neuromodulators. PMID:20300533

  15. Design of Internalizing PSMA-specific Glu-ureido-based Radiotherapeuticals

    PubMed Central

    Wüstemann, Till; Bauder-Wüst, Ulrike; Schäfer, Martin; Eder, Matthias; Benesova, Martina; Leotta, Karin; Kratochwil, Clemens; Haberkorn, Uwe; Kopka, Klaus; Mier, Walter

    2016-01-01

    Despite the progress in diagnosis and treatment, prostate cancer (PCa) is one of the main causes for cancer-associated deaths among men. Recently, prostate-specific membrane antigen (PSMA) binding tracers have revolutionized the molecular imaging of this disease. The translation of these tracers into therapeutic applications is challenging because of high PSMA-associated kidney uptake. While both the tumor uptake and the uptake in the kidneys are PSMA-specific, the kidneys show a more rapid clearance than tumor lesions. Consequently, the potential of endoradiotherapeutic drugs targeting PSMA is highly dependent on a sustained retention in the tumor - ideally achieved by predominant internalization of the respective tracer. Previously, we were able to show that the pharmacokinetics of the tracers containing the Glu-urea-based binding motif can be further enhanced with a specifically designed linker. Here, we evaluate an eventual influence of the chelator moiety on the pharmacokinetics, including the tumor internalization. A series of tracers modified by different chelators were synthesized using solid phase chemistry. The conjugates were radiolabeled to evaluate the influence on the receptor binding affinity, the ligand-induced internalization and the biodistribution behavior. Competitive binding and internalization assays were performed on PSMA positive LNCaP cells and the biodistribution of the most promising compound was evaluated by positron emission tomography (PET) in LNCaP-tumor-bearing mice. Interestingly, conjugation of the different chelators did not cause significant differences: all compounds showed nanomolar binding affinities with only minor differences. PET imaging of the 68Ga-labeled CHX-A''-DTPA conjugate revealed that the chelator moiety does not impair the specificity of tumor uptake when compared to the gold standard PSMA-617. However, strong differences of the internalization ratios caused by the chelator moiety were observed: differences in internalization between 15% and 65% were observed, with the CHX-A''-DTPA conjugate displaying the highest internalization ratio. A first-in-man PET/CT study proved the high tumor uptake of this 68Ga-labeled PSMA-targeting compound. These data indicate that hydrophobic entities at the chelator mediate the internalization efficacy. Based on its specific tumor uptake in combination with its very high internalization ratio, the clinical performance of the chelator-conjugated Glu-urea-based PSMA inhibitors will be further elucidated. PMID:27279903

  16. A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs.

    PubMed

    Nguyen, Thi Quynh Ngoc; Lim, Kah Wai; Phan, Anh Tuân

    2017-09-20

    Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.

  17. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only themore » channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.« less

  18. Harmane and harmalan are bioactive components of classical clonidine-displacing substance.

    PubMed

    Parker, Christine A; Anderson, Neil J; Robinson, Emma S J; Price, Rhiannon; Tyacke, Robin J; Husbands, Stephen M; Dillon, Michael P; Eglen, Richard M; Hudson, Alan L; Nutt, David J; Crump, Matthew P; Crosby, John

    2004-12-28

    Elucidation of the structure of the endogenous ligand(s) for imidazoline binding sites, clonidine-displacing substance (CDS), has been a major goal for many years. Crude CDS from bovine lung was purified by reverse-phase high-pressure liquid chromatography. Electrospray mass spectrometry (ESMS) and nuclear magnetic resonance ((1)H NMR) analysis revealed the presence of L-tryptophan and 1-carboxy-1-methyltetrahydro-beta-carboline in the active CDS extract. Competition radioligand binding studies, however, failed to show displacement of specific [(3)H]clonidine binding to rat brain membranes for either compound. Further purification of the bovine lung extract allowed the isolation of the beta-carbolines harmane and harmalan as confirmed by ESMS, (1)H NMR, and comparison with synthetic standards. Both compounds exhibited a high (nanomolar) affinity for both type 1 and type 2 imidazoline binding sites, and the synthetic standards were shown to coelute with the active classical CDS extracts. We therefore propose that the beta-carbolines harmane and harmalan represent active components of classical CDS. The identification of these compounds will allow us to establish clear physiological roles for CDS.

  19. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering.

    PubMed

    Cinar, Süleyman; Al-Ayoubi, Samy; Sternemann, Christian; Peters, Judith; Winter, Roland; Czeslik, Claus

    2018-01-31

    Calmodulin (CaM) is a Ca 2+ sensor and mediates Ca 2+ signaling through binding of numerous target ligands. The binding of ligands by Ca 2+ -saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.

  20. A Computational Analysis of ATP Binding of SV40 Large Tumor Antigen Helicase Motor

    PubMed Central

    Shi, Yemin; Liu, Hanbin; Gai, Dahai; Ma, Jianpeng; Chen, Xiaojiang S.

    2009-01-01

    Simian Virus 40 Large Tumor Antigen (LTag) is an efficient helicase motor that unwinds and translocates DNA. The DNA unwinding and translocation of LTag is powered by ATP binding and hydrolysis at the nucleotide pocket between two adjacent subunits of an LTag hexamer. Based on the set of high-resolution hexameric structures of LTag helicase in different nucleotide binding states, we simulated a conformational transition pathway of the ATP binding process using the targeted molecular dynamics method and calculated the corresponding energy profile using the linear response approximation (LRA) version of the semi-macroscopic Protein Dipoles Langevin Dipoles method (PDLD/S). The simulation results suggest a three-step process for the ATP binding from the initial interaction to the final tight binding at the nucleotide pocket, in which ATP is eventually “locked” by three pairs of charge-charge interactions across the pocket. Such a “cross-locking” ATP binding process is similar to the binding zipper model reported for the F1-ATPase hexameric motor. The simulation also shows a transition mechanism of Mg2+ coordination to form the Mg-ATP complex during ATP binding, which is accompanied by the large conformational changes of LTag. This simulation study of the ATP binding process to an LTag and the accompanying conformational changes in the context of a hexamer leads to a refined cooperative iris model that has been proposed previously. PMID:19779548

Top