Sample records for show large scale

  1. Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence

    NASA Astrophysics Data System (ADS)

    Kawata, Takuya; Alfredsson, P. Henrik

    2018-06-01

    Interscale interaction between small-scale structures near the wall and large-scale structures away from the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence. While the top-down influence from the large- to small-scale structures is well known, it has been unclear whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales. Such an "inverse" interscale transport of the Reynolds shear stress eventually supports the turbulent energy production at large scales.

  2. Effects of biasing on the galaxy power spectrum at large scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beltran Jimenez, Jose; Departamento de Fisica Teorica, Universidad Complutense de Madrid, 28040, Madrid; Durrer, Ruth

    2011-05-15

    In this paper we study the effect of biasing on the power spectrum at large scales. We show that even though nonlinear biasing does introduce a white noise contribution on large scales, the P(k){proportional_to}k{sup n} behavior of the matter power spectrum on large scales may still be visible and above the white noise for about one decade. We show, that the Kaiser biasing scheme which leads to linear bias of the correlation function on large scales, also generates a linear bias of the power spectrum on rather small scales. This is a consequence of the divergence on small scales ofmore » the pure Harrison-Zeldovich spectrum. However, biasing becomes k dependent if we damp the underlying power spectrum on small scales. We also discuss the effect of biasing on the baryon acoustic oscillations.« less

  3. Synchronization of coupled large-scale Boolean networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fangfei, E-mail: li-fangfei@163.com

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  4. Skin Friction Reduction Through Large-Scale Forcing

    NASA Astrophysics Data System (ADS)

    Bhatt, Shibani; Artham, Sravan; Gnanamanickam, Ebenezer

    2017-11-01

    Flow structures in a turbulent boundary layer larger than an integral length scale (δ), referred to as large-scales, interact with the finer scales in a non-linear manner. By targeting these large-scales and exploiting this non-linear interaction wall shear stress (WSS) reduction of over 10% has been achieved. The plane wall jet (PWJ), a boundary layer which has highly energetic large-scales that become turbulent independent of the near-wall finer scales, is the chosen model flow field. It's unique configuration allows for the independent control of the large-scales through acoustic forcing. Perturbation wavelengths from about 1 δ to 14 δ were considered with a reduction in WSS for all wavelengths considered. This reduction, over a large subset of the wavelengths, scales with both inner and outer variables indicating a mixed scaling to the underlying physics, while also showing dependence on the PWJ global properties. A triple decomposition of the velocity fields shows an increase in coherence due to forcing with a clear organization of the small scale turbulence with respect to the introduced large-scale. The maximum reduction in WSS occurs when the introduced large-scale acts in a manner so as to reduce the turbulent activity in the very near wall region. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0194 monitored by Dr. Douglas Smith.

  5. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  6. Large scale anomalies in the microwave background: causation and correlation.

    PubMed

    Aslanyan, Grigor; Easther, Richard

    2013-12-27

    Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals in polarization and large scale structure, reducing the impact of cosmic variance. We compute the apparent spatial curvature associated with large-scale inhomogeneities and show that it is typically small, allowing for a self-consistent analysis. As an illustrative example we show that a single large plane wave inhomogeneity can contribute to low-l mode alignment and odd-even asymmetry in the power spectra and the best-fit model accounts for a significant part of the claimed odd-even asymmetry. We argue that this approach can be generalized to provide a more quantitative assessment of potential large scale anomalies in the Universe.

  7. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    NASA Astrophysics Data System (ADS)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  8. Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion: Design and Comparison With Other Scales.

    PubMed

    Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe

    2016-07-01

    We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.

  9. On large-scale dynamo action at high magnetic Reynolds number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattaneo, F.; Tobias, S. M., E-mail: smt@maths.leeds.ac.uk

    2014-07-01

    We consider the generation of magnetic activity—dynamo waves—in the astrophysical limit of very large magnetic Reynolds number. We consider kinematic dynamo action for a system consisting of helical flow and large-scale shear. We demonstrate that large-scale dynamo waves persist at high Rm if the helical flow is characterized by a narrow band of spatial scales and the shear is large enough. However, for a wide band of scales the dynamo becomes small scale with a further increase of Rm, with dynamo waves re-emerging only if the shear is then increased. We show that at high Rm, the key effect ofmore » the shear is to suppress small-scale dynamo action, allowing large-scale dynamo action to be observed. We conjecture that this supports a general 'suppression principle'—large-scale dynamo action can only be observed if there is a mechanism that suppresses the small-scale fluctuations.« less

  10. Energy transfers in large-scale and small-scale dynamos

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  11. Measuring the topology of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  12. Measuring the topology of large-scale structure in the universe

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  13. Mapping the integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Manzotti, A.; Dodelson, S.

    2014-12-01

    On large scales, the anisotropies in the cosmic microwave background (CMB) reflect not only the primordial density field but also the energy gain when photons traverse decaying gravitational potentials of large scale structure, what is called the integrated Sachs-Wolfe (ISW) effect. Decomposing the anisotropy signal into a primordial piece and an ISW component, the main secondary effect on large scales, is more urgent than ever as cosmologists strive to understand the Universe on those scales. We present a likelihood technique for extracting the ISW signal combining measurements of the CMB, the distribution of galaxies, and maps of gravitational lensing. We test this technique with simulated data showing that we can successfully reconstruct the ISW map using all the data sets together. Then we present the ISW map obtained from a combination of real data: the NRAO VLA sky survey (NVSS) galaxy survey, temperature anisotropies, and lensing maps made by the Planck satellite. This map shows that, with the data sets used and assuming linear physics, there is no evidence, from the reconstructed ISW signal in the Cold Spot region, for an entirely ISW origin of this large scale anomaly in the CMB. However a large scale structure origin from low redshift voids outside the NVSS redshift range is still possible. Finally we show that future surveys, thanks to a better large scale lensing reconstruction will be able to improve the reconstruction signal to noise which is now mainly coming from galaxy surveys.

  14. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  15. Spatially resolved Spectroscopy of Europa’s Large-scale Compositional Units at 3-4 μm with Keck NIRSPEC

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  16. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    PubMed

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing

    NASA Technical Reports Server (NTRS)

    Over, Thomas, M.; Gupta, Vijay K.

    1994-01-01

    Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.

  18. Transport induced by large scale convective structures in a dipole-confined plasma.

    PubMed

    Grierson, B A; Mauel, M E; Worstell, M W; Klassen, M

    2010-11-12

    Convective structures characterized by E×B motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  19. Nonlinear modulation of the HI power spectrum on ultra-large scales. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeh, Obinna; Maartens, Roy; Santos, Mario, E-mail: umeobinna@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: mgrsantos@uwc.ac.za

    2016-03-01

    Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they may bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates the nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolutionmore » bias. It also introduces a term that mimics white noise. These effects may influence forecasting analysis on ultra-large scales.« less

  20. Nonlocal and collective relaxation in stellar systems

    NASA Technical Reports Server (NTRS)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  1. Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes

    NASA Astrophysics Data System (ADS)

    Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.

    2016-12-01

    Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.

  2. The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization.

    PubMed

    Yuan, Gonglin; Sheng, Zhou; Liu, Wenjie

    2016-01-01

    In this paper, the Hager and Zhang (HZ) conjugate gradient (CG) method and the modified HZ (MHZ) CG method are presented for large-scale nonsmooth convex minimization. Under some mild conditions, convergent results of the proposed methods are established. Numerical results show that the presented methods can be better efficiency for large-scale nonsmooth problems, and several problems are tested (with the maximum dimensions to 100,000 variables).

  3. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  4. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. Copyright © 2016, American Association for the Advancement of Science.

  5. Intercomparison of methods of coupling between convection and large-scale circulation: 2. Comparison over nonuniform surface conditions

    DOE PAGES

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...

    2016-03-18

    As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less

  6. Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits

    NASA Astrophysics Data System (ADS)

    Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas

    2018-04-01

    Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.

  7. The large-scale organization of metabolic networks

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A.-L.

    2000-10-01

    In a cell or microorganism, the processes that generate mass, energy, information transfer and cell-fate specification are seamlessly integrated through a complex network of cellular constituents and reactions. However, despite the key role of these networks in sustaining cellular functions, their large-scale structure is essentially unknown. Here we present a systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life. We show that, despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems. This may indicate that metabolic organization is not only identical for all living organisms, but also complies with the design principles of robust and error-tolerant scale-free networks, and may represent a common blueprint for the large-scale organization of interactions among all cellular constituents.

  8. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    NASA Astrophysics Data System (ADS)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  9. Large-Scale Atmospheric Teleconnection Patterns Associated with the Interannual Variability of Heatwaves in East Asia and Its Decadal Changes

    NASA Astrophysics Data System (ADS)

    Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.

    2017-12-01

    Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.

  10. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories

    NASA Astrophysics Data System (ADS)

    Park, Kiwan; Blackman, Eric G.; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  11. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.

    PubMed

    Park, Kiwan; Blackman, Eric G; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  12. Large-Angular-Scale Clustering as a Clue to the Source of UHECRs

    NASA Astrophysics Data System (ADS)

    Berlind, Andreas A.; Farrar, Glennys R.

    We explore what can be learned about the sources of UHECRs from their large-angular-scale clustering (referred to as their "bias" by the cosmology community). Exploiting the clustering on large scales has the advantage over small-scale correlations of being insensitive to uncertainties in source direction from magnetic smearing or measurement error. In a Cold Dark Matter cosmology, the amplitude of large-scale clustering depends on the mass of the system, with more massive systems such as galaxy clusters clustering more strongly than less massive systems such as ordinary galaxies or AGN. Therefore, studying the large-scale clustering of UHECRs can help determine a mass scale for their sources, given the assumption that their redshift depth is as expected from the GZK cutoff. We investigate the constraining power of a given UHECR sample as a function of its cutoff energy and number of events. We show that current and future samples should be able to distinguish between the cases of their sources being galaxy clusters, ordinary galaxies, or sources that are uncorrelated with the large-scale structure of the universe.

  13. FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH (with scale stick). - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  14. The ellipsoidal universe in the Planck satellite era

    NASA Astrophysics Data System (ADS)

    Cea, Paolo

    2014-06-01

    Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ΔTpol = (1.20 ± 0.38) μK. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.

  15. Large-scale influences in near-wall turbulence.

    PubMed

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  16. Large-scale data analysis of power grid resilience across multiple US service regions

    NASA Astrophysics Data System (ADS)

    Ji, Chuanyi; Wei, Yun; Mei, Henry; Calzada, Jorge; Carey, Matthew; Church, Steve; Hayes, Timothy; Nugent, Brian; Stella, Gregory; Wallace, Matthew; White, Joe; Wilcox, Robert

    2016-05-01

    Severe weather events frequently result in large-scale power failures, affecting millions of people for extended durations. However, the lack of comprehensive, detailed failure and recovery data has impeded large-scale resilience studies. Here, we analyse data from four major service regions representing Upstate New York during Super Storm Sandy and daily operations. Using non-stationary spatiotemporal random processes that relate infrastructural failures to recoveries and cost, our data analysis shows that local power failures have a disproportionally large non-local impact on people (that is, the top 20% of failures interrupted 84% of services to customers). A large number (89%) of small failures, represented by the bottom 34% of customers and commonplace devices, resulted in 56% of the total cost of 28 million customer interruption hours. Our study shows that extreme weather does not cause, but rather exacerbates, existing vulnerabilities, which are obscured in daily operations.

  17. Measuring large-scale vertical motion in the atmosphere with dropsondes

    NASA Astrophysics Data System (ADS)

    Bony, Sandrine; Stevens, Bjorn

    2017-04-01

    Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.

  18. Spatiotemporal property and predictability of large-scale human mobility

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  19. Delayed Effects of a Low-Cost and Large-Scale Summer Reading Intervention on Elementary School Children's Reading Comprehension

    ERIC Educational Resources Information Center

    Kim, James S.; Guryan, Jonathan; White, Thomas G.; Quinn, David M.; Capotosto, Lauren; Kingston, Helen Chen

    2016-01-01

    To improve the reading comprehension outcomes of children in high-poverty schools, policymakers need to identify reading interventions that show promise of effectiveness at scale. This study evaluated the effectiveness of a low-cost and large-scale summer reading intervention that provided comprehension lessons at the end of the school year and…

  20. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  1. A practical overview and comparison of certain commercial forensic software tools for processing large-scale digital investigations

    NASA Astrophysics Data System (ADS)

    Kröger, Knut; Creutzburg, Reiner

    2013-05-01

    The aim of this paper is to show the usefulness of modern forensic software tools for processing large-scale digital investigations. In particular, we focus on the new version of Nuix 4.2 and compare it with AccessData FTK 4.2, X-Ways Forensics 16.9 and Guidance Encase Forensic 7 regarding its performance, functionality, usability and capability. We will show how these software tools work with large forensic images and how capable they are in examining complex and big data scenarios.

  2. A Limited-Memory BFGS Algorithm Based on a Trust-Region Quadratic Model for Large-Scale Nonlinear Equations.

    PubMed

    Li, Yong; Yuan, Gonglin; Wei, Zengxin

    2015-01-01

    In this paper, a trust-region algorithm is proposed for large-scale nonlinear equations, where the limited-memory BFGS (L-M-BFGS) update matrix is used in the trust-region subproblem to improve the effectiveness of the algorithm for large-scale problems. The global convergence of the presented method is established under suitable conditions. The numerical results of the test problems show that the method is competitive with the norm method.

  3. Is There Any Real Observational Contradictoty To The Lcdm Model?

    NASA Astrophysics Data System (ADS)

    Ma, Yin-Zhe

    2011-01-01

    In this talk, I am going to question the two apparent observational contradictories to LCDM cosmology---- the lack of large angle correlations in the cosmic microwave background, and the very large bulk flow of galaxy peculiar velocities. On the super-horizon scale, "Copi etal. (2009)” have been arguing that the lack of large angular correlations of the CMB temperature field provides strong evidence against the standard, statistically isotropic, LCDM cosmology. I am going to argue that the "ad-hoc” discrepancy is due to the sub-optimal estimator of the low-l multipoles, and a posteriori statistics, which exaggerates the statistical significance. On Galactic scales, "Watkins et al. (2008)” shows that the very large bulk flow prefers a very large density fluctuation, which seems to contradict to the LCDM model. I am going to show that these results are due to their underestimation of the small scale velocity dispersion, and an arbitrary way of combining catalogues. With the appropriate way of combining catalogue data, as well as the treating the small scale velocity dispersion as a free parameter, the peculiar velocity field provides unconvincing evidence against LCDM cosmology.

  4. Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process

    NASA Astrophysics Data System (ADS)

    Wong, Minhao; Ishige, Ryohei; White, Kevin L.; Li, Peng; Kim, Daehak; Krishnamoorti, Ramanan; Gunther, Robert; Higuchi, Takeshi; Jinnai, Hiroshi; Takahara, Atsushi; Nishimura, Riichi; Sue, Hung-Jue

    2014-04-01

    The large-scale assembly of asymmetric colloidal particles is used in creating high-performance fibres. A similar concept is extended to the manufacturing of thin films of self-assembled two-dimensional crystal-type materials with enhanced and tunable properties. Here we present a spray-coating method to manufacture thin, flexible and transparent epoxy films containing zirconium phosphate nanoplatelets self-assembled into a lamellar arrangement aligned parallel to the substrate. The self-assembled mesophase of zirconium phosphate nanoplatelets is stabilized by epoxy pre-polymer and exhibits rheology favourable towards large-scale manufacturing. The thermally cured film forms a mechanically robust coating and shows excellent gas barrier properties at both low- and high humidity levels as a result of the highly aligned and overlapping arrangement of nanoplatelets. This work shows that the large-scale ordering of high aspect ratio nanoplatelets is easier to achieve than previously thought and may have implications in the technological applications for similar materials.

  5. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  6. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less

  7. The role of Natural Flood Management in managing floods in large scale basins during extreme events

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Owen, Gareth; ODonnell, Greg; Nicholson, Alex; Hetherington, David

    2016-04-01

    There is a strong evidence database showing the negative impacts of land use intensification and soil degradation in NW European river basins on hydrological response and to flood impact downstream. However, the ability to target zones of high runoff production and the extent to which we can manage flood risk using nature-based flood management solution are less known. A move to planting more trees and having less intense farmed landscapes is part of natural flood management (NFM) solutions and these methods suggest that flood risk can be managed in alternative and more holistic ways. So what local NFM management methods should be used, where in large scale basin should they be deployed and how does flow is propagate to any point downstream? Generally, how much intervention is needed and will it compromise food production systems? If we are observing record levels of rainfall and flow, for example during Storm Desmond in Dec 2015 in the North West of England, what other flood management options are really needed to complement our traditional defences in large basins for the future? In this paper we will show examples of NFM interventions in the UK that have impacted at local scale sites. We will demonstrate the impact of interventions at local, sub-catchment (meso-scale) and finally at the large scale. These tools include observations, process based models and more generalised Flood Impact Models. Issues of synchronisation and the design level of protection will be debated. By reworking observed rainfall and discharge (runoff) for observed extreme events in the River Eden and River Tyne, during Storm Desmond, we will show how much flood protection is needed in large scale basins. The research will thus pose a number of key questions as to how floods may have to be managed in large scale basins in the future. We will seek to support a method of catchment systems engineering that holds water back across the whole landscape as a major opportunity to management water in large scale basins in the future. The broader benefits of engineering landscapes to hold water for pollution control, sediment loss and drought minimisation will also be shown.

  8. Connecting the large- and the small-scale magnetic fields of solar-like stars

    NASA Astrophysics Data System (ADS)

    Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.

    2018-05-01

    A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.

  9. On The Evidence For Large-Scale Galactic Conformity In The Local Universe

    NASA Astrophysics Data System (ADS)

    Sin, Larry P. T.; Lilly, Simon J.; Henriques, Bruno M. B.

    2017-10-01

    We re-examine the observational evidence for large-scale (4 Mpc) galactic conformity in the local Universe, as presented in Kauffmann et al. We show that a number of methodological features of their analysis act to produce a misleadingly high amplitude of the conformity signal. These include a weighting in favour of central galaxies in very high density regions, the likely misclassification of satellite galaxies as centrals in the same high-density regions and the use of medians to characterize bimodal distributions. We show that the large-scale conformity signal in Kauffmann et al. clearly originates from a very small number of central galaxies in the vicinity of just a few very massive clusters, whose effect is strongly amplified by the methodological issues that we have identified. Some of these 'centrals' are likely misclassified satellites, but some may be genuine centrals showing a real conformity effect. Regardless, this analysis suggests that conformity on 4 Mpc scales is best viewed as a relatively short-range effect (at the virial radius) associated with these very large neighbouring haloes, rather than a very long-range effect (at tens of virial radii) associated with the relatively low-mass haloes that host the nominal central galaxies in the analysis. A mock catalogue constructed from a recent semi-analytic model shows very similar conformity effects to the data when analysed in the same way, suggesting that there is no need to introduce new physical processes to explain galactic conformity on 4 Mpc scales.

  10. The use of data from national and other large-scale user experience surveys in local quality work: a systematic review.

    PubMed

    Haugum, Mona; Danielsen, Kirsten; Iversen, Hilde Hestad; Bjertnaes, Oyvind

    2014-12-01

    An important goal for national and large-scale surveys of user experiences is quality improvement. However, large-scale surveys are normally conducted by a professional external surveyor, creating an institutionalized division between the measurement of user experiences and the quality work that is performed locally. The aim of this study was to identify and describe scientific studies related to the use of national and large-scale surveys of user experiences in local quality work. Ovid EMBASE, Ovid MEDLINE, Ovid PsycINFO and the Cochrane Database of Systematic Reviews. Scientific publications about user experiences and satisfaction about the extent to which data from national and other large-scale user experience surveys are used for local quality work in the health services. Themes of interest were identified and a narrative analysis was undertaken. Thirteen publications were included, all differed substantially in several characteristics. The results show that large-scale surveys of user experiences are used in local quality work. The types of follow-up activity varied considerably from conducting a follow-up analysis of user experience survey data to information sharing and more-systematic efforts to use the data as a basis for improving the quality of care. This review shows that large-scale surveys of user experiences are used in local quality work. However, there is a need for more, better and standardized research in this field. The considerable variation in follow-up activities points to the need for systematic guidance on how to use data in local quality work. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less

  12. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    NASA Astrophysics Data System (ADS)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the relatively scale at which most studies and implementations are currently made. These suggestions can help bridge critical knowledge gaps, as needed for improving water quality predictions and mitigation solutions under human and environmental changes.

  13. Characterising large-scale structure with the REFLEX II cluster survey

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung

    2016-10-01

    We study the large-scale structure with superclusters from the REFLEX X-ray cluster survey together with cosmological N-body simulations. It is important to construct superclusters with criteria such that they are homogeneous in their properties. We lay out our theoretical concept considering future evolution of superclusters in their definition, and show that the X-ray luminosity and halo mass functions of clusters in superclusters are found to be top-heavy, different from those of clusters in the field. We also show a promising aspect of using superclusters to study the local cluster bias and mass scaling relation with simulations.

  14. Large-scale weakly supervised object localization via latent category learning.

    PubMed

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  15. HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Sokoloff, D. D.; Zhang, H.

    It is believed that magnetic helicity conservation is an important constraint on large-scale astrophysical dynamos. In this paper, we study a mean-field solar dynamo model that employs two different formulations of the magnetic helicity conservation. In the first approach, the evolution of the averaged small-scale magnetic helicity is largely determined by the local induction effects due to the large-scale magnetic field, turbulent motions, and the turbulent diffusive loss of helicity. In this case, the dynamo model shows that the typical strength of the large-scale magnetic field generated by the dynamo is much smaller than the equipartition value for the magneticmore » Reynolds number 10{sup 6}. This is the so-called catastrophic quenching (CQ) phenomenon. In the literature, this is considered to be typical for various kinds of solar dynamo models, including the distributed-type and the Babcock-Leighton-type dynamos. The problem can be resolved by the second formulation, which is derived from the integral conservation of the total magnetic helicity. In this case, the dynamo model shows that magnetic helicity propagates with the dynamo wave from the bottom of the convection zone to the surface. This prevents CQ because of the local balance between the large-scale and small-scale magnetic helicities. Thus, the solar dynamo can operate in a wide range of magnetic Reynolds numbers up to 10{sup 6}.« less

  16. [Spatial point pattern analysis of main trees and flowering Fargesia qinlingensis in Abies fargesii forests in Mt Taibai of the Qinling Mountains, China].

    PubMed

    Li, Guo Chun; Song, Hua Dong; Li, Qi; Bu, Shu Hai

    2017-11-01

    In Abies fargesii forests of the giant panda's habitats in Mt. Taibai, the spatial distribution patterns and interspecific associations of main tree species and their spatial associations with the understory flowering Fargesia qinlingensis were analyzed at multiple scales by univariate and bivaria-te O-ring function in point pattern analysis. The results showed that in the A. fargesii forest, the number of A. fargesii was largest but its population structure was in decline. The population of Betula platyphylla was relatively young, with a stable population structure, while the population of B. albo-sinensis declined. The three populations showed aggregated distributions at small scales and gradually showed random distributions with increasing spatial scales. Spatial associations among tree species were mainly showed at small scales and gradually became not spatially associated with increasing scale. A. fargesii and B. platyphylla were positively associated with flowering F. qinlingensis at large and medium scales, whereas B. albo-sinensis showed negatively associated with flowering F. qinlingensis at large and medium scales. The interaction between trees and F. qinlingensis in the habitats of giant panda promoted the dynamic succession and development of forests, which changed the environment of giant panda's habitats in Qinling.

  17. On the scaling of small-scale jet noise to large scale

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or perceived noise level (PNL) noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10(exp 6) based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using a small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  18. On the scaling of small-scale jet noise to large scale

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or PNL noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10 exp 6 based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  19. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    PubMed Central

    Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong

    2014-01-01

    This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931

  20. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

  1. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems

    PubMed Central

    Copi, Craig J.; Olive, Keith A.; Schramm, David N.

    1998-01-01

    We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (∼1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints. PMID:9501162

  2. Implications of a primordial origin for the dispersion in D/H in quasar absorption systems.

    PubMed

    Copi, C J; Olive, K A; Schramm, D N

    1998-03-17

    We explore the difficulties with a primordial origin of variations of D/H in quasar absorption systems. In particular we examine options such as a very large-scale inhomogeneity in the baryon content of the universe. We show that very large-scale (much larger than 1 Mpc) isocurvature perturbations are excluded by current cosmic microwave background observations. Smaller-scale ad hoc perturbations (approximately 1 Mpc) still may lead to a large dispersion in primordial abundances but are subject to other constraints.

  3. Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects

    NASA Technical Reports Server (NTRS)

    Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.

    1991-01-01

    A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.

  4. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun

    2017-06-01

    Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.

  5. Homogenization analysis of invasion dynamics in heterogeneous landscapes with differential bias and motility.

    PubMed

    Yurk, Brian P

    2018-07-01

    Animal movement behaviors vary spatially in response to environmental heterogeneity. An important problem in spatial ecology is to determine how large-scale population growth and dispersal patterns emerge within highly variable landscapes. We apply the method of homogenization to study the large-scale behavior of a reaction-diffusion-advection model of population growth and dispersal. Our model includes small-scale variation in the directed and random components of movement and growth rates, as well as large-scale drift. Using the homogenized model we derive simple approximate formulas for persistence conditions and asymptotic invasion speeds, which are interpreted in terms of residence index. The homogenization results show good agreement with numerical solutions for environments with a high degree of fragmentation, both with and without periodicity at the fast scale. The simplicity of the formulas, and their connection to residence index make them appealing for studying the large-scale effects of a variety of small-scale movement behaviors.

  6. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1974-01-01

    Based on the premises that (1) magnetic suspension techniques can play a useful role in large-scale aerodynamic testing and (2) superconductor technology offers the only practical hope for building large-scale magnetic suspensions, an all-superconductor three-component magnetic suspension and balance facility was built as a prototype and was tested successfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities have been made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  8. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities. [cryogenic traonics wind tunnel

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    Based on the premises that magnetic suspension techniques can play a useful role in large scale aerodynamic testing, and that superconductor technology offers the only practical hope for building large scale magnetic suspensions, an all-superconductor 3-component magnetic suspension and balance facility was built as a prototype and tested sucessfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities at Langley Research Center were made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  9. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chene, A.-N.; St-Louis, N., E-mail: achene@astro-udec.cl, E-mail: stlouis@astro.umontreal.ca

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of {approx}100 and determined its variability level usingmore » the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v {approx} 12.5, and some WR stars with 12.5 < v {<=} 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars ({approx}22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.« less

  10. Large-Scale Coronal Heating from the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Porter, Jason G.; Hathaway, David H.

    1999-01-01

    In Fe 12 images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi- supergranular. In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. The emission of the coronal network and bright points contribute only about 5% of the entire quiet solar coronal Fe MI emission. Here we investigate the large-scale corona, the supergranular and larger-scale structure that we had previously treated as a background, and that emits 95% of the total Fe XII emission. We compare the dim and bright halves of the large- scale corona and find that the bright half is 1.5 times brighter than the dim half, has an order of magnitude greater area of bright point coverage, has three times brighter coronal network, and has about 1.5 times more magnetic flux than the dim half These results suggest that the brightness of the large-scale corona is more closely related to the large- scale total magnetic flux than to bright point activity. We conclude that in the quiet sun: (1) Magnetic flux is modulated (concentrated/diluted) on size scales larger than supergranules. (2) The large-scale enhanced magnetic flux gives an enhanced, more active, magnetic network and an increased incidence of network bright point formation. (3) The heating of the large-scale corona is dominated by more widespread, but weaker, network activity than that which heats the bright points. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  11. An evaluation of Health of the Nation Outcome Scales data to inform psychiatric morbidity following the Canterbury earthquakes.

    PubMed

    Beaglehole, Ben; Frampton, Chris M; Boden, Joseph M; Mulder, Roger T; Bell, Caroline J

    2017-11-01

    Following the onset of the Canterbury, New Zealand earthquakes, there were widespread concerns that mental health services were under severe strain as a result of adverse consequences on mental health. We therefore examined Health of the Nation Outcome Scales data to see whether this could inform our understanding of the impact of the Canterbury earthquakes on patients attending local specialist mental health services. Health of the Nation Outcome Scales admission data were analysed for Canterbury mental health services prior to and following the Canterbury earthquakes. These findings were compared to Health of the Nation Outcome Scales admission data from seven other large District Health Boards to delineate local from national trends. Percentage changes in admission numbers were also calculated before and after the earthquakes for Canterbury and the seven other large district health boards. Admission Health of the Nation Outcome Scales scores in Canterbury increased after the earthquakes for adult inpatient and community services, old age inpatient and community services, and Child and Adolescent inpatient services compared to the seven other large district health boards. Admission Health of the Nation Outcome Scales scores for Child and Adolescent community services did not change significantly, while admission Health of the Nation Outcome Scales scores for Alcohol and Drug services in Canterbury fell compared to other large district health boards. Subscale analysis showed that the majority of Health of the Nation Outcome Scales subscales contributed to the overall increases found. Percentage changes in admission numbers for the Canterbury District Health Board and the seven other large district health boards before and after the earthquakes were largely comparable with the exception of admissions to inpatient services for the group aged 4-17 years which showed a large increase. The Canterbury earthquakes were followed by an increase in Health of the Nation Outcome Scales scores for attendees of local mental health services compared to other large district health boards. This suggests that patients presented with greater degrees of psychiatric distress, social disruption, behavioural change and impairment as a result of the earthquakes.

  12. Multiscale recurrence quantification analysis of order recurrence plots

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Shang, Pengjian; Lin, Aijing

    2017-03-01

    In this paper, we propose a new method of multiscale recurrence quantification analysis (MSRQA) to analyze the structure of order recurrence plots. The MSRQA is based on order patterns over a range of time scales. Compared with conventional recurrence quantification analysis (RQA), the MSRQA can show richer and more recognizable information on the local characteristics of diverse systems which successfully describes their recurrence properties. Both synthetic series and stock market indexes exhibit their properties of recurrence at large time scales that quite differ from those at a single time scale. Some systems present more accurate recurrence patterns under large time scales. It demonstrates that the new approach is effective for distinguishing three similar stock market systems and showing some inherent differences.

  13. The three-point function as a probe of models for large-scale structure

    NASA Astrophysics Data System (ADS)

    Frieman, Joshua A.; Gaztanaga, Enrique

    1994-04-01

    We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, Rp is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes QJ at large scales, r is greater than or approximately Rp. Current observational constraints on the three-point amplitudes Q3 and S3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  14. Solar Trees: First Large-Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules.

    PubMed

    Berny, Stephane; Blouin, Nicolas; Distler, Andreas; Egelhaaf, Hans-Joachim; Krompiec, Michal; Lohr, Andreas; Lozman, Owen R; Morse, Graham E; Nanson, Lana; Pron, Agnieszka; Sauermann, Tobias; Seidler, Nico; Tierney, Steve; Tiwana, Priti; Wagner, Michael; Wilson, Henry

    2016-05-01

    The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large-scale production.

  15. Evaluating stream trout habitat on large-scale aerial color photographs

    Treesearch

    Wallace J. Greentree; Robert C. Aldrich

    1976-01-01

    Large-scale aerial color photographs were used to evaluate trout habitat by studying stream and streambank conditions. Ninety-two percent of these conditions could be identified correctly on the color photographs. Color photographs taken 1 year apart showed that rehabilitation efforts resulted in stream vegetation changes. Water depth was correlated with film density:...

  16. The Application of Large-Scale Hypermedia Information Systems to Training.

    ERIC Educational Resources Information Center

    Crowder, Richard; And Others

    1995-01-01

    Discusses the use of hypermedia in electronic information systems that support maintenance operations in large-scale industrial plants. Findings show that after establishing an information system, the same resource base can be used to train personnel how to use the computer system and how to perform operational and maintenance tasks. (Author/JMV)

  17. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel

    2017-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.

  18. The Large Scale Distribution of Water Ice in the Polar Regions of the Moon

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Wilson, J. K.; Schwadron, N.; Spence, H. E.

    2017-12-01

    For in situ resource utilization, one must know where water ice is on the Moon. Many datasets have revealed both surface deposits of water ice and subsurface deposits of hydrogen near the lunar poles, but it has proved difficult to resolve the differences among the locations of these deposits. Despite these datasets disagreeing on how deposits are distributed on small scales, we show that most of these datasets do agree on the large scale distribution of water ice. We present data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO), LRO's Lunar Exploration Neutron Detector (LEND), the Neutron Spectrometer on Lunar Prospector (LPNS), LRO's Lyman Alpha Mapping Project (LAMP), LRO's Lunar Orbiter Laser Altimeter (LOLA), and Chandrayaan-1's Moon Mineralogy Mapper (M3). All, including those that show clear evidence for water ice, reveal surprisingly similar trends with latitude, suggesting that both surface and subsurface datasets are measuring ice. All show that water ice increases towards the poles, and most demonstrate that its signature appears at about ±70° latitude and increases poleward. This is consistent with simulations of how surface and subsurface cold traps are distributed with latitude. This large scale agreement constrains the origin of the ice, suggesting that an ancient cometary impact (or impacts) created a large scale deposit that has been rendered locally heterogeneous by subsequent impacts. Furthermore, it also shows that water ice may be available down to ±70°—latitudes that are more accessible than the poles for landing.

  19. A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem.

    PubMed

    He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi

    2015-11-01

    A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    NASA Astrophysics Data System (ADS)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  1. State of the Art in Large-Scale Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  2. Scaling properties of the Arctic sea ice Deformation from Buoy Dispersion Analysis

    NASA Astrophysics Data System (ADS)

    Weiss, J.; Rampal, P.; Marsan, D.; Lindsay, R.; Stern, H.

    2007-12-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over time scales from 3 hours to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate -the Arctic sea ice cover- stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e. it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multi-scale fracturing/faulting processes.

  3. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  4. Corridors Increase Plant Species Richness at Large Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  5. Facile Large-scale synthesis of stable CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazari, P.; Abdollahi-Nejand, B.; Eskandari, M.; Kohnehpoushi, S.

    2018-04-01

    In this work, a novel approach in synthesizing the CuO nanoparticles was introduced. A sequential corrosion and detaching was proposed in the growth and dispersion of CuO nanoparticles in the optimum pH value of eight. The produced CuO nanoparticles showed six nm (±2 nm) in diameter and spherical feather with a high crystallinity and uniformity in size. In this method, a large-scale production of CuO nanoparticles (120 grams in an experimental batch) from Cu micro-particles was achieved which may met the market criteria for large-scale production of CuO nanoparticles.

  6. Corridors increase plant species richness at large scales.

    PubMed

    Damschen, Ellen I; Haddad, Nick M; Orrock, John L; Tewksbury, Joshua J; Levey, Douglas J

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  7. A link between nonlinear self-organization and dissipation in drift-wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, P.; Birkenmeier, G.; Stroth, U.

    Structure formation and self-organization in two-dimensional drift-wave turbulence show up in many different faces. Fluctuation data from a magnetized plasma are analyzed and three mechanisms transferring kinetic energy to large-scale structures are identified. Beside the common vortex merger, clustering of vortices constituting a large-scale strain field and vortex thinning, where due to the interactions of vortices of different scales larger vortices are amplified by the smaller ones, are observed. The vortex thinning mechanism appears to be the most efficient one to generate large scale structures in drift-wave turbulence. Vortex merging as well as vortex clustering are accompanied by strong energymore » transfer to small-scale noncoherent fluctuations (dissipation) balancing the negative entropy generation due to the self-organization process.« less

  8. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  9. A unified large/small-scale dynamo in helical turbulence

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel

    2016-09-01

    We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.

  10. Amplification of large scale magnetic fields in a decaying MHD system

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2017-10-01

    Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.

  11. Retrieving cosmological signal using cosmic flows

    NASA Astrophysics Data System (ADS)

    Bouillot, V.; Alimi, J.-M.

    2011-12-01

    To understand the origin of the anomalously high bulk flow at large scales, we use very large simulations in various cosmological models. To disentangle between cosmological and environmental effects, we select samples with bulk flow profiles similar to the observational data Watkins et al. (2009) which exhibit a maximum in the bulk flow at 53 h^{-1} Mpc. The estimation of the cosmological parameters Ω_M and σ_8, done on those samples, is correct from the rms mass fluctuation whereas this estimation gives completely false values when done on bulk flow measurements, hence showing a dependance of velocity fields on larger scales. By drawing a clear link between velocity fields at 53 h^{-1} Mpc and asymmetric patterns of the density field at 85 h^{-1} Mpc, we show that the bulk flow can depend largely on the environment. The retrieving of the cosmological signal is achieved by studying the convergence of the bulk flow towards the linear prediction at very large scale (˜ 150 h^{-1} Mpc).

  12. Scaling properties of sea ice deformation from buoy dispersion analysis

    NASA Astrophysics Data System (ADS)

    Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.

    2008-03-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.

  13. Large-scale circulation departures related to wet episodes in north-east Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  14. Large-scale circulation departures related to wet episodes in northeast Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  15. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  16. Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Yang, Huang; Waugh, Darryn W.; Zeng, Guang; Morgenstern, Olaf; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Plummer, David A.; Scinocca, John F.; Josse, Beatrice; Marecal, Virginie; Jöckel, Patrick; Oman, Luke D.; Strahan, Susan E.; Deushi, Makoto; Tanaka, Taichu Y.; Yoshida, Kohei; Akiyoshi, Hideharu; Yamashita, Yousuke; Stenke, Andreas; Revell, Laura; Sukhodolov, Timofei; Rozanov, Eugene; Pitari, Giovanni; Visioni, Daniele; Stone, Kane A.; Schofield, Robyn; Banerjee, Antara

    2018-05-01

    Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry-Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  17. Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode

    NASA Astrophysics Data System (ADS)

    Sojasi, A.

    2018-01-01

    In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .

  18. The influence of super-horizon scales on cosmological observables generated during inflation

    NASA Astrophysics Data System (ADS)

    Matarrese, Sabino; Musso, Marcello A.; Riotto, Antonio

    2004-05-01

    Using the techniques of out-of-equilibrium field theory, we study the influence on properties of cosmological perturbations generated during inflation on observable scales coming from fluctuations corresponding today to scales much bigger than the present Hubble radius. We write the effective action for the coarse grained inflaton perturbations, integrating out the sub-horizon modes, which manifest themselves as a coloured noise and lead to memory effects. Using the simple model of a scalar field with cubic self-interactions evolving in a fixed de Sitter background, we evaluate the two- and three-point correlation function on observable scales. Our basic procedure shows that perturbations do preserve some memory of the super-horizon scale dynamics, in the form of scale dependent imprints in the statistical moments. In particular, we find a blue tilt of the power spectrum on large scales, in agreement with the recent results of the WMAP collaboration which show a suppression of the lower multipoles in the cosmic microwave background anisotropies, and a substantial enhancement of the intrinsic non-Gaussianity on large scales.

  19. Neutrino footprint in large scale structure

    NASA Astrophysics Data System (ADS)

    Garay, Carlos Peña; Verde, Licia; Jimenez, Raul

    2017-03-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys. Such a measurement will imply a direct determination of the absolute neutrino mass scale. Physically, the measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. However, detection of a lack of small-scale power from cosmological data could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties are fully specified by the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature cannot be easily mimicked by systematic uncertainties in the cosmological data analysis or modifications in the cosmological model. Therefore the measurement of such a feature, up to 1% relative change in the power spectrum for extreme differences in the mass eigenstates mass ratios, is a smoking gun for confirming the determination of the absolute neutrino mass scale from cosmological observations. It also demonstrates the synergy between astrophysics and particle physics experiments.

  20. Analysis and modeling of subgrid scalar mixing using numerical data

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.

  1. Scale Dependence of Land Atmosphere Interactions in Wet and Dry Regions as Simulated with NU-WRF over the Southwestern and Southeast US

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo

    2016-01-01

    Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.

  2. Effects of multiple-scale driving on turbulence statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyunju; Cho, Jungyeon, E-mail: hyunju527@gmail.com, E-mail: jcho@cnu.ac.kr

    2014-01-01

    Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and the intracluster medium. In turbulence studies, it is customary to assume that fluid is driven on a single scale. However, in astrophysical fluids, there can be many different driving mechanisms that act on different scales. If there are multiple energy-injection scales, the process of energy cascade and turbulence dynamo will be different compared with the case of the single energy-injection scale. In this work, we perform three-dimensional incompressible/compressible magnetohydrodynamic turbulence simulations. We drive turbulence in Fourier space in two wavenumber ranges, 2≤k≤√12 (large scale) and 15 ≲ kmore » ≲ 26 (small scale). We inject different amount of energy in each range by changing the amplitude of forcing in the range. We present the time evolution of the kinetic and magnetic energy densities and discuss the turbulence dynamo in the presence of energy injections at two scales. We show how kinetic, magnetic, and density spectra are affected by the two-scale energy injections and we discuss the observational implications. In the case ε {sub L} < ε {sub S}, where ε {sub L} and ε {sub S} are energy-injection rates at the large and small scales, respectively, our results show that even a tiny amount of large-scale energy injection can significantly change the properties of turbulence. On the other hand, when ε {sub L} ≳ ε {sub S}, the small-scale driving does not influence the turbulence statistics much unless ε {sub L} ∼ ε {sub S}.« less

  3. Large and small-scale structures in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.; Rehnberg, M. E.; Brown, Z. L.; Sremcevic, M.; Esposito, L. W.

    2017-09-01

    Observations made by the Cassini spacecraft have revealed both large and small scale structures in Saturn's rings in unprecedented detail. Analysis of high-resolution measurements by the Cassini Ultraviolet Spectrograph (UVIS) High Speed Photometer (HSP) and the Imaging Science Subsystem (ISS) show an abundance of intrinsic small-scale structures (or clumping) seen across the entire ring system. These include self-gravity wakes (50-100m), sub-km structure at the A and B ring edges, and "straw"/"ropy" structures (1-3km).

  4. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

    ERIC Educational Resources Information Center

    Steyvers, Mark; Tenenbaum, Joshua B.

    2005-01-01

    We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…

  5. Storm Time Global Observations of Large-Scale TIDs From Ground-Based and In Situ Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Habarulema, John Bosco; Yizengaw, Endawoke; Katamzi-Joseph, Zama T.; Moldwin, Mark B.; Buchert, Stephan

    2018-01-01

    This paper discusses the ionosphere's response to the largest storm of solar cycle 24 during 16-18 March 2015. We have used the Global Navigation Satellite Systems (GNSS) total electron content data to study large-scale traveling ionospheric disturbances (TIDs) over the American, African, and Asian regions. Equatorward large-scale TIDs propagated and crossed the equator to the other side of the hemisphere especially over the American and Asian sectors. Poleward TIDs with velocities in the range ≈400-700 m/s have been observed during local daytime over the American and African sectors with origin from around the geomagnetic equator. Our investigation over the American sector shows that poleward TIDs may have been launched by increased Lorentz coupling as a result of penetrating electric field during the southward turning of the interplanetary magnetic field, Bz. We have observed increase in SWARM satellite electron density (Ne) at the same time when equatorward large-scale TIDs are visible over the European-African sector. The altitude Ne profiles from ionosonde observations show a possible link that storm-induced TIDs may have influenced the plasma distribution in the topside ionosphere at SWARM satellite altitude.

  6. A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.

    PubMed

    Halloran, John T; Rocke, David M

    2018-05-04

    Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .

  7. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances

    PubMed Central

    Parker, V. Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  8. Solving large-scale fixed cost integer linear programming models for grid-based location problems with heuristic techniques

    NASA Astrophysics Data System (ADS)

    Noor-E-Alam, Md.; Doucette, John

    2015-08-01

    Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.

  9. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    NASA Technical Reports Server (NTRS)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  10. Multi-level structure in the large scale distribution of optically luminous galaxies

    NASA Astrophysics Data System (ADS)

    Deng, Xin-fa; Deng, Zu-gan; Liu, Yong-zhen

    1992-04-01

    Fractal dimensions in the large scale distribution of galaxies have been calculated with the method given by Wen et al. [1] Samples are taken from CfA redshift survey in northern and southern galactic [2] hemisphere in our analysis respectively. Results from these two regions are compared with each other. There are significant differences between the distributions in these two regions. However, our analyses do show some common features of the distributions in these two regions. All subsamples show multi-level fractal character distinctly. Combining it with the results from analyses of samples given by IRAS galaxies and results from samples given by redshift survey in pencil-beam fields, [3,4] we suggest that multi-level fractal structure is most likely to be a general and important character in the large scale distribution of galaxies. The possible implications of this character are discussed.

  11. Downscaling ocean conditions: Experiments with a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Katavouta, A.; Thompson, K. R.

    2013-12-01

    The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.

  12. Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Gingrich, Mark

    Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.

  13. Are the traditional large-scale drought indices suitable for shallow water wetlands? An example in the Everglades.

    PubMed

    Zhao, Dehua; Wang, Penghe; Zuo, Jie; Zhang, Hui; An, Shuqing; Ramesh, Reddy K

    2017-08-01

    Numerous drought indices have been developed over the past several decades. However, few studies have focused on the suitability of indices for studies of ephemeral wetlands. The objective is to answer the following question: can the traditional large-scale drought indices characterize drought severity in shallow water wetlands such as the Everglades? The question was approached from two perspectives: the available water quantity and the response of wetland ecosystems to drought. The results showed the unsuitability of traditional large-scale drought indices for characterizing the actual available water quantity based on two findings. (1) Large spatial variations in precipitation (P), potential evapotranspiration (PE), water table depth (WTD) and the monthly water storage change (SC) were observed in the Everglades; notably, the spatial variation in SC, which reflects the monthly water balance, was 1.86 and 1.62 times larger than the temporal variation between seasons and between years, respectively. (2) The large-scale water balance measured based on the water storage variation had an average indicating efficiency (IE) of only 60.01% due to the redistribution of interior water. The spatial distribution of variations in the Normalized Different Vegetation Index (NDVI) in the 2011 dry season showed significantly positive, significantly negative and weak correlations with the minimum WTD in wet prairies, graminoid prairies and sawgrass wetlands, respectively. The significant and opposite correlations imply the unsuitability of the traditional large-scale drought indices in evaluating the effect of drought on shallow water wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. On the large scale structure of X-ray background sources

    NASA Technical Reports Server (NTRS)

    Bi, H. G.; Meszaros, A.; Meszaros, P.

    1991-01-01

    The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.

  15. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  16. Spatial Structure of Large-Scale Plasma Density Perturbations HF-Induced in the Ionospheric F 2 Region

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Komrakov, G. P.; Glukhov, Ya. V.; Andreeva, E. S.; Kunitsyn, V. E.; Kurbatov, G. A.

    2016-07-01

    We consider the experimental results obtained by studying the large-scale structure of the HF-disturbed ionospheric region. The experiments were performed using the SURA heating facility. The disturbed ionospheric region was sounded by signals radiated by GPS navigation satellite beacons as well as by signals of low-orbit satellites (radio tomography). The results of the experiments show that large-scale plasma density perturbations induced at altitudes higher than the F2 layer maximum can contribute significantly to the measured variations of the total electron density and can, with a certain arrangement of the reception points, be measured by the GPS sounding method.

  17. Tropospheric transport differences between models using the same large-scale meteorological fields

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Yang, Huang; Lamarque, Jean-Francois; Tilmes, Simone; Kinnison, Douglas E.

    2017-01-01

    The transport of chemicals is a major uncertainty in the modeling of tropospheric composition. A common approach is to transport gases using the winds from meteorological analyses, either using them directly in a chemical transport model or by constraining the flow in a general circulation model. Here we compare the transport of idealized tracers in several different models that use the same meteorological fields taken from Modern-Era Retrospective analysis for Research and Applications (MERRA). We show that, even though the models use the same meteorological fields, there are substantial differences in their global-scale tropospheric transport related to large differences in parameterized convection between the simulations. Furthermore, we find that the transport differences between simulations constrained with the same-large scale flow are larger than differences between free-running simulations, which have differing large-scale flow but much more similar convective mass fluxes. Our results indicate that more attention needs to be paid to convective parameterizations in order to understand large-scale tropospheric transport in models, particularly in simulations constrained with analyzed winds.

  18. Constant Stress Drop Fits Earthquake Surface Slip-Length Data

    NASA Astrophysics Data System (ADS)

    Shaw, B. E.

    2011-12-01

    Slip at the surface of the Earth provides a direct window into the earthquake source. A longstanding controversy surrounds the scaling of average surface slip with rupture length, which shows the puzzling feature of continuing to increase with rupture length for lengths many times the seismogenic width. Here we show that a more careful treatment of how ruptures transition from small circular ruptures to large rectangular ruptures combined with an assumption of constant stress drop provides a new scaling law for slip versus length which (1) does an excellent job fitting the data, (2) gives an explanation for the large crossover lengthscale at which slip begins to saturate, and (3) supports constant stress drop scaling which matches that seen for small earthquakes. We additionally discuss how the new scaling can be usefully applied to seismic hazard estimates.

  19. Dissecting the large-scale galactic conformity

    NASA Astrophysics Data System (ADS)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  20. Imprint of non-linear effects on HI intensity mapping on large scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umeh, Obinna, E-mail: umeobinna@gmail.com

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on themore » power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.« less

  1. Imprint of non-linear effects on HI intensity mapping on large scales

    NASA Astrophysics Data System (ADS)

    Umeh, Obinna

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  2. Assessing change in the family impact of caries in young children after treatment under general anaesthesia.

    PubMed

    Thomson, William Murray; Malden, Penelope Elizabeth

    2011-09-01

    To examine the properties, validity and responsiveness of the Family Impact Scale in a consecutive clinical sample of patients undergoing dental treatment under general anaesthesia. A consecutive clinical sample of parents/caregivers of children receiving dental treatment under general anaesthesia provided data using the Family Impact Scale (FIS) component of the COHQOL(©) Questionnaire. The first questionnaire was completed before treatment, the follow-up questionnaire 1-4 weeks afterward. Treatment-associated changes in the FIS and its components were determined by comparing baseline and follow-up data. Baseline and follow-up data were obtained for 202 and 130 participants, respectively (64.4% follow-up). All FIS items showed large relative decreases in prevalence, the greatest seen in those relating to having sleep disrupted, blaming others, being upset, the child requiring more attention, financial difficulties and having to take time off work. Factor analysis largely confirmed the underlying factor structure, with three sub-scales (parental/family, parental emotions and family conflict) identified. The parental/family and parental emotions sub-scales showed the greatest treatment-associated improvement, with large effect sizes. There was a moderate improvement in scores on the family conflict sub-scale. The overall FIS showed a large improvement. Treating children with severe caries under general anaesthesia results in OHRQoL improvements for the family. Severe dental caries is not merely a restorative and preventive challenge for those who treat children; it has far-reaching effects on those who share the household and care for the affected child.

  3. An experimental study of large-scale vortices over a blunt-faced flat plate in pulsating flow

    NASA Astrophysics Data System (ADS)

    Hwang, K. S.; Sung, H. J.; Hyun, J. M.

    Laboratory measurements are made of flow over a blunt flat plate of finite thickness, which is placed in a pulsating free stream, U=Uo(1+Aocos 2πfpt). Low turbulence-intensity wind tunnel experiments are conducted in the ranges of Stp<=1.23 and Ao<=0.118 at ReH=560. Pulsation is generated by means of a woofer speaker. Variations of the time-mean reattachment length xR as functions of Stp and Ao are scrutinized by using the forward-time fraction and surface pressure distributions (Cp). The shedding frequency of large-scale vortices due to pulsation is measured. Flow visualizations depict the behavior of large-scale vortices. The results for non-pulsating flows (Ao=0) are consistent with the published data. In the lower range of Ao, as Stp increases, xR attains a minimum value at a particular pulsation frequency. For large Ao, the results show complicated behaviors of xR. For Stp>=0.80, changes in xR are insignificant as Ao increases. The shedding frequency of large-scale vortices is locked-in to the pulsation frequency. A vortex-pairing process takes place between two neighboring large-scale vortices in the separated shear layer.

  4. SHEAR-DRIVEN DYNAMO WAVES IN THE FULLY NONLINEAR REGIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pongkitiwanichakul, P.; Nigro, G.; Cattaneo, F.

    2016-07-01

    Large-scale dynamo action is well understood when the magnetic Reynolds number ( Rm ) is small, but becomes problematic in the astrophysically relevant large Rm limit since the fluctuations may control the operation of the dynamo, obscuring the large-scale behavior. Recent works by Tobias and Cattaneo demonstrated numerically the existence of large-scale dynamo action in the form of dynamo waves driven by strongly helical turbulence and shear. Their calculations were carried out in the kinematic regime in which the back-reaction of the Lorentz force on the flow is neglected. Here, we have undertaken a systematic extension of their work tomore » the fully nonlinear regime. Helical turbulence and large-scale shear are produced self-consistently by prescribing body forces that, in the kinematic regime, drive flows that resemble the original velocity used by Tobias and Cattaneo. We have found four different solution types in the nonlinear regime for various ratios of the fluctuating velocity to the shear and Reynolds numbers. Some of the solutions are in the form of propagating waves. Some solutions show large-scale helical magnetic structure. Both waves and structures are permanent only when the kinetic helicity is non-zero on average.« less

  5. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-27

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  6. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  7. Quality of life in small-scaled homelike nursing homes: an 8-month controlled trial.

    PubMed

    Kok, Jeroen S; Nielen, Marjan M A; Scherder, Erik J A

    2018-02-27

    Quality of life is a clinical highly relevant outcome for residents with dementia. The question arises whether small scaled homelike facilities are associated with better quality of life than regular larger scale nursing homes do. A sample of 145 residents living in a large scale care facility were followed over 8 months. Half of the sample (N = 77) subsequently moved to a small scaled facility. Quality of life aspects were measured with the QUALIDEM and GIP before and after relocation. We found a significant Group x Time interaction on measures of anxiety meaning that residents who moved to small scale units became less anxious than residents who stayed on the regular care large-scale units. No significant differences were found on other aspects of quality of life. This study demonstrates that residents who move from a large scale facility to a small scale environment can improve an aspect of quality of life by showing a reduction in anxiety. Current Controlled Trials ISRCTN11151241 . registration date: 21-06-2017. Retrospectively registered.

  8. Potential Impacts of Offshore Wind Farms on North Sea Stratification

    PubMed Central

    Carpenter, Jeffrey R.; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions—both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios. PMID:27513754

  9. Potential Impacts of Offshore Wind Farms on North Sea Stratification.

    PubMed

    Carpenter, Jeffrey R; Merckelbach, Lucas; Callies, Ulrich; Clark, Suzanna; Gaslikova, Lidia; Baschek, Burkard

    2016-01-01

    Advances in offshore wind farm (OWF) technology have recently led to their construction in coastal waters that are deep enough to be seasonally stratified. As tidal currents move past the OWF foundation structures they generate a turbulent wake that will contribute to a mixing of the stratified water column. In this study we show that the mixing generated in this way may have a significant impact on the large-scale stratification of the German Bight region of the North Sea. This region is chosen as the focus of this study since the planning of OWFs is particularly widespread. Using a combination of idealised modelling and in situ measurements, we provide order-of-magnitude estimates of two important time scales that are key to understanding the impacts of OWFs: (i) a mixing time scale, describing how long a complete mixing of the stratification takes, and (ii) an advective time scale, quantifying for how long a water parcel is expected to undergo enhanced wind farm mixing. The results are especially sensitive to both the drag coefficient and type of foundation structure, as well as the evolution of the pycnocline under enhanced mixing conditions-both of which are not well known. With these limitations in mind, the results show that OWFs could impact the large-scale stratification, but only when they occupy extensive shelf regions. They are expected to have very little impact on large-scale stratification at the current capacity in the North Sea, but the impact could be significant in future large-scale development scenarios.

  10. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP [Investigating the scale dependence of SCM simulated precipitation and cloud by using gridded forcing data at SGP

    DOE PAGES

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-05

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less

  11. Broken Symmetries and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.

  12. Issues and Methodologies in Large-Scale Assessments. Special Issue 2: Measuring Students' Family Background in Large-Scale International Education Studies. IERI Monograph Series

    ERIC Educational Resources Information Center

    Brese, Falk; Mirazchiyski, Plamen

    2013-01-01

    The relationship between students' family background and achievement is often seen as an important topic in regard to equality and equity of educational provision. The results of various education studies show that the family background of students correlates with students' academic achievement at school. This paper focuses on the measurement of…

  13. Asymmetric noise-induced large fluctuations in coupled systems

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira B.; Szwaykowska, Klimka; Carr, Thomas W.

    2017-10-01

    Networks of interacting, communicating subsystems are common in many fields, from ecology, biology, and epidemiology to engineering and robotics. In the presence of noise and uncertainty, interactions between the individual components can lead to unexpected complex system-wide behaviors. In this paper, we consider a generic model of two weakly coupled dynamical systems, and we show how noise in one part of the system is transmitted through the coupling interface. Working synergistically with the coupling, the noise on one system drives a large fluctuation in the other, even when there is no noise in the second system. Moreover, the large fluctuation happens while the first system exhibits only small random oscillations. Uncertainty effects are quantified by showing how characteristic time scales of noise-induced switching scale as a function of the coupling between the two coupled parts of the experiment. In addition, our results show that the probability of switching in the noise-free system scales inversely as the square of reduced noise intensity amplitude, rendering the virtual probability of switching an extremely rare event. Our results showing the interplay between transmitted noise and coupling are also confirmed through simulations, which agree quite well with analytic theory.

  14. Rossby waves and two-dimensional turbulence in a large-scale zonal jet

    NASA Technical Reports Server (NTRS)

    Shepherd, Theodor G.

    1987-01-01

    Homogeneous barotropic beta-plane turbulence is investigated, taking into account the effects of spatial inhomogeneity in the form of a zonal shear flows. Attention is given to the case of zonal flows that are barotropically stable and of larger scale than the resulting transient eddy field. Numerical simulations reveal that large-scale zonal flows alter the picture of classical beta-plane turbulence. It is found that the disturbance field penetrates to the largest scales of motion, that the larger disturbance scales show a tendency to meridional rather than zonal anisotropy, and that the initial spectral transfer rate away from an isotropic intermediate-scale source is enhanced by the shear-induced transfer associated with straining by the zonal flow.

  15. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    PubMed

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.

    PubMed

    Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai

    2008-03-15

    A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

  17. Gravity versus radiation models: on the importance of scale and heterogeneity in commuting flows.

    PubMed

    Masucci, A Paolo; Serras, Joan; Johansson, Anders; Batty, Michael

    2013-08-01

    We test the recently introduced radiation model against the gravity model for the system composed of England and Wales, both for commuting patterns and for public transportation flows. The analysis is performed both at macroscopic scales, i.e., at the national scale, and at microscopic scales, i.e., at the city level. It is shown that the thermodynamic limit assumption for the original radiation model significantly underestimates the commuting flows for large cities. We then generalize the radiation model, introducing the correct normalization factor for finite systems. We show that even if the gravity model has a better overall performance the parameter-free radiation model gives competitive results, especially for large scales.

  18. Scale growth of structures in the turbulent boundary layer with a rod-roughened wall

    NASA Astrophysics Data System (ADS)

    Lee, Jin; Kim, Jung Hoon; Lee, Jae Hwa

    2016-01-01

    Direct numerical simulation of a turbulent boundary layer over a rod-roughened wall is performed with a long streamwise domain to examine the streamwise-scale growth mechanism of streamwise velocity fluctuating structures in the presence of two-dimensional (2-D) surface roughness. An instantaneous analysis shows that there is a slightly larger population of long structures with a small helix angle (spanwise inclinations relative to streamwise) and a large spanwise width over the rough-wall compared to that over a smooth-wall. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure through a spanwise merging process over the rough-wall; moreover, spanwise merging for streamwise scale growth is expected to occur frequently over the rough-wall due to the large spanwise scales generated by the 2-D roughness. Finally, we examine the influence of a large width and a small helix angle of the structures over the rough-wall with regard to spatial two-point correlation. The results show that these factors can increase the streamwise coherence of the structures in a statistical sense.

  19. Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology and evaluation

    DOE PAGES

    Li, Zhijin; Vogelmann, Andrew M.; Feng, Sha; ...

    2015-01-20

    We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis products and constrains fine-scale atmospheric properties by assimilating high-resolution observations. A set of experiments show that the data assimilation analysis realistically reproduces the intensity, structure, and time evolution of clouds and precipitation associated with a mesoscale convective system.more » Evaluations also show that the large-scale forcing derived from the fine-resolution analysis has an overall accuracy comparable to the existing ARM operational product. For enhanced applications, the fine-resolution fields are used to characterize the contribution of subgrid variability to the large-scale forcing and to derive hydrometeor forcing, which are presented in companion papers.« less

  20. Reconciling tensor and scalar observables in G-inflation

    NASA Astrophysics Data System (ADS)

    Ramírez, Héctor; Passaglia, Samuel; Motohashi, Hayato; Hu, Wayne; Mena, Olga

    2018-04-01

    The simple m2phi2 potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral index ns. Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt αs that can be of order ns‑1. We show that the observables on CMB and large scale structure scales can be predicted accurately using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits on |αs| place a lower bound of rgtrsim 0.005 and, conversely, a given r places a lower bound on |αs|, both of which are potentially observable with next generation CMB and large scale structure surveys.

  1. Wave models for turbulent free shear flows

    NASA Technical Reports Server (NTRS)

    Liou, W. W.; Morris, P. J.

    1991-01-01

    New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.

  2. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2016-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.

  3. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.

  4. Cosmic homogeneity: a spectroscopic and model-independent measurement

    NASA Astrophysics Data System (ADS)

    Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.

    2018-03-01

    Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.

  5. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Wang, Q. X.

    2017-08-01

    The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.

  6. Large-angle correlations in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Efstathiou, George; Ma, Yin-Zhe; Hanson, Duncan

    2010-10-01

    It has been argued recently by Copi et al. 2009 that the lack of large angular correlations of the CMB temperature field provides strong evidence against the standard, statistically isotropic, inflationary Lambda cold dark matter (ΛCDM) cosmology. We compare various estimators of the temperature correlation function showing how they depend on assumptions of statistical isotropy and how they perform on the Wilkinson Microwave Anisotropy Probe (WMAP) 5-yr Internal Linear Combination (ILC) maps with and without a sky cut. We show that the low multipole harmonics that determine the large-scale features of the temperature correlation function can be reconstructed accurately from the data that lie outside the sky cuts. The reconstructions are only weakly dependent on the assumed statistical properties of the temperature field. The temperature correlation functions computed from these reconstructions are in good agreement with those computed from the ILC map over the whole sky. We conclude that the large-scale angular correlation function for our realization of the sky is well determined. A Bayesian analysis of the large-scale correlations is presented, which shows that the data cannot exclude the standard ΛCDM model. We discuss the differences between our results and those of Copi et al. Either there exists a violation of statistical isotropy as claimed by Copi et al., or these authors have overestimated the significance of the discrepancy because of a posteriori choices of estimator, statistic and sky cut.

  7. The statistical overlap theory of chromatography using power law (fractal) statistics.

    PubMed

    Schure, Mark R; Davis, Joe M

    2011-12-30

    The chromatographic dimensionality was recently proposed as a measure of retention time spacing based on a power law (fractal) distribution. Using this model, a statistical overlap theory (SOT) for chromatographic peaks is developed that estimates the number of peak maxima as a function of the chromatographic dimension, saturation and scale. Power law models exhibit a threshold region whereby below a critical saturation value no loss of peak maxima due to peak fusion occurs as saturation increases. At moderate saturation, behavior is similar to the random (Poisson) peak model. At still higher saturation, the power law model shows loss of peaks nearly independent of the scale and dimension of the model. The physicochemical meaning of the power law scale parameter is discussed and shown to be equal to the Boltzmann-weighted free energy of transfer over the scale limits. The scale is discussed. Small scale range (small β) is shown to generate more uniform chromatograms. Large scale range chromatograms (large β) are shown to give occasional large excursions of retention times; this is a property of power laws where "wild" behavior is noted to occasionally occur. Both cases are shown to be useful depending on the chromatographic saturation. A scale-invariant model of the SOT shows very simple relationships between the fraction of peak maxima and the saturation, peak width and number of theoretical plates. These equations provide much insight into separations which follow power law statistics. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing.

    PubMed

    Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J

    2017-07-11

    Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.

  9. Images from Galileo of the Venus cloud deck

    USGS Publications Warehouse

    Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, James B.; Rages, K.A.; Ingersoll, A.P.; Klaasen, K.P.; Veverka, J.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Fanale, F.P.; Greeley, R.; Greenberg, R.; Head, J. W.; Morrison, D.; Neukum, G.; Pilcher, C.B.

    1991-01-01

    Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  10. Study of LANDSAT-D thematic mapper performance as applied to hydrocarbon exploration

    NASA Technical Reports Server (NTRS)

    Everett, J. R. (Principal Investigator)

    1983-01-01

    Two fully processed test tapes were enhanced and evaluated at scales up to 1:10,000, using both hardcopy output and interactive screen display. A large scale, the Detroit, Michigan scene shows evidence of an along line data slip every sixteenth line in TM channel 2. Very large scale products generated in false color using channels 1,3, and 4 should be very acceptable for interpretation at scales up to 1:50,000 and useful for change mapping probably up to scale 1:24,000. Striping visible in water bodies for both natural and color products indicates that the detector calibration is probably performing below preflight specification. For a set of 512 x 512 windows within the NE Arkansas scene, the variance-covariance matrices were computed and principal component analyses performed. Initial analysis suggests that the shortwave infrared TM 5 and 6 channels are a highly significant data source. The thermal channel (TM 7) shows negative correlation with TM 1 and 4.

  11. Inviscid criterion for decomposing scales

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxiao; Aluie, Hussein

    2018-05-01

    The proper scale decomposition in flows with significant density variations is not as straightforward as in incompressible flows, with many possible ways to define a "length scale." A choice can be made according to the so-called inviscid criterion [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009]. It is a kinematic requirement that a scale decomposition yield negligible viscous effects at large enough length scales. It has been proved [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009] recently that a Favre decomposition satisfies the inviscid criterion, which is necessary to unravel inertial-range dynamics and the cascade. Here we present numerical demonstrations of those results. We also show that two other commonly used decompositions can violate the inviscid criterion and, therefore, are not suitable to study inertial-range dynamics in variable-density and compressible turbulence. Our results have practical modeling implication in showing that viscous terms in Large Eddy Simulations do not need to be modeled and can be neglected.

  12. Anisotropic storage medium development in a full-scale, sodium alanate-based, hydrogen storage system

    DOE PAGES

    Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; ...

    2016-06-11

    Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less

  13. Effects of Large-Scale Solar Installations on Dust Mobilization and Air Quality

    NASA Astrophysics Data System (ADS)

    Pratt, J. T.; Singh, D.; Diffenbaugh, N. S.

    2012-12-01

    Large-scale solar projects are increasingly being developed worldwide and many of these installations are located in arid, desert regions. To examine the effects of these projects on regional dust mobilization and air quality, we analyze aerosol product data from NASA's Multi-angle Imaging Spectroradiometer (MISR) at annual and seasonal time intervals near fifteen photovoltaic and solar thermal stations ranging from 5-200 MW (12-4,942 acres) in size. The stations are distributed over eight different countries and were chosen based on size, location and installation date; most of the installations are large-scale, took place in desert climates and were installed between 2006 and 2010. We also consider air quality measurements of particulate matter between 2.5 and 10 micrometers (PM10) from the Environmental Protection Agency (EPA) monitoring sites near and downwind from the project installations in the U.S. We use monthly wind data from the NOAA's National Center for Atmospheric Prediction (NCEP) Global Reanalysis to select the stations downwind from the installations, and then perform statistical analysis on the data to identify any significant changes in these quantities. We find that fourteen of the fifteen regions have lower aerosol product after the start of the installations as well as all six PM10 monitoring stations showing lower particulate matter measurements after construction commenced. Results fail to show any statistically significant differences in aerosol optical index or PM10 measurements before and after the large-scale solar installations. However, many of the large installations are very recent, and there is insufficient data to fully understand the long-term effects on air quality. More data and higher resolution analysis is necessary to better understand the relationship between large-scale solar, dust and air quality.

  14. Generalization of Turbulent Pair Dispersion to Large Initial Separations

    NASA Astrophysics Data System (ADS)

    Shnapp, Ron; Liberzon, Alex; International Collaboration for Turbulence Research

    2018-06-01

    We present a generalization of turbulent pair dispersion to large initial separations (η

  15. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.

  17. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100

    2015-01-15

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less

  18. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    NASA Astrophysics Data System (ADS)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and instantaneous streamwise velocities, but between the instantaneous temperatures and velocities averaged over certain time interval.

  19. Designing and developing portable large-scale JavaScript web applications within the Experiment Dashboard framework

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Dzhunov, I.; Karavakis, E.; Kokoszkiewicz, L.; Nowotka, M.; Saiz, P.; Tuckett, D.

    2012-12-01

    Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Computing Grid. We demonstrate the benefits of the approach for large-scale JavaScript web applications in this context by examining the design of several Experiment Dashboard applications for data processing, data transfer and site status monitoring, and by showing how they have been ported for different virtual organisations and technologies.

  20. An increase in aerosol burden due to the land-sea warming contrast

    NASA Astrophysics Data System (ADS)

    Hassan, T.; Allen, R.; Randles, C. A.

    2017-12-01

    Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.

  1. Linking Sediment Transport to Coherent Flow Structures: First Results Using 2-Phase PIV and Considerations of the Origin of Large-Scale Turbulence

    NASA Astrophysics Data System (ADS)

    Best, J.

    2004-05-01

    The origin and scaling of large-scale coherent flow structures has been of central interest in furthering understanding of the nature of turbulent boundary layers, and recent work has shown the presence of large-scale turbulent flow structures that may extend through the whole flow depth. Such structures may dominate the entrainment of bedload sediment and advection of fine sediment in suspension. However, we still know remarkably little of the interactions between the dynamics of coherent flow structures and sediment transport, and its implications for ecosystem dynamics. This paper will discuss the first results of two-phase particle imaging velocimetry (PIV) that has been used to visualize large-scale turbulent flow structures moving over a flat bed in a water channel, and the motion of sand particles within these flows. The talk will outline the methodology, involving the fluorescent tagging of sediment and its discrimination from the fluid phase, and show results that illustrate the key role of these large-scale structures in the transport of sediment. Additionally, the presence of these structures will be discussed in relation to the origin of vorticity within flat-bed boundary layers and recent models that envisage these large-scale motions as being linked to whole-flow field structures. Discussion will focus on if these recent models simply reflect the organization of turbulent boundary layer structure and vortex packets, some of which are amply visualised at the laminar-turbulent transition.

  2. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    NASA Astrophysics Data System (ADS)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  3. Nonhelical inverse transfer of a decaying turbulent magnetic field.

    PubMed

    Brandenburg, Axel; Kahniashvili, Tina; Tevzadze, Alexander G

    2015-02-20

    In the presence of magnetic helicity, inverse transfer from small to large scales is well known in magnetohydrodynamic (MHD) turbulence and has applications in astrophysics, cosmology, and fusion plasmas. Using high resolution direct numerical simulations of magnetically dominated self-similarly decaying MHD turbulence, we report a similar inverse transfer even in the absence of magnetic helicity. We compute for the first time spectral energy transfer rates to show that this inverse transfer is about half as strong as with helicity, but in both cases the magnetic gain at large scales results from velocity at similar scales interacting with smaller-scale magnetic fields. This suggests that both inverse transfers are a consequence of universal mechanisms for magnetically dominated turbulence. Possible explanations include inverse cascading of the mean squared vector potential associated with local near two dimensionality and the shallower k^{2} subinertial range spectrum of kinetic energy forcing the magnetic field with a k^{4} subinertial range to attain larger-scale coherence. The inertial range shows a clear k^{-2} spectrum and is the first example of fully isotropic magnetically dominated MHD turbulence exhibiting weak turbulence scaling.

  4. A novel computational approach towards the certification of large-scale boson sampling

    NASA Astrophysics Data System (ADS)

    Huh, Joonsuk

    Recent proposals of boson sampling and the corresponding experiments exhibit the possible disproof of extended Church-Turning Thesis. Furthermore, the application of boson sampling to molecular computation has been suggested theoretically. Till now, however, only small-scale experiments with a few photons have been successfully performed. The boson sampling experiments of 20-30 photons are expected to reveal the computational superiority of the quantum device. A novel theoretical proposal for the large-scale boson sampling using microwave photons is highly promising due to the deterministic photon sources and the scalability. Therefore, the certification protocol of large-scale boson sampling experiments should be presented to complete the exciting story. We propose, in this presentation, a computational protocol towards the certification of large-scale boson sampling. The correlations of paired photon modes and the time-dependent characteristic functional with its Fourier component can show the fingerprint of large-scale boson sampling. This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2015R1A6A3A04059773), the ICT R&D program of MSIP/IITP [2015-019, Fundamental Research Toward Secure Quantum Communication] and Mueunjae Institute for Chemistry (MIC) postdoctoral fellowship.

  5. Large-scale velocities and primordial non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Fabian

    2010-09-15

    We study the peculiar velocities of density peaks in the presence of primordial non-Gaussianity. Rare, high-density peaks in the initial density field can be identified with tracers such as galaxies and clusters in the evolved matter distribution. The distribution of relative velocities of peaks is derived in the large-scale limit using two different approaches based on a local biasing scheme. Both approaches agree, and show that halos still stream with the dark matter locally as well as statistically, i.e. they do not acquire a velocity bias. Nonetheless, even a moderate degree of (not necessarily local) non-Gaussianity induces a significant skewnessmore » ({approx}0.1-0.2) in the relative velocity distribution, making it a potentially interesting probe of non-Gaussianity on intermediate to large scales. We also study two-point correlations in redshift space. The well-known Kaiser formula is still a good approximation on large scales, if the Gaussian halo bias is replaced with its (scale-dependent) non-Gaussian generalization. However, there are additional terms not encompassed by this simple formula which become relevant on smaller scales (k > or approx. 0.01h/Mpc). Depending on the allowed level of non-Gaussianity, these could be of relevance for future large spectroscopic surveys.« less

  6. Mach Number effects on turbulent superstructures in wall bounded flows

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven

    2017-11-01

    Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.

  7. From Large-scale to Protostellar Disk Fragmentation into Close Binary Stars

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; Cruz, Fidel; Gabbasov, Ruslan; Klapp, Jaime; Ramírez-Velasquez, José

    2018-04-01

    Recent observations of young stellar systems with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Karl G. Jansky Very Large Array are helping to cement the idea that close companion stars form via fragmentation of a gravitationally unstable disk around a protostar early in the star formation process. As the disk grows in mass, it eventually becomes gravitationally unstable and fragments, forming one or more new protostars in orbit with the first at mean separations of 100 au or even less. Here, we report direct numerical calculations down to scales as small as ∼0.1 au, using a consistent Smoothed Particle Hydrodynamics code, that show the large-scale fragmentation of a cloud core into two protostars accompanied by small-scale fragmentation of their circumstellar disks. Our results demonstrate the two dominant mechanisms of star formation, where the disk forming around a protostar (which in turn results from the large-scale fragmentation of the cloud core) undergoes eccentric (m = 1) fragmentation to produce a close binary. We generate two-dimensional emission maps and simulated ALMA 1.3 mm continuum images of the structure and fragmentation of the disks that can help explain the dynamical processes occurring within collapsing cloud cores.

  8. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    DOE PAGES

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less

  9. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE PAGES

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  10. Life-history strategies associated with local population variability confer regional stability.

    PubMed

    Pribil, Stanislav; Houlahan, Jeff E

    2003-07-07

    A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.

  11. Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates

    NASA Astrophysics Data System (ADS)

    Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy

    2015-04-01

    The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.

  12. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    NASA Astrophysics Data System (ADS)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  13. Optimizing BAO measurements with non-linear transformations of the Lyman-α forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xinkang; Font-Ribera, Andreu; Seljak, Uroš, E-mail: xinkang.wang@berkeley.edu, E-mail: afont@lbl.gov, E-mail: useljak@berkeley.edu

    2015-04-01

    We explore the effect of applying a non-linear transformation to the Lyman-α forest transmitted flux F=e{sup −τ} and the ability of analytic models to predict the resulting clustering amplitude. Both the large-scale bias of the transformed field (signal) and the amplitude of small scale fluctuations (noise) can be arbitrarily modified, but we were unable to find a transformation that increases significantly the signal-to-noise ratio on large scales using Taylor expansion up to the third order. In particular, however, we achieve a 33% improvement in signal to noise for Gaussianized field in transverse direction. On the other hand, we explore anmore » analytic model for the large-scale biasing of the Lyα forest, and present an extension of this model to describe the biasing of the transformed fields. Using hydrodynamic simulations we show that the model works best to describe the biasing with respect to velocity gradients, but is less successful in predicting the biasing with respect to large-scale density fluctuations, especially for very nonlinear transformations.« less

  14. Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961-2000

    NASA Astrophysics Data System (ADS)

    Sanchez-Gomez, Emilia; Somot, S.; Déqué, M.

    2009-10-01

    One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961-2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation.

  15. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    PubMed Central

    Hwang, Yongyun

    2017-01-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167581

  16. Self-sustaining processes at all scales in wall-bounded turbulent shear flows.

    PubMed

    Cossu, Carlo; Hwang, Yongyun

    2017-03-13

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  17. Shifts in Summertime Precipitation Accumulation Distributions over the US

    NASA Astrophysics Data System (ADS)

    Martinez-Villalobos, C.; Neelin, J. D.

    2016-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation that have previously been noted and to changes in the moisture budget over this period are examined.

  18. Shifts in Summertime Precipitation Accumulation Distributions over the US

    NASA Astrophysics Data System (ADS)

    Martinez-Villalobos, C.; Neelin, J. D.

    2017-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation that have previously been noted and to changes in the moisture budget over this period are examined.

  19. Classification and asymptotic scaling of the light-cone wave-function amplitudes of hadrons

    DOE PAGES

    Ji, Xiangdong; Ma, Jian-Ping; Yuan, Feng

    2004-01-29

    Here we classify the hadron light-cone wave-function amplitudes in terms of parton helicity, orbital angular momentum, and quark-flavor and color symmetries. We show in detail how this is done for the pion, ρ meson, nucleon, and delta resonance up to and including three partons. For the pion and nucleon, we also consider four-parton amplitudes. Using the scaling law derived previously, we show how these amplitudes scale in the limit that all parton transverse momenta become large.

  20. Shear-driven dynamo waves at high magnetic Reynolds number.

    PubMed

    Tobias, S M; Cattaneo, F

    2013-05-23

    Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.

  1. The impact of stellar feedback on the density and velocity structure of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn; Agertz, Oscar; Romeo, Alessandro B.; Renaud, Florent; Read, Justin I.

    2017-04-01

    We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (H I) in disc galaxies. For our analysis, we carry out ˜4.6 pc resolution N-body+adaptive mesh refinement hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way and a Large and Small Magellanic Cloud. We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed H I in local spiral galaxies from THINGS (The H I Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS H I density power spectra. We find that kinetic energy power spectra in feedback-regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with supersonic turbulence (E(k) ∝ k-2) on scales below the thickness of the H I layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large-scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.

  2. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  3. A family of conjugate gradient methods for large-scale nonlinear equations.

    PubMed

    Feng, Dexiang; Sun, Min; Wang, Xueyong

    2017-01-01

    In this paper, we present a family of conjugate gradient projection methods for solving large-scale nonlinear equations. At each iteration, it needs low storage and the subproblem can be easily solved. Compared with the existing solution methods for solving the problem, its global convergence is established without the restriction of the Lipschitz continuity on the underlying mapping. Preliminary numerical results are reported to show the efficiency of the proposed method.

  4. Modal Testing of the NPSAT1 Engineering Development Unit

    DTIC Science & Technology

    2012-07-01

    erkläre ich, dass die vorliegende Master Arbeit von mir selbstständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt...logarithmic scale . As 5 Figure 2 shows, natural frequencies are indicated by large values of the first CMIF (peaks), and multiple modes can be detected by...structure’s behavior. Ewins even states, “that no large- scale modal test should be permitted to proceed until some preliminary SDOF analyses have

  5. Large-scale expensive black-box function optimization

    NASA Astrophysics Data System (ADS)

    Rashid, Kashif; Bailey, William; Couët, Benoît

    2012-09-01

    This paper presents the application of an adaptive radial basis function method to a computationally expensive black-box reservoir simulation model of many variables. An iterative proxy-based scheme is used to tune the control variables, distributed for finer control over a varying number of intervals covering the total simulation period, to maximize asset NPV. The method shows that large-scale simulation-based function optimization of several hundred variables is practical and effective.

  6. Ship detection using STFT sea background statistical modeling for large-scale oceansat remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan

    2018-03-01

    Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.

  7. DISRUPTION OF LARGE-SCALE NEURAL NETWORKS IN NON-FLUENT/AGRAMMATIC VARIANT PRIMARY PROGRESSIVE APHASIA ASSOCIATED WITH FRONTOTEMPORAL DEGENERATION PATHOLOGY

    PubMed Central

    Grossman, Murray; Powers, John; Ash, Sherry; McMillan, Corey; Burkholder, Lisa; Irwin, David; Trojanowski, John Q.

    2012-01-01

    Non-fluent/agrammatic primary progressive aphasia (naPPA) is a progressive neurodegenerative condition most prominently associated with slowed, effortful speech. A clinical imaging marker of naPPA is disease centered in the left inferior frontal lobe. We used multimodal imaging to assess large-scale neural networks underlying effortful expression in 15 patients with sporadic naPPA due to frontotemporal lobar degeneration (FTLD) spectrum pathology. Effortful speech in these patients is related in part to impaired grammatical processing, and to phonologic speech errors. Gray matter (GM) imaging shows frontal and anterior-superior temporal atrophy, most prominently in the left hemisphere. Diffusion tensor imaging reveals reduced fractional anisotropy in several white matter (WM) tracts mediating projections between left frontal and other GM regions. Regression analyses suggest disruption of three large-scale GM-WM neural networks in naPPA that support fluent, grammatical expression. These findings emphasize the role of large-scale neural networks in language, and demonstrate associated language deficits in naPPA. PMID:23218686

  8. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.

    PubMed

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Tasaka, Yuji; Yoshida, Masataka; Yano, Kanako; Takeda, Yasushi

    2010-07-01

    This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1×10(4)-2×10(5) range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of two-dimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.

  9. Automatic Selection of Order Parameters in the Analysis of Large Scale Molecular Dynamics Simulations.

    PubMed

    Sultan, Mohammad M; Kiss, Gert; Shukla, Diwakar; Pande, Vijay S

    2014-12-09

    Given the large number of crystal structures and NMR ensembles that have been solved to date, classical molecular dynamics (MD) simulations have become powerful tools in the atomistic study of the kinetics and thermodynamics of biomolecular systems on ever increasing time scales. By virtue of the high-dimensional conformational state space that is explored, the interpretation of large-scale simulations faces difficulties not unlike those in the big data community. We address this challenge by introducing a method called clustering based feature selection (CB-FS) that employs a posterior analysis approach. It combines supervised machine learning (SML) and feature selection with Markov state models to automatically identify the relevant degrees of freedom that separate conformational states. We highlight the utility of the method in the evaluation of large-scale simulations and show that it can be used for the rapid and automated identification of relevant order parameters involved in the functional transitions of two exemplary cell-signaling proteins central to human disease states.

  10. Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations

    NASA Astrophysics Data System (ADS)

    Wang, Chunzai; Wang, Xidong; Weisberg, Robert H.; Black, Michael L.

    2017-12-01

    The paper uses observational data from 1950 to 2014 to investigate rapid intensification (RI) variability of tropical cyclones (TCs) in the North Atlantic and its relationships with large-scale climate variations. RI is defined as a TC intensity increase of at least 15.4 m/s (30 knots) in 24 h. The seasonal RI distribution follows the seasonal TC distribution, with the highest number in September. Although an RI event can occur anywhere over the tropical North Atlantic (TNA), there are three regions of maximum RI occurrence: (1) the western TNA of 12°N-18°N and 60°W-45°W, (2) the Gulf of Mexico and the western Caribbean Sea, and (3) the open ocean southeast and east of Florida. RI events also show a minimum value in the eastern Caribbean Sea north of South America—a place called a hurricane graveyard due to atmospheric divergence and subsidence. On longer time scales, RI displays both interannual and multidecadal variability, but RI does not show a long-term trend due to global warming. The top three climate indices showing high correlations with RI are the June-November ENSO and Atlantic warm pool indices, and the January-March North Atlantic oscillation index. It is found that variabilities of vertical wind shear and TC heat potential are important for TC RI in the hurricane main development region, whereas relative humidity at 500 hPa is the main factor responsible for TC RI in the eastern TNA. However, the large-scale oceanic and atmospheric variables analyzed in this study do not show an important role in TC RI in the Gulf of Mexico and the open ocean southeast and east of Florida. This suggests that other factors such as small-scale changes of oceanic and atmospheric variables or TC internal processes may be responsible for TC RI in these two regions. Additionally, the analyses indicate that large-scale atmospheric and oceanic variables are not critical to TC genesis and formation; however, once a tropical depression forms, large-scale climate variations play a role in TC intensification.

  11. Mapping the Heavens: Probing Cosmology with Large Surveys

    ScienceCinema

    Frieman, Joshua [Fermilab

    2017-12-09

    This talk will provide an overview of recent and on-going sky surveys, focusing on their implications for cosmology. I will place particular emphasis on the Sloan Digital Sky Survey, the most ambitious mapping of the Universe yet undertaken, showing a virtual fly-through of the survey that reveals the large-scale structure of the galaxy distribution. Recent measurements of this large-scale structure, in combination with observations of the cosmic microwave background, have provided independent evidence for a Universe dominated by dark matter and dark energy as well as insights into how galaxies and larger-scale structures formed. Future planned surveys will build on these foundations to probe the history of the cosmic expansion--and thereby the dark energy--with greater precision.

  12. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata.

    PubMed

    Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin

    2012-04-12

    Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.

  13. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Huang, Qingming; Wang, Hao; Gao, Wen

    2010-12-01

    Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

  14. Could the electroweak scale be linked to the large scale structure of the Universe?

    NASA Technical Reports Server (NTRS)

    Chakravorty, Alak; Massarotti, Alessandro

    1991-01-01

    We study a model where the domain walls are generated through a cosmological phase transition involving a scalar field. We assume the existence of a coupling between the scalar field and dark matter and show that the interaction between domain walls and dark matter leads to an energy dependent reflection mechanism. For a simple Yakawa coupling, we find that the vacuum expectation value of the scalar field is theta approx. equals 30GeV - 1TeV, in order for the model to be successful in the formation of large scale 'pancake' structures.

  15. Examination of Cross-Scale Coupling During Auroral Events using RENU2 and ISINGLASS Sounding Rocket Data.

    NASA Astrophysics Data System (ADS)

    Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.

    2017-12-01

    The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.

  16. Weighing trees with lasers: advances, challenges and opportunities

    PubMed Central

    Boni Vicari, M.; Burt, A.; Calders, K.; Lewis, S. L.; Raumonen, P.; Wilkes, P.

    2018-01-01

    Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods. PMID:29503726

  17. Large-Scale Simulation of Multi-Asset Ising Financial Markets

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2017-03-01

    We perform a large-scale simulation of an Ising-based financial market model that includes 300 asset time series. The financial system simulated by the model shows a fat-tailed return distribution and volatility clustering and exhibits unstable periods indicated by the volatility index measured as the average of absolute-returns. Moreover, we determine that the cumulative risk fraction, which measures the system risk, changes at high volatility periods. We also calculate the inverse participation ratio (IPR) and its higher-power version, IPR6, from the absolute-return cross-correlation matrix. Finally, we show that the IPR and IPR6 also change at high volatility periods.

  18. Core turbulence behavior moving from ion-temperature-gradient regime towards trapped-electron-mode regime in the ASDEX Upgrade tokamak and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Happel, T.; Navarro, A. Bañón; Conway, G. D.; Angioni, C.; Bernert, M.; Dunne, M.; Fable, E.; Geiger, B.; Görler, T.; Jenko, F.; McDermott, R. M.; Ryter, F.; Stroth, U.

    2015-03-01

    Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R / L Te in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R / L Te . Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4-18 cm-1 (k⊥ρs = 0.7-4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence level profiles. However, the turbulence intensity is increasing with additional heating in the experiment, while gyrokinetic simulations show a decrease.

  19. Large- to small-scale dynamo in domains of large aspect ratio: kinematic regime

    NASA Astrophysics Data System (ADS)

    Shumaylova, Valeria; Teed, Robert J.; Proctor, Michael R. E.

    2017-04-01

    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In this work, we look for numerical evidence of a large-scale magnetic field as the magnetic Reynolds number, Rm, is increased. The investigation is based on the simulations of the induction equation in elongated periodic boxes. The imposed flows considered are the standard ABC flow (named after Arnold, Beltrami & Childress) with wavenumber ku = 1 (small-scale) and a modulated ABC flow with wavenumbers ku = m, 1, 1 ± m, where m is the wavenumber corresponding to the long-wavelength perturbation on the scale of the box. The critical magnetic Reynolds number R_m^{crit} decreases as the permitted scale separation in the system increases, such that R_m^{crit} ∝ [L_x/L_z]^{-1/2}. The results show that the α-effect derived from the mean-field theory ansatz is valid for a small range of Rm after which small scale dynamo instability occurs and the mean-field approximation is no longer valid. The transition from large- to small-scale dynamo is smooth and takes place in two stages: a fast transition into a predominantly small-scale magnetic energy state and a slower transition into even smaller scales. In the range of Rm considered, the most energetic Fourier component corresponding to the structure in the long x-direction has twice the length-scale of the forcing scale. The long-wavelength perturbation imposed on the ABC flow in the modulated case is not preserved in the eigenmodes of the magnetic field.

  20. High-z objects and cold dark matter cosmogonies - Constraints on the primordial power spectrum on small scales

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1993-01-01

    Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.

  1. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Cossu, Carlo; Hwang, Yongyun

    2017-03-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.

  2. Scaling within the spectral function approach

    NASA Astrophysics Data System (ADS)

    Sobczyk, J. E.; Rocco, N.; Lovato, A.; Nieves, J.

    2018-03-01

    Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.

  3. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    PubMed

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Hierarchical Rater Model for Rated Test Items and Its Application to Large-Scale Educational Assessment Data.

    ERIC Educational Resources Information Center

    Patz, Richard J.; Junker, Brian W.; Johnson, Matthew S.; Mariano, Louis T.

    2002-01-01

    Discusses the hierarchical rater model (HRM) of R. Patz (1996) and shows how it can be used to scale examinees and items, model aspects of consensus among raters, and model individual rater severity and consistency effects. Also shows how the HRM fits into the generalizability theory framework. Compares the HRM to the conventional item response…

  5. Effect of helicity on the correlation time of large scales in turbulent flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2017-11-01

    Solutions of the forced Navier-Stokes equation have been conjectured to thermalize at scales larger than the forcing scale, similar to an absolute equilibrium obtained for the spectrally truncated Euler equation. Using direct numeric simulations of Taylor-Green flows and general-periodic helical flows, we present results on the probability density function, energy spectrum, autocorrelation function, and correlation time that compare the two systems. In the case of highly helical flows, we derive an analytic expression describing the correlation time for the absolute equilibrium of helical flows that is different from the E-1 /2k-1 scaling law of weakly helical flows. This model predicts a new helicity-based scaling law for the correlation time as τ (k ) ˜H-1 /2k-1 /2 . This scaling law is verified in simulations of the truncated Euler equation. In simulations of the Navier-Stokes equations the large-scale modes of forced Taylor-Green symmetric flows (with zero total helicity and large separation of scales) follow the same properties as absolute equilibrium including a τ (k ) ˜E-1 /2k-1 scaling for the correlation time. General-periodic helical flows also show similarities between the two systems; however, the largest scales of the forced flows deviate from the absolute equilibrium solutions.

  6. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere.

    PubMed

    Sasaki, Hideharu; Klein, Patrice; Qiu, Bo; Sasai, Yoshikazu

    2014-12-15

    Ocean eddies (with a size of 100-300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1-50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed.

  7. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere

    PubMed Central

    Sasaki, Hideharu; Klein, Patrice; Qiu, Bo; Sasai, Yoshikazu

    2014-01-01

    Ocean eddies (with a size of 100–300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1–50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed. PMID:25501039

  8. Observation of scaling violations in scaled momentum distributions at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Ricci, F.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Przybycień , M. B.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Bukowy, M.; Jeleń , K.; Kisielewska, D.; Kowalski, T.; Przybycień , M.; Rulikowska-Zarȩ Bska, E.; Suszycki, L.; Zaja C, J.; Duliń Ski, Z.; Kotań Ski, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mań Czak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zsolararnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; MacDonald, N.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamauchi, K.; Yamazaki, Y.; Hong, S. J.; Lee, S. B.; Nam, S. W.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Koffeman, E.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Große-Knetter, J.; Harnew, N.; Lancaster, M.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Oh, B. Y.; Okrasiń Ski, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Wing, M.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1997-11-01

    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of x and Q2 using the ZEUS detector. The evolution of the scaled momentum, xp, with Q2, in the range 10 to 1280 GeV2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2.

  9. The former Iron Curtain still drives biodiversity-profit trade-offs in German agriculture.

    PubMed

    Batáry, Péter; Gallé, Róbert; Riesch, Friederike; Fischer, Christina; Dormann, Carsten F; Mußhoff, Oliver; Császár, Péter; Fusaro, Silvia; Gayer, Christoph; Happe, Anne-Kathrin; Kurucz, Kornélia; Molnár, Dorottya; Rösch, Verena; Wietzke, Alexander; Tscharntke, Teja

    2017-09-01

    Agricultural intensification drives biodiversity loss and shapes farmers' profit, but the role of legacy effects and detailed quantification of ecological-economic trade-offs are largely unknown. In Europe during the 1950s, the Eastern communist bloc switched to large-scale farming by forced collectivization of small farms, while the West kept small-scale private farming. Here we show that large-scale agriculture in East Germany reduced biodiversity, which has been maintained in West Germany due to >70% longer field edges than those in the East. In contrast, profit per farmland area in the East was 50% higher than that in the West, despite similar yield levels. In both regions, switching from conventional to organic farming increased biodiversity and halved yield levels, but doubled farmers' profits. In conclusion, European Union policy should acknowledge the surprisingly high biodiversity benefits of small-scale agriculture, which are on a par with conversion to organic agriculture.

  10. Organic field effect transistor with ultra high amplification

    NASA Astrophysics Data System (ADS)

    Torricelli, Fabrizio

    2016-09-01

    High-gain transistors are essential for the large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show organic transistors fabricated on plastic foils enabling unipolar amplifiers with ultra-gain. The proposed approach is general and opens up new opportunities for ultra-large signal amplification in organic circuits and sensors.

  11. Decoupling local mechanics from large-scale structure in modular metamaterials.

    PubMed

    Yang, Nan; Silverberg, Jesse L

    2017-04-04

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  12. Modeling High Temperature Deformation Behavior of Large-Scaled Mg-Al-Zn Magnesium Alloy Fabricated by Semi-continuous Casting

    NASA Astrophysics Data System (ADS)

    Li, Jianping; Xia, Xiangsheng

    2015-09-01

    In order to improve the understanding of the hot deformation and dynamic recrystallization (DRX) behaviors of large-scaled AZ80 magnesium alloy fabricated by semi-continuous casting, compression tests were carried out in the temperature range from 250 to 400 °C and strain rate range from 0.001 to 0.1 s-1 on a Gleeble 1500 thermo-mechanical machine. The effects of the temperature and strain rate on the hot deformation behavior have been expressed by means of the conventional hyperbolic sine equation, and the influence of the strain has been incorporated in the equation by considering its effect on different material constants for large-scaled AZ80 magnesium alloy. In addition, the DRX behavior has been discussed. The result shows that the deformation temperature and strain rate exerted remarkable influences on the flow stress. The constitutive equation of large-scaled AZ80 magnesium alloy for hot deformation at steady-state stage (ɛ = 0.5) was The true stress-true strain curves predicted by the extracted model were in good agreement with the experimental results, thereby confirming the validity of the developed constitutive relation. The DRX kinetic model of large-scaled AZ80 magnesium alloy was established as X d = 1 - exp[-0.95((ɛ - ɛc)/ɛ*)2.4904]. The rate of DRX increases with increasing deformation temperature, and high temperature is beneficial for achieving complete DRX in the large-scaled AZ80 magnesium alloy.

  13. Decoupling local mechanics from large-scale structure in modular metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  14. Large-Scale Coronal Heating from "Cool" Activity in the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1999-01-01

    In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  15. Analysis of the Interactions of Planetary Waves with the Mean Flow of the Stratosphere

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2007-01-01

    During the winter period, large scale waves (planetary waves) are observed to propagate from the troposphere into the stratosphere. Such wave events have been recognized since the 1 950s. The very largest wave events result in major stratospheric warmings. These large scale wave events have typical durations of a few days to 2 weeks. The wave events deposit easterly momentum in the stratosphere, decelerating the polar night jet and warming the polar region. In this presentation we show the typical characteristics of these events via a compositing analysis. We will show the typical periods and scales of motion and the associated decelerations and warmings. We will illustrate some of the differences between major and minor warming wave events. We will further illustrate the feedback by the mean flow on subsequent wave events.

  16. Large-Scale Chaos and Fluctuations in Active Nematics

    NASA Astrophysics Data System (ADS)

    Ngo, Sandrine; Peshkov, Anton; Aranson, Igor S.; Bertin, Eric; Ginelli, Francesco; Chaté, Hugues

    2014-07-01

    We show that dry active nematics, e.g., collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, bandlike structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of both the well-known (deterministic) hydrodynamic equations describing these systems and of the self-propelled particle model they were derived from. We prove, in particular, that the chaos stems from the generic instability of the band solution of the hydrodynamic equations. Revisiting the status of the strong fluctuations and long-range correlations in the particle model, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous, curvature-driven number fluctuations are present in the homogeneous quasiordered nematic phase and characterized by a nontrivial scaling exponent.

  17. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  18. Complexity, Robustness, and Network Thermodynamics in Large-Scale and Multiagent Systems: A Hybrid Control Approach

    DTIC Science & Technology

    2012-01-11

    dynamic behavior , wherein a dissipative dynamical system can deliver only a fraction of its energy to its surroundings and can store only a fraction of the...collection of interacting subsystems. The behavior and properties of the aggregate large-scale system can then be deduced from the behaviors of the...uniqueness is established. This state space formalism of thermodynamics shows that the behavior of heat, as described by the conservation equations of

  19. Large-scale broadband absorber based on metallic tungsten nanocone structure

    NASA Astrophysics Data System (ADS)

    Wang, Jiaxing; Liang, Yuzhang; Huo, Pengcheng; Wang, Daopeng; Tan, Jun; Xu, Ting

    2017-12-01

    We report a broadband tungsten absorber based on a nanocone metallic resonant structure fabricated by self-assembly nanosphere lithography. In experimental demonstration, the fabricated absorber has more than 90% average absorption efficiency and shows superior angular tolerance in the entire visible and near-infrared spectral region. We envision that this large-scale nanostructured broadband optical absorber would find great potential in the applications of high performance optoelectronic platforms and solar-thermal energy harvesting systems.

  20. Large Scale Synthesis of Colloidal Si Nanocrystals and their Helium Plasma Processing into Spin-On, Carbon-Free Nanocrystalline Si Films.

    PubMed

    Mohapatra, Pratyasha; Mendivelso-Perez, Deyny; Bobbitt, Jonathan M; Shaw, Santosh; Yuan, Bin; Tian, Xinchun; Smith, Emily A; Cademartiri, Ludovico

    2018-05-30

    This paper describes a simple approach to the large scale synthesis of colloidal Si nanocrystals and their processing by He plasma into spin-on carbon-free nanocrystalline Si films. We further show that the RIE etching rate in these films is 1.87 times faster than for single crystalline Si, consistent with a simple geometric argument that accounts for the nanoscale roughness caused by the nanoparticle shape.

  1. Cache Coherence Protocols for Large-Scale Multiprocessors

    DTIC Science & Technology

    1990-09-01

    and is compared with the other protocols for large-scale machines. In later analysis, this coherence method is designated by the acronym OCPD , which...private read misses 2 6 6 ( OCPD ) private write misses 2 6 6 Table 4.2: Transaction Types and Costs. the performance of the memory system. These...methodologies. Figure 4-2 shows the processor utiliza- tions of the Weather program, with special code in the dyn-nic post-mortem sched- 94 OCPD DlrINB

  2. Fragmentation scaling of percolation clusters in two and three dimensions: Large-cell Monte Carlo RG approach

    NASA Astrophysics Data System (ADS)

    Cheon, M.; Chang, I.

    1999-04-01

    The scaling behavior for a binary fragmentation of critical percolation clusters is investigated by a large-cell Monte Carlo real-space renormalization group method in two and three dimensions. We obtain accurate values of critical exponents λ and phi describing the scaling of fragmentation rate and the distribution of fragments' masses produced by a binary fragmentation. Our results for λ and phi show that the fragmentation rate is proportional to the size of mother cluster, and the scaling relation σ = 1 + λ - phi conjectured by Edwards et al. to be valid for all dimensions is satisfied in two and three dimensions, where σ is the crossover exponent of the average cluster number in percolation theory, which excludes the other scaling relations.

  3. Imprint of thawing scalar fields on the large scale galaxy overdensity

    NASA Astrophysics Data System (ADS)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  4. Effect of small versus large clusters of fish school on the yield of a purse-seine small pelagic fishery including a marine protected area.

    PubMed

    Hieu, Nguyen Trong; Brochier, Timothée; Tri, Nguyen-Huu; Auger, Pierre; Brehmer, Patrice

    2014-09-01

    We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.

  5. Spatial Covariability of Temperature and Hydroclimate as a Function of Timescale During the Common Era

    NASA Astrophysics Data System (ADS)

    McKay, N.

    2017-12-01

    As timescale increases from years to centuries, the spatial scale of covariability in the climate system is hypothesized to increase as well. Covarying spatial scales are larger for temperature than for hydroclimate, however, both aspects of the climate system show systematic changes on large-spatial scales on orbital to tectonic timescales. The extent to which this phenomenon is evident in temperature and hydroclimate at centennial timescales is largely unknown. Recent syntheses of multidecadal to century-scale variability in hydroclimate during the past 2k in the Arctic, North America, and Australasia show little spatial covariability in hydroclimate during the Common Era. To determine 1) the evidence for systematic relationships between the spatial scale of climate covariability as a function of timescale, and 2) whether century-scale hydroclimate variability deviates from the relationship between spatial covariability and timescale, we quantify this phenomenon during the Common Era by calculating the e-folding distance in large instrumental and paleoclimate datasets. We calculate this metric of spatial covariability, at different timescales (1, 10 and 100-yr), for a large network of temperature and precipitation observations from the Global Historical Climatology Network (n=2447), from v2.0.0 of the PAGES2k temperature database (n=692), and from moisture-sensitive paleoclimate records North America, the Arctic, and the Iso2k project (n = 328). Initial results support the hypothesis that the spatial scale of covariability is larger for temperature, than for precipitation or paleoclimate hydroclimate indicators. Spatially, e-folding distances for temperature are largest at low latitudes and over the ocean. Both instrumental and proxy temperature data show clear evidence for increasing spatial extent as a function of timescale, but this phenomenon is very weak in the hydroclimate data analyzed here. In the proxy hydroclimate data, which are predominantly indicators of effective moisture, e-folding distance increases from annual to decadal timescales, but does not continue to increase to centennial timescales. Future work includes examining additional instrumental and proxy datasets of moisture variability, and extending the analysis to millennial timescales of variability.

  6. Investigating measurement equivalence of visual analogue scales and Likert-type scales in Internet-based personality questionnaires.

    PubMed

    Kuhlmann, Tim; Dantlgraber, Michael; Reips, Ulf-Dietrich

    2017-12-01

    Visual analogue scales (VASs) have shown superior measurement qualities in comparison to traditional Likert-type response scales in previous studies. The present study expands the comparison of response scales to properties of Internet-based personality scales in a within-subjects design. A sample of 879 participants filled out an online questionnaire measuring Conscientiousness, Excitement Seeking, and Narcissism. The questionnaire contained all instruments in both answer scale versions in a counterbalanced design. Results show comparable reliabilities, means, and SDs for the VAS versions of the original scales, in comparison to Likert-type scales. To assess the validity of the measurements, age and gender were used as criteria, because all three constructs have shown non-zero correlations with age and gender in previous research. Both response scales showed a high overlap and the proposed relationships with age and gender. The associations were largely identical, with the exception of an increase in explained variance when predicting age from the VAS version of Excitement Seeking (B10 = 1318.95, ΔR(2) = .025). VASs showed similar properties to Likert-type response scales in most cases.

  7. Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles

    NASA Astrophysics Data System (ADS)

    Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui

    2016-07-01

    In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

  8. Tropical warming and the dynamics of endangered primates.

    PubMed

    Wiederholt, Ruscena; Post, Eric

    2010-04-23

    Many primate species are severely threatened, but little is known about the effects of global warming and the associated intensification of El Niño events on primate populations. Here, we document the influences of the El Niño southern oscillation (ENSO) and hemispheric climatic variability on the population dynamics of four genera of ateline (neotropical, large-bodied) primates. All ateline genera experienced either an immediate or a lagged negative effect of El Niño events. ENSO events were also found to influence primate resource levels through neotropical arboreal phenology. Furthermore, frugivorous primates showed a high degree of interspecific population synchrony over large scales across Central and South America attributable to the recent trends in large-scale climate. These results highlight the role of large-scale climatic variation and trends in ateline primate population dynamics, and emphasize that global warming could pose additional threats to the persistence of multiple species of endangered primates.

  9. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  10. Random access in large-scale DNA data storage.

    PubMed

    Organick, Lee; Ang, Siena Dumas; Chen, Yuan-Jyue; Lopez, Randolph; Yekhanin, Sergey; Makarychev, Konstantin; Racz, Miklos Z; Kamath, Govinda; Gopalan, Parikshit; Nguyen, Bichlien; Takahashi, Christopher N; Newman, Sharon; Parker, Hsing-Yeh; Rashtchian, Cyrus; Stewart, Kendall; Gupta, Gagan; Carlson, Robert; Mulligan, John; Carmean, Douglas; Seelig, Georg; Ceze, Luis; Strauss, Karin

    2018-03-01

    Synthetic DNA is durable and can encode digital data with high density, making it an attractive medium for data storage. However, recovering stored data on a large-scale currently requires all the DNA in a pool to be sequenced, even if only a subset of the information needs to be extracted. Here, we encode and store 35 distinct files (over 200 MB of data), in more than 13 million DNA oligonucleotides, and show that we can recover each file individually and with no errors, using a random access approach. We design and validate a large library of primers that enable individual recovery of all files stored within the DNA. We also develop an algorithm that greatly reduces the sequencing read coverage required for error-free decoding by maximizing information from all sequence reads. These advances demonstrate a viable, large-scale system for DNA data storage and retrieval.

  11. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    PubMed

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  12. LARGE-SCALE PREDICTIONS OF MOBILE SOURCE CONTRIBUTIONS TO CONCENTRATIONS OF TOXIC AIR POLLUTANTS

    EPA Science Inventory

    This presentation shows concentrations and deposition of toxic air pollutants predicted by a 3-D air quality model, the Community Multi Scale Air Quality (CMAQ) modeling system. Contributions from both on-road and non-road mobile sources are analyzed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less

  14. Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.

    PubMed

    Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R

    2016-11-01

    Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.

  15. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  16. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  17. The physics behind the larger scale organization of DNA in eukaryotes.

    PubMed

    Emanuel, Marc; Radja, Nima Hamedani; Henriksson, Andreas; Schiessel, Helmut

    2009-07-01

    In this paper, we discuss in detail the organization of chromatin during a cell cycle at several levels. We show that current experimental data on large-scale chromatin organization have not yet reached the level of precision to allow for detailed modeling. We speculate in some detail about the possible physics underlying the larger scale chromatin organization.

  18. Examining Measurement Properties of an English Self-Efficacy Scale for English Language Learners in Korea

    ERIC Educational Resources Information Center

    Wang, Chuang; Kim, Do-Hong; Bong, Mimi; Ahn, Hyun Seon

    2013-01-01

    This study provides evidence for the validity of the Questionnaire of English Self-Efficacy in a sample of 167 college students in Korea. Results show that the scale measures largely satisfy the Rasch model for unidimensionality. The rating scale appeared to function effectively. The item hierarchy was consistent with the expected item order. The…

  19. The MMPI-2 Symptom Validity Scale (FBS) not influenced by medical impairment: a large sleep center investigation.

    PubMed

    Greiffenstein, Manfred F

    2010-06-01

    The Symptom Validity Scale (Minnesota Multiphasic Personality Inventory-2-FBS [MMPI-2-FBS]) is a standard MMPI-2 validity scale measuring overstatement of somatic distress and subjective disability. Some critics assert the MMPI-2-FBS misclassifies too many medically impaired persons as malingering symptoms. This study tests the assertion of malingering misclassification with a large sample of 345 medical inpatients undergoing sleep studies that standardly included MMPI-2 testing. The variables included standard MMPI-2 validity scales (Lie Scale [L], Infrequency Scale [F], K-Correction [K]; FBS), objective medical data (e.g., body mass index, pulse oximetry), and polysomnographic scores (e.g., apnea/hypopnea index). The results showed the FBS had no substantial or unique association with medical/sleep variables, produced false positive rates <20% (median = 9, range = 4-11), and male inpatients showed marginally higher failure rates than females. The MMPI-2-FBS appears to have acceptable specificity, because it did not misclassify as biased responders those medical patients with sleep problems, male or female, with primary gain only (reducing sickness). Medical impairment does not appear to be a major influence on deviant MMPI-2-FBS scores.

  20. A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.

  1. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    NASA Astrophysics Data System (ADS)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  2. Analysis of passive scalar advection in parallel shear flows: Sorting of modes at intermediate time scales

    NASA Astrophysics Data System (ADS)

    Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio

    2010-11-01

    The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the eigenvalue problem for the physically relevant vanishing Neumann boundary conditions in linear-shear channel flow. We show that the life of the corresponding modes at large Pe for this case is shorter than the ones arising from shear free zones in the fluid's interior. A WKBJ study of the latter modes provides a longer intermediate time evolution. This part of the analysis is technical, as the corresponding spectrum is dominated by asymptotically coalescing turning points in the limit of large Pe numbers. When large scale initial data components are present, the transient regime of the WKBJ (anomalous) modes evolves into one governed by Taylor dispersion. This is studied by a regular perturbation expansion of the spectrum in the small wavenumber regimes.

  3. A semiparametric graphical modelling approach for large-scale equity selection.

    PubMed

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

  4. A quasi-Newton algorithm for large-scale nonlinear equations.

    PubMed

    Huang, Linghua

    2017-01-01

    In this paper, the algorithm for large-scale nonlinear equations is designed by the following steps: (i) a conjugate gradient (CG) algorithm is designed as a sub-algorithm to obtain the initial points of the main algorithm, where the sub-algorithm's initial point does not have any restrictions; (ii) a quasi-Newton algorithm with the initial points given by sub-algorithm is defined as main algorithm, where a new nonmonotone line search technique is presented to get the step length [Formula: see text]. The given nonmonotone line search technique can avoid computing the Jacobian matrix. The global convergence and the [Formula: see text]-order convergent rate of the main algorithm are established under suitable conditions. Numerical results show that the proposed method is competitive with a similar method for large-scale problems.

  5. Importance of Geosat orbit and tidal errors in the estimation of large-scale Indian Ocean variations

    NASA Technical Reports Server (NTRS)

    Perigaud, Claire; Zlotnicki, Victor

    1992-01-01

    To improve the estimate accuracy of large-scale meridional sea-level variations, Geosat ERM data on the Indian Ocean for a 26-month period were processed using two different techniques of orbit error reduction. The first technique removes an along-track polynomial of degree 1 over about 5000 km and the second technique removes an along-track once-per-revolution sine wave about 40,000 km. Results obtained show that the polynomial technique produces stronger attenuation of both the tidal error and the large-scale oceanic signal. After filtering, the residual difference between the two methods represents 44 percent of the total variance and 23 percent of the annual variance. The sine-wave method yields a larger estimate of annual and interannual meridional variations.

  6. The origin of the structure of large-scale magnetic fields in disc galaxies

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; Hands, T. O.; King, A. R.; Pringle, J. E.

    2018-07-01

    The large-scale magnetic fields observed in spiral disc galaxies are often thought to result from dynamo action in the disc plane. However, the increasing importance of Faraday depolarization along any line of sight towards the galactic plane suggests that the strongest polarization signal may come from well above (˜0.3-1 kpc) this plane, from the vicinity of the warm interstellar medium (WIM)/halo interface. We propose (see also Henriksen & Irwin 2016) that the observed spiral fields (polarization patterns) result from the action of vertical shear on an initially poloidal field. We show that this simple model accounts for the main observed properties of large-scale fields. We speculate as to how current models of optical spiral structure may generate the observed arm/interarm spiral polarization patterns.

  7. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  8. Lagrangian space consistency relation for large scale structure

    DOE PAGES

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-09-29

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  9. The growth of radiative filamentation modes in sheared magnetic fields

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1986-01-01

    Observations of prominences show them to require well-developed magnetic shear and to have complex small-scale structure. Researchers show here that these features are reflected in the results of the theory of radiative condensation. Researchers studied, in particular, the influence of the nominally negligible contributions of perpendicular (to B) thermal conduction. They find a large number of unstable modes, with closely spaced growth rates. Their scale widths across B show a wide range of longitudinal and transverse sizes, ranging from much larger than to much smaller than the magnetic shear scale, the latter characterization applying particularly in the direction of shear variation.

  10. Sex differences in virtual navigation influenced by scale and navigation experience.

    PubMed

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  11. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2011-07-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  12. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variationsmore » provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.« less

  13. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2012-03-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  14. Statistics of galaxy orientations - Morphology and large-scale structure

    NASA Technical Reports Server (NTRS)

    Lambas, Diego G.; Groth, Edward J.; Peebles, P. J. E.

    1988-01-01

    Using the Uppsala General Catalog of bright galaxies and the northern and southern maps of the Lick counts of galaxies, statistical evidence of a morphology-orientation effect is found. Major axes of elliptical galaxies are preferentially oriented along the large-scale features of the Lick maps. However, the orientations of the major axes of spiral and lenticular galaxies show no clear signs of significant nonrandom behavior at a level of less than about one-fifth of the effect seen for ellipticals. The angular scale of the detected alignment effect for Uppsala ellipticals extends to at least theta of about 2 deg, which at a redshift of z of about 0.02 corresponds to a linear scale of about 2/h Mpc.

  15. Large-Scale Coronal Heating, Clustering of Coronal Bright Points, and Concentration of Magnetic Flux

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.

    1998-01-01

    By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that on scales larger than a supergranule the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells.

  16. Modified dispersion relations, inflation, and scale invariance

    NASA Astrophysics Data System (ADS)

    Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward

    2018-02-01

    For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.

  17. Banana production systems: identification of alternative systems for more sustainable production.

    PubMed

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  18. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors.

    PubMed

    Yu, Minghao; Zhang, Yangfan; Zeng, Yinxiang; Balogun, Muhammad-Sadeeq; Mai, Kancheng; Zhang, Zishou; Lu, Xihong; Tong, Yexiang

    2014-07-16

    A kind of multiwalled carbon-nanotube (MWCNT)/polydimethylsiloxane (PDMS) film with excellent conductivity and mechanical properties is developed using a facile and large-scale water surface assisted synthesis method. The film can act as a conductive support for electrochemically active PANI nano fibers. A device based on these PANI/MWCNT/PDMS electrodes shows good and stable capacitive behavior, even under static and dynamic stretching conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.

  20. Facilitating dynamo action via control of large-scale turbulence.

    PubMed

    Limone, A; Hatch, D R; Forest, C B; Jenko, F

    2012-12-01

    The magnetohydrodynamic dynamo effect is considered to be the major cause of magnetic field generation in geo- and astrophysical systems. Recent experimental and numerical results show that turbulence constitutes an obstacle to dynamos; yet its role in this context is not totally clear. Via numerical simulations, we identify large-scale turbulent vortices with a detrimental effect on the amplification of the magnetic field in a geometry of experimental interest and propose a strategy for facilitating the dynamo instability by manipulating these detrimental "hidden" dynamics.

  1. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  2. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions.

    PubMed

    Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian

    2017-12-04

    High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.

  3. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  4. Active subspace: toward scalable low-rank learning.

    PubMed

    Liu, Guangcan; Yan, Shuicheng

    2012-12-01

    We address the scalability issues in low-rank matrix learning problems. Usually these problems resort to solving nuclear norm regularized optimization problems (NNROPs), which often suffer from high computational complexities if based on existing solvers, especially in large-scale settings. Based on the fact that the optimal solution matrix to an NNROP is often low rank, we revisit the classic mechanism of low-rank matrix factorization, based on which we present an active subspace algorithm for efficiently solving NNROPs by transforming large-scale NNROPs into small-scale problems. The transformation is achieved by factorizing the large solution matrix into the product of a small orthonormal matrix (active subspace) and another small matrix. Although such a transformation generally leads to nonconvex problems, we show that a suboptimal solution can be found by the augmented Lagrange alternating direction method. For the robust PCA (RPCA) (Candès, Li, Ma, & Wright, 2009 ) problem, a typical example of NNROPs, theoretical results verify the suboptimality of the solution produced by our algorithm. For the general NNROPs, we empirically show that our algorithm significantly reduces the computational complexity without loss of optimality.

  5. The role of large eddy fluctuations in the magnetic dynamics of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kaplan, Elliot

    The Madison Dynamo Experiment (MDE), a liquid sodium magnetohydrodynamics experiment in a 1 m diameter sphere at the University of Wisconsin-Madison, had measured [in Spence et al., 2006] diamagnetic electrical currents in the experiment that violated an anti dynamo theorem for axisymmetric flow. The diamagnetic currents were instead attributed to nonaxisymmetric turbulent fluctuations. The experimental apparatus has been modified to reduce the strength of the large-scale turbulence driven by the shear layer in its flow. A 7.62 cm baffle was affixed to the equator of the machine to stabilize the shear layer. This reduction has correlated with a decrease in the magnetic fields, induced by the flow, which had been associated with the α and β effects of mean-field magnetohydrodynamics. The research presented herein presents the experimental evidence for reduced fluctuations and reduced mean field emfs, and provides a theoretical framework—based upon mean-field MHD—that connects the observations. The shapes of the large-scale velocity fluctuations are inferred by the spectra of induced magnetic fluctuations and measured in a kinematically similar water experiment. The Bullard and Gellman [1954] formalism demonstrates that the large-scale velocity fluctuations that are inhibited by the baffle can beat with the large-scale magnetic fluctuations that they produce to generate a mean-field emf of the sort measured in Spence et al. [2006]. This shows that the reduction of these large-scale eddies has brought the MDE closer to exciting a dynamo magnetic field. We also examine the mean-field like effects of large-scale (stable) eddies in the Dudley-James [1989] two-vortex dynamo (that the MDE was based upon). Rotating the axis of symmetry redefines the problem from one of an axisymmetric flow exciting a nonaxisymmetric field to one of a combination of axisymmetric and nonaxisymmetric flows exciting a predominantly axisymmetric magnetic eigenmode. As a result, specific interactions between large-scale velocity modes and large-scale magnetic modes are shown to correspond to the Ω effect and the mean-field α and β effects.

  6. Distributed coaxial cable crack sensors for crack mapping in RC

    NASA Astrophysics Data System (ADS)

    Greene, Gary G.; Belarbi, Abdeldjelil; Chen, Genda; McDaniel, Ryan

    2005-05-01

    New type of distributed coaxial cable sensors for health monitoring of large-scale civil infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to twenty cycles of combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, crack mapping, and yielding. The effect of multiple adjacent cracks, and signal loss was also investigated.

  7. A Parallel Sliding Region Algorithm to Make Agent-Based Modeling Possible for a Large-Scale Simulation: Modeling Hepatitis C Epidemics in Canada.

    PubMed

    Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla

    2016-11-01

    Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.

  8. Large-scale structure of randomly jammed spheres

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio

    2017-05-01

    We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.

  9. Single-field consistency relations of large scale structure part III: test of the equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo

    2014-06-01

    The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a verymore » tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.« less

  10. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    NASA Astrophysics Data System (ADS)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  11. 2:1 for naturalness at the LHC?

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Blum, Kfir; D'Agnolo, Raffaele Tito; Fan, JiJi

    2013-01-01

    A large enhancement of a factor of 1.5 - 2 in Higgs production and decay in the diphoton channel, with little deviation in the ZZ channel, can only plausibly arise from a loop of new charged particles with large couplings to the Higgs. We show that, allowing only new fermions with marginal interactions at the weak scale, the required Yukawa couplings for a factor of 2 enhancement are so large that the Higgs quartic coupling is pushed to large negative values in the UV, triggering an unacceptable vacuum instability far beneath the 10 TeV scale. An enhancement by a factor of 1.5 can be accommodated if the charged particles are lighter than 150 GeV, within reach of discovery in almost all cases in the 8 TeV run at the LHC, and in even the most difficult cases at 14 TeV. Thus if the diphoton enhancement survives further scrutiny, and no charged particles beneath 150 GeV are found, there must be new bosons far beneath the 10 TeV scale. This would unambiguously rule out a large class of fine-tuned theories for physics beyond the Standard Model, including split SUSY and many of its variants, and provide strong circumstantial evidence for a natural theory of electroweak symmetry breaking at the TeV scale. Alternately, theories with only a single fine-tuned Higgs and new fermions at the weak scale, with no additional scalars or gauge bosons up to a cutoff much larger than the 10 TeV scale, unambiguously predict that the hints for a large diphoton enhancement in the current data will disappear.

  12. A mesostructured Y zeolite as a superior FCC catalyst--lab to refinery.

    PubMed

    García-Martínez, Javier; Li, Kunhao; Krishnaiah, Gautham

    2012-12-18

    A mesostructured Y zeolite was prepared by a surfactant-templated process at the commercial scale and tested in a refinery, showing superior hydrothermal stability and catalytic cracking selectivity, which demonstrates, for the first time, the promising future of mesoporous zeolites in large scale industrial applications.

  13. The Use of Fractionation Scales for Communication Audits.

    ERIC Educational Resources Information Center

    Barnett, George A.; And Others

    A study investigated a new method of measuring organizational communication other than the audit methods currently in use. The method, which employs fractionation procedures, was used with workers from five different business groups within a large multinational corporation. The results showed that: (1) workers could use the scales reliably, (2)…

  14. How large is large enough for insects? Forest fragmentation effects at three spatial scales

    NASA Astrophysics Data System (ADS)

    Ribas, C. R.; Sobrinho, T. G.; Schoereder, J. H.; Sperber, C. F.; Lopes-Andrade, C.; Soares, S. M.

    2005-02-01

    Several mechanisms may lead to species loss in fragmented habitats, such as edge and shape effects, loss of habitat and heterogeneity. Ants and crickets were sampled in 18 forest remnants in south-eastern Brazil, to test whether a group of small remnants maintains the same insect species richness as similar sized large remnants, at three spatial scales. We tested hypotheses about alpha and gamma diversity to explain the results. Groups of remnants conserve as many species of ants as a single one. Crickets, however, showed a scale-dependent pattern: at small scales there was no significant or important difference between groups of remnants and a single one, while at the larger scale the group of remnants maintained more species. Alpha diversity (local species richness) was similar in a group of remnants and in a single one, at the three spatial scales, both for ants and crickets. Gamma diversity, however, varied both with taxa (ants and crickets) and spatial scale, which may be linked to insect mobility, remnant isolation, and habitat heterogeneity. Biological characteristics of the organisms involved have to be considered when studying fragmentation effects, as well as spatial scale at which it operates. Mobility of the organisms influences fragmentation effects, and consequently conservation strategies.

  15. Large-scale anisotropy in stably stratified rotating flows

    DOE PAGES

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; ...

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up tomore » $1024^3$ grid points and Reynolds numbers of $$\\approx 1000$$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $$\\sim k_\\perp^{-5/3}$$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.« less

  16. Meta-analysis on Macropore Flow Velocity in Soils

    NASA Astrophysics Data System (ADS)

    Liu, D.; Gao, M.; Li, H. Y.; Chen, X.; Leung, L. R.

    2017-12-01

    Macropore flow is ubiquitous in the soils and an important hydrologic process that is not well explained using traditional hydrologic theories. Macropore Flow Velocity (MFV) is an important parameter used to describe macropore flow and quantify its effects on runoff generation and solute transport. However, the dominant factors controlling MFV are still poorly understood and the typical ranges of MFV measured at the field are not defined clearly. To address these issues, we conducted a meta-analysis based on a database created from 246 experiments on MFV collected from 76 journal articles. For a fair comparison, a conceptually unified definition of MFV is introduced to convert the MFV measured with different approaches and at various scales including soil core, field, trench or hillslope scales. The potential controlling factors of MFV considered include scale, travel distance, hydrologic conditions, site factors, macropore morphologies, soil texture, and land use. The results show that MFV is about 2 3 orders of magnitude larger than the corresponding values of saturated hydraulic conductivity. MFV is much larger at the trench and hillslope scale than at the field profile and soil core scales and shows a significant positive correlation with the travel distance. Generally, higher irrigation intensity tends to trigger faster MFV, especially at field profile scale, where MFV and irrigation intensity have significant positive correlation. At the trench and hillslope scale, the presence of large macropores (diameter>10 mm) is a key factor determining MFV. The geometric mean of MFV for sites with large macropores was found to be about 8 times larger than those without large macropores. For sites with large macropores, MFV increases with the macropore diameter. However, no noticeable difference in MFV has been observed among different soil texture and land use. Comparing the existing equations to describe MFV, the Poiseuille equation significantly overestimated the observed values, while the Manning-type equations generate reasonable values. The insights from this study will shed light on future field campaigns and modeling of macropore flow.

  17. Large-Scale Brain Network Coupling Predicts Total Sleep Deprivation Effects on Cognitive Capacity

    PubMed Central

    Wang, Lubin; Zhai, Tianye; Zou, Feng; Ye, Enmao; Jin, Xiao; Li, Wuju; Qi, Jianlin; Yang, Zheng

    2015-01-01

    Interactions between large-scale brain networks have received most attention in the study of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that the coupling strength of large-scale brain networks will reflect the pressure for sleep and will predict cognitive performance, referred to as sleep pressure index (SPI). Fourteen healthy subjects underwent this within-subject functional magnetic resonance imaging (fMRI) study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD). Self-reported scores of sleepiness were higher for TSD than for RW. A subsequent working memory (WM) task showed that WM performance was lower after 36 h of TSD. Moreover, SPI was developed based on the coupling strength of salience network (SN) and default mode network (DMN). Significant increase of SPI was observed after 36 h of TSD, suggesting stronger pressure for sleep. In addition, SPI was significantly correlated with both the visual analogue scale score of sleepiness and the WM performance. These results showed that alterations in SN-DMN coupling might be critical in cognitive alterations that underlie the lapse after TSD. Further studies may validate the SPI as a potential clinical biomarker to assess the impact of sleep deprivation. PMID:26218521

  18. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  19. Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1995-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.

  20. Transformation of social networks in the late pre-Hispanic US Southwest.

    PubMed

    Mills, Barbara J; Clark, Jeffery J; Peeples, Matthew A; Haas, W R; Roberts, John M; Hill, J Brett; Huntley, Deborah L; Borck, Lewis; Breiger, Ronald L; Clauset, Aaron; Shackley, M Steven

    2013-04-09

    The late pre-Hispanic period in the US Southwest (A.D. 1200-1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure.

  1. The Role of Fluid Compression in Particle Energization during Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, S.

    2017-12-01

    Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle energization. However, the role of compression in particle energization during magnetic reconnection is unclear. We present a cluster of studies to clarify and show the effect of fluid compression in accelerating particles to high energies during magnetic reconnection. Using fully kinetic reconnection simulations, we show that fluid compression is the leading mechanism for high-energy particle energization. We find that the compressional energization is more important in a low-beta plasma or in a reconnection layer with a weak guide field (the magnetic field component perpendicular to the reconnecting magnetic field), which are relevant to solar flares. Our analysis on 3D kinetic simulations shows that the self-generated turbulence scatters particles and enhances the particle diffusion processes in the acceleration regions. Based on these results, we then study large-scale reconnection acceleration by solving the particle transport equation in a large-scale reconnection layer evolved with MHD simulations. Due to the compressional effect, particles are accelerated to high energies and develop power-law energy distributions. This study clarifies the nature of particle acceleration in reconnection layer and is important to understand particle energization during large-scale acceleration such as solar flares.

  2. Transformation of social networks in the late pre-Hispanic US Southwest

    PubMed Central

    Mills, Barbara J.; Clark, Jeffery J.; Peeples, Matthew A.; Haas, W. R.; Roberts, John M.; Hill, J. Brett; Huntley, Deborah L.; Borck, Lewis; Breiger, Ronald L.; Clauset, Aaron; Shackley, M. Steven

    2013-01-01

    The late pre-Hispanic period in the US Southwest (A.D. 1200–1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure. PMID:23530201

  3. Scaling laws of strategic behavior and size heterogeneity in agent dynamics

    NASA Astrophysics Data System (ADS)

    Vaglica, Gabriella; Lillo, Fabrizio; Moro, Esteban; Mantegna, Rosario N.

    2008-03-01

    We consider the financial market as a model system and study empirically how agents strategically adjust the properties of large orders in order to meet their preference and minimize their impact. We quantify this strategic behavior by detecting scaling relations between the variables characterizing the trading activity of different institutions. We also observe power-law distributions in the investment time horizon, in the number of transactions needed to execute a large order, and in the traded value exchanged by large institutions, and we show that heterogeneity of agents is a key ingredient for the emergence of some aggregate properties characterizing this complex system.

  4. Climate, Water, and Human Health: Large Scale Hydroclimatic Controls in Forecasting Cholera Epidemics

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2009-12-01

    Despite ravaging the continents through seven global pandemics in past centuries, the seasonal and interannual variability of cholera outbreaks remain a mystery. Previous studies have focused on the role of various environmental and climatic factors, but provided little or no predictive capability. Recent findings suggest a more prominent role of large scale hydroclimatic extremes - droughts and floods - and attempt to explain the seasonality and the unique dual cholera peaks in the Bengal Delta region of South Asia. We investigate the seasonal and interannual nature of cholera epidemiology in three geographically distinct locations within the region to identify the larger scale hydroclimatic controls that can set the ecological and environmental ‘stage’ for outbreaks and have significant memory on a seasonal scale. Here we show that two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large scale climatic controls prevail in the region. An implication of our findings is that extreme climatic events such as prolonged droughts, record floods, and major cyclones may cause major disruption in the ecosystem and trigger large epidemics. We postulate that a quantitative understanding of the large-scale hydroclimatic controls and dominant processes with significant system memory will form the basis for forecasting such epidemic outbreaks. A multivariate regression method using these predictor variables to develop probabilistic forecasts of cholera outbreaks will be explored. Forecasts from such a system with a seasonal lead-time are likely to have measurable impact on early cholera detection and prevention efforts in endemic regions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Davi C.; Piattella, Oliver F.; Chauvineau, Bertrand, E-mail: davi.rodrigues@cosmo-ufes.org, E-mail: Bertrand.Chauvineau@oca.eu, E-mail: oliver.piattella@pq.cnpq.br

    We show that Renormalization Group extensions of the Einstein-Hilbert action for large scale physics are not, in general, a particular case of standard Scalar-Tensor (ST) gravity. We present a new class of ST actions, in which the potential is not necessarily fixed at the action level, and show that this extended ST theory formally contains the Renormalization Group case. We also propose here a Renormalization Group scale setting identification that is explicitly covariant and valid for arbitrary relativistic fluids.

  6. Evaluating the Performance of the Goddard Multi-Scale Modeling Framework against GPM, TRMM and CloudSat/CALIPSO Products

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.

    2014-12-01

    Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.

  7. Properties and spatial distribution of galaxy superclusters

    NASA Astrophysics Data System (ADS)

    Liivamägi, Lauri Juhan

    2017-01-01

    Astronomy is a science that can offer plenty of unforgettable imagery, and the large-scale distribution of galaxies is no exception. Among the first features the viewer's eye is likely to be drawn to, are large concentrations of galaxies - galaxy superclusters, contrasting to the seemingly empty regions beside them. Superclusters can extend from tens to over hundred megaparsecs, they contain from hundreds to thousands of galaxies, and many galaxy groups and clusters. Unlike galaxy clusters, superclusters are clearly unrelaxed systems, not gravitationally bound as crossing times exceed the age of the universe, and show little to no radial symmetry. Superclusters, as part of the large-scale structure, are sensitive to the initial power spectrum and the following evolution. They are massive enough to leave an imprint on the cosmic microwave background radiation. Superclusters can also provide an unique environment for their constituent galaxies and galaxy clusters. In this study we used two different observational and one simulated galaxy samples to create several catalogues of structures that, we think, correspond to what are generally considered galaxy superclusters. Superclusters were delineated as continuous over-dense regions in galaxy luminosity density fields. When calculating density fields several corrections were applied to remove small-scale redshift distortions and distance-dependent selection effects. Resulting catalogues of objects display robust statistical properties, showing that flux-limited galaxy samples can be used to create nearly volume-limited catalogues of superstructures. Generally, large superclusters can be regarded as massive, often branching filamentary structures, that are mainly characterised by their length. Smaller superclusters, on the other hand, can display a variety of shapes. Spatial distribution of superclusters shows large-scale variations, with high-density concentrations often found in semi-regularly spaced groups. Future studies are needed to quantify the relations between superclusters and finer details of the galaxy distribution. Supercluster catalogues from this thesis have already been used in numerous other studies.

  8. Macroecology of unicellular organisms - patterns and processes.

    PubMed

    Soininen, Janne

    2012-02-01

    Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast

    NASA Astrophysics Data System (ADS)

    Agel, L. A.; Barlow, M. A.

    2016-12-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. Tropopause height provides a compact representation of large-scale circulation patterns, as it is linked to mid-level circulation, low-level thermal contrasts and low-level diabatic heating. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into a larger context. Six tropopause patterns are identified on extreme days: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong upward motion during, and moisture transport preceding, extreme precipitation events.

  10. A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing

    Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.

  11. Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro; Li, Yin

    2017-04-01

    Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial perturbations as well as the physics of the early Universe. The large-scale coherent overdensity and tidal force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian of large-scale gravitational potential and therefore are of equal importance. We show that the coherent tidal force causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions, perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its impact on the redshift-space power spectrum to the leading order, and discuss its importance for ongoing and upcoming galaxy surveys.

  12. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao, E-mail: bh2478@columbia.edu, E-mail: lh399@columbia.edu, E-mail: xx2146@columbia.edu

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  13. Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library.

    PubMed

    Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi

    2017-10-10

    We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

  14. SQDFT: Spectral Quadrature method for large-scale parallel O(N) Kohn-Sham calculations at high temperature

    NASA Astrophysics Data System (ADS)

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; Pask, John E.

    2018-03-01

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method for O(N) Kohn-Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw-Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw-Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. We further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect O(N) scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.

  15. A semiparametric graphical modelling approach for large-scale equity selection

    PubMed Central

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption. PMID:28316507

  16. Scale-free networks which are highly assortative but not small world

    NASA Astrophysics Data System (ADS)

    Small, Michael; Xu, Xiaoke; Zhou, Jin; Zhang, Jie; Sun, Junfeng; Lu, Jun-An

    2008-06-01

    Uncorrelated scale-free networks are necessarily small world (and, in fact, smaller than small world). Nonetheless, for scale-free networks with correlated degree distribution this may not be the case. We describe a mechanism to generate highly assortative scale-free networks which are not small world. We show that it is possible to generate scale-free networks, with arbitrary degree exponent γ>1 , such that the average distance between nodes in the network is large. To achieve this, nodes are not added to the network with preferential attachment. Instead, we greedily optimize the assortativity of the network. The network generation scheme is physically motivated, and we show that the recently observed global network of Avian Influenza outbreaks arises through a mechanism similar to what we present here. Simulations show that this network exhibits very similar physical characteristics (very high assortativity, clustering, and path length).

  17. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  18. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  19. Compressible turbulent mixing: Effects of Schmidt number.

    PubMed

    Ni, Qionglin

    2015-05-01

    We investigated by numerical simulations the effects of Schmidt number on passive scalar transport in forced compressible turbulence. The range of Schmidt number (Sc) was 1/25∼25. In the inertial-convective range the scalar spectrum seemed to obey the k(-5/3) power law. For Sc≫1, there appeared a k(-1) power law in the viscous-convective range, while for Sc≪1, a k(-17/3) power law was identified in the inertial-diffusive range. The scaling constant computed by the mixed third-order structure function of the velocity-scalar increment showed that it grew over Sc, and the effect of compressibility made it smaller than the 4/3 value from incompressible turbulence. At small amplitudes, the probability distribution function (PDF) of scalar fluctuations collapsed to the Gaussian distribution whereas, at large amplitudes, it decayed more quickly than Gaussian. At large scales, the PDF of scalar increment behaved similarly to that of scalar fluctuation. In contrast, at small scales it resembled the PDF of scalar gradient. Furthermore, the scalar dissipation occurring at large magnitudes was found to grow with Sc. Due to low molecular diffusivity, in the Sc≫1 flow the scalar field rolled up and got mixed sufficiently. However, in the Sc≪1 flow the scalar field lost the small-scale structures by high molecular diffusivity and retained only the large-scale, cloudlike structures. The spectral analysis found that the spectral densities of scalar advection and dissipation in both Sc≫1 and Sc≪1 flows probably followed the k(-5/3) scaling. This indicated that in compressible turbulence the processes of advection and dissipation except that of scalar-dilatation coupling might deferring to the Kolmogorov picture. It then showed that at high wave numbers, the magnitudes of spectral coherency in both Sc≫1 and Sc≪1 flows decayed faster than the theoretical prediction of k(-2/3) for incompressible flows. Finally, the comparison with incompressible results showed that the scalar in compressible turbulence with Sc=1 lacked a conspicuous bump structure in its spectrum, but was more intermittent in the dissipative range.

  20. What initial condition of inflation would suppress the large-scale CMB spectrum?

    DOE PAGES

    Chen, Pisin; Lin, Yu -Hsiang

    2016-01-08

    There is an apparent power deficit relative to the Λ CDM prediction of the cosmic microwave background spectrum at large scales, which, though not yet statistically significant, persists from WMAP to Planck data. Proposals that invoke some form of initial condition for the inflation have been made to address this apparent power suppression, albeit with conflicting conclusions. By studying the curvature perturbations of a scalar field in the Friedmann-Lemaître-Robertson-Walker universe parameterized by the equation of state parameter w, we find that the large-scale spectrum at the end of inflation reflects the superhorizon spectrum of the initial state. The large-scale spectrummore » is suppressed if the universe begins with the adiabatic vacuum in a superinflation (w < –1) or positive-pressure (w > 0) era. In the latter case, there is however no causal mechanism to establish the initial adiabatic vacuum. On the other hand, as long as the universe begins with the adiabatic vacuum in an era with –1 < w < 0, even if there exists an intermediate positive-pressure era, the large-scale spectrum would be enhanced rather than suppressed. In conclusion, we further calculate the spectrum of a two-stage inflation model with a two-field potential and show that the result agrees with that obtained from the ad hoc single-field analysis.« less

  1. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  2. Chiral Lagrangian with broken scale: Testing the restoration of symmetries in astrophysics and in the laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonanno, Luca; Drago, Alessandro

    2009-04-15

    We study matter at high density and temperature using a chiral Lagrangian in which the breaking of scale invariance is regulated by the value of a scalar field, called dilaton [E. K. Heide, S. Rudaz, and P. J. Ellis, Nucl. Phys. A571, 713 (1994); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A603, 367 (1996); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A618, 317 (1997); G. W. Carter and P. J. Ellis, Nucl. Phys. A628, 325 (1998)]. We provide a phase diagram describing the restoration of chiral and scale symmetries. We show thatmore » chiral symmetry is restored at large temperatures, but at low temperatures it remains broken at all densities. We also show that scale invariance is more easily restored at low rather than large baryon densities. The masses of vector-mesons scale with the value of the dilaton and their values initially slightly decrease with the density but then they increase again for densities larger than {approx}3{rho}{sub 0}. The pion mass increases continuously with the density and at {rho}{sub 0} and T=0 its value is {approx}30 MeV larger than in the vacuum. We show that the model is compatible with the bounds stemming from astrophysics, as, e.g., the one associated with the maximum mass of a neutron star. The most striking feature of the model is a very significant softening at large densities, which manifests also as a strong reduction of the adiabatic index. Although the softening has probably no consequence for supernova explosion via the direct mechanism, it could modify the signal in gravitational waves associated with the merging of two neutron stars.« less

  3. Culture rather than genes provides greater scope for the evolution of large-scale human prosociality

    PubMed Central

    Bell, Adrian V.; Richerson, Peter J.; McElreath, Richard

    2009-01-01

    Whether competition among large groups played an important role in human social evolution is dependent on how variation, whether cultural or genetic, is maintained between groups. Comparisons between genetic and cultural differentiation between neighboring groups show how natural selection on large groups is more plausible on cultural rather than genetic variation. PMID:19822753

  4. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    PubMed Central

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  5. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing.

    PubMed

    Wan, Shixiang; Zou, Quan

    2017-01-01

    Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.

  6. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction.

    PubMed

    Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew

    2017-12-20

    Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.

  7. Environment and host as large-scale controls of ectomycorrhizal fungi.

    PubMed

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  8. Preferential pathways in complex fracture systems and their influence on large scale transport

    NASA Astrophysics Data System (ADS)

    Willmann, M.; Mañé, R.; Tyukhova, A.

    2017-12-01

    Many subsurface applications in complex fracture systems require large-scale predictions. Precise predictions are difficult because of the existence of preferential pathways at different scales. The intrinsic complexity of fracture systems increases within fractured sedimentary formations, because also the coupling of fractures and matrix has to be taken into account. This interplay of fracture system and the sedimentary matrix is strongly controlled by the actual fracture aperture of an individual fracture. And an effective aperture cannot be easily be determined because of the preferential pathways along the fracture plane. We investigate the influence of these preferential pathways on large scale solute transport and upscale the aperture. By explicitly modeling flow and particle tracking in individual fractures, we develop a new effective transport aperture, which is weighted by the aperture along the preferential paths, a Lagrangian aperture. We show that this new aperture is consistently larger than existing definitions of effective flow and transport apertures. Finally, we apply our results to a fractured sedimentary formation in Northern Switzerland.

  9. Liquidity crises on different time scales

    NASA Astrophysics Data System (ADS)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  10. Liquidity crises on different time scales.

    PubMed

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  11. Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens.

    PubMed

    de Groot, Reinoud; Lüthi, Joel; Lindsay, Helen; Holtackers, René; Pelkmans, Lucas

    2018-01-23

    High-content imaging using automated microscopy and computer vision allows multivariate profiling of single-cell phenotypes. Here, we present methods for the application of the CISPR-Cas9 system in large-scale, image-based, gene perturbation experiments. We show that CRISPR-Cas9-mediated gene perturbation can be achieved in human tissue culture cells in a timeframe that is compatible with image-based phenotyping. We developed a pipeline to construct a large-scale arrayed library of 2,281 sequence-verified CRISPR-Cas9 targeting plasmids and profiled this library for genes affecting cellular morphology and the subcellular localization of components of the nuclear pore complex (NPC). We conceived a machine-learning method that harnesses genetic heterogeneity to score gene perturbations and identify phenotypically perturbed cells for in-depth characterization of gene perturbation effects. This approach enables genome-scale image-based multivariate gene perturbation profiling using CRISPR-Cas9. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Fire extinguishing agents for oxygen-enriched atmospheres

    NASA Astrophysics Data System (ADS)

    Plugge, M. A.; Wilson, C. W.; Zallen, D. M.; Walker, J. L.

    1985-12-01

    Fire-suppression agent requirements for extinguishing fires in oxygen-enriched atmospheres were determined employing small-, medium-, large-, and full-scale test apparatuses. The small- and medium-scale tests showed that a doubling of the oxygen concentration required five times more HALON for extinguishment. For fires of similar size and intensity, the effect of oxygen enrichment of the diluent volume in the HC-131A was not as grate as in the smaller compartments of the B-52 which presented a higher damage scenario. The full-scale tests showed that damage to the airframe was as important a factor in extinguishment as oxygen enrichment.

  13. Dissipative structures in magnetorotational turbulence

    NASA Astrophysics Data System (ADS)

    Ross, Johnathan; Latter, Henrik N.

    2018-07-01

    Via the process of accretion, magnetorotational turbulence removes energy from a disc's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterized by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary discs. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels and the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time - forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.

  14. On identifying relationships between the flood scaling exponent and basin attributes.

    PubMed

    Medhi, Hemanta; Tripathi, Shivam

    2015-07-01

    Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.

  15. Ribbons characterize magnetohydrodynamic magnetic fields better than lines: a lesson from dynamo theory

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Hubbard, Alexander

    2014-08-01

    Blackman and Brandenburg argued that magnetic helicity conservation in dynamo theory can in principle be captured by diagrams of mean field dynamos when the magnetic fields are represented by ribbons or tubes, but not by lines. Here, we present such a schematic ribbon diagram for the α2 dynamo that tracks magnetic helicity and provides distinct scales of large-scale magnetic helicity, small-scale magnetic helicity, and kinetic helicity involved in the process. This also motivates our construction of a new `2.5 scale' minimalist generalization of the helicity-evolving equations for the α2 dynamo that separately allows for these three distinct length-scales while keeping only two dynamical equations. We solve these equations and, as in previous studies, find that the large-scale field first grows at a rate independent of the magnetic Reynolds number RM before quenching to an RM-dependent regime. But we also show that the larger the ratio of the wavenumber where the small-scale current helicity resides to that of the forcing scale, the earlier the non-linear dynamo quenching occurs, and the weaker the large-scale field is at the turnoff from linear growth. The harmony between the theory and the schematic diagram exemplifies a general lesson that magnetic fields in magnetohydrodynamic are better visualized as two-dimensional ribbons (or pairs of lines) rather than single lines.

  16. Scaling laws and fluctuations in the statistics of word frequencies

    NASA Astrophysics Data System (ADS)

    Gerlach, Martin; Altmann, Eduardo G.

    2014-11-01

    In this paper, we combine statistical analysis of written texts and simple stochastic models to explain the appearance of scaling laws in the statistics of word frequencies. The average vocabulary of an ensemble of fixed-length texts is known to scale sublinearly with the total number of words (Heaps’ law). Analyzing the fluctuations around this average in three large databases (Google-ngram, English Wikipedia, and a collection of scientific articles), we find that the standard deviation scales linearly with the average (Taylor's law), in contrast to the prediction of decaying fluctuations obtained using simple sampling arguments. We explain both scaling laws (Heaps’ and Taylor) by modeling the usage of words using a Poisson process with a fat-tailed distribution of word frequencies (Zipf's law) and topic-dependent frequencies of individual words (as in topic models). Considering topical variations lead to quenched averages, turn the vocabulary size a non-self-averaging quantity, and explain the empirical observations. For the numerous practical applications relying on estimations of vocabulary size, our results show that uncertainties remain large even for long texts. We show how to account for these uncertainties in measurements of lexical richness of texts with different lengths.

  17. Scaling Relations between Gas and Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bigiel, Frank; Leroy, Adam; Walter, Fabian

    2011-04-01

    High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.

  18. Extreme value statistics and finite-size scaling at the ecological extinction/laminar-turbulence transition

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Goldenfeld, Nigel

    Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.

  19. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    NASA Astrophysics Data System (ADS)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the SDG agenda. Based on this, we argue that the development of policies for regulating externalities of large-scale bioenergy production should rely on broad sustainability assessments to discover potential trade-offs with the SDG agenda before implementation.

  20. Soil organic carbon - a large scale paired catchment assessment

    NASA Astrophysics Data System (ADS)

    Kunkel, V.; Hancock, G. R.; Wells, T.

    2016-12-01

    Soil organic carbon (SOC) concentration can vary both spatially and temporally driven by differences in soil properties, topography and climate. However most studies have focused on point scale data sets with a paucity of studies examining larger scale catchments. Here we examine the spatial and temporal distribution of SOC for two large catchments. The Krui (575 km2) and Merriwa River (675km2) catchments (New South Wales, Australia). Both have similar shape, soils, topography and orientation. We show that SOC distribution is very similar for both catchments and that elevation (and associated increase in soil moisture) is a major influence on SOC. We also show that there is little change in SOC from the initial assessment in 2006 to 2015 despite a major drought from 2003 to 2010 and extreme rainfall events in 2007 and 2010 -therefore SOC concentration appears robust. However, we found significant relationships between erosion and deposition patterns (as quantified using 137Cs) and SOC for both catchments again demonstrating a strong geomorphic relationship. Vegetation across the catchments was assessed using remote sensing (Landsat and MODIS). Vegetation patterns were temporally consistent with above ground biomass increasing with elevation. SOC could be predicted using both these low and high resolution remote sensing platforms. Results indicate that, although moderate resolution (250 m) allows for reasonable prediction of the spatial distribution of SOC, the higher resolution (30 m) improved the strength of the SOC-NDVI relationship. The relationship between SOC and 137Cs, as a surrogate for the erosion and deposition of SOC, suggested that sediment transport and deposition influences the distribution of SOC within the catchment. The findings demonstrate that over the large catchment scale and at the decadal time scale that SOC is relatively constant and can largely be predicted by topography.

  1. Cluster galaxy dynamics and the effects of large-scale environment

    NASA Astrophysics Data System (ADS)

    White, Martin; Cohn, J. D.; Smit, Renske

    2010-11-01

    Advances in observational capabilities have ushered in a new era of multi-wavelength, multi-physics probes of galaxy clusters and ambitious surveys are compiling large samples of cluster candidates selected in different ways. We use a high-resolution N-body simulation to study how the influence of large-scale structure in and around clusters causes correlated signals in different physical probes and discuss some implications this has for multi-physics probes of clusters (e.g. richness, lensing, Compton distortion and velocity dispersion). We pay particular attention to velocity dispersions, matching galaxies to subhaloes which are explicitly tracked in the simulation. We find that not only do haloes persist as subhaloes when they fall into a larger host, but groups of subhaloes retain their identity for long periods within larger host haloes. The highly anisotropic nature of infall into massive clusters, and their triaxiality, translates into an anisotropic velocity ellipsoid: line-of-sight galaxy velocity dispersions for any individual halo show large variance depending on viewing angle. The orientation of the velocity ellipsoid is correlated with the large-scale structure, and thus velocity outliers correlate with outliers caused by projection in other probes. We quantify this orientation uncertainty and give illustrative examples. Such a large variance suggests that velocity dispersion estimators will work better in an ensemble sense than for any individual cluster, which may inform strategies for obtaining redshifts of cluster members. We similarly find that the ability of substructure indicators to find kinematic substructures is highly viewing angle dependent. While groups of subhaloes which merge with a larger host halo can retain their identity for many Gyr, they are only sporadically picked up by substructure indicators. We discuss the effects of correlated scatter on scaling relations estimated through stacking, both analytically and in the simulations, showing that the strong correlation of measures with mass and the large scatter in mass at fixed observable mitigate line-of-sight projections.

  2. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.

  3. Channel optimization of high-intensity laser beams in millimeter-scale plasmas.

    PubMed

    Ceurvorst, L; Savin, A; Ratan, N; Kasim, M F; Sadler, J; Norreys, P A; Habara, H; Tanaka, K A; Zhang, S; Wei, M S; Ivancic, S; Froula, D H; Theobald, W

    2018-04-01

    Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>10^{18}W/cm^{2}) kilojoule laser pulses through large density scale length (∼390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.

  4. Channel optimization of high-intensity laser beams in millimeter-scale plasmas

    NASA Astrophysics Data System (ADS)

    Ceurvorst, L.; Savin, A.; Ratan, N.; Kasim, M. F.; Sadler, J.; Norreys, P. A.; Habara, H.; Tanaka, K. A.; Zhang, S.; Wei, M. S.; Ivancic, S.; Froula, D. H.; Theobald, W.

    2018-04-01

    Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>1018W/cm 2 ) kilojoule laser pulses through large density scale length (˜390 -570 μ m ) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.

  5. Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.

    PubMed

    Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert

    2017-10-01

    We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×10 7 synaptic events per second per 16k-neuron node in the hierarchy.

  6. Systematic effects of foreground removal in 21-cm surveys of reionization

    NASA Astrophysics Data System (ADS)

    Petrovic, Nada; Oh, S. Peng

    2011-05-01

    21-cm observations have the potential to revolutionize our understanding of the high-redshift Universe. Whilst extremely bright radio continuum foregrounds exist at these frequencies, their spectral smoothness can be exploited to allow efficient foreground subtraction. It is well known that - regardless of other instrumental effects - this removes power on scales comparable to the survey bandwidth. We investigate associated systematic biases. We show that removing line-of-sight fluctuations on large scales aliases into suppression of the 3D power spectrum across a broad range of scales. This bias can be dealt with by correctly marginalizing over small wavenumbers in the 1D power spectrum; however, the unbiased estimator will have unavoidably larger variance. We also show that Gaussian realizations of the power spectrum permit accurate and extremely rapid Monte Carlo simulations for error analysis; repeated realizations of the fully non-Gaussian field are unnecessary. We perform Monte Carlo maximum likelihood simulations of foreground removal which yield unbiased, minimum variance estimates of the power spectrum in agreement with Fisher matrix estimates. Foreground removal also distorts the 21-cm probability distribution function (PDF), reducing the contrast between neutral and ionized regions, with potentially serious consequences for efforts to extract information from the PDF. We show that it is the subtraction of large-scale modes which is responsible for this distortion, and that it is less severe in the earlier stages of reionization. It can be reduced by using larger bandwidths. In the late stages of reionization, identification of the largest ionized regions (which consist of foreground emission only) provides calibration points which potentially allow recovery of large-scale modes. Finally, we also show that (i) the broad frequency response of synchrotron and free-free emission will smear out any features in the electron momentum distribution and ensure spectrally smooth foregrounds and (ii) extragalactic radio recombination lines should be negligible foregrounds.

  7. Flow field topology of transient mixing driven by buoyancy

    NASA Technical Reports Server (NTRS)

    Duval, Walter M B.

    2004-01-01

    Transient mixing driven by buoyancy occurs through the birth of a symmetric Rayleigh-Taylor morphology (RTM) structure for large length scales. Beyond its critical bifurcation the RTM structure exhibits self-similarity and occurs on smaller and smaller length scales. The dynamics of the RTM structure, its nonlinear growth and internal collision, show that its genesis occurs from an explosive bifurcation which leads to the overlap of resonance regions in phase space. This event shows the coexistence of regular and chaotic regions in phase space which is corroborated with the existence of horseshoe maps. A measure of local chaos given by the topological entropy indicates that as the system evolves there is growth of uncertainty. Breakdown of the dissipative RTM structure occurs during the transition from explosive to catastrophic bifurcation; this event gives rise to annihilation of the separatrices which drives overlap of resonance regions. The global bifurcation of explosive and catastrophic events in phase space for the large length scale of the RTM structure serves as a template for which mixing occurs on smaller and smaller length scales. Copyright 2004 American Institute of Physics.

  8. A study of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.

    1975-01-01

    Twenty-one geomagnetic storm events during 1966 and 1970 were studied by using simultaneous interplanetary magnetic field and plasma parameters. Explorer 33 and 35 field and plasma data were analyzed on large-scale (hourly) and small-scale (3 min.) during the time interval coincident with initial phase of the geomagnetic storms. The solar-ecliptic Bz component turns southward at the end of the initial phase, thus triggering the main phase decrease in Dst geomagnetic field. When the Bz is already negative, its value becomes further negative. The By component also shows large fluctuations along with Bz. When there are no clear changes in the Bz component, the By shows abrupt changes at the main phase onet. On the small-scale behavior of the magnetic field and electric field (E=-VxB) studied in details for the three events, it is found that the field fluctuations in By, Bz and Ey and Ez are present in the initial phase. These fluctuations become larger just before the main phase of the storm begins. In the largescale behavior field remains quiet because the small scale variations are averaged out.

  9. Eddy diffusivity of quasi-neutrally-buoyant inertial particles

    NASA Astrophysics Data System (ADS)

    Martins Afonso, Marco; Muratore-Ginanneschi, Paolo; Gama, Sílvio M. A.; Mazzino, Andrea

    2018-04-01

    We investigate the large-scale transport properties of quasi-neutrally-buoyant inertial particles carried by incompressible zero-mean periodic or steady ergodic flows. We show how to compute large-scale indicators such as the inertial-particle terminal velocity and eddy diffusivity from first principles in a perturbative expansion around the limit of added-mass factor close to unity. Physically, this limit corresponds to the case where the mass density of the particles is constant and close in value to the mass density of the fluid, which is also constant. Our approach differs from the usual over-damped expansion inasmuch as we do not assume a separation of time scales between thermalization and small-scale convection effects. For a general flow in the class of incompressible zero-mean periodic velocity fields, we derive closed-form cell equations for the auxiliary quantities determining the terminal velocity and effective diffusivity. In the special case of parallel flows these equations admit explicit analytic solution. We use parallel flows to show that our approach sheds light onto the behavior of terminal velocity and effective diffusivity for Stokes numbers of the order of unity.

  10. Towards physics responsible for large-scale Lyman-α forest bias parameters

    DOE PAGES

    Agnieszka M. Cieplak; Slosar, Anze

    2016-03-08

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (b δ) and velocity gradient (b η) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit ofmore » no thermal broadening and linear redshift-space distortions. We also show that his b η formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of b η and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. Lastly, we find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.« less

  11. Towards physics responsible for large-scale Lyman-α forest bias parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnieszka M. Cieplak; Slosar, Anze

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (b δ) and velocity gradient (b η) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit ofmore » no thermal broadening and linear redshift-space distortions. We also show that his b η formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of b η and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. Lastly, we find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.« less

  12. Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series

    NASA Astrophysics Data System (ADS)

    Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.

    2011-11-01

    We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.

  13. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects

    PubMed Central

    Devaraju, N.; Bala, Govindasamy; Modak, Angshuman

    2015-01-01

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures. PMID:25733889

  14. Application and research of block caving in Pulang copper mine

    NASA Astrophysics Data System (ADS)

    Ge, Qifa; Fan, Wenlu; Zhu, Weigen; Chen, Xiaowei

    2018-01-01

    The application of block caving in mines shows significant advantages in large scale, low cost and high efficiency, thus block caving is worth promoting in the mines that meets the requirement of natural caving. Due to large scale of production and low ore grade in Pulang copper mine in China, comprehensive analysis and research were conducted on rock mechanics, mining sequence, undercutting and stability of bottom structure in terms of raising mine benefit and maximizing the recovery mineral resources. Finally this study summarizes that block caving is completely suitable for Pulang copper mine.

  15. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-11-01

    Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  16. Global properties of the plasma in the outer heliosphere. I - Large-scale structure and evolution

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Mihalov, J. D.; Gazis, P. R.; Lazarus, A. J.; Belcher, J. W.; Gordon, G. S., Jr.; Mcnutt, R. L., Jr.

    1992-01-01

    Pioneers 10 and 11, and Voyager 2, have active plasma analyzers as they proceed through heliocentric distances of the order of 30-50 AU, facilitating comparative studies of the global character of the outer solar wind and its variation over the solar cycle. Careful study of these data show that wind ion temperature remains constant beyond 15 AU, and that there may be large-scale variations of temperature with celestial longitude and heliographic latitude. There has thus far been no indication of a heliospheric terminal shock.

  17. Fabrication of large-scale ripples on fluorine-doped tin oxide films by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Han, Yan-Hua; Li, Yan; Zhao, Xiu-Li; Qu, Shi-Liang

    2014-09-01

    The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by setting its velocity and the repetition rate of the laser. The ripple-to-ripple linking can also be realized through line-by-line scanning on a vertical level. The mechanism analysis shows that the seeding effect plays a key role in the linking of ripples.

  18. Fabric Development in a Late-Hercynian Magmatic Strike-Slip Shear Zone in Southern Corsica: Indications of Melt-Supported Large-Scale Deformation Localization

    NASA Astrophysics Data System (ADS)

    Kruhl, J. H.; Vernon, R. H.

    2009-05-01

    The calc-alcaline granitoids of the Hercynian Corsica Batholith show a large-scale magmatic flow pattern, outlined by the alignment of large (mm-cm) euhedral feldspar crystals. The trend of the steep magmatic foliation is generally N-S in the northern part of the island, swings to approximately E-W orientation in the central part of the Batholith and back again to approximately N-S orientation in the southern part. This pattern is intensified by large-scale magmatic layering, mainly kilometer long lenses and layers of mafic and intermediate intrusions into the granitoids. On the macro- to micro-scale, magma mingling and mixing are present, reflecting the complex intrusion history and the compositional variability of the Corsica Batholith on different scales. Around the Golf of Valinco, a steep, sinistral magmatic shear zone is represented by E-W trending magmatic layering in mingled dioritic, tonalitic, and granitic magmas - previously misleadingly interpreted as migmatites - and by a magmatic flow foliation formed by the alignment of platy feldspar crystals, as well as amphibole and biotite. Characteristic magmatic structures include multiple thin layering, boudinage, monoclinic folding, melt-injected micro shear zones, and fragmenting and back- veining of dioritic enclaves. The intensity of grain alignment roughly correlates with the thickness of layers. It is low in thick and short boudins and high in cm-thin and cm-m long layers. The monoclinic folds refold the magmatic layering. Flat faces of amphibole and biotite grains are aligned in the axial planes of the folds. The feldspar crystals are locally recrystallized to a few large polygonal grains (up to 1 mm across), and quartz commonly shows chessboard subgrain patterns. No further indications of solid-state deformation are present. Field observations, as well as pattern quantification on variably oriented rock surfaces, indicate variations of crystal alignment and fabric anisotropy in cm- to more than 100m-wide bands parallel to the E-W oriented layering, and various stages of melt-present fragmentation. These variations are interpreted as variations of flow intensity and possibly strain-rate variation. The observations on the macro- as well as the micro-scale point to repeated injection of mafic to felsic magma and crystallization in the presence of a regional stress field. The resulting km-scale sinistral, sub-horizontal synmagmatic shear zone reflects large-scale movements during late-Hercynian crustal reorganization and represents an excellent example of localization of deformation into magma-enriched parts of the continental crust.

  19. Varying the forcing scale in low Prandtl number dynamos

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.; Haugen, N. E. L.; Li, Xiang-Yu; Subramanian, K.

    2018-06-01

    Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with large-scale dynamos. However, the possibility of small-scale dynamos being excited at small and intermediate ratios of viscosity to magnetic diffusivity (the magnetic Prandtl number) has been debated, and the possibility of them depending on the large-scale forcing wavenumber has been raised. Here we show, using four values of the forcing wavenumber, that the small-scale dynamo does not depend on the scale-separation between the size of the simulation domain and the integral scale of the turbulence, i.e., the forcing scale. Moreover, the spectral bottleneck in turbulence, which has been implied as being responsible for raising the excitation conditions of small-scale dynamos, is found to be invariant under changing the forcing wavenumber. However, when forcing at the lowest few wavenumbers, the effective forcing wavenumber that enters in the definition of the magnetic Reynolds number is found to be about twice the minimum wavenumber of the domain. Our work is relevant to future studies of small-scale dynamos, of which several applications are being discussed.

  20. Validation of self-reported figural drawing scales against anthropometric measurements in adults.

    PubMed

    Dratva, Julia; Bertelsen, Randi; Janson, Christer; Johannessen, Ane; Benediktsdóttir, Bryndis; Bråbäck, Lennart; Dharmage, Shyamali C; Forsberg, Bertil; Gislason, Thorarinn; Jarvis, Debbie; Jogi, Rain; Lindberg, Eva; Norback, Dan; Omenaas, Ernst; Skorge, Trude D; Sigsgaard, Torben; Toren, Kjell; Waatevik, Marie; Wieslander, Gundula; Schlünssen, Vivi; Svanes, Cecilie; Real, Francisco Gomez

    2016-08-01

    The aim of the present study was to validate figural drawing scales depicting extremely lean to extremely obese subjects to obtain proxies for BMI and waist circumference in postal surveys. Reported figural scales and anthropometric data from a large population-based postal survey were validated with measured anthropometric data from the same individuals by means of receiver-operating characteristic curves and a BMI prediction model. Adult participants in a Scandinavian cohort study first recruited in 1990 and followed up twice since. Individuals aged 38-66 years with complete data for BMI (n 1580) and waist circumference (n 1017). Median BMI and waist circumference increased exponentially with increasing figural scales. Receiver-operating characteristic curve analyses showed a high predictive ability to identify individuals with BMI > 25·0 kg/m2 in both sexes. The optimal figural scales for identifying overweight or obese individuals with a correct detection rate were 4 and 5 in women, and 5 and 6 in men, respectively. The prediction model explained 74 % of the variance among women and 62 % among men. Predicted BMI differed only marginally from objectively measured BMI. Figural drawing scales explained a large part of the anthropometric variance in this population and showed a high predictive ability for identifying overweight/obese subjects. These figural scales can be used with confidence as proxies of BMI and waist circumference in settings where objective measures are not feasible.

  1. Experimental investigation of large-scale vortices in a freely spreading gravity current

    NASA Astrophysics Data System (ADS)

    Yuan, Yeping; Horner-Devine, Alexander R.

    2017-10-01

    A series of laboratory experiments are presented to compare the dynamics of constant-source buoyant gravity currents propagating into laterally confined (channelized) and unconfined (spreading) environments. The plan-form structure of the spreading current and the vertical density and velocity structures on the interface are quantified using the optical thickness method and a combined particle image velocimetry and planar laser-induced fluorescence method, respectively. With lateral boundaries, the buoyant current thickness is approximately constant and Kelvin-Helmholtz instabilities are generated within the shear layer. The buoyant current structure is significantly different in the spreading case. As the current spreads laterally, nonlinear large-scale vortex structures are observed at the interface, which maintain a coherent shape as they propagate away from the source. These structures are continuously generated near the river mouth, have amplitudes close to the buoyant layer thickness, and propagate offshore at speeds approximately equal to the internal wave speed. The observed depth and propagation speed of the instabilities match well with the fastest growing mode predicted by linear stability analysis, but with a shorter wavelength. The spreading flows have much higher vorticity, which is aggregated within the large-scale structures. Secondary instabilities are generated on the leading edge of the braids between the large-scale vortex structures and ultimately break and mix on the lee side of the structures. Analysis of the vortex dynamics shows that lateral stretching intensifies the vorticity in the spreading currents, contributing to higher vorticity within the large-scale structures in the buoyant plume. The large-scale instabilities and vortex structures observed in the present study provide new insights into the origin of internal frontal structures frequently observed in coastal river plumes.

  2. Evaluation of Large-scale Data to Detect Irregularity in Payment for Medical Services. An Extended Use of Benford's Law.

    PubMed

    Park, Junghyun A; Kim, Minki; Yoon, Seokjoon

    2016-05-17

    Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data. Based on mathematical theory, this study proposes a new approach to using Benford's Law in that we closely examined the individual-level data to identify specific fees for in-depth analysis. We extended the mathematical theory to demonstrate the manner in which large-scale data conform to Benford's Law. Then, we empirically tested its applicability using actual large-scale healthcare data from Korea's Health Insurance Review and Assessment (HIRA) National Patient Sample (NPS). For Benford's Law, we considered the mean absolute deviation (MAD) formula to test the large-scale data. We conducted our study on 32 diseases, comprising 25 representative diseases and 7 DRG-regulated diseases. We performed an empirical test on 25 diseases, showing the applicability of Benford's Law to large-scale data in the healthcare industry. For the seven DRG-regulated diseases, we examined the individual-level data to identify specific fees to carry out an in-depth analysis. Among the eight categories of medical costs, we considered the strength of certain irregularities based on the details of each DRG-regulated disease. Using the degree of abnormality, we propose priority action to be taken by government health departments and private insurance institutions to bring unnecessary medical expenses under control. However, when we detect deviations from Benford's Law, relatively high contamination ratios are required at conventional significance levels.

  3. Coincident scales of forest feedback on climate and conservation in a diversity hot spot

    PubMed Central

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2005-01-01

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest–rainfall feedback at a range of spatial scales from ca 101–104 km2. We show that the strength of the feedback increases up to scales of at least 103 km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 103 km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation. PMID:16608697

  4. An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5: Ensemble 3DCVA and Its Application

    DOE PAGES

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2016-01-05

    Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less

  5. An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5: Ensemble 3DCVA and Its Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    Large-scale atmospheric forcing data can greatly impact the simulations of atmospheric process models including Large Eddy Simulations (LES), Cloud Resolving Models (CRMs) and Single-Column Models (SCMs), and impact the development of physical parameterizations in global climate models. This study describes the development of an ensemble variationally constrained objective analysis of atmospheric large-scale forcing data and its application to evaluate the cloud biases in the Community Atmospheric Model (CAM5). Sensitivities of the variational objective analysis to background data, error covariance matrix and constraint variables are described and used to quantify the uncertainties in the large-scale forcing data. Application of the ensemblemore » forcing in the CAM5 SCM during March 2000 intensive operational period (IOP) at the Southern Great Plains (SGP) of the Atmospheric Radiation Measurement (ARM) program shows systematic biases in the model simulations that cannot be explained by the uncertainty of large-scale forcing data, which points to the deficiencies of physical parameterizations. The SCM is shown to overestimate high clouds and underestimate low clouds. These biases are found to also exist in the global simulation of CAM5 when it is compared with satellite data.« less

  6. Coincident scales of forest feedback on climate and conservation in a diversity hot spot.

    PubMed

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2006-03-22

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest-rainfall feedback at a range of spatial scales from ca 10(1)-10(4) km2. We show that the strength of the feedback increases up to scales of at least 10(3) km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 10(3) km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation.

  7. Pollution monitoring of puget sound with honey bees.

    PubMed

    Bromenshenk, J J; Carlson, S R; Simpson, J C; Thomas, J M

    1985-02-08

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Wang, Minghuai; Ghan, Steven J.

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore » (ω500 < -25 hPa/d) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. 42" It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm/d) contributes the most to the total aerosol indirect forcing (from 64% to nearly 100%). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  9. Evolving from bioinformatics in-the-small to bioinformatics in-the-large.

    PubMed

    Parker, D Stott; Gorlick, Michael M; Lee, Christopher J

    2003-01-01

    We argue the significance of a fundamental shift in bioinformatics, from in-the-small to in-the-large. Adopting a large-scale perspective is a way to manage the problems endemic to the world of the small-constellations of incompatible tools for which the effort required to assemble an integrated system exceeds the perceived benefit of the integration. Where bioinformatics in-the-small is about data and tools, bioinformatics in-the-large is about metadata and dependencies. Dependencies represent the complexities of large-scale integration, including the requirements and assumptions governing the composition of tools. The popular make utility is a very effective system for defining and maintaining simple dependencies, and it offers a number of insights about the essence of bioinformatics in-the-large. Keeping an in-the-large perspective has been very useful to us in large bioinformatics projects. We give two fairly different examples, and extract lessons from them showing how it has helped. These examples both suggest the benefit of explicitly defining and managing knowledge flows and knowledge maps (which represent metadata regarding types, flows, and dependencies), and also suggest approaches for developing bioinformatics database systems. Generally, we argue that large-scale engineering principles can be successfully adapted from disciplines such as software engineering and data management, and that having an in-the-large perspective will be a key advantage in the next phase of bioinformatics development.

  10. Edge-SIFT: discriminative binary descriptor for scalable partial-duplicate mobile search.

    PubMed

    Zhang, Shiliang; Tian, Qi; Lu, Ke; Huang, Qingming; Gao, Wen

    2013-07-01

    As the basis of large-scale partial duplicate visual search on mobile devices, image local descriptor is expected to be discriminative, efficient, and compact. Our study shows that the popularly used histogram-based descriptors, such as scale invariant feature transform (SIFT) are not optimal for this task. This is mainly because histogram representation is relatively expensive to compute on mobile platforms and loses significant spatial clues, which are important for improving discriminative power and matching near-duplicate image patches. To address these issues, we propose to extract a novel binary local descriptor named Edge-SIFT from the binary edge maps of scale- and orientation-normalized image patches. By preserving both locations and orientations of edges and compressing the sparse binary edge maps with a boosting strategy, the final Edge-SIFT shows strong discriminative power with compact representation. Furthermore, we propose a fast similarity measurement and an indexing framework with flexible online verification. Hence, the Edge-SIFT allows an accurate and efficient image search and is ideal for computation sensitive scenarios such as a mobile image search. Experiments on a large-scale dataset manifest that the Edge-SIFT shows superior retrieval accuracy to Oriented BRIEF (ORB) and is superior to SIFT in the aspects of retrieval precision, efficiency, compactness, and transmission cost.

  11. Pyrotechnic hazards classification and evaluation program. Run-up reaction testing in pyrotechnic dust suspensions

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A preliminary investigation of the parameters included in run-up dust reactions is presented. Two types of tests were conducted: (1) ignition criteria of large bulk pyrotechnic dusts, and (2) optimal run-up conditions of large bulk pyrotechnic dusts. These tests were used to evaluate the order of magnitude and gross scale requirements needed to induce run-up reactions in pyrotechnic dusts and to simulate at reduced scale an accident that occurred in a manufacturing installation. Test results showed that propagation of pyrotechnic dust clouds resulted in a fireball of relatively long duration and large size. In addition, a plane wave front was observed to travel down the length of the gallery.

  12. A new way to protect privacy in large-scale genome-wide association studies.

    PubMed

    Kamm, Liina; Bogdanov, Dan; Laur, Sven; Vilo, Jaak

    2013-04-01

    Increased availability of various genotyping techniques has initiated a race for finding genetic markers that can be used in diagnostics and personalized medicine. Although many genetic risk factors are known, key causes of common diseases with complex heritage patterns are still unknown. Identification of such complex traits requires a targeted study over a large collection of data. Ideally, such studies bring together data from many biobanks. However, data aggregation on such a large scale raises many privacy issues. We show how to conduct such studies without violating privacy of individual donors and without leaking the data to third parties. The presented solution has provable security guarantees. Supplementary data are available at Bioinformatics online.

  13. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    DOE PAGES

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; ...

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less

  14. The distribution of free electrons in the inner galaxy from pulsar dispersion measures

    NASA Technical Reports Server (NTRS)

    Harding, D. S.; Harding, A. K.

    1981-01-01

    The dispersion measures of a sample of 149 pulsars in the inner Galaxy (absolute value of l 50 deg) were statistically analyzed to deduce the large-scale distribution of free thermal electrons in this region. The dispersion measure distribution of these pulsars shows significant evidence for a decrease in the electron scale height from a local value greater than the pulsar scale height to a value less than the pulsar scale height at galactocentric radii inside of approximately 7 kpc. An increase in the electron density (to a value around .15/cu cm at 4 to 5 kpc) must accompany such a decrease in scale height. There is also evidence for a large-scale warp in the electron distribution below the b + 0 deg plane inside the Solar circle. A model is proposed for the electron distribution which incorporates these features and Monte Carlo generated dispersion measure distributions are presented for parameters which best reproduce the observed pulsar distributions.

  15. Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora

    2016-02-05

    Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. In this paper, we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion ismore » used to derive coarse-grained potentials with 2–6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Finally, using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.« less

  16. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  17. Application of Improved 5th-Cubature Kalman Filter in Initial Strapdown Inertial Navigation System Alignment for Large Misalignment Angles.

    PubMed

    Wang, Wei; Chen, Xiyuan

    2018-02-23

    In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm.

  18. Large-scale quantum networks based on graphs

    NASA Astrophysics Data System (ADS)

    Epping, Michael; Kampermann, Hermann; Bruß, Dagmar

    2016-05-01

    Society relies and depends increasingly on information exchange and communication. In the quantum world, security and privacy is a built-in feature for information processing. The essential ingredient for exploiting these quantum advantages is the resource of entanglement, which can be shared between two or more parties. The distribution of entanglement over large distances constitutes a key challenge for current research and development. Due to losses of the transmitted quantum particles, which typically scale exponentially with the distance, intermediate quantum repeater stations are needed. Here we show how to generalise the quantum repeater concept to the multipartite case, by describing large-scale quantum networks, i.e. network nodes and their long-distance links, consistently in the language of graphs and graph states. This unifying approach comprises both the distribution of multipartite entanglement across the network, and the protection against errors via encoding. The correspondence to graph states also provides a tool for optimising the architecture of quantum networks.

  19. A novel iron-lead redox flow battery for large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  20. Quantitative nanoscopy: Tackling sampling limitations in (S)TEM imaging of polymers and composites.

    PubMed

    Gnanasekaran, Karthikeyan; Snel, Roderick; de With, Gijsbertus; Friedrich, Heiner

    2016-01-01

    Sampling limitations in electron microscopy questions whether the analysis of a bulk material is representative, especially while analyzing hierarchical morphologies that extend over multiple length scales. We tackled this problem by automatically acquiring a large series of partially overlapping (S)TEM images with sufficient resolution, subsequently stitched together to generate a large-area map using an in-house developed acquisition toolbox (TU/e Acquisition ToolBox) and stitching module (TU/e Stitcher). In addition, we show that quantitative image analysis of the large scale maps provides representative information that can be related to the synthesis and process conditions of hierarchical materials, which moves electron microscopy analysis towards becoming a bulk characterization tool. We demonstrate the power of such an analysis by examining two different multi-phase materials that are structured over multiple length scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?

    NASA Astrophysics Data System (ADS)

    Samadi, M.; Abbassi, S.; Lovelace, R. V. E.

    2017-09-01

    This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.

  2. Development and Evaluation of a Parallel Reaction Monitoring Strategy for Large-Scale Targeted Metabolomics Quantification.

    PubMed

    Zhou, Juntuo; Liu, Huiying; Liu, Yang; Liu, Jia; Zhao, Xuyang; Yin, Yuxin

    2016-04-19

    Recent advances in mass spectrometers which have yielded higher resolution and faster scanning speeds have expanded their application in metabolomics of diverse diseases. Using a quadrupole-Orbitrap LC-MS system, we developed an efficient large-scale quantitative method targeting 237 metabolites involved in various metabolic pathways using scheduled, parallel reaction monitoring (PRM). We assessed the dynamic range, linearity, reproducibility, and system suitability of the PRM assay by measuring concentration curves, biological samples, and clinical serum samples. The quantification performances of PRM and MS1-based assays in Q-Exactive were compared, and the MRM assay in QTRAP 6500 was also compared. The PRM assay monitoring 237 polar metabolites showed greater reproducibility and quantitative accuracy than MS1-based quantification and also showed greater flexibility in postacquisition assay refinement than the MRM assay in QTRAP 6500. We present a workflow for convenient PRM data processing using Skyline software which is free of charge. In this study we have established a reliable PRM methodology on a quadrupole-Orbitrap platform for evaluation of large-scale targeted metabolomics, which provides a new choice for basic and clinical metabolomics study.

  3. Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template.

    PubMed

    Yang, Xia; Hu, Xiaotian; Wang, Qingxia; Xiong, Jian; Yang, Hanjun; Meng, Xiangchuan; Tan, Licheng; Chen, Lie; Chen, Yiwang

    2017-08-09

    With recent emergence of wearable electronic devices, flexible and stretchable transparent electrodes are the core components to realize innovative devices. The copper nanowire (CuNW) network is commonly chosen because of its high conductivity and transparency. However, the junction resistances and low aspect ratios still limit its further stretchable performance. Herein, a large-scale stretchable semiembedded CuNW transparent conductive film (TCF) was fabricated by electrolessly depositing Cu on the electrospun poly(4-vinylpyridine) polymer template semiembedded in polydimethylsiloxane. Compared with traditional CuNWs, which are as-coated on the flexible substrate, the semiembedded CuNW TCFs showed low sheet resistance (15.6 Ω·sq -1 at ∼82% transmittance) as well as outstanding stretchability and mechanical stability. The light-emitting diode connected the stretchable semiembedded CuNW TCFs in the electric circuit still lighted up even after stretching with 25% strain. Moreover, this semiembedded CuNW TCF was successfully applied in polymer solar cells as a stretchable conductive electrode, which yielded a power conversion efficiency of 4.6% with 0.1 cm 2 effective area. The large-scale stretchable CuNW TCFs show potential for the development of wearable electronic devices.

  4. The Embedded Atom Model and large-scale MD simulation of tin under shock loading

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, F. A.; Ionov, G. V.; Dremov, V. V.; Soulard, L.; Durand, O.

    2014-05-01

    The goal of the work was to develop an interatomic potential, that can be used in large-scale classical MD simulations to predict tin properties near the melting curve, the melting curve itself, and the kinetics of melting and solidification when shock and ramp loading. According to phase diagram, shocked tin melts from bcc phase, and since the main objective was to investigate melting, the EAM was parameterized for bcc phase. The EAM was optimized using isothermal compression data (experimental at T=300 K and ab-initio at T=0 K for bcc, fcc, bct structures), experimental and QMD data on the Hugoniot and on the melting at elevated pressures. The Hugoniostat calculations centred at β-tin at ambient conditions showed that the calculated Hugoniot is in good agreement with experimental and QMD data above p-bct transition pressure. Calculations of overcooled liquid in pressure range corresponding to bcc phase showed crystallization into bcc phase. Since the principal Hugoniot of tin originates from the β-tin that is not described by this EAM the special initial state of bcc samples was constructed to perform large-scale MD simulations of shock loading.

  5. Alternative Splicing of CHEK2 and Codeletion with NF2 Promote Chromosomal Instability in Meningioma1

    PubMed Central

    Yang, Hong Wei; Kim, Tae-Min; Song, Sydney S; Shrinath, Nihal; Park, Richard; Kalamarides, Michel; Park, Peter J; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2012-01-01

    Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas. PMID:22355270

  6. Density-dependent clustering: I. Pulling back the curtains on motions of the BAO peak

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Szapudi, István; McCullagh, Nuala; Szalay, Alexander S.; Falck, Bridget; Wang, Jie

    2018-05-01

    The most common statistic used to analyze large-scale structure surveys is the correlation function, or power spectrum. Here, we show how `slicing' the correlation function on local density brings sensitivity to interesting non-Gaussian features in the large-scale structure, such as the expansion or contraction of baryon acoustic oscillations (BAO) according to the local density. The sliced correlation function measures the large-scale flows that smear out the BAO, instead of just correcting them as reconstruction algorithms do. Thus, we expect the sliced correlation function to be useful in constraining the growth factor, and modified gravity theories that involve the local density. Out of the studied cases, we find that the run of the BAO peak location with density is best revealed when slicing on a ˜40 h-1 Mpc filtered density. But slicing on a ˜100 h-1 Mpc filtered density may be most useful in distinguishing between underdense and overdense regions, whose BAO peaks are separated by a substantial ˜5 h-1 Mpc at z = 0. We also introduce `curtain plots' showing how local densities drive particle motions toward or away from each other over the course of an N-body simulation.

  7. Quantifying expert consensus against the existence of a secret, large-scale atmospheric spraying program

    NASA Astrophysics Data System (ADS)

    Shearer, Christine; West, Mick; Caldeira, Ken; Davis, Steven J.

    2016-08-01

    Nearly 17% of people in an international survey said they believed the existence of a secret large-scale atmospheric program (SLAP) to be true or partly true. SLAP is commonly referred to as ‘chemtrails’ or ‘covert geoengineering’, and has led to a number of websites purported to show evidence of widespread chemical spraying linked to negative impacts on human health and the environment. To address these claims, we surveyed two groups of experts—atmospheric chemists with expertize in condensation trails and geochemists working on atmospheric deposition of dust and pollution—to scientifically evaluate for the first time the claims of SLAP theorists. Results show that 76 of the 77 scientists (98.7%) that took part in this study said they had not encountered evidence of a SLAP, and that the data cited as evidence could be explained through other factors, including well-understood physics and chemistry associated with aircraft contrails and atmospheric aerosols. Our goal is not to sway those already convinced that there is a secret, large-scale spraying program—who often reject counter-evidence as further proof of their theories—but rather to establish a source of objective science that can inform public discourse.

  8. High-Throughput Microbore UPLC-MS Metabolic Phenotyping of Urine for Large-Scale Epidemiology Studies.

    PubMed

    Gray, Nicola; Lewis, Matthew R; Plumb, Robert S; Wilson, Ian D; Nicholson, Jeremy K

    2015-06-05

    A new generation of metabolic phenotyping centers are being created to meet the increasing demands of personalized healthcare, and this has resulted in a major requirement for economical, high-throughput metabonomic analysis by liquid chromatography-mass spectrometry (LC-MS). Meeting these new demands represents an emerging bioanalytical problem that must be solved if metabolic phenotyping is to be successfully applied to large clinical and epidemiological sample sets. Ultraperformance (UP)LC-MS-based metabolic phenotyping, based on 2.1 mm i.d. LC columns, enables comprehensive metabolic phenotyping but, when employed for the analysis of thousands of samples, results in high solvent usage. The use of UPLC-MS employing 1 mm i.d. columns for metabolic phenotyping rather than the conventional 2.1 mm i.d. methodology shows that the resulting optimized microbore method provided equivalent or superior performance in terms of peak capacity, sensitivity, and robustness. On average, we also observed, when using the microbore scale separation, an increase in response of 2-3 fold over that obtained with the standard 2.1 mm scale method. When applied to the analysis of human urine, the 1 mm scale method showed no decline in performance over the course of 1000 analyses, illustrating that microbore UPLC-MS represents a viable alternative to conventional 2.1 mm i.d. formats for routine large-scale metabolic profiling studies while also resulting in a 75% reduction in solvent usage. The modest increase in sensitivity provided by this methodology also offers the potential to either reduce sample consumption or increase the number of metabolite features detected with confidence due to the increased signal-to-noise ratios obtained. Implementation of this miniaturized UPLC-MS method of metabolic phenotyping results in clear analytical, economic, and environmental benefits for large-scale metabolic profiling studies with similar or improved analytical performance compared to conventional UPLC-MS.

  9. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    PubMed

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  10. Mass dependence of Higgs boson production at large transverse momentum through a bottom-quark loop

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Zhang, Hong; Zhang, Jia-Wei

    2018-05-01

    In the production of the Higgs through a bottom-quark loop, the transverse momentum distribution of the Higgs at large PT is complicated by its dependence on two other important scales: the bottom quark mass mb and the Higgs mass mH. A strategy for simplifying the calculation of the cross section at large PT is to calculate only the leading terms in its expansion in mb2/PT2. In this paper, we consider the bottom-quark-loop contribution to the parton process q q ¯→H +g at leading order in αs. We show that the leading power of 1 /PT2 can be expressed in the form of a factorization formula that separates the large scale PT from the scale of the masses. All the dependence on mb and mH can be factorized into a distribution amplitude for b b ¯ in the Higgs, a distribution amplitude for b b ¯ in a real gluon, and an end point contribution. The factorization formula can be used to organize the calculation of the leading terms in the expansion in mb2/PT2 so that every calculation involves at most two scales.

  11. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  12. Interannual Variability in the Position and Strength of the East Asian Jet Stream and Its Relation to Large - scale Circulation

    NASA Astrophysics Data System (ADS)

    Chan, Duo; Zhang, Yang; Wu, Qigang

    2013-04-01

    East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.

  13. A user-friendly tool to transform large scale administrative data into wide table format using a MapReduce program with a Pig Latin based script.

    PubMed

    Horiguchi, Hiromasa; Yasunaga, Hideo; Hashimoto, Hideki; Ohe, Kazuhiko

    2012-12-22

    Secondary use of large scale administrative data is increasingly popular in health services and clinical research, where a user-friendly tool for data management is in great demand. MapReduce technology such as Hadoop is a promising tool for this purpose, though its use has been limited by the lack of user-friendly functions for transforming large scale data into wide table format, where each subject is represented by one row, for use in health services and clinical research. Since the original specification of Pig provides very few functions for column field management, we have developed a novel system called GroupFilterFormat to handle the definition of field and data content based on a Pig Latin script. We have also developed, as an open-source project, several user-defined functions to transform the table format using GroupFilterFormat and to deal with processing that considers date conditions. Having prepared dummy discharge summary data for 2.3 million inpatients and medical activity log data for 950 million events, we used the Elastic Compute Cloud environment provided by Amazon Inc. to execute processing speed and scaling benchmarks. In the speed benchmark test, the response time was significantly reduced and a linear relationship was observed between the quantity of data and processing time in both a small and a very large dataset. The scaling benchmark test showed clear scalability. In our system, doubling the number of nodes resulted in a 47% decrease in processing time. Our newly developed system is widely accessible as an open resource. This system is very simple and easy to use for researchers who are accustomed to using declarative command syntax for commercial statistical software and Structured Query Language. Although our system needs further sophistication to allow more flexibility in scripts and to improve efficiency in data processing, it shows promise in facilitating the application of MapReduce technology to efficient data processing with large scale administrative data in health services and clinical research.

  14. Scaling and intermittency in incoherent α-shear dynamo

    NASA Astrophysics Data System (ADS)

    Mitra, Dhrubaditya; Brandenburg, Axel

    2012-03-01

    We consider mean-field dynamo models with fluctuating α effect, both with and without large-scale shear. The α effect is chosen to be Gaussian white noise with zero mean and a given covariance. In the presence of shear, we show analytically that (in infinitely large domains) the mean-squared magnetic field shows exponential growth. The growth rate of the fastest growing mode is proportional to the shear rate. This result agrees with earlier numerical results of Yousef et al. and the recent analytical treatment by Heinemann, McWilliams & Schekochihin who use a method different from ours. In the absence of shear, an incoherent α2 dynamo may also be possible. We further show by explicit calculation of the growth rate of third- and fourth-order moments of the magnetic field that the probability density function of the mean magnetic field generated by this dynamo is non-Gaussian.

  15. Vaccines for Conservation: Plague, Prairie Dogs & Black-Footed Ferrets as a Case Study.

    PubMed

    Salkeld, Daniel J

    2017-09-01

    The endangered black-footed ferret (Mustela nigripes) is affected by plague, caused by Yersinia pestis, both directly, as a cause of mortality, and indirectly, because of the impacts of plague on its prairie dog (Cynomys spp.) prey base. Recent developments in vaccines and vaccine delivery have raised the possibility of plague control in prairie dog populations, thereby protecting ferret populations. A large-scale experimental investigation across the western US shows that sylvatic plague vaccine delivered in oral baits can increase prairie dog survival. In northern Colorado, an examination of the efficacy of insecticides to control fleas and plague vaccine shows that timing and method of plague control is important, with different implications for long-term and large-scale management of Y. pestis delivery. In both cases, the studies show that ambitious field-work and cross-sectoral collaboration can provide potential solutions to difficult issues of wildlife management, conservation and disease ecology.

  16. Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale.

    PubMed

    Monaco, Giulio; Mossa, Stefano

    2009-10-06

    The low-temperature thermal properties of dielectric crystals are governed by acoustic excitations with large wavelengths that are well described by plane waves. This is the Debye model, which rests on the assumption that the medium is an elastic continuum, holds true for acoustic wavelengths large on the microscopic scale fixed by the interatomic spacing, and gradually breaks down on approaching it. Glasses are characterized as well by universal low-temperature thermal properties that are, however, anomalous with respect to those of the corresponding crystalline phases. Related universal anomalies also appear in the low-frequency vibrational density of states and, despite a longstanding debate, remain poorly understood. By using molecular dynamics simulations of a model monatomic glass of extremely large size, we show that in glasses the structural disorder undermines the Debye model in a subtle way: The elastic continuum approximation for the acoustic excitations breaks down abruptly on the mesoscopic, medium-range-order length scale of approximately 10 interatomic spacings, where it still works well for the corresponding crystalline systems. On this scale, the sound velocity shows a marked reduction with respect to the macroscopic value. This reduction turns out to be closely related to the universal excess over the Debye model prediction found in glasses at frequencies of approximately 1 THz in the vibrational density of states or at temperatures of approximately 10 K in the specific heat.

  17. Large-scale fluctuations in the diffusive decomposition of solid solutions

    NASA Astrophysics Data System (ADS)

    Karpov, V. G.; Grimsditch, M.

    1995-04-01

    The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.

  18. Thymidylate synthase (TS) gene expression in primary lung cancer patients: a large-scale study in Japanese population.

    PubMed

    Tanaka, F; Wada, H; Fukui, Y; Fukushima, M

    2011-08-01

    Previous small-sized studies showed lower thymidylate synthase (TS) expression in adenocarcinoma of the lung, which may explain higher antitumor activity of TS-inhibiting agents such as pemetrexed. To quantitatively measure TS gene expression in a large-scale Japanese population (n = 2621) with primary lung cancer, laser-captured microdissected sections were cut from primary tumors, surrounding normal lung tissues and involved nodes. TS gene expression level in primary tumor was significantly higher than that in normal lung tissue (mean TS/β-actin, 3.4 and 1.0, respectively; P < 0.01), and TS gene expression level was further higher in involved node (mean TS/β-actin, 7.7; P < 0.01). Analyses of TS gene expression levels in primary tumor according to histologic cell type revealed that small-cell carcinoma showed highest TS expression (mean TS/β-actin, 13.8) and that squamous cell carcinoma showed higher TS expression as compared with adenocarcinoma (mean TS/β-actin, 4.3 and 2.3, respectively; P < 0.01); TS gene expression was significantly increased along with a decrease in the grade of tumor cell differentiation. There was no significant difference in TS gene expression according to any other patient characteristics including tumor progression. Lower TS expression in adenocarcinoma of the lung was confirmed in a large-scale study.

  19. Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model

    NASA Astrophysics Data System (ADS)

    Ushijima, Timothy T.; Yeh, William W.-G.

    2013-10-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.

  20. Dynamics of passive and active particles in the cell nucleus.

    PubMed

    Hameed, Feroz M; Rao, Madan; Shivashankar, G V

    2012-01-01

    Inspite of being embedded in a dense meshwork of nuclear chromatin, gene loci and large nuclear components are highly dynamic at 37°C. To understand this apparent unfettered movement in an overdense environment, we study the dynamics of a passive micron size bead in live cell nuclei at two different temperatures (25 and 37°C) with and without external force. In the absence of a force, the beads are caged over large time scales. On application of a threshold uniaxial force (about 10(2) pN), the passive beads appear to hop between cages; this large scale movement is absent upon ATP-depletion, inhibition of chromatin remodeling enzymes and RNAi of lamin B1 proteins. Our results suggest that the nucleus behaves like an active solid with a finite yield stress when probed at a micron scale. Spatial analysis of histone fluorescence anisotropy (a measure of local chromatin compaction, defined as the volume fraction of tightly bound chromatin) shows that the bead movement correlates with regions of low chromatin compaction. This suggests that the physical mechanism of the observed yielding is the active opening of free-volume in the nuclear solid via chromatin remodeling. Enriched transcription sites at 25°C also show caging in the absence of the applied force and directed movement beyond a yield stress, in striking contrast with the large scale movement of transcription loci at 37°C in the absence of a force. This suggests that at physiological temperatures, the loci behave as active particles which remodel the nuclear mesh and reduce the local yield stress.

  1. Strategic Alliances in Education: The Knowledge Engineering Web

    ERIC Educational Resources Information Center

    Westera, Wim; van den Herik, Jaap; van de Vrie, Evert

    2004-01-01

    The field of higher education shows a jumble of alliances between fellow institutes. The alliances are strategic in kind and serve an economy-of-scales concept. A large scale is a prerequisite for allocating the budgets for new educational methods and technologies in order to keep the educational services up-to-date. All too often, however,…

  2. Sand waves in environmental flows: Insights gained by coupling large-eddy simulation with morphodynamics

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Khosronejad, Ali

    2016-02-01

    Sand waves arise in subaqueous and Aeolian environments as the result of the complex interaction between turbulent flows and mobile sand beds. They occur across a wide range of spatial scales, evolve at temporal scales much slower than the integral scale of the transporting turbulent flow, dominate river morphodynamics, undermine streambank stability and infrastructure during flooding, and sculpt terrestrial and extraterrestrial landscapes. In this paper, we present the vision for our work over the last ten years, which has sought to develop computational tools capable of simulating the coupled interactions of sand waves with turbulence across the broad range of relevant scales: from small-scale ripples in laboratory flumes to mega-dunes in large rivers. We review the computational advances that have enabled us to simulate the genesis and long-term evolution of arbitrarily large and complex sand dunes in turbulent flows using large-eddy simulation and summarize numerous novel physical insights derived from our simulations. Our findings explain the role of turbulent sweeps in the near-bed region as the primary mechanism for destabilizing the sand bed, show that the seeds of the emergent structure in dune fields lie in the heterogeneity of the turbulence and bed shear stress fluctuations over the initially flatbed, and elucidate how large dunes at equilibrium give rise to energetic coherent structures and modify the spectra of turbulence. We also discuss future challenges and our vision for advancing a data-driven simulation-based engineering science approach for site-specific simulations of river flooding.

  3. Nudging and predictability in regional climate modelling: investigation in a nested quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2010-05-01

    In this work, we consider the effect of indiscriminate and spectral nudging on the large and small scales of an idealized model simulation. The model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by the « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. The effect of large-scale nudging is studied by using the "perfect model" approach. Two sets of experiments are performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic Limited Area Model (LAM) where the size of the LAM domain comes into play in addition to the first set of simulations. The study shows that the indiscriminate nudging time that minimizes the error at both the large and small scales is reached for a nudging time close to the predictability time, for spectral nudging, the optimum nudging time should tend to zero since the best large scale dynamics is supposed to be given by the driving large-scale fields are generally given at much lower frequency than the model time step(e,g, 6-hourly analysis) with a basic interpolation between the fields, the optimum nudging time differs from zero, however remaining smaller than the predictability time.

  4. Concurrent Spectral and Separation-space Views of Small-scale Anisotropy in Rotating Turbulence

    NASA Astrophysics Data System (ADS)

    Vallefuoco, D.; Godeferd, F. S.; Naso, A.

    2017-12-01

    Rotating turbulence is central in astrophysical, geophysical and industrial flows. A background rotation about a fixed axis introduces significant anisotropy in the turbulent dynamics through both linear and nonlinear mechanisms. The flow regime can be characterized by two independent non-dimensional parameters, e.g. the Reynolds and Rossby numbers or, equivalently, the ratio of the integral scale to the Kolmogorov scale L/η, and the ratio rZ/L, where rZ=√(ɛ/Ω3) is the Zeman scale, ɛ is the mean dissipation and Ω is the rotation rate. rZ is the scale at which the inertial timescale equals the rotation timescale. According to classical dimensional arguments (Zeman 1994), if the Reynolds number is large, scales much larger than rZ are mainly affected by rotation while scales much smaller than rZare dominated by the nonlinear dynamics and are expected to recover isotropy. In this work, we characterize incompressible rotating turbulence scale- and direction-dependent anisotropy through high Reynolds number pseudo-spectral forced DNS. We first focus on energy direction-dependent spectra in Fourier space: we show that a high anisotropy small wavenumber range and a low anisotropy large wavenumber range arise. Importantly, anisotropy arises even at scales much smaller than rZ and no small-scale isotropy is observed in our DNS, in contrast with previous numerical results (Delache et al. 2014, Mininni et al. 2012) but in agreement with experiments (Lamriben et al. 2011). Then, we estimate the value of the threshold wavenumber kT between these two anisotropic ranges for a large number of runs, and show that it corresponds to the scale at which dissipative effects are of the same order as those of rotation. Therefore, in the asymptotic inviscid limit, kT tends to infinity and only the low-wavenumber anisotropic range should persist. In this range anisotropy decreases with wavenumber, which is consistent with the classical Zeman argument. In addition, anisotropy at scales much smaller than rZ can be detected in physical space too, in particular for the third-order two-point vector moment F=<δu2 δu>, where δu is the velocity increment. We find the expected inertial trends for F (Galtier 2009) at scales sufficiently larger than the dissipative scale, while smaller scales exhibit qualitatively opposite anisotropic features.

  5. Early Gender Test Score Gaps across OECD Countries

    ERIC Educational Resources Information Center

    Bedard, Kelly; Cho, Insook

    2010-01-01

    The results reported in this paper contribute to the debate about gender skill gaps in at least three ways. First, we document the large differences in early gender gaps across developed countries using a large scale, modern, representative data source. Second, we show that countries with pro-female sorting, countries that place girls in classes…

  6. Class Size: Teachers' Perspectives

    ERIC Educational Resources Information Center

    Watson, Kevin; Handal, Boris; Maher, Marguerite

    2016-01-01

    A consistent body of research shows that large classes have been perceived by teachers as an obstacle to deliver quality teaching. This large-scale study sought to investigate further those differential effects by asking 1,119 teachers from 321 K-12 schools in New South Wales (Australia) their perceptions of ideal class size for a variety of…

  7. Novel doorways and resonances in large-scale classical systems

    NASA Astrophysics Data System (ADS)

    Franco-Villafañe, J. A.; Flores, J.; Mateos, J. L.; Méndez-Sánchez, R. A.; Novaro, O.; Seligman, T. H.

    2011-05-01

    We show how the concept of doorway states carries beyond its typical applications and usual concepts. The scale on which it may occur is increased to large classical wave systems. Specifically we analyze the seismic response of sedimentary basins covered by water-logged clays, a rather common situation for urban sites. A model is introduced in which the doorway state is a plane wave propagating in the interface between the sediments and the clay. This wave is produced by the coupling of a Rayleigh and an evanescent SP-wave. This in turn leads to a strong resonant response in the soft clays near the surface of the basin. Our model calculations are compared with measurements during Mexico City earthquakes, showing quite good agreement. This not only provides a transparent explanation of catastrophic resonant seismic response in certain basins but at the same time constitutes up to this date the largest-scale example of the doorway state mechanism in wave scattering. Furthermore the doorway state itself has interesting and rather unusual characteristics.

  8. Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Kunz, Martin; Saltas, Ippocratis D.; Sawicki, Ignacy

    2018-03-01

    The coincident detection of gravitational waves (GW) and a gamma-ray burst from a merger of neutron stars has placed an extremely stringent bound on the speed of GWs. We showed previously that the presence of gravitational slip (η ) in cosmology is intimately tied to modifications of GW propagation. This new constraint implies that the only remaining viable source of gravitational slip is a conformal coupling to gravity in scalar-tensor theories, while viable vector-tensor theories cannot now generate gravitational slip at all. We discuss structure formation in the remaining viable models, demonstrating that (i) the dark-matter growth rate must now be at least as fast as in general relativity (GR), with the possible exception of that beyond the Horndeski model, and (ii) if there is any scale dependence at all in the slip parameter, it is such that it takes the GR value at large scales. We show a consistency relation that must be violated if gravity is modified.

  9. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: using point and gridded FLUXNET and water balance ET

    USGS Publications Warehouse

    Velpuri, Naga M.; Senay, Gabriel B.; Singh, Ramesh K.; Bohms, Stefanie; Verdin, James P.

    2013-01-01

    Remote sensing datasets are increasingly being used to provide spatially explicit large scale evapotranspiration (ET) estimates. Extensive evaluation of such large scale estimates is necessary before they can be used in various applications. In this study, two monthly MODIS 1 km ET products, MODIS global ET (MOD16) and Operational Simplified Surface Energy Balance (SSEBop) ET, are validated over the conterminous United States at both point and basin scales. Point scale validation was performed using eddy covariance FLUXNET ET (FLET) data (2001–2007) aggregated by year, land cover, elevation and climate zone. Basin scale validation was performed using annual gridded FLUXNET ET (GFET) and annual basin water balance ET (WBET) data aggregated by various hydrologic unit code (HUC) levels. Point scale validation using monthly data aggregated by years revealed that the MOD16 ET and SSEBop ET products showed overall comparable annual accuracies. For most land cover types, both ET products showed comparable results. However, SSEBop showed higher performance for Grassland and Forest classes; MOD16 showed improved performance in the Woody Savanna class. Accuracy of both the ET products was also found to be comparable over different climate zones. However, SSEBop data showed higher skill score across the climate zones covering the western United States. Validation results at different HUC levels over 2000–2011 using GFET as a reference indicate higher accuracies for MOD16 ET data. MOD16, SSEBop and GFET data were validated against WBET (2000–2009), and results indicate that both MOD16 and SSEBop ET matched the accuracies of the global GFET dataset at different HUC levels. Our results indicate that both MODIS ET products effectively reproduced basin scale ET response (up to 25% uncertainty) compared to CONUS-wide point-based ET response (up to 50–60% uncertainty) illustrating the reliability of MODIS ET products for basin-scale ET estimation. Results from this research would guide the additional parameter refinement required for the MOD16 and SSEBop algorithms in order to further improve their accuracy and performance for agro-hydrologic applications.

  10. Determination of macro-scale soil properties from pore-scale structures: model derivation.

    PubMed

    Daly, K R; Roose, T

    2018-01-01

    In this paper, we use homogenization to derive a set of macro-scale poro-elastic equations for soils composed of rigid solid particles, air-filled pore space and a poro-elastic mixed phase. We consider the derivation in the limit of large deformation and show that by solving representative problems on the micro-scale we can parametrize the macro-scale equations. To validate the homogenization procedure, we compare the predictions of the homogenized equations with those of the full equations for a range of different geometries and material properties. We show that the results differ by [Formula: see text] for all cases considered. The success of the homogenization scheme means that it can be used to determine the macro-scale poro-elastic properties of soils from the underlying structure. Hence, it will prove a valuable tool in both characterization and optimization.

  11. Solar Wind Turbulent Cascade from MHD to Sub-ion Scales: Large-size 3D Hybrid Particle-in-cell Simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Landi, Simone; Verdini, Andrea; Matteini, Lorenzo; Hellinger, Petr

    2018-01-01

    Properties of the turbulent cascade from fluid to kinetic scales in collisionless plasmas are investigated by means of large-size 3D hybrid (fluid electrons, kinetic protons) particle-in-cell simulations. Initially isotropic Alfvénic fluctuations rapidly develop a strongly anisotropic turbulent cascade, mainly in the direction perpendicular to the ambient magnetic field. The omnidirectional magnetic field spectrum shows a double power-law behavior over almost two decades in wavenumber, with a Kolmogorov-like index at large scales, a spectral break around ion scales, and a steepening at sub-ion scales. Power laws are also observed in the spectra of the ion bulk velocity, density, and electric field, at both magnetohydrodynamic (MHD) and kinetic scales. Despite the complex structure, the omnidirectional spectra of all fields at ion and sub-ion scales are in remarkable quantitative agreement with those of a 2D simulation with similar physical parameters. This provides a partial, a posteriori validation of the 2D approximation at kinetic scales. Conversely, at MHD scales, the spectra of the density and of the velocity (and, consequently, of the electric field) exhibit differences between the 2D and 3D cases. Although they can be partly ascribed to the lower spatial resolution, the main reason is likely the larger importance of compressible effects in the full 3D geometry. Our findings are also in remarkable quantitative agreement with solar wind observations.

  12. Normal variability of children's scaled scores on subtests of the Dutch Wechsler Preschool and Primary scale of Intelligence - third edition.

    PubMed

    Hurks, P P M; Hendriksen, J G M; Dek, J E; Kooij, A P

    2013-01-01

    Intelligence tests are included in millions of assessments of children and adults each year (Watkins, Glutting, & Lei, 2007a , Applied Neuropsychology, 14, 13). Clinicians often interpret large amounts of subtest scatter, or large differences between the highest and lowest scaled subtest scores, on an intelligence test battery as an index for abnormality or cognitive impairment. The purpose of the present study is to characterize "normal" patterns of variability among subtests of the Dutch Wechsler Preschool and Primary Scale of Intelligence - Third Edition (WPPSI-III-NL; Wechsler, 2010 ). Therefore, the frequencies of WPPSI-III-NL scaled subtest scatter were reported for 1039 healthy children aged 4:0-7:11 years. Results indicated that large differences between highest and lowest scaled subtest scores (or subtest scatter) were common in this sample. Furthermore, degree of subtest scatter was related to: (a) the magnitude of the highest scaled subtest score, i.e., more scatter was seen in children with the highest WPPSI-III-NL scaled subtest scores, (b) Full Scale IQ (FSIQ) scores, i.e., higher FSIQ scores were associated with an increase in subtest scatter, and (c) sex differences, with boys showing a tendency to display more scatter than girls. In conclusion, viewing subtest scatter as an index for abnormality in WPPSI-III-NL scores is an oversimplification as this fails to recognize disparate subtest heterogeneity that occurs within a population of healthy children aged 4:0-7:11 years.

  13. Testing the gravitational instability hypothesis?

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests that show correlations between galaxy density and velocity fields can rule out some physically interesting models of large-scale structure. In particular, successful reconstructions constrain the nature of any bias between the galaxy and mass distributions, since processes that modulate the efficiency of galaxy formation on large scales in a way that violates the continuity equation also produce a mismatch between the observed galaxy density and the density inferred from the peculiar velocity field. We obtain successful reconstructions for a gravitational model with peaks biasing, but we also show examples of gravitational and nongravitational models that fail reconstruction tests because of more complicated modulations of galaxy formation.

  14. Benefit-Cost Analysis of Foot-and-Mouth Disease Vaccination at the Farm-Level in South Vietnam.

    PubMed

    Truong, Dinh Bao; Goutard, Flavie Luce; Bertagnoli, Stéphane; Delabouglise, Alexis; Grosbois, Vladimir; Peyre, Marisa

    2018-01-01

    This study aimed to analyze the financial impact of foot-and-mouth disease (FMD) outbreaks in cattle at the farm-level and the benefit-cost ratio (BCR) of biannual vaccination strategy to prevent and eradicate FMD for cattle in South Vietnam. Production data were collected from 49 small-scale dairy farms, 15 large-scale dairy farms, and 249 beef farms of Long An and Tay Ninh province using a questionaire. Financial data of FMD impacts were collected using participatory tools in 37 villages of Long An province. The net present value, i.e., the difference between the benefits (additional revenue and saved costs) and costs (additional costs and revenue foregone), of FMD vaccination in large-scale dairy farms was 2.8 times higher than in small-scale dairy farms and 20 times higher than in beef farms. The BCR of FMD vaccination over 1 year in large-scale dairy farms, small-scale dairy farms, and beef farms were 11.6 [95% confidence interval (95% CI) 6.42-16.45], 9.93 (95% CI 3.45-16.47), and 3.02 (95% CI 0.76-7.19), respectively. The sensitivity analysis showed that varying the vaccination cost had more effect on the BCR of cattle vaccination than varying the market price. This benefit-cost analysis of biannual vaccination strategy showed that investment in FMD prevention can be financially profitable, and therefore sustainable, for dairy farmers. For beef cattle, it is less certain that vaccination is profitable. Additional benefit-cost analysis study of vaccination strategies at the national-level would be required to evaluate and adapt the national strategy to achieve eradication of this disease in Vietnam.

  15. The impact of nudging coefficient for the initialization on the atmospheric flow field and the photochemical ozone concentration of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Lee, Hwa Woon; Sung, Kyoung-Hee; Kim, Min-Jung; Kim, Yoo-Keun; Jung, Woo-Sik

    In order to incorporate correctly the large or local scale circulation in the model, a nudging term is introduced into the equation of motion. Nudging effects should be included properly in the model to reduce the uncertainties and improve the air flow field. To improve the meteorological components, the nudging coefficient should perform the adequate influence on complex area for the model initialization technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to evaluate the effects on air quality modeling by comparing the performance of the meteorological result with variable nudging coefficient experiment. All experiments are calculated by the upper wind conditions (synoptic or asynoptic condition), respectively. Consequently, it is important to examine the model response to nudging effect of wind and mass information. The MM5-CMAQ model was used to assess the ozone differences in each case, during the episode day in Seoul, Korea and we revealed that there were large differences in the ozone concentration for each run. These results suggest that for the appropriate simulation of large or small-scale circulations, nudging considering the synoptic and asynoptic nudging coefficient does have a clear advantage over dynamic initialization, so appropriate limitation of these nudging coefficient values on its upper wind conditions is necessary before making an assessment. The statistical verifications showed that adequate nudging coefficient for both wind and temperature data throughout the model had a consistently positive impact on the atmospheric and air quality field. On the case dominated by large-scale circulation, a large nudging coefficient shows a minor improvement in the atmospheric and air quality field. However, when small-scale convection is present, the large nudging coefficient produces consistent improvement in the atmospheric and air quality field.

  16. A fast time-difference inverse solver for 3D EIT with application to lung imaging.

    PubMed

    Javaherian, Ashkan; Soleimani, Manuchehr; Moeller, Knut

    2016-08-01

    A class of sparse optimization techniques that require solely matrix-vector products, rather than an explicit access to the forward matrix and its transpose, has been paid much attention in the recent decade for dealing with large-scale inverse problems. This study tailors application of the so-called Gradient Projection for Sparse Reconstruction (GPSR) to large-scale time-difference three-dimensional electrical impedance tomography (3D EIT). 3D EIT typically suffers from the need for a large number of voxels to cover the whole domain, so its application to real-time imaging, for example monitoring of lung function, remains scarce since the large number of degrees of freedom of the problem extremely increases storage space and reconstruction time. This study shows the great potential of the GPSR for large-size time-difference 3D EIT. Further studies are needed to improve its accuracy for imaging small-size anomalies.

  17. Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia

    NASA Astrophysics Data System (ADS)

    Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil

    2017-09-01

    Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.

  18. Pollution monitoring of Puget Sound with honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors. 27 references, 2 figures.

  19. Hysteresis-Free Carbon Nanotube Field-Effect Transistors.

    PubMed

    Park, Rebecca S; Hills, Gage; Sohn, Joon; Mitra, Subhasish; Shulaker, Max M; Wong, H-S Philip

    2017-05-23

    While carbon nanotube (CNT) field-effect transistors (CNFETs) promise high-performance and energy-efficient digital systems, large hysteresis degrades these potential CNFET benefits. As hysteresis is caused by traps surrounding the CNTs, previous works have shown that clean interfaces that are free of traps are important to minimize hysteresis. Our previous findings on the sources and physics of hysteresis in CNFETs enabled us to understand the influence of gate dielectric scaling on hysteresis. To begin with, we validate through simulations how scaling the gate dielectric thickness results in greater-than-expected benefits in reducing hysteresis. Leveraging this insight, we experimentally demonstrate reducing hysteresis to <0.5% of the gate-source voltage sweep range using a very large-scale integration compatible and solid-state technology, simply by fabricating CNFETs with a thin effective oxide thickness of 1.6 nm. However, even with negligible hysteresis, large subthreshold swing is still observed in the CNFETs with multiple CNTs per transistor. We show that the cause of large subthreshold swing is due to threshold voltage variation between individual CNTs. We also show that the source of this threshold voltage variation is not explained solely by variations in CNT diameters (as is often ascribed). Rather, other factors unrelated to the CNTs themselves (i.e., process variations, random fixed charges at interfaces) are a significant factor in CNT threshold voltage variations and thus need to be further improved.

  20. Channel optimization of high-intensity laser beams in millimeter-scale plasmas

    DOE PAGES

    Ceurvorst, L.; Savin, A.; Ratan, N.; ...

    2018-04-20

    Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (> 10 18 W/cm 2) kilojoule laser pulses through large density scale length (~ 390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse’s focal location and intensity as well as the plasma’s temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities as expected. However, contrary to previous large scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer duration equivalents. To conclude, this new observation has manymore » implications for future laser-plasma research in the relativistic regime.« less

  1. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  2. Channel optimization of high-intensity laser beams in millimeter-scale plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceurvorst, L.; Savin, A.; Ratan, N.

    Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (> 10 18 W/cm 2) kilojoule laser pulses through large density scale length (~ 390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse’s focal location and intensity as well as the plasma’s temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities as expected. However, contrary to previous large scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer duration equivalents. To conclude, this new observation has manymore » implications for future laser-plasma research in the relativistic regime.« less

  3. The stability properties of cylindrical force-free fields - Effect of an external potential field

    NASA Technical Reports Server (NTRS)

    Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.

    1980-01-01

    A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.

  4. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  5. SQDFT: Spectral Quadrature method for large-scale parallel O ( N ) Kohn–Sham calculations at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method formore » $$\\mathscr{O}(N)$$ Kohn–Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw–Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw–Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. Here, we further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect $$\\mathscr{O}(N)$$ scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.« less

  6. Time-sliced perturbation theory for large scale structure I: general formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution ofmore » the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.« less

  7. Cosmological measurements with general relativistic galaxy correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raccanelli, Alvise; Montanari, Francesco; Durrer, Ruth

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ''relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxymore » bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.« less

  8. May turbulence and fossil turbulence lead to life in the universe?

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2013-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence cascades from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence existed in the beginning of the universe and that its fossils still persist. Fossils of big bang turbulence include a preferred large-scale spin direction, large scale microwave temperature anisotropy patterns, and the dominant dark matter of all galaxies; that is, clumps of ~10^12 frozen hydrogen earth-mass planets that make stars and globular-star-clusters when gravitationally agitated. When the planets were hot gas, we can speculate that they hosted the formation of the first life in a seeded cosmic organic-chemical soup of hot- water oceans as planets merged to form and over-feed the first stars.

  9. SQDFT: Spectral Quadrature method for large-scale parallel O ( N ) Kohn–Sham calculations at high temperature

    DOE PAGES

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; ...

    2017-12-07

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method formore » $$\\mathscr{O}(N)$$ Kohn–Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw–Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw–Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. Here, we further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect $$\\mathscr{O}(N)$$ scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.« less

  10. Characterization of spray-induced turbulence using fluorescence PIV

    NASA Astrophysics Data System (ADS)

    van der Voort, Dennis D.; Dam, Nico J.; Clercx, Herman J. H.; Water, Willem van de

    2018-07-01

    The strong shear induced by the injection of liquid sprays at high velocities induces turbulence in the surrounding medium. This, in turn, influences the motion of droplets as well as the mixing of air and vapor. Using fluorescence-based tracer particle image velocimetry, the velocity field surrounding 125-135 m/s sprays exiting a 200-μm nozzle is analyzed. For the first time, the small- and large-scale turbulence characteristics of the gas phase surrounding a spray has been measured simultaneously, using a large eddy model to determine the sub-grid scales. This further allows the calculation of the Stokes numbers of droplets, which indicates the influence of turbulence on their motion. The measurements lead to an estimate of the dissipation rate ɛ ≈ 35 m2 s^{-3}, a microscale Reynolds number Re_{λ } ≈ 170, and a Kolmogorov length scale of η ≈ 10^{-4} m. Using these dissipation rates to convert a droplet size distribution to a distribution of Stokes numbers, we show that only the large scale motion of turbulence disperses the droplet in the current case, but the small scales will grow in importance with increasing levels of atomization and ambient pressures.

  11. Analysis of BJ493 diesel engine lubrication system properties

    NASA Astrophysics Data System (ADS)

    Liu, F.

    2017-12-01

    The BJ493ZLQ4A diesel engine design is based on the primary model of BJ493ZLQ3, of which exhaust level is upgraded to the National GB5 standard due to the improved design of combustion and injection systems. Given the above changes in the diesel lubrication system, its improved properties are analyzed in this paper. According to the structures, technical parameters and indices of the lubrication system, the lubrication system model of BJ493ZLQ4A diesel engine was constructed using the Flowmaster flow simulation software. The properties of the diesel engine lubrication system, such as the oil flow rate and pressure at different rotational speeds were analyzed for the schemes involving large- and small-scale oil filters. The calculated values of the main oil channel pressure are in good agreement with the experimental results, which verifies the proposed model feasibility. The calculation results show that the main oil channel pressure and maximum oil flow rate values for the large-scale oil filter scheme satisfy the design requirements, while the small-scale scheme yields too low main oil channel’s pressure and too high. Therefore, application of small-scale oil filters is hazardous, and the large-scale scheme is recommended.

  12. Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature.

    PubMed

    Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F

    2012-04-01

    Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.

  13. Regional Simulations of Stratospheric Lofting of Smoke Plumes

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Fromm, M.; Robock, A.

    2006-12-01

    The lifetime and spatial distribution of sooty aerosols from multiple fires that would cause major climate impact were debated in studies of climatic and environmental consequences of a nuclear war in the 1980s. The Kuwait oil fires in 1991 did not show a cumulative effect of multiple smoke plumes on large-scale circulation systems and smoke was mainly dispersed in the middle troposphere. However, recent observations show that smoke from large forest fires can be directly injected into the lower stratosphere by strong pyro-convective storms. Smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the same heating and lofting effect that was simulated in large-scale nuclear winter simulations with interactive aerosols. However nuclear winter simulations were conducted using climate models with grid spacing of more than 100 km, which do not account for the fine-scale dynamic processes. Therefore in this study we conduct fine-scale regional simulations of the aerosol plume using the Regional Atmospheric Modeling System (RAMS) mesoscale model which was modified to account for radiatively interactive tracers. To resolve fine-scale dynamic processes we use horizontal grid spacing of 25 km and 60 vertical layers, and initiate simulations with the NCEP reanalysis fields. We find that dense aerosol layers could be lofted from 1 to a few km per day, but this critically depends on the optical depth of aerosol layer, single scatter albedo, and how fast the plume is being diluted. Kuwaiti plumes from different small-area fires reached only 5-6 km altitude and were probably diffused and diluted in the lower and middle troposphere. A plume of 100 km spatial scale initially developed in the upper troposphere tends to penetrate into the stratosphere. Short-term cloud resolving simulations of such a plume show that aerosol heating intensifies small-scale motions that tend to mix smoke polluted air into the lower stratosphere. Regional simulations allow us to more accurately estimate the rate of lifting and spreading of aerosol clouds. But they do not reveal any dynamic processes that could prevent heating and lofting of absorbing aerosols.

  14. Disorder in the Disk: The Influence of Accretion Disk Thickness on the Large-scale Magnetic Dynamo.

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2018-01-01

    The evolution of the magnetic field from the enigmatic large-scale dynamo is often considered a central feature of the accretion disk around a black hole. The resulting low-frequency oscillations introduced from the growth and decay of the field strength, along with the change in field orientation, are thought to be intimately tied to variability from the disk. Several factors are at play, but the dynamo can either be directly tied to observable signatures through modulation of the heating rate, or indirectly as the source of quasiperiodic oscillations, the driver of nonlinear structure from propagating fluctuations in mass accretion rate, or even the trigger of state transitions. We present a selection of results from a recent study of this process using a suite of four global, high-resolution, MHD accretion disk simulations. We systematically vary the scale height ratio and find the large-scale dynamo fails to develop above a scale height ratio of h/r ≥ 0.2. Using “butterfly” diagrams of the azimuthal magnetic field, we show the large-scale dynamo exists in the thinner accretion disk models, but fails to excite when the scale height ratio is increased, a feature which is also reflected in 2D Fourier transforms. Additionally, we calculate the dynamo α-parameter through correlations in the averaged magnetic field and turbulent electromotive force, and also generate synthetic light curves from the disk cooling. Using our emission proxy, we find the disks have markedly different characters as photometric fluctuations are larger and less ordered when the disk is thicker and the dynamo is absent.

  15. Estimated allele substitution effects underlying genomic evaluation models depend on the scaling of allele counts.

    PubMed

    Bouwman, Aniek C; Hayes, Ben J; Calus, Mario P L

    2017-10-30

    Genomic evaluation is used to predict direct genomic values (DGV) for selection candidates in breeding programs, but also to estimate allele substitution effects (ASE) of single nucleotide polymorphisms (SNPs). Scaling of allele counts influences the estimated ASE, because scaling of allele counts results in less shrinkage towards the mean for low minor allele frequency (MAF) variants. Scaling may become relevant for estimating ASE as more low MAF variants will be used in genomic evaluations. We show the impact of scaling on estimates of ASE using real data and a theoretical framework, and in terms of power, model fit and predictive performance. In a dairy cattle dataset with 630 K SNP genotypes, the correlation between DGV for stature from a random regression model using centered allele counts (RRc) and centered and scaled allele counts (RRcs) was 0.9988, whereas the overall correlation between ASE using RRc and RRcs was 0.27. The main difference in ASE between both methods was found for SNPs with a MAF lower than 0.01. Both the ratio (ASE from RRcs/ASE from RRc) and the regression coefficient (regression of ASE from RRcs on ASE from RRc) were much higher than 1 for low MAF SNPs. Derived equations showed that scenarios with a high heritability, a large number of individuals and a small number of variants have lower ratios between ASE from RRc and RRcs. We also investigated the optimal scaling parameter [from - 1 (RRcs) to 0 (RRc) in steps of 0.1] in the bovine stature dataset. We found that the log-likelihood was maximized with a scaling parameter of - 0.8, while the mean squared error of prediction was minimized with a scaling parameter of - 1, i.e., RRcs. Large differences in estimated ASE were observed for low MAF SNPs when allele counts were scaled or not scaled because there is less shrinkage towards the mean for scaled allele counts. We derived a theoretical framework that shows that the difference in ASE due to shrinkage is heavily influenced by the power of the data. Increasing the power results in smaller differences in ASE whether allele counts are scaled or not.

  16. New probes of Cosmic Microwave Background large-scale anomalies

    NASA Astrophysics Data System (ADS)

    Aiola, Simone

    Fifty years of Cosmic Microwave Background (CMB) data played a crucial role in constraining the parameters of the LambdaCDM model, where Dark Energy, Dark Matter, and Inflation are the three most important pillars not yet understood. Inflation prescribes an isotropic universe on large scales, and it generates spatially-correlated density fluctuations over the whole Hubble volume. CMB temperature fluctuations on scales bigger than a degree in the sky, affected by modes on super-horizon scale at the time of recombination, are a clean snapshot of the universe after inflation. In addition, the accelerated expansion of the universe, driven by Dark Energy, leaves a hardly detectable imprint in the large-scale temperature sky at late times. Such fundamental predictions have been tested with current CMB data and found to be in tension with what we expect from our simple LambdaCDM model. Is this tension just a random fluke or a fundamental issue with the present model? In this thesis, we present a new framework to probe the lack of large-scale correlations in the temperature sky using CMB polarization data. Our analysis shows that if a suppression in the CMB polarization correlations is detected, it will provide compelling evidence for new physics on super-horizon scale. To further analyze the statistical properties of the CMB temperature sky, we constrain the degree of statistical anisotropy of the CMB in the context of the observed large-scale dipole power asymmetry. We find evidence for a scale-dependent dipolar modulation at 2.5sigma. To isolate late-time signals from the primordial ones, we test the anomalously high Integrated Sachs-Wolfe effect signal generated by superstructures in the universe. We find that the detected signal is in tension with the expectations from LambdaCDM at the 2.5sigma level, which is somewhat smaller than what has been previously argued. To conclude, we describe the current status of CMB observations on small scales, highlighting the tensions between Planck, WMAP, and SPT temperature data and how the upcoming data release of the ACTpol experiment will contribute to this matter. We provide a description of the current status of the data-analysis pipeline and discuss its ability to recover large-scale modes.

  17. Study on the Measurement and Calculation of Environmental Pollution Bearing Index of China’s Pig Scale

    NASA Astrophysics Data System (ADS)

    Leng, Bi-Bin; Gong, Jian; Zhang, Wen-bo; Ji, Xue-Qiang

    2017-11-01

    According to the environmental pollution caused by large-scale pig breeding, the SPSS statistical software and factor analysis method were used to calculate the environmental pollution bearing index of China’s breeding scale from 2006 to 2015. The results showed that with the increase of scale the density of live pig farming and the amount of fertilizer application in agricultural production increased. However, due to the improvement of national environmental awareness, industrial waste water discharge is greatly reduced. China's hog farming environmental pollution load index is rising.

  18. Methods and apparatus of analyzing electrical power grid data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, Ryan P.; Critchlow, Terence J.; Gibson, Tara D.

    Apparatus and methods of processing large-scale data regarding an electrical power grid are described. According to one aspect, a method of processing large-scale data regarding an electrical power grid includes accessing a large-scale data set comprising information regarding an electrical power grid; processing data of the large-scale data set to identify a filter which is configured to remove erroneous data from the large-scale data set; using the filter, removing erroneous data from the large-scale data set; and after the removing, processing data of the large-scale data set to identify an event detector which is configured to identify events of interestmore » in the large-scale data set.« less

  19. JPRS Report, China.

    DTIC Science & Technology

    1989-06-16

    products showed a 1.3-fold increase, alu- minium showed a 1.3-fold increase, cement showed a 1.6-fold increase, and plate glass showed an 8 fold increase...paper and cardboard, washing machines, plastic goods, lightbulbs , home furnishings, electric fans, carpets, and large-scale, specialized weigh...significant increase in the production of beer, soft drinks, plastic goods, detergent, everyday glass products, dairy products, canned goods, and

  20. Large-scale structure in brane-induced gravity. I. Perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoccimarro, Roman

    2009-11-15

    We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less

  1. Large-Scale Gene Relocations following an Ancient Genome Triplication Associated with the Diversification of Core Eudicots.

    PubMed

    Wang, Yupeng; Ficklin, Stephen P; Wang, Xiyin; Feltus, F Alex; Paterson, Andrew H

    2016-01-01

    Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots.

  2. Large-Scale Gene Relocations following an Ancient Genome Triplication Associated with the Diversification of Core Eudicots

    PubMed Central

    Wang, Yupeng; Ficklin, Stephen P.; Wang, Xiyin; Feltus, F. Alex; Paterson, Andrew H.

    2016-01-01

    Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots. PMID:27195960

  3. Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model

    NASA Technical Reports Server (NTRS)

    Baker, P. L.; Burton, W. B.

    1975-01-01

    High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.

  4. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  5. Just enough inflation: power spectrum modifications at large scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar

    2014-12-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50- 60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at themore » beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low ℓ, and so seem disfavoured by recent observational hints for a lack of CMB power at ℓ∼< 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.« less

  6. Stellar granulation as seen in disk-integrated intensity. II. Theoretical scaling relations compared with observations

    NASA Astrophysics Data System (ADS)

    Samadi, R.; Belkacem, K.; Ludwig, H.-G.; Caffau, E.; Campante, T. L.; Davies, G. R.; Kallinger, T.; Lund, M. N.; Mosser, B.; Baglin, A.; Mathur, S.; Garcia, R. A.

    2013-11-01

    Context. A large set of stars observed by CoRoT and Kepler shows clear evidence for the presence of a stellar background, which is interpreted to arise from surface convection, i.e., granulation. These observations show that the characteristic time-scale (τeff) and the root-mean-square (rms) brightness fluctuations (σ) associated with the granulation scale as a function of the peak frequency (νmax) of the solar-like oscillations. Aims: We aim at providing a theoretical background to the observed scaling relations based on a model developed in Paper I. Methods: We computed for each 3D model the theoretical power density spectrum (PDS) associated with the granulation as seen in disk-integrated intensity on the basis of the theoretical model published in Paper I. For each PDS we derived the associated characteristic time (τeff) and the rms brightness fluctuations (σ) and compared these theoretical values with the theoretical scaling relations derived from the theoretical model and the measurements made on a large set of Kepler targets. Results: We derive theoretical scaling relations for τeff and σ, which show the same dependence on νmax as the observed scaling relations. In addition, we show that these quantities also scale as a function of the turbulent Mach number (ℳa) estimated at the photosphere. The theoretical scaling relations for τeff and σ match the observations well on a global scale. Quantitatively, the remaining discrepancies with the observations are found to be much smaller than previous theoretical calculations made for red giants. Conclusions: Our modelling provides additional theoretical support for the observed variations of σ and τeff with νmax. It also highlights the important role of ℳa in controlling the properties of the stellar granulation. However, the observations made with Kepler on a wide variety of stars cannot confirm the dependence of our scaling relations on ℳa. Measurements of the granulation background and detections of solar-like oscillations in a statistically sufficient number of cool dwarf stars will be required for confirming the dependence of the theoretical scaling relations with ℳa. Appendices are available in electronic form at http://www.aanda.org

  7. Microwave evidence for large-scale changes associated with a filament eruption

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Schmahl, E. J.; Fu, Q.-J.

    1989-01-01

    VLA observations at 6 and 20 cm wavelengths taken on August 3, 1985 are presented, showing an eruptive filament event in which microwave emission originated in two widely separated regions during the disintegration of the filament. The amount of heat required for the enhancement is estimated. Near-simultaneous changes in intensity and polarization were observed in the western components of the northern and southern regions. It is suggested that large-scale magnetic interconnections permitted the two regions to respond similarly to an external energy or mass source involved in the disruption of the filament.

  8. A Large Scale Dynamical System Immune Network Modelwith Finite Connectivity

    NASA Astrophysics Data System (ADS)

    Uezu, T.; Kadono, C.; Hatchett, J.; Coolen, A. C. C.

    We study a model of an idiotypic immune network which was introduced by N. K. Jerne. It is known that in immune systems there generally exist several kinds of immune cells which can recognize any particular antigen. Taking this fact into account and assuming that each cell interacts with only a finite number of other cells, we analyze a large scale immune network via both numerical simulations and statistical mechanical methods, and show that the distribution of the concentrations of antibodies becomes non-trivial for a range of values of the strength of the interaction and the connectivity.

  9. Large-Scale Analysis of Network Bistability for Human Cancers

    PubMed Central

    Shiraishi, Tetsuya; Matsuyama, Shinako; Kitano, Hiroaki

    2010-01-01

    Protein–protein interaction and gene regulatory networks are likely to be locked in a state corresponding to a disease by the behavior of one or more bistable circuits exhibiting switch-like behavior. Sets of genes could be over-expressed or repressed when anomalies due to disease appear, and the circuits responsible for this over- or under-expression might persist for as long as the disease state continues. This paper shows how a large-scale analysis of network bistability for various human cancers can identify genes that can potentially serve as drug targets or diagnosis biomarkers. PMID:20628618

  10. A platform for large-scale graphene electronics--CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride.

    PubMed

    Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo

    2013-05-21

    Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Combined heat and power supply using Carnot engines

    NASA Astrophysics Data System (ADS)

    Horlock, J. H.

    The Marshall Report on the thermodynamic and economic feasibility of introducing large scale combined heat and electrical power generation (CHP) into the United Kingdom is summarized. Combinations of reversible power plant (Carnot engines) to meet a given demand of power and heat production are analyzed. The Marshall Report states that fairly large scale CHP plants are an attractive energy saving option for areas of high heat load densities. Analysis shows that for given requirements, the total heat supply and utilization factor are functions of heat output, reservoir supply temperature, temperature of heat rejected to the reservoir, and an intermediate temperature for district heating.

  12. An observational search for large-scale organization of five-minute oscillations on the sun. [coronal holes or sector structure relationships

    NASA Technical Reports Server (NTRS)

    Dittmer, P. H.; Scherrer, P. H.; Wilcox, J. M.

    1978-01-01

    The large-scale solar velocity field has been measured over an aperture of radius 0.8 solar radii on 121 days between April and September, 1976. Measurements are made in the line Fe I 5123.730 A, employing a velocity subtraction technique similar to that of Severny et al. (1976). Comparisons of the amplitude and frequency of the five-minute resonant oscillation with the geomagnetic C9 index and magnetic sector boundaries show no evidence of any relationship between the oscillations and coronal holes or sector structure.

  13. On 'large-scale' stable fiber displacement during interfacial failure in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Petrich, R. R.; Koss, D. A.; Hellmann, J. R.; Kallas, M. N.

    1993-01-01

    Experimental results are presented to show that interfacial failure in sapphire-reinforced niobium is characterized by 'large-scale' (5-15 microns) plasticity-controlled fiber displacements occurring under increasing loads. The results are based on the responses during thin-slice fiber pushout tests wherein the fiber is supported over a hole twice the fiber diameter. The results describe an interfacial failure process that should also occur near fiber ends during pullout when a fiber is well-bonded to a soft, ductile matrix, such that eventual failure occurs by shear within the matrix near the interface.

  14. Transcontinental Surface Validation of Satellite Observations of Enhanced Methane Anomalies Associated with Fossil Fuel Industrial Methane Emissions

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.

    2012-12-01

    A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI contribution to global methane budgets.; In situ methane concentrations during transcontinental survey Fall 2010.

  15. How uncertain are climate model projections of water availability indicators across the Middle East?

    PubMed

    Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil

    2010-11-28

    The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

  16. Valley s'Asymmetric Characteristics of the Loess Plateau in Northwestern Shanxi Based on DEM

    NASA Astrophysics Data System (ADS)

    Duan, J.

    2016-12-01

    The valleys of the Loess Plateau in northwestern Shanxi show great asymmetry. This study using multi-scale DEMs, high-resolution satellite images and digital terrain analysis method, put forward a quantitative index to describe the asymmetric morphology. Several typical areas are selected to test and verify the spatial variability. Results show: (1) Considering the difference of spatial distribution, Pianguanhe basin, Xianchuanhe basin and Yangjiachuan basin are the areas where show most significant asymmetric characteristics . (2) Considering the difference of scale, the shape of large-scale valleys represents three characteristics: randomness, equilibrium and relative symmetry, while small-scale valleys show directionality and asymmetry. (3) Asymmetric morphology performs orientation, and the east-west valleys extremely obvious. Combined with field survey, its formation mechanism can be interpreted as follows :(1)Loess uneven distribution in the valleys. (2) The distribution diversities of vegetation, water , heat conditions and other factors, make a difference in water erosion capability which leads to asymmetric characteristics.

  17. Self-Organized Evolution of Sandy Coastline Shapes: Connections with Shoreline Erosion Problems

    NASA Astrophysics Data System (ADS)

    Murray, A. B.; Ashton, A.

    2002-12-01

    Landward movement of the shoreline severely impacts property owners and communities where structures and infrastructure are built near the coast. While sea level rise will increase the average rate of coastal erosion, even a slight gradient in wave-driven alongshore sediment flux will locally overwhelm that effect, causing either shoreline accretion or enhanced erosion. Recent analysis shows that because of the nonlinear relationship between alongshore sediment flux and the angle between deep water wave crests and local shoreline orientation, in some wave climates a straight coastline is unstable (Ashton et al., Nature, 2001). When deep-water waves approach from angles greater than the one that maximizes alongshore flux, in concave-seaward shoreline segments sediment flux will diverge, causing erosion. Similarly, convex regions such as the crests of perturbations on an otherwise straight shoreline will experience accretion; perturbations will grow. When waves approach from smaller angles, the sign of the relationship between shoreline curvature and shoreline change is reversed, but any deviation from a perfectly straight coastline will still result in alongshore-inhomogeneous shoreline change. A numerical model designed to explore the long-term effects of this instability operating over a spatially extended alongshore domain has shown that as perturbations grow to finite amplitude and interact with each other, large-scale coastline structures can emerge. The character of the local and non-local interactions, and the resulting emergent structures, depends on the wave climate. The 100-km scale capes and cuspate forelands that form much of the coast of the Carolinas, USA, provides one possible natural example. Our modeling suggests that on such a shoreline, continued interactions between large-scale structures will cause continued large-scale change in coastline shape. Consequently, some coastline segments will tend to experience accentuated erosion. Communities established in these areas face discouraging future prospects. Attempts can be made to arrest the shoreline retreat on large scales-for example through large beach nourishment projects or policies that allow pervasive hard stabilization (e.g. seawall, jetties) along a coastline segment. However, even if such attempts are successful for a significant period of time, the pinning in place of some parts of an otherwise dynamic system will change the large-scale evolution of the coastline, altering the future erosion/accretion experienced at other, perhaps distant, locations. Simple properties of alongshore sediment transport could also be relevant to alongshore-inhomogeneous shoreline change (including erosion 'hot spots') on shorter time scales and smaller spatial scales. We are comparing predictions arising from the modeling, and from analysis of alongshore transport as a function of shoreline orientation, to recent observations of shoreline change ranging across spatial scales from 100s of meters to 10s of kilometers, and time scales from days to decades (List and Farris, Coastal Sediments,1999; Tebbens et al., PNAS, 2002). Considering that many other processes and factors can also influence shoreline change, initial results show a surprising degree of correlation between observations and predictions.

  18. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  19. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    PubMed

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  20. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  1. Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Weigand, Bernhard; Vaikuntanathan, Visakh

    2018-06-01

    Microscopic analysis of turbulence topology in a regular porous medium is presented with a series of direct numerical simulation. The regular porous media are comprised of square cylinders in a staggered array. Triply periodic boundary conditions enable efficient investigations in a representative elementary volume. Three flow patterns—channel with sudden contraction, impinging surface, and wake—are observed and studied quantitatively in contrast to the qualitative experimental studies reported in the literature. Among these, shear layers in the channel show the highest turbulence intensity due to a favorable pressure gradient and shed due to an adverse pressure gradient downstream. The turbulent energy budget indicates a strong production rate after the flow contraction and a strong dissipation on both shear and impinging walls. Energy spectra and pre-multiplied spectra detect large scale energetic structures in the shear layer and a breakup of scales in the impinging layer. However, these large scale structures break into less energetic small structures at high Reynolds number conditions. This suggests an absence of coherent structures in densely packed porous media at high Reynolds numbers. Anisotropy analysis with a barycentric map shows that the turbulence in porous media is highly isotropic in the macro-scale, which is not the case in the micro-scale. In the end, proper orthogonal decomposition is employed to distinguish the energy-conserving structures. The results support the pore scale prevalence hypothesis. However, energetic coherent structures are observed in the case with sparsely packed porous media.

  2. A Global Survey of Oceanic Mesoscale Convective Systems in Association with the Large-scale Water Vapor and Vertical Wind Shear

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Zhan, T.

    2017-12-01

    Sizes and organizations of mesoscale scale convective systems (MCSs) usually are related to both their precipitation characteristics and anvil productivity, which are crucial but not well-represented in current climate models. This study aims to further our knowledge about MCSs by documenting the relationship between MCSs and their associated large-scale environmental moisture and wind shear in different phases of large-scale convection. A dataset derived from MODIS and AMSR-E and TRMM, CMOPH and ERA-Interim reanalysis are used. Larger and merged systems tend to occur more frequently when the large-scale convection is stronger. At the occurrence time of MCSs, the middle troposphere relative humidity (MRH, 800-400hPa) shows large increases ( 15%) from the suppressed to the active phases. Differences of the MRH across phases appear in a large area and reaches its maximum at 650 850 km away from the center of MCSs. Higher MRH is found within 650 km around the center of merged and large MCSs in all phases. This distance is much larger than the size of any single MCSs. The MRH shows larger spatial gradients around merged MCSs, indicating that moisture tends to cluster around merged systems. Similar spatial differences of MRH appear at all phases 1-3 days before the MCSs occur. In lower troposphere (1000-850hPa), differences in the relative humidity are much smaller than that of MRH. In all phases around all MCSs the oceanic boundary layer is always effectively moisturized (RH>92%). Temporally the lower troposphere relative humidity is dominated by diurnal variations. No clear difference across systems of the wind shear is found when the domain-wide upward motion is dominated. In all cases there are always large low-level (1000-750hPa) wind shear (7-9m/s) and middle level (1000-750hPa) wind shear (11-15m/s) occurring at large distances (>500km) away from MCSs. However, both the low-level and the middle level wind shear closely around the MCSs converge to moderate values of 3-4.2m/s and 5-7m/s, respectively. Indicating that weak or moderate wind shear conditions favor developments of MCSs. Small but systematical differences in wind shear across phases are found. This study provides an observational reference for both cloud resovling or climate models to diagnose and improve their representaions of organized convection.

  3. “Real-Time” Cosmology with Extragalactic Proper Motions: the Secular Aberration Drift and Evolution of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra; Darling, Jeremy

    2018-01-01

    We present the VLBA Extragalactic Proper Motion Catalog, a catalog of extragalactic proper motions created using archival VLBI data and our own VLBA astrometry. The catalog contains 713 proper motions, with average uncertainties of ~ 24 microarcsec/yr, including 40 new or improved proper motion measurements using relative astrometry with the VLBA. We detect the secular aberration drift – the apparent motion of extragalactic objects caused by the solar system's acceleration around the Galactic Center – at 6.3 sigma significance with an amplitude of 1.69 +/- 0.27 microarcsec/yr and an apex consistent with the Galactic Center (275.2 +/- 10.0 deg, -29.4 +/- 8.8 deg). Our dipole model detects the aberration drift at a higher significance than some previous studies (e.g., Titov & Lambert 2013), but at a lower amplitude than expected or previously measured. We then use the correlated relative proper motions of extragalactic objects to place upper limits on the rate of large-scale structure collapse (e.g., Quercellini et al. 2009; Darling 2013). Pairs of small separation objects that are in gravitationally interacting structures such as filaments of large-scale structure will show a net decrease in angular separation (> - 15.5 microarcsec/yr) as they move towards each other, while pairs of large separation objects that are gravitationally unbound and move with the Hubble expansion will show no net change in angular separation. With our catalog, we place a 3 sigma limit on the rate of convergence of large-scale structure of -11.4 microarcsec/yr for extragalactic objects within 100 comoving Mpc of each other. We also confirm that large separation objects (> 800 comoving Mpc) move with the Hubble flow to within ~ 2.2 microarcsec/yr. In the future, we plan to incorporate the upcoming Gaia proper motions into our catalog to achieve a higher precision measurement of the average relative proper motion of gravitationally interacting extragalactic objects and to refine our measurement of the collapse of large-scale structure. This research was performed with support from the NSF grant AST-1411605.Darling, J. 2013, AJ, 777, L21; Quercellini et al. 2009. Phys. Rev. Lett., 102, 151302; Titov, O. & Lambert, S. 2013, A&A, 559, A95

  4. Improving parallel I/O autotuning with performance modeling

    DOE PAGES

    Behzad, Babak; Byna, Surendra; Wild, Stefan M.; ...

    2014-01-01

    Various layers of the parallel I/O subsystem offer tunable parameters for improving I/O performance on large-scale computers. However, searching through a large parameter space is challenging. We are working towards an autotuning framework for determining the parallel I/O parameters that can achieve good I/O performance for different data write patterns. In this paper, we characterize parallel I/O and discuss the development of predictive models for use in effectively reducing the parameter space. Furthermore, applying our technique on tuning an I/O kernel derived from a large-scale simulation code shows that the search time can be reduced from 12 hours to 2more » hours, while achieving 54X I/O performance speedup.« less

  5. Large-scale frequency- and time-domain quantum entanglement over the optical frequency comb (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pfister, Olivier

    2017-05-01

    When it comes to practical quantum computing, the two main challenges are circumventing decoherence (devastating quantum errors due to interactions with the environmental bath) and achieving scalability (as many qubits as needed for a real-life, game-changing computation). We show that using, in lieu of qubits, the "qumodes" represented by the resonant fields of the quantum optical frequency comb of an optical parametric oscillator allows one to create bona fide, large scale quantum computing processors, pre-entangled in a cluster state. We detail our recent demonstration of 60-qumode entanglement (out of an estimated 3000) and present an extension to combining this frequency-tagged with time-tagged entanglement, in order to generate an arbitrarily large, universal quantum computing processor.

  6. Physical and human dimensions of deforestation in Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skole, D.L.; Chomentowski, W.H.; Salas W.A.

    1994-05-01

    In the Brazilian Amazon, regional trends are influenced by large scale external forces but mediated by local conditions. Tropical deforestation has a large influence on global hydrology, climate and biogeochemical cycles, but understanding is inadequate because of a lack of accurate measurements of rate, geographic extent and spatial patterns and lack of insight into its causes including interrelated social, economic and environmental factors. This article proposes an interdisciplinary approach for analyzing tropical deforestation in the Brazilian Amazon. The first part shows how deforestation can be measured from satellite remote sensing and sociodemographic and economic data. The second part proposes anmore » explanatory model, considering the relationship among deforestation and large scale social, economic, and institutional factors. 43 refs., 8 figs.« less

  7. Multi-scale approaches for high-speed imaging and analysis of large neural populations

    PubMed Central

    Ahrens, Misha B.; Yuste, Rafael; Peterka, Darcy S.; Paninski, Liam

    2017-01-01

    Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to “zoom out” by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution. PMID:28771570

  8. The impact of new forms of large-scale general practice provider collaborations on England's NHS: a systematic review.

    PubMed

    Pettigrew, Luisa M; Kumpunen, Stephanie; Mays, Nicholas; Rosen, Rebecca; Posaner, Rachel

    2018-03-01

    Over the past decade, collaboration between general practices in England to form new provider networks and large-scale organisations has been driven largely by grassroots action among GPs. However, it is now being increasingly advocated for by national policymakers. Expectations of what scaling up general practice in England will achieve are significant. To review the evidence of the impact of new forms of large-scale general practice provider collaborations in England. Systematic review. Embase, MEDLINE, Health Management Information Consortium, and Social Sciences Citation Index were searched for studies reporting the impact on clinical processes and outcomes, patient experience, workforce satisfaction, or costs of new forms of provider collaborations between general practices in England. A total of 1782 publications were screened. Five studies met the inclusion criteria and four examined the same general practice networks, limiting generalisability. Substantial financial investment was required to establish the networks and the associated interventions that were targeted at four clinical areas. Quality improvements were achieved through standardised processes, incentives at network level, information technology-enabled performance dashboards, and local network management. The fifth study of a large-scale multisite general practice organisation showed that it may be better placed to implement safety and quality processes than conventional practices. However, unintended consequences may arise, such as perceptions of disenfranchisement among staff and reductions in continuity of care. Good-quality evidence of the impacts of scaling up general practice provider organisations in England is scarce. As more general practice collaborations emerge, evaluation of their impacts will be important to understand which work, in which settings, how, and why. © British Journal of General Practice 2018.

  9. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data.

    PubMed

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2018-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  10. Detonation failure characterization of non-ideal explosives

    NASA Astrophysics Data System (ADS)

    Janesheski, Robert S.; Groven, Lori J.; Son, Steven

    2012-03-01

    Non-ideal explosives are currently poorly characterized, hence limiting the modeling of them. Current characterization requires large-scale testing to obtain steady detonation wave characterization for analysis due to the relatively thick reaction zones. Use of a microwave interferometer applied to small-scale confined transient experiments is being implemented to allow for time resolved characterization of a failing detonation. The microwave interferometer measures the position of a failing detonation wave in a tube that is initiated with a booster charge. Experiments have been performed with ammonium nitrate and various fuel compositions (diesel fuel and mineral oil). It was observed that the failure dynamics are influenced by factors such as chemical composition and confiner thickness. Future work is planned to calibrate models to these small-scale experiments and eventually validate the models with available large scale experiments. This experiment is shown to be repeatable, shows dependence on reactive properties, and can be performed with little required material.

  11. Trait Variance and Response Style Variance in the Scales of the Personality Inventory for DSM-5 (PID-5).

    PubMed

    Ashton, Michael C; de Vries, Reinout E; Lee, Kibeom

    2017-01-01

    Using self- and observer reports on the Personality Inventory for DSM-5 (PID-5) and the HEXACO Personality Inventory-Revised (HEXACO-PI-R), we identified for each inventory several trait dimensions (each defined by both self- and observer reports on the facet-level scales belonging to the same domain) and 2 source dimensions (each defined by self-reports or by observer reports, respectively, on all facet-level scales). Results (N = 217) showed that the source dimensions of the PID-5 were very large (much larger than those of the HEXACO-PI-R), and suggest that self-report (or observer report) response styles substantially inflate the intercorrelations and the alpha reliabilities of the PID-5 scales. We discuss the meaning and the implications of the large PID-5 source components, and we suggest some methods of controlling their influence.

  12. Protection against heavy metal toxicity by mucous and scales in fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coello, W.F.; Khan, M.A.Q.

    1995-12-31

    Fingerlings of three freshwater fish species showed differences in susceptibility to lethality of 250 mg/L lead suspension or lead nitrate solution in water. Among these the large mouth bass Micropterus salmoides seemed to be more tolerant than green sunfish Lepomis cyanellus and goldfish Carassius auratus. Mucous from large mouth bass, when added to jars containing lead, lowered the toxicity of lead to sunfish and goldfish. Adding scales, especially if these were pretreated with an alkaline solution of cysteine and glycine, made all these species become tolerant to otherwise lethal concentrations of lead nitrate. The scales and mucous together buffered themore » acidity of lead nitrate and mercuric nitrate solution and sequestered hydrogen ions and lead and mercury from water and then settled to the bottom of jars. Scales of younger fingerling were more efficient than those of older ones.« less

  13. Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Goertz, C. K.; Gurnett, D. A.; Maynard, N. C.; Burch, J. L.

    1985-01-01

    Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4,500 km during magnetic conjunctions. The measured electric fields are usually perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function which accounts for the convergence of the magnetic field lines. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by both DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes, as expected. Superimposed on the large-scale fields, however, are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1.

  14. Ice Shape Scaling for Aircraft in SLD Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2008-01-01

    This paper has summarized recent NASA research into scaling of SLD conditions with data from both SLD and Appendix C tests. Scaling results obtained by applying existing scaling methods for size and test-condition scaling will be reviewed. Large feather growth issues, including scaling approaches, will be discussed briefly. The material included applies only to unprotected, unswept geometries. Within the limits of the conditions tested to date, the results show that the similarity parameters needed for Appendix C scaling also can be used for SLD scaling, and no additional parameters are required. These results were based on visual comparisons of reference and scale ice shapes. Nearly all of the experimental results presented have been obtained in sea-level tunnels. The currently recommended methods to scale model size, icing limit and test conditions are described.

  15. Improved technique that allows the performance of large-scale SNP genotyping on DNA immobilized by FTA technology.

    PubMed

    He, Hongbin; Argiro, Laurent; Dessein, Helia; Chevillard, Christophe

    2007-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. The number of punches that can normally be obtained from a single specimen card are often however, insufficient for the testing of the large numbers of loci required to identify genetic factors that control human susceptibility or resistance to multifactorial diseases. In this study, we propose an improved technique to perform large-scale SNP genotyping. We applied a whole genome amplification method to amplify DNA from buccal cell samples stabilized using FTA technology. The results show that using the improved technique it is possible to perform up to 15,000 genotypes from one buccal cell sample. Furthermore, the procedure is simple. We consider this improved technique to be a promising methods for performing large-scale SNP genotyping because the FTA technology simplifies the collection, shipment, archiving and purification of DNA, while whole genome amplification of FTA card bound DNA produces sufficient material for the determination of thousands of SNP genotypes.

  16. Large-scale protein/antibody patterning with limiting unspecific adsorption

    NASA Astrophysics Data System (ADS)

    Fedorenko, Viktoriia; Bechelany, Mikhael; Janot, Jean-Marc; Smyntyna, Valentyn; Balme, Sebastien

    2017-10-01

    A simple synthetic route based on nanosphere lithography has been developed in order to design a large-scale nanoarray for specific control of protein anchoring. This technique based on two-dimensional (2D) colloidal crystals composed of polystyrene spheres allows the easy and inexpensive fabrication of large arrays (up to several centimeters) by reducing the cost. A silicon wafer coated with a thin adhesion layer of chromium (15 nm) and a layer of gold (50 nm) is used as a substrate. PS spheres are deposited on the gold surface using the floating-transferring technique. The PS spheres were then functionalized with PEG-biotin and the defects by self-assembly monolayer (SAM) PEG to prevent unspecific adsorption. Using epifluorescence microscopy, we show that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene spheres. Thus, these results are meaningful for exploration of devices based on a large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins.

  17. Multi-dimension and Comprehensive Assessment on the Utilizing and Sharing of Regional Large-Scale Scientific Equipment

    PubMed Central

    Li, Chen; Yongbo, Lv; Chi, Chen

    2015-01-01

    Based on the data from 30 provincial regions in China, an assessment and empirical analysis was carried out on the utilizing and sharing of the large-scale scientific equipment with a comprehensive assessment model established on the three dimensions, namely, equipment, utilization and sharing. The assessment results were interpreted in light of relevant policies. The results showed that on the whole, the overall development level in the provincial regions in eastern and central China is higher than that in western China. This is mostly because of the large gap among the different provincial regions with respect to the equipped level. But in terms of utilizing and sharing, some of the Western provincial regions, such as Ningxia, perform well, which is worthy of our attention. Policy adjustment targeting at the differentiation, elevation of the capacity of the equipment management personnel, perfection of the sharing and cooperation platform, and the promotion of the establishment of open sharing funds, are all important measures to promote the utilization and sharing of the large-scale scientific equipment and to narrow the gap among different regions. PMID:25937850

  18. The Relationship Between Galaxies and the Large-Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.

    2018-06-01

    I will describe our current understanding of the relationship between galaxies and the large-scale structure of the Universe, often called the galaxy-halo connection. Galaxies are thought to form and evolve in the centers of dark matter halos, which grow along with the galaxies they host. Large galaxy redshift surveys have revealed clear observational signatures of connections between galaxy properties and their clustering properties on large scales. For example, older, quiescent galaxies are known to cluster more strongly than younger, star-forming galaxies, which are more likely to be found in galactic voids and filaments rather than the centers of galaxy clusters. I will show how cosmological numerical simulations have aided our understanding of this galaxy-halo connection and what is known from a statistical point of view about how galaxies populate dark matter halos. This knowledge both helps us learn about galaxy evolution and is fundamental to our ability to use galaxy surveys to reveal cosmological information. I will talk briefly about some of the current open questions in the field, including galactic conformity and assembly bias.

  19. Anticipatory Traumatic Reaction: Outcomes Arising From Secondary Exposure to Disasters and Large-Scale Threats.

    PubMed

    Hopwood, Tanya L; Schutte, Nicola S; Loi, Natasha M

    2017-09-01

    Two studies, with a total of 707 participants, developed and examined the reliability and validity of a measure for anticipatory traumatic reaction (ATR), a novel construct describing a form of distress that may occur in response to threat-related media reports and discussions. Exploratory and confirmatory factor analysis resulted in a scale comprising three subscales: feelings related to future threat; preparatory thoughts and actions; and disruption to daily activities. Internal consistency was .93 for the overall ATR scale. The ATR scale demonstrated convergent validity through associations with negative affect, depression, anxiety, stress, neuroticism, and repetitive negative thinking. The scale showed discriminant validity in relationships to Big Five characteristics. The ATR scale had some overlap with a measure of posttraumatic stress disorder, but also showed substantial separate variance. This research provides preliminary evidence for the novel construct of ATR as well as a measure of the construct. The ATR scale will allow researchers to further investigate anticipatory traumatic reaction in the fields of trauma, clinical practice, and social psychology.

  20. A Universal Model for Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Wyper, Peter; Antiochos, Spiro K.; DeVore, C. Richard

    2017-08-01

    We present a universal model for solar eruptions that encompasses coronal mass ejections (CMEs) at one end of the scale, to coronal jets at the other. The model is a natural extension of the Magnetic Breakout model for large-scale fast CMEs. Using high-resolution adaptive mesh MHD simulations conducted with the ARMS code, we show that so-called blowout or mini-filament coronal jets can be explained as one realisation of the breakout process. We also demonstrate the robustness of this “breakout-jet” model by studying three realisations in simulations with different ambient field inclinations. We conclude that magnetic breakout supports both large-scale fast CMEs and small-scale coronal jets, and by inference eruptions at scales in between. Thus, magnetic breakout provides a unified model for solar eruptions. P.F.W was supported in this work by an award of a RAS Fellowship and an appointment to the NASA Postdoctoral Program. C.R.D and S.K.A were supported by NASA’s LWS TR&T and H-SR programs.

  1. Magnetic pattern at supergranulation scale: the void size distribution

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Scardigli, S.; Del Moro, D.

    2014-08-01

    The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.

  2. High Schools on a Human Scale: How Small Schools Can Transform American Education.

    ERIC Educational Resources Information Center

    Toch, Thomas

    This book argues that large American high schools have become obsolete and uses case studies of four new or restructured schools to show why smallness and distinctiveness are prerequisites for school reform. The large comprehensive high school developed as an economical means of providing a range of "tracks," from practical subjects for future…

  3. Long range transport of air pollutants in Europe and acid precipitation in Norway

    Treesearch

    Jack Nordo

    1976-01-01

    Observations show that pollutants from large emission sources may cause significant air concentrations 500 to 1000 miles away. Very acid precipitation occurs in such periods. The scavenging is often intensified by the topography. Case studies will be presented, with special emphasis on acid precipitation in Scandinavia. Large scale dispersion models have been developed...

  4. Double inflation - A possible resolution of the large-scale structure problem

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman

    1987-01-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.

  5. Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Korup, Oliver

    2006-03-01

    Morphometric analysis and air photo interpretation highlight geomorphic imprints of large landslides (i.e., affecting ≥1 km2) on hillslopes in the western Southern Alps (WSA), New Zealand. Large landslides attain kilometer-scale runout, affect >50% of total basin relief, and in 70% are slope clearing, and thus relief limiting. Landslide terrain shows lower mean local relief, relief variability, slope angles, steepness, and concavity than surrounding terrain. Measuring mean slope angle smoothes out local landslide morphology, masking any relationship between large landslides and possible threshold hillslopes. Large failures also occurred on low-gradient slopes, indicating persistent low-frequency/high-magnitude hillslope adjustment independent of fluvial bedrock incision. At the basin and hillslope scale, slope-area plots partly constrain the effects of landslides on geomorphic process regimes. Landslide imprints gradually blend with relief characteristics at orogen scale (102 km), while being sensitive to length scales of slope failure, topography, sampling, and digital elevation model resolution. This limits means of automated detection, and underlines the importance of local morphologic contrasts for detecting large landslides in the WSA. Landslide controls on low-order drainage include divide lowering and shifting, formation of headwater basins and hanging valleys, and stream piracy. Volumes typically mobilized, yet still stored in numerous deposits despite high denudation rates, are >107 m3, and theoretically equal to 102 years of basin-wide debris production from historic shallow landslides; lack of absolute ages precludes further estimates. Deposit size and mature forest cover indicate residence times of 101-104 years. On these timescales, large landslides require further attention in landscape evolution models of tectonically active orogens.

  6. Studying time of flight imaging through scattering media across multiple size scales (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Velten, Andreas

    2017-05-01

    Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.

  7. Environmental status of livestock and poultry sectors in China under current transformation stage.

    PubMed

    Qian, Yi; Song, Kaihui; Hu, Tao; Ying, Tianyu

    2018-05-01

    Intensive animal husbandry had aroused great environmental concerns in many developed countries. However, some developing countries are still undergoing the environmental pollution from livestock and poultry sectors. Driven by the large demand, China has experienced a remarkable increase in dairy and meat production, especially in the transformation stage from conventional household breeding to large-scale industrial breeding. At the same time, a large amount of manure from the livestock and poultry sector is released into waterbodies and soil, causing eutrophication and soil degradation. This condition will be reinforced in the large-scale cultivation where the amount of manure exceeds the soil nutrient capacity, if not treated or utilized properly. Our research aims to analyze whether the transformation of raising scale would be beneficial to the environment as well as present the latest status of livestock and poultry sectors in China. The estimation of the pollutants generated and discharged from livestock and poultry sector in China will facilitate the legislation of manure management. This paper analyzes the pollutants generated from the manure of the five principal commercial animals in different farming practices. The results show that the fattening pigs contribute almost half of the pollutants released from manure. Moreover, the beef cattle exert the largest environmental impact for unitary production, about 2-3 times of pork and 5-20 times of chicken. The animals raised with large-scale feedlots practice generate fewer pollutants than those raised in households. The shift towards industrial production of livestock and poultry is easier to manage from the environmental perspective, but adequate large-scale cultivation is encouraged. Regulation control, manure treatment and financial subsidies for the manure treatment and utilization are recommended to achieve the ecological agriculture in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 5. Credit BG. This interior view shows the weigh room, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Credit BG. This interior view shows the weigh room, looking west (240°): Electric lighting and scale read-outs (boxes with circular windows on the wall) are fitted with explosion-proof enclosures; these enclosures prevent malfunctioning electrical parts from sparking and starting fires or explosions. One marble table and scale have been removed at the extreme left of the view. Two remaining scales handle small and large quantities of propellants and additives. Marble tables do not absorb chemicals or conduct electricity; their mass also prevents vibration from upsetting the scales. The floor has an electrically conductive coating to dissipate static electric charges, thus preventing sparks which might ignite propellants. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA

  9. Catastrophic flooding origin of shelf valley systems in the English Channel.

    PubMed

    Gupta, Sanjeev; Collier, Jenny S; Palmer-Felgate, Andy; Potter, Graeme

    2007-07-19

    Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe.

  10. Compact Multimedia Systems in Multi-chip Module Technology

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalaj, Leon

    1995-01-01

    This tutorial paper shows advanced multimedia system designs based on multi-chip module (MCM) technologies that provide essential computing, compression, communication, and storage capabilities for various large scale information highway applications.!.

  11. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    PubMed

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Tool to address green roof widespread implementation effect in flood characteristics for water management planning

    NASA Astrophysics Data System (ADS)

    Tassi, R.; Lorenzini, F.; Allasia, D. G.

    2015-06-01

    In the last decades, new approaches were adopted to manage stormwater as close to its source as possible through technologies and devices that preserve and recreate natural landscape features. Green Roofs (GR) are examples of these devices that are also incentivized by city's stormwater management plans. Several studies show that GR decreases on-site runoff from impervious surfaces, however, the analysis of the effect of widespread implementation of GR in the flood characteristics at the urban basin scale in subtropical areas are little discussed, mainly because of the absence of data. Thereby, this paper shows results related to the monitoring of an extensive modular GR under subtropical weather conditions, the development of a rainfall-runoff model based on the modified Curve Number (CN) and SCS Triangular Unit Hydrograph (TUH) methods and the analysis of large-scale impact of GR by modelling different basins. The model was calibrated against observed data and showed that GR absorbed almost all the smaller storms and reduced runoff even during the most intense rainfall. The overall CN was estimated in 83 (consistent with available literature) with the shape of hydrographs well reproduced. Large-scale modelling (in basins ranging from 0.03 ha to several square kilometers) showed that the widespread use of GRs reduced peak flows (volumes) around 57% (48%) at source and 38% (32%) at the basin scale. Thus, this research validated a tool for the assessment of structural management measures (specifically GR) to address changes in flood characteristics in the city's water management planning. From the application of this model it was concluded that even if the efficiency of GR decreases as the basin scale increase they still provide a good option to cope with urbanization impact.

  13. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  14. Can limited area NWP and/or RCM models improve on large scales inside their domain?

    NASA Astrophysics Data System (ADS)

    Mesinger, Fedor; Veljovic, Katarina

    2017-04-01

    In a paper in press in Meteorology and Atmospheric Physics at the time this abstract is being written, Mesinger and Veljovic point out four requirements that need to be fulfilled by a limited area model (LAM), be it in NWP or RCM environment, to improve on large scales inside its domain. First, NWP/RCM model needs to be run on a relatively large domain. Note that domain size in quite inexpensive compared to resolution. Second, NWP/RCM model should not use more forcing at its boundaries than required by the mathematics of the problem. That means prescribing lateral boundary conditions only at its outside boundary, with one less prognostic variable prescribed at the outflow than at the inflow parts of the boundary. Next, nudging towards the large scales of the driver model must not be used, as it would obviously be nudging in the wrong direction if the nested model can improve on large scales inside its domain. And finally, the NWP/RCM model must have features that enable development of large scales improved compared to those of the driver model. This would typically include higher resolution, but obviously does not have to. Integrations showing improvements in large scales by LAM ensemble members are summarized in the mentioned paper in press. Ensemble members referred to are run using the Eta model, and are driven by ECMWF 32-day ensemble members, initialized 0000 UTC 4 October 2012. The Eta model used is the so-called "upgraded Eta," or "sloping steps Eta," which is free of the Gallus-Klemp problem of weak flow in the lee of the bell-shaped topography, seemed to many as suggesting the eta coordinate to be ill suited for high resolution models. The "sloping steps" in fact represent a simple version of the cut cell scheme. Accuracy of forecasting the position of jet stream winds, chosen to be those of speeds greater than 45 m/s at 250 hPa, expressed by Equitable Threat (or Gilbert) skill scores adjusted to unit bias (ETSa) was taken to show the skill at large scales. Average rms wind difference at 250 hPa compared to ECMWF analyses was used as another verification measure. With 21 members run, at about the same resolution of the driver global and the nested Eta during the first 10 days of the experiment, both verification measures generally demonstrate advantage of the Eta, in particular during and after the time of a deep upper tropospheric trough crossing the Rockies at the first 2-6 days of the experiment. Rerunning the Eta ensemble switched to use sigma (Eta/sigma) showed this advantage of the Eta to come to a considerable degree, but not entirely, from its use of the eta coordinate. Compared to cumulative scores of the ensembles run, this is demonstrated to even a greater degree by the number of "wins" of one model vs. another. Thus, at 4.5 day time when the trough just about crossed the Rockies, all 21 Eta/eta members have better ETSa scores than their ECMWF driver members. Eta/sigma has 19 members improving upon ECMWF, but loses to Eta/eta by a score of as much as 20 to 1. ECMWF members do better with rms scores, losing to Eta/eta by 18 vs. 3, but winning over Eta/sigma by 12 to 9. Examples of wind plots behind these results are shown, and additional reasons possibly helping or not helping the results summarized are discussed.

  15. A new method of presentation the large-scale magnetic field structure on the Sun and solar corona

    NASA Technical Reports Server (NTRS)

    Ponyavin, D. I.

    1995-01-01

    The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.

  16. SPECTRAL LINE DE-CONFUSION IN AN INTENSITY MAPPING SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yun-Ting; Bock, James; Bradford, C. Matt

    2016-12-01

    Spectral line intensity mapping (LIM) has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, LIM makes use of all available photons and measures the integrated light in the source confusion limit to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube.more » The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [C ii] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [C ii] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [C ii] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible LIM experiments.« less

  17. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.

    PubMed

    Tian, Yang; Liu, Zhilin; Li, Xiaoqian; Zhang, Lihua; Li, Ruiqing; Jiang, Ripeng; Dong, Fang

    2018-05-01

    Ultrasonic sonotrodes play an essential role in transmitting power ultrasound into the large-scale metallic casting. However, cavitation erosion considerably impairs the in-service performance of ultrasonic sonotrodes, leading to marginal microstructural refinement. In this work, the cavitation erosion behaviour of ultrasonic sonotrodes in large-scale castings was explored using the industry-level experiments of Al alloy cylindrical ingots (i.e. 630 mm in diameter and 6000 mm in length). When introducing power ultrasound, severe cavitation erosion was found to reproducibly occur at some specific positions on ultrasonic sonotrodes. However, there is no cavitation erosion present on the ultrasonic sonotrodes that were not driven by electric generator. Vibratory examination showed cavitation erosion depended on the vibration state of ultrasonic sonotrodes. Moreover, a finite element (FE) model was developed to simulate the evolution and distribution of acoustic pressure in 3-D solidification volume. FE simulation results confirmed that significant dynamic interaction between sonotrodes and melts only happened at some specific positions corresponding to severe cavitation erosion. This work will allow for developing more advanced ultrasonic sonotrodes with better cavitation erosion-resistance, in particular for large-scale castings, from the perspectives of ultrasonic physics and mechanical design. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  19. Small-scale open ocean currents have large effects on wind wave heights

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24886225','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24886225"><span>Effectiveness and cost-effectiveness of telehealthcare for chronic obstructive pulmonary disease: study protocol for a cluster randomized controlled trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Udsen, Flemming Witt; Lilholt, Pernille Heyckendorff; Hejlesen, Ole; Ehlers, Lars Holger</p> <p>2014-05-21</p> <p>Several feasibility studies show promising results of telehealthcare on health outcomes and health-related quality of life for patients suffering from chronic obstructive pulmonary disease, and some of these studies show that telehealthcare may even lower healthcare costs. However, the only large-scale trial we have so far - the Whole System Demonstrator Project in England - has raised doubts about these results since it conclude that telehealthcare as a supplement to usual care is not likely to be cost-effective compared with usual care alone. The present study is known as 'TeleCare North' in Denmark. It seeks to address these doubts by implementing a large-scale, pragmatic, cluster-randomized trial with nested economic evaluation. The purpose of the study is to assess the effectiveness and the cost-effectiveness of a telehealth solution for patients suffering from chronic obstructive pulmonary disease compared to usual practice. General practitioners will be responsible for recruiting eligible participants (1,200 participants are expected) for the trial in the geographical area of the North Denmark Region. Twenty-six municipality districts in the region define the randomization clusters. The primary outcomes are changes in health-related quality of life, and the incremental cost-effectiveness ratio measured from baseline to follow-up at 12 months. Secondary outcomes are changes in mortality and physiological indicators (diastolic and systolic blood pressure, pulse, oxygen saturation, and weight). There has been a call for large-scale clinical trials with rigorous cost-effectiveness assessments in telehealthcare research. This study is meant to improve the international evidence base for the effectiveness and cost-effectiveness of telehealthcare to patients suffering from chronic obstructive pulmonary disease by implementing a large-scale pragmatic cluster-randomized clinical trial. Clinicaltrials.gov, http://NCT01984840, November 14, 2013.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4023034','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4023034"><span>Implementation of large-scale routine diagnostics using whole slide imaging in Sweden: Digital pathology experiences 2006-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Thorstenson, Sten; Molin, Jesper; Lundström, Claes</p> <p>2014-01-01</p> <p>Recent technological advances have improved the whole slide imaging (WSI) scanner quality and reduced the cost of storage, thereby enabling the deployment of digital pathology for routine diagnostics. In this paper we present the experiences from two Swedish sites having deployed routine large-scale WSI for primary review. At Kalmar County Hospital, the digitization process started in 2006 to reduce the time spent at the microscope in order to improve the ergonomics. Since 2008, more than 500,000 glass slides have been scanned in the routine operations of Kalmar and the neighboring Linköping University Hospital. All glass slides are digitally scanned yet they are also physically delivered to the consulting pathologist who can choose to review the slides on screen, in the microscope, or both. The digital operations include regular remote case reporting by a few hospital pathologists, as well as around 150 cases per week where primary review is outsourced to a private clinic. To investigate how the pathologists choose to use the digital slides, a web-based questionnaire was designed and sent out to the pathologists in Kalmar and Linköping. The responses showed that almost all pathologists think that ergonomics have improved and that image quality was sufficient for most histopathologic diagnostic work. 38 ± 28% of the cases were diagnosed digitally, but the survey also revealed that the pathologists commonly switch back and forth between digital and conventional microscopy within the same case. The fact that two full-scale digital systems have been implemented and that a large portion of the primary reporting is voluntarily performed digitally shows that large-scale digitization is possible today. PMID:24843825</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522234-tracing-magnetic-field-morphology-lupus-molecular-cloud','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522234-tracing-magnetic-field-morphology-lupus-molecular-cloud"><span>TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Franco, G. A. P.; Alves, F. O., E-mail: franco@fisica.ufmg.br, E-mail: falves@mpe.mpg.de</p> <p>2015-07-01</p> <p>Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infraredmore » patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CG....111..272X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CG....111..272X"><span>An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng</p> <p>2018-02-01</p> <p>De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24240651','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24240651"><span>Prospective cohort studies of newly marketed medications: using covariate data to inform the design of large-scale studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Franklin, Jessica M; Rassen, Jeremy A; Bartels, Dorothee B; Schneeweiss, Sebastian</p> <p>2014-01-01</p> <p>Nonrandomized safety and effectiveness studies are often initiated immediately after the approval of a new medication, but patients prescribed the new medication during this period may be substantially different from those receiving an existing comparator treatment. Restricting the study to comparable patients after data have been collected is inefficient in prospective studies with primary collection of outcomes. We discuss design and methods for evaluating covariate data to assess the comparability of treatment groups, identify patient subgroups that are not comparable, and decide when to transition to a large-scale comparative study. We demonstrate methods in an example study comparing Cox-2 inhibitors during their postmarketing period (1999-2005) with nonselective nonsteroidal anti-inflammatory drugs (NSAIDs). Graphical checks of propensity score distributions in each treatment group showed substantial problems with overlap in the initial cohorts. In the first half of 1999, >40% of patients were in the region of nonoverlap on the propensity score, and across the study period this fraction never dropped below 10% (the a priori decision threshold for transitioning to the large-scale study). After restricting to patients with no prior NSAID use, <1% of patients were in the region of nonoverlap, indicating that a large-scale study could be initiated in this subgroup and few patients would need to be trimmed from analysis. A sequential study design that uses pilot data to evaluate treatment selection can guide the efficient design of large-scale outcome studies with primary data collection by focusing on comparable patients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017979','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017979"><span>Friction in debris flows: inferences from large-scale flume experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Iverson, Richard M.; LaHusen, Richard G.; ,</p> <p>1993-01-01</p> <p>A recently constructed flume, 95 m long and 2 m wide, permits systematic experimentation with unsteady, nonuniform flows of poorly sorted geological debris. Preliminary experiments with water-saturated mixtures of sand and gravel show that they flow in a manner consistent with Coulomb frictional behavior. The Coulomb flow model of Savage and Hutter (1989, 1991), modified to include quasi-static pore-pressure effects, predicts flow-front velocities and flow depths reasonably well. Moreover, simple scaling analyses show that grain friction, rather than liquid viscosity or grain collisions, probably dominates shear resistance and momentum transport in the experimental flows. The same scaling indicates that grain friction is also important in many natural debris flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990070480&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsolar%2Bintensity%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990070480&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsolar%2Bintensity%2Bmeasurement"><span>Solar Wind Speed Structure in the Inner Corona at 3-12 Ro</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Woo, Richard</p> <p>1995-01-01</p> <p>Estimates of solar wind speed obtained by Armstrong et al. [1986] based on 1983 VLA multiple-station intensity scintillation measurements inside 12 R(sub o) have been correlated with the electron density structure observed in white-light coronagraph measurements. The observed large- scale and apparently systematic speed variations are found to depend primarily on changes in heliographic latitude and longitude, which leads to the first results on large-scale speed structure in the acceleration region of the solar wind. Over an equatorial hole, solar wind speed is relatively steady, with peak-to-peak variations of 50 km/s and an average of 230 km/s. In contrast, the near-Sun flow speed across the streamer belt shows regular large-scale variations in the range of 100-300 km/s. Based on four groups of data, the gradient is 36 km/s per degree in heliocentric coordinates (corresponding to a rise of 260 km/s over a spatial distance on the Sun of two arcmin) with a standard deviation of 2.4 km/s per degree. The lowest speeds most likely coincide with the stalks of coronal streamers observed in white-light measurements. The detection of significant wind shear over the streamer belt is consistent with in situ and scintillation measurements showing that the density spectrum has a power-law form characteristic of fully developed turbulence over a much broader range of scales than in neighboring regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10402E..0YE','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10402E..0YE"><span>Combining points and lines in rectifying satellite images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elaksher, Ahmed F.</p> <p>2017-09-01</p> <p>The quick advance in remote sensing technologies established the potential to gather accurate and reliable information about the Earth surface using high resolution satellite images. Remote sensing satellite images of less than one-meter pixel size are currently used in large-scale mapping. Rigorous photogrammetric equations are usually used to describe the relationship between the image coordinates and ground coordinates. These equations require the knowledge of the exterior and interior orientation parameters of the image that might not be available. On the other hand, the parallel projection transformation could be used to represent the mathematical relationship between the image-space and objectspace coordinate systems and provides the required accuracy for large-scale mapping using fewer ground control features. This article investigates the differences between point-based and line-based parallel projection transformation models in rectifying satellite images with different resolutions. The point-based parallel projection transformation model and its extended form are presented and the corresponding line-based forms are developed. Results showed that the RMS computed using the point- or line-based transformation models are equivalent and satisfy the requirement for large-scale mapping. The differences between the transformation parameters computed using the point- and line-based transformation models are insignificant. The results showed high correlation between the differences in the ground elevation and the RMS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28462586','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28462586"><span>Infraslow Electroencephalographic and Dynamic Resting State Network Activity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D</p> <p>2017-06-01</p> <p>A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180000961&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DChange%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180000961&hterms=Change+climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DChange%2Bclimate"><span>Weak Hydrological Sensitivity to Temperature Change over Land, Independent of Climate Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Samset, B. H.; Myhre, G.; Forster, P. M.; Hodnebrog, O.; Andrews, T.; Boucher, O.; Faluvegi, G.; Flaeschner, D.; Kasoar, M.; Kharin, V.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20180000961'); toggleEditAbsImage('author_20180000961_show'); toggleEditAbsImage('author_20180000961_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20180000961_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20180000961_hide"></p> <p>2018-01-01</p> <p>We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled global mean precipitation increases by 2-3% per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature-driven (slow) ocean HS of 3-5%/K, while the slow land HS is only 0-2%/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. We identify a particular need for model investigations and observational constraints on convective precipitation in the Arctic, and large-scale precipitation around the Equator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5510044','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5510044"><span>Infraslow Electroencephalographic and Dynamic Resting State Network Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grooms, Joshua K.; Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H.; Epstein, Charles M.</p> <p>2017-01-01</p> <p>Abstract A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies. PMID:28462586</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525601-argo-ybj-observation-large-scale-cosmic-ray-anisotropy-during-solar-minimum-between-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525601-argo-ybj-observation-large-scale-cosmic-ray-anisotropy-during-solar-minimum-between-cycles"><span>ARGO-YBJ OBSERVATION OF THE LARGE-SCALE COSMIC RAY ANISOTROPY DURING THE SOLAR MINIMUM BETWEEN CYCLES 23 AND 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre</p> <p>2015-08-10</p> <p>This paper reports on the measurement of the large-scale anisotropy in the distribution of cosmic-ray arrival directions using the data collected by the air shower detector ARGO-YBJ from 2008 January to 2009 December, during the minimum of solar activity between cycles 23 and 24. In this period, more than 2 × 10{sup 11} showers were recorded with energies between ∼1 and 30 TeV. The observed two-dimensional distribution of cosmic rays is characterized by two wide regions of excess and deficit, respectively, both of relative intensity ∼10{sup −3} with respect to a uniform flux, superimposed on smaller size structures. The harmonicmore » analysis shows that the large-scale cosmic-ray relative intensity as a function of R.A. can be described by the first and second terms of a Fouries series. The high event statistics allow the study of the energy dependence of the anistropy, showing that the amplitude increases with energy, with a maximum intensity at ∼10 TeV, and then decreases while the phase slowly shifts toward lower values of R.A. with increasing energy. The ARGO-YBJ data provide accurate observations over more than a decade of energy around this feature of the anisotropy spectrum.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000003044','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000003044"><span>Characterization of Sound Radiation by Unresolved Scales of Motion in Computational Aeroacoustics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubinstein, Robert; Zhou, Ye</p> <p>1999-01-01</p> <p>Evaluation of the sound sources in a high Reynolds number turbulent flow requires time-accurate resolution of an extremely large number of scales of motion. Direct numerical simulations will therefore remain infeasible for the forseeable future: although current large eddy simulation methods can resolve the largest scales of motion accurately the, they must leave some scales of motion unresolved. A priori studies show that acoustic power can be underestimated significantly if the contribution of these unresolved scales is simply neglected. In this paper, the problem of evaluating the sound radiation properties of the unresolved, subgrid-scale motions is approached in the spirit of the simplest subgrid stress models: the unresolved velocity field is treated as isotropic turbulence with statistical descriptors, evaluated from the resolved field. The theory of isotropic turbulence is applied to derive formulas for the total power and the power spectral density of the sound radiated by a filtered velocity field. These quantities are compared with the corresponding quantities for the unfiltered field for a range of filter widths and Reynolds numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984STIN...8521432W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984STIN...8521432W"><span>Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, R.</p> <p>1984-12-01</p> <p>The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12666913','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12666913"><span>Scale-dependent temporal variations in stream water geochemistry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B</p> <p>2003-03-01</p> <p>A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026327','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026327"><span>Scale-dependent temporal variations in stream water geochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.</p> <p>2003-01-01</p> <p>A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29448465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29448465"><span>Universal scaling and nonlinearity of aggregate price impact in financial markets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patzelt, Felix; Bouchaud, Jean-Philippe</p> <p>2018-01-01</p> <p>How and why stock prices move is a centuries-old question still not answered conclusively. More recently, attention shifted to higher frequencies, where trades are processed piecewise across different time scales. Here we reveal that price impact has a universal nonlinear shape for trades aggregated on any intraday scale. Its shape varies little across instruments, but drastically different master curves are obtained for order-volume and -sign impact. The scaling is largely determined by the relevant Hurst exponents. We further show that extreme order-flow imbalance is not associated with large returns. To the contrary, it is observed when the price is pinned to a particular level. Prices move only when there is sufficient balance in the local order flow. In fact, the probability that a trade changes the midprice falls to zero with increasing (absolute) order-sign bias along an arc-shaped curve for all intraday scales. Our findings challenge the widespread assumption of linear aggregate impact. They imply that market dynamics on all intraday time scales are shaped by correlations and bilateral adaptation in the flows of liquidity provision and taking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97a2304P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97a2304P"><span>Universal scaling and nonlinearity of aggregate price impact in financial markets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patzelt, Felix; Bouchaud, Jean-Philippe</p> <p>2018-01-01</p> <p>How and why stock prices move is a centuries-old question still not answered conclusively. More recently, attention shifted to higher frequencies, where trades are processed piecewise across different time scales. Here we reveal that price impact has a universal nonlinear shape for trades aggregated on any intraday scale. Its shape varies little across instruments, but drastically different master curves are obtained for order-volume and -sign impact. The scaling is largely determined by the relevant Hurst exponents. We further show that extreme order-flow imbalance is not associated with large returns. To the contrary, it is observed when the price is pinned to a particular level. Prices move only when there is sufficient balance in the local order flow. In fact, the probability that a trade changes the midprice falls to zero with increasing (absolute) order-sign bias along an arc-shaped curve for all intraday scales. Our findings challenge the widespread assumption of linear aggregate impact. They imply that market dynamics on all intraday time scales are shaped by correlations and bilateral adaptation in the flows of liquidity provision and taking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...81a2102L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...81a2102L"><span>Analysis on economic carrying capacity index of pig breeding in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leng, Bi-Bin; Liu, Jia-Ling; Xu, Yue-Feng</p> <p>2017-08-01</p> <p>In this paper, factor analysis method was employed to analyze and calculate the Gross Domestic Product (GDP) per capita in the last decade, the proportion of research and experiment development (R&D) expenditure equivalent to GDP, urban and rural residents’ pork consumption and explored the scale of Chinese pig breeding on economic carrying capacity index. The result showed that the growth of GDP had led to better techniques and higher field investment, and stronger support like science and technology from the government provided good conditions for large scale of pig breeding. Besides, the substantial increase of pork consumption between rural and urban residents has contributed to the pig breeding in large scale. As a result, the economic carrying capacity index in Chinese pig farming is on the rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.3346M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.3346M"><span>A dynamical systems approach to studying midlatitude weather extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide</p> <p>2017-04-01</p> <p>Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.5645B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.5645B"><span>Impact of spatially correlated pore-scale heterogeneity on drying porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran</p> <p>2017-07-01</p> <p>We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>