Sample records for show large temporal

  1. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    PubMed

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-07

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  2. The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae.

    PubMed

    McCune, Heather J; Danielson, Laura S; Alvino, Gina M; Collingwood, David; Delrow, Jeffrey J; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K

    2008-12-01

    Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.

  3. Modeling space-time correlations of velocity fluctuations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2018-07-01

    An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.

  4. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE PAGES

    Gao, Kai; Huang, Lianjie

    2017-08-31

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  5. An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Huang, Lianjie

    The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less

  6. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion.

    PubMed

    Teramoto, Wataru; Watanabe, Hiroshi; Umemura, Hiroyuki

    2008-01-01

    The perceived temporal order of external successive events does not always follow their physical temporal order. We examined the contribution of self-motion mechanisms in the perception of temporal order in the auditory modality. We measured perceptual biases in the judgment of the temporal order of two short sounds presented successively, while participants experienced visually induced self-motion (yaw-axis circular vection) elicited by viewing long-lasting large-field visual motion. In experiment 1, a pair of white-noise patterns was presented to participants at various stimulus-onset asynchronies through headphones, while they experienced visually induced self-motion. Perceived temporal order of auditory events was modulated by the direction of the visual motion (or self-motion). Specifically, the sound presented to the ear in the direction opposite to the visual motion (ie heading direction) was perceived prior to the sound presented to the ear in the same direction. Experiments 2A and 2B were designed to reduce the contributions of decisional and/or response processes. In experiment 2A, the directional cueing of the background (left or right) and the response dimension (high pitch or low pitch) were not spatially associated. In experiment 2B, participants were additionally asked to report which of the two sounds was perceived 'second'. Almost the same results as in experiment 1 were observed, suggesting that the change in temporal order of auditory events during large-field visual motion reflects a change in perceptual processing. Experiment 3 showed that the biases in the temporal-order judgments of auditory events were caused by concurrent actual self-motion with a rotatory chair. In experiment 4, using a small display, we showed that 'pure' long exposure to visual motion without the sensation of self-motion was not responsible for this phenomenon. These results are consistent with previous studies reporting a change in the perceived temporal order of visual or tactile events depending on the direction of self-motion. Hence, large-field induced (ie optic flow) self-motion can affect the temporal order of successive external events across various modalities.

  7. Multi-scale approaches for high-speed imaging and analysis of large neural populations

    PubMed Central

    Ahrens, Misha B.; Yuste, Rafael; Peterka, Darcy S.; Paninski, Liam

    2017-01-01

    Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to “zoom out” by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution. PMID:28771570

  8. Contribution of frontal and temporal lobe function to memory interference from divided attention at retrieval.

    PubMed

    Fernandes, Myra A; Davidson, Patrick S R; Glisky, Elizabeth L; Moscovitch, Morris

    2004-07-01

    On the basis of their scores on composite measures of frontal and temporal lobe function, derived from neuropsychological testing, seniors were divided preexperimentally into 4 groups. Participants studied a list of unrelated words under full attention and recalled them while concurrently performing an animacy decision task to words, an odd-digit identification task to numbers, or no distracting task. Large interference effects on memory were produced by the animacy but not by the odd-digit distracting task, and this pattern was not influenced by level of frontal or temporal lobe function. Results show associative retrieval is largely disrupted by competition for common representations, and it is not affected by a reduction in general processing resources, attentional capacity, or competition for memory structures in the temporal lobe.

  9. Retrograde amnesia in patients with diencephalic, temporal lobe or frontal lesions.

    PubMed

    Kopelman, M D; Stanhope, N; Kingsley, D

    1999-07-01

    Patients with focal diencephalic, temporal lobe, or frontal lobe lesions were examined on various measures of remote memory. Korsakoff patients showed a severe impairment with a characteristic 'temporal gradient', whereas two patients with focal diencephalic damage (and anterograde amnesia) were virtually unimpaired on remote memory measures. Patients with frontal lobe pathology were severely impaired in the recall of autobiographical incidents and famous news events. Patients with temporal lobe pathology showed severe impairment but a relatively 'flat' temporal gradient, largely attributable to herpes encephalitis patients. From recognition and cued recall tasks, it is argued that there is an important retrieval component to the remote memory deficit across all the lesion groups. In general, the pattern of performance by the frontal lobe and temporal lobe groups was closely similar, and there was no evidence of any major access/storage difference between them. However, laterality comparisons across these groups indicated that the right temporal and frontal lobe regions may make a greater contribution to the retrieval of past episodic (incident and event) memories, whereas the left temporal region is more closely involved in the lexical-semantic labelling of remote memories.

  10. Video Animation of Ocean Topography From TOPEX/POSEIDON

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Leconte, Denis; Pihos, Greg; Davidson, Roger; Kruizinga, Gerhard; Tapley, Byron

    1993-01-01

    Three video loops showing various aspects of the dynamic ocean topography obtained from the TOPEX/POSEIDON radar altimetry data will be presented. The first shows the temporal change of the global ocean topography during the first year of the mission. The time-averaged mean is removed to reveal the temporal variabilities. Temporal interpolation is performed to create daily maps for the animation. A spatial smoothing is also performed to retain only the large-sale features. Gyre-scale seasonal changes are the main features. The second shows the temporal evolution of the Gulf Stream. The high resolution gravimetric geoid of Rapp is used to obtain the absolute ocean topography. Simulated drifters are used to visualize the flow pattern of the current. Meanders and rings of the current are the main features. The third is an animation of the global ocean topography on a spherical earth. The JGM-2 geoid is used to obtain the ocean topography...

  11. Indigenous and Invasive Fruit Fly Diversity along an Altitudinal Transect in Eastern Central Tanzania

    PubMed Central

    Geurts, Katrien; Mwatawala, Maulid; De Meyer, Marc

    2012-01-01

    The relative abundance of indigenous and invasive frugivorous fruit flies (Diptera: Tephritidae) was evaluated spatially and temporally along an altitudinal transect between 581–1650 m in the Uluguru Mountains near Morogoro, Tanzania. The polyphagous invasive fruit fly Bactrocera invadens Drew, Tsuruta, and White and the indigenous fruit fly Ceratitis rosa Karsch show a similar temporal pattern, but are largely separated spatially, with B. invadens being abundant at lower elevation and C. rosa predominant at higher elevation. The polyphagous indigenous C. cosyra (Walker) coincides with B. invadens but shows an inverse temporal pattern. The cucurbit feeders B. cucurbitae (Coquillett) and Dacus bivittatus (Bigot) show a similar temporal pattern, but the former is restricted to lower elevations. Host availability and climatic differences seem to be the determining factors to explain the differences in occurrence and abundance in time and space. PMID:22935017

  12. Large-scale vegetation responses to terrestrial moisture storage changes

    NASA Astrophysics Data System (ADS)

    Andrew, Robert L.; Guan, Huade; Batelaan, Okke

    2017-09-01

    The normalised difference vegetation index (NDVI) is a useful tool for studying vegetation activity and ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of the NDVI across Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different temporal frequencies using a discrete wavelet transform and analysed against time series of the NDVI anomalies in a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, the NDVI appears to be more sensitive to interannual changes in water storage than shorter changes, though grassland-dominated areas are sensitive to higher-frequencies of water-storage changes. Different types of vegetation, defined by areas of land use type, show distinct differences in how they respond to the changes in water storage, which is generally consistent with our physical understanding. This unique method provides useful insight into how the NDVI is affected by changes in water storage at different temporal scales across land use types.

  13. Effects of Temporal Framing on Response to Antismoking Messages: The Mediating Role of Perceived Relevance.

    PubMed

    Zhao, Xiaoquan; Peterson, Emily

    2017-01-01

    This study tested the effect of temporal framing on young adult smokers' response to antismoking communication messages. In two studies using largely identical designs, young adult smokers recruited from a large university (n = 52) and Amazon Mechanical Turk (n = 210) were exposed to either no messages or messages featuring different temporal frames. Analysis of the combined data (N = 262) showed that framing the health consequences of smoking in a proximal (vs. distal) time frame led to greater perceived message relevance, less use of heuristic processing, greater use of systematic processing, greater positive affect, and more intense fear. Mediation analysis showed that perceived relevance was a significant mediator of the effect of temporal framing on message processing and emotional responses. In separate analysis of the Amazon Mechanical Turk data, the proximal frame also showed a consistent pattern of stronger impact on behavioral intentions compared to the distal frame, but the difference was only significant on the measure of intending to try to quit. Overall, findings of this study suggest that using proximal (vs. distal) frames may enhance receptivity to antismoking messages among young adult smokers, although the behavioral impact of this framing strategy still awaits further research.

  14. Spatio-temporal coordination among functional residues in protein

    NASA Astrophysics Data System (ADS)

    Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.

    2017-01-01

    The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.

  15. Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell W

    This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositionsmore » which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.« less

  16. Temporal discounting across three psychiatric disorders: Anorexia nervosa, obsessive compulsive disorder, and social anxiety disorder.

    PubMed

    Steinglass, Joanna E; Lempert, Karolina M; Choo, Tse-Hwei; Kimeldorf, Marcia B; Wall, Melanie; Walsh, B Timothy; Fyer, Abby J; Schneier, Franklin R; Simpson, H Blair

    2017-05-01

    Temporal discounting refers to the tendency for rewards to lose value as the expected delay to receipt increases. Individuals with anorexia nervosa (AN) have been found to show reduced temporal discounting rates, indicating a greater preference for delayed rewards compared to healthy peers. Obsessive-compulsive disorder (OCD) and social anxiety disorder (SAD) commonly co-occur with AN, and anxiety has been related to development and prognosis of AN. We examined whether reduced temporal discounting is present across these potentially related disorders, and explored the relationship between temporal discounting and anxiety transdiagnostically. One hundred ninety six individuals (75 healthy controls (HC); 50 OCD; 27 AN; 44 SAD) completed two temporal discounting tasks in which they chose between smaller-sooner and larger-later monetary rewards. Two measures of discounting-discount rate and discount factor-were compared between diagnostic groups, and associations with anxious traits were examined. Individuals with AN showed decreased temporal discounting compared to HC. OCD and SAD groups did not differ significantly from HC. Across the sample, anxiety was associated with decreased discounting; more anxious individuals showed a greater preference for delayed reward. We replicated the findings that individuals with AN show an increased preference for delayed reward relative to HC and that individuals with OCD do not differ from HC. We also showed that individuals with SAD do not differ from HC in discounting. Across this large sample, two measures of anxious temperament were associated with temporal discounting. These data raise new questions about the relationship between this dimensional trait and psychopathology. © 2016 Wiley Periodicals, Inc.

  17. Temporal discounting across three psychiatric disorders: Anorexia nervosa, obsessive compulsive disorder, and social anxiety disorder

    PubMed Central

    Steinglass, Joanna E.; Lempert, Karolina M.; Choo, Tse-Hwei; Kimeldorf, Marcia B.; Wall, Melanie; Walsh, B. Timothy; Fyer, Abby J.; Schneier, Franklin R.; Simpson, H. Blair

    2018-01-01

    Background Temporal discounting refers to the tendency for rewards to lose value as the expected delay to receipt increases. Individuals with anorexia nervosa (AN) have been found to show reduced temporal discounting rates, indicating a greater preference for delayed rewards compared to healthy peers. Obsessive–compulsive disorder (OCD) and social anxiety disorder (SAD) commonly co-occur with AN, and anxiety has been related to development and prognosis of AN. We examined whether reduced temporal discounting is present across these potentially related disorders, and explored the relationship between temporal discounting and anxiety trans-diagnostically. Methods One hundred ninety six individuals (75 healthy controls (HC); 50 OCD; 27 AN; 44 SAD) completed two temporal discounting tasks in which they chose between smaller-sooner and larger-later monetary rewards. Two measures of discounting—discount rate and discount factor—were compared between diagnostic groups, and associations with anxious traits were examined. Results Individuals with AN showed decreased temporal discounting compared to HC. OCD and SAD groups did not differ significantly from HC. Across the sample, anxiety was associated with decreased discounting; more anxious individuals showed a greater preference for delayed reward. Conclusions We replicated the findings that individuals with AN show an increased preference for delayed reward relative to HC and that individuals with OCD do not differ from HC. We also showed that individuals with SAD do not differ from HC in discounting. Across this large sample, two measures of anxious temperament were associated with temporal discounting. These data raise new questions about the relationship between this dimensional trait and psychopathology. PMID:28009473

  18. Spatio-temporal Change Patterns of Tropical Forests from 2000 to 2014 Using MOD09A1 Dataset

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Xiao, X.; Dong, J.

    2016-12-01

    Large-scale deforestation and forest degradation in the tropical region have resulted in extensive carbon emissions and biodiversity loss. However, restricted by the availability of good-quality observations, large uncertainty exists in mapping the spatial distribution of forests and their spatio-temporal changes. In this study, we proposed a pixel- and phenology-based algorithm to identify and map annual tropical forests from 2000 to 2014, using the 8-day, 500-m MOD09A1 (v005) product, under the support of Google cloud computing (Google Earth Engine). A temporal filter was applied to reduce the random noises and to identify the spatio-temporal changes of forests. We then built up a confusion matrix and assessed the accuracy of the annual forest maps based on the ground reference interpreted from high spatial resolution images in Google Earth. The resultant forest maps showed the consistent forest/non-forest, forest loss, and forest gain in the pan-tropical zone during 2000 - 2014. The proposed algorithm showed the potential for tropical forest mapping and the resultant forest maps are important for the estimation of carbon emission and biodiversity loss.

  19. Effect of Temporal Pattern of Radiation in Intensity Modulated Radiotherapy on Cell Cycle Progression and Apoptosis of ACHN Renal Cell Carcinoma Cell Line.

    PubMed

    Khorramizadeh, Maryam; Saberi, Alihossein; Tahmasebi-Birgani, Mohammadjavad; Shokrani, Parvaneh; Amouhedari, Alireza

    The existence of a hypersensitive radiation response to doses below 1 Gy is well established for many normal and tumor cell lines. The aim of this study was to ascertain the impact of temporal pattern modeling IMRT on survival, cell cycle and apoptosis of human RCC cell line ACHN, so as to provide radiobiological basis for optimizing IMRT plans for this disease. The ACHN renal cell carcinoma cell line was used in this study. Impact of the triangle, V, small-large or large-small temporal patterns in the presence and absence of threshold dose of hyper-radiosensitivity at the beginning of patterns were studied using soft agarclonogenic assays. Cell cycle and apoptosis analysis were performed after irradiation with the temporal patterns. For triangle and small-large dose sequences, survival fraction was significantly reduced after irradiation with or without threshold dose of hyper-radiosensitivity at the beginning of the patterns. In all of the dose patterns, cell cycle distributions and the percentage of apoptotic cells at 24 h after irradiation with or without priming dose of hyper-radiosensitivity showed no significant difference. However, apoptotic cells were increased when beams with the smallest dose applied at the beginning of dose pattern like triangle and small-large dose sequence. These data show that the biologic effects of single fraction may differ in clinical settings depending on the size and sequence of the partial fractions. Doses at the beginning but not at the end of sequences may change cytotoxicity effects of radiation.

  20. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.

    PubMed

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-11-05

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.

  1. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences

    PubMed Central

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-01-01

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424

  2. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  3. Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.

    PubMed

    Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G

    2017-02-01

    Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The use of spatio-temporal correlation to forecast critical transitions

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek; Bierkens, Marc F. P.

    2010-05-01

    Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in spatio-temporal autocorrelation and variance are consistent predictors of a critical transition, even under the condition of a poorly defined system. Second, we perform data assimilation experiments using an artificial exhaustive data set generated by one realization of the model. To mimic real-world sampling, an observational data set is created from this exhaustive data set. This is done by sampling on a regular spatio-temporal grid, supplemented by sampling locations at a short distance. Spatial and temporal autocorrelation in this observational data set is calculated for different spatial and temporal separation (lag) distances. To assign appropriate weights to observations (here, autocorrelation values and variance) in the Particle Filter, the covariance matrix of the error in these observations is required. This covariance matrix is estimated using Monte Carlo sampling, selecting a different random position of the sampling network relative to the exhaustive data set for each realization. At each update moment in the Particle Filter, observed autocorrelation values are assimilated into the model and the state of the model is updated. Using this approach, it is shown that the use of autocorrelation reduces the uncertainty in the forecasted timing of a critical transition compared to runs without data assimilation. The performance of the use of spatial autocorrelation versus temporal autocorrelation depends on the timing and number of observational data. This study is restricted to a single model only. However, it is becoming increasingly clear that spatio-temporal autocorrelation and variance can be used as early warning signals for a large number of systems. Thus, it is expected that spatio-temporal autocorrelation and variance are valuable in data assimilation frameworks in a large number of dynamical systems.

  5. Time Allocation in Social Networks: Correlation Between Social Structure and Human Communication Dynamics

    NASA Astrophysics Data System (ADS)

    Miritello, Giovanna; Lara, Rubén; Moro, Esteban

    Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.

  6. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex

    PubMed Central

    Chaudhuri, Rishidev; Knoblauch, Kenneth; Gariel, Marie-Alice; Kennedy, Henry; Wang, Xiao-Jing

    2015-01-01

    We developed a large-scale dynamical model of the macaque neocortex, which is based on recently acquired directed- and weighted-connectivity data from tract-tracing experiments, and which incorporates heterogeneity across areas. A hierarchy of timescales naturally emerges from this system: sensory areas show brief, transient responses to input (appropriate for sensory processing), whereas association areas integrate inputs over time and exhibit persistent activity (suitable for decision-making and working memory). The model displays multiple temporal hierarchies, as evidenced by contrasting responses to visual versus somatosensory stimulation. Moreover, slower prefrontal and temporal areas have a disproportionate impact on global brain dynamics. These findings establish a circuit mechanism for “temporal receptive windows” that are progressively enlarged along the cortical hierarchy, suggest an extension of time integration in decision-making from local to large circuits, and should prompt a re-evaluation of the analysis of functional connectivity (measured by fMRI or EEG/MEG) by taking into account inter-areal heterogeneity. PMID:26439530

  7. Analysis in temporal regime of dispersive invisible structures designed from transformation optics

    NASA Astrophysics Data System (ADS)

    Gralak, B.; Arismendi, G.; Avril, B.; Diatta, A.; Guenneau, S.

    2016-03-01

    A simple invisible structure made of two anisotropic homogeneous layers is analyzed theoretically in temporal regime. The frequency dispersion is introduced and analytic expression of the transient part of the field is derived for large times when the structure is illuminated by a causal excitation. This expression shows that the limiting amplitude principle applies with transient fields decaying as the power -3 /4 of the time. The quality of the cloak is then reduced at short times and remains preserved at large times. The one-dimensional theoretical analysis is supplemented with full-wave numerical simulations in two-dimensional situations which confirm the effect of dispersion.

  8. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  9. Space Technology 5 Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.

    2009-01-01

    Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  10. Multiplicative Forests for Continuous-Time Processes

    PubMed Central

    Weiss, Jeremy C.; Natarajan, Sriraam; Page, David

    2013-01-01

    Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability. PMID:25284967

  11. Multiplicative Forests for Continuous-Time Processes.

    PubMed

    Weiss, Jeremy C; Natarajan, Sriraam; Page, David

    2012-01-01

    Learning temporal dependencies between variables over continuous time is an important and challenging task. Continuous-time Bayesian networks effectively model such processes but are limited by the number of conditional intensity matrices, which grows exponentially in the number of parents per variable. We develop a partition-based representation using regression trees and forests whose parameter spaces grow linearly in the number of node splits. Using a multiplicative assumption we show how to update the forest likelihood in closed form, producing efficient model updates. Our results show multiplicative forests can be learned from few temporal trajectories with large gains in performance and scalability.

  12. Discovery of spatio-temporal patterns from location-based social networks

    NASA Astrophysics Data System (ADS)

    Béjar, J.; Álvarez, S.; García, D.; Gómez, I.; Oliva, L.; Tejeda, A.; Vázquez-Salceda, J.

    2016-03-01

    Location-based social networks (LBSNs) such as Twitter or Instagram are a good source for user spatio-temporal behaviour. These networks collect data from users in such a way that they can be seen as a set of collective and distributed sensors of a geographical area. A low rate sampling of user's location information can be obtained during large intervals of time that can be used to discover complex patterns, including mobility profiles, points of interest or unusual events. These patterns can be used as the elements of a knowledge base for different applications in different domains such as mobility route planning, touristic recommendation systems or city planning. The aim of this paper is twofold, first to analyse the frequent spatio-temporal patterns that users share when living and visiting a city. This behaviour is studied by means of frequent itemsets algorithms in order to establish some associations among visits that can be interpreted as interesting routes or spatio-temporal connections. Second, to analyse how the spatio-temporal behaviour of a large number of users can be segmented in different profiles. These behavioural profiles are obtained by means of clustering algorithms that show the different patterns of behaviour of visitors and citizens. The data analysed were obtained from the public data feeds of Twitter and Instagram within an area surrounding the cities of Barcelona and Milan for a period of several months. The analysis of these data shows that these kinds of algorithms can be successfully applied to data from any city (or general area) to discover useful patterns that can be interpreted on terms of singular places and areas and their temporal relationships.

  13. Impact of different climatic flows on typhoon tracks

    NASA Astrophysics Data System (ADS)

    Qian, Wei-hong; Huang, Jing

    2018-04-01

    A tropical cyclone (TC) vortex is considered to be embedded in and steered by a large-scale environmental flow. The environmental flow can be decomposed into two parts: temporal climatic flow and anomaly. The former is defined according to the calendar climatology with a diurnal cycle and a seasonal cycle. Thus, the temporal climatic flow of the atmosphere, which can be estimated using reanalysis data, varies with regions, altitudes, and hours. The impact of different climatic flows on TC tracks in the Northwest Pacific is examined using a simple generalized beta-advection model. Results show that the predicted tracks of two TC cases have large deviations from their best tracks in the following 1-2 days if the temporal climatic wind is replaced by other hourly climatic winds on the same calendar day or by a several-day-mean climatic wind. The track deviation is more significant when the climatic wind difference is larger than 2 m s-1. This experiment reconfirms that a TC track is influenced by temporal climatic flow and interaction with other disturbances in the vicinity.

  14. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume.

    PubMed

    Hamonts, Kelly; Kuhn, Thomas; Vos, Johan; Maesen, Miranda; Kalka, Harald; Smidt, Hauke; Springael, Dirk; Meckenstock, Rainer U; Dejonghe, Winnie

    2012-04-15

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. Biotransformation, sorption and dilution of CAHs in the impacted river sediments have been reported to reduce discharge, but the effect of temporal variations in environmental conditions on the occurrence and extent of those processes in river sediments is largely unknown. We monitored the reduction of CAH discharge into the Zenne River during a 21-month period. Despite a relatively stable influx of CAHs from the groundwater, the total reduction in CAH discharge from 120 to 20 cm depth in the river sediments, on average 74 ± 21%, showed moderate to large temporal variations, depending on the riverbed location. High organic carbon and anaerobic conditions in the river sediments allowed microbial reductive dechlorination of both chlorinated ethenes and chlorinated ethanes. δ(13)C values of the CAHs showed that this biotransformation was remarkably stable over time, despite fluctuating pore water temperatures. Daughter products of the CAHs, however, were not detected in stoichiometric amounts and suggested the co-occurrence of a physical process reducing the concentrations of CAHs in the riverbed. This process was the main process causing temporal variations in natural attenuation of the CAHs and was most likely dilution by surface water-mixing. However, higher spatial resolution monitoring of flow transients in the riverbed is required to prove dilution contributions due to dynamic surface water-groundwater flow exchanges. δ(13)C values and a site-specific isotope enrichment factor for reductive dechlorination of the main groundwater pollutant vinyl chloride (VC) allowed assessment of changes over time in the extent of both biotransformation and dilution of VC for different scenarios in which those processes either occurred consecutively or simultaneously between 120 and 20 cm depth in the riverbed. The extent of reductive dechlorination of VC ranged from 27 to 89% and differed spatially but was remarkably stable over time, whereas the extent of VC reduction by dilution ranged from 6 to 94%, showed large temporal variations, and was often the main process contributing to the reduction of VC discharge into the river. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Temporal modulation transfer functions in auditory receptor fibres of the locust ( Locusta migratoria L.).

    PubMed

    Prinz, P; Ronacher, B

    2002-08-01

    The temporal resolution of auditory receptors of locusts was investigated by applying noise stimuli with sinusoidal amplitude modulations and by computing temporal modulation transfer functions. These transfer functions showed mostly bandpass characteristics, which are rarely found in other species at the level of receptors. From the upper cut-off frequencies of the modulation transfer functions the minimum integration times were calculated. Minimum integration times showed no significant correlation to the receptor spike rates but depended strongly on the body temperature. At 20 degrees C the average minimum integration time was 1.7 ms, dropping to 0.95 ms at 30 degrees C. The values found in this study correspond well to the range of minimum integration times found in birds and mammals. Gap detection is another standard paradigm to investigate temporal resolution. In locusts and other grasshoppers application of this paradigm yielded values of the minimum detectable gap widths that are approximately twice as large than the minimum integration times reported here.

  16. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Bayrak, Erdem; Yılmaz, Şeyda; Bayrak, Yusuf

    2017-05-01

    The temporal and spatial variations of Gutenberg-Richter parameter (b-value) and fractal dimension (DC) during the period 1900-2010 in Western Anatolia was investigated. The study area is divided into 15 different source zones based on their tectonic and seismotectonic regimes. We calculated the temporal variation of b and DC values in each region using Zmap. The temporal variation of these parameters for the prediction of major earthquakes was calculated. The spatial distribution of these parameters is related to the stress levels of the faults. We observed that b and DC values change before the major earthquakes in the 15 seismic regions. To evaluate the spatial distribution of b and DC values, 0.50° × 0.50° grid interval were used. The b-values smaller than 0.70 are related to the Aegean Arc and Eskisehir Fault. The highest values are related to Sultandağı and Sandıklı Faults. Fractal correlation dimension varies from 1.65 to 2.60, which shows that the study area has a higher DC value. The lowest DC values are related to the joining area between Aegean and Cyprus arcs, Burdur-Fethiye fault zone. Some have concluded that b-values drop instantly before large shocks. Others suggested that temporally stable low b value zones identify future large earthquake locations. The results reveal that large earthquakes occur when b decreases and DC increases, suggesting that variation of b and DC can be used as an earthquake precursor. Mapping of b and DC values provide information about the state of stress in the region, i.e. lower b and higher DC values associated with epicentral areas of large earthquakes.

  17. Controlling Laser Plasma Instabilities Using Temporal Bandwidth

    NASA Astrophysics Data System (ADS)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2016-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under conditions relevant to current and future experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth (where the inverse bandwidth is comparable with the linear growth time), the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using beam smoothing techniques such as ISI). We will quantify these effects and investigate higher dimensional effects such as laser speckles. This work is supported by DOE and NRL.

  18. Time drawings: Spatial representation of temporal concepts.

    PubMed

    Leone, María Juliana; Salles, Alejo; Pulver, Alejandro; Golombek, Diego Andrés; Sigman, Mariano

    2018-03-01

    Time representation is a fundamental property of human cognition. Ample evidence shows that time (and numbers) are represented in space. However, how the conceptual mapping varies across individuals, scales, and temporal structures remains largely unknown. To investigate this issue, we conducted a large online study consisting in five experiments that addressed different time scales and topology: Zones of time, Seasons, Days of the week, Parts of the day and Timeline. Participants were asked to map different kinds of time events to a location in space and to determine their size and color. Results showed that time is organized in space in a hierarchical progression: some features appear to be universal (i.e. selection order), others are shaped by how time is organized in distinct cultures (i.e. location order) and, finally, some aspects vary depending on individual features such as age, gender, and chronotype (i.e. size and color). Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.

    Abstract: Urban heat island (UHI), a major concern worldwide, affects human health and energy use. With current and anticipated rapid urbanization, improved understanding of the response of UHI to urbanization is important for impact analysis and developing effective adaptation measures and mitigation strategies. Current studies mainly focus on a single or a few big cities and knowledge on the response of UHI to urbanization for large areas is very limited. Modelling UHI caused by urbanization for large areas that encompass multiple metropolitans remains a major scientific challenge/opportunity. As a major indicator of urbanization, urban area size lends itself well formore » representation in prognostic models to investigate the impacts of urbanization on UHI and the related socioeconomic and environmental effects. However, we have little knowledge on how UHI responds to the increase of urban area size, namely urban expansion, and its spatial and temporal variation over large areas. In this study, we investigated the relationship between surface UHI (SUHI) and urban area size in the climate and ecological context, and its spatial and temporal variations, based on a panel analysis of about 5000 urban areas of 10 km2 or larger, in the conterminous U.S. We found statistically significant positive relationship between SUHI and urban area size, and doubling the urban area size led to a SUHI increase of higher than 0.7 °C. The response of SUHI to the increase of urban area size shows spatial and temporal variations, with stronger SUHI increase in the Northern region of U.S., and during daytime and summer. Urban area size alone can explain as much as 87% of the variance of SUHI among cities studied, but with large spatial and temporal variations. Urban area size shows higher association with SUHI in regions where the thermal characteristics of land cover surrounding the urban are more homogeneous, such as in Eastern U.S., and in the summer months. This study provides a practical approach for large-scale assessment and modeling of the impact of urbanization on SUHI, both spatially and temporally, for developing mitigation/adaptation measures, especially in anticipated warmer climate conditions for the rest of this century.« less

  20. A real-world size organization of object responses in occipito-temporal cortex

    PubMed Central

    Konkle, Talia; Oliva, Aude

    2012-01-01

    SUMMARY While there are selective regions of occipito-temporal cortex that respond to faces, letters, and bodies, the large-scale neural organization of most object categories remains unknown. Here we find that object representations can be differentiated along the ventral temporal cortex by their real-world size. In a functional neuroimaging experiment, observers were shown pictures of big and small real-world objects (e.g. table, bathtub; paperclip, cup), presented at the same retinal size. We observed a consistent medial-to-lateral organization of big and small object preferences in the ventral temporal cortex, mirrored along the lateral surface. Regions in the lateral-occipital, infero-temporal, and parahippocampal cortices showed strong peaks of differential real-world size selectivity, and maintained these preferences over changes in retinal size and in mental imagery. These data demonstrate that the real-world size of objects can provide insight into the spatial topography of object representation. PMID:22726840

  1. Comparison of temporal trends in VOCs as measured with PDB samplers and low-flow sampling methods

    USGS Publications Warehouse

    Harte, P.T.

    2002-01-01

    Analysis of temporal trends in tetrachloroethylene (PCE) concentration determined by two sample techniques showed that passive diffusion bag (pdb) samplers adequately sample the large variation in PCE concentrations at the site. The slopes of the temporal trends in concentrations were comparable between the two techniques, and the pdb sample concentration generally reflected the instantaneous concentration sampled by the low-flow technique. Thus, the pdb samplers provided an appropriate sampling technique for PCE at these wells. One or two wells did not make the case for widespread application of pdb samples at all sites. However, application of pdb samples in some circumstances was appropriate for evaluating temporal and spatial variations in VOC concentrations, thus, should be considered as a useful tool in hydrogeology.

  2. Impact of playing American professional football on long-term brain function.

    PubMed

    Amen, Daniel G; Newberg, Andrew; Thatcher, Robert; Jin, Yi; Wu, Joseph; Keator, David; Willeumier, Kristen

    2011-01-01

    The authors recruited 100 active and former National Football League players, representing 27 teams and all positions. Players underwent a clinical history, brain SPECT imaging, qEEG, and multiple neuropsychological measures, including MicroCog. Relative to a healthy-comparison group, players showed global decreased perfusion, especially in the prefrontal, temporal, parietal, and occipital lobes, and cerebellar regions. Quantitative EEG findings were consistent, showing elevated slow waves in the frontal and temporal regions. Significant decreases from normal values were found in most neuropsychological tests. This is the first large-scale brain-imaging study to demonstrate significant differences consistent with a chronic brain trauma pattern in professional football players.

  3. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient

    PubMed Central

    Karanth, K. Ullas; Srivathsa, Arjun; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N. Samba

    2017-01-01

    Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole (Cuon alpinus), leopard (Panthera pardus) and tiger (Panthera tigris) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. PMID:28179511

  4. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient.

    PubMed

    Karanth, K Ullas; Srivathsa, Arjun; Vasudev, Divya; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N Samba

    2017-02-08

    Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole ( Cuon alpinus ), leopard ( Panthera pardus ) and tiger ( Panthera tigris ) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. © 2017 The Author(s).

  5. Attempting to physically explain space-time correlation of extremes

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Gailhard, Joel

    2010-05-01

    Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.

  6. High-throughput analysis of spatio-temporal dynamics in Dictyostelium

    PubMed Central

    Sawai, Satoshi; Guan, Xiao-Juan; Kuspa, Adam; Cox, Edward C

    2007-01-01

    We demonstrate a time-lapse video approach that allows rapid examination of the spatio-temporal dynamics of Dictyostelium cell populations. Quantitative information was gathered by sampling life histories of more than 2,000 mutant clones from a large mutagenesis collection. Approximately 4% of the clonal lines showed a mutant phenotype at one stage. Many of these could be ordered by clustering into functional groups. The dataset allows one to search and retrieve movies on a gene-by-gene and phenotype-by-phenotype basis. PMID:17659086

  7. Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes

    NASA Astrophysics Data System (ADS)

    Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu

    2018-02-01

    Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.

  8. Analysis of temporal-longitudinal-latitudinal characteristics in the global ionosphere based on tensor rank-1 decomposition

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.

  9. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan.

    PubMed

    Badgley, Brian D; Ferguson, John; Vanden Heuvel, Amy; Kleinheinz, Gregory T; McDermott, Colleen M; Sandrin, Todd R; Kinzelman, Julie; Junion, Emily A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan

    USGS Publications Warehouse

    Badgley, B.D.; Ferguson, J.; Heuvel, A.V.; Kleinheinz, G.T.; McDermott, C.M.; Sandrin, T.R.; Kinzelman, J.; Junion, E.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.

  11. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity

    PubMed Central

    2014-01-01

    Background Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist. PMID:24447386

  12. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity.

    PubMed

    Kesäniemi, Jenni E; Mustonen, Marina; Boström, Christoffer; Hansen, Benni W; Knott, K Emily

    2014-01-22

    Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist.

  13. Population Vulnerability to Biannual Cholera Outbreaks and Associated Macro-Scale Drivers in the Bengal Delta

    PubMed Central

    Akanda, Ali Shafqat; Jutla, Antarpreet S.; Gute, David M.; Sack, R. Bradley; Alam, Munirul; Huq, Anwar; Colwell, Rita R.; Islam, Shafiqul

    2013-01-01

    The highly populated floodplains of the Bengal Delta have a long history of endemic and epidemic cholera outbreaks, both coastal and inland. Previous studies have not addressed the spatio-temporal dynamics of population vulnerability related to the influence of underlying large-scale processes. We analyzed spatial and temporal variability of cholera incidence across six surveillance sites in the Bengal Delta and their association with regional hydroclimatic and environmental drivers. More specifically, we use salinity and flood inundation modeling across the vulnerable districts of Bangladesh to test earlier proposed hypotheses on the role of these environmental variables. Our results show strong influence of seasonal and interannual variability in estuarine salinity on spring outbreaks and inland flooding on fall outbreaks. A large segment of the population in the Bengal Delta floodplains remain vulnerable to these biannual cholera transmission mechanisms that provide ecologic and environmental conditions for outbreaks over large geographic regions. PMID:24019441

  14. Multi-Temporal Land Cover Classification with Long Short-Term Memory Neural Networks

    NASA Astrophysics Data System (ADS)

    Rußwurm, M.; Körner, M.

    2017-05-01

    Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM) neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN), with a classical non-temporal convolutional neural network (CNN) model and an additional support vector machine (SVM) baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.

  15. Productivity in the barents sea--response to recent climate variability.

    PubMed

    Dalpadado, Padmini; Arrigo, Kevin R; Hjøllo, Solfrid S; Rey, Francisco; Ingvaldsen, Randi B; Sperfeld, Erik; van Dijken, Gert L; Stige, Leif C; Olsen, Are; Ottersen, Geir

    2014-01-01

    The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.

  16. Productivity in the Barents Sea - Response to Recent Climate Variability

    PubMed Central

    Dalpadado, Padmini; Arrigo, Kevin R.; Hjøllo, Solfrid S.; Rey, Francisco; Ingvaldsen, Randi B.; Sperfeld, Erik; van Dijken, Gert L.; Stige, Leif C.; Olsen, Are; Ottersen, Geir

    2014-01-01

    The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region. PMID:24788513

  17. Temporal and spatial intermittencies within Newtonian turbulence

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anubhav; Graham, Michael

    2015-11-01

    Direct numerical simulations of a pressure driven turbulent flow are performed in a large rectangular channel. Intermittent high- and low-drag regimes within turbulence that have earlier been found to exist temporally in minimal channels have been observed both spatially and temporally in full-size turbulent flows. These intermittent regimes, namely, ''active'' and ''hibernating'' turbulence, display very different structural and statistical features. We adopt a very simple sampling technique to identify these intermittent intervals, both temporally and spatially, and present differences between them in terms of simple quantities like mean-velocity, wall-shear stress and flow structures. By conditionally sampling of the low wall-shear stress events in particular, we show that the Maximum Drag Reduction (MDR) velocity profile, that occurs in viscoelastic flows, can also be approached in a Newtonian-fluid flow in the absence of any additives. This suggests that the properties of polymer drag reduction are inherent to all flows and their occurrence is just enhanced by the addition of polymers. We also show how the intermittencies within turbulence vary with Reynolds number. The work was supported by AFOSR grant FA9550-15-1-0062.

  18. Linking plant functional trait plasticity and the large increase in forest water use efficiency

    NASA Astrophysics Data System (ADS)

    Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Gough, Christopher M.; Fatichi, Simone

    2017-09-01

    Elevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux observations from Northern Hemisphere forests showed a large increase in inherent water use efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered by environmental change. We found that IWUE increased by 1.3% yr-1, which is less than previously reported but still larger than theoretical expectations. Numerical simulations with the Tethys-Chloris ecosystem model using temporally static plant functional traits cannot explain this increase. Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results show that trends in plant functional traits, equal to 1.0% yr-1, can explain the observed IWUE trends. Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, and energy fluxes with profound implications for both the monitoring of temporal changes in plant functional traits and their representation in Earth system models.

  19. Comparison of HSPF and PRMS model simulated flows using different temporal and spatial scales in the Black Hills, South Dakota

    USGS Publications Warehouse

    Chalise, D. R.; Haj, Adel E.; Fontaine, T.A.

    2018-01-01

    The hydrological simulation program Fortran (HSPF) [Hydrological Simulation Program Fortran version 12.2 (Computer software). USEPA, Washington, DC] and the precipitation runoff modeling system (PRMS) [Precipitation Runoff Modeling System version 4.0 (Computer software). USGS, Reston, VA] models are semidistributed, deterministic hydrological tools for simulating the impacts of precipitation, land use, and climate on basin hydrology and streamflow. Both models have been applied independently to many watersheds across the United States. This paper reports the statistical results assessing various temporal (daily, monthly, and annual) and spatial (small versus large watershed) scale biases in HSPF and PRMS simulations using two watersheds in the Black Hills, South Dakota. The Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (r">rr), and coefficient of determination (R2">R2R2) statistics for the daily, monthly, and annual flows were used to evaluate the models’ performance. Results from the HSPF models showed that the HSPF consistently simulated the annual flows for both large and small basins better than the monthly and daily flows, and the simulated flows for the small watershed better than flows for the large watershed. In comparison, the PRMS model results show that the PRMS simulated the monthly flows for both the large and small watersheds better than the daily and annual flows, and the range of statistical error in the PRMS models was greater than that in the HSPF models. Moreover, it can be concluded that the statistical error in the HSPF and the PRMSdaily, monthly, and annual flow estimates for watersheds in the Black Hills was influenced by both temporal and spatial scale variability.

  20. Soil organic carbon - a large scale paired catchment assessment

    NASA Astrophysics Data System (ADS)

    Kunkel, V.; Hancock, G. R.; Wells, T.

    2016-12-01

    Soil organic carbon (SOC) concentration can vary both spatially and temporally driven by differences in soil properties, topography and climate. However most studies have focused on point scale data sets with a paucity of studies examining larger scale catchments. Here we examine the spatial and temporal distribution of SOC for two large catchments. The Krui (575 km2) and Merriwa River (675km2) catchments (New South Wales, Australia). Both have similar shape, soils, topography and orientation. We show that SOC distribution is very similar for both catchments and that elevation (and associated increase in soil moisture) is a major influence on SOC. We also show that there is little change in SOC from the initial assessment in 2006 to 2015 despite a major drought from 2003 to 2010 and extreme rainfall events in 2007 and 2010 -therefore SOC concentration appears robust. However, we found significant relationships between erosion and deposition patterns (as quantified using 137Cs) and SOC for both catchments again demonstrating a strong geomorphic relationship. Vegetation across the catchments was assessed using remote sensing (Landsat and MODIS). Vegetation patterns were temporally consistent with above ground biomass increasing with elevation. SOC could be predicted using both these low and high resolution remote sensing platforms. Results indicate that, although moderate resolution (250 m) allows for reasonable prediction of the spatial distribution of SOC, the higher resolution (30 m) improved the strength of the SOC-NDVI relationship. The relationship between SOC and 137Cs, as a surrogate for the erosion and deposition of SOC, suggested that sediment transport and deposition influences the distribution of SOC within the catchment. The findings demonstrate that over the large catchment scale and at the decadal time scale that SOC is relatively constant and can largely be predicted by topography.

  1. Spatio-temporal Variations of Characteristic Repeating Earthquake Sequences along the Middle America Trench in Mexico

    NASA Astrophysics Data System (ADS)

    Dominguez, L. A.; Taira, T.; Hjorleifsdottir, V.; Santoyo, M. A.

    2015-12-01

    Repeating earthquake sequences are sets of events that are thought to rupture the same area on the plate interface and thus provide nearly identical waveforms. We systematically analyzed seismic records from 2001 through 2014 to identify repeating earthquakes with highly correlated waveforms occurring along the subduction zone of the Cocos plate. Using the correlation coefficient (cc) and spectral coherency (coh) of the vertical components as selection criteria, we found a set of 214 sequences whose waveforms exceed cc≥95% and coh≥95%. Spatial clustering along the trench shows large variations in repeating earthquakes activity. Particularly, the rupture zone of the M8.1, 1985 earthquake shows an almost absence of characteristic repeating earthquakes, whereas the Guerrero Gap zone and the segment of the trench close to the Guerrero-Oaxaca border shows a significantly larger number of repeating earthquakes sequences. Furthermore, temporal variations associated to stress changes due to major shows episodes of unlocking and healing of the interface. Understanding the different components that control the location and recurrence time of characteristic repeating sequences is a key factor to pinpoint areas where large megathrust earthquakes may nucleate and consequently to improve the seismic hazard assessment.

  2. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  3. Temporally-stable active precision mount for large optics.

    PubMed

    Reinlein, Claudia; Damm, Christoph; Lange, Nicolas; Kamm, Andreas; Mohaupt, Matthias; Brady, Aoife; Goy, Matthias; Leonhard, Nina; Eberhardt, Ramona; Zeitner, Uwe; Tünnermann, Andreas

    2016-06-13

    We present a temporally-stable active mount to compensate for manufacturing-induced deformations of reflective optical components. In this paper, we introduce the design of the active mount, and its evaluation results for two sample mirrors: a quarter mirror of 115 × 105 × 9 mm3, and a full mirror of 228 × 210 × 9 mm3. The quarter mirror with 20 actuators shows a best wavefront error rms of 10 nm. Its installation position depending deformations are addressed by long-time measurements over 14 weeks indicating no significance of the orientation. Size-induced differences of the mount are studied by a full mirror with 80 manual actuators arranged in the same actuator pattern as the quarter mirror. This sample shows a wavefront error rms of (27±2) nm over a measurement period of 46 days. We conclude that the developed mount is suitable to compensate for manufacturing-induced deformations of large reflective optics, and likely to be included in the overall systems alignment procedure.

  4. Assessment of Ionospheric Anomaly Prior to the Large Earthquake: 2D and 3D Analysis in Space and Time for the 2011 Tohoku Earthquake (Mw9.0)

    NASA Astrophysics Data System (ADS)

    Hattori, Katsumi; Hirooka, Shinji; Han, Peng

    2016-04-01

    The ionospheric anomalies possibly associated with large earthquakes have been reported by many researchers. In this paper, Total Electron Content (TEC) and tomography analyses have been applied to investigate the spatial and temporal distributions of ionospheric electron density prior to the 2011 Off the Pacific Coast of Tohoku earthquake (Mw9.0). Results show significant TEC enhancements and an interesting three dimensional structure prior to the main shock. As for temporal TEC changes, the TEC value increases 3-4 days before the earthquake remarkably, when the geomagnetic condition was relatively quiet. In addition, the abnormal TEC enhancement area in space was stalled above Japan during the period. Tomographic results show that three dimensional distribution of electron density decreases around 250 km altitude above the epicenter (peak is located just the east-region of the epicenter) and increases the mostly entire region between 300 and 400 km.

  5. Individual Differences in Temporal Selective Attention as Reflected in Pupil Dilation.

    PubMed

    Willems, Charlotte; Herdzin, Johannes; Martens, Sander

    2015-01-01

    Attention is restricted for the second of two targets when it is presented within 200-500 ms of the first target. This attentional blink (AB) phenomenon allows one to study the dynamics of temporal selective attention by varying the interval between the two targets (T1 and T2). Whereas the AB has long been considered as a robust and universal cognitive limitation, several studies have demonstrated that AB task performance greatly differs between individuals, with some individuals showing no AB whatsoever. Here, we studied these individual differences in AB task performance in relation to differences in attentional timing. Furthermore, we investigated whether AB magnitude is predictive for the amount of attention allocated to T1. For both these purposes pupil dilation was measured, and analyzed with our recently developed deconvolution method. We found that the dynamics of temporal attention in small versus large blinkers differ in a number of ways. Individuals with a relatively small AB magnitude seem better able to preserve temporal order information. In addition, they are quicker to allocate attention to both T1 and T2 than large blinkers. Although a popular explanation of the AB is that it is caused by an unnecessary overinvestment of attention allocated to T1, a more complex picture emerged from our data, suggesting that this may depend on whether one is a small or a large blinker. The use of pupil dilation deconvolution seems to be a powerful approach to study the temporal dynamics of attention, bringing us a step closer to understanding the elusive nature of the AB. We conclude that the timing of attention to targets may be more important than the amount of allocated attention in accounting for individual differences.

  6. Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2018-03-01

    A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.

  7. Turbulent pipe flows subjected to temporal decelerations

    NASA Astrophysics Data System (ADS)

    Jeong, Wongwan; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  8. Comprehension of concrete and abstract words in semantic dementia

    PubMed Central

    Jefferies, Elizabeth; Patterson, Karalyn; Jones, Roy W.; Lambon Ralph, Matthew A.

    2009-01-01

    The vast majority of brain-injured patients with semantic impairment have better comprehension of concrete than abstract words. In contrast, several patients with semantic dementia (SD), who show circumscribed atrophy of the anterior temporal lobes bilaterally, have been reported to show reverse imageability effects, i.e., relative preservation of abstract knowledge. Although these reports largely concern individual patients, some researchers have recently proposed that superior comprehension of abstract concepts is a characteristic feature of SD. This would imply that the anterior temporal lobes are particularly crucial for processing sensory aspects of semantic knowledge, which are associated with concrete not abstract concepts. However, functional neuroimaging studies of healthy participants do not unequivocally predict reverse imageability effects in SD because the temporal poles sometimes show greater activation for more abstract concepts. We examined a case-series of eleven SD patients on a synonym judgement test that orthogonally varied the frequency and imageability of the items. All patients had higher success rates for more imageable as well as more frequent words, suggesting that (a) the anterior temporal lobes underpin semantic knowledge for both concrete and abstract concepts, (b) more imageable items – perhaps due to their richer multimodal representations – are typically more robust in the face of global semantic degradation and (c) reverse imageability effects are not a characteristic feature of SD. PMID:19586212

  9. Fast Formal Analysis of Requirements via "Topoi Diagrams"

    NASA Technical Reports Server (NTRS)

    Menzies, Tim; Powell, John; Houle, Michael E.; Kelly, John C. (Technical Monitor)

    2001-01-01

    Early testing of requirements can decrease the cost of removing errors in software projects. However, unless done carefully, that testing process can significantly add to the cost of requirements analysis. We show here that requirements expressed as topoi diagrams can be built and tested cheaply using our SP2 algorithm, the formal temporal properties of a large class of topoi can be proven very quickly, in time nearly linear in the number of nodes and edges in the diagram. There are two limitations to our approach. Firstly, topoi diagrams cannot express certain complex concepts such as iteration and sub-routine calls. Hence, our approach is more useful for requirements engineering than for traditional model checking domains. Secondly, out approach is better for exploring the temporal occurrence of properties than the temporal ordering of properties. Within these restrictions, we can express a useful range of concepts currently seen in requirements engineering, and a wide range of interesting temporal properties.

  10. Temporal and spectral characteristics of dynamic functional connectivity between resting-state networks reveal information beyond static connectivity

    PubMed Central

    Yeh, Hsiang J.; Guindani, Michele; Vannucci, Marina; Haneef, Zulfi; Stern, John M.

    2018-01-01

    Estimation of functional connectivity (FC) has become an increasingly powerful tool for investigating healthy and abnormal brain function. Static connectivity, in particular, has played a large part in guiding conclusions from the majority of resting-state functional MRI studies. However, accumulating evidence points to the presence of temporal fluctuations in FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue that has arisen in this new view of connectivity is the dramatic increase in complexity caused by dynamic functional connectivity (dFC) estimation. To computationally handle this increased complexity, a limited set of dFC properties, primarily the mean and variance, have generally been considered. Additionally, it remains unclear how to integrate the increased information from dFC into pattern recognition techniques for subject-level prediction. In this study, we propose an approach to address these two issues based on a large number of previously unexplored temporal and spectral features of dynamic functional connectivity. A Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to estimate time-varying patterns of functional connectivity between resting-state networks. Time-frequency analysis is then performed on dFC estimates, and a large number of previously unexplored temporal and spectral features drawn from signal processing literature are extracted for dFC estimates. We apply the investigated features to two neurologic populations of interest, healthy controls and patients with temporal lobe epilepsy, and show that the proposed approach leads to substantial increases in predictive performance compared to both traditional estimates of static connectivity as well as current approaches to dFC. Variable importance is assessed and shows that there are several quantities that can be extracted from dFC signal which are more informative than the traditional mean or variance of dFC. This work illuminates many previously unexplored facets of the dynamic properties of functional connectivity between resting-state networks, and provides a platform for dynamic functional connectivity analysis that facilitates its usage as an investigative measure for healthy as well as abnormal brain function. PMID:29320526

  11. Spatio-temporal dynamics of processing non-symbolic number: An ERP source localization study

    PubMed Central

    Hyde, Daniel C.; Spelke, Elizabeth S.

    2013-01-01

    Coordinated studies with adults, infants, and nonhuman animals provide evidence for two distinct systems of non-verbal number representation. The ‘parallel individuation’ system selects and retains information about 1–3 individual entities and the ‘numerical magnitude’ system establishes representations of the approximate cardinal value of a group. Recent ERP work has demonstrated that these systems reliably evoke functionally and temporally distinct patterns of brain response that correspond to established behavioral signatures. However, relatively little is known about the neural generators of these ERP signatures. To address this question, we targeted known ERP signatures of these systems, by contrasting processing of small versus large non-symbolic numbers, and used a source localization algorithm (LORETA) to identify their cortical origins. Early processing of small numbers, showing the signature effects of parallel individuation on the N1 (∼150 ms), was localized primarily to extrastriate visual regions. In contrast, qualitatively and temporally distinct processing of large numbers, showing the signatures of approximate number representation on the mid-latency P2p (∼200–250 ms), was localized primarily to right intraparietal regions. In comparison, mid-latency small number processing was localized to the right temporal-parietal junction and left-lateralized intraparietal regions. These results add spatial information to the emerging ERP literature documenting the process by which we represent number. Furthermore, these results substantiate recent claims that early attentional processes determine whether a collection of objects will be represented through parallel individuation or as an approximate numerical magnitude by providing evidence that downstream processing diverges to distinct cortical regions. PMID:21830257

  12. Fungi and wind strongly influence the temporal availability of logs in an old-growth spruce forest.

    PubMed

    Edman, Mattias; Jönsson, Mari; Jonsson, Bengt Gunnar

    2007-03-01

    Coarse woody debris (CWD) is a key habitat for many species in forest ecosystems. To ensure the long-term survival of such species, forest management regimes must include measures that promote dead wood dynamics similar to those of natural forests. Thus, information on CWD dynamics under natural conditions is required, including data pertaining to the underlying agents of disturbance. This study examines modes of mortality, decay rates, and temporal patterns in the availability of Picea abies logs in a Swedish old-growth forest affected by internal, small-scale disturbance. All 684 logs in a 6.6-ha plot were mapped and classified into one of six decay classes. Logs in the early stages of decay were examined for the presence of heart-rot fungi. Six years later all logs were re-inventoried, including newly formed logs. Matrix models based on the transition rates between decay classes showed that it took about 60 years for 90% of the logs to decay beyond class 6 (a deformed trunk with soft wood). Large logs (> 26 cm) decayed 40% more slowly than small logs (< 25 cm). The initial volume of logs was 37.6 m3/ha but increased to 44.8 m3/ha after six years. In addition, there was a large shift in the decay-class distribution. The volume of logs in early and late decay classes increased by 71% and 45%, respectively, while the volume of logs in the intermediate decay classes decreased by 32%. The fluctuations appear to result from pulses in mortality, driven by a combination of strong winds and the heart-rot fungus, Phellinus chrysoloma, which was present in more than 30% of all logs at an early stage of decay. These results show that large temporal fluctuations in dead wood also occur in the absence of large-scale disturbance, and that heart-rot fungi are important factors driving the overall dynamics of dead wood. Since many wood-inhabiting species are naturally rare and have very specific substrate demands, such temporal variability in dead wood availability may have effects on biodiversity and should be taken into account when designing small, protected forest areas.

  13. Spatio-temporal foreshock activity during stick-slip experiments of large rock samples

    NASA Astrophysics Data System (ADS)

    Tsujimura, Y.; Kawakata, H.; Fukuyama, E.; Yamashita, F.; Xu, S.; Mizoguchi, K.; Takizawa, S.; Hirano, S.

    2016-12-01

    Foreshock activity has sometimes been reported for large earthquakes, and has been roughly classified into the following two classes. For shallow intraplate earthquakes, foreshocks occurred in the vicinity of the mainshock hypocenter (e.g., Doi and Kawakata, 2012; 2013). And for intraplate subduction earthquakes, foreshock hypocenters migrated toward the mainshock hypocenter (Kato, et al., 2012; Yagi et al., 2014). To understand how foreshocks occur, it is useful to investigate the spatio-temporal activities of foreshocks in the laboratory experiments under controlled conditions. We have conducted stick-slip experiments by using a large-scale biaxial friction apparatus at NIED in Japan (e.g., Fukuyama et al., 2014). Our previous results showed that stick-slip events repeatedly occurred in a run, but only those later events were preceded by foreshocks. Kawakata et al. (2014) inferred that the gouge generated during the run was an important key for foreshock occurrence. In this study, we proceeded to carry out stick-slip experiments of large rock samples whose interface (fault plane) is 1.5 meter long and 0.5 meter wide. After some runs to generate fault gouge between the interface. In the current experiments, we investigated spatio-temporal activities of foreshocks. We detected foreshocks from waveform records of 3D array of piezo-electric sensors. Our new results showed that more than three foreshocks (typically about twenty) had occurred during each stick-slip event, in contrast to the few foreshocks observed during previous experiments without pre-existing gouge. Next, we estimated the hypocenter locations of the stick-slip events, and found that they were located near the opposite end to the loading point. In addition, we observed a migration of foreshock hypocenters toward the hypocenter of each stick-slip event. This suggests that the foreshock activity observed in our current experiments was similar to that for the interplate earthquakes in terms of the spatio-temporal pattern. This work was supported by NIED research project "Development of monitoring and forecasting technology for crustal activity", JSPS KAKENHI Grant Number 23340131, and MEXT of Japan, under its Earthquake and Volcano Hazards Observation and Research Program.

  14. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    NASA Astrophysics Data System (ADS)

    Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.

    2010-09-01

    To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.

  15. The effects of luminance contribution from large fields to chromatic visual evoked potentials.

    PubMed

    Skiba, Rafal M; Duncan, Chad S; Crognale, Michael A

    2014-02-01

    Though useful from a clinical and practical standpoint uniform, large-field chromatic stimuli are likely to contain luminance contributions from retinal inhomogeneities. Such contribution can significantly influence psychophysical thresholds. However, the degree to which small luminance artifacts influence the chromatic VEP has been debated. In particular, claims have been made that band-pass tuning observed in chromatic VEPs result from luminance intrusion. However, there has been no direct evidence presented to support these claims. Recently, large-field isoluminant stimuli have been developed to control for intrusion from retinal inhomogeneities with particular regard to the influence of macular pigment. We report here the application of an improved version of these full-field stimuli to directly test the influence of luminance intrusion on the temporal tuning of the chromatic VEP. Our results show that band-pass tuning persists even when isoluminance is achieved throughout the extent of the stimulus. In addition, small amounts of luminance intrusion affect neither the shape of the temporal tuning function nor the major components of the VEP. These results support the conclusion that the chromatic VEP can depart substantially from threshold psychophysics with regard to temporal tuning and that obtaining a low-pass function is not requisite evidence of selective chromatic activation in the VEP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2014-01-01

    To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species—a result of density-dependence—is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the density-dependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change. PMID:25100702

  17. The Relationship between Spatial and Temporal Magnitude Estimation of Scientific Concepts at Extreme Scales

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, H.

    2010-01-01

    Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.

  18. Influences of gender role and anxiety on sex differences in temporal summation of pain.

    PubMed

    Robinson, Michael E; Wise, Emily A; Gagnon, Christine; Fillingim, Roger B; Price, Donald D

    2004-03-01

    Previous research has consistently shown moderate to large differences between pain reports of men and women undergoing experimental pain testing. These differences have been shown for a variety of types of stimulation. However, only recently have sex differences been demonstrated for temporal summation of second pain. This study examined sex differences in response to temporal summation of second pain elicited by thermal stimulation of the skin. The relative influences of state anxiety and gender role expectations on temporal summation were investigated. Asymptomatic undergraduates (37 women and 30 men) underwent thermal testing of the thenar surface of the hand in a temporal summation protocol. Our results replicated those of Fillingim et al indicating that women showed increased temporal summation compared to men. We extended those findings to demonstrate that temporal summation is influenced by anxiety and gender role stereotypes about pain responding. When anxiety and gender role stereotypes are taken into account, sex is no longer a significant predictor of temporal summation. These findings highlight the contribution of social learning factors in the differences between sexes' pain perception. Results of this study demonstrate that psychosocial variables influence pain mechanisms. Temporal summation was related to gender role expectations of pain and anxiety. These variables explain a significant portion of the differences between men and women's pain processing, and may be related to differences in clinical presentation.

  19. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    NASA Astrophysics Data System (ADS)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  20. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia

    PubMed Central

    Collins, Jessica A; Montal, Victor; Hochberg, Daisy; Quimby, Megan; Mandelli, Maria Luisa; Makris, Nikos; Seeley, William W; Gorno-Tempini, Maria Luisa; Dickerson, Bradford C

    2017-01-01

    Abstract A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region’s strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole. PMID:28040670

  1. Young Women do it Better: Sexual Dimorphism in Temporal Discrimination.

    PubMed

    Williams, Laura Jane; Butler, John S; Molloy, Anna; McGovern, Eavan; Beiser, Ines; Kimmich, Okka; Quinlivan, Brendan; O'Riordan, Sean; Hutchinson, Michael; Reilly, Richard B

    2015-01-01

    The temporal discrimination threshold (TDT) is the shortest time interval at which two sensory stimuli presented sequentially are detected as asynchronous by the observer. TDTs are known to increase with age. Having previously observed shorter thresholds in young women than in men, in this work we sought to systematically examine the effect of sex and age on temporal discrimination. The aims of this study were to examine, in a large group of men and women aged 20-65 years, the distribution of TDTs with an analysis of the individual participant's responses, assessing the "point of subjective equality" and the "just noticeable difference" (JND). These respectively assess sensitivity and accuracy of an individual's response. In 175 participants (88 women) aged 20-65 years, temporal discrimination was faster in women than in men under the age of 40 years by a mean of approximately 13 ms. However, age-related decline in temporal discrimination was three times faster in women so that, in the age group of 40-65 years, the female superiority was reversed. The point of subjective equality showed a similar advantage in younger women and more marked age-related decline in women than men, as the TDT. JND values declined equally in both sexes, showing no sexual dimorphism. This observed sexual dimorphism in temporal discrimination is important for both (a) future clinical research assessing disordered mid-brain covert attention in basal-ganglia disorders, and (b) understanding the biology of this sexual dimorphism which may be genetic or hormonal.

  2. Acute marijuana effects on rCBF and cognition: a PET study.

    PubMed

    O'Leary, D S; Block, R I; Flaum, M; Schultz, S K; Boles Ponto, L L; Watkins, G L; Hurtig, R R; Andreasen, N C; Hichwa, R D

    2000-11-27

    The effects of smoking marijuana on cognition and brain function were assessed with PET using H2(15)O. Regional cerebral blood flow (rCBF) was measured in five recreational users before and after smoking a marijuana cigarette, as they repeatedly performed an auditory attention task. Blood flow increased following smoking in a number of paralimbic brain regions (e.g. orbital frontal lobes, insula, temporal poles) and in anterior cingulate and cerebellum. Large reductions in rCBF were observed in temporal lobe regions that are sensitive to auditory attention effects. Brain regions showing increased rCBF may mediate the intoxicating and mood-related effects of smoking marijuana, whereas reduction of task-related rCBF in temporal lobe cortices may account for the impaired cognitive functions associated with acute intoxication.

  3. Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from remotely sensed data.

    PubMed

    Shi, Yusheng; Matsunaga, Tsuneo

    2017-07-01

    Biomass burning is a large important source of greenhouse gases and atmospheric aerosols, and can contribute greatly to the temporal variations of CO 2 emissions at regional and global scales. In this study, we compared four globally gridded CO 2 emission inventories from biomass burning during the period of 2002-2011, highlighting the similarities and differences in seasonality and interannual variability of the CO 2 emissions both at regional and global scales. The four datasets included Global Fire Emissions Database 4s with small fires (GFED4s), Global Fire Assimilation System 1.0 (GFAS1.0), Fire INventory from NCAR 1.0 (FINN1.0), and Global Inventory for Chemistry-Climate studies-GFED4s (G-G). The results showed that in general, the four inventories presented consistent temporal trend but with large differences as well. Globally, CO 2 emissions of GFED4s, GFAS1.0, and G-G all peaked in August with the exception in FINN1.0, which recorded another peak in annual March. The interannual trend of all datasets displayed an overall decrease in CO 2 emissions during 2002-2011, except for the inconsistent FINN1.0, which showed a tendency to increase during the considered period. Meanwhile, GFED4s and GFAS1.0 noted consistent agreement from 2002 to 2011 at both global (R 2  > 0.8) and continental levels (R 2  > 0.7). FINN1.0 was found to have the poorest temporal correlations with the other three inventories globally (R 2  < 0.6). The lower estimation in savanna CO 2 emissions and higher calculation in cropland CO 2 emissions by FINN1.0 from 2002 to 2011 was the primary reason for the temporal differences of the four inventories. Besides, the contributions of the three land covers (forest, savanna, and cropland) on CO 2 emissions in each region varied greatly within the year (>80%) but showed small variations through the years (<40%).

  4. Discovering multi-scale co-occurrence patterns of asthma and influenza with the Oak Ridge bio-surveillance toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, Arvind; Pullum, Laura L.; Hobson, Tanner C.

    Here, we describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different geographic regions within the United States (US) showed an increase in co-occurrence patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted from the eHRC data show a distinct lag time between the peak incidence of the asthma and the flu. While the increased occurrence of asthma contributed to increased flumore » incidence during the pandemic, this co-occurrence is predominant for female patients. The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are typically concentrated within the south-east US. Further, in agreement with previous studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-occurrence patterns that suggest a peak incidence of asthma and flu significantly early in the spring and winter seasons. Together, our data-analytic approach, integrated within the Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide novel insights into co-occurring disease patterns.« less

  5. Discovering multi-scale co-occurrence patterns of asthma and influenza with the Oak Ridge bio-surveillance toolkit

    DOE PAGES

    Ramanathan, Arvind; Pullum, Laura L.; Hobson, Tanner C.; ...

    2015-08-03

    Here, we describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different geographic regions within the United States (US) showed an increase in co-occurrence patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted from the eHRC data show a distinct lag time between the peak incidence of the asthma and the flu. While the increased occurrence of asthma contributed to increased flumore » incidence during the pandemic, this co-occurrence is predominant for female patients. The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are typically concentrated within the south-east US. Further, in agreement with previous studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-occurrence patterns that suggest a peak incidence of asthma and flu significantly early in the spring and winter seasons. Together, our data-analytic approach, integrated within the Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide novel insights into co-occurring disease patterns.« less

  6. Quantifying suspended sediment dynamics in mega deltas using remote sensing data: A case study of the Mekong floodplains

    NASA Astrophysics Data System (ADS)

    Dang, Thanh Duc; Cochrane, Thomas A.; Arias, Mauricio E.

    2018-06-01

    Temporal and spatial concentrations of suspended sediment in floodplains are difficult to quantify because in situ measurements can be logistically complex, time consuming and costly. In this research, satellite imagery with long temporal and large spatial coverage (Landsat TM/ETM+) was used to complement in situ suspended sediment measurements to reflect sediment dynamics in a large (70,000 km2) floodplain. Instead of using a single spectral band from Landsat, a Principal Component Analysis was applied to obtain uncorrelated reflectance values for five bands of Landsat TM/ETM+. Significant correlations between the scores of the 1st principal component and the values of continuously gauged suspended sediment concentration, shown via high coefficients of determination of sediment rating curves (R2 ranging from 0.66 to 0.92), permit the application of satellite images to quantify spatial and temporal sediment variation in the Mekong floodplains. Estimated suspended sediment maps show that hydraulic regimes at Chaktomuk (Cambodia), where the Mekong, Bassac, and Tonle Sap rivers diverge, determine the amount of seasonal sediment supplies to the Mekong Delta. The development of flood prevention systems to allow for three rice crops a year in the Vietnam Mekong Delta significantly reduces localized flooding, but also prevents sediment (source of nutrients) from entering fields. A direct consequence of this is the need to apply more artificial fertilizers to boost agricultural productivity, which may trigger environmental problems. Overall, remote sensing is shown to be an effective tool to understand temporal and spatial sediment dynamics in large floodplains.

  7. Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data

    NASA Astrophysics Data System (ADS)

    Thomas, Yoann; Mazurié, Joseph; Alunno-Bruscia, Marianne; Bacher, Cédric; Bouget, Jean-François; Gohin, Francis; Pouvreau, Stéphane; Struski, Caroline

    2011-11-01

    In order to assess the potential of various marine ecosystems for shellfish aquaculture and to evaluate their carrying capacities, there is a need to clarify the response of exploited species to environmental variations using robust ecophysiological models and available environmental data. For a large range of applications and comparison purposes, a non-specific approach based on 'generic' individual growth models offers many advantages. In this context, we simulated the response of blue mussel ( Mytilus edulis L.) to the spatio-temporal fluctuations of the environment in Mont Saint-Michel Bay (North Brittany) by forcing a generic growth model based on Dynamic Energy Budgets with satellite-derived environmental data (i.e. temperature and food). After a calibration step based on data from mussel growth surveys, the model was applied over nine years on a large area covering the entire bay. These simulations provide an evaluation of the spatio-temporal variability in mussel growth and also show the ability of the DEB model to integrate satellite-derived data and to predict spatial and temporal growth variability of mussels. Observed seasonal, inter-annual and spatial growth variations are well simulated. The large-scale application highlights the strong link between food and mussel growth. The methodology described in this study may be considered as a suitable approach to account for environmental effects (food and temperature variations) on physiological responses (growth and reproduction) of filter feeders in varying environments. Such physiological responses may then be useful for evaluating the suitability of coastal ecosystems for shellfish aquaculture.

  8. Supporting skill acquisition in cochlear implant surgery through virtual reality simulation.

    PubMed

    Copson, Bridget; Wijewickrema, Sudanthi; Zhou, Yun; Piromchai, Patorn; Briggs, Robert; Bailey, James; Kennedy, Gregor; O'Leary, Stephen

    2017-03-01

    To evaluate the effectiveness of a virtual reality (VR) temporal bone simulator in training cochlear implant surgery. We compared the performance of 12 otolaryngology registrars conducting simulated cochlear implant surgery before (pre-test) and after (post-tests) receiving training on a VR temporal bone surgery simulator with automated performance feedback. The post-test tasks were two temporal bones, one that was a mirror image of the temporal bone used as a pre-test and the other, a novel temporal bone. Participant performances were assessed by an otologist with a validated cochlear implant competency assessment tool. Structural damage was derived from an automatically generated simulator metric and compared between time points. Wilcoxon signed-rank test showed that there was a significant improvement with a large effect size in the total performance scores between the pre-test (PT) and both the first and second post-tests (PT1, PT2) (PT-PT1: P = 0.007, r = 0.78, PT-PT2: P = 0.005, r = 0.82). The results of the study indicate that VR simulation with automated guidance can effectively be used to train surgeons in training complex temporal bone surgeries such as cochlear implantation.

  9. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  10. Electrophysiological Correlates of Individual Differences in Perception of Audiovisual Temporal Asynchrony

    PubMed Central

    Kaganovich, Natalya; Schumaker, Jennifer

    2016-01-01

    Sensitivity to the temporal relationship between auditory and visual stimuli is key to efficient audiovisual integration. However, even adults vary greatly in their ability to detect audiovisual temporal asynchrony. What underlies this variability is currently unknown. We recorded event-related potentials (ERPs) while participants performed a simultaneity judgment task on a range of audiovisual (AV) and visual-auditory (VA) stimulus onset asynchronies (SOAs) and compared ERP responses in good and poor performers to the 200 ms SOA, which showed the largest individual variability in the number of synchronous perceptions. Analysis of ERPs to the VA200 stimulus yielded no significant results. However, those individuals who were more sensitive to the AV200 SOA had significantly more positive voltage between 210 and 270 ms following the sound onset. In a follow-up analysis, we showed that the mean voltage within this window predicted approximately 36% of variability in sensitivity to AV temporal asynchrony in a larger group of participants. The relationship between the ERP measure in the 210-270 ms window and accuracy on the simultaneity judgment task also held for two other AV SOAs with significant individual variability - 100 and 300 ms. Because the identified window was time-locked to the onset of sound in the AV stimulus, we conclude that sensitivity to AV temporal asynchrony is shaped to a large extent by the efficiency in the neural encoding of sound onsets. PMID:27094850

  11. Delayed Temporal Lobe Hemorrhage After Initiation of Acyclovir in an Immunocompetent Patient with Herpes Simplex Virus-2 Encephalitis: A Case Report.

    PubMed

    Mueller, Kyle; Ryan, Joshua E; Tai, Alex; Armonda, Rocco A

    2017-01-15

    Herpes simplex virus (HSV) is the most common cause of non-epidemic, sporadic, acute focal encephalitis in the United States. Inflammation of the vasculature makes them friable and susceptible to hemorrhage. Massive hemorrhage, though rare, can present in a delayed fashion after initiation of acyclovir and often requires surgical intervention. We report a unique case of delayed temporal lobe hemorrhage after initiation of acyclovir in an immunocompetent patient, specifically for its presentation, virology, and surgical management. A 40-year-old left-handed Caucasian female with chronic headaches, along with a 20-pack-year smoking history, presented to an outside facility with one week of diffuse, generalized headache, fever, nausea, and vomiting. Initial cranial imaging was negative for hemorrhage. Cerebrospinal fluid (CSF) studies showed a lymphocytic pleocytosis with elevated protein, along with polymerase chain reaction (PCR) positive staining for HSV, establishing the diagnosis of HSV-2 encephalitis, which is less common in adults. Acyclovir was initiated and one week later while still hospitalized, the patient developed acute altered mental status with cranial imaging showing a large right temporal lobe hemorrhage with significant midline shift. She was transferred to our facility for surgical intervention. Computed tomography angiography (CTA) was negative for any underlying vascular lesion. She was taken to the operating room for a decompressive unilateral (right) hemicraniectomy and temporal lobectomy. She had no postoperative complications and completed a three-week course of acyclovir. She was discharged to acute rehab with plans to return at a later date for cranioplasty. Intracerebral hemorrhage is an uncommon, although possible sequela, of herpes encephalitis. Despite initiation of early antiviral therapy, close monitoring is warranted, given the pathophysiology of the vasculature. Any decline in the neurological exam and/or increasing symptomatology of increased intracranial pressure mandates immediate cranial imaging to evaluate for possible hemorrhage. Emergent surgical intervention is warranted with large temporal lobe hemorrhages.

  12. Observing large-scale temporal variability of ocean currents by satellite altimetry - With application to the Antarctic circumpolar current

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Chelton, D. B.

    1985-01-01

    A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.

  13. Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.

    PubMed

    Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray

    2014-03-01

    We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.

  14. Guns and Fear: A One-Way Street?

    ERIC Educational Resources Information Center

    Hauser, Will; Kleck, Gary

    2013-01-01

    Surveys show that more than one half of gun owners report owning their firearm for self-protection. Although research has examined the effect of fear of crime on gun ownership, the issue of reciprocity and temporal order has been largely ignored. Furthermore, the effect of firearm acquisition and relinquishment on fear has not been evaluated…

  15. Variations and asymmetries in regional brain surface in the genus Homo.

    PubMed

    Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique

    2012-06-01

    Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Temporal Stability of Multiple Response Systems to 7.5% Carbon Dioxide Challenge

    PubMed Central

    Roberson-Nay, Roxann; Gorlin, Eugenia I.; Beadel, Jessica R.; Cash, Therese; Vrana, Scott; Teachman, Bethany A.

    2017-01-01

    Self-reported anxiety, and potentially physiological response, to maintained inhalation of carbon dioxide (CO2) enriched air shows promise as a putative marker of panic reactivity and vulnerability. Temporal stability of response systems during low-dose, steady-state CO2 breathing challenge is lacking. Outcomes on multiple levels were measured two times, one week apart, in 93 individuals. Stability was highest during the CO2 breathing phase compared to pre-CO2 and recovery phases, with anxiety ratings, respiratory rate, skin conductance level, and heart rate demonstrating good to excellent temporal stability (ICCs ≥ 0.71). Cognitive symptoms tied to panic were somewhat less stable (ICC = 0.58) than physical symptoms (ICC = 0.74) during CO2 breathing. Escape/avoidance behaviors and DSM-5 panic attacks were not stable. Large effect sizes between task phases also were observed. Overall, results suggest good-excellent levels of temporal stability for multiple outcomes during respiratory stimulation via 7.5% CO2. PMID:28163046

  17. Mental simulation of routes during navigation involves adaptive temporal compression

    PubMed Central

    Arnold, Aiden E.G.F.; Iaria, Giuseppe; Ekstrom, Arne D.

    2016-01-01

    Mental simulation is a hallmark feature of human cognition, allowing features from memories to be flexibly used during prospection. While past studies demonstrate the preservation of real-world features such as size and distance during mental simulation, their temporal dynamics remains unknown. Here, we compare mental simulations to navigation of routes in a large-scale spatial environment to test the hypothesis that such simulations are temporally compressed in an adaptive manner. Our results show that simulations occurred at 2.39x the speed it took to navigate a route, increasing in compression (3.57x) for slower movement speeds. Participant self-reports of vividness and spatial coherence of simulations also correlated strongly with simulation duration, providing an important link between subjective experiences of simulated events and how spatial representations are combined during prospection. These findings suggest that simulation of spatial events involve adaptive temporal mechanisms, mediated partly by the fidelity of memories used to generate the simulation. PMID:27568586

  18. Spatial and Temporal Variation of Water Quality in the Bertam Catchment, Cameron Highlands, Malaysia.

    PubMed

    Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M

    2017-12-01

      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.

  19. Declarative long-term memory and the mesial temporal lobe: Insights from a 5-year postsurgery follow-up study on refractory temporal lobe epilepsy.

    PubMed

    Salvato, Gerardo; Scarpa, Pina; Francione, Stefano; Mai, Roberto; Tassi, Laura; Scarano, Elisa; Lo Russo, Giorgio; Bottini, Gabriella

    2016-11-01

    It is largely recognized that the mesial temporal lobe and its substructure support declarative long-term memory (LTM). So far, different theories have been suggested, and the organization of declarative verbal LTM in the brain is still a matter of debate. In the current study, we retrospectively selected 151 right-handed patients with temporal lobe epilepsy with and without hippocampal sclerosis, with a homogeneous (seizure-free) clinical outcome. We analyzed verbal memory performance within a normalized scores context, by means of prose recall and word paired-associate learning tasks. Patients were tested at presurgical baseline, 6months, 2 and 5years after anteromesial temporal lobe surgery, using parallel versions of the neuropsychological tests. Our main finding revealed a key involvement of the left temporal lobe and, in particular, of the left hippocampus in prose recall rather than word paired-associate task. We also confirmed that shorter duration of epilepsy, younger age, and withdrawal of antiepileptic drugs would predict a better memory outcome. When individual memory performance was taken into account, data showed that females affected by left temporal lobe epilepsy for longer duration were more at risk of presenting a clinically pathologic LTM at 5years after surgery. Taken together, these findings shed new light on verbal declarative memory in the mesial temporal lobe and on the behavioral signature of the functional reorganization after the surgical treatment of temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Temporal pattern and memory in sediment transport in an experimental step-pool channel

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo

    2015-04-01

    In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.

  1. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    PubMed

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe.

    PubMed

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.

  3. Hierarchical stochastic modeling of large river ecosystems and fish growth across spatio-temporal scales and climate models: the Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.; Dey, Rima

    2017-01-01

    We present a hierarchical series of spatially decreasing and temporally increasing models to evaluate the uncertainty in the atmosphere – ocean global climate model (AOGCM) and the regional climate model (RCM) relative to the uncertainty in the somatic growth of the endangered pallid sturgeon (Scaphirhynchus albus). For effects on fish populations of riverine ecosystems, cli- mate output simulated by coarse-resolution AOGCMs and RCMs must be downscaled to basins to river hydrology to population response. One needs to transfer the information from these climate simulations down to the individual scale in a way that minimizes extrapolation and can account for spatio-temporal variability in the intervening stages. The goal is a framework to determine whether, given uncertainties in the climate models and the biological response, meaningful inference can still be made. The non-linear downscaling of climate information to the river scale requires that one realistically account for spatial and temporal variability across scale. Our down- scaling procedure includes the use of fixed/calibrated hydrological flow and temperature models coupled with a stochastically parameterized sturgeon bioenergetics model. We show that, although there is a large amount of uncertainty associated with both the climate model output and the fish growth process, one can establish significant differences in fish growth distributions between models, and between future and current climates for a given model.

  4. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe

    PubMed Central

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044

  5. Cortical Integration of Audio-Visual Information

    PubMed Central

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  6. Sub-block motion derivation for merge mode in HEVC

    NASA Astrophysics Data System (ADS)

    Chien, Wei-Jung; Chen, Ying; Chen, Jianle; Zhang, Li; Karczewicz, Marta; Li, Xiang

    2016-09-01

    The new state-of-the-art video coding standard, H.265/HEVC, has been finalized in 2013 and it achieves roughly 50% bit rate saving compared to its predecessor, H.264/MPEG-4 AVC. In this paper, two additional merge candidates, advanced temporal motion vector predictor and spatial-temporal motion vector predictor, are developed to improve motion information prediction scheme under the HEVC structure. The proposed method allows each Prediction Unit (PU) to fetch multiple sets of motion information from multiple blocks smaller than the current PU. By splitting a large PU into sub-PUs and filling motion information for all the sub-PUs of the large PU, signaling cost of motion information could be reduced. This paper describes above-mentioned techniques in detail and evaluates their coding performance benefits based on the common test condition during HEVC development. Simulation results show that 2.4% performance improvement over HEVC can be achieved.

  7. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features.

    PubMed

    Mognon, Andrea; Jovicich, Jorge; Bruzzone, Lorenzo; Buiatti, Marco

    2011-02-01

    A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUST's classification of independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2) Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-related potentials from heavily artifacted data. These results demonstrate that ADJUST provides a fast, efficient, and automatic way to use ICA for artifact removal. Copyright © 2010 Society for Psychophysiological Research.

  8. Inverse source problems in elastodynamics

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao

    2018-04-01

    We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.

  9. BOLD temporal dynamics of rat superior colliculus and lateral geniculate nucleus following short duration visual stimulation.

    PubMed

    Lau, Condon; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X

    2011-04-29

    The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.

  10. Scale-dependent habitat use by a large free-ranging predator, the Mediterranean fin whale

    NASA Astrophysics Data System (ADS)

    Cotté, Cédric; Guinet, Christophe; Taupier-Letage, Isabelle; Mate, Bruce; Petiau, Estelle

    2009-05-01

    Since the heterogeneity of oceanographic conditions drives abundance, distribution, and availability of prey, it is essential to understand how foraging predators interact with their dynamic environment at various spatial and temporal scales. We examined the spatio-temporal relationships between oceanographic features and abundance of fin whales ( Balaenoptera physalus), the largest free-ranging predator in the Western Mediterranean Sea (WM), through two independent approaches. First, spatial modeling was used to estimate whale density, using waiting distance (the distance between detections) for fin whales along ferry routes across the WM, in relation to remotely sensed oceanographic parameters. At a large scale (basin and year), fin whales exhibited fidelity to the northern WM with a summer-aggregated and winter-dispersed pattern. At mesoscale (20-100 km), whales were found in colder, saltier (from an on-board system) and dynamic areas defined by steep altimetric and temperature gradients. Second, using an independent fin whale satellite tracking dataset, we showed that tracked whales were effectively preferentially located in favorable habitats, i.e. in areas of high predicted densities as identified by our previous model using oceanographic data contemporaneous to the tracking period. We suggest that the large-scale fidelity corresponds to temporally and spatially predictable habitat of whale favorite prey, the northern krill ( Meganyctiphanes norvegica), while mesoscale relationships are likely to identify areas of high prey concentration and availability.

  11. Climatology of convective showers dynamics in a convection-permitting model

    NASA Astrophysics Data System (ADS)

    Brisson, Erwan; Brendel, Christoph; Ahrens, Bodo

    2017-04-01

    Convection-permitting simulations have proven their usefulness in improving both the representation of convective rain and the uncertainty range of climate projections. However, most studies have focused on temporal scales greater or equal to convection cell lifetime. A large knowledge gap remains on the model's performance in representing the temporal dynamic of convective showers and how could this temporal dynamic be altered in a warmer climate. In this study, we proposed to fill this gap by analyzing 5-minute convection-permitting model (CPM) outputs. In total, more than 1200 one-day cases are simulated at the resolution of 0.01° using the regional climate model COSMO-CLM over central Europe. The analysis follows a Lagrangian approach and consists of tracking showers characterized by five-minute intensities greater than 20 mm/hour. The different features of these showers (e.g., temporal evolution, horizontal speed, lifetime) are investigated. These features as modeled by an ERA-Interim forced simulation are evaluated using a radar dataset for the period 2004-2010. The model shows good performance in representing most features observed in the radar dataset. Besides, the observed relation between the temporal evolution of precipitation and temperature are well reproduced by the CPM. In a second modeling experiment, the impact of climate change on convective cell features are analyzed based on an EC-Earth RCP8.5 forced simulation for the period 2071-2100. First results show only minor changes in the temporal structure and size of showers. The increase in convective precipitation found in previous studies seems to be mainly due to an increase in the number of convective cells.

  12. Young Women do it Better: Sexual Dimorphism in Temporal Discrimination

    PubMed Central

    Williams, Laura Jane; Butler, John S.; Molloy, Anna; McGovern, Eavan; Beiser, Ines; Kimmich, Okka; Quinlivan, Brendan; O’Riordan, Sean; Hutchinson, Michael; Reilly, Richard B.

    2015-01-01

    The temporal discrimination threshold (TDT) is the shortest time interval at which two sensory stimuli presented sequentially are detected as asynchronous by the observer. TDTs are known to increase with age. Having previously observed shorter thresholds in young women than in men, in this work we sought to systematically examine the effect of sex and age on temporal discrimination. The aims of this study were to examine, in a large group of men and women aged 20–65 years, the distribution of TDTs with an analysis of the individual participant’s responses, assessing the “point of subjective equality” and the “just noticeable difference” (JND). These respectively assess sensitivity and accuracy of an individual’s response. In 175 participants (88 women) aged 20–65 years, temporal discrimination was faster in women than in men under the age of 40 years by a mean of approximately 13 ms. However, age-related decline in temporal discrimination was three times faster in women so that, in the age group of 40–65 years, the female superiority was reversed. The point of subjective equality showed a similar advantage in younger women and more marked age-related decline in women than men, as the TDT. JND values declined equally in both sexes, showing no sexual dimorphism. This observed sexual dimorphism in temporal discrimination is important for both (a) future clinical research assessing disordered mid-brain covert attention in basal-ganglia disorders, and (b) understanding the biology of this sexual dimorphism which may be genetic or hormonal. PMID:26217303

  13. Temporal Variation in Oscillatory Characteristics of Long-period Tremor at Aso Volcano, Japan.

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Ohkura, T.; Kaneshima, S.; Kawakatsu, H.

    2017-12-01

    At Aso volcano, Japan, various kinds of volcanic signals with broad frequency contents have been observed since 1930s. One of these signals is long-period tremor (LPT) with a dominant period of around 15 s, which is intermittently emitted from the volcano regardless of the surface activity. Our broadband seismic observations have revealed that LPTs are a kind of resonance oscillation of a crack-like conduit beneath the crater. In this study, aiming to detect a temporal variation of volcanic system, we analyze the long-term variation of LPTs from 1994 to the present.We first examine the temporal variation of dominant periods of LPTs (fundamental mode of around 15 s and the first overtone of around 7 s) using the continuous data recorded at broadband stations close to the active crater. The result shows a clear temporal change in the dominant periods of LPTs in 2003-2005 and 2014-2015. In 2003-2005, the periods of the two modes show correlated temporal change, and it can be interpreted as compositional and/or thermal change of hydrothermal fluids. On the other hand, in 2014-2015, the period of first overtone is almost constant at around 8 s, while that of the fundamental mode shows relatively large temporal fluctuations between 16 s and 12 s. To explain the different behavior among the two resonant modes, we examine the oscillatory characteristics of a fluid-filled crack having linearly varying thickness. With this model, we find that the ratio between resonance periods becomes smaller than that in the case of a flat crack having constant thickness. This behavior can be understood by considering the effective thickness of the crack depends on the wavelength of each resonant mode. Based on these results, the different temporal variation of dominant periods can be interpreted by depth-dependent thickness of the crack-like conduit which may be caused by pressurization and/or intrusion of magma at deeper portion of the conduit. These results suggest the importance of continuous observation, and at the same time, imply that the temporal variation of volcanic fluid systems beneath active volcanoes may be monitored by seismological means.

  14. The indexed time table approach for planning and acting

    NASA Technical Reports Server (NTRS)

    Ghallab, Malik; Alaoui, Amine Mounir

    1989-01-01

    A representation is discussed of symbolic temporal relations, called IxTeT, that is both powerful enough at the reasoning level for tasks such as plan generation, refinement and modification, and efficient enough for dealing with real time constraints in action monitoring and reactive planning. Such representation for dealing with time is needed in a teleoperated space robot. After a brief survey of known approaches, the proposed representation shows its computational efficiency for managing a large data base of temporal relations. Reactive planning with IxTeT is described and exemplified through the problem of mission planning and modification for a simple surveying satellite.

  15. Reserch on Spatial and Temporal Distribution of Color Steel Building Based on Multi-Source High-Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Yang, S. W.; Ma, J. J.; Wang, J. M.

    2018-04-01

    As representative vulnerable regions of the city, dense distribution areas of temporary color steel building are a major target for control of fire risks, illegal buildings, environmental supervision, urbanization quality and enhancement for city's image. In the domestic and foreign literature, the related research mainly focuses on fire risks and violation monitoring. However, due to temporary color steel building's special characteristics, the corresponding research about temporal and spatial distribution, and influence on urban spatial form etc. has not been reported. Therefore, firstly, the paper research aim plans to extract information of large-scale color steel building from high-resolution images. Secondly, the color steel plate buildings were classified, and the spatial and temporal distribution and aggregation characteristics of small (temporary buildings) and large (factory building, warehouse, etc.) buildings were studied respectively. Thirdly, the coupling relationship between the spatial distribution of color steel plate and the spatial pattern of urban space was analysed. The results show that there is a good coupling relationship between the color steel plate building and the urban spatial form. Different types of color steel plate building represent the pattern of regional differentiation of urban space and the phased pattern of urban development.

  16. Species sorting, apparent neutrality and lasting priority effects: palaeoecological lessons from an inherently dynamic natural ecosystem

    NASA Astrophysics Data System (ADS)

    Mergeay, J.; De Meester, L.; Verschuren, D.

    2009-04-01

    To assess the influence of long-term temporal processes in community assembly, we reconstructed the community changes of two dominant components of freshwater food webs, planktonic Daphnia water fleas and benthic chironomid midge larvae, in a fluctuating tropical lake through eight cycles of major lake-level fluctuation spanning 1800 years. Our results show a highly unpredictable pattern of community assembly in Daphnia, akin to neutrality, but largely dictated by long-lasting priority effects. These priority effects were likely caused by rapid population growth of resident species during lake refilling from a standing stock in a deep crater refuge, thereby pre-empting niche space for new immigrants. Contrastingly, chironomid larvae showed a more classical species sorting response to long-term environmental change, with more limited contribution of stochastic temporal processes. Overall our study emphasizes the importance of temporal processes and niche pre-emption in metacommunity ecology, and suggests a important role for mass effects in time. It also emphasizes the value of paleoecological research to improve understanding of ecological processes in natural ecosystems.

  17. Smart Meter Driven Segmentation: What Your Consumption Says About You

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, A; Rajagopal, R

    With the rollout of smart metering infrastructure at scale, demand-response (DR) programs may now be tailored based on users' consumption patterns as mined from sensed data. For issuing DR events it is key to understand the inter-temporal consumption dynamics as to appropriately segment the user population. We propose to infer occupancy states from consumption time series data using a hidden Markov model framework. Occupancy is characterized in this model by 1) magnitude, 2) duration, and 3) variability. We show that users may be grouped according to their consumption patterns into groups that exhibit qualitatively different dynamics that may be exploitedmore » for program enrollment purposes. We investigate empirically the information that residential energy consumers' temporal energy demand patterns characterized by these three dimensions may convey about their demographic, household, and appliance stock characteristics. Our analysis shows that temporal patterns in the user's consumption data can predict with good accuracy certain user characteristics. We use this framework to argue that there is a large degree of individual predictability in user consumption at a population level.« less

  18. Mapping U.S. cattle shipment networks: Spatial and temporal patterns of trade communities from 2009 to 2011.

    PubMed

    Gorsich, Erin E; Luis, Angela D; Buhnerkempe, Michael G; Grear, Daniel A; Portacci, Katie; Miller, Ryan S; Webb, Colleen T

    2016-11-01

    The application of network analysis to cattle shipments broadens our understanding of shipment patterns beyond pairwise interactions to the network as a whole. Such a quantitative description of cattle shipments in the U.S. can identify trade communities, describe temporal shipment patterns, and inform the design of disease surveillance and control strategies. Here, we analyze a longitudinal dataset of beef and dairy cattle shipments from 2009 to 2011 in the United States to characterize communities within the broader cattle shipment network, which are groups of counties that ship mostly to each other. Because shipments occur over time, we aggregate the data at various temporal scales to examine the consistency of network and community structure over time. Our results identified nine large (>50 counties) communities based on shipments of beef cattle in 2009 aggregated into an annual network and nine large communities based on shipments of dairy cattle. The size and connectance of the shipment network was highly dynamic; monthly networks were smaller than yearly networks and revealed seasonal shipment patterns consistent across years. Comparison of the shipment network over time showed largely consistent shipping patterns, such that communities identified on annual networks of beef and diary shipments from 2009 still represented 41-95% of shipments in monthly networks from 2009 and 41-66% of shipments from networks in 2010 and 2011. The temporal aspects of cattle shipments suggest that future applications of the U.S. cattle shipment network should consider seasonal shipment patterns. However, the consistent within-community shipping patterns indicate that yearly communities could provide a reasonable way to group regions for management. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of temporal averaging on short-term irradiance variability under mixed sky conditions

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerald M.; Monahan, Adam H.

    2018-05-01

    Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.

  20. A Computational Approach to Qualitative Analysis in Large Textual Datasets

    PubMed Central

    Evans, Michael S.

    2014-01-01

    In this paper I introduce computational techniques to extend qualitative analysis into the study of large textual datasets. I demonstrate these techniques by using probabilistic topic modeling to analyze a broad sample of 14,952 documents published in major American newspapers from 1980 through 2012. I show how computational data mining techniques can identify and evaluate the significance of qualitatively distinct subjects of discussion across a wide range of public discourse. I also show how examining large textual datasets with computational methods can overcome methodological limitations of conventional qualitative methods, such as how to measure the impact of particular cases on broader discourse, how to validate substantive inferences from small samples of textual data, and how to determine if identified cases are part of a consistent temporal pattern. PMID:24498398

  1. Functional Topography of Human Auditory Cortex

    PubMed Central

    Rauschecker, Josef P.

    2016-01-01

    Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding spectral content of amplitude-modulated white-noise stimuli. Together, our results suggest that the organization of human auditory cortex is driven primarily by its response to spectral acoustic features, and large-scale periodotopy spanning across multiple regions is not supported. This fundamental information regarding the functional organization of early auditory cortex will inform our growing understanding of speech perception and the processing of other complex sounds. PMID:26818527

  2. Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats

    PubMed Central

    Vollmer, Maike; Raggio, Marcia W.; Schreiner, Christoph E.

    2011-01-01

    Deaf humans implanted with a cochlear prosthesis depend largely on temporal cues for speech recognition because spectral information processing is severely impaired. Training with a cochlear prosthesis is typically required before speech perception shows improvement, suggesting that relevant experience modifies temporal processing in the central auditory system. We tested this hypothesis in neonatally deafened cats by comparing temporal processing in the primary auditory cortex (AI) of cats that received only chronic passive intracochlear electric stimulation (ICES) with cats that were also trained with ICES to detect temporally challenging trains of electric pulses. After months of chronic passive stimulation and several weeks of detection training in behaviorally trained cats, multineuronal AI responses evoked by temporally modulated ICES were recorded in anesthetized animals. The stimulus repetition rates that produced the maximum number of phase-locked spikes (best repetition rate) and 50% cutoff rate were significantly higher in behaviorally trained cats than the corresponding rates in cats that received only chronic passive ICES. Behavioral training restored neuronal temporal following ability to levels comparable with those recorded in naïve prior normal-hearing adult deafened animals. Importantly, best repetitition rates and cutoff rates were highest for neuronal clusters activated by the electrode configuration used in behavioral training. These results suggest that neuroplasticity in the AI is induced by behavioral training and perceptual learning in animals deprived of ordinary auditory experience during development and indicate that behavioral training can ameliorate or restore temporal processing in the AI of profoundly deaf animals. PMID:21543753

  3. A spatio-temporal analysis of suicide in El Salvador.

    PubMed

    Carcach, Carlos

    2017-04-20

    In 2012, international statistics showed El Salvador's suicide rate as 40th in the world and the highest in Latin America. Over the last 15 years, national statistics show the suicide death rate declining as opposed to an increasing rate of homicide. Though completed suicide is an important social and health issue, little is known about its prevalence, incidence, etiology and spatio-temporal behavior. The primary objective of this study was to examine completed suicide and homicide using the stream analogy to lethal violence within a spatio-temporal framework. A Bayesian model was applied to examine the spatio-temporal evolution of the tendency of completed suicide over homicide in El Salvador. Data on numbers of suicides and homicides at the municipal level were obtained from the Instituto de Medicina Legal (IML) and population counts, from the Dirección General de Estadística y Censos (DIGESTYC), for the period of 2002 to 2012. Data on migration were derived from the 2007 Population Census, and inequality data were obtained from a study by Damianović, Valenzuela and Vera. The data reveal a stable standardized rate of total lethal violence (completed suicide plus homicide) across municipalities over time; a decline in suicide; and a standardized suicide rate decreasing with income inequality but increasing with social isolation. Municipalities clustered in terms of both total lethal violence and suicide standardized rates. Spatial effects for suicide were stronger among municipalities located in the north-east and center-south sides of the country. New clusters of municipalities with large suicide standardized rates were detected in the north-west, south-west and center-south regions, all of which are part of time-stable clusters of homicide. Prevention efforts to reduce income inequality and mitigate the negative effects of weak relational systems should focus upon municipalities forming time-persistent clusters with a large rate of death by suicide. In municipalities that are part of newly-formed suicide clusters and also are located in areas with a large rate of homicide, interrupting the expansion of spatial concentrations of suicide over time may require the implementation of both public health and public safety interventions.

  4. Multiscale spatial and small-scale temporal variation in the composition of Riverine fish communities.

    PubMed

    Growns, Ivor; Astles, Karen; Gehrke, Peter

    2006-03-01

    We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.

  5. Spatio-temporal Variations of Nitrogen Dioxide over Western China from Satellite Observations during 2005-2013

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Lin, J.; Huang, B.; Song, C.

    2015-12-01

    Western China has experienced rapid urbanization and industrialization since the implementation of National Western Development Strategy by Chinese Government. Most resource-intensive industries and high-pollution factories had been moved from the east coast to Western China after 2000. In this research, the spatial and temporal variations of tropospheric NO2 concentration in 2005 - 2013 is analyzed based on the satellite observations by Ozone Measurement Instrument (OMI). The annual trends and seasonality of tropospheric NO2 over Western China are calculated. The results show that large increases are observed in urban areas and the polluted regions are expanding. Additionally, the seasonal patterns of some regions over Western China are changing significantly and more clean areas tend to changing from the characteristics of natural emissions to those of anthropogenic emissions. The spatial and temporal variations of NO2 concentrations are well responded to the rapid urbanization and industrialization over Western China.

  6. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California

    USGS Publications Warehouse

    Ruhl, C.A.; Schoellhamer, D.H.; Stumpf, R.P.; Lindsay, C.L.

    2001-01-01

    Analysis of suspended-sediment concentration data in San Francisco Bay is complicated by spatial and temporal variability. In situ optical backscatterance sensors provide continuous suspended-sediment concentration data, but inaccessibility, vandalism, and cost limit the number of potential monitoring stations. Satellite imagery reveals the spatial distribution of surficial-suspended sediment concentrations in the Bay; however, temporal resolution is poor. Analysis of the in situ sensor data in conjunction with the satellite reflectance data shows the effects of physical processes on both the spatial and temporal distribution of suspended sediment in San Francisco Bay. Plumes can be created by large freshwater flows. Zones of high suspended-sediment concentrations in shallow subembayments are associated with wind-wave resuspension and the spring-neap cycle. Filaments of clear and turbid water are caused by different transport processes in deep channels, as opposed to adjacent shallow water.

  7. Developing a spatial-temporal method for the geographic investigation of shoeprint evidence.

    PubMed

    Lin, Ge; Elmes, Gregory; Walnoha, Mike; Chen, Xiannian

    2009-01-01

    This article examines the potential of a spatial-temporal method for analysis of forensic shoeprint data. The large volume of shoeprint evidence recovered at crime scenes results in varied success in matching a print to a known shoe type and subsequently linking sets of matched prints to suspected offenders. Unlike DNA and fingerprint data, a major challenge is to reduce the uncertainty in linking sets of matched shoeprints to a suspected serial offender. Shoeprint data for 2004 were imported from the Greater London Metropolitan Area Bigfoot database into a geographic information system, and a spatial-temporal algorithm developed for this project. The results show that by using distance and time constraints interactively, the number of candidate shoeprints that can implicate one or few suspects can be substantially reduced. It concludes that the use of space-time and other ancillary information within a geographic information system can be quite helpful for forensic investigation.

  8. Local Generation and Propagation of Ripples along the Septotemporal Axis of the Hippocampus

    PubMed Central

    Patel, Jagdish; Schomburg, Erik W.; Berényi, Antal; Fujisawa, Shigeyoshi

    2013-01-01

    A topographical relationship exists between the septotemporal segments of the hippocampus and their entorhinal–neocortical targets, but the physiological organization of activity along the septotemporal axis is poorly understood. We recorded sharp-wave ripple patterns in rats during sleep from the entire septotemporal axis of the CA1 pyramidal layer. Qualitatively similar ripples emerged at all levels. From the local seed, ripples traveled septally or temporally at a speed of ∼0.35 m/s, and the spatial spread depended on ripple magnitude. Ripples propagated smoothly across the septal and intermediate segments of the hippocampus, but ripples in the temporal segment often remained isolated. These findings show that ripples can combine information from the septal and intermediate hippocampus and transfer integrated signals downstream. In contrast, ripples that emerged in the temporal pole broadcast largely independent information to their cortical and subcortical targets. PMID:24155307

  9. Multimodal MR-imaging reveals large-scale structural and functional connectivity changes in profound early blindness

    PubMed Central

    Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier

    2017-01-01

    In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness. PMID:28328939

  10. Experimental Investigation of the Turbulent Large Scale Temporal Flow in the Wing-Body Junction.

    DTIC Science & Technology

    1984-03-01

    densities, the coherence, and the relative phase were experimentally obtained and used to determine the space-time extent of the temporal flow . Oil dot...Cenedese, A., Cerri, G., and Ianeta, S., " Experimental Analysis of the Wake behind an Isolated Cambered Airfoil," Unsteady Turbulent Shear Flows , IUTAM...ARD-A139 836 EXPERIMENTAL INVESTIGATION OF THE TURBULENT LARGE SCALE 1/3 TEMPORAL FLOW IN T.. (U) CATHOLIC UNIV OF AMERICA WASHINGTON DC SCHOOL OF

  11. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities.

    PubMed

    Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.

  12. Figures of Merit for Mirror Materials

    DTIC Science & Technology

    1980-07-10

    show higher temporal stability. Mirror figure changes with time have generally been small: - X/30 - X/40 for CER-VIT and silica mirrors .27 Zerodur and...9 III. MIRROR FAILURE CRITERIA ................. s .. .................. 13 A. Mechanical Loading Effects...41 / a3 I.. I • INTRODUCTION Large space mirrors were analyzed I with the objective of comparing the ability of materials to minimize static

  13. Exploring spatial-temporal dynamics of fire regime features in mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-10-01

    This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).

  14. Scaling properties of the Arctic sea ice Deformation from Buoy Dispersion Analysis

    NASA Astrophysics Data System (ADS)

    Weiss, J.; Rampal, P.; Marsan, D.; Lindsay, R.; Stern, H.

    2007-12-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over time scales from 3 hours to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate -the Arctic sea ice cover- stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e. it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multi-scale fracturing/faulting processes.

  15. Scaling properties of sea ice deformation from buoy dispersion analysis

    NASA Astrophysics Data System (ADS)

    Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.

    2008-03-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.

  16. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    PubMed

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension. Copyright © 2017 the authors 0270-6474/17/377906-15$15.00/0.

  17. Holocene forest dynamics in central and western Mediterranean: periodicity, spatio-temporal patterns and climate influence.

    PubMed

    Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella

    2018-06-12

    It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.

  18. Optical Fluorescent Imaging to Monitor Temporal Effects of Microbubble-Mediated Ultrasound Therapy

    PubMed Central

    Sorace, Anna G.; Saini, Reshu; Rosenthal, Eben; Warram, Jason M.; Zinn, Kurt R.; Hoyt, Kenneth

    2013-01-01

    Microbubble-mediated ultrasound therapy can noninvasively enhance drug delivery to localized regions in the body. This technique can be beneficial in cancer therapy, but currently there are limitations to tracking the therapeutic effects. The purpose of this experiment was to investigate the potential of fluorescent imaging for monitoring the temporal effects of microbubble-mediated ultrasound therapy. Mice were implanted with 2LMP breast cancer cells. The animals underwent microbubble-mediated ultrasound therapy in the presence of Cy5.5 fluorescent-labeled IgG antibody (large molecule) or Cy5.5 dye (small molecule) and microbubble contrast agents. Control animals were administered fluorescent molecules only. Animals were transiently imaged in vivo at 1, 10, 30, and 60 min post therapy using a small animal optical imaging system. Tumors were excised and analyzed ex vivo. Tumors were homogenized and emulsion imaged for Cy5.5 fluorescence. Monitoring in vivo results showed significant influx of dye into the tumor (p < 0.05) using the small molecule, but not in the large molecule group (p > 0.05). However, after tumor emulsion, significantly higher dye concentration was detected in therapy group tumors for both small and large molecule groups in comparison to their control counterparts (p < 0.01). This paper explores a noninvasive optical imaging method for monitoring the effects of microbubble-mediated ultrasound therapy in a cancer model. It provides temporal information following the process of increasing extravasation of molecules into target tumors. PMID:23357902

  19. Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy.

    PubMed

    Sorace, Anna G; Saini, Reshu; Rosenthal, Eben; Warram, Jason M; Zinn, Kurt R; Hoyt, Kenneth

    2013-02-01

    Microbubble-mediated ultrasound therapy can noninvasively enhance drug delivery to localized regions in the body. This technique can be beneficial in cancer therapy, but currently there are limitations to tracking the therapeutic effects. The purpose of this experiment was to investigate the potential of fluorescent imaging for monitoring the temporal effects of microbubble-mediated ultrasound therapy. Mice were implanted with 2LMP breast cancer cells. The animals underwent microbubble-mediated ultrasound therapy in the presence of Cy5.5 fluorescent-labeled IgG antibody (large molecule) or Cy5.5 dye (small molecule) and microbubble contrast agents. Control animals were administered fluorescent molecules only. Animals were transiently imaged in vivo at 1, 10, 30, and 60 min post therapy using a small animal optical imaging system. Tumors were excised and analyzed ex vivo. Tumors were homogenized and emulsion imaged for Cy5.5 fluorescence. Monitoring in vivo results showed significant influx of dye into the tumor (p < 0.05) using the small molecule, but not in the large molecule group (p > 0.05). However, after tumor emulsion, significantly higher dye concentration was detected in therapy group tumors for both small and large molecule groups in comparison to their control counterparts (p <0.01). This paper explores a noninvasive optical imaging method for monitoring the effects of microbubble-mediated ultrasound therapy in a cancer model. It provides temporal information following the process of increasing extravasation of molecules into target tumors.

  20. Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe

    PubMed Central

    Papanastassiou, Alex M.; DiCarlo, James J.

    2013-01-01

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850

  1. Temporal differentiation of pH-dependent capacitive current from dopamine.

    PubMed

    Yoshimi, Kenji; Weitemier, Adam

    2014-09-02

    Voltammetric recording of dopamine (DA) with fast-scan cyclic voltammetry (FSCV) on carbon fiber microelectrodes have been widely used, because of its high sensitivity to dopamine. However, since an electric double layer on a carbon fiber surface in a physiological ionic solution behaves as a capacitor, fast voltage manipulation in FSCV induces large capacitive current. The faradic current from oxidation/reduction of target chemicals must be extracted from this large background current. It is known that ionic shifts, including H(+), influence this capacitance, and pH shift can cause confounding influences on the FSCV recordings within a wide range of voltage. Besides FSCV with a triangular waveform, we have been using rectangular pulse voltammetry (RPV) for dopamine detection in the brain. In this method, the onset of a single pulse causes a large capacitive current, but unlike FSCV, the capacitive current is restricted to a narrow temporal window of just after pulse onset (<5 ms). In contrast, the peak of faradic current from dopamine oxidation occurs after a delay of more than a few milliseconds. Taking advantage of the temporal difference, we show that RPV could distinguish dopamine from pH shifts clearly and easily. In addition, the early onset current was useful to evaluate pH shifts. The narrow voltage window of our RPV pulse allowed a clear differentiation of dopamine and serotonin (5-HT), as we have shown previously. Additional recording with RPV, alongside FSCV, would improve identification of chemicals such as dopamine, pH, and 5-HT.

  2. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  3. Biological Applications and Effects of Optical Masers.

    DTIC Science & Technology

    1983-08-01

    exposures began. By March 1983 after 316 daily exposures, there were large lesions in the superior and temporal macula and the exposure regime was stopped...epithelium (RPE) depigmentation in the superior macula . Now funduscopic examination of 11 the exposed eye disclosed a large lesion in the superior...paramacula where an edematous area had been observed previously and another large lesion in the temporal macula . There were numerous small depigmented

  4. Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an Arctic predator.

    PubMed

    Giroux, Marie-Andrée; Berteaux, Dominique; Lecomte, Nicolas; Gauthier, Gilles; Szor, Guillaume; Bêty, Joël

    2012-05-01

    1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  5. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.

  6. The Effect of Amplifier Bias Drift on Differential Magnitude Estimation in Multiple-Star Systems

    NASA Astrophysics Data System (ADS)

    Tyler, David W.; Muralimanohar, Hariharan; Borelli, Kathy J.

    2007-02-01

    We show how the temporal drift of CCD amplifier bias can cause significant relative magnitude estimation error in speckle interferometric observations of multiple-star systems. When amplifier bias varies over time, the estimation error arises if the time between acquisition of dark-frame calibration data and science data is long relative to the timescale over which the bias changes. Using analysis, we show that while detector-temperature drift over time causes a variation in accumulated dark current and a residual bias in calibrated imagery, only amplifier bias variations cause a residual bias in the estimated energy spectrum. We then use telescope data taken specifically to investigate this phenomenon to show that for the detector used, temporal bias drift can cause residual energy spectrum bias as large or larger than the mean value of the noise energy spectrum. Finally, we use a computer simulation to demonstrate the effect of residual bias on differential magnitude estimation. A supplemental calibration technique is described in the appendices.

  7. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    USGS Publications Warehouse

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  8. On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta Basin.

    PubMed

    Ndehedehe, Christopher E; Awange, Joseph L; Corner, Robert J; Kuhn, Michael; Okwuashi, Onuwa

    2016-07-01

    Multiple drought episodes over the Volta basin in recent reports may lead to food insecurity and loss of revenue. However, drought studies over the Volta basin are rather generalised and largely undocumented due to sparse ground observations and unsuitable framework to determine their space-time occurrence. In this study, we examined the utility of standardised indicators (standardised precipitation index (SPI), standardised runoff index (SRI), standardised soil moisture index (SSI), and multivariate standardised drought index (MSDI)) and Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water storage to assess hydrological drought characteristics over the basin. In order to determine the space-time patterns of hydrological drought in the basin, Independent Component Analysis (ICA), a higher order statistical technique was employed. The results show that SPI and SRI exhibit inconsistent behaviour in observed wet years presupposing a non-linear relationship that reflects the slow response of river discharge to precipitation especially after a previous extreme dry period. While the SPI and SSI show a linear relationship with a correlation of 0.63, the correlation between the MSDIs derived from combining precipitation/river discharge and precipitation/soil moisture indicates a significant value of 0.70 and shows an improved skill in hydrological drought monitoring over the Volta basin during the study period. The ICA-derived spatio-temporal hydrological drought patterns show Burkina Faso and the Lake Volta areas as predominantly drought zones. Further, the statistically significant negative correlations of pacific decadal oscillations (0.39 and 0.25) with temporal evolutions of drought in Burkina Faso and Ghana suggest the possible influence of low frequency large scale oscillations in the observed wet and dry regimes over the basin. Finally, our approach in drought assessment over the Volta basin contributes to a broad framework for hydrological drought monitoring that will complement existing methods while looking forward to a longer record of GRACE observations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts

    NASA Astrophysics Data System (ADS)

    Wang, M.; Kamarianakis, Y.; Georgescu, M.

    2017-12-01

    A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.

  10. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006-2015

    NASA Astrophysics Data System (ADS)

    Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel H.; Esler, Daniel; Dean, Thomas A.

    2018-01-01

    Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006-2015), Kenai Fjords National Park (Kenai Fjords) (2008-2015) and western Prince William Sound (WPWS) (2007-2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of Alaska were affecting mussel survival and subsequently abundance. In contrast, density of primarily small mussels obtained from cores (as an index of recruitment), varied markedly by site, but did not show meaningful temporal trends. We interpret this to indicate that settlement was driven by site-specific features rather than Gulf wide factors. By extension, we hypothesize that temporal changes in mussel abundance observed was not a result of temporal variation in larval supply leading to variation in recruitment, but rather suggestive of mortality as a primary demographic factor driving mussel abundance. Our results highlight the need to better understand underlying mechanisms of change in mussels, as well as implications of that change to nearshore consumers.

  11. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015

    USGS Publications Warehouse

    Bodkin, James L.; Coletti, Heather A.; Ballachey, Brenda E.; Monson, Daniel; Esler, Daniel N.; Dean, Thomas A.

    2017-01-01

    Mussels are conspicuous and ecologically important components of nearshore marine communities around the globe. Pacific blue mussels (Mytilus trossulus) are common residents of intertidal habitats in protected waters of the North Pacific, serving as a conduit of primary production to a wide range of nearshore consumers including predatory invertebrates, sea ducks, shorebirds, sea otters, humans, and other terrestrial mammals. We monitored seven metrics of intertidal Pacific blue mussel abundance at five sites in each of three regions across the northern Gulf of Alaska: Katmai National Park and Preserve (Katmai) (2006–2015), Kenai Fjords National Park (Kenai Fjords) (2008–2015) and western Prince William Sound (WPWS) (2007–2015). Metrics included estimates of: % cover at two tide heights in randomly selected rocky intertidal habitat; and in selected mussel beds estimates of: the density of large mussels (≥ 20 mm); density of all mussels > 2 mm estimated from cores extracted from those mussel beds; bed size; and total abundance of large and all mussels, i.e. the product of density and bed size. We evaluated whether these measures of mussel abundance differed among sites or regions, whether mussel abundance varied over time, and whether temporal patterns in abundance were site specific, or synchronous at regional or Gulf-wide spatial scales. We found that, for all metrics, mussel abundance varied on a site-by-site basis. After accounting for site differences, we found similar temporal patterns in several measures of abundance (both % cover metrics, large mussel density, large mussel abundance, and mussel abundance estimated from cores), in which abundance was initially high, declined significantly over several years, and subsequently recovered. Averaged across all sites, we documented declines of 84% in large mussel abundance through 2013 with recovery to 41% of initial abundance by 2015. These findings suggest that factors operating across the northern Gulf of Alaska were affecting mussel survival and subsequently abundance. In contrast, density of primarily small mussels obtained from cores (as an index of recruitment), varied markedly by site, but did not show meaningful temporal trends. We interpret this to indicate that settlement was driven by site-specific features rather than Gulf wide factors. By extension, we hypothesize that temporal changes in mussel abundance observed was not a result of temporal variation in larval supply leading to variation in recruitment, but rather suggestive of mortality as a primary demographic factor driving mussel abundance. Our results highlight the need to better understand underlying mechanisms of change in mussels, as well as implications of that change to nearshore consumers.

  12. Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.

    PubMed

    Huang, Yan; Wang, Wei; Wang, Liang

    2018-04-01

    Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.

  13. Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern U.S.

    USGS Publications Warehouse

    Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura

    2017-01-01

    Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.

  14. Remotely Sensed Spatio-Temporal Variability of Snow Cover in Himalayan Region with Perspective of Climate Change

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Ojha, S.

    2017-12-01

    Climate change and its impact of water resource have gained tremendous attention among scientific committee, governments and other stakeholders since last couple of decades, especially in Himalayan region. In this study, we purpose remotely sensed measurements to monitor snow cover, both spatially and temporal, and assess climate change impact on water resource. The snow cover data from MODIS satellite (2000-2010) have been used to analyze some climate change indicators. In particular, the variability in the maximum snow extent with elevations, its temporal variability (8-day, monthly, seasonal and annual), its variation trend and its relation with temperature have been analyzed. The snow products used in this study are the maximum snow extent and fractional snow covers, which come in 8-day temporal and 500m and 0.05 degree spatial resolutions, respectively. The results showed a tremendous potential of the MODIS snow product for studying the spatial and temporal variability of snow as well as the study of climate change impact in large and inaccessible regions like the Himalayas. The snow area extent (SAE) (%) time series exhibits similar patterns during seven hydrological years, even though there are some deviations in the accumulation and melt periods. The analysis showed relatively well inverse relation between the daily mean temperature and SAE during the melting period. Some important trends of snow fall are also observed. In particular, the decreasing trend in January and increasing trend in late winter and early spring may be interpreted as a signal of a possible seasonal shift. However, it requires more years of data to verify this conclusion.

  15. Spatiotemporal dynamics of processing nonsymbolic number: an event-related potential source localization study.

    PubMed

    Hyde, Daniel C; Spelke, Elizabeth S

    2012-09-01

    Coordinated studies with adults, infants, and nonhuman animals provide evidence for two distinct systems of nonverbal number representation. The "parallel individuation" (PI) system selects and retains information about one to three individual entities and the "numerical magnitude" system establishes representations of the approximate cardinal value of a group. Recent event-related potential (ERP) work has demonstrated that these systems reliably evoke functionally and temporally distinct patterns of brain response that correspond to established behavioral signatures. However, relatively little is known about the neural generators of these ERP signatures. To address this question, we targeted known ERP signatures of these systems, by contrasting processing of small versus large nonsymbolic numbers, and used a source localization algorithm (LORETA) to identify their cortical origins. Early processing of small numbers, showing the signature effects of PI on the N1 (∼150 ms), was localized primarily to extrastriate visual regions. In contrast, qualitatively and temporally distinct processing of large numbers, showing the signatures of approximate number representation on the mid-latency P2p (∼200-250 ms), was localized primarily to right intraparietal regions. In comparison, mid-latency small number processing was localized to the right temporal-parietal junction and left-lateralized intraparietal regions. These results add spatial information to the emerging ERP literature documenting the process by which we represent number. Furthermore, these results substantiate recent claims that early attentional processes determine whether a collection of objects will be represented through PI or as an approximate numerical magnitude by providing evidence that downstream processing diverges to distinct cortical regions. Copyright © 2011 Wiley Periodicals, Inc.

  16. Uncertainties in TRMM-Era multisatellite-based tropical rainfall estimates over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Rauniyar, S. P.; Protat, A.; Kanamori, H.

    2017-05-01

    This study investigates the regional and seasonal rainfall rate retrieval uncertainties within nine state-of-the-art satellite-based rainfall products over the Maritime Continent (MC) region. The results show consistently larger differences in mean daily rainfall among products over land, especially over mountains and along coasts, compared to over ocean, by about 20% for low to medium rain rates and 5% for heavy rain rates. However, rainfall differences among the products do not exhibit any seasonal dependency over both surface types (land and ocean) of the MC region. The differences between products largely depends on the rain rate itself, with a factor 2 difference for light rain and 30% for intermediate and high rain rates over ocean. The rain-rate products dominated by microwave measurements showed less spread among themselves over ocean compared to the products dominated by infrared measurements. Conversely, over land, the rain gauge-adjusted post-real-time products dominated by microwave measurements produced the largest spreads, due to the usage of different gauge analyses for the bias corrections. Intercomparisons of rainfall characteristics of these products revealed large discrepancies in detecting the frequency and intensity of rainfall. These satellite products are finally evaluated at subdaily, daily, monthly, intraseasonal, and seasonal temporal scales against high-quality gridded rainfall observations in the Sarawak (Malaysia) region for the 4 year period 2000-2003. No single satellite-based rainfall product clearly outperforms the other products at all temporal scales. General guidelines are provided for selecting a product that could be best suited for a particular application and/or temporal resolution.

  17. Digital Archiving of People Flow by Recycling Large-Scale Social Survey Data of Developing Cities

    NASA Astrophysics Data System (ADS)

    Sekimoto, Y.; Watanabe, A.; Nakamura, T.; Horanont, T.

    2012-07-01

    Data on people flow has become increasingly important in the field of business, including the areas of marketing and public services. Although mobile phones enable a person's position to be located to a certain degree, it is a challenge to acquire sufficient data from people with mobile phones. In order to grasp people flow in its entirety, it is important to establish a practical method of reconstructing people flow from various kinds of existing fragmentary spatio-temporal data such as social survey data. For example, despite typical Person Trip Survey Data collected by the public sector showing the fragmentary spatio-temporal positions accessed, the data are attractive given the sufficiently large sample size to estimate the entire flow of people. In this study, we apply our proposed basic method to Japan International Cooperation Agency (JICA) PT data pertaining to developing cities around the world, and we propose some correction methods to resolve the difficulties in applying it to many cities and stably to infrastructure data.

  18. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities

    PubMed Central

    Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658

  19. Body size and extinction risk in terrestrial mammals above the species level.

    PubMed

    Tomiya, Susumu

    2013-12-01

    Mammalian body mass strongly correlates with life history and population properties at the scale of mouse to elephant. Large body size is thus often associated with elevated extinction risk. I examined the North American fossil record (28-1 million years ago) of 276 terrestrial genera to uncover the relationship between body size and extinction probability above the species level. Phylogenetic comparative analysis revealed no correlation between sampling-adjusted durations and body masses ranging 7 orders of magnitude, an observation that was corroborated by survival analysis. Most of the ecological and temporal groups within the data set showed the same lack of relationship. Size-biased generic extinctions do not constitute a general feature of the Holarctic mammalian faunas in the Neogene. Rather, accelerated loss of large mammals occurred during intervals that experienced combinations of regional aridification and increased biomic heterogeneity within continents. The latter phenomenon is consistent with the macroecological prediction that large geographic ranges are critical to the survival of large mammals in evolutionary time. The frequent lack of size selectivity in generic extinctions can be reconciled with size-biased species loss if extinctions of large and small mammals at the species level are often driven by ecological perturbations of different spatial and temporal scales, while those at the genus level are more synchronized in time as a result of fundamental, multiscale environmental shifts.

  20. Isotopic Differences between Forage Consumed by a Large Herbivore in Open, Closed, and Coastal Habitats: New Evidence from a Boreal Study System.

    PubMed

    Giroux, Marie-Andrée; Valiquette, Éliane; Tremblay, Jean-Pierre; Côté, Steeve D

    2015-01-01

    Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C) or nitrogen (δ15N) isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0 ‰ lower in closed than in open habitats, while δ15N were 2.0 ‰ and 7.4 ‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.

  1. Monitoring, analyzing and simulating of spatial-temporal changes of landscape pattern over mining area

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Han, Ruimei; Wang, Shuangting

    2014-11-01

    According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.

  2. Variation in the macrofaunal community over large temporal and spatial scales in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Sui, Jixing; Yang, Mei; Sun, Yue; Li, Xinzheng; Wang, Hongfa; Zhang, Baolin

    2017-09-01

    To detect large, temporal- and spatial-scale variations in the macrofaunal community in the southern Yellow Sea, data collected along the western, middle and eastern regions of the southern Yellow Sea from 1958 to 2014 were organized and analyzed. Statistical methods such as cluster analysis, non-metric multidimensional scaling ordination (nMDS), permutational multivariate analysis of variance (PERMANOVA), redundancy analysis (RDA) and canonical correspondence analysis (CCA) were applied. The abundance of polychaetes increased in the western region but decreased in the eastern region from 1958 to 2014, whereas the abundance of echinoderms showed an opposite trend. For the entire macrofaunal community, Margalef's richness (d), the Shannon-Wiener index (H‧) and Pielou's evenness (J‧) were significantly lower in the eastern region when compared with the other two regions. No significant temporal differences were found for d and H‧, but there were significantly lower values of J‧ in 2014. Considerable variation in the macrofaunal community structure over the past several decades and among the geographical regions at the species, genus and family levels were observed. The species, genera and families that contributed to the temporal variation in each region were also identified. The most conspicuous pattern was the increase in the species Ophiura sarsii vadicola in the eastern region. In the western region, five polychaetes (Ninoe palmata, Notomastus latericeus, Paralacydonia paradoxa, Paraprionospio pinnata and Sternaspis scutata) increased consistently from 1958 to 2014. The dominance curves showed that both the species diversity and the dominance patterns were relatively stable in the western and middle regions. Environmental parameters such as depth, temperature and salinity could only partially explain the observed biological variation in the southern Yellow Sea. Anthropogenic activities such as demersal fishing and other unmeasured environmental variables may be more responsible for the long-term changes in the macrofaunal community.

  3. Environmental and management impacts on temporal variability of soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2012-04-01

    Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10 cm) showed a similar time course as a moving average of rainfall. Drying induced a decrease in conductivity while wetting of the soil resulted in higher conductivity values. Approaching saturation however, the drying phase showed a different behaviour with increasing values of hydraulic conductivity. This may be explained probably by formation of cracks acting as large macropores. We concluded that aggregate coalescence as a function of capillary forces and soil rheologic properties (cf. Or et al., 2002) are a main predictor of temporal dynamics of near saturated soil hydraulic properties while different plant covers only had a minor effect on the observed system dynamics. Or, D., Ghezzehei, T.A. 2002. Modeling post-tillage soil structural dynamics. a review. Soil Till Res. 64, 41-59.

  4. Fast Transformation of Temporal Plans for Efficient Execution

    NASA Technical Reports Server (NTRS)

    Tsamardinos, Ioannis; Muscettola, Nicola; Morris, Paul

    1998-01-01

    Temporal plans permit significant flexibility in specifying the occurrence time of events. Plan execution can make good use of that flexibility. However, the advantage of execution flexibility is counterbalanced by the cost during execution of propagating the time of occurrence of events throughout the flexible plan. To minimize execution latency, this propagation needs to be very efficient. Previous work showed that every temporal plan can be reformulated as a dispatchable plan, i.e., one for which propagation to immediate neighbors is sufficient. A simple algorithm was given that finds a dispatchable plan with a minimum number of edges in cubic time and quadratic space. In this paper, we focus on the efficiency of the reformulation process, and improve on that result. A new algorithm is presented that uses linear space and has time complexity equivalent to Johnson s algorithm for all-pairs shortest-path problems. Experimental evidence confirms the practical effectiveness of the new algorithm. For example, on a large commercial application, the performance is improved by at least two orders of magnitude. We further show that the dispatchable plan, already minimal in the total number of edges, can also be made minimal in the maximum number of edges incoming or outgoing at any node.

  5. Of Mice and Dogs

    PubMed Central

    Dewald, Oliver; Ren, Guofeng; Duerr, Georg D.; Zoerlein, Martin; Klemm, Christina; Gersch, Christine; Tincey, Sophia; Michael, Lloyd H.; Entman, Mark L.; Frangogiannis, Nikolaos G.

    2004-01-01

    Large animal models have provided much of the descriptive data regarding the cellular and molecular events in myocardial infarction and repair. The availability of genetically altered mice may provide a valuable tool for specific cellular and molecular dissection of these processes. In this report we compare closed chest models of canine and mouse infarction/reperfusion qualitatively and quantitatively for temporal, cellular, and spatial differences. Much like the canine model, reperfused mouse hearts are associated with marked induction of endothelial adhesion molecules, cytokines, and chemokines. Reperfused mouse infarcts show accelerated replacement of cardiomyocytes by granulation tissue leading to a thin mature scar at 14 days, when the canine infarction is still cellular and evolving. Infarcted mouse hearts demonstrate a robust but transient postreperfusion inflammatory reaction, associated with a rapid up-regulation of interleukin-10 and transforming growth factor-β. Unlike canine infarcts, infarcted mouse hearts show only transient macrophage infiltration and no significant mast cell accumulation. In correlation, the growth factor for macrophages, M-CSF, shows modest and transient up-regulation in the early days of reperfusion; and the obligate growth factor for mast cells, stem cell factor, SCF, is not induced. In summary, the postinfarction inflammatory response and resultant repair in the mouse heart shares many common characteristics with large mammalian species, but has distinct temporal and qualitative features. These important species-specific differences should be considered when interpreting findings derived from studies using genetically altered mice. PMID:14742270

  6. Are there meaningful individual differences in temporal inconsistency in self-reported personality?

    PubMed

    Soubelet, Andrea; Salthouse, Timothy A; Oishi, Shigehiro

    2014-11-01

    The current project had three goals. The first was to examine whether it is meaningful to refer to across-time variability in self-reported personality as an individual differences characteristic. The second was to investigate whether negative affect was associated with variability in self-reported personality, while controlling for mean levels, and correcting for measurement errors. The third goal was to examine whether variability in self-reported personality would be larger among young adults than among older adults, and whether the relation of variability with negative affect would be stronger at older ages than at younger ages. Two moderately large samples of participants completed the International Item Pool Personality questionnaire assessing the Big Five personality dimensions either twice or thrice, in addition to several measures of negative affect. Results were consistent with the hypothesis that within-person variability in self-reported personality is a meaningful individual difference characteristic. Some people exhibited greater across-time variability than others after removing measurement error, and people who showed temporal instability in one trait also exhibited temporal instability across the other four traits. However, temporal variability was not related to negative affect, and there was no evidence that either temporal variability or its association with negative affect varied with age.

  7. [Time and temporality in gerontology and the ontologic privation theory of biological aging].

    PubMed

    Kment, A

    1989-01-01

    We have seen how our conception of time has changed in the course of the years. Up to the beginning of this century people believed in absolute time. According to today's views, time and temporality do not consist of a continuous flow of time successions, as generally assumed, the essence lies in the inner character of events. Therefore, in order to comprehend the true nature of time and temporality in gerontology, we must pay particular attention to the constitutional structures of events or happenings. Here we must comprehend the implication of an ontological change and the constitutions of time as metaphysical structure. Time and temporality are measured in happenings and processes, and not vice versa. Whitehead, showed that we are concerned with an ontological interpretation of time and temporality. The biodynamics of an individual reveal the largely autonomous structure and bionomy of the processes of life, as well as the continuous interaction and shifts of the biological cycles of formation, change, and decline. The ontological privation of biological aging and death are just as much a part of life as conception and birth. Only what lives can mature, age, and die. The imminent "purpose" of the biological aging of the individual is dying and death, i.e., the return home into "absolute being".

  8. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks

    PubMed Central

    Vestergaard, Christian L.; Génois, Mathieu

    2015-01-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860

  9. Peripheral resolution and contrast sensitivity: Effects of stimulus drift.

    PubMed

    Venkataraman, Abinaya Priya; Lewis, Peter; Unsbo, Peter; Lundström, Linda

    2017-04-01

    Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal-sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut-off for grating stimuli with four temporal frequencies (0, 5, 10 and 15Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut-off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5-10Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15Hz drift. Despite this decrease, the resolution cut-off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut-off for stationary (0Hz) and 7.5Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Sebestyen, Stephen D.

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less

  11. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.

    PubMed

    Vestergaard, Christian L; Génois, Mathieu

    2015-10-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.

  12. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland

    DOE PAGES

    Griffiths, Natalie A.; Sebestyen, Stephen D.

    2016-10-14

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less

  13. A Neural Circuit Mechanism for the Involvements of Dopamine in Effort-Related Choices: Decay of Learned Values, Secondary Effects of Depletion, and Calculation of Temporal Difference Error

    PubMed Central

    2018-01-01

    Abstract Dopamine has been suggested to be crucially involved in effort-related choices. Key findings are that dopamine depletion (i) changed preference for a high-cost, large-reward option to a low-cost, small-reward option, (ii) but not when the large-reward option was also low-cost or the small-reward option gave no reward, (iii) while increasing the latency in all the cases but only transiently, and (iv) that antagonism of either dopamine D1 or D2 receptors also specifically impaired selection of the high-cost, large-reward option. The underlying neural circuit mechanisms remain unclear. Here we show that findings i–iii can be explained by the dopaminergic representation of temporal-difference reward-prediction error (TD-RPE), whose mechanisms have now become clarified, if (1) the synaptic strengths storing the values of actions mildly decay in time and (2) the obtained-reward-representing excitatory input to dopamine neurons increases after dopamine depletion. The former is potentially caused by background neural activity–induced weak synaptic plasticity, and the latter is assumed to occur through post-depletion increase of neural activity in the pedunculopontine nucleus, where neurons representing obtained reward exist and presumably send excitatory projections to dopamine neurons. We further show that finding iv, which is nontrivial given the suggested distinct functions of the D1 and D2 corticostriatal pathways, can also be explained if we additionally assume a proposed mechanism of TD-RPE calculation, in which the D1 and D2 pathways encode the values of actions with a temporal difference. These results suggest a possible circuit mechanism for the involvements of dopamine in effort-related choices and, simultaneously, provide implications for the mechanisms of TD-RPE calculation. PMID:29468191

  14. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity

    USGS Publications Warehouse

    Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.

  15. Long-Term Citizen-Collected Data Reveal Geographical Patterns and Temporal Trends in Lake Water Clarity

    PubMed Central

    Lottig, Noah R.; Wagner, Tyler; Norton Henry, Emily; Spence Cheruvelil, Kendra; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity. PMID:24788722

  16. Large-scale spatio-temporal monitoring highlights hotspots of demersal fish diversity in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Granger, Victoria; Fromentin, Jean-Marc; Bez, Nicolas; Relini, Giulio; Meynard, Christine N.; Gaertner, Jean-Claude; Maiorano, Porzia; Garcia Ruiz, Cristina; Follesa, Cristina; Gristina, Michele; Peristeraki, Panagiota; Brind'Amour, Anik; Carbonara, Pierluigi; Charilaou, Charis; Esteban, Antonio; Jadaud, Angélique; Joksimovic, Aleksandar; Kallianiotis, Argyris; Kolitari, Jerina; Manfredi, Chiara; Massuti, Enric; Mifsud, Roberta; Quetglas, Antoni; Refes, Wahid; Sbrana, Mario; Vrgoc, Nedo; Spedicato, Maria Teresa; Mérigot, Bastien

    2015-01-01

    Increasing human pressures and global environmental change may severely affect the diversity of species assemblages and associated ecosystem services. Despite the recent interest in phylogenetic and functional diversity, our knowledge on large spatio-temporal patterns of demersal fish diversity sampled by trawling remains still incomplete, notably in the Mediterranean Sea, one of the most threatened marine regions of the world. We investigated large spatio-temporal diversity patterns by analysing a dataset of 19,886 hauls from 10 to 800 m depth performed annually during the last two decades by standardised scientific bottom trawl field surveys across the Mediterranean Sea, within the MEDITS program. A multi-component (eight diversity indices) and multi-scale (local assemblages, biogeographic regions to basins) approach indicates that only the two most traditional components (species richness and evenness) were sufficient to reflect patterns in taxonomic, phylogenetic or functional richness and divergence. We also put into question the use of widely computed indices that allow comparing directly taxonomic, phylogenetic and functional diversity within a unique mathematical framework. In addition, demersal fish assemblages sampled by trawl do not follow a continuous decreasing longitudinal/latitudinal diversity gradients (spatial effects explained up to 70.6% of deviance in regression tree and generalised linear models), for any of the indices and spatial scales analysed. Indeed, at both local and regional scales species richness was relatively high in the Iberian region, Malta, the Eastern Ionian and Aegean seas, meanwhile the Adriatic Sea and Cyprus showed a relatively low level. In contrast, evenness as well as taxonomic, phylogenetic and functional divergences did not show regional hotspots. All studied diversity components remained stable over the last two decades. Overall, our results highlight the need to use complementary diversity indices through different spatial scales when developing conservation strategies and defining delimitations for protected areas.

  17. Familial pattern of large vestibular aqueduct syndrome in a Chinese family

    PubMed Central

    Hazmi, Mohd; Ab Aziz, A.; Asma, A.

    2013-01-01

    Large Vestibular Aqueduct Syndrome (LVAS) is the most common radiographic malformation in children with early onset of hearing loss. Usually its occurrence is non-familial, however intriguingly a portion of patients with LVAS is found to have evidence of genetic predisposition. We described cases of LVAS in two siblings of a Chinese family. The elder sister first presented with reduced hearing since childhood and her brother has a similar complaint upon further questioning. Their hearing test showed bilateral sensorineural hearing loss (SNHL) and computed tomography (CT) of temporal bone showed enlarged vestibular aqueduct in both patients. We described an approach to diagnosis of LVAS and highlight the importance of hearing assessment in genetic link hearing loss. PMID:27034633

  18. Early-warning signals for catastrophic soil degradation

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek

    2010-05-01

    Many earth systems have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been described, among others, for climate, vegetation, animal populations, and geomorphology. Predicting the timing of critical transitions before they are reached is of importance because of the large impact on nature and society associated with the transition. However, it is notably difficult to predict the timing of a transition. This is because the state variables of the system show little change before the threshold is reached. As a result, the precision of field observations is often too low to provide predictions of the timing of a transition. A possible solution is the use of spatio-temporal patterns in state variables as leading indicators of a transition. It is becoming clear that the critically slowing down of a system causes spatio-temporal autocorrelation and variance to increase before the transition. Thus, spatio-temporal patterns are important candidates for early-warning signals. In this research we will show that these early-warning signals also exist in geomorphological systems. We consider a modelled vegetation-soil system under a gradually increasing grazing pressure causing an abrupt shift towards extensive soil degradation. It is shown that changes in spatio-temporal patterns occur well ahead of this catastrophic transition. A distributed model describing the coupled processes of vegetation growth and geomorphological denudation is adapted. The model uses well-studied simple process representations for vegetation and geomorphology. A logistic growth model calculates vegetation cover as a function of grazing pressure and vegetation growth rate. Evolution of the soil thickness is modelled by soil creep and wash processes, as a function of net rain reaching the surface. The vegetation and soil system are coupled by 1) decreasing vegetation growth with decreasing soil thickness and 2) increasing soil wash with decreasing vegetation cover. The model describes a critical, catastrophic transition of an underexploited system with low grazing pressure towards an overexploited system. The underexploited state has high vegetation cover and well developed soils, while the overexploited state has low vegetation cover and largely degraded soils. We first show why spatio-temporal patterns in vegetation cover, morphology, erosion rate, and sediment load should be expected to change well before the critical transition towards the overexploited state. Subsequently, spatio-temporal patterns are quantified by calculating statistics, in particular first order statistics and autocorrelation in space and time. It is shown that these statistics gradually change before the transition is reached. This indicates that the statistics may serve as early-warning signals in real-world applications. We also discuss the potential use of remote sensing to predict the critical transition in real-world landscapes.

  19. Learning Efficient Spatial-Temporal Gait Features with Deep Learning for Human Identification.

    PubMed

    Liu, Wu; Zhang, Cheng; Ma, Huadong; Li, Shuangqun

    2018-02-06

    The integration of the latest breakthroughs in bioinformatics technology from one side and artificial intelligence from another side, enables remarkable advances in the fields of intelligent security guard computational biology, healthcare, and so on. Among them, biometrics based automatic human identification is one of the most fundamental and significant research topic. Human gait, which is a biometric features with the unique capability, has gained significant attentions as the remarkable characteristics of remote accessed, robust and security in the biometrics based human identification. However, the existed methods cannot well handle the indistinctive inter-class differences and large intra-class variations of human gait in real-world situation. In this paper, we have developed an efficient spatial-temporal gait features with deep learning for human identification. First of all, we proposed a gait energy image (GEI) based Siamese neural network to automatically extract robust and discriminative spatial gait features for human identification. Furthermore, we exploit the deep 3-dimensional convolutional networks to learn the human gait convolutional 3D (C3D) as the temporal gait features. Finally, the GEI and C3D gait features are embedded into the null space by the Null Foley-Sammon Transform (NFST). In the new space, the spatial-temporal features are sufficiently combined with distance metric learning to drive the similarity metric to be small for pairs of gait from the same person, and large for pairs from different persons. Consequently, the experiments on the world's largest gait database show our framework impressively outperforms state-of-the-art methods.

  20. Statistical Analysis of Small-Scale Magnetic Flux Emergence Patterns: A Useful Subsurface Diagnostic?

    NASA Astrophysics Data System (ADS)

    Lamb, Derek A.

    2016-10-01

    While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.

  1. Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Conlin, William; Yu, Paulo; Durgesh, Vibhav

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.

  2. Temporal Processing, Attention, and Learning Disorders

    ERIC Educational Resources Information Center

    Landerl, Karin; Willburger, Edith

    2010-01-01

    In a large sample (N = 439) of literacy impaired and unimpaired elementary school children the predictions of the temporal processing theory of dyslexia were tested while controlling for (sub)clininal attentional deficits. Visual and Auditory Temporal Order Judgement were administered as well as three subtests of a standardized attention test. The…

  3. Spatial and Temporal Patterns of Throughfall Amounts and Solutes in a Tropical Montane Forest - Comparisons with Findings From Lowland Rain Forests

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.

    2007-05-01

    The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.

  4. Space-based observations of nitrogen dioxide: Trends in anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Russell, Ashley Ray

    Space-based instruments provide routine global observations, offering a unique perspective on the spatial and temporal variation of atmospheric constituents. In this dissertation, trends in regional-scale anthropogenic nitrogen oxide emissions (NO + NO2 ≡ NOx) are investigated using high resolution observations from the Ozone Monitoring Instrument (OMI). By comparing trends in OMI observations with those from ground-based measurements and an emissions inventory, I show that satellite observations are well-suited for capturing changes in emissions over time. The high spatial and temporal resolutions of the observations provide a uniquely complete view of regional-scale changes in the spatial patterns of NO 2. I show that NOx concentrations have decreased significantly in urban regions of the United States between 2005 and 2011, with an average reduction of 32 ± 7%. By examining day-of-week and interannual trends, I show that these reductions can largely be attributed to improved emission control technology in the mobile source fleet; however, I also show that the economic downturn of the late 2000's has impacted emissions. Additionally, I describe the development of a high-resolution retrieval of NO2 from OMI observations known as the Berkeley High Resolution (BEHR) retrieval. The BEHR product uses higher spatial and temporal resolution terrain and profile parameters than the operational retrievals and is shown to provide a more quantitative measure of tropospheric NO2 column density. These results have important implications for future retrievals of NO2 from space-based observations.

  5. Characteristics and evolution of the ecosystem of software tools supporting research in molecular biology.

    PubMed

    Pazos, Florencio; Chagoyen, Monica

    2018-01-16

    Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    PubMed

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  7. Unique characteristics of motor adaptation during walking in young children.

    PubMed

    Musselman, Kristin E; Patrick, Susan K; Vasudevan, Erin V L; Bastian, Amy J; Yang, Jaynie F

    2011-05-01

    Children show precocious ability in the learning of languages; is this the case with motor learning? We used split-belt walking to probe motor adaptation (a form of motor learning) in children. Data from 27 children (ages 8-36 mo) were compared with those from 10 adults. Children walked with the treadmill belts at the same speed (tied belt), followed by walking with the belts moving at different speeds (split belt) for 8-10 min, followed again by tied-belt walking (postsplit). Initial asymmetries in temporal coordination (i.e., double support time) induced by split-belt walking were slowly reduced, with most children showing an aftereffect (i.e., asymmetry in the opposite direction to the initial) in the early postsplit period, indicative of learning. In contrast, asymmetries in spatial coordination (i.e., center of oscillation) persisted during split-belt walking and no aftereffect was seen. Step length, a measure of both spatial and temporal coordination, showed intermediate effects. The time course of learning in double support and step length was slower in children than in adults. Moreover, there was a significant negative correlation between the size of the initial asymmetry during early split-belt walking (called error) and the aftereffect for step length. Hence, children may have more difficulty learning when the errors are large. The findings further suggest that the mechanisms controlling temporal and spatial adaptation are different and mature at different times.

  8. Optimization methods of pulse-to-pulse alignment using femtosecond pulse laser based on temporal coherence function for practical distance measurement

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui

    2018-02-01

    An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.

  9. Space and time scales in human-landscape systems.

    PubMed

    Kondolf, G Mathias; Podolak, Kristen

    2014-01-01

    Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.

  10. [Interdependence of plankton spatial distribution and plancton biomass temporal oscillations: mathematical simulation].

    PubMed

    Medvedinskiĭ, A B; Tikhonova, I A; Li, B L; Malchow, H

    2003-01-01

    The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.

  11. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes.

    PubMed

    Docherty, Kathryn M; Borton, Hannah M; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L M; Maes, Patrick W; Mott, Brendon M; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A P; Stanish, Lee F; Walser, Olivia N; Gallery, Rachel E

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community structure in soils stored at -80°C and -20°C and found no significant differences in community composition based on storage temperature. Free, open access datasets and data sharing platforms are powerful tools for integrating research and teaching in undergraduate and graduate student classrooms. They are a valuable resource for fostering interdisciplinary collaborations, testing ecological theory, model development and validation, and generating novel hypotheses. Training in data analysis and interpretation of large datasets in university classrooms through project-based learning improves the learning experience for students and enables their use of these significant resources throughout their careers.

  12. Key Edaphic Properties Largely Explain Temporal and Geographic Variation in Soil Microbial Communities across Four Biomes

    PubMed Central

    Borton, Hannah M.; Espinosa, Noelle; Gebhardt, Martha; Gil-Loaiza, Juliana; Gutknecht, Jessica L. M.; Maes, Patrick W.; Mott, Brendon M.; Parnell, John Jacob; Purdy, Gayle; Rodrigues, Pedro A. P.; Stanish, Lee F.; Walser, Olivia N.

    2015-01-01

    Soil microbial communities play a critical role in nutrient transformation and storage in all ecosystems. Quantifying the seasonal and long-term temporal extent of genetic and functional variation of soil microorganisms in response to biotic and abiotic changes within and across ecosystems will inform our understanding of the effect of climate change on these processes. We examined spatial and seasonal variation in microbial communities based on 16S rRNA gene sequencing and phospholipid fatty acid (PLFA) composition across four biomes: a tropical broadleaf forest (Hawaii), taiga (Alaska), semiarid grassland-shrubland (Utah), and a subtropical coniferous forest (Florida). In this study, we used a team-based instructional approach leveraging the iPlant Collaborative to examine publicly available National Ecological Observatory Network (NEON) 16S gene and PLFA measurements that quantify microbial diversity, composition, and growth. Both profiling techniques revealed that microbial communities grouped strongly by ecosystem and were predominately influenced by three edaphic factors: pH, soil water content, and cation exchange capacity. Temporal variability of microbial communities differed by profiling technique; 16S-based community measurements showed significant temporal variability only in the subtropical coniferous forest communities, specifically through changes within subgroups of Acidobacteria. Conversely, PLFA-based community measurements showed seasonal shifts in taiga and tropical broadleaf forest systems. These differences may be due to the premise that 16S-based measurements are predominantly influenced by large shifts in the abiotic soil environment, while PLFA-based analyses reflect the metabolically active fraction of the microbial community, which is more sensitive to local disturbances and biotic interactions. To address the technical issue of the response of soil microbial communities to sample storage temperature, we compared 16S-based community structure in soils stored at -80°C and -20°C and found no significant differences in community composition based on storage temperature. Free, open access datasets and data sharing platforms are powerful tools for integrating research and teaching in undergraduate and graduate student classrooms. They are a valuable resource for fostering interdisciplinary collaborations, testing ecological theory, model development and validation, and generating novel hypotheses. Training in data analysis and interpretation of large datasets in university classrooms through project-based learning improves the learning experience for students and enables their use of these significant resources throughout their careers. PMID:26536666

  13. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    PubMed

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.

  14. Effect of spatial and temporal scales on habitat suitability modeling: A case study of Ommastrephes bartramii in the northwest pacific ocean

    NASA Astrophysics Data System (ADS)

    Gong, Caixia; Chen, Xinjun; Gao, Feng; Tian, Siquan

    2014-12-01

    Temporal and spatial scales play important roles in fishery ecology, and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution. The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling, with the western stock of winter-spring cohort of neon flying squid ( Ommastrephes bartramii) in the northwest Pacific Ocean as an example. In this study, the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used. We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°, 1° and 2°), four longitude scales (0.5°, 1°, 2° and 4°), and three temporal scales (week, fortnight, and month). The coefficients of variation (CV) of the weekly, biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise. This study shows that the optimal temporal and spatial scales with the lowest CV are month, and 0.5° latitude and 0.5° longitude for O. bartramii in the northwest Pacific Ocean. This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts. We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.

  15. Large Area Field of View for Fast Temporal Resolution Astronomy

    NASA Astrophysics Data System (ADS)

    Covarrubias, Ricardo A.

    2018-01-01

    Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.

  16. Reliability of MEG source imaging of anterior temporal spikes: analysis of an intracranially characterized spike focus.

    PubMed

    Wennberg, Richard; Cheyne, Douglas

    2014-05-01

    To assess the reliability of MEG source imaging (MSI) of anterior temporal spikes through detailed analysis of the localization and orientation of source solutions obtained for a large number of spikes that were separately confirmed by intracranial EEG to be focally generated within a single, well-characterized spike focus. MSI was performed on 64 identical right anterior temporal spikes from an anterolateral temporal neocortical spike focus. The effects of different volume conductors (sphere and realistic head model), removal of noise with low frequency filters (LFFs) and averaging multiple spikes were assessed in terms of the reliability of the source solutions. MSI of single spikes resulted in scattered dipole source solutions that showed reasonable reliability for localization at the lobar level, but only for solutions with a goodness-of-fit exceeding 80% using a LFF of 3 Hz. Reliability at a finer level of intralobar localization was limited. Spike averaging significantly improved the reliability of source solutions and averaging 8 or more spikes reduced dependency on goodness-of-fit and data filtering. MSI performed on topographically identical individual spikes from an intracranially defined classical anterior temporal lobe spike focus was limited by low reliability (i.e., scattered source solutions) in terms of fine, sublobar localization within the ipsilateral temporal lobe. Spike averaging significantly improved reliability. MSI performed on individual anterior temporal spikes is limited by low reliability. Reduction of background noise through spike averaging significantly improves the reliability of MSI solutions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Methane Seeps in the Gulf of Mexico: repeat acoustic surveying shows highly temporally and spatially variable venting

    NASA Astrophysics Data System (ADS)

    Beaumont, B. C.; Raineault, N.

    2016-02-01

    Scientists have recognized that natural seeps account for a large amount of methane emissions. Despite their widespread occurrence in areas like the Gulf of Mexico, little is known about the temporal variability and site-scale spatial variability of venting over time. We used repeat acoustic surveys to compare multiple days of seep activity and determine the changes in the locus of methane emission and plume height. The Sleeping Dragon site was surveyed with an EM302 multibeam sonar on three consecutive days in 2014 and 4 days within one week in 2015. The data revealed three distinctive plume regions. The locus of venting varied by 10-60 meters at each site. The plume that exhibited the least spatial variability in venting, was also the most temporally variable. This seep was present in one-third of survey dates in 2014 and three quarters of survey dates in 2015, showing high day-to-day variability. The plume height was very consistent for this plume, whereas the other plumes were more consistent temporally, but varied in maximum plume height detection by 25-85 m. The single locus of emission at the site that had high day-to-day variability may be due to a single conduit for methane release, which is sometimes closed off by carbonate or clathrate hydrate formation. In addition to day-to-day temporal variability, the locus of emission at one site was observed to shift from a point-source in 2014 to a diffuse source in 2015 at a nearby location. ROV observations showed that one of the seep sites that closed off temporarily, experienced an explosive breakthrough of gas, releasing confined methane and blowing out rock. The mechanism that causes on/off behavior of certain plumes, combined with the spatial variability of the locus of methane release shown in this study may point to carbonate or hydrate formation in the seep plumbing system and should be further investigated.

  18. Correlation buildup during recrystallization in three-dimensional dusty plasma clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schella, André; Mulsow, Matthias; Melzer, André

    2014-05-15

    The recrystallization process of finite three-dimensional dust clouds after laser heating is studied experimentally. The time-dependent Coulomb coupling parameter is presented, showing that the recrystallization starts with an exponential cooling phase where cooling is slower than damping by the neutral gas friction. At later times, the coupling parameter oscillates into equilibrium. It is found that a large fraction of cluster states after recrystallization experiments is in metastable states. The temporal evolution of the correlation buildup shows that correlation occurs on even slower time scale than cooling.

  19. Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.

    PubMed

    Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2017-01-01

    Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.

  20. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    NASA Astrophysics Data System (ADS)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  1. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review

    DOE PAGES

    Zuo, Chao; Huang, Lei; Zhang, Minliang; ...

    2016-05-06

    In fringe projection pro lometry (FPP), temporal phase unwrapping is an essential procedure to recover an unambiguous absolute phase even in the presence of large discontinuities or spatially isolated surfaces. So far, there are typically three groups of temporal phase unwrapping algorithms proposed in the literature: multi-frequency (hierarchical) approach, multi-wavelength (heterodyne) approach, and number-theoretical approach. In this paper, the three methods are investigated and compared in details by analytical, numerical, and experimental means. The basic principles and recent developments of the three kind of algorithms are firstly reviewed. Then, the reliability of different phase unwrapping algorithms is compared based onmore » a rigorous stochastic noise model. Moreover, this noise model is used to predict the optimum fringe period for each unwrapping approach, which is a key factor governing the phase measurement accuracy in FPP. Simulations and experimental results verified the correctness and validity of the proposed noise model as well as the prediction scheme. The results show that the multi-frequency temporal phase unwrapping provides the best unwrapping reliability, while the multi-wavelength approach is the most susceptible to noise-induced unwrapping errors.« less

  2. The roles of convective entrainment in spatial distributions and temporal variations of precipitation over tropical oceans

    NASA Astrophysics Data System (ADS)

    Hirota, N.; Takayabu, Y. N.; Watanabe, M.; Kimoto, M.; Chikira, M.

    2013-12-01

    This study shows that a proper treatment of convective entrainment is essential in determining spatial distributions and temporal variations of precipitation by numerical experiments. They have performed and compared four experiments with different entrainment characteristics: a control (Ctl), no entrainment (NoEnt), original Arakawa Schubert (AS), and AS with simple empirical suppression of convection (ASRH). The fractional entrainment rate of AS and ASRH are constant for each cloud type and are very small near cloud base compared to Ctl, in which half of buoyancy-generated energy is consumed by the entrainment. Ctl well reproduces the spatial and temporal variations, whereas NoEnt and AS, which are very similar to each other, significantly underestimated the variations with the so-called the double ITCZ problem. The enhanced variations in Ctl are due to the larger entrainment that strengthens the coupling of convection and free tropospheric humidity. Time variations are also more realistic in Ctl; mid-height convection moistens mid-troposphere and large precipitation events occur after sufficient moisture is available. In contrast, deep convection is more frequent but with smaller precipitation amount in NoEnt and AS. ASRH shows smaller spatial but excessive temporal variations suggesting that its empirical suppression condition is too simple and a more sophisticated formulation is required for more realistic precipitation variations. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (GRENE), and by the Ministry of the Environment (2A-1201), Japan.

  3. Time Processing in Dyscalculia

    PubMed Central

    Cappelletti, Marinella; Freeman, Elliot D.; Butterworth, Brian L.

    2011-01-01

    To test whether atypical number development may affect other types of quantity processing, we investigated temporal discrimination in adults with developmental dyscalculia (DD). This also allowed us to test whether number and time may be sub-served by a common quantity system or decision mechanisms: if they do, both should be impaired in dyscalculia, but if number and time are distinct they should dissociate. Participants judged which of two successively presented horizontal lines was longer in duration, the first line being preceded by either a small or a large number prime (“1” or “9”) or by a neutral symbol (“#”), or in a third task participants decided which of two Arabic numbers (either “1,” “5,” “9”) lasted longer. Results showed that (i) DD’s temporal discriminability was normal as long as numbers were not part of the experimental design, even as task-irrelevant stimuli; however (ii) task-irrelevant numbers dramatically disrupted DD’s temporal discriminability the more their salience increased, though the actual magnitude of the numbers had no effect; in contrast (iii) controls’ time perception was robust to the presence of numbers but modulated by numerical quantity: therefore small number primes or numerical stimuli seemed to make durations appear shorter than veridical, but longer for larger numerical prime or numerical stimuli. This study is the first to show spared temporal discrimination – a dimension of continuous quantity – in a population with a congenital number impairment. Our data reinforce the idea of a partially shared quantity system across numerical and temporal dimensions, which supports both dissociations and interactions among dimensions; however, they suggest that impaired number in DD is unlikely to originate from systems initially dedicated to continuous quantity processing like time. PMID:22194731

  4. Time processing in dyscalculia.

    PubMed

    Cappelletti, Marinella; Freeman, Elliot D; Butterworth, Brian L

    2011-01-01

    To test whether atypical number development may affect other types of quantity processing, we investigated temporal discrimination in adults with developmental dyscalculia (DD). This also allowed us to test whether number and time may be sub-served by a common quantity system or decision mechanisms: if they do, both should be impaired in dyscalculia, but if number and time are distinct they should dissociate. Participants judged which of two successively presented horizontal lines was longer in duration, the first line being preceded by either a small or a large number prime ("1" or "9") or by a neutral symbol ("#"), or in a third task participants decided which of two Arabic numbers (either "1," "5," "9") lasted longer. Results showed that (i) DD's temporal discriminability was normal as long as numbers were not part of the experimental design, even as task-irrelevant stimuli; however (ii) task-irrelevant numbers dramatically disrupted DD's temporal discriminability the more their salience increased, though the actual magnitude of the numbers had no effect; in contrast (iii) controls' time perception was robust to the presence of numbers but modulated by numerical quantity: therefore small number primes or numerical stimuli seemed to make durations appear shorter than veridical, but longer for larger numerical prime or numerical stimuli. This study is the first to show spared temporal discrimination - a dimension of continuous quantity - in a population with a congenital number impairment. Our data reinforce the idea of a partially shared quantity system across numerical and temporal dimensions, which supports both dissociations and interactions among dimensions; however, they suggest that impaired number in DD is unlikely to originate from systems initially dedicated to continuous quantity processing like time.

  5. Amyloid and Tau PET Demonstrate Region-Specific Associations in Normal Older People

    PubMed Central

    Lockhart, Samuel N.; Schöll, Michael; Baker, Suzanne L.; Ayakta, Nagehan; Swinnerton, Kaitlin N.; Bell, Rachel K.; Mellinger, Taylor J.; Shah, Vyoma D.; O’Neil, James P.; Janabi, Mustafa; Jagust, William J.

    2017-01-01

    β-amyloid (Aβ) and tau pathology become increasingly prevalent with age, however, the spatial relationship between the two pathologies remains unknown. We examined local (same region) and non-local (different region) associations between these 2 aggregated proteins in 46 normal older adults using [18F]AV-1451 (for tau) and [11C]PiB (for Aβ) positron emission tomography (PET) and 1.5T magnetic resonance imaging (MRI) images. While local voxelwise analyses showed associations between PiB and AV-1451 tracer largely in the temporal lobes, k-means clustering revealed that some of these associations were driven by regions with low tracer retention. We followed this up with a whole-brain region-by-region (local and non-local) partial correlational analysis. We calculated each participant’s mean AV-1451 and PiB uptake values within 87 regions of interest (ROI). Pairwise ROI analysis demonstrated many positive PiB—AV-1451 associations. Importantly, strong positive partial correlations (controlling for age, sex, and global gray matter fraction, p < .01) were identified between PiB in multiple regions of association cortex and AV-1451 in temporal cortical ROIs. There were also less frequent and weaker positive associations of regional PiB with frontoparietal AV-1451 uptake. Particularly in temporal lobe ROIs, AV-1451 uptake was strongly predicted by PiB across multiple ROI locations. These data indicate that Aβ and tau pathology show significant local and non-local regional associations among cognitively normal elderly, with increased PiB uptake throughout the cortex correlating with increased temporal lobe AV-1451 uptake. The spatial relationship between Aβ and tau accumulation does not appear to be specific to Aβ location, suggesting a regional vulnerability of temporal brain regions to tau accumulation regardless of where Aβ accumulates. PMID:28232190

  6. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements

    PubMed Central

    Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas

    2013-01-01

    Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888

  7. Grey matter correlates of susceptibility to scams in community-dwelling older adults.

    PubMed

    Duke Han, S; Boyle, Patricia A; Yu, Lei; Arfanakis, Konstantinos; James, Bryan D; Fleischman, Debra A; Bennett, David A

    2016-06-01

    Susceptibility to scams is a significant issue among older adults, even among those with intact cognition. Age-related changes in brain macrostructure may be associated with susceptibility to scams; however, this has yet to be explored. Based on previous work implicating frontal and temporal lobe functioning as important in decision making, we tested the hypothesis that susceptibility to scams is associated with smaller grey matter volume in frontal and temporal lobe regions in a large community-dwelling cohort of non-demented older adults. Participants (N = 327, mean age = 81.55, mean education = 15.30, 78.9 % female) completed a self-report measure used to assess susceptibility to scams and an MRI brain scan. Results indicated an inverse association between overall grey matter and susceptibility to scams in models adjusted for age, education, and sex; and in models further adjusted for cognitive function. No significant associations were observed for white matter, cerebrospinal fluid, or total brain volume. Models adjusted for age, education, and sex revealed seven clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, left middle temporal, left orbitofrontal, right ventromedial prefrontal, right middle temporal, right precuneus, and right dorsolateral prefrontal regions. In models further adjusted for cognitive function, results revealed three significant clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, right hippocampal, and right middle temporal regions. Lower grey matter concentration in specific brain regions may be associated with susceptibility to scams, even after adjusting for cognitive ability. Future research is needed to determine whether grey matter reductions in these regions may be a biomarker for susceptibility to scams in old age.

  8. Speech Perception in Tones and Noise via Cochlear Implants Reveals Influence of Spectral Resolution on Temporal Processing

    PubMed Central

    Kreft, Heather A.

    2014-01-01

    Under normal conditions, human speech is remarkably robust to degradation by noise and other distortions. However, people with hearing loss, including those with cochlear implants, often experience great difficulty in understanding speech in noisy environments. Recent work with normal-hearing listeners has shown that the amplitude fluctuations inherent in noise contribute strongly to the masking of speech. In contrast, this study shows that speech perception via a cochlear implant is unaffected by the inherent temporal fluctuations of noise. This qualitative difference between acoustic and electric auditory perception does not seem to be due to differences in underlying temporal acuity but can instead be explained by the poorer spectral resolution of cochlear implants, relative to the normally functioning ear, which leads to an effective smoothing of the inherent temporal-envelope fluctuations of noise. The outcome suggests an unexpected trade-off between the detrimental effects of poorer spectral resolution and the beneficial effects of a smoother noise temporal envelope. This trade-off provides an explanation for the long-standing puzzle of why strong correlations between speech understanding and spectral resolution have remained elusive. The results also provide a potential explanation for why cochlear-implant users and hearing-impaired listeners exhibit reduced or absent masking release when large and relatively slow temporal fluctuations are introduced in noise maskers. The multitone maskers used here may provide an effective new diagnostic tool for assessing functional hearing loss and reduced spectral resolution. PMID:25315376

  9. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  10. Statistical Mechanics of Temporal and Interacting Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.

  11. Seedling establishment and physiological responses to temporal and spatial soil moisture changes

    Treesearch

    Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos

    2016-01-01

    In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...

  12. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, (Normandy, Northern France)

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, D.

    2014-09-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groin, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3-10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2-101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceeding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  13. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, Normandy, northern France

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, T.

    2015-02-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groyne, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3 to 10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2 to 101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  14. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu.

    PubMed

    Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L

    2016-07-01

    Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data

    NASA Astrophysics Data System (ADS)

    ul-Haq, Zia; Rana, Asim Daud; Ali, Muhammad; Mahmood, Khalid; Tariq, Salman; Qayyum, Zarmina

    2015-08-01

    This study presents major anthropogenic sources of carbon monoxide (CO) in Pakistan and discusses the spatio-temporal variability of tropospheric CO over Pakistan and neighboring regions of Afghanistan, India and Iran for a period from 2003 to 2012 using satellite-sensed (AIRS/AMSU) data. The results show a large spatio-temporal variability of CO over the study region mostly associated with anthropogenic activities such as crop residue burning, vehicular transport, and electricity and energy generation, and local meteorology. The annual mean value of tropospheric CO is observed to be 115 ± 2 ppbv that remains almost steady during the study period with decadal increase of only 2%. Due to more anthropogenic emissions of CO and its transport, the eastern zone shows a higher average value of 122 ± 2 ppbv with 2.7% decadal increase than the western zone (111 ± 3 ppbv with 1.4% decadal increase). Elevated concentrations of CO have been observed over the Indo-Gangetic Basin, Lahore, Karachi, and Delhi. During the study period large fluctuations in CO mean monthly values are found ranging from 99 ppbv to 131 ppbv. The fact that, in spite of a large increase in the CO emissions from 2003 to 2012, its average concentration remains almost stable indicates that a large scale regional transport contributes substantially to the tropospheric CO. Carbon monoxide concentrations exhibit a strong seasonal pattern with maximum amplitude in spring and minimum in autumn. July is found to have the highest decadal increasing trend of 13% followed by August at 8%, whereas May has the highest decreasing trend of -8% followed by November at -4.4%.

  16. Temporal variability and memory in sediment transport in an experimental step-pool channel

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael

    2015-11-01

    Temporal dynamics of sediment transport in steep channels using two experiments performed in a steep flume (8%) with natural sediment composed of 12 grain sizes are studied. High-resolution (1 s) time series of sediment transport were measured for individual grain-size classes at the outlet of the flume for different combinations of sediment input rates and flow discharges. Our aim in this paper is to quantify (a) the relation of discharge and sediment transport and (b) the nature and strength of memory in grain-size-dependent transport. None of the simple statistical descriptors of sediment transport (mean, extreme values, and quantiles) display a clear relation with water discharge, in fact a large variability between discharge and sediment transport is observed. Instantaneous transport rates have probability density functions with heavy tails. Bed load bursts have a coarser grain-size distribution than that of the entire experiment. We quantify the strength and nature of memory in sediment transport rates by estimating the Hurst exponent and the autocorrelation coefficient of the time series for different grain sizes. Our results show the presence of the Hurst phenomenon in transport rates, indicating long-term memory which is grain-size dependent. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling duration of bed load transport rates in natural streams, especially for large fractions.

  17. Water availability as a driver of spatial and temporal variability in vegetation in the La Mancha plain (Spain): Implications for the land-surface energy, water and carbon budget

    NASA Astrophysics Data System (ADS)

    Los, Sietse

    2017-04-01

    Vegetation is water limited in large areas of Spain and therefore a close link exists between vegetation greenness observed from satellite and moisture availability. Here we exploit this link to infer spatial and temporal variability in moisture from MODIS NDVI data and thermal data. Discrepancies in the precipitation - vegetation relationship indicate areas with an alternative supply of water (i.e. not rainfall), this can be natural where moisture is supplied by upwelling groundwater, or can be artificial where crops are irrigated. As a result spatial and temporal variability in vegetation in the La Mancha Plain appears closely linked to topography, geology, rainfall and land use. Crop land shows large variability in year-to-year vegetation greenness; for some areas this variability is linked to variability in rainfall but in other cases this variability is linked to irrigation. The differences in irrigation treatment within one plant functional type, in this case crops, will lead to errors in land surface models when ignored. The magnitude of these effects on the energy, carbon and water balance are assessed at the scale of 250 m to 200 km. Estimating the water balance correctly is of particular important since in some areas in Spain more water is used for irrigation than is supplemented by rainfall.

  18. Appearance of Chelophyes appendiculata and Abylopsis tetragona (Cnidaria, Siphonophora) in the Bay of Villefranche, northwestern Mediterranean

    NASA Astrophysics Data System (ADS)

    Buecher, Emmanuelle

    1999-06-01

    The vertical and temporal distribution of two calycophoran siphonophores, Chelophyes appendiculata (Eschscholtz, 1829) and Abylopsis tetragona (Otto, 1823) in the Bay of Villefranche (northwestern Mediterranean) was investigated by an analysis of three different planktonic time series. A daily series (1993-1995) showed seasonal peaks of the nectophores of C. appendiculata during spring and particularly in late summer, while the abundance of A. tetragona remained similar throughout the year. A weekly series (1994-1995) showed that C. appendiculata (nectophores and eudoxids) became concentrated above the thermal discontinuity, in the most stratified and warm waters, whereas A. tetragona was collected in large numbers below this discontinuity. A 27-year survey (1966-1993) showed long-term fluctuations of these siphonophore populations, which became abundant in the Bay starting from 1980 and especially after 1984, when the water column grew warm and hypersaline, corresponding to a less rainy period. Temporal (seasonal and long-term) and bathymetric (between 10 and 60 m depth) successions of these two siphonophores were noted in this shallow coastal bay.

  19. Association of baseline level of physical activity and its temporal changes with incident hypertension and diabetes mellitus.

    PubMed

    Lee, Jong-Young; Ryu, Seungho; Sung, Ki-Chul

    2018-01-01

    Background The association between baseline and temporal changes in physical activity and incident hypertension or diabetes mellitus in initially non-hypertensive or non-diabetic subjects is rarely known. Methods Among individuals who underwent consecutive comprehensive health screenings, their physical activity level was measured using a self-reported international physical activity questionnaire. First, subjects were classified into four categories: no regular physical activity with a sedentary lifestyle; minimal physical activity (<75 min/week); insufficient physical activity (≥75 min but <150 min/week); and sufficient physical activity (≥150 min/week). Second, subjects were sub-grouped, based on temporal changes in physical activity level between baseline and consecutive follow-up: increase, no change, and decrease. Results Finally, among 174,314 subjects (mean age 36.7 ± 6.9 years), 5544 (3.18%) and 21,276 (12.2%) developed incident diabetes mellitus and arterial hypertension, respectively. After a multivariate adjustment, sufficient baseline physical activity was associated with significantly lower risk for incident hypertension (hazard ratio 0.89; 95% confidence interval (CI) 0.81 to 0.97), but the difference was not significant, and showed a lower trend in diabetes mellitus incidence (hazard ratio 0.87; 95% CI 0.69 to 1.04) in reference to no regular physical activity group. Regardless of the baseline physical activity level, subjects with a temporal increase in physical activity showed significantly decreased risk for incident hypertension (hazard ratio 0.93; 95% CI 0.87 to 0.99) and diabetes mellitus (hazard ratio 0.83; 95% CI 0.74 to 0.92) compared with those with a temporal decrease in their physical activity level. Conclusion Both sufficient baseline physical activity level and its temporal increase were associated with a lower risk of incident hypertension and diabetes mellitus in a large, relatively healthy, cohort.

  20. Task Dependence, Tissue Specificity, and Spatial Distribution of Widespread Activations in Large Single-Subject Functional MRI Datasets at 7T

    PubMed Central

    Gonzalez-Castillo, Javier; Hoy, Colin W.; Handwerker, Daniel A.; Roopchansingh, Vinai; Inati, Souheil J.; Saad, Ziad S.; Cox, Robert W.; Bandettini, Peter A.

    2015-01-01

    It was recently shown that when large amounts of task-based blood oxygen level–dependent (BOLD) data are combined to increase contrast- and temporal signal-to-noise ratios, the majority of the brain shows significant hemodynamic responses time-locked with the experimental paradigm. Here, we investigate the biological significance of such widespread activations. First, the relationship between activation extent and task demands was investigated by varying cognitive load across participants. Second, the tissue specificity of responses was probed using the better BOLD signal localization capabilities of a 7T scanner. Finally, the spatial distribution of 3 primary response types—namely positively sustained (pSUS), negatively sustained (nSUS), and transient—was evaluated using a newly defined voxel-wise waveshape index that permits separation of responses based on their temporal signature. About 86% of gray matter (GM) became significantly active when all data entered the analysis for the most complex task. Activation extent scaled with task load and largely followed the GM contour. The most common response type was nSUS BOLD, irrespective of the task. Our results suggest that widespread activations associated with extremely large single-subject functional magnetic resonance imaging datasets can provide valuable information about the functional organization of the brain that goes undetected in smaller sample sizes. PMID:25405938

  1. PLANNING AND RESPONSE IN THE AFTERMATH OF A LARGE CRISIS: AN AGENT-BASED INFORMATICS FRAMEWORK*

    PubMed Central

    Barrett, Christopher; Bisset, Keith; Chandan, Shridhar; Chen, Jiangzhuo; Chungbaek, Youngyun; Eubank, Stephen; Evrenosoğlu, Yaman; Lewis, Bryan; Lum, Kristian; Marathe, Achla; Marathe, Madhav; Mortveit, Henning; Parikh, Nidhi; Phadke, Arun; Reed, Jeffrey; Rivers, Caitlin; Saha, Sudip; Stretz, Paula; Swarup, Samarth; Thorp, James; Vullikanti, Anil; Xie, Dawen

    2014-01-01

    We present a synthetic information and modeling environment that can allow policy makers to study various counter-factual experiments in the event of a large human-initiated crisis. The specific scenario we consider is a ground detonation caused by an improvised nuclear device in a large urban region. In contrast to earlier work in this area that focuses largely on the prompt effects on human health and injury, we focus on co-evolution of individual and collective behavior and its interaction with the differentially damaged infrastructure. This allows us to study short term secondary and tertiary effects. The present environment is suitable for studying the dynamical outcomes over a two week period after the initial blast. A novel computing and data processing architecture is described; the architecture allows us to represent multiple co-evolving infrastructures and social networks at a highly resolved temporal, spatial, and individual scale. The representation allows us to study the emergent behavior of individuals as well as specific strategies to reduce casualties and injuries that exploit the spatial and temporal nature of the secondary and tertiary effects. A number of important conclusions are obtained using the modeling environment. For example, the studies decisively show that deploying ad hoc communication networks to reach individuals in the affected area is likely to have a significant impact on the overall casualties and injuries. PMID:25580055

  2. PLANNING AND RESPONSE IN THE AFTERMATH OF A LARGE CRISIS: AN AGENT-BASED INFORMATICS FRAMEWORK*

    PubMed

    Barrett, Christopher; Bisset, Keith; Chandan, Shridhar; Chen, Jiangzhuo; Chungbaek, Youngyun; Eubank, Stephen; Evrenosoğlu, Yaman; Lewis, Bryan; Lum, Kristian; Marathe, Achla; Marathe, Madhav; Mortveit, Henning; Parikh, Nidhi; Phadke, Arun; Reed, Jeffrey; Rivers, Caitlin; Saha, Sudip; Stretz, Paula; Swarup, Samarth; Thorp, James; Vullikanti, Anil; Xie, Dawen

    2013-01-01

    We present a synthetic information and modeling environment that can allow policy makers to study various counter-factual experiments in the event of a large human-initiated crisis. The specific scenario we consider is a ground detonation caused by an improvised nuclear device in a large urban region. In contrast to earlier work in this area that focuses largely on the prompt effects on human health and injury, we focus on co-evolution of individual and collective behavior and its interaction with the differentially damaged infrastructure. This allows us to study short term secondary and tertiary effects. The present environment is suitable for studying the dynamical outcomes over a two week period after the initial blast. A novel computing and data processing architecture is described; the architecture allows us to represent multiple co-evolving infrastructures and social networks at a highly resolved temporal, spatial, and individual scale. The representation allows us to study the emergent behavior of individuals as well as specific strategies to reduce casualties and injuries that exploit the spatial and temporal nature of the secondary and tertiary effects. A number of important conclusions are obtained using the modeling environment. For example, the studies decisively show that deploying ad hoc communication networks to reach individuals in the affected area is likely to have a significant impact on the overall casualties and injuries.

  3. Tidal bending of ice shelves as a mechanism for large-scale temporal variations in ice flow

    NASA Astrophysics Data System (ADS)

    Rosier, Sebastian H. R.; Hilmar Gudmundsson, G.

    2018-05-01

    GPS measurements reveal strong modulation of horizontal ice shelf and ice stream flow at a variety of tidal frequencies, most notably a fortnightly (Msf) frequency not present in the vertical tides themselves. Current theories largely fail to explain the strength and prevalence of this signal over floating ice shelves. We show how well-known non-linear aspects of ice rheology can give rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of ice shelf flow. Furthermore, our model shows that, in the absence of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry that we consider.

  4. Large earthquake rates from geologic, geodetic, and seismological perspectives

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2017-12-01

    Earthquake rate and recurrence information comes primarily from geology, geodesy, and seismology. Geology gives the longest temporal perspective, but it reveals only surface deformation, relatable to earthquakes only with many assumptions. Geodesy is also limited to surface observations, but it detects evidence of the processes leading to earthquakes, again subject to important assumptions. Seismology reveals actual earthquakes, but its history is too short to capture important properties of very large ones. Unfortunately, the ranges of these observation types barely overlap, so that integrating them into a consistent picture adequate to infer future prospects requires a great deal of trust. Perhaps the most important boundary is the temporal one at the beginning of the instrumental seismic era, about a century ago. We have virtually no seismological or geodetic information on large earthquakes before then, and little geological information after. Virtually all-modern forecasts of large earthquakes assume some form of equivalence between tectonic- and seismic moment rates as functions of location, time, and magnitude threshold. That assumption links geology, geodesy, and seismology, but it invokes a host of other assumptions and incurs very significant uncertainties. Questions include temporal behavior of seismic and tectonic moment rates; shape of the earthquake magnitude distribution; upper magnitude limit; scaling between rupture length, width, and displacement; depth dependence of stress coupling; value of crustal rigidity; and relation between faults at depth and their surface fault traces, to name just a few. In this report I'll estimate the quantitative implications for estimating large earthquake rate. Global studies like the GEAR1 project suggest that surface deformation from geology and geodesy best show the geography of very large, rare earthquakes in the long term, while seismological observations of small earthquakes best forecasts moderate earthquakes up to about magnitude 7. Regional forecasts for a few decades, like those in UCERF3, could be improved by calibrating tectonic moment rate to past seismicity rates. Century-long forecasts must be speculative. Estimates of maximum magnitude and rate of giant earthquakes over geologic time scales require more than science.

  5. Effect of Dosimetric Factors on Occurrence and Volume of Temporal Lobe Necrosis Following Intensity Modulated Radiation Therapy for Nasopharyngeal Carcinoma: A Case-Control Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Ou, Xiaomin; Xu, Tingting

    Purpose: To determine dosimetric risk factors for the occurrence of temporal lobe necrosis (TLN) among nasopharyngeal carcinoma (NPC) patients treated with intensity modulated radiation therapy (IMRT) and to investigate the impact of dose-volume histogram (DVH) parameters on the volume of TLN lesions (V-N). Methods and Materials: Forty-three NPC patients who had developed TLN following IMRT and 43 control subjects free of TLN were retrospectively assessed. DVH parameters included maximum dose (Dmax), minimum dose (Dmin), mean dose (Dmean), absolute volumes receiving specific dose (Vds) from 20 to 76 Gy (V20-V76), and doses covering certain volumes (Dvs) from 0.25 to 6.0 cm{sup 3} (D0.25-D6.0).more » V-Ns were quantified with axial magnetic resonance images. Results: DVH parameters were ubiquitously higher in temporal lobes with necrosis than in healthy temporal lobes. Increased Vds and Dvs were significantly associated with higher risk of TLN occurrence (P<.05). In particular, Vds at a dose of ≥70 Gy were found with the highest odds ratios. A common increasing trend was detected between V-N and DVH parameters through trend tests (P for trend of <.05). Linear regression analysis showed that V45 had the strongest predictive power for V-N (adjusted R{sup 2} = 0.305, P<.0001). V45 of <15.1 cm{sup 3} was relatively safe as the dose constraint for preventing large TLN lesions with V-N of >5 cm{sup 3}. Conclusions: Dosimetric parameters are significantly associated with TLN occurrence and the extent of temporal lobe injury. To better manage TLN, it would be important to avoid both focal high dose and moderate dose delivered to a large area in TLs.« less

  6. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    PubMed Central

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  7. Bayesian inference for the spatio-temporal invasion of alien species.

    PubMed

    Cook, Alex; Marion, Glenn; Butler, Adam; Gibson, Gavin

    2007-08-01

    In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.

  8. Dynamics of temporally localized states in passively mode-locked semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Schelte, C.; Javaloyes, J.; Gurevich, S. V.

    2018-05-01

    We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.

  9. Imbalance of community structures in epilepsy

    NASA Astrophysics Data System (ADS)

    Ortega, G. J.; Herrera Peco, I.; García de Sola, R.; Pastor, J.

    2010-09-01

    Epilepsy is commonly associated with synchronous activity in the form of spikes and also in developed seizures. Desynchronised activity seems to play an important role also in the seizure process, favouring the initiation of seizures. The aim of the present work is to explore synchronization activity in the inner areas in the temporal lobe of epileptic patients by a novel approach. Two temporal lobe epilepsy (TLE) patients' records have been analyzed through a cluster analysis. Electrical activity in the inner part of the temporal has been recorded by using Foramen Ovale Electrodes (FOE), a semi-invasive technique frequently used in drug resistant epileptic patients. Instead of tracking synchronized activity, we give here special attention to desynchronized activity, mainly those areas which are not included in synchronization clusters. Our results show that electrical activity in the epileptic side behaves in a less cohesive fashion than the contra-lateral side. There exists a clear tendency in the epileptic side to be organized as isolated clusters of electrical activity as compared with the contra-lateral side, which is organized in the form of large clusters of synchronous activity. In particular, we shall give special attention to the cluster desynchronization during the seizures. As we shall show, our results can help in understand several characteristics of the seizures dynamics.

  10. Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2008-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  11. Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  12. Space Technology 5 Multi-point Observations of Field-aligned Currents: Temporal Variability of Meso-Scale Structures

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  13. Space Technology 5 (ST-5) Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  14. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, R; Gallagher, B; Neville, J

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less

  15. Unraveling hidden order in the dynamics of developed and emerging markets.

    PubMed

    Berman, Yonatan; Shapira, Yoash; Ben-Jacob, Eshel

    2014-01-01

    The characterization of asset price returns is an important subject in modern finance. Traditionally, the dynamics of stock returns are assumed to lack any temporal order. Here we present an analysis of the autocovariance of stock market indices and unravel temporal order in several major stock markets. We also demonstrate a fundamental difference between developed and emerging markets in the past decade - emerging markets are marked by positive order in contrast to developed markets whose dynamics are marked by weakly negative order. In addition, the reaction to financial crises was found to be reversed among developed and emerging markets, presenting large positive/negative autocovariance spikes following the onset of these crises. Notably, the Chinese market shows neutral or no order while being regarded as an emerging market. These findings show that despite the coupling between international markets and global trading, major differences exist between different markets, and demonstrate that the autocovariance of markets is correlated with their stability, as well as with their state of development.

  16. Unraveling Hidden Order in the Dynamics of Developed and Emerging Markets

    PubMed Central

    Berman, Yonatan; Shapira, Yoash; Ben-Jacob, Eshel

    2014-01-01

    The characterization of asset price returns is an important subject in modern finance. Traditionally, the dynamics of stock returns are assumed to lack any temporal order. Here we present an analysis of the autocovariance of stock market indices and unravel temporal order in several major stock markets. We also demonstrate a fundamental difference between developed and emerging markets in the past decade - emerging markets are marked by positive order in contrast to developed markets whose dynamics are marked by weakly negative order. In addition, the reaction to financial crises was found to be reversed among developed and emerging markets, presenting large positive/negative autocovariance spikes following the onset of these crises. Notably, the Chinese market shows neutral or no order while being regarded as an emerging market. These findings show that despite the coupling between international markets and global trading, major differences exist between different markets, and demonstrate that the autocovariance of markets is correlated with their stability, as well as with their state of development. PMID:25383630

  17. Structural Coherence and Temporal Stability of Psychopathic Personality Features During Emerging Adulthood

    PubMed Central

    Hawes, Samuel W.; Mulvey, Edward P.; Schubert, Carol A.; Pardini, Dustin A.

    2015-01-01

    Psychopathy is a complex personality disorder characterized by affective, interpersonal, and behavioral dimensions. Although features of psychopathy have been extended downwardly to earlier developmental periods, there is a discerning lack of studies that have focused on critically important issues such as longitudinal invariance and stability/change in these features across time. The current study examines these issues using a large sample of male adolescent offenders (N = 1,170) assessed across 7 annual time points during the transition into emerging adulthood (ages ~ 17 to 24 years). Findings demonstrated that features of psychopathy remained longitudinally invariant across this developmental period, and showed temporally consistent and theoretically coherent associations with other measures of personality, psychopathology, and criminal behaviors. Results also demonstrated that mean levels of psychopathic personality features tended to decrease into emerging adulthood and showed relatively modest rank-order stability across assessments with 7-year lags. These findings suggest that reductions in maladaptive personality features seem to parallel the well-documented decreases in offending that occur during the early 20s. PMID:24978692

  18. Improving the phase response of an atom interferometer by means of temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Fang, Bess; Mielec, Nicolas; Savoie, Denis; Altorio, Matteo; Landragin, Arnaud; Geiger, Remi

    2018-02-01

    We study theoretically and experimentally the influence of temporally shaping the light pulses in an atom interferometer, with a focus on the phase response of the interferometer. We show that smooth light pulse shapes allow rejecting high frequency phase fluctuations (above the Rabi frequency) and thus relax the requirements on the phase noise or frequency noise of the interrogation lasers driving the interferometer. The light pulse shape is also shown to modify the scale factor of the interferometer, which has to be taken into account in the evaluation of its accuracy budget. We discuss the trade-offs to operate when choosing a particular pulse shape, by taking into account phase noise rejection, velocity selectivity, and applicability to large momentum transfer atom interferometry.

  19. Temporal Order in Periodically Driven Spins in Star-Shaped Clusters

    NASA Astrophysics Data System (ADS)

    Pal, Soham; Nishad, Naveen; Mahesh, T. S.; Sreejith, G. J.

    2018-05-01

    We experimentally study the response of star-shaped clusters of initially unentangled N =4 , 10, and 37 nuclear spin-1 /2 moments to an inexact π -pulse sequence and show that an Ising coupling between the center and the satellite spins results in robust period-2 magnetization oscillations. The period is stable against bath effects, but the amplitude decays with a timescale that depends on the inexactness of the pulse. Simulations reveal a semiclassical picture in which the rigidity of the period is due to a randomizing effect of the Larmor precession under the magnetization of surrounding spins. The timescales with stable periodicity increase with net initial magnetization, even in the presence of perturbations, indicating a robust temporal ordered phase for large systems with finite magnetization per spin.

  20. An analysis of the first two years of GASP data

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.

    1977-01-01

    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes.

  1. Of Time and the Media: Issues of Temporality in Communication Research.

    ERIC Educational Resources Information Center

    Ritchie, L. David

    The role of temporality as a cognitive and cultural factor in communication processes has been largely neglected in communication research. However, it is possible to examine the representation of time on three levels: allocation of events or actions to categories (as in sacred time versus profane time), temporal orientation, and the content of…

  2. Information Tailoring Enhancements for Large Scale Social Data

    DTIC Science & Technology

    2016-03-15

    i.com) 1 Work Performed within This Reporting Period .................................................... 2 1.1 Implemented Temporal Analytics ...following tasks.  Implemented Temporal Analysis Algorithms for Advanced Analytics in Scraawl. We implemented our backend web service design for the...temporal analysis and we created a prototyope GUI web service of Scraawl analytics dashboard.  Upgraded Scraawl computational framework to increase

  3. Delay-induced patterns in a two-dimensional lattice of coupled oscillators

    PubMed Central

    Kantner, Markus; Schöll, Eckehard; Yanchuk, Serhiy

    2015-01-01

    We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled oscillators with non-homogeneous coupling delays. The results are illustrated using the FitzHugh-Nagumo coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators. A “hybrid dispersion relation” is introduced, which describes the stability of the patterns in spatially extended systems with large time-delay. PMID:25687789

  4. Moderate point: Balanced entropy and enthalpy contributions in soft matter

    NASA Astrophysics Data System (ADS)

    He, Baoji; Wang, Yanting

    2017-03-01

    Various soft materials share some common features, such as significant entropic effect, large fluctuations, sensitivity to thermodynamic conditions, and mesoscopic characteristic spatial and temporal scales. However, no quantitative definitions have yet been provided for soft matter, and the intrinsic mechanisms leading to their common features are unclear. In this work, from the viewpoint of statistical mechanics, we show that soft matter works in the vicinity of a specific thermodynamic state named moderate point, at which entropy and enthalpy contributions among substates along a certain order parameter are well balanced or have a minimal difference. Around the moderate point, the order parameter fluctuation, the associated response function, and the spatial correlation length maximize, which explains the large fluctuation, the sensitivity to thermodynamic conditions, and mesoscopic spatial and temporal scales of soft matter, respectively. Possible applications to switching chemical bonds or allosteric biomachines determining their best working temperatures are also briefly discussed. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804) and the National Natural Science Foundation of China (Grant Nos. 11274319 and 11421063).

  5. Scale-dependent temporal variations in stream water geochemistry.

    PubMed

    Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B

    2003-03-01

    A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.

  6. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    PubMed

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  7. Scale-dependent temporal variations in stream water geochemistry

    USGS Publications Warehouse

    Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.

    2003-01-01

    A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.

  8. Classification of epilepsy types through global network analysis of scalp electroencephalograms

    NASA Astrophysics Data System (ADS)

    Lee, Uncheol; Kim, Seunghwan; Jung, Ki-Young

    2006-04-01

    Epilepsy is a dynamic disease in which self-organization and emergent structures occur dynamically at multiple levels of neuronal integration. Therefore, the transient relationship within multichannel electroencephalograms (EEGs) is crucial for understanding epileptic processes. In this paper, we show that the global relationship within multichannel EEGs provides us with more useful information in classifying two different epilepsy types than pairwise relationships such as cross correlation. To demonstrate this, we determine the global network structure within channels of the scalp EEG based on the minimum spanning tree method. The topological dissimilarity of the network structures from different types of temporal lobe epilepsy is described in the form of the divergence rate and is computed for 11 patients with left (LTLE) and right temporal lobe epilepsy (RTLE). We find that patients with LTLE and RTLE exhibit different large scale network structures, which emerge at the epoch immediately before the seizure onset, not in the preceding epochs. Our results suggest that patients with the two different epilepsy types display distinct large scale dynamical networks with characteristic epileptic network structures.

  9. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance.

    PubMed

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-04-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.

  10. Effects of land use pattern on soil water in revegetation watersheds in semi-arid Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Liding; Wei, Wei

    2017-04-01

    Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.

  11. Upscaling Ameriflux observations to assess drought impacts on gross primary productivity across the Southwest

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Moore, D. J.; Scott, R. L.; MacBean, N.; Ponce-Campos, G. E.; Breshears, D. D.

    2017-12-01

    Both satellite observations and eddy covariance estimates provide crucial information about the Earth's carbon, water and energy cycles. Continuous measurements from flux towers facilitate exploration of the exchange of carbon dioxide, water and energy between the land surface and the atmosphere at fine temporal and spatial scales, while satellite observations can fill in the large spatial gaps of in-situ measurements and provide long-term temporal continuity. The Southwest (Southwest United States and Northwest Mexico) and other semi-arid regions represent a key uncertainty in interannual variability in carbon uptake. Comparisons of existing global upscaled gross primary production (GPP) products with flux tower data at sites across the Southwest show widespread mischaracterization of seasonality in vegetation carbon uptake, resulting in large (up to 200%) errors in annual carbon uptake estimates. Here, remotely sensed and distributed meteorological inputs are used to upscale GPP estimates from 25 Ameriflux towers across the Southwest to the regional scale using a machine learning approach. Our random forest model incorporates two novel features that improve the spatial and temporal variability in GPP. First, we incorporate a multi-scalar drought index at multiple timescales to account for differential seasonality between ecosystem types. Second, our machine learning algorithm was trained on twenty five ecologically diverse sites to optimize both the monthly variability in and the seasonal cycle of GPP. The product and its components will be used to examine drought impacts on terrestrial carbon cycling across the Southwest including the effects of drought seasonality and on carbon uptake. Our spatially and temporally continuous upscaled GPP product drawing from both ground and satellite data over the Southwest region helps us understand linkages between the carbon and water cycles in semi-arid ecosystems and informs predictions of vegetation response to future climate conditions.

  12. Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance.

    PubMed

    Crompton, Douglas E; Scheffer, Ingrid E; Taylor, Isabella; Cook, Mark J; McKelvie, Penelope A; Vears, Danya F; Lawrence, Kate M; McMahon, Jacinta M; Grinton, Bronwyn E; McIntosh, Anne M; Berkovic, Samuel F

    2010-11-01

    Temporal lobe epilepsy is the commonest partial epilepsy of adulthood. Although generally perceived as an acquired disorder, several forms of familial temporal lobe epilepsy, with mesial or lateral seizure semiology, have been described. Descriptions of familial mesial temporal lobe epilepsy have varied widely from a benign epilepsy syndrome with prominent déjà vu and without antecedent febrile seizures or magnetic resonance imaging abnormalities, to heterogeneous, but generally more refractory epilepsies, often with a history of febrile seizures and with frequent hippocampal atrophy and high T₂ signal on magnetic resonance imaging. Compelling evidence of a genetic aetiology (rather than chance aggregation) in familial mesial temporal lobe epilepsy has come from twin studies. Dominant inheritance has been reported in two large families, though the usual mode of inheritance is not known. Here, we describe clinical and neurophysiological features of 20 new mesial temporal lobe epilepsy families including 51 affected individuals. The epilepsies in these families were generally benign, and febrile seizure history was infrequent (9.8%). No evidence of hippocampal sclerosis or dysplasia was present on brain imaging. A single individual underwent anterior temporal lobectomy, with subsequent seizure freedom and histopathological evidence of hippocampal sclerosis was not found. Inheritance patterns in probands' relatives were analysed in these families, together with 19 other temporal lobe epilepsy families previously reported by us. Observed frequencies of epilepsies in relatives were lower than predicted by dominant Mendelian models, while only a minority (8/39) of families could be compatible with recessive inheritance. These findings strongly suggest that complex inheritance, similar to that widely accepted in the idiopathic generalized epilepsies, is the usual mode of inheritance in familial mesial temporal lobe epilepsy. This disorder, which appears to be relatively common, and not typically associated with hippocampal sclerosis, is an appropriate target for contemporary approaches to complex disorders such as genome-wide association studies for common genetic variants or deep sequencing for rare variants.

  13. Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model

    NASA Astrophysics Data System (ADS)

    Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander

    2014-04-01

    Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random-walk-style diffusion does not mitigate the errors introduced by temporal averaging for large-scale open ocean Lagrangian simulations.

  14. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.

    2015-03-01

    Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.

  15. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing

    PubMed Central

    Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger

    2012-01-01

    Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916

  16. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution.

    PubMed

    Pennacchio, Francesco; Vanacore, Giovanni M; Mancini, Giulia F; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio

    2017-07-01

    Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 10 5 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  17. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    PubMed Central

    Pennacchio, Francesco; Vanacore, Giovanni M.; Mancini, Giulia F.; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio

    2017-01-01

    Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons. PMID:28713841

  18. Influence of coal-based thermal power plants on the spatial-temporal variability of tropospheric NO2 column over India.

    PubMed

    Prasad, Anup K; Singh, Ramesh P; Kafatos, Menas

    2012-04-01

    The oxides of nitrogen--NO(x) (NO and NO(2))--are an important constituent of the troposphere. The availability of relatively higher spatial (0.25° grid) and temporal (daily) resolution data from ozone monitoring instrument (OMI) onboard Aura helps us to better differentiate between the point sources such as thermal power plants from large cities and rural areas compared to previous sensors. The annual and seasonal (summer and winter) distributions shows very high mean tropospheric NO(2) in specific pockets over India especially over the Indo-Gangetic plains (up to 14.2 × 10(15) molecules/cm(2)). These pockets correspond with the known locations of major thermal power plants. The tropospheric NO(2) over India show a large seasonal variability that is also observed in the ground NO(2) data. The multiple regression analysis show that the influence of a unit of power plant (in gigawatts) over tropospheric NO(2) (×10(15) molecules/cm(2)) is around ten times compared to a unit of population (in millions) over India. The OMI data show that the NO(2) increases by 0.794 ± 0.12 (×10(15) molecules/cm(2); annual) per GW compared to a previous estimate of 0.014 (×10(15) molecules/cm(2)) over India. The increase of tropospheric NO(2) per gigawatt is found to be 1.088 ± 0.18, 0.898 ± 0.14, and 0.395 ± 0.13 (×10(15) molecules/cm(2)) during winter, summer, and monsoon seasons, respectively. The strong seasonal variation is attributed to the enhancement or suppression of NO(2) due to various controlling factors which is discussed here. The recent increasing trend (2005-2007) over rural thermal power plants pockets like Agori and Korba is due to recent large capacity additions in these regions.

  19. National-scale cropland mapping based on spectral-temporal features and outdated land cover information.

    PubMed

    Waldner, François; Hansen, Matthew C; Potapov, Peter V; Löw, Fabian; Newby, Terence; Ferreira, Stefanus; Defourny, Pierre

    2017-01-01

    The lack of sufficient ground truth data has always constrained supervised learning, thereby hindering the generation of up-to-date satellite-derived thematic maps. This is all the more true for those applications requiring frequent updates over large areas such as cropland mapping. Therefore, we present a method enabling the automated production of spatially consistent cropland maps at the national scale, based on spectral-temporal features and outdated land cover information. Following an unsupervised approach, this method extracts reliable calibration pixels based on their labels in the outdated map and their spectral signatures. To ensure spatial consistency and coherence in the map, we first propose to generate seamless input images by normalizing the time series and deriving spectral-temporal features that target salient cropland characteristics. Second, we reduce the spatial variability of the class signatures by stratifying the country and by classifying each stratum independently. Finally, we remove speckle with a weighted majority filter accounting for per-pixel classification confidence. Capitalizing on a wall-to-wall validation data set, the method was tested in South Africa using a 16-year old land cover map and multi-sensor Landsat time series. The overall accuracy of the resulting cropland map reached 92%. A spatially explicit validation revealed large variations across the country and suggests that intensive grain-growing areas were better characterized than smallholder farming systems. Informative features in the classification process vary from one stratum to another but features targeting the minimum of vegetation as well as short-wave infrared features were consistently important throughout the country. Overall, the approach showed potential for routinely delivering consistent cropland maps over large areas as required for operational crop monitoring.

  20. National-scale cropland mapping based on spectral-temporal features and outdated land cover information

    PubMed Central

    Hansen, Matthew C.; Potapov, Peter V.; Löw, Fabian; Newby, Terence; Ferreira, Stefanus; Defourny, Pierre

    2017-01-01

    The lack of sufficient ground truth data has always constrained supervised learning, thereby hindering the generation of up-to-date satellite-derived thematic maps. This is all the more true for those applications requiring frequent updates over large areas such as cropland mapping. Therefore, we present a method enabling the automated production of spatially consistent cropland maps at the national scale, based on spectral-temporal features and outdated land cover information. Following an unsupervised approach, this method extracts reliable calibration pixels based on their labels in the outdated map and their spectral signatures. To ensure spatial consistency and coherence in the map, we first propose to generate seamless input images by normalizing the time series and deriving spectral-temporal features that target salient cropland characteristics. Second, we reduce the spatial variability of the class signatures by stratifying the country and by classifying each stratum independently. Finally, we remove speckle with a weighted majority filter accounting for per-pixel classification confidence. Capitalizing on a wall-to-wall validation data set, the method was tested in South Africa using a 16-year old land cover map and multi-sensor Landsat time series. The overall accuracy of the resulting cropland map reached 92%. A spatially explicit validation revealed large variations across the country and suggests that intensive grain-growing areas were better characterized than smallholder farming systems. Informative features in the classification process vary from one stratum to another but features targeting the minimum of vegetation as well as short-wave infrared features were consistently important throughout the country. Overall, the approach showed potential for routinely delivering consistent cropland maps over large areas as required for operational crop monitoring. PMID:28817618

  1. Predictive value of hippocampal MR imaging-based high-dimensional mapping in mesial temporal epilepsy: preliminary findings.

    PubMed

    Hogan, R E; Wang, L; Bertrand, M E; Willmore, L J; Bucholz, R D; Nassif, A S; Csernansky, J G

    2006-01-01

    We objectively assessed surface structural changes of the hippocampus in mesial temporal sclerosis (MTS) and assessed the ability of large-deformation high-dimensional mapping (HDM-LD) to demonstrate hippocampal surface symmetry and predict group classification of MTS in right and left MTS groups compared with control subjects. Using eigenvector field analysis of HDM-LD segmentations of the hippocampus, we compared the symmetry of changes in the right and left MTS groups with a group of 15 matched controls. To assess the ability of HDM-LD to predict group classification, eigenvectors were selected by a logistic regression procedure when comparing the MTS group with control subjects. Multivariate analysis of variance on the coefficients from the first 9 eigenvectors accounted for 75% of the total variance between groups. The first 3 eigenvectors showed the largest differences between the control group and each of the MTS groups, but with eigenvector 2 showing the greatest difference in the MTS groups. Reconstruction of the hippocampal deformation vector fields due solely to eigenvector 2 shows symmetrical patterns in the right and left MTS groups. A "leave-one-out" (jackknife) procedure correctly predicted group classification in 14 of 15 (93.3%) left MTS subjects and all 15 right MTS subjects. Analysis of principal dimensions of hippocampal shape change suggests that MTS, after accounting for normal right-left asymmetries, affects the right and left hippocampal surface structure very symmetrically. Preliminary analysis using HDM-LD shows it can predict group classification of MTS and control hippocampi in this well-defined population of patients with MTS and mesial temporal lobe epilepsy (MTLE).

  2. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies

    PubMed Central

    Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-01-01

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672

  3. Signal coding in cockroach photoreceptors is tuned to dim environments.

    PubMed

    Heimonen, K; Immonen, E-V; Frolov, R V; Salmela, I; Juusola, M; Vähäsöyrinki, M; Weckström, M

    2012-11-01

    In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach (Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ~20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ~5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ~100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.

  4. Birds of a Feather: Neanderthal Exploitation of Raptors and Corvids

    PubMed Central

    Finlayson, Clive; Brown, Kimberly; Blasco, Ruth; Rosell, Jordi; Negro, Juan José; Finlayson, Geraldine; Sánchez Marco, Antonio; Giles Pacheco, Francisco; Rodríguez Vidal, Joaquín; Carrión, José S.; Fa, Darren A.; Rodríguez Llanes, José M.

    2012-01-01

    The hypothesis that Neanderthals exploited birds for the use of their feathers or claws as personal ornaments in symbolic behaviour is revolutionary as it assigns unprecedented cognitive abilities to these hominins. This inference, however, is based on modest faunal samples and thus may not represent a regular or systematic behaviour. Here we address this issue by looking for evidence of such behaviour across a large temporal and geographical framework. Our analyses try to answer four main questions: 1) does a Neanderthal to raptor-corvid connection exist at a large scale, thus avoiding associations that might be regarded as local in space or time?; 2) did Middle (associated with Neanderthals) and Upper Palaeolithic (associated with modern humans) sites contain a greater range of these species than Late Pleistocene paleontological sites?; 3) is there a taphonomic association between Neanderthals and corvids-raptors at Middle Palaeolithic sites on Gibraltar, specifically Gorham's, Vanguard and Ibex Caves? and; 4) was the extraction of wing feathers a local phenomenon exclusive to the Neanderthals at these sites or was it a geographically wider phenomenon?. We compiled a database of 1699 Pleistocene Palearctic sites based on fossil bird sites. We also compiled a taphonomical database from the Middle Palaeolithic assemblages of Gibraltar. We establish a clear, previously unknown and widespread, association between Neanderthals, raptors and corvids. We show that the association involved the direct intervention of Neanderthals on the bones of these birds, which we interpret as evidence of extraction of large flight feathers. The large number of bones, the variety of species processed and the different temporal periods when the behaviour is observed, indicate that this was a systematic, geographically and temporally broad, activity that the Neanderthals undertook. Our results, providing clear evidence that Neanderthal cognitive capacities were comparable to those of Modern Humans, constitute a major advance in the study of human evolution. PMID:23029321

  5. Birds of a feather: Neanderthal exploitation of raptors and corvids.

    PubMed

    Finlayson, Clive; Brown, Kimberly; Blasco, Ruth; Rosell, Jordi; Negro, Juan José; Bortolotti, Gary R; Finlayson, Geraldine; Sánchez Marco, Antonio; Giles Pacheco, Francisco; Rodríguez Vidal, Joaquín; Carrión, José S; Fa, Darren A; Rodríguez Llanes, José M

    2012-01-01

    The hypothesis that Neanderthals exploited birds for the use of their feathers or claws as personal ornaments in symbolic behaviour is revolutionary as it assigns unprecedented cognitive abilities to these hominins. This inference, however, is based on modest faunal samples and thus may not represent a regular or systematic behaviour. Here we address this issue by looking for evidence of such behaviour across a large temporal and geographical framework. Our analyses try to answer four main questions: 1) does a Neanderthal to raptor-corvid connection exist at a large scale, thus avoiding associations that might be regarded as local in space or time?; 2) did Middle (associated with Neanderthals) and Upper Palaeolithic (associated with modern humans) sites contain a greater range of these species than Late Pleistocene paleontological sites?; 3) is there a taphonomic association between Neanderthals and corvids-raptors at Middle Palaeolithic sites on Gibraltar, specifically Gorham's, Vanguard and Ibex Caves? and; 4) was the extraction of wing feathers a local phenomenon exclusive to the Neanderthals at these sites or was it a geographically wider phenomenon?. We compiled a database of 1699 Pleistocene Palearctic sites based on fossil bird sites. We also compiled a taphonomical database from the Middle Palaeolithic assemblages of Gibraltar. We establish a clear, previously unknown and widespread, association between Neanderthals, raptors and corvids. We show that the association involved the direct intervention of Neanderthals on the bones of these birds, which we interpret as evidence of extraction of large flight feathers. The large number of bones, the variety of species processed and the different temporal periods when the behaviour is observed, indicate that this was a systematic, geographically and temporally broad, activity that the Neanderthals undertook. Our results, providing clear evidence that Neanderthal cognitive capacities were comparable to those of Modern Humans, constitute a major advance in the study of human evolution.

  6. Primary pericranial Ewing's sarcoma on the temporal bone: A case report.

    PubMed

    Kawano, Hiroto; Nitta, Naoki; Ishida, Mitsuaki; Fukami, Tadateru; Nozaki, Kazuhiko

    2016-01-01

    Primary Ewing's sarcoma originating in the pericranium is an extremely rare disease entity. A 9-year-old female patient was admitted to our department due to a left temporal subcutaneous mass. The mass was localized under the left temporal muscle and attached to the surface of the temporal bone. Head computed tomography revealed a mass with bony spicule formation on the temporal bone, however, it did not show bone destruction or intracranial invasion. F-18 fluorodeoxyglucose positron emission tomography showed no lesions other than the mass on the temporal bone. Magnetic resonance imaging showed that the mass was located between the temporal bone and the pericranium. The mass was completely resected with the underlying temporal bone and the overlying deep layer of temporal muscle, and was diagnosed as primary Ewing's sarcoma. Because the tumor was located in the subpericranium, we created a new classification, "pericranial Ewing's sarcoma," and diagnosed the present tumor as pericranial Ewing's sarcoma. We herein present an extremely rare case of primary pericranial Ewing's sarcoma that developed on the temporal bone.

  7. Temporal and spatial analysis of psittacosis in association with poultry farming in the Netherlands, 2000-2015.

    PubMed

    Hogerwerf, Lenny; Holstege, Manon M C; Benincà, Elisa; Dijkstra, Frederika; van der Hoek, Wim

    2017-07-26

    Human psittacosis is a highly under diagnosed zoonotic disease, commonly linked to psittacine birds. Psittacosis in birds, also known as avian chlamydiosis, is endemic in poultry, but the risk for people living close to poultry farms is unknown. Therefore, our study aimed to explore the temporal and spatial patterns of human psittacosis infections and identify possible associations with poultry farming in the Netherlands. We analysed data on 700 human cases of psittacosis notified between 01-01-2000 and 01-09-2015. First, we studied the temporal behaviour of psittacosis notifications by applying wavelet analysis. Then, to identify possible spatial patterns, we applied spatial cluster analysis. Finally, we investigated the possible spatial association between psittacosis notifications and data on the Dutch poultry sector at municipality level using a multivariable model. We found a large spatial cluster that covered a highly poultry-dense area but additional clusters were found in areas that had a low poultry density. There were marked geographical differences in the awareness of psittacosis and the amount and the type of laboratory diagnostics used for psittacosis, making it difficult to draw conclusions about the correlation between the large cluster and poultry density. The multivariable model showed that the presence of chicken processing plants and slaughter duck farms in a municipality was associated with a higher rate of human psittacosis notifications. The significance of the associations was influenced by the inclusion or exclusion of farm density in the model. Our temporal and spatial analyses showed weak associations between poultry-related variables and psittacosis notifications. Because of the low number of psittacosis notifications available for analysis, the power of our analysis was relative low. Because of the exploratory nature of this research, the associations found cannot be interpreted as evidence for airborne transmission of psittacosis from poultry to the general population. Further research is needed to determine the prevalence of C. psittaci in Dutch poultry. Also, efforts to promote PCR-based testing for C. psittaci and genotyping for source tracing are important to reduce the diagnostic deficit, and to provide better estimates of the human psittacosis burden, and the possible role of poultry.

  8. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

    PubMed Central

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2013-01-01

    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488

  9. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.

    PubMed

    Robson, Anthony G; Kulikowski, Janus J

    2012-11-01

    The aim was to investigate the temporal response properties of magnocellular, parvocellular, and koniocellular visual pathways using increment/decrement changes in contrast to elicit visual evoked potentials (VEPs). Static achromatic and isoluminant chromatic gratings were generated on a monitor. Chromatic gratings were modulated along red/green (R/G) or subject-specific tritanopic confusion axes, established using a minimum distinct border criterion. Isoluminance was determined using minimum flicker photometry. Achromatic and chromatic VEPs were recorded to contrast increments and decrements of 0.1 or 0.2 superimposed on the static gratings (masking contrast 0-0.6). Achromatic increment/decrement changes in contrast evoked a percept of apparent motion when the spatial frequency was low; VEPs to such stimuli were positive in polarity and largely unaffected by high levels of static contrast, consistent with transient response mechanisms. VEPs to finer achromatic gratings showed marked attenuation as static contrast was increased. Chromatic VEPs to R/G or tritan chromatic contrast increments were of negative polarity and showed progressive attenuation as static contrast was increased, in keeping with increasing desensitization of the sustained responses of the color-opponent visual pathways. Chromatic contrast decrement VEPs were of positive polarity and less sensitive to pattern adaptation. The relative contribution of sustained/transient mechanisms to achromatic processing is spatial frequency dependent. Chromatic contrast increment VEPs reflect the sustained temporal response properties of parvocellular and koniocellular pathways. Cortical VEPs can provide an objective measure of pattern adaptation and can be used to probe the temporal response characteristics of different visual pathways.

  10. Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling

    NASA Astrophysics Data System (ADS)

    Anibas, Christian; Tolche, Abebe Debele; Ghysels, Gert; Nossent, Jiri; Schneidewind, Uwe; Huysmans, Marijke; Batelaan, Okke

    2018-05-01

    Among the advances made in analytical and numerical analysis methods to quantify groundwater/surface-water interaction, one methodology that stands out is the use of heat as an environmental tracer. A large data set of river and riverbed temperature profiles from the Aa River in Belgium has been used to examine the spatial-temporal variations of groundwater/surface-water interaction. Exchange fluxes were calculated with the numerical heat-transport code STRIVE. The code was applied in transient mode to overcome previous limitations of steady-state analysis, and allowed for the calculation of model quality. In autumn and winter the mean exchange fluxes reached -90 mm d-1, while in spring and early summer fluxes were -42 mm d-1. Predominantly gaining conditions occurred along the river reach; however, in a few areas the direction of flow changed in time. The river banks showed elevated fluxes up to a factor of 3 compared to the center of the river. Higher fluxes were detected in the upstream section of the reach. Due to the influence of exchange fluxes along the river banks, larger temporal variations were found in the downstream section. The exchange fluxes at the river banks seemed more driven by variable local exchange flows, while the center of the river was dominated by deep and steady regional groundwater flows. These spatial and temporal differences in groundwater/surface-water exchange show the importance of long-term investigations on the driving forces of hyporheic processes across different scales.

  11. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    PubMed

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Temporal patterns of phyto- and bacterioplankton and their relationships with environmental factors in Lake Taihu, China.

    PubMed

    Su, Xiaomei; Steinman, Alan D; Xue, Qingju; Zhao, Yanyan; Tang, Xiangming; Xie, Liqiang

    2017-10-01

    Phytoplankton and bacterioplankton are integral components of aquatic food webs and play essential roles in the structure and function of freshwater ecosystems. However, little is known about how phyto- and bacterioplankton may respond synchronously to changing environmental conditions. Thus, we analyzed simultaneously the composition and structure of phyto- and bacterioplankton on a monthly basis over 12 months in cyanobacteria-dominated areas of Lake Taihu and compared their responses to changes in environmental factors. Metric multi-dimensional scaling (mMDS) revealed that the temporal variations of phyto- and bacterioplankton were significant. Time lag analysis (TLA) indicated that the temporal pattern of phytoplankton tended to exhibit convergent dynamics while bacterioplankton showed highly stable or stochastic variation. A significant directional change was found for bacterioplankton at the genus level and the slopes (rate of change) and regression R 2 (low stochasticity or stability) were greater if Cyanobacteria were included, suggesting a higher level of instability in the bacterial community at lower taxonomy level. Consequently, phytoplankton responded more rapidly to the change in environmental conditions than bacterioplankton when analyzed at the phylum level, while bacterioplankton were more sensitive at the finer taxonomic resolution in Lake Taihu. Redundancy analysis (RDA) results showed that environmental variables collectively explained 51.0% variance of phytoplankton and 46.7% variance of bacterioplankton, suggesting that environmental conditions have a significant influence on the temporal variations of phyto- and bacterioplankton. Furthermore, variance partitioning indicated that the bacterial community structure was largely explained by water temperature and nitrogen, suggesting that these factors were the primary drivers shaping bacterioplankton. Copyright © 2017. Published by Elsevier Ltd.

  13. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring should be strengthened.

  14. Spatio-temporal precipitation climatology over complex terrain using a censored additive regression model.

    PubMed

    Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim

    2017-06-15

    Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.

  15. Travelling waves and spatial hierarchies in measles epidemics

    NASA Astrophysics Data System (ADS)

    Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.

    2001-12-01

    Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.

  16. Extinction phase transitions in a model of ecological and evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Barghathi, Hatem; Tackkett, Skye; Vojta, Thomas

    2017-07-01

    We study the non-equilibrium phase transition between survival and extinction of spatially extended biological populations using an agent-based model. We especially focus on the effects of global temporal fluctuations of the environmental conditions, i.e., temporal disorder. Using large-scale Monte-Carlo simulations of up to 3 × 107 organisms and 105 generations, we find the extinction transition in time-independent environments to be in the well-known directed percolation universality class. In contrast, temporal disorder leads to a highly unusual extinction transition characterized by logarithmically slow population decay and enormous fluctuations even for large populations. The simulations provide strong evidence for this transition to be of exotic infinite-noise type, as recently predicted by a renormalization group theory. The transition is accompanied by temporal Griffiths phases featuring a power-law dependence of the life time on the population size.

  17. Simulating large atmospheric phase screens using a woofer-tweeter algorithm.

    PubMed

    Buscher, David F

    2016-10-03

    We describe an algorithm for simulating atmospheric wavefront perturbations over ranges of spatial and temporal scales spanning more than 4 orders of magnitude. An open-source implementation of the algorithm written in Python can simulate the evolution of the perturbations more than an order-of-magnitude faster than real time. Testing of the implementation using metrics appropriate to adaptive optics systems and long-baseline interferometers show accuracies at the few percent level or better.

  18. Measurements of selected C2-C5 hydrocarbons in the troposphere - Latitudinal, vertical, and temporal variations

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Viezee, William; Salas, Louis J.

    1988-01-01

    The tropospheric distribution of 1077 C2-C5 hydrocarbon samples was determined. Shipboard measurements obtained over the eastern Pacific Ocean reveal large north-to-south gradients for most nonmethane hydrocarbons (NMHCs). The results show that NMHC concentrations can decrease by a factor of two or more during the passage of cold fronts in winter and spring, and that upper tropospheric concentrations were lower than those in the lower troposphere.

  19. Fragmented patterns of flood change across the United States

    USGS Publications Warehouse

    Archfield, Stacey A.; Hirsch, Robert M.; Viglione, A.; Blöschl, G.

    2016-01-01

    Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large-scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States.

  20. Spatio-temporal atmospheric circulation variability around the Antarctic Peninsula based on hemispheric circulation modes and weather types

    NASA Astrophysics Data System (ADS)

    Wachter, Paul; Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus; Höppner, Kathrin

    2017-04-01

    Large parts of the Polar Regions are affected by a warming trend associated with substantial changes in the cryosphere. In Antarctica this positive trend pattern is most dominant in the western part of the continent and on the Antarctic Peninsula (AP). An important driving mechanism of temperature variability and trends in this region is the atmospheric circulation. Changes in atmospheric circulation modes and frequencies of circulation types have major impacts on temperature characteristics at a certain station or region. We present results of a statistical downscaling study focused on AP temperature variability showing both results of large-scale atmospheric circulation modes and regional weather type classifications derived from monthly and daily gridded reanalysis data sets. In order to investigate spatial trends and variabilities of the Southern Annular Mode (SAM), we analyze spatio-temporally resolved SAM-pattern maps from 1979 to 2015. First results show dominant multi-annual to decadal pattern variabilities which can be directly linked to temperature variabilities at the Antarctic Peninsula. A sub-continental to regional view on the influence of atmospheric circulation on AP temperature variability is given by the analysis of weather type classifications (WTC). With this analysis we identify significant changes in the frequency of occurrence of highly temperature-relevant circulation patterns. The investigated characteristics of weather type frequencies can also be related to the identified changes of the SAM.

  1. Temporal discounting of monetary rewards in children and adolescents with ADHD and autism spectrum disorders.

    PubMed

    Demurie, Ellen; Roeyers, Herbert; Baeyens, Dieter; Sonuga-Barke, Edmund

    2012-11-01

    It has been difficult to differentiate attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in terms of some aspects of their cognitive profile. While both show deficits in executive functions, it has been suggested that they may differ in their response to monetary reward. For instance, children with ADHD prefer small immediate over large delayed rewards more than typically developing controls. One explanation for this is that they discount the value of rewards to a higher degree as they are moved into the future. The current study investigated whether children with ADHD can be differentiated from those with ASD in terms of reward discounting. Thirty-nine children (8-16 y) with ADHD, 34 children with ASD and 46 typically developing controls performed a hypothetical monetary temporal discounting task. Participants were instructed to make repeated choices between small variable rewards (0, 5, 10, 20, 30€) delivered immediately and large rewards delivered after a variable delay. Children with ADHD but not ASD discounted future rewards at a higher rate than typically developing controls. These data confirm steeper discounting of future rewards in ADHD and add to a small but growing literature showing that the psychological profile of ADHD can be distinguished from that of ASD in terms of disrupted motivational processes. © 2012 Blackwell Publishing Ltd.

  2. Early enhanced processing and delayed habituation to deviance sounds in autism spectrum disorder.

    PubMed

    Hudac, Caitlin M; DesChamps, Trent D; Arnett, Anne B; Cairney, Brianna E; Ma, Ruqian; Webb, Sara Jane; Bernier, Raphael A

    2018-06-01

    Children with autism spectrum disorder (ASD) exhibit difficulties processing and encoding sensory information in daily life. Cognitive response to environmental change in control individuals is naturally dynamic, meaning it habituates or reduces over time as one becomes accustomed to the deviance. The origin of atypical response to deviance in ASD may relate to differences in this dynamic habituation. The current study of 133 children and young adults with and without ASD examined classic electrophysiological responses (MMN and P3a), as well as temporal patterns of habituation (i.e., N1 and P3a change over time) in response to a passive auditory oddball task. Individuals with ASD showed an overall heightened sensitivity to change as exhibited by greater P3a amplitude to novel sounds. Moreover, youth with ASD showed dynamic ERP differences, including slower attenuation of the N1 response to infrequent tones and the P3a response to novel sounds. Dynamic ERP responses were related to parent ratings of auditory sensory-seeking behaviors, but not general cognition. As the first large-scale study to characterize temporal dynamics of auditory ERPs in ASD, our results provide compelling evidence that heightened response to auditory deviance in ASD is largely driven by early sensitivity and prolonged processing of auditory deviance. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  4. Spatial and Temporal Dynamics of Mass Mortalities in Oysters Is Influenced by Energetic Reserves and Food Quality

    PubMed Central

    Pernet, Fabrice; Lagarde, Franck; Jeannée, Nicolas; Daigle, Gaetan; Barret, Jean; Le Gall, Patrik; Quere, Claudie; D’orbcastel, Emmanuelle Roque

    2014-01-01

    Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality. PMID:24551106

  5. Higher temporal variability of forest breeding bird communities in fragmented landscapes

    USGS Publications Warehouse

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    1998-01-01

    Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.

  6. Succession of bacterial community composition over two consecutive years in two aquatic systems: a natural lake and a lake-reservoir.

    PubMed

    Boucher, Delphine; Jardillier, Ludwig; Debroas, Didier

    2006-01-01

    The succession in bacterial community composition was studied over two years in the epilimnion and hypolimnion of two freshwater systems: a natural lake (Pavin Lake) and a lake-reservoir (Sep Reservoir). The bacterial community composition was determined by cloning-sequencing of 16S rRNA and by terminal restriction fragment length polymorphism. Despite large hydrogeological differences, in the Sep Reservoir and Pavin Lake the dominant bacteria were from the same taxonomic divisions, particularly Actinobacteria and Betaproteobacteria. In both ecosystems, these major bacterial divisions showed temporal fluctuations that were much less marked than those occurring at a finer phylogenetic scale. Nutrient availability and mortality factors, the nature of which differed from one lake to another, covaried with the temporal variations in the bacterial community composition at all sampling depths, whereas factors related to seasonal forces (temperature and outflow for Sep Reservoir) seemed to account only for the variation of the hypolimnion bacterial community composition. No seasonal reproducibility in temporal evolution of bacterial community from one year to the next was observed.

  7. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.

    PubMed

    Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo

    2009-12-01

    Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.

  8. Spatial and temporal dynamics of mass mortalities in oysters is influenced by energetic reserves and food quality.

    PubMed

    Pernet, Fabrice; Lagarde, Franck; Jeannée, Nicolas; Daigle, Gaetan; Barret, Jean; Le Gall, Patrik; Quere, Claudie; D'orbcastel, Emmanuelle Roque

    2014-01-01

    Although spatial studies of diseases on land have a long history, far fewer have been made on aquatic diseases. Here, we present the first large-scale, high-resolution spatial and temporal representation of a mass mortality phenomenon cause by the Ostreid herpesvirus (OsHV-1) that has affected oysters (Crassostrea gigas) every year since 2008, in relation to their energetic reserves and the quality of their food. Disease mortality was investigated in healthy oysters deployed at 106 locations in the Thau Mediterranean lagoon before the start of the epizootic in spring 2011. We found that disease mortality of oysters showed strong spatial dependence clearly reflecting the epizootic process of local transmission. Disease initiated inside oyster farms spread rapidly beyond these areas. Local differences in energetic condition of oysters, partly driven by variation in food quality, played a significant role in the spatial and temporal dynamics of disease mortality. In particular, the relative contribution of diatoms to the diet of oysters was positively correlated with their energetic reserves, which in turn decreased the risk of disease mortality.

  9. Spatio-temporal examination of precipitation isotopes from the North American monsoon in Arizona, New Mexico, and Utah from 2014 to 2017

    NASA Astrophysics Data System (ADS)

    Tulley-Cordova, C. L.; Bowen, G. J.

    2017-12-01

    A significant summertime feature of climate in the southwestern United States (US) is the North American monsoon (NAM), also known as the Mexican monsoon, Arizona monsoon, and the southwestern United States monsoon. NAM is a crucial contributor to total annual precipitation in the Four Corners region of the US. Modern investigation of NAM in this region using stable isotopes has been poorly studied. This study characterizes the spatio-temporal changes of NAM based on stable isotopic results from 40 sites, located within the boundaries of the Navajo Nation, in Arizona, New Mexico, and Utah from 2014 to 2017. Sample collections were collected monthly at each site from May to October. Examination of temporal trends of precipitation revealed strong monthly and interannual changes; spatial analysis showed weak large-scale relationships across the study area. Analysis of stable isotopes in precipitation, surface, ground, and spring waters can be used to interpret the isotopic differences in the modern hydro-climate of the Navajo Nation and Colorado Plateau to help predict future hydro-climate changes and its implications on future water resources.

  10. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  11. Extracting the Textual and Temporal Structure of Supercomputing Logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, S; Singh, I; Chandra, A

    2009-05-26

    Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an onlinemore » clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.« less

  12. Editorial for Journal of Hydrology: Regional Studies

    USGS Publications Warehouse

    Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.

    2014-01-01

    Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.

  13. Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks

    PubMed Central

    Mantini, D.; Marzetti, L.; Corbetta, M.; Romani, G.L.; Del Gratta, C.

    2017-01-01

    Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes. PMID:20052528

  14. Dying like rabbits: general determinants of spatio-temporal variability in survival.

    PubMed

    Tablado, Zulima; Revilla, Eloy; Palomares, Francisco

    2012-01-01

    1. Identifying general patterns of how and why survival rates vary across space and time is necessary to truly understand population dynamics of a species. However, this is not an easy task given the complexity and interactions of processes involved, and the interpopulation differences in main survival determinants. 2. Here, using European rabbits (Oryctolagus cuniculus) as a model and information from local studies, we investigated whether we could make inferences about trends and drivers of survival of a species that are generalizable to large spatio-temporal scales. To do this, we first focused on overall survival and then examined cause-specific mortalities, mainly predation and diseases, which may lead to those patterns. 3. Our results show that within the large-scale variability in rabbit survival, there exist general patterns that are explained by the integration of factors previously known to be important at the local level (i.e. age, climate, diseases, predation or density dependence). We found that both inter- and intrastudy survival rates increased in magnitude and decreased in variability as rabbits grow old, although this tendency was less pronounced in populations with epidemic diseases. Some causes leading to these higher mortalities in young rabbits could be the stronger effect of rainfall at those ages, as well as, other death sources like malnutrition or infanticide. 4. Predation is also greater for newborns and juveniles, especially in population without diseases. Apart from the effect of diseases, predation patterns also depended on factors, such as, density, season, and type and density of predators. Finally, we observed that infectious diseases also showed general relationships with climate, breeding (i.e. new susceptible rabbits) and age, although the association type varied between myxomatosis and rabbit haemorrhagic disease. 5. In conclusion, large-scale patterns of spatio-temporal variability in rabbit survival emerge from the combination of different factors that interrelate both directly and through density dependence. This highlights the importance of performing more comprehensive studies to reveal combined effects and complex relationships that help us to better understand the mechanisms underlying population dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  15. Mapping of beef, sheep and goat food systems in Nairobi - A framework for policy making and the identification of structural vulnerabilities and deficiencies.

    PubMed

    Alarcon, Pablo; Fèvre, Eric M; Murungi, Maurice K; Muinde, Patrick; Akoko, James; Dominguez-Salas, Paula; Kiambi, Stella; Ahmed, Sohel; Häsler, Barbara; Rushton, Jonathan

    2017-03-01

    Nairobi is a large rapidly-growing city whose demand for beef, mutton and goat products is expected to double by 2030. The study aimed to map the Nairobi beef, sheep and goat systems structure and flows to identify deficiencies and vulnerabilities to shocks. Cross-sectional data were collected through focus group discussions and interviews with people operating in Nairobi ruminant livestock and meat markets and in the large processing companies. Qualitative and quantitative data were obtained about the type of people, animals, products and value adding activities in the chains, and their structural, spatial and temporal interactions. Mapping analysis was done in three different dimensions: people and product profiling (interactions of people and products), geographical (routes of animals and products) and temporal mapping (seasonal fluctuations). The results obtained were used to identify structural deficiencies and vulnerability factors in the system. Results for the beef food system showed that 44-55% of the city's beef supply flows through the 'local terminal markets', but that 54-64% of total supply is controlled by one 'meat market'. Numerous informal chains were identified, with independent livestock and meat traders playing a pivotal role in the functionality of these systems, and where most activities are conducted with inefficient quality control and under scarce and inadequate infrastructure and organisation, generating wastage and potential food safety risks in low quality meat products. Geographical and temporal analysis showed the critical areas influencing the different markets, with larger markets increasing their market share in the low season. Large processing companies, partly integrated, operate with high quality infrastructures, but with up to 60% of their beef supply depending on similar routes as the informal markets. Only these companies were involved in value addition activities, reaching high-end markets, but also dominating the distribution of popular products, such as beef sausages, to middle and low-end market. For the small ruminant food system, 73% of the low season supply flows through a single large informal market, Kiamaiko, located in an urban informal settlement. No grading is done for these animals or the meat produced. Large companies were reported to export up to 90% of their products. Lack of traceability and control of animal production was a common feature in all chains. The mapping presented provides a framework for policy makers and institutions to understand and design improvement plans for the Nairobi ruminant food system. The structural deficiencies and vulnerabilities identified here indicate the areas of intervention needed.

  16. Eddy covariance flux measurements of net ecosystem carbon dioxide exchange from a lowland peatland flux tower network in England and Wales

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Balzter, Heiko; Burden, Annette; Callaghan, Nathan; Cumming, Alenander; Dixon, Simon; Evans, Jonathan; Kaduk, Joerg; Page, Susan; Pan, Gong; Rayment, Mark; Ridley, Luke; Rylett, Daniel; Worrall, Fred; Evans, Christopher

    2016-04-01

    Peatlands store disproportionately large amounts of soil carbon relative to other terrestrial ecosystems. Over recent decades, the large amount of carbon stored as peat has proved vulnerable to a range of land use pressures as well as the increasing impacts of climate change. In temperate Europe and elsewhere, large tracts of lowland peatland have been drained and converted to agricultural land use. Such changes have resulted in widespread losses of lowland peatland habitat, land subsidence across extensive areas and the transfer of historically accumulated soil carbon to the atmosphere as carbon dioxide (CO2). More recently, there has been growth in activities aiming to reduce these impacts through improved land management and peatland restoration. Despite a long history of productive land use and management, the magnitude and controls on greenhouse gas emissions from lowland peatland environments remain poorly quantified. Here, results of surface-atmosphere measurements of net ecosystem CO2 exchange (NEE) from a network of seven eddy covariance (EC) flux towers located at a range of lowland peatland ecosystems across the United Kingdom (UK) are presented. This spatially-dense peatland flux tower network forms part of a wider observation programme aiming to quantify carbon, water and greenhouse gas balances for lowland peatlands across the UK. EC measurements totalling over seventeen site years were obtained at sites exhibiting large differences in vegetation cover, hydrological functioning and land management. The sites in the network show remarkable spatial and temporal variability in NEE. Across sites, annual NEE ranged from a net sink of -194 ±38 g CO2-C m-2 yr-1 to a net source of 784±70 g CO2-C m-2 yr-1. The results suggest that semi-natural sites remain net sinks for atmospheric CO2. Sites that are drained for intensive agricultural production range from a small net sink to the largest observed source for atmospheric CO2 within the flux tower network. Extensively managed grassland and a site that was restored from intensive arable land use represent modest CO2 sources. Temporal variations in CO2 fluxes at sites with permanent vegetation cover are coupled to seasonal and interannual variations in weather conditions and phenology. The type of crop produced and agricultural management drive large temporal differences in the CO2 fluxes of croplands on drained lowland peat soils. The main environmental controls on the spatial and temporal variations in CO2 exchange processes will be discussed.

  17. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Menzel, Annette; Koch, Elisabeth; Peter, Christian; Ahas, Rein

    2002-11-01

    A data set of 17 phenological phases from Germany, Austria, Switzerland and Slovenia spanning the time period from 1951 to 1998 has been made available for analysis together with a gridded temperature data set (1° × 1° grid) and the North Atlantic Oscillation (NAO) index time series. The disturbances of the westerlies constitute the main atmospheric source for the temporal variability of phenological events in Europe. The trend, the standard deviation and the discontinuity of the phenological time series at the end of the 1980s can, to a great extent, be explained by the NAO. A number of factors modulate the influence of the NAO in time and space. The seasonal northward shift of the westerlies overlaps with the sequence of phenological spring phases, thereby gradually reducing its influence on the temporal variability of phenological events with progression of spring (temporal loss of influence). This temporal process is reflected by a pronounced decrease in trend and standard deviation values and common variability with the NAO with increasing year-day. The reduced influence of the NAO with increasing distance from the Atlantic coast is not only apparent in studies based on the data set of the International Phenological Gardens, but also in the data set of this study with a smaller spatial extent (large-scale loss of influence). The common variance between phenological and NAO time series displays a discontinuous drop from the European Atlantic coast towards the Alps. On a local and regional scale, mountainous terrain reduces the influence of the large-scale atmospheric flow from the Atlantic via a proposed decoupling mechanism. Valleys in mountainous terrain have the inclination to harbour temperature inversions over extended periods of time during the cold season, which isolate the valley climate from the large-scale atmospheric flow at higher altitudes. Most phenological stations reside at valley bottoms and are thus largely decoupled in their temporal variability from the influence of the westerly flow regime (local-scale loss of influence). This study corroborates an increasing number of similar investigations that find that vegetation does react in a sensitive way to variations of its atmospheric environment across various temporal and spatial scales.

  18. Linear optical pulse compression based on temporal zone plates.

    PubMed

    Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José

    2013-07-15

    We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.

  19. Event construal and temporal distance in natural language.

    PubMed

    Bhatia, Sudeep; Walasek, Lukasz

    2016-07-01

    Construal level theory proposes that events that are temporally proximate are represented more concretely than events that are temporally distant. We tested this prediction using two large natural language text corpora. In study 1 we examined posts on Twitter that referenced the future, and found that tweets mentioning temporally proximate dates used more concrete words than those mentioning distant dates. In study 2 we obtained all New York Times articles that referenced U.S. presidential elections between 1987 and 2007. We found that the concreteness of the words in these articles increased with the temporal proximity to their corresponding election. Additionally the reduction in concreteness after the election was much greater than the increase in concreteness leading up to the election, though both changes in concreteness were well described by an exponential function. We replicated this finding with New York Times articles referencing US public holidays. Overall, our results provide strong support for the predictions of construal level theory, and additionally illustrate how large natural language datasets can be used to inform psychological theory. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.

    PubMed

    Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T

    2015-10-01

    Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.

  1. Microstructural White Matter Changes Underlying Cognitive and Behavioural Impairment in ALS – An In Vivo Study Using DTI

    PubMed Central

    Kasper, Elisabeth; Schuster, Christina; Machts, Judith; Kaufmann, Joern; Bittner, Daniel; Vielhaber, Stefan; Benecke, Reiner; Teipel, Stefan; Prudlo, Johannes

    2014-01-01

    Background A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients. Methods We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures. Results Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts. Conclusion In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients. PMID:25501028

  2. A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua

    2015-07-01

    A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).

  3. Temporal changes in mercury concentrations of large-bodied fishes in the boreal shield ecoregion of northern Ontario, Canada.

    PubMed

    Tang, Rex W K; Johnston, Thomas A; Gunn, John M; Bhavsar, Satyendra P

    2013-02-01

    Much of the mercury (Hg) in freshwater fish of the boreal shield ecoregion is believed to originate from atmospheric deposition. As such, declines in fish Hg concentrations would be expected in response to recent declines in atmospheric Hg deposition in this ecoregion. We compared recent (2005-2010) and historic (1974-1981) muscle total mercury concentrations ([THg], standardized to a fish body mass of 1 kg) in seven fish species (five piscivores, two benthivores) from 73 lakes in northern Ontario (Canada) using a paired-comparisons approach. The rate of bioaccumulation (i.e., slopes of log(e)[THg] vs log(e) total length relationship) increased for walleye (Sander vitreus) but did not change significantly for any other species. There was no significant decline in mean [THg] between recent and historic time periods for any species. In fact, recent mean [THg] were slightly higher (<0.08 ppm) than historic mean [THg] for all species, and this difference was significant for northern pike (Esox lucius). The magnitude of the temporal change in northern pike declined significantly from south to north over the study area but there were no discernible geographic patterns in the temporal change in [THg] for any other species. This study shows that [THg] of most large-bodied fish species in boreal shield lakes are not declining in response to the decline in atmospheric Hg deposition. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  5. Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence.

    PubMed

    Freedman, Zachary; Zak, Donald R

    2015-09-01

    Soil microbial communities are abundant, hyper-diverse and mediate global biogeochemical cycles, but we do not yet understand the processes mediating their assembly. Current hypothetical frameworks suggest temporal (e.g. dispersal limitation) and environmental (e.g. soil pH) filters shape microbial community composition; however, there is limited empirical evidence supporting this framework in the hyper-diverse soil environment, particularly at large spatial (i.e. regional to continental) and temporal (i.e. 100 to 1000 years) scales. Here, we present evidence from a long-term chronosequence (4000 years) that temporal and environmental filters do indeed shape soil bacterial community composition. Furthermore, nearly 20 years of environmental monitoring allowed us to control for potentially confounding environmental variation. Soil bacterial communities were phylogenetically distinct across the chronosequence. We determined that temporal and environmental factors accounted for significant portions of bacterial phylogenetic structure using distance-based linear models. Environmental factors together accounted for the majority of phylogenetic structure, namely, soil temperature (19%), pH (17%) and litter carbon:nitrogen (C:N; 17%). However, of all individual factors, time since deglaciation accounted for the greatest proportion of bacterial phylogenetic structure (20%). Taken together, our results provide empirical evidence that temporal and environmental filters act together to structure soil bacterial communities across large spatial and long-term temporal scales. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study.

    PubMed

    Whitwell, Jennifer L; Przybelski, Scott A; Weigand, Stephen D; Ivnik, Robert J; Vemuri, Prashanthi; Gunter, Jeffrey L; Senjem, Matthew L; Shiung, Maria M; Boeve, Bradley F; Knopman, David S; Parisi, Joseph E; Dickson, Dennis W; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A

    2009-11-01

    The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.

  7. Familial temporal lobe epilepsy with psychic auras associated with a novel LGI1 mutation.

    PubMed

    Striano, P; Busolin, G; Santulli, L; Leonardi, E; Coppola, A; Vitiello, L; Rigon, L; Michelucci, R; Tosatto, S C E; Striano, S; Nobile, C

    2011-03-29

    Autosomal dominant lateral temporal epilepsy (ADLTE) is characterized by focal seizures with auditory features or aphasia. Mutations in the LGI1 gene have been reported in up to 50% of ADLTE pedigrees. We report a family with temporal lobe epilepsy characterized by psychic symptoms associated with a novel LGI1 mutation. All participants were personally interviewed and underwent neurologic examination and video-EEG recordings. LGI1 exons were sequenced by standard methods. Mutant cDNA was transfected into human embryonic kidney 293 cells; both cell lysates and media were analyzed by Western blot. In silico modeling of the Lgi1 protein EPTP domain was carried out using the structure of WD repeat protein and manually refined. Three affected family members were ascertained, 2 of whom had temporal epilepsy with psychic symptoms (déjà vu, fear) but no auditory or aphasic phenomena, while the third had complex partial seizures without any aura. In all patients, we found a novel LGI1 mutation, Arg407Cys, which did not hamper protein secretion in vitro. Mapping of the mutation on a 3-dimensional protein model showed that this mutation does not induce large structural rearrangements but could destabilize interactions of Lgi1 with target proteins. The Arg407Cys is the first mutation with no effect on Lgi1 protein secretion. The uncommon, isolated psychic symptoms associated with it suggests that ADLTE encompasses a wider range of auras of temporal origin than hitherto reported.

  8. Temporal dynamics of bird community composition: an analysis of baseline conditions from long-term data.

    PubMed

    Kampichler, Christian; Angeler, David G; Holmes, Richard T; Leito, Aivar; Svensson, Sören; van der Jeugd, Henk P; Wesołowski, Tomasz

    2014-08-01

    Numerous anthropogenic activities threaten the biodiversity found on earth. Because all ecological communities constantly experience temporal turnover due to natural processes, it is important to distinguish between change due to anthropogenic impact and the underlying natural rate of change. In this study, we used data sets on breeding bird communities that covered at least 20 consecutive years, from a variety of terrestrial ecosystems, to address two main questions. (1) How fast does the composition of bird communities change over time, and can we identify a baseline of natural change that distinguishes primeval systems from systems experiencing varying degrees of human impact? (2) How do patterns of temporal variation in composition vary among bird communities in ecosystems with different anthropogenic impacts? Time lag analysis (TLA) showed a pattern of increasing rate of temporal compositional change from large-scale primeval systems to disturbed and protected systems to distinctly successional systems. TLA slopes of <0.04 were typical for breeding bird communities with natural turnover, while communities subjected to anthropogenic impact were characterised by TLA slopes of >0.04. Most of the temporal variability of breeding bird communities was explained by slow changes occurring over decades, regardless of the intensity of human impact. In most of the time series, medium- and short-wave periodicity was not detected, with the exception of breeding bird communities subjected to periodic pulses (e.g. caterpillar outbreaks causing food resource peaks).

  9. Varicella Zoster Virus and Large Vessel Vasculitis, the Absence of an Association.

    PubMed

    Procop, Gary W; Eng, Charis; Clifford, Alison; Villa-Forte, Alexandra; Calabrese, Leonard H; Roselli, Eric; Svensson, Lars; Johnston, Douglas; Pettersson, Gosta; Soltesz, Edward; Lystad, Lisa; Perry, Julian D; Blandford, Alexander; Wilson, Deborah A; Hoffman, Gary S

    2017-01-01

    It is controversial whether microorganisms play a role in the pathogenesis of large and medium vessel vasculitides (eg, giant cell arteritis [GCA], Takayasu arteritis [TAK] and focal idiopathic aortitis [FIA]). Recent studies have reported the presence of Varicella Zoster Virus (VZV) within formalin-fixed, paraffin-embedded temporal arteries and aortas of about three-quarters or more of patients with these conditions, and in a minority of controls. In a prospective study, we sought to confirm these findings using DNA extracted from vessels that were harvested under surgically aseptic conditions and snap frozen. DNA samples extracted from 11 surgically sterile temporal arteries and 31 surgically sterile thoracic aortas were used in an attempt to identify the vessel-associated VZV genome. Two different validated PCR methods were used. Thirty-one thoracic aorta aneurysm specimens included biopsies from 8 patients with GCA, 2 from patients with TAK, 6 from patients with FIA, and 15 from patients without vasculitis, who had non-inflammatory aneurysms. Eleven temporal artery biopsies were collected from 5 patients with GCA and 6 controls. The presence of VZV was not identified in either the specimens from patients with large vessel vasculitis or from the controls. Using surgically sterile snap-frozen specimens, we were unable to confirm recent reports of the presence of VZV in either aortas or temporal arteries from patients with large vessel vasculitis or controls.

  10. Varicella Zoster Virus and Large Vessel Vasculitis, the Absence of an Association

    PubMed Central

    Procop, Gary W.; Eng, Charis; Clifford, Alison; Villa-Forte, Alexandra; Calabrese, Leonard H.; Roselli, Eric; Svensson, Lars; Johnston, Douglas; Pettersson, Gosta; Soltesz, Edward; Lystad, Lisa; Perry, Julian D.; Blandford, Alexander; Wilson, Deborah A.; Hoffman, Gary S.

    2017-01-01

    Objective It is controversial whether microorganisms play a role in the pathogenesis of large and medium vessel vasculitides (eg, giant cell arteritis [GCA], Takayasu arteritis [TAK] and focal idiopathic aortitis [FIA]). Recent studies have reported the presence of Varicella Zoster Virus (VZV) within formalin-fixed, paraffin-embedded temporal arteries and aortas of about three-quarters or more of patients with these conditions, and in a minority of controls. In a prospective study, we sought to confirm these findings using DNA extracted from vessels that were harvested under surgically aseptic conditions and snap frozen. Methods and Results DNA samples extracted from 11 surgically sterile temporal arteries and 31 surgically sterile thoracic aortas were used in an attempt to identify the vessel-associated VZV genome. Two different validated PCR methods were used. Thirty-one thoracic aorta aneurysm specimens included biopsies from 8 patients with GCA, 2 from patients with TAK, 6 from patients with FIA, and 15 from patients without vasculitis, who had non-inflammatory aneurysms. Eleven temporal artery biopsies were collected from 5 patients with GCA and 6 controls. The presence of VZV was not identified in either the specimens from patients with large vessel vasculitis or from the controls. Conclusions Using surgically sterile snap-frozen specimens, we were unable to confirm recent reports of the presence of VZV in either aortas or temporal arteries from patients with large vessel vasculitis or controls. PMID:28758156

  11. Radiosurgery in the Management of Intractable Mesial Temporal Lobe Epilepsy.

    PubMed

    Peñagarícano, José; Serletis, Demitre

    2015-09-01

    Mesial temporal lobe epilepsy (MTLE) describes recurrent seizure activity originating from the depths of the temporal lobe. MTLE patients who fail two trials of medication now require testing for surgical candidacy at an epilepsy center. For these individuals, temporal lobectomy offers the greatest likelihood for seizure-freedom (up to 80-90%); unfortunately, this procedure remains largely underutilized. Moreover, for select patients unable to tolerate open surgery, novel techniques are emerging for selective ablation of the mesial temporal structures, including stereotactic radiosurgery (SRS). We present here a review of SRS as a potential therapy for MTLE, when open surgery is not an option.

  12. A Temporal Pattern Mining Approach for Classifying Electronic Health Record Data

    PubMed Central

    Batal, Iyad; Valizadegan, Hamed; Cooper, Gregory F.; Hauskrecht, Milos

    2013-01-01

    We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features. Temporal pattern mining usually returns a large number of temporal patterns, most of which may be irrelevant to the classification task. To address this problem, we present the Minimal Predictive Temporal Patterns framework to generate a small set of predictive and non-spurious patterns. We apply our approach to the real-world clinical task of predicting patients who are at risk of developing heparin induced thrombocytopenia. The results demonstrate the benefit of our approach in efficiently learning accurate classifiers, which is a key step for developing intelligent clinical monitoring systems. PMID:25309815

  13. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  14. Assessment of gait parameters and fatigue in MS patients during inpatient rehabilitation: a pilot trial.

    PubMed

    Sacco, Rosaria; Bussman, Rita; Oesch, Peter; Kesselring, Jürg; Beer, Serafin

    2011-05-01

    Gait impairment and fatigue are common and disabling problems in multiple sclerosis (MS). Characterisation of abnormal gait in MS patients has been done mainly using observational studies and simple walking tests providing only limited quantitative and no qualitative data, or using intricate and time-consuming assessment procedures. In addition, the correlation of gait impairments with fatigue is largely unknown. The aim of this study was to characterise spatio-temporal gait parameters by a simple and easy-to-use gait analysis system (GAITRite®) in MS patients compared with healthy controls, and to analyse changes and correlation with fatigue during inpatient rehabilitation. Twenty-four MS patients (EDSS <6.5) admitted for inpatient rehabilitation and 19 healthy subjects were evaluated using the GAITRite® Functional Ambulation System. Between-group differences and changes of gait parameters during inpatient rehabilitation were analysed, and correlation with fatigue, using the Wurzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS), was determined. Compared to healthy controls MS patients showed significant impairments in different spatio-temporal gait parameters, which showed a significant improvement during inpatient rehabilitation. Different gait parameters were correlated with fatigue physical score, and change of gait parameters was correlated with improvement of fatigue. Spatio-temporal gait analysis is helpful to assess specific walking impairments in MS patients and subtle changes during rehabilitation. Correlation with fatigue may indicate a possible negative impact of fatigue on rehabilitation outcome.

  15. Transactional problem content in cost discounting: parallel effects for probability and delay.

    PubMed

    Jones, Stephen; Oaksford, Mike

    2011-05-01

    Four experiments investigated the effects of transactional content on temporal and probabilistic discounting of costs. Kusev, van Schaik, Ayton, Dent, and Chater (2009) have shown that content other than gambles can alter decision-making behavior even when associated value and probabilities are held constant. Transactions were hypothesized to lead to similar effects because the cost to a purchaser always has a linked gain, the purchased commodity. Gain amount has opposite effects on delay and probabilistic discounting (e.g., Benzion, Rapoport, & Yagil, 1989; Green, Myerson, & Ostaszewski, 1999), a finding that is not consistent with descriptive decision theory (Kahneman & Tversky, 1979; Loewenstein & Prelec, 1992). However, little or no effect on discounting has been observed for losses or costs. Experiment 1, using transactions, showed parallel effects for temporal and probabilistic discounting: Smaller amounts were discounted more than large amounts. As the cost rises, people value the commodity more, and they consequently discount less. Experiment 2 ruled out a possible methodological cause for this effect. Experiment 3 replicated Experiment 1. Experiment 4, using gambles, showed no effect for temporal discounting, because of the absence of the linked gain, but the same effect for probabilistic discounting, because prospects implicitly introduce a linked gain (Green et al., 1999; Prelec & Loewenstein, 1991). As found by Kusev et al. (2009), these findings are not consistent with decision theory and suggest closer attention should be paid to the effects of content on decision making.

  16. Spatial-temporal analysis of sea level changes in China seas and neighboring oceans by merged altimeter data

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Zhou, Bin; Yu, Zhifeng; Lei, Hui; Sun, Jiamin; Zhu, Xingrui; Liu, Congjin

    2017-01-01

    The knowledge of sea level changes is critical important for social, economic and scientific development in coastal areas. Satellite altimeter makes it possible to observe long term and large scale dynamic changes in the ocean, contiguous shelf seas and coastal zone. In this paper, 1993-2015 altimeter data of Topex/Poseidon and its follow-on missions is used to get a time serious of continuous and homogeneous sea level anomaly gridding product. The sea level rising rate is 0.39 cm/yr in China Seas and the neighboring oceans, 0.37 cm/yr in the Bo and Yellow Sea, 0.29 cm/yr in the East China Sea and 0.40 cm/yr in the South China Sea. The mean sea level and its rising rate are spatial-temporal non-homogeneous. The mean sea level shows opposite characteristics in coastal seas versus open oceans. The Bo and Yellow Sea has the most significant seasonal variability. The results are consistent with in situ data observation by the Nation Ocean Agency of China. The coefficient of variability model is introduced to describe the spatial-temporal variability. Results show that the variability in coastal seas is stronger than that in open oceans, especially the seas off the entrance area of the river, indicating that the validation of altimeter data is less reasonable in these seas.

  17. Trending in Probability of Collision Measurements

    NASA Technical Reports Server (NTRS)

    Vallejo, J. J.; Hejduk, M. D.; Stamey, J. D.

    2015-01-01

    A simple model is proposed to predict the behavior of Probabilities of Collision (P(sub c)) for conjunction events. The model attempts to predict the location and magnitude of the peak P(sub c) value for an event by assuming the progression of P(sub c) values can be modeled to first order by a downward-opening parabola. To incorporate prior information from a large database of past conjunctions, the Bayes paradigm is utilized; and the operating characteristics of the model are established through a large simulation study. Though the model is simple, it performs well in predicting the temporal location of the peak (P(sub c)) and thus shows promise as a decision aid in operational conjunction assessment risk analysis.

  18. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the central Tibetan Plateau and driving force analysis

    NASA Astrophysics Data System (ADS)

    Song, C.; Sheng, Y.

    2015-12-01

    High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).

  19. Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign

    NASA Astrophysics Data System (ADS)

    Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris

    2016-09-01

    Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, D; Aryal, M; Samuels, S

    Purpose: A previous study showed that large sub-volumes of tumor with low blood volume (BV) (poorly perfused) in head-and-neck (HN) cancers are significantly associated with local-regional failure (LRF) after chemoradiation therapy, and could be targeted with intensified radiation doses. This study aimed to develop an automated and scalable model to extract voxel-wise contrast-enhanced temporal features of dynamic contrastenhanced (DCE) MRI in HN cancers for predicting LRF. Methods: Our model development consists of training and testing stages. The training stage includes preprocessing of individual-voxel DCE curves from tumors for intensity normalization and temporal alignment, temporal feature extraction from the curves, featuremore » selection, and training classifiers. For feature extraction, multiresolution Haar discrete wavelet transformation is applied to each DCE curve to capture temporal contrast-enhanced features. The wavelet coefficients as feature vectors are selected. Support vector machine classifiers are trained to classify tumor voxels having either low or high BV, for which a BV threshold of 7.6% is previously established and used as ground truth. The model is tested by a new dataset. The voxel-wise DCE curves for training and testing were from 14 and 8 patients, respectively. A posterior probability map of the low BV class was created to examine the tumor sub-volume classification. Voxel-wise classification accuracy was computed to evaluate performance of the model. Results: Average classification accuracies were 87.2% for training (10-fold crossvalidation) and 82.5% for testing. The lowest and highest accuracies (patient-wise) were 68.7% and 96.4%, respectively. Posterior probability maps of the low BV class showed the sub-volumes extracted by our model similar to ones defined by the BV maps with most misclassifications occurred near the sub-volume boundaries. Conclusion: This model could be valuable to support adaptive clinical trials with further validation. The framework could be extendable and scalable to extract temporal contrastenhanced features of DCE-MRI in other tumors. We would like to acknowledge NIH for funding support: UO1 CA183848.« less

  1. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age.

    PubMed

    Shafer, Valerie L; Yu, Yan H; Wagner, Monica

    2015-02-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250-ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition, the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Automated Geo/Co-Registration of Multi-Temporal Very-High-Resolution Imagery.

    PubMed

    Han, Youkyung; Oh, Jaehong

    2018-05-17

    For time-series analysis using very-high-resolution (VHR) multi-temporal satellite images, both accurate georegistration to the map coordinates and subpixel-level co-registration among the images should be conducted. However, applying well-known matching methods, such as scale-invariant feature transform and speeded up robust features for VHR multi-temporal images, has limitations. First, they cannot be used for matching an optical image to heterogeneous non-optical data for georegistration. Second, they produce a local misalignment induced by differences in acquisition conditions, such as acquisition platform stability, the sensor's off-nadir angle, and relief displacement of the considered scene. Therefore, this study addresses the problem by proposing an automated geo/co-registration framework for full-scene multi-temporal images acquired from a VHR optical satellite sensor. The proposed method comprises two primary steps: (1) a global georegistration process, followed by (2) a fine co-registration process. During the first step, two-dimensional multi-temporal satellite images are matched to three-dimensional topographic maps to assign the map coordinates. During the second step, a local analysis of registration noise pixels extracted between the multi-temporal images that have been mapped to the map coordinates is conducted to extract a large number of well-distributed corresponding points (CPs). The CPs are finally used to construct a non-rigid transformation function that enables minimization of the local misalignment existing among the images. Experiments conducted on five Kompsat-3 full scenes confirmed the effectiveness of the proposed framework, showing that the georegistration performance resulted in an approximately pixel-level accuracy for most of the scenes, and the co-registration performance further improved the results among all combinations of the georegistered Kompsat-3 image pairs by increasing the calculated cross-correlation values.

  3. Leveraging Mechanism Simplicity and Strategic Averaging to Identify Signals from Highly Heterogeneous Spatial and Temporal Ozone Data

    NASA Astrophysics Data System (ADS)

    Brown-Steiner, B.; Selin, N. E.; Prinn, R. G.; Monier, E.; Garcia-Menendez, F.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Cameron-Smith, P. J.

    2017-12-01

    We summarize two methods to aid in the identification of ozone signals from underlying spatially and temporally heterogeneous data in order to help research communities avoid the sometimes burdensome computational costs of high-resolution high-complexity models. The first method utilizes simplified chemical mechanisms (a Reduced Hydrocarbon Mechanism and a Superfast Mechanism) alongside a more complex mechanism (MOZART-4) within CESM CAM-Chem to extend the number of simulated meteorological years (or add additional members to an ensemble) for a given modeling problem. The Reduced Hydrocarbon mechanism is twice as fast, and the Superfast mechanism is three times faster than the MOZART-4 mechanism. We show that simplified chemical mechanisms are largely capable of simulating surface ozone across the globe as well as the more complex chemical mechanisms, and where they are not capable, a simple standardized anomaly emulation approach can correct for their inadequacies. The second method uses strategic averaging over both temporal and spatial scales to filter out the highly heterogeneous noise that underlies ozone observations and simulations. This method allows for a selection of temporal and spatial averaging scales that match a particular signal strength (between 0.5 and 5 ppbv), and enables the identification of regions where an ozone signal can rise above the ozone noise over a given region and a given period of time. In conjunction, these two methods can be used to "scale down" chemical mechanism complexity and quantitatively determine spatial and temporal scales that could enable research communities to utilize simplified representations of atmospheric chemistry and thereby maximize their productivity and efficiency given computational constraints. While this framework is here applied to ozone data, it could also be applied to a broad range of geospatial data sets (observed or modeled) that have spatial and temporal coverage.

  4. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.

    PubMed

    Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-02-15

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Farmer data sourcing. The case study of the spatial soil information maps in South Tyrol.

    NASA Astrophysics Data System (ADS)

    Della Chiesa, Stefano; Niedrist, Georg; Thalheimer, Martin; Hafner, Hansjörg; La Cecilia, Daniele

    2017-04-01

    Nord-Italian region South Tyrol is Europe's largest apple growing area exporting ca. 15% in Europe and 2% worldwide. Vineyards represent ca. 1% of Italian production. In order to deliver high quality food, most of the farmers in South Tyrol follow sustainable farming practices. One of the key practice is the sustainable soil management, where farmers collect regularly (each 5 years) soil samples and send for analyses to improve cultivation management, yield and finally profitability. However, such data generally remain inaccessible. On this regard, in South Tyrol, private interests and the public administration have established a long tradition of collaboration with the local farming industry. This has granted to the collection of large spatial and temporal database of soil analyses along all the cultivated areas. Thanks to this best practice, information on soil properties are centralized and geocoded. The large dataset consist mainly in soil information of texture, humus content, pH and microelements availability such as, K, Mg, Bor, Mn, Cu Zn. This data was finally spatialized by mean of geostatistical methods and several high-resolution digital maps were created. In this contribution, we present the best practice where farmers data source soil information in South Tyrol. Show the capability of a large spatial-temporal geocoded soil dataset to reproduce detailed digital soil property maps and to assess long-term changes in soil properties. Finally, implication and potential application are discussed.

  6. Generic emergence of power law distributions and Lévy-Stable intermittent fluctuations in discrete logistic systems

    NASA Astrophysics Data System (ADS)

    Biham, Ofer; Malcai, Ofer; Levy, Moshe; Solomon, Sorin

    1998-08-01

    The dynamics of generic stochastic Lotka-Volterra (discrete logistic) systems of the form wi(t+1)=λ(t)wi(t)+aw¯(t)-bwi(t)w¯(t) is studied by computer simulations. The variables wi, i=1,...,N, are the individual system components and w¯(t)=(1/N)∑iwi(t) is their average. The parameters a and b are constants, while λ(t) is randomly chosen at each time step from a given distribution. Models of this type describe the temporal evolution of a large variety of systems such as stock markets and city populations. These systems are characterized by a large number of interacting objects and the dynamics is dominated by multiplicative processes. The instantaneous probability distribution P(w,t) of the system components wi turns out to fulfill a Pareto power law P(w,t)~w-1-α. The time evolution of w¯(t) presents intermittent fluctuations parametrized by a Lévy-stable distribution with the same index α, showing an intricate relation between the distribution of the wi's at a given time and the temporal fluctuations of their average.

  7. Long-Term Follow-Up of Flap Prefabrication in Facial Reconstruction.

    PubMed

    Wang, Weixin; Zhao, Muxin; Tang, Yong; Chen, Wen; Yang, Zhe; Ma, Ning; Xu, Lisi; Feng, Jun; Li, Yangqun

    2017-07-01

    Flap prefabrication is to turn a random flap into an axial flap by transferring a vascular pedicle. In the past 13 years, we have prefabricated 20 flaps in 20 patients by the superficial temporal artery and its concomitant veins. Typically, a 50- to 800-mL tissue expander was implanted in the donor site. After flap maturation, the prefabricated flap was raised and transferred locally to cover the large defect on the face. All the cases were followed up regularly. The patients' age were between 3 and 27 years, the size of the flaps were between 3.5 × 5.5 cm and 13 × 15 cm, the superficial temporal artery length was between 10 and 15 cm. All flaps were transferred successfully: 10 of the flaps had venous congestion, partial epidermis exfoliation and flap necrosis occurred in 4 flaps. All cases were followed up for at least 1 year, the longest follow-up period was 9 years. Long-term follow-up results showed the prefabricated flap survived in good condition and had a satisfactory outcome. Because flap prefabrication is practical, and long-term follow-ups have proved its preferable characters and stability, it is a fine method for large area facial reconstructions.

  8. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    USGS Publications Warehouse

    Mikle, Nathaniel; Graves, Tabitha A.; Kovach, Ryan P.; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral.

  9. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    PubMed Central

    Kovach, Ryan; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral. PMID:27655768

  10. Antarctic Surface Temperatures Using Satellite Infrared Data from 1979 Through 1995

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Stock, Larry

    1997-01-01

    The large scale spatial and temporal variations of surface ice temperature over the Antarctic region are studied using infrared data derived from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) from 1979 through 1985 and from the NOAA Advanced Very High Resolution Radiometer (AVHRR) from 1984 through 1995. Enhanced techniques suitable for the polar regions for cloud masking and atmospheric correction were used before converting radiances to surface temperatures. The observed spatial distribution of surface temperature is highly correlated with surface ice sheet topography and agrees well with ice station temperatures with 2K to 4K standard deviations. The average surface ice temperature over the entire continent fluctuates by about 30K from summer to winter while that over the Antarctic Plateau varies by about 45K. Interannual fluctuations of the coldest interannual variations in surface temperature are highest at the Antarctic Plateau and the ice shelves (e.g., Ross and Ronne) with a periodic cycle of about 5 years and standard deviations of about 11K and 9K, respectively. Despite large temporal variability, however, especially in some regions, a regression analysis that includes removal of the seasonal cycle shows no apparent trend in temperature during the period 1979 through 1995.

  11. Regional variability in sea ice melt in a changing Arctic

    PubMed Central

    Perovich, Donald K.; Richter-Menge, Jacqueline A.

    2015-01-01

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323

  12. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia.

    PubMed

    Yasumura, Yuko; Ishida, Atsushi

    2011-01-01

    We examined temporal changes in the amount of nitrogenous compounds in leaves from the outer and inner parts of the crown of Quercus myrsinaefolia growing in a seasonal climate. Throughout the leaf life span, metabolic protein and Rubisco content closely correlated with total nitrogen content, while structural protein content was relatively stable after full leaf expansion. Chlorophyll content was affected by shading as well as total nitrogen content in outer leaves that were overtopped by new shoots in the second year. Outer leaves showed a large seasonal variation in photosynthetic nitrogen-use efficiency (PNUE; the light-saturated photosynthetic rate per unit leaf nitrogen content) during the first year of their life, with PNUE decreasing from the peak in summer towards winter. Outer and inner leaves both showed age-related decline in PNUE in the second year. There were no such drastic changes in leaf nitrogen partitioning that could explain seasonal and yearly variations in PNUE. Nitrogen resorption occurred in overwintering leaves in spring. Metabolic protein explained the majority of nitrogen being resorbed, whereas structural protein, which was low in degradability, contributed little to nitrogen resorption.

  13. Control of the amplifications of large-band amplitude-modulated pulses in an Nd-glass amplifier chain

    NASA Astrophysics Data System (ADS)

    Videau, Laurent; Bar, Emmanuel; Rouyer, Claude; Gouedard, Claude; Garnier, Josselin C.; Migus, Arnold

    1999-07-01

    We study nonlinear effects in amplification of partially coherent pulses in a high power laser chain. We compare statistical models with experimental results for temporal and spatial effects. First we show the interplay between self-phase modulation which broadens spectrum bandwidth and gain narrowing which reduces output spectrum. Theoretical results are presented for spectral broadening and energy limitation in case of time-incoherent pulses. In a second part, we introduce spatial incoherence with a multimode optical fiber which provides a smoothed beam. We show with experimental result that spatial filter pinholes are responsible for additive energy losses in the amplification. We develop a statistical model which takes into account the deformation of the focused beam as a function of B integral. We estimate the energy transmission of the spatial filter pinholes and compare this model with experimental data. We find a good agreement between theory and experiments. As a conclusion, we present an analogy between temporal and spatial effects with spectral broadening and spectral filter. Finally, we propose some solutions to control energy limitations in smoothed pulses amplification.

  14. Multi-Scale Modeling to Improve Single-Molecule, Single-Cell Experiments

    NASA Astrophysics Data System (ADS)

    Munsky, Brian; Shepherd, Douglas

    2014-03-01

    Single-cell, single-molecule experiments are producing an unprecedented amount of data to capture the dynamics of biological systems. When integrated with computational models, observations of spatial, temporal and stochastic fluctuations can yield powerful quantitative insight. We concentrate on experiments that localize and count individual molecules of mRNA. These high precision experiments have large imaging and computational processing costs, and we explore how improved computational analyses can dramatically reduce overall data requirements. In particular, we show how analyses of spatial, temporal and stochastic fluctuations can significantly enhance parameter estimation results for small, noisy data sets. We also show how full probability distribution analyses can constrain parameters with far less data than bulk analyses or statistical moment closures. Finally, we discuss how a systematic modeling progression from simple to more complex analyses can reduce total computational costs by orders of magnitude. We illustrate our approach using single-molecule, spatial mRNA measurements of Interleukin 1-alpha mRNA induction in human THP1 cells following stimulation. Our approach could improve the effectiveness of single-molecule gene regulation analyses for many other process.

  15. SuperDARN convection and Sondrestrom plasma drift

    NASA Astrophysics Data System (ADS)

    Xu, L.; Koustov, A. V.; Thayer, J.; McCready, M. A.

    2001-07-01

    Plasma convection measurements by the Goose Bay and Stokkseyri SuperDARN radar pair and the Sondrestrom incoherent scatter radar are compared in three different ways, by looking at the line-of-sight (l-o-s) velocities, by comparing the SuperDARN vectors and corresponding Sondrestrom l-o-s velocities and by comparing the end products of the instruments, the convection maps. All three comparisons show overall reasonable agreement of the convection measurements though the data spread is significant and for some points a strong disagreement is obvious. The convection map comparison shows a tendency for the SuperDARN velocities to be often less than the Sondrestrom drifts for strong flows (velocities > 1000 m/s) and larger for weak flows (velocities < 500 m/s). On average, both effects do not exceed 35%. Data indicate that inconsistencies between the two data sets occur largely at times of fast temporal variations of the plasma drift and for strongly irregular flow ac-cording to the SuperDARN convection maps. These facts indicate that the observed discrepancies are in many cases a result of the different spatial and temporal resolutions of the instruments.

  16. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    PubMed Central

    Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude

    2013-01-01

    Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894

  17. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  18. Spatial-temporal dynamics of NDVI and Chl-a concentration from 1998 to 2009 in the East coastal zone of China: integrating terrestrial and oceanic components.

    PubMed

    Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli

    2013-01-01

    Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.

  19. Post-supereruption recovery at Toba Caldera

    NASA Astrophysics Data System (ADS)

    Mucek, Adonara E.; Danišík, Martin; de Silva, Shanaka L.; Schmitt, Axel K.; Pratomo, Indyo; Coble, Matthew A.

    2017-05-01

    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ~74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7+/-4.5 ka and continued until at least ~2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions.

  20. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb

    PubMed Central

    Wachowiak, Matt; Economo, Michael N.; Díaz-Quesada, Marta; Brunert, Daniela; Wesson, Daniel W.; White, John. A.; Rothermel, Markus

    2013-01-01

    Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. Here we used recently-optimized variants of the genetically-encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically- and anatomically-defined neuronal populations in the olfactory bulb (OB), including two types of GABA-ergic interneurons (periglomerular (PG) and short axon (SA) cells) and OB output neurons (mitral/tufted (MT) cells) projecting to piriform cortex. We first established that changes in neuronal spiking can be accurately related to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, while MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple while those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results point to multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further dissecting early olfactory processing using optical and genetic tools. PMID:23516293

  1. Variability of the temporal bone surface's topography: implications for otologic surgery

    NASA Astrophysics Data System (ADS)

    Lecoeur, Jérémy; Noble, Jack H.; Balachandran, Ramya; Labadie, Robert F.; Dawant, Benoit M.

    2012-02-01

    Otologic surgery is performed for a variety of reasons including treatment of recurrent ear infections, alleviation of dizziness, and restoration of hearing loss. A typical ear surgery consists of a tympanomastoidectomy in which both the middle ear is explored via a tympanic membrane flap and the bone behind the ear is removed via mastoidectomy to treat disease and/or provide additional access. The mastoid dissection is performed using a high-speed drill to excavate bone based on a pre-operative CT scan. Intraoperatively, the surface of the mastoid component of the temporal bone provides visual feedback allowing the surgeon to guide their dissection. Dissection begins in "safe areas" which, based on surface topography, are believed to be correlated with greatest distance from surface to vital anatomy thus decreasing the chance of injury to the brain, large blood vessels (e.g. the internal jugular vein and internal carotid artery), the inner ear, and the facial nerve. "Safe areas" have been identified based on surgical experience with no identifiable studies showing correlation of the surface with subsurface anatomy. The purpose of our study was to investigate whether such a correlation exists. Through a three-step registration process, we defined a correspondence between each of twenty five clinically-applicable temporal bone CT scans of patients and an atlas and explored displacement and angular differences of surface topography and depth of critical structures from the surface of the skull. The results of this study reflect current knowledge of osteogenesis and anatomy. Based on two features (distance and angular difference), two regions (suprahelical and posterior) of the temporal bone show the least variability between surface and subsurface anatomy.

  2. Past-focused temporal communication overcomes conservatives' resistance to liberal political ideas.

    PubMed

    Lammers, Joris; Baldwin, Matt

    2018-04-01

    Nine studies and a meta-analysis test the role of past-focused temporal communication in reducing conservatives' disagreement with liberal political ideas. We propose that conservatives are more prone to warm, affectionate, and nostalgic feelings for past society. Therefore, they are more likely to support political ideas-including those expressing liberal values-that can be linked to a desirable past state (past focus), rather than a desirable future state (future focus) of society. Study 1 supports our prediction that political conservatives are more nostalgic for the past than liberals. Building on this association, we demonstrate that communicating liberal ideas with a past focus increases conservatives' support for leniency in criminal justice (Studies 2a and 2b), gun control (Study 3), immigration (Study 4), social diversity (Study 5), and social justice (Study 6). Communicating messages with a past focus reduced political disagreement (compared with a future focus) between liberals and conservatives by between 30 and 100% across studies. Studies 5 and 6 identify the mediating role of state and trait nostalgia, respectively. Study 7 shows that the temporal communication effect only occurs under peripheral (and not central) information processing. Study 8 shows that the effect is asymmetric; a future focus did not increase liberals' support for conservative ideas. A mixed-effects meta-analysis across all studies confirms that appealing to conservatives' nostalgia with a past-focused temporal focus increases support for liberal political messages (Study 9). A large portion of the political disagreement between conservatives and liberals appears to be disagreement over style, and not content of political issues. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. [A case of primary central nervous system anaplastic lymphoma kinase positive anaplastic large cell lymphoma manifested as a unilateral pachymeningits].

    PubMed

    Fujisawa, Etsuco; Shibayama, Hidehiro; Mitobe, Fumi; Katada, Fumiaki; Sato, Susumu; Fukutake, Toshio

    2017-11-25

    There have been 23 reports of primary central nervous system anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma in the literature. Here we report the 24th case of a 40-year-old man who presented with occipital headache for one month. His contrast-enhanced brain MRI showed enhancement around the right temporal lobe, which suggested a diagnosis of hypertrophic pachymeningitis. He improved with steroid therapy. After discharge, however, he was readmitted with generalized convulsive seizures. Finally, he was diagnosed as primary central nervous system ALK-positive anaplastic large cell lymphoma by brain biopsy. Primary central nervous system lymphoma invading dura matter can rarely manifests as a unilateral pachymeningitis. Therefore, in case of pachymeningitis, we should pay attention to the possibility of infiltration of lymophoma with meticulous clinical follow-up.

  4. Short-Term Forecasting of Taiwanese Earthquakes Using a Universal Model of Fusion-Fission Processes

    PubMed Central

    Cheong, Siew Ann; Tan, Teck Liang; Chen, Chien-Chih; Chang, Wu-Lung; Liu, Zheng; Chew, Lock Yue; Sloot, Peter M. A.; Johnson, Neil F.

    2014-01-01

    Predicting how large an earthquake can be, where and when it will strike remains an elusive goal in spite of the ever-increasing volume of data collected by earth scientists. In this paper, we introduce a universal model of fusion-fission processes that can be used to predict earthquakes starting from catalog data. We show how the equilibrium dynamics of this model very naturally explains the Gutenberg-Richter law. Using the high-resolution earthquake catalog of Taiwan between Jan 1994 and Feb 2009, we illustrate how out-of-equilibrium spatio-temporal signatures in the time interval between earthquakes and the integrated energy released by earthquakes can be used to reliably determine the times, magnitudes, and locations of large earthquakes, as well as the maximum numbers of large aftershocks that would follow. PMID:24406467

  5. Cloudy-sky Longwave Downward Radiation Estimation by Combining MODIS and AIRS/AMSU Measurements

    NASA Astrophysics Data System (ADS)

    Wang, T.; Shi, J.

    2017-12-01

    Longwave downward radiation (LWDR) is another main energy source received by the earth's surface except solar radiation. Its importance in regulating air temperature and balancing surface energy is enlarged especially under cloudy-sky. Unfortunately, to date, a large number of efforts have been made to derive LWDR from space under only clear-sky conditions leading to difficulty in utilizing space-based LWDR in most models due to its spatio-temporal discontinuity. Currently, only few studies focused on LWDR estimation under cloudy-sky conditions, while their global application is still questionable. In this paper, an alternative strategy is proposed aiming to derive high resolution(1km) cloudy-sky LWDR by fusing collocated satellite multi-sensor measurements. The results show that the newly developed method can work well and can derive LWDR at better accuracy with RMSE<27 W/m2 and bias < 10 W/m2 even under cloudy skies and at 1km scales. By comparing to CALIPSO-CloudSat-CERES-MODIS (CCCM) and SSF products of CERES, MERRA, ERA-interim and NCEP-CSFR products, the new approach demonstrates its superiority in terms of accuracy, temporal variation and spatial distribution pattern of LWDR. The comprehensive comparison analyses also reveal that, except for the proposed product, other four products (CERES, MERRA, ERA-interim and NCEP-CSFR) also show a big difference from each other in the LWDR spatio-temporal distribution pattern and magnitude. The difference between these products can still up to 60W/m2 even at the monthly scale, implying large uncertainties in current LWDR estimations. Besides the higher accuracy of the proposed method, more importantly, it provides unprecedented possibilities for jointly generating high resolution global LWDR datasets by connecting the NASA's Earth Observing System-(EOS) mission (MODIS-AIRS/AMSU) and the Suomi National Polar-orbiting Partnership-(NPP) mission (VIIRS-CrIS/ATMS). Meanwhile, the scheme proposed in this study also gives some clues for multiple data fusing in the remote sensing community.

  6. Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome

    PubMed Central

    Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier

    2011-01-01

    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics. PMID:22219720

  7. Temporal Stability of Metal-Chloride-Doped Chemical-Vapour-Deposited Graphene.

    PubMed

    Kang, Moon H; Milne, William I; Cole, Matthew T

    2016-08-18

    Graphene has proven to be a promising material for transparent flexible electronics. In this study, we report the development of a transfer and doping scheme of large-area chemical vapour deposited (CVD) graphene. A technique to transfer the as-grown material onto mechanically flexible and optically transparent polymeric substrates using an ultraviolet adhesive (UVA) is outlined, along with the temporal stability of the sheet resistance and optical transparency following chemical doping with various metal chlorides (Mx Cly The sheet resistance (RS ) and 550 nm optical transparency (%T550 ) of the transferred un-doped graphene was 3.5 kΩ sq(-1) (±0.2 kΩ sq(-1) ) and 84.1 % (±2.9 %), respectively. Doping with AuCl3 showed a notable reduction in RS by some 71.4 % (to 0.93 kΩ sq(-1) ) with a corresponding %T550 of 77.0 %. After 200 h exposure to air at standard temperature and pressure, the increase in RS was found to be negligible (ΔRS AuCl3 =0.06 kΩ sq(-1) ), indicating that, of the considered Mx Cly species, AuCl3 doping offered the highest degree of time stability under ambient conditions. There appears a tendency of increasing RS with time for the remaining metal chlorides studied. We attribute the observed temporal shift to desorption of molecular dopants. We find that desorption was most significant in RhCl3 -doped samples whereas, in contrast, after 200 h in ambient conditions, AuCl3 -doped graphene showed only marginal desorption. The results of this study demonstrate that chemical doping of UVA-transferred graphene is a promising means for enhancing large-area CVD graphene in order to realise a viable platform for next-generation optically transparent and mechanically flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease.

    PubMed Central

    Buzsáki, György; Watson, Brendon O.

    2012-01-01

    The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or “chunk” neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms. PMID:23393413

  9. Lag threads organize the brain’s intrinsic activity

    PubMed Central

    Mitra, Anish; Snyder, Abraham Z.; Blazey, Tyler; Raichle, Marcus E.

    2015-01-01

    It has been widely reported that intrinsic brain activity, in a variety of animals including humans, is spatiotemporally structured. Specifically, propagated slow activity has been repeatedly demonstrated in animals. In human resting-state fMRI, spontaneous activity has been understood predominantly in terms of zero-lag temporal synchrony within widely distributed functional systems (resting-state networks). Here, we use resting-state fMRI from 1,376 normal, young adults to demonstrate that multiple, highly reproducible, temporal sequences of propagated activity, which we term “lag threads,” are present in the brain. Moreover, this propagated activity is largely unidirectional within conventionally understood resting-state networks. Modeling experiments show that resting-state networks naturally emerge as a consequence of shared patterns of propagation. An implication of these results is that common physiologic mechanisms may underlie spontaneous activity as imaged with fMRI in humans and slowly propagated activity as studied in animals. PMID:25825720

  10. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth.

    PubMed

    Davy, Richard; Esau, Igor

    2016-05-25

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.

  11. Wavelet Analyses of Oil Prices, USD Variations and Impact on Logistics

    NASA Astrophysics Data System (ADS)

    Melek, M.; Tokgozlu, A.; Aslan, Z.

    2009-07-01

    This paper is related with temporal variations of historical oil prices and Dollar and Euro in Turkey. Daily data based on OECD and Central Bank of Turkey records beginning from 1946 has been considered. 1D-continuous wavelets and wavelet packets analysis techniques have been applied on data. Wavelet techniques help to detect abrupt changing's, increasing and decreasing trends of data. Estimation of variables has been presented by using linear regression estimation techniques. The results of this study have been compared with the small and large scale effects. Transportation costs of track show a similar variation with fuel prices. The second part of the paper is related with estimation of imports, exports, costs, total number of vehicles and annual variations by considering temporal variation of oil prices and Dollar currency in Turkey. Wavelet techniques offer a user friendly methodology to interpret some local effects on increasing trend of imports and exports data.

  12. Rainfall Patterns Analysis over Ampangan Muda, Kedah from 2007 - 2016

    NASA Astrophysics Data System (ADS)

    Chooi Tan, Kok

    2018-04-01

    The scientific knowledge about climate change and climate variability over Malaysia pertaining to the extreme water-related disaster such as drought and flood. A deficit or increment in precipitation occurred over the past century becomes a useful tool to understand the climate change in Malaysia. The purpose of this work is to examine the rainfall patterns over Ampangan Muda, Kedah. Daily rainfall data is acquired from Malaysian Meteorological Department to analyse the temporal and trends of the monthly and annual rainfall over the study area from 2007 to 2016. The obtained results show that the temporal and patterns of the rainfall over Ampangan Muda, Kedah is largely affected by the regional phenomena such as monsoon, El Niño Southern Oscillation (ENSO), and the Madden-Julian Oscillation. In addition, backward trajectories analysis is also used to identify the patterns for long-range of synoptic circulation over the region.

  13. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth

    PubMed Central

    Davy, Richard; Esau, Igor

    2016-01-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757

  14. Differential temporal dynamics during visual imagery and perception.

    PubMed

    Dijkstra, Nadine; Mostert, Pim; Lange, Floris P de; Bosch, Sander; van Gerven, Marcel Aj

    2018-05-29

    Visual perception and imagery rely on similar representations in the visual cortex. During perception, visual activity is characterized by distinct processing stages, but the temporal dynamics underlying imagery remain unclear. Here, we investigated the dynamics of visual imagery in human participants using magnetoencephalography. Firstly, we show that, compared to perception, imagery decoding becomes significant later and representations at the start of imagery already overlap with later time points. This suggests that during imagery, the entire visual representation is activated at once or that there are large differences in the timing of imagery between trials. Secondly, we found consistent overlap between imagery and perceptual processing around 160 ms and from 300 ms after stimulus onset. This indicates that the N170 gets reactivated during imagery and that imagery does not rely on early perceptual representations. Together, these results provide important insights for our understanding of the neural mechanisms of visual imagery. © 2018, Dijkstra et al.

  15. Temporal Relations in Daily-Reported Maternal Mood and Disruptive Child Behavior

    ERIC Educational Resources Information Center

    Elgar, Frank J.; Waschbusch, Daniel A.; McGrath, Patrick J.; Stewart, Sherry H.; Curtis, Lori J.

    2004-01-01

    Examined temporal relations between maternal mood and disruptive child behaviour using daily assessments of 30 mother-child dyads carried out over 8 consecutive weeks (623 pooled observations). Pooled time-series analyses showed synchronous fluctuation in child behaviour and maternal distress. Time-lagged models showed temporal relations between…

  16. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    PubMed

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.

  17. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jochem, Warren C; Sims, Kelly M; Bright, Eddie A

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographicallymore » scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.« less

  18. Temporal variations of Escherichia coli concentrations in a large Midwestern river

    NASA Astrophysics Data System (ADS)

    Schilling, Keith E.; Zhang, You-Kuan; Hill, Dennis R.; Jones, Christopher S.; Wolter, Calvin F.

    2009-02-01

    SummaryThe Raccoon River used by the Des Moines Water Works to serve more than 400,000 people in central Iowa is threatened by contamination from Escherichia coli bacteria from point and nonpoint sources. The 9389 km 2 watershed is highly agricultural, with 73% of the land in row crop production and widespread animal production. Results from 2155 grab samples from 1997 to 2005 for E. coli analysis were examined for temporal variations. E. coli concentrations were found to vary across years, seasons, and flow conditions, with a 9-year mean value of 1156 most probable number (MPN)/100 ml. Monthly concentrations exhibited clear seasonality with highest values in May through July. Although E. coli concentrations were higher during periods of greater discharge, the relation of log E. coli to log discharge was not particularly strong ( r2 = 0.35). The variogram of E. coli concentrations showed temporal correlation within a span of 4 days suggesting that concentrations measured on 1 day may be related in time to concentrations measured up to 3 days later and beyond 4 days the concentrations vary randomly. The spectral analysis of the time series of E. coli was also carried out and was fitted well with the spectrum of an exponential covariance function. Deciphering temporal patterns and correlation of E. coli bacteria in streams may be useful for developing future monitoring strategies to track concentration patterns and loads.

  19. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu

    2013-12-02

    The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.

  20. Time Determines the Neural Circuit Underlying Associative Fear Learning

    PubMed Central

    Guimarãis, Marta; Gregório, Ana; Cruz, Andreia; Guyon, Nicolas; Moita, Marta A.

    2011-01-01

    Ultimately associative learning is a function of the temporal features and relationships between experienced stimuli. Nevertheless how time affects the neural circuit underlying this form of learning remains largely unknown. To address this issue, we used single-trial auditory trace fear conditioning and varied the length of the interval between tone and foot-shock. Through temporary inactivation of the amygdala, medial prefrontal-cortex (mPFC), and dorsal-hippocampus in rats, we tested the hypothesis that different temporal intervals between the tone and the shock influence the neuronal structures necessary for learning. With this study we provide the first experimental evidence showing that temporarily inactivating the amygdala before training impairs auditory fear learning when there is a temporal gap between the tone and the shock. Moreover, imposing a short interval (5 s) between the two stimuli also relies on the mPFC, while learning the association across a longer interval (40 s) becomes additionally dependent on a third structure, the dorsal-hippocampus. Thus, our results suggest that increasing the interval length between tone and shock leads to the involvement of an increasing number of brain areas in order for the association between the two stimuli to be acquired normally. These findings demonstrate that the temporal relationship between events is a key factor in determining the neuronal mechanisms underlying associative fear learning. PMID:22207842

  1. Local collective motion analysis for multi-probe dynamic imaging and microrheology

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mason, Thomas G.

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.

  2. Spatio-temporal clustering and density estimation of lightning data for the tracking of convective events

    NASA Astrophysics Data System (ADS)

    Strauss, Cesar; Rosa, Marcelo Barbio; Stephany, Stephan

    2013-12-01

    Convective cells are cloud formations whose growth, maturation and dissipation are of great interest among meteorologists since they are associated with severe storms with large precipitation structures. Some works suggest a strong correlation between lightning occurrence and convective cells. The current work proposes a new approach to analyze the correlation between precipitation and lightning, and to identify electrically active cells. Such cells may be employed for tracking convective events in the absence of weather radar coverage. This approach employs a new spatio-temporal clustering technique based on a temporal sliding-window and a standard kernel density estimation to process lightning data. Clustering allows the identification of the cells from lightning data and density estimation bounds the contours of the cells. The proposed approach was evaluated for two convective events in Southeast Brazil. Image segmentation of radar data was performed to identify convective precipitation structures using the Steiner criteria. These structures were then compared and correlated to the electrically active cells in particular instants of time for both events. It was observed that most precipitation structures have associated cells, by comparing the ground tracks of their centroids. In addition, for one particular cell of each event, its temporal evolution was compared to that of the associated precipitation structure. Results show that the proposed approach may improve the use of lightning data for tracking convective events in countries that lack weather radar coverage.

  3. Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder.

    PubMed

    Yang, Xin-hua; Huang, Jia; Lan, Yong; Zhu, Cui-ying; Liu, Xiao-qun; Wang, Ye-fei; Cheung, Eric F C; Xie, Guang-rong; Chan, Raymond C K

    2016-01-04

    Anhedonia, the loss of interest or pleasure in reward processing, is a hallmark feature of major depressive disorder (MDD), but its underlying neurobiological mechanism is largely unknown. The present study aimed to examine the underlying neural mechanism of reward-related decision-making in patients with MDD. We examined behavioral and neural responses to rewards in patients with first-episode MDD (N=25) and healthy controls (N=25) using the Effort-Expenditure for Rewards Task (EEfRT). The task involved choices about possible rewards of varying magnitude and probability. We tested the hypothesis that individuals with MDD would exhibit a reduced neural response in reward-related brain structures involved in cost-benefit decision-making. Compared with healthy controls, patients with MDD showed significantly weaker responses in the left caudate nucleus when contrasting the 'high reward'-'low reward' condition, and blunted responses in the left superior temporal gyrus and the right caudate nucleus when contrasting high and low probabilities. In addition, hard tasks chosen during high probability trials were negatively correlated with superior temporal gyrus activity in MDD patients, while the same choices were negatively correlated with caudate nucleus activity in healthy controls. These results indicate that reduced caudate nucleus and superior temporal gyrus activation may underpin abnormal cost-benefit decision-making in MDD. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model

    NASA Astrophysics Data System (ADS)

    Speidel, Leo; Klemm, Konstantin; Eguíluz, Víctor M.; Masuda, Naoki

    2016-07-01

    Data of physical contacts and face-to-face communications suggest temporally varying networks as the media on which infections take place among humans and animals. Epidemic processes on temporal networks are complicated by complexity of both network structure and temporal dimensions. Theoretical approaches are much needed for identifying key factors that affect dynamics of epidemics. In particular, what factors make some temporal networks stronger media of infection than other temporal networks is under debate. We develop a theory to understand the susceptible-infected-susceptible epidemic model on arbitrary temporal networks, where each contact is used for a finite duration. We show that temporality of networks lessens the epidemic threshold such that infections persist more easily in temporal networks than in their static counterparts. We further show that the Lie commutator bracket of the adjacency matrices at different times is a key determinant of the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold, which depends on a data set, is approximately predicted by the magnitude of a commutator norm.

  5. Test and Evaluation of Architecture-Aware Compiler Environment

    DTIC Science & Technology

    2011-11-01

    biology, medicine, social sciences , and security applications. Challenges include extremely large graphs (the Facebook friend network has over...Operations with Temporal Binning ....................................................................... 32 4.12 Memory behavior and Energy per...five challenge problems empirically, exploring their scaling properties, computation and datatype needs, memory behavior , and temporal behavior

  6. The Role of Deep Creep in the Timing of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Sammis, C. G.; Smith, S. W.

    2012-12-01

    The observed temporal clustering of the world's largest earthquakes has been largely discounted for two reasons: a) it is consistent with Poisson clustering, and b) no physical mechanism leading to such clustering has been proposed. This lack of a mechanism arises primarily because the static stress transfer mechanism, commonly used to explain aftershocks and the clustering of large events on localized fault networks, does not work at global distances. However, there is recent observational evidence that the surface waves from large earthquakes trigger non-volcanic tremor at the base of distant fault zones at global distances. Based on these observations, we develop a simple non-linear coupled oscillator model that shows how the triggering of such tremor can lead to the synchronization of large earthquakes on a global scale. A basic assumption of the model is that induced tremor is a proxy for deep creep that advances the seismic cycle of the fault. We support this hypothesis by demonstrating that the 2010 Maule Chile and the 2011 Fukushima Japan earthquakes, which have been shown to induce tremor on the Parkfield segment of the San Andreas Fault, also produce changes in off-fault seismicity that are spatially and temporally consistent with episodes of deep creep on the fault. The observed spatial pattern can be simulated using an Okada dislocation model for deep creep (below 20 km) on the fault plane in which the slip rate decreases from North to South consistent with surface creep measurements and deepens south of the "Parkfield asperity" as indicated by recent tremor locations. The model predicts the off-fault events should have reverse mechanism consistent with observed topography.

  7. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images.

    PubMed

    Liu, Meiling; Wang, Tiejun; Skidmore, Andrew K; Liu, Xiangnan

    2018-05-05

    Regional-level information on heavy metal pollution in agro-ecosystems is essential for food security because excessive levels of heavy metals in crops may pose risks to humans. However, collecting this information over large areas is inherently costly. This paper investigates the possibility of applying multi-temporal Sentinel-2 satellite images to detect heavy metal-induced stress (i.e., Cd stress) in rice crops in four study areas in Zhuzhou City, Hunan Province, China. For this purpose, we compared seven Sentinel-2 images acquired in 2016 and 2017 with in situ measured hyper-spectral data, chlorophyll content, rice leaf area index, and heavy metal concentrations in soil collected from 2014 to 2017. Vegetation indices (VIs) related to red edge bands were referred to as the sensitive indicators for screening stressed rice from unstressed rice. The coefficients of spatio-temporal variation (CSTV) derived from the VIs allowed us to discriminate crops exposed to pollution from heavy metals as well as environmental stressors. The results indicate that (i) the red edge chlorophyll index, the red edge position index, and the normalized difference red edge 2 index derived from multi-temporal Sentinel-2 images were good indicators for screening stressed rice from unstressed rice; (ii) Rice under Cd stress remained stable with lower CSTV values of VIs overall growth stages in the experimental region, whereas rice under other stressors (i.e., pests and disease) showed abrupt changes at some growth stages and presented "hot spots" with greater CSTV values; and (iii) the proposed spatio-temporal anomaly detection method was successful at detecting rice under Cd stress; and CSTVs of rice VIs stabilized regardless of whether they were applied to consecutive growth stages or to two different crop years. This study suggests that regional heavy metal stress may be accurately detected using multi-temporal Sentinel-2 images, using VIs sensitive to the spatio-temporal characteristics of crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The long-term outcomes of epilepsy surgery

    PubMed Central

    Keller, Simon; Nicolson, Andrew; Biswas, Shubhabrata; Smith, David; Osman Farah, Jibril; Eldridge, Paul; Wieshmann, Udo

    2018-01-01

    Objective Despite modern anti-epileptic drug treatment, approximately 30% of epilepsies remain medically refractory and for these patients, epilepsy surgery may be a treatment option. There have been numerous studies demonstrating good outcome of epilepsy surgery in the short to median term however, there are a limited number of studies looking at the long-term outcomes. The aim of this study was to ascertain the long-term outcome of resective epilepsy surgery in a large neurosurgery hospital in the U.K. Methods This a retrospective analysis of prospectively collected data. We used the 2001 International League Against Epilepsy (ILAE) classification system to classify seizure freedom and Kaplan-Meier survival analysis to estimate the probability of seizure freedom. Results We included 284 patients who underwent epilepsy surgery (178 anterior temporal lobe resections, 37 selective amygdalohippocampectomies, 33 temporal lesionectomies, 36 extratemporal lesionectomies), and had a prospective median follow-up of 5 years (range 1–27). Kaplan-Meier estimates showed that 47% (95% CI 40–58) remained seizure free (apart from simple partial seizures) at 5 years and 38% (95% CI 31–45) at 10 years after surgery. 74% (95% CI 69–80) had a greater than 50% seizure reduction at 5 years and 70% (95% CI 64–77) at 10 years. Patients who had an amygdalohippocampectomy were more likely to have seizure recurrence than patients who had an anterior temporal lobe resection (p = 0.006) and temporal lesionectomy (p = 0.029). There was no significant difference between extra temporal and temporal lesionectomies. Hippocampal sclerosis was associated with a good outcome but declined in relative frequency over the years. Conclusion The vast majority of patients who were not seizure free experienced at least a substantial and long-lasting reduction in seizure frequency. A positive long-term outcome after epilepsy surgery is possible for many patients and especially those with hippocampal sclerosis or those who had anterior temporal lobe resections. PMID:29768433

  9. The long-term outcomes of epilepsy surgery.

    PubMed

    Mohan, Midhun; Keller, Simon; Nicolson, Andrew; Biswas, Shubhabrata; Smith, David; Osman Farah, Jibril; Eldridge, Paul; Wieshmann, Udo

    2018-01-01

    Despite modern anti-epileptic drug treatment, approximately 30% of epilepsies remain medically refractory and for these patients, epilepsy surgery may be a treatment option. There have been numerous studies demonstrating good outcome of epilepsy surgery in the short to median term however, there are a limited number of studies looking at the long-term outcomes. The aim of this study was to ascertain the long-term outcome of resective epilepsy surgery in a large neurosurgery hospital in the U.K. This a retrospective analysis of prospectively collected data. We used the 2001 International League Against Epilepsy (ILAE) classification system to classify seizure freedom and Kaplan-Meier survival analysis to estimate the probability of seizure freedom. We included 284 patients who underwent epilepsy surgery (178 anterior temporal lobe resections, 37 selective amygdalohippocampectomies, 33 temporal lesionectomies, 36 extratemporal lesionectomies), and had a prospective median follow-up of 5 years (range 1-27). Kaplan-Meier estimates showed that 47% (95% CI 40-58) remained seizure free (apart from simple partial seizures) at 5 years and 38% (95% CI 31-45) at 10 years after surgery. 74% (95% CI 69-80) had a greater than 50% seizure reduction at 5 years and 70% (95% CI 64-77) at 10 years. Patients who had an amygdalohippocampectomy were more likely to have seizure recurrence than patients who had an anterior temporal lobe resection (p = 0.006) and temporal lesionectomy (p = 0.029). There was no significant difference between extra temporal and temporal lesionectomies. Hippocampal sclerosis was associated with a good outcome but declined in relative frequency over the years. The vast majority of patients who were not seizure free experienced at least a substantial and long-lasting reduction in seizure frequency. A positive long-term outcome after epilepsy surgery is possible for many patients and especially those with hippocampal sclerosis or those who had anterior temporal lobe resections.

  10. Simulation of fruit-set and trophic competition and optimization of yield advantages in six Capsicum cultivars using functional-structural plant modelling.

    PubMed

    Ma, Y T; Wubs, A M; Mathieu, A; Heuvelink, E; Zhu, J Y; Hu, B G; Cournède, P H; de Reffye, P

    2011-04-01

    Many indeterminate plants can have wide fluctuations in the pattern of fruit-set and harvest. Fruit-set in these types of plants depends largely on the balance between source (assimilate supply) and sink strength (assimilate demand) within the plant. This study aims to evaluate the ability of functional-structural plant models to simulate different fruit-set patterns among Capsicum cultivars through source-sink relationships. A greenhouse experiment of six Capsicum cultivars characterized with different fruit weight and fruit-set was conducted. Fruit-set patterns and potential fruit sink strength were determined through measurement. Source and sink strength of other organs were determined via the GREENLAB model, with a description of plant organ weight and dimensions according to plant topological structure established from the measured data as inputs. Parameter optimization was determined using a generalized least squares method for the entire growth cycle. Fruit sink strength differed among cultivars. Vegetative sink strength was generally lower for large-fruited cultivars than for small-fruited ones. The larger the size of the fruit, the larger variation there was in fruit-set and fruit yield. Large-fruited cultivars need a higher source-sink ratio for fruit-set, which means higher demand for assimilates. Temporal heterogeneity of fruit-set affected both number and yield of fruit. The simulation study showed that reducing heterogeneity of fruit-set was obtained by different approaches: for example, increasing source strength; decreasing vegetative sink strength, source-sink ratio for fruit-set and flower appearance rate; and harvesting individual fruits earlier before full ripeness. Simulation results showed that, when we increased source strength or decreased vegetative sink strength, fruit-set and fruit weight increased. However, no significant differences were found between large-fruited and small-fruited groups of cultivars regarding the effects of source and vegetative sink strength on fruit-set and fruit weight. When the source-sink ratio at fruit-set decreased, the number of fruit retained on the plant increased competition for assimilates with vegetative organs. Therefore, total plant and vegetative dry weights decreased, especially for large-fruited cultivars. Optimization study showed that temporal heterogeneity of fruit-set and ripening was predicted to be reduced when fruits were harvested earlier. Furthermore, there was a 20 % increase in the number of extra fruit set.

  11. Structural Controllability and Controlling Centrality of Temporal Networks

    PubMed Central

    Pan, Yujian; Li, Xiang

    2014-01-01

    Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks. PMID:24747676

  12. Temporal Dynamics of Dissolved Oxygen Concentrations in the Hyporheic Zone.

    NASA Astrophysics Data System (ADS)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2016-12-01

    Dissolved oxygen (DO) concentration profiles and DO consumption rates are primary indicators of the redox state of porewaters in the hyporheic zone (HZ). Previous studies (mostly numeric) of reactive solute transport, in the HZ, are steady state and give a fixed, in time, view of the biogeochemical activity and redox state of the HZ. Through the use of a novel, multichannel fiber optic DO measurement system and a robotic surface probe system in a large flume experiment, we have been able to track DO concentration, in the HZ, over time and at high spatial and temporal resolutions never achieved before. Our research shows that in carbon-limited systems (i.e., ones in which organic carbon replenishment is largely episodic), DO concentration profiles and consumption rates will vary as a function of time. As the most readily available organic carbon is consumed, (first near the bed surface/water interface) respiration rates, in that area, will drop and DO will be transported deeper into the HZ. Over time, and lacking either an external source of bioavailable carbon or an alternate electron donor substrate, microbial metabolic activity will slow substantially and the majority of the HZ will be rendered oxic. Hyporheic fluxes affect the time scale of biological reactions resulting in faster growth of the aerobic zone in high-flux systems. While this temporal variability can result in a multitude of DO consumption curves (DO vs. residence time), the careful application of dimensional analysis can collapse the consumption curves to a single characteristic curve that accounts for a wide range of morphology and reactivity.

  13. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    NASA Astrophysics Data System (ADS)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  14. Audiovisual Modulation in Mouse Primary Visual Cortex Depends on Cross-Modal Stimulus Configuration and Congruency.

    PubMed

    Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S

    2017-09-06

    The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information. Copyright © 2017 the authors 0270-6474/17/378783-14$15.00/0.

  15. The 'temporal effect' in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology.

    PubMed

    Pearson, Alannah; Groves, Colin; Cardini, Andrea

    2015-11-01

    In 2004, an analysis by Lockwood and colleagues of hard-tissue morphology, using geometric morphometrics on the temporal bone, succeeded in recovering the correct phylogeny of living hominids without resorting to potentially problematic methods for transforming continuous shape variables into meristic characters. That work has increased hope that by using modern analytical methods and phylogenetically informative anatomical data we might one day be able to accurately infer the relationships of hominins, including the closest extinct relatives of modern humans. In the present study, using 3D virtually generated models of the hominid temporal bone and a larger suite of geometric morphometric and comparative techniques, we have re-examined the evidence for a Pan-Homo clade. Despite differences in samples, as well as the type of raw data, the effect of measurement error (and especially landmark digitization by a different operator), but also a broader perspective brought in by our diverse set of approaches, our reanalysis largely supports Lockwood and colleagues' original results. However, by focusing not only mainly on shape (as in the original 2004 analysis) but also on size and 'size-corrected' (non-allometric) shape, we demonstrate that the strong phylogenetic signal in the temporal bone is largely related to similarities in size. Thus, with this study, we are not suggesting the use of a single 'character', such as size, for phylogenetic inference, but we do challenge the common view that shape, with its highly complex and multivariate nature, is necessarily more phylogenetically informative than size and that actually size and size-related shape variation (i.e., allometry) confound phylogenetic inference based on morphology. This perspective may in fact be less generalizable than often believed. Thus, while we confirm the original findings by Lockwood et al., we provide a deep reinterpretation of their nature and potential implications for hominid phylogenetics and we show how crucial it is not to overlook size in geometric morphometric analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  17. Selective attention modulates high-frequency activity in the face-processing network.

    PubMed

    Müsch, Kathrin; Hamamé, Carlos M; Perrone-Bertolotti, Marcela; Minotti, Lorella; Kahane, Philippe; Engel, Andreas K; Lachaux, Jean-Philippe; Schneider, Till R

    2014-11-01

    Face processing depends on the orchestrated activity of a large-scale neuronal network. Its activity can be modulated by attention as a function of task demands. However, it remains largely unknown whether voluntary, endogenous attention and reflexive, exogenous attention to facial expressions equally affect all regions of the face-processing network, and whether such effects primarily modify the strength of the neuronal response, the latency, the duration, or the spectral characteristics. We exploited the good temporal and spatial resolution of intracranial electroencephalography (iEEG) and recorded from depth electrodes to uncover the fast dynamics of emotional face processing. We investigated frequency-specific responses and event-related potentials (ERP) in the ventral occipito-temporal cortex (VOTC), ventral temporal cortex (VTC), anterior insula, orbitofrontal cortex (OFC), and amygdala when facial expressions were task-relevant or task-irrelevant. All investigated regions of interest (ROI) were clearly modulated by task demands and exhibited stronger changes in stimulus-induced gamma band activity (50-150 Hz) when facial expressions were task-relevant. Observed latencies demonstrate that the activation is temporally coordinated across the network, rather than serially proceeding along a processing hierarchy. Early and sustained responses to task-relevant faces in VOTC and VTC corroborate their role for the core system of face processing, but they also occurred in the anterior insula. Strong attentional modulation in the OFC and amygdala (300 msec) suggests that the extended system of the face-processing network is only recruited if the task demands active face processing. Contrary to our expectation, we rarely observed differences between fearful and neutral faces. Our results demonstrate that activity in the face-processing network is susceptible to the deployment of selective attention. Moreover, we show that endogenous attention operates along the whole face-processing network, and that these effects are reflected in frequency-specific changes in the gamma band. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Speckle interferometry with temporal phase evaluation for measuring large-object deformation.

    PubMed

    Joenathan, C; Franze, B; Haible, P; Tiziani, H J

    1998-05-01

    We propose a new method for measuring large-object deformations byusing temporal evolution of the speckles in speckleinterferometry. The principle of the method is that by deformingthe object continuously, one obtains fluctuations in the intensity ofthe speckle. A large number of frames of the object motion arecollected to be analyzed later. The phase data for whole-objectdeformation are then retrieved by inverse Fourier transformation of afiltered spectrum obtained by Fourier transformation of thesignal. With this method one is capable of measuring deformationsof more than 100 mum, which is not possible using conventionalelectronic speckle pattern interferometry. We discuss theunderlying principle of the method and the results of theexperiments. Some nondestructive testing results are alsopresented.

  19. Fast Spatio-Temporal Data Mining from Large Geophysical Datasets

    NASA Technical Reports Server (NTRS)

    Stolorz, P.; Mesrobian, E.; Muntz, R.; Santos, J. R.; Shek, E.; Yi, J.; Mechoso, C.; Farrara, J.

    1995-01-01

    Use of the UCLA CONQUEST (CONtent-based Querying in Space and Time) is reviewed for performance of automatic cyclone extraction and detection of spatio-temporal blocking conditions on MPP. CONQUEST is a data analysis environment for knowledge and data mining to aid in high-resolution modeling of climate modeling.

  20. Utility of computer simulations in landscape genetics

    Treesearch

    Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale

    2010-01-01

    Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...

  1. Tracking MODIS NDVI time series to estimate fuel accumulation

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; Philip J. Riggan

    2015-01-01

    Patterns of post-fire recovery in southern California chaparral shrublands are important for understanding fuel available for future fires. Satellite remote sensing provides an opportunity to examine these patterns over large spatial extents and at high temporal resolution. The relatively limited temporal range of satellite remote sensing products has previously...

  2. Ichnotaxonomic Review of Large Ornithopod Dinosaur Tracks: Temporal and Geographic Implications

    PubMed Central

    Díaz-Martínez, Ignacio; Pereda-Suberbiola, Xabier; Pérez-Lorente, Félix; Canudo, José Ignacio

    2015-01-01

    Background Large ornithopod tracks are known from the Upper Jurassic to the uppermost Cretaceous rocks of all continents but Antarctica. They include the tracks historically called Iguanodon footprints, iguanodontid footprints, hadrosaur/hadrosaurid footprints, and other large ornithopod tracks that have been used to define ichnotaxa. More than 40 ichnospecies based on large ornithopod tracks have been defined, but the validity of many of them is questionable. Methodology/Principal Findings 34 ichnogenera and 44 ichnospecies have been analysed in this work. Many of them are considered to be invalid because they have been defined on the basis of poorly preserved tracks without diagnostic features, have an inadequate diagnosis, or are based on temporal and/or geographical criteria. Only eight ichnospecies belonging to the ichnogenera Caririchnium, Iguanodontipus and Hadrosauropodus are here regarded as valid. Conclusions/Significance The monospecific ichnogenus Iguanodontipus (I. burreyi) is characterized by a small, rounded heel and elongate, narrow digit impressions. Its distribution is limited to the Berriasian-Valanginian of Europe. Caririchnium consists of four ichnospecies (C. magnificum [type ichnospecies], C. kortmeyeri, C. billsarjeanti and C. lotus) with a large, rounded heel and short, wide digit impressions. This ichnogenus ranges from the Berriasian-Hauterivian to the Aptian-Albian of South America, North America, Asia and Europe. Finally, Hadrosauropodus (three ichnospecies: H. langstoni [type ichnospecies], H. leonardii and H. kyoungsookimi) shows a large, bilobed heel and short, wide digit impressions. It is known from the Aptian-Albian to the Maastrichtian of North America, Asia and Europe. The ichnofamily Iguanodontipodidae includes large iguanodontian tracks characterized mainly by mesaxonic, tridactyl and subsymmetrical pes tracks that are as wide as (or wider than) long and have one pad impression in each digit and one in the heel. Its distribution is confidently limited to the Cretaceous of Europe, Asia, North America and South America. PMID:25674787

  3. Methods for evaluating temporal trends in noise exposure

    PubMed Central

    Neitzel, RL; Galusha, D; Dixon-Ernst, C; Rabinowitz, PM

    2014-01-01

    Objective Hearing conservation programs have been mandatory in many US industries since 1983. Since then, three program elements (audiometric testing, hearing protection, and training) have been the focus of much research. By comparison, little has been done on noise exposure evaluation. Design and study sample Utilizing a large dataset (>10,000 measurements over 20 years) from eight facilities operated by a multinational aluminum manufacturing company, we evaluated several approaches to assessing temporal trends in Time Weighted Average (TWA) exposures and the fraction of measurements exceeding 85 dBA by facility, by exposure group within facility, and by individual worker within facility. Results Overall, exposures declined across locations over the study period. Several facilities demonstrated substantial reductions in exposure, and the results of mean noise levels and exceedance fractions generally showed good agreement. The results of analyses at the individual level diverged with analyses by facility and exposure group within facility, suggesting that individual-level analyses, while challenging, may provide important information not available from coarser levels of analysis. Conclusions Validated metrics are needed to allow for assessment of temporal trends in noise exposure. Such metrics will improve our ability to characterize, in a standardized manner, efforts to reduce noise-induced hearing loss. PMID:24564696

  4. Temporal resolution in children.

    PubMed

    Wightman, F; Allen, P; Dolan, T; Kistler, D; Jamieson, D

    1989-06-01

    The auditory temporal resolving power of young children was measured using an adaptive forced-choice psychophysical paradigm that was disguised as a video game. 20 children between 3 and 7 years of age and 5 adults were asked to detect the presence of a temporal gap in a burst of half-octave-band noise at band center frequencies of 400 and 2,000 Hz. The minimum detectable gap (gap threshold) was estimated adaptively in 20-trial runs. The mean gap thresholds in the 400-Hz condition were higher for the younger children than for the adults, with the 3-year-old children producing the highest thresholds. Gap thresholds in the 2,000-Hz condition were generally lower than in the 400-Hz condition and showed a similar age effect. All the individual adaptive runs were "adult-like," suggesting that the children were generally attentive to the task during each run. However, the variability of threshold estimates from run to run was substantial, especially in the 3-5-year-old children. Computer simulations suggested that this large within-subjects variability could have resulted from frequent, momentary lapses of attention, which would lead to "guessing" on a substantial portion of the trials.

  5. Self-induced temporal instability from a neutrino antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozzi, Francesco; INFN - Sezione di Padova,Via Marzolo 8, 35131 Padova; Dasgupta, Basudeb

    2016-04-21

    It has been recently shown that the flavor composition of a self-interacting neutrino gas can spontaneously acquire a time-dependent pulsating component during its flavor evolution. In this work, we perform a more detailed study of this effect in a model where neutrinos are assumed to be emitted in a two-dimensional plane from an infinite line that acts as a neutrino antenna. We consider several examples with varying matter and neutrino densities and find that temporal instabilities with various frequencies are excited in a cascade. We compare the numerical calculations of the flavor evolution with the predictions of linearized stability analysismore » of the equations of motion. The results obtained with these two approaches are in good agreement in the linear regime, while a dramatic speed-up of the flavor conversions occurs in the non-linear regime due to the interactions among the different pulsating modes. We show that large flavor conversions can take place if some of the temporal modes are unstable for long enough, and that this can happen even if the matter and neutrino densities are changing, as long as they vary slowly.« less

  6. Methods for evaluating temporal trends in noise exposure.

    PubMed

    Neitzel, R L; Galusha, D; Dixon-Ernst, C; Rabinowitz, P M

    2014-03-01

    Hearing conservation programs have been mandatory in many US industries since 1983. Since then, three program elements (audiometric testing, hearing protection, and training) have been the focus of much research. By comparison, little has been done on noise exposure evaluation. Temporal trends in time weighted average (TWA) exposures and the fraction of measurements exceeding 85 dBA were evaluated by facility, by exposure group within facility, and by individual worker within facility. A large dataset (> 10 000 measurements over 20 years) from eight facilities operated by a multinational aluminum manufacturing company was studied. Overall, exposures declined across locations over the study period. Several facilities demonstrated substantial reductions in exposure, and the results of mean noise levels and exceedance fractions generally showed good agreement. The results of analyses at the individual level diverged with analyses by facility and exposure group within facility, suggesting that individual-level analyses, while challenging, may provide important information not available from coarser levels of analysis. Validated metrics are needed to allow for assessment of temporal trends in noise exposure. Such metrics will improve our ability to characterize, in a standardized manner, efforts to reduce noise-induced hearing loss.

  7. Planning nonlinear access paths for temporal bone surgery.

    PubMed

    Fauser, Johannes; Sakas, Georgios; Mukhopadhyay, Anirban

    2018-05-01

    Interventions at the otobasis operate in the narrow region of the temporal bone where several highly sensitive organs define obstacles with minimal clearance for surgical instruments. Nonlinear trajectories for potential minimally invasive interventions can provide larger distances to risk structures and optimized orientations of surgical instruments, thus improving clinical outcomes when compared to existing linear approaches. In this paper, we present fast and accurate planning methods for such nonlinear access paths. We define a specific motion planning problem in [Formula: see text] with notable constraints in computation time and goal pose that reflect the requirements of temporal bone surgery. We then present [Formula: see text]-RRT-Connect: two suitable motion planners based on bidirectional Rapidly exploring Random Tree (RRT) to solve this problem efficiently. The benefits of [Formula: see text]-RRT-Connect are demonstrated on real CT data of patients. Their general performance is shown on a large set of realistic synthetic anatomies. We also show that these new algorithms outperform state-of-the-art methods based on circular arcs or Bézier-Splines when applied to this specific problem. With this work, we demonstrate that preoperative and intra-operative planning of nonlinear access paths is possible for minimally invasive surgeries at the otobasis.

  8. TEMPORAL EVOLUTION OF MULTIPLE EVAPORATING RIBBON SOURCES IN A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, D. R.; Cauzzi, G., E-mail: dgraham@arcetri.astro.it

    2015-07-10

    We present new results from the Interface Region Imaging Spectrograph (IRIS) showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 s cadence “sit-and-stare” mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal upflows of up to ∼300 km s{sup −1}more » and chromospheric downflows up to 40 km s{sup −1}. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be considered a prototypical, “elementary” flare kernel.« less

  9. Early signs of recovery of Acropora palmata in St. John, US Virgin Islands

    USGS Publications Warehouse

    Muller, E.M.; Rogers, Caroline S.; van Woesik, R.

    2014-01-01

    Since the 1980s, diseases have caused significant declines in the population of the threatened Caribbean coral Acropora palmata. Yet it is largely unknown whether the population densities have recovered from these declines and whether there have been any recent shifts in size-frequency distributions toward large colonies. It is also unknown whether colony size influences the risk of disease infection, the most common stressor affecting this species. To address these unknowns, we examined A. palmata colonies at ten sites around St. John, US Virgin Islands, in 2004 and 2010. The prevalence of white-pox disease was highly variable among sites, ranging from 0 to 53 %, and this disease preferentially targeted large colonies. We found that colony density did not significantly change over the 6-year period, although six out of ten sites showed higher densities through time. The size-frequency distributions of coral colonies at all sites were positively skewed in both 2004 and 2010, however, most sites showed a temporal shift toward more large-sized colonies. This increase in large-sized colonies occurred despite the presence of white-pox disease, a severe bleaching event, and several storms. This study provides evidence of slow recovery of the A. palmata population around St. John despite the persistence of several stressors.

  10. Linear undisplaced fracture of temporoparietal bone acting as spontaneous early decompressive craniotomy in a neonate

    PubMed Central

    Vankipuram, Siddharth; Balasubramanium, Srikant; Tyagi, Devendra K.; Savant, H. V.

    2015-01-01

    Decompressive craniotomy (DC) is used to treat intracranial hypertension associated with traumatic brain injury. Early DC is associated with better outcomes. We present a neonate with a history of fall with computed tomography scan showing a large frontoparietal contusion and associated parietal and temporal bone fracture. This acted as a spontaneous DC causing bony segment to separate due to which the edematous brain could be accommodated. Despite the presence of a large contusion, the child was neurologically intact and medically managed. The neonate presented with a posttraumatic leptomeningeal cyst 2 months later, which had to be repaired surgically. We discuss how a linear undisplaced fracture acts as spontaneous DC and the role of early DC in improving outcomes. PMID:26557171

  11. Life-history strategies associated with local population variability confer regional stability.

    PubMed

    Pribil, Stanislav; Houlahan, Jeff E

    2003-07-07

    A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.

  12. Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons

    NASA Astrophysics Data System (ADS)

    Gilpin, Shay; Rieckh, Therese; Anthes, Richard

    2018-05-01

    Radio occultation (RO) and radiosonde (RS) comparisons provide a means of analyzing errors associated with both observational systems. Since RO and RS observations are not taken at the exact same time or location, temporal and spatial sampling errors resulting from atmospheric variability can be significant and inhibit error analysis of the observational systems. In addition, the vertical resolutions of RO and RS profiles vary and vertical representativeness errors may also affect the comparison. In RO-RS comparisons, RO observations are co-located with RS profiles within a fixed time window and distance, i.e. within 3-6 h and circles of radii ranging between 100 and 500 km. In this study, we first show that vertical filtering of RO and RS profiles to a common vertical resolution reduces representativeness errors. We then test two methods of reducing horizontal sampling errors during RO-RS comparisons: restricting co-location pairs to within ellipses oriented along the direction of wind flow rather than circles and applying a spatial-temporal sampling correction based on model data. Using data from 2011 to 2014, we compare RO and RS differences at four GCOS Reference Upper-Air Network (GRUAN) RS stations in different climatic locations, in which co-location pairs were constrained to a large circle ( ˜ 666 km radius), small circle ( ˜ 300 km radius), and ellipse parallel to the wind direction ( ˜ 666 km semi-major axis, ˜ 133 km semi-minor axis). We also apply a spatial-temporal sampling correction using European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) gridded data. Restricting co-locations to within the ellipse reduces root mean square (RMS) refractivity, temperature, and water vapor pressure differences relative to RMS differences within the large circle and produces differences that are comparable to or less than the RMS differences within circles of similar area. Applying the sampling correction shows the most significant reduction in RMS differences, such that RMS differences are nearly identical to the sampling correction regardless of the geometric constraints. We conclude that implementing the spatial-temporal sampling correction using a reliable model will most effectively reduce sampling errors during RO-RS comparisons; however, if a reliable model is not available, restricting spatial comparisons to within an ellipse parallel to the wind flow will reduce sampling errors caused by horizontal atmospheric variability.

  13. Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records

    NASA Astrophysics Data System (ADS)

    Lautz, Laura K.

    2012-09-01

    SummaryRates of water exchange between surface water and groundwater (SW-GW) can be highly variable over time due to temporal changes in streambed hydraulic conductivity, storm events, and oscillation of stage due to natural and regulated river flow. There are few effective field methods available to make continuous measurements of SW-GW exchange rates with the temporal resolution required in many field applications. Here, controlled laboratory experiments were used to explore the accuracy of analytical solutions to the one-dimensional heat transport model for capturing temporal variability of flux through porous media from propagation of a periodic temperature signal to depth. Column experiments were used to generate one-dimensional flow of water and heat through saturated sand with a quasi-sinusoidal temperature oscillation at the upstream boundary. Measured flux rates through the column were compared to modeled flux rates derived using the computer model VFLUX and the amplitude ratio between filtered temperature records from two depths in the column. Imposed temporal changes in water flux through the column were designed to replicate observed patterns of flux in the field, derived using the same methodology. Field observations of temporal changes in flux were made over multiple days during a large-scale storm event and diurnally during seasonal baseflow recession. Temporal changes in flux that occur gradually over days, sub-daily, and instantaneously in time can be accurately measured using the one-dimensional heat transport model, although those temporal changes may be slightly smoothed over time. Filtering methods effectively isolate the time-variable amplitude and phase of the periodic temperature signal, effectively eliminating artificial temporal flux patterns otherwise imposed by perturbations of the temperature signal, which result from typical weather patterns during field investigations. Although previous studies have indicated that sub-cycle information from the heat transport model is not reliable, this laboratory experiment shows that the sub-cycle information is real and sub-cycle changes in flux can be observed using heat transport modeling. One-dimensional heat transport modeling provides an easy-to-implement, cost effective, reliable field tool for making continuous observations of SW-GW exchange through time, which may be particularly useful for monitoring exchange rates during storms and other conditions that create temporal change in hydraulic gradient across the streambed interface or change in streambed hydraulic conductivity.

  14. Long-term trends in the structure of eastern Adriatic littoral fish assemblages: Consequences for fisheries management

    NASA Astrophysics Data System (ADS)

    Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.

    2011-09-01

    Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.

  15. Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Michael

    Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead tomore » predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the Pacific Ocean, and annual temperature extremes at a site in New York City. In each of these applications, our theoretical and computational innovations were directly motivated by the challenges posed by analyzing these and similar types of data.« less

  16. Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system

    NASA Astrophysics Data System (ADS)

    Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.

    2016-02-01

    This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.

  17. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance

    PubMed Central

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists. PMID:27516736

  18. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    PubMed

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  19. [Local brain activity in different motor subtypes of Parkinson's disease with fMRI].

    PubMed

    Hou, Ya'nan; Zhang, Jiarong; Chen, Biao; Wu, Tao

    2015-02-17

    To explore the changes of local brain activity in motor subtypes of Parkinson's disease (PD) with functional magnetic resonance imaging (fMRI). A total of 60 idiopathic PD and 30 age- and gender-matched normal controls were examined with resting-state fMRI from January 2013 to March 2014. All subjects gave their written informed consent for the study. The amplitude of low-frequency fluctuation (ALFF) was calculated to measure local brain activity. The PD patients were divided into two groups of tremor dominant (TD) and postural instability/gait difficulty (PIGD) (n = 30 each). All subjects gave their written in formed consent for the study.One-way ANOVA and post-hoc t-test were performed to detect the differences of local brain activity between PD and normal subjects. And the correlations were examined between ALFF, scores and levodopa dose. Compared with normal subjects, the TD group showed increased activity in bilateral cerebellums (-37, -47, -38), thalamus (-18, -17,0), pons (-3, -23, -37) and left precentral gyrus (-41, -30, 46) versus decreased activity in bilateral frontal lobes (-13, 69, 6), temporal lobes (-42, 18, -21), left insula (-32, 22, 2) and left anterior cingulated (-7, 32, -5). The PIGD group showed increased activity in right postcentral gyrus (63, -18, 39) and decreased activity in bilateral putamens (-24, 12, 3), pre-supplementary motor area (10, 10, 58), frontal lobes (15, -15, 57), temporal lobes (-39, 18, -3) and left insula (-29, 20, 11). Compared with PIGD, the TD group showed increased activity in temporal lobes, but decreased activity in frontal lobes. Additionally, ALFF in bilateral cerebellums and frontal lobes was positively correlated with TD scores while ALFF in left precentral gyrus, bilateral putamens and temporal lobes negatively correlated with TD scores. ALFF in bilateral frontal lobes and left temporal lobe was positively correlated with PIGD scores.However, in right postcentral gyrus and bilateral putamens, ALFF was negatively correlated with PIGD scores. The levodopa dose was positively correlated with frontal lobes and temporal lobe in TD and cerebellums and inferior parietal lobule in PIGD. A specific pattern of intrinsic activity in TD and PIGD may provide insights into neurophysiological mechanisms of PD motor subtypes. The changes of brain activity in TD are caused by the interaction between cerebello-thalamo-cortical circuit and basal ganglia loop while the changes in PIGD result largely from damaged basal ganglia loop.

  20. Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis.

    PubMed

    Lessels, Jason S; Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris

    2016-01-01

    Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high-resolution Digital Elevation Model (DEM) with repeated spatially high-resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed.

  1. Top-down regulation, climate and multi-decadal changes in coastal zoobenthos communities in two Baltic Sea areas.

    PubMed

    Olsson, Jens; Bergström, Lena; Gårdmark, Anna

    2013-01-01

    The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities.

  2. The spatial-temporal distribution of the atmospheric polluting agents during the period 2000-2005 in the Urban Area of Guadalajara, Jalisco, Mexico.

    PubMed

    Sánchez, Hermes U Ramírez; García, María D Andrade; Bejaran, Rubén; Guadalupe, Mario E García; Vázquez, Antonio Wallo; Toledano, Ana C Pompa; Villasenor, Odila de la Torre

    2009-06-15

    In the large cities, the disordered urban development, the industrial activities, and the transport, have caused elevated concentrations of polluting agents and possible risks to the health of the population. The metropolises located in valleys with little ventilation (such as the Urban Area of Guadalajara: UAG) present low dispersion of polluting agents can cause high risk of respiratory and cardiovascular diseases. The objective of this work was to describe the spatial-temporal distribution of the atmospheric polluting agents: carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), particles smaller than 10 microns (microm) (PM(10)) and ozone (O(3)) in the UAG during the period 2000-2005. A spatial-temporal distribution analysis was made by means of graphic interpolation (Kriging method) of the statistical parameters of CO, NO(2), SO(2), PM(10) and O(3) with the collected data from eight stations of atmospheric monitoring in the UAG. The results show that the distributions of the atmospheric polluting agents are variable during the analyzed years. The polluting agent with highest concentration is PM(10) (265.42 microg/m(3)), followed by O(3) (0.11 ppm), NO(2) (0.11 ppm), CO (9.17 ppm) and SO(2) (0.05 ppm). The most affected zone is the southeast of the UAG. The results showed that an important percentage of days exceed the Mexican norms of air quality (93-199 days/year).

  3. Top-Down Regulation, Climate and Multi-Decadal Changes in Coastal Zoobenthos Communities in Two Baltic Sea Areas

    PubMed Central

    Olsson, Jens; Bergström, Lena; Gårdmark, Anna

    2013-01-01

    The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities. PMID:23737998

  4. Video quality pooling adaptive to perceptual distortion severity.

    PubMed

    Park, Jincheol; Seshadrinathan, Kalpana; Lee, Sanghoon; Bovik, Alan Conrad

    2013-02-01

    It is generally recognized that severe video distortions that are transient in space and/or time have a large effect on overall perceived video quality. In order to understand this phenomena, we study the distribution of spatio-temporally local quality scores obtained from several video quality assessment (VQA) algorithms on videos suffering from compression and lossy transmission over communication channels. We propose a content adaptive spatial and temporal pooling strategy based on the observed distribution. Our method adaptively emphasizes "worst" scores along both the spatial and temporal dimensions of a video sequence and also considers the perceptual effect of large-area cohesive motion flow such as egomotion. We demonstrate the efficacy of the method by testing it using three different VQA algorithms on the LIVE Video Quality database and the EPFL-PoliMI video quality database.

  5. Wide-field two-photon microscopy with temporal focusing and HiLo background rejection

    NASA Astrophysics Data System (ADS)

    Yew, Elijah Y. S.; Choi, Heejin; Kim, Daekeun; So, Peter T. C.

    2011-03-01

    Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy.

  6. Harmonic regression based multi-temporal cloud filtering algorithm for Landsat 8

    NASA Astrophysics Data System (ADS)

    Joshi, P.

    2015-12-01

    Landsat data archive though rich is seen to have missing dates and periods owing to the weather irregularities and inconsistent coverage. The satellite images are further subject to cloud cover effects resulting in erroneous analysis and observations of ground features. In earlier studies the change detection algorithm using statistical control charts on harmonic residuals of multi-temporal Landsat 5 data have been shown to detect few prominent remnant clouds [Brooks, Evan B., et al, 2014]. So, in this work we build on this harmonic regression approach to detect and filter clouds using a multi-temporal series of Landsat 8 images. Firstly, we compute the harmonic coefficients using the fitting models on annual training data. This time series of residuals is further subjected to Shewhart X-bar control charts which signal the deviations of cloud points from the fitted multi-temporal fourier curve. For the process with standard deviation σ we found the second and third order harmonic regression with a x-bar chart control limit [Lσ] ranging between [0.5σ < Lσ < σ] as most efficient in detecting clouds. By implementing second order harmonic regression with successive x-bar chart control limits of L and 0.5 L on the NDVI, NDSI and haze optimized transformation (HOT), and utilizing the seasonal physical properties of these parameters, we have designed a novel multi-temporal algorithm for filtering clouds from Landsat 8 images. The method is applied to Virginia and Alabama in Landsat8 UTM zones 17 and 16 respectively. Our algorithm efficiently filters all types of cloud cover with an overall accuracy greater than 90%. As a result of the multi-temporal operation and the ability to recreate the multi-temporal database of images using only the coefficients of the fourier regression, our algorithm is largely storage and time efficient. The results show a good potential for this multi-temporal approach for cloud detection as a timely and targeted solution for the Landsat 8 research community, catering to the need for innovative processing solutions in the infant stage of the satellite.

  7. Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; Chamberlain, S.; Belyaev, D.; Bertaux, J. L.

    2015-08-01

    SOIR on board Venus Express sounds the Venus upper atmosphere using the solar occultation technique. It detects the signature from many Venus atmosphere species, including those of SO2 and CO2. SO2 has a weak absorption structure at 4 μm, from which number density profiles are regularly inferred. SO2 volume mixing ratios (VMR) are calculated from the total number density that are also derived from the SOIR measurements. This work is an update of the previous work by Belyaev et al. (2012), considering the SO2 profiles on a broader altitude range, from 65 to 85 km. Positive detection VMR profiles are presented. In 68% of the occultation spectral datasets, SO2 is detected. The SO2 VMR profiles show a large variability up to two orders of magnitude, on a short term time scales. We present mean VMR profiles for various bins of latitudes, and study the latitudinal variations; the mean latitude variations are much smaller than the short term temporal variations. A permanent minimum showing a weak latitudinal structure is observed. Long term temporal trends are also considered and discussed. The trend observed by Marcq et al. (2013) is not observed in this dataset. Our results are compared to literature data and generally show a good agreement.

  8. Integrated analysis of energy transfers in elastic-wave turbulence.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  9. Towards an integrated strategy for monitoring wetland inundation with virtual constellations of optical and radar satellites

    NASA Astrophysics Data System (ADS)

    DeVries, B.; Huang, W.; Huang, C.; Jones, J. W.; Lang, M. W.; Creed, I. F.; Carroll, M.

    2017-12-01

    The function of wetlandscapes in hydrological and biogeochemical cycles is largely governed by surface inundation, with small wetlands that experience periodic inundation playing a disproportionately large role in these processes. However, the spatial distribution and temporal dynamics of inundation in these wetland systems are still poorly understood, resulting in large uncertainties in global water, carbon and greenhouse gas budgets. Satellite imagery provides synoptic and repeat views of the Earth's surface and presents opportunities to fill this knowledge gap. Despite the proliferation of Earth Observation satellite missions in the past decade, no single satellite sensor can simultaneously provide the spatial and temporal detail needed to adequately characterize inundation in small, dynamic wetland systems. Surface water data products must therefore integrate observations from multiple satellite sensors in order to address this objective, requiring the development of improved and coordinated algorithms to generate consistent estimates of surface inundation. We present a suite of algorithms designed to detect surface inundation in wetlands using data from a virtual constellation of optical and radar sensors comprising the Landsat and Sentinel missions (DeVries et al., 2017). Both optical and radar algorithms were able to detect inundation in wetlands without the need for external training data, allowing for high-efficiency monitoring of wetland inundation at large spatial and temporal scales. Applying these algorithms across a gradient of wetlands in North America, preliminary findings suggest that while these fully automated algorithms can detect wetland inundation at higher spatial and temporal resolutions than currently available surface water data products, limitations specific to the satellite sensors and their acquisition strategies are responsible for uncertainties in inundation estimates. Further research is needed to investigate strategies for integrating optical and radar data from virtual constellations, with a focus on reducing uncertainties, maximizing spatial and temporal detail, and establishing consistent records of wetland inundation over time. The findings and conclusions in this article do not necessarily represent the views of the U.S. Government.

  10. Can we see the distal dyke communicate with the caldera? Examples of temporal correlation analysis using seismicity from the Bárðarbunga volcano

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Kristín; Jónasson, Kristján; Tumi Guðmundsson, Magnús; Hensch, Martin; Hooper, Andrew; Holohan, Eoghan; Sigmundsson, Freysteinn; Halldórsson, Sæmundur Ari; Vogfjörð, Kristín; Roberts, Matthew; Barsotti, Sara; Ófeigsson, Benedikt; Hjörleifsdóttir, Vala; Magnússon, Eyjólfur; Pálsson, Finnur; Parks, Michelle; Dumont, Stephanie; Einarsson, Páll; Guðmundsson, Gunnar

    2016-04-01

    The Bárðarbunga volcano is composed of a large oval caldera (7x11 km) and fissures extending tens of kilometers away from the caldera along the rift zone, which marks the divergent plate boundary across Iceland. On August 16th, 2014 an intense seismic swarm started below the Bárðarbunga caldera and in the two weeks that followed a dyke migrated some 47 km laterally in the uppermost 6-10 km of the crust along the rift. The dyke propagation terminated in lava fields just north of Vatnajökull glacier, where a major (1.5 km3) six months long eruption took place. Intense earthquake activity in the caldera started in the period August 21-24 with over 70 M5 earthquakes accompanying slow caldera collapse, as verified by various geodetic measurements. The subsidence is likely due to magma withdrawal from a reservoir at depth beneath the caldera. During a five months period, October-February, the seismic activity was separated by over 30 km in two clusters; one along the caldera rims (due to piecewise caldera subsidence) and the other at the far end of the dyke (as a result of small shear movements). Here we present statistical analysis comparing the temporal behaviour of seismicity recorded in the two clusters. By comparing the earthquake rate in the dyke in temporal bins before and after caldera subsidence earthquakes to the rate away from these bins (background rate), we show posing a statistical p-value test, that the number of dyke earthquakes was significantly higher (p <0.05) in the period 0-3 hours before a large earthquake (>M4.6) in the caldera. Increased dyke seismicity was also observed 0-3 hours following a large caldera earthquake. Elevated seismicity in the dyke before a large caldera earthquake may occur when a constriction in the dyke was reduced, followed by pressure drop in the chamber. Assuming that the large caldera earthquakes occurred when chamber pressure was lowest, the subsiding caldera piston may have caused temporary higher pressure in the dyke and thereby increased the likelihood of an earthquake. Our results thus suggests mechanical coupling over long distances between the distal end of the dyke and the magma chamber and support a simple plumbing system.

  11. Study of a temporal bone of Homo heildelbergensis.

    PubMed

    Urquiza, Rafael; Botella, Miguel; Ciges, Miguel

    2005-05-01

    The characteristic features of the Hh specimen conformed to those of other Pleistocene human fossils, indicating strong cranial structures and a heavy mandible. The mastoid was large and suggested a powerful sternocleidomastoid muscle. The inner ear and tympanic cavities were similar in size and orientation, suggesting that their functions were probably similar. Our observations suggest that the left ear of this Hh specimen was healthy. The large canaliculo-fenestral angle confirms that this ancestor was bipedal. It also strongly suggests that Hh individuals were predisposed to develop certain pathologies of the labyrinth capsule associated with bipedalism, in particular otosclerosis. We studied a temporal bone of Homo heidelbergensis (Hh) in order to investigate the clinical and physiological implications of certain morphological features, especially those associated with the evolutionary reorganization of the inner ear. The bone, found in a breach of a cave near MAáaga in southern Spain, together with Middle Upper Pleistocene faunal remains, is >300000 years old. Four analytical methods were employed. A 3D high-resolution surface laser scan was used for anatomical measurements. For the sectional analysis of the middle and inner ears of Hh we used high-resolution CT, simultaneously studying a normal temporal bone from Homo sapiens sapiens (Hss). To study the middle and inner ear spaces we used 3D reconstruction CT preceded by an intra-bone air shielding technique. To examine the tympanic cavities and measure the canaliculo fenestral angle, we used a special minimally invasive endoscopic procedure. The surface, sectional and 3D CT examinations showed that the Hh specimen was generally more robust and larger than the Hss specimen. It had a large glenoid fossa. The external meatus was wide and deep. The middle ear, and especially the mastoid, was large and widely pneumatized. There were no appreciable differences in the position and size of the labyrinthine spaces and tympanic cavity. The dimensions of the semicircular canals were similar to those of the Hss specimen. Endoscopy revealed normal, healthy tympanic walls and an ossicle fragment in the atticum that probably belonged to the body of the malleus. The diameters of the fallopian duct and the tympanic opening of the Eustachian tube were large. The canaliculo-fenestral angle was approximately 114 degrees

  12. Postsurgical changes in self-reported mood and Composite IQ in a matched sample of patients with frontal and temporal lobe epilepsy.

    PubMed

    Suchy, Y; Chelune, G

    2001-08-01

    Changes in self-reported mood assessed by the Beck Depression Inventory (BDI) were examined in a sample of 60 left-hemisphere speech-dominant patients who underwent epilepsy surgery (15 right frontal, 15 left frontal, 15 right temporal, 15 left temporal). Temporal lobectomy patients were matched to frontal lobectomy patients by presurgical BDI scores, premorbid K-BIT composite IQ, sex, age, and years since seizure onset. Overall, self-reported mood improved following surgery, with men showing a greater improvement than women. There were no differences among the four groups in terms of pre-surgical and post-surgical reported mood. However, frontal patients showed more extreme changes in mood in either direction than temporal patients. Additionally, while temporal patients showed gains in Composite IQ, no such gains were observed in frontal patients. Changes in mood in frontal patients were not related to postsurgical seizure outcome or time since surgery, but were related to changes in Composite IQ.

  13. Rhythms can overcome temporal orienting deficit after right frontal damage.

    PubMed

    Triviño, Mónica; Arnedo, Marisa; Lupiáñez, Juan; Chirivella, Javier; Correa, Angel

    2011-12-01

    The main aim of this study was to test whether the use of rhythmic information to induce temporal expectations can overcome the deficit in controlled temporal preparation shown by patients with frontal damage (i.e. temporal orienting and foreperiod effects). Two tasks were administered to a group of 15 patients with a frontal brain lesion and a group of 15 matched control subjects: a Symbolic Cued Task where the predictive information regarding the time of target appearance was provided by a symbolic cue (short line-early vs. long line-late interval) and a Rhythm Cued Task where the predictive temporal information was provided by a rhythm (fast rhythm-early vs. slow rhythm-late interval). The results of the Symbolic Cued Task replicated both the temporal orienting deficit in right frontal patients and the absence of foreperiod effects in both right and left frontal patients, reported in our previous study (Triviño, Correa, Arnedo, & Lupiañez, 2010). However, in the Rhythm Cued Task, the right frontal group showed normal temporal orienting and foreperiod effects, while the left frontal group showed a significant deficit of both effects. These findings show that automatic temporal preparation, as induced by a rhythm, can help frontal patients to make effective use of implicit temporal information to respond at the optimum time. Our neuropsychological findings also provide a novel suggestion for a neural model, in which automatic temporal preparation is left-lateralized and controlled temporal preparation is right-lateralized in the frontal lobes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. On the right side? A longitudinal study of left- versus right-lateralized semantic dementia.

    PubMed

    Kumfor, Fiona; Landin-Romero, Ramon; Devenney, Emma; Hutchings, Rosalind; Grasso, Roberto; Hodges, John R; Piguet, Olivier

    2016-03-01

    The typical presentation of semantic dementia is associated with marked, left predominant anterior temporal lobe atrophy and with changes in language. About 30% of individuals, however, present with predominant right anterior temporal lobe atrophy, usually accompanied by behavioural changes and prosopagnosia. Here, we aimed to establish whether these initially distinct clinical presentations evolve into a similar syndrome at the neural and behavioural level. Thirty-one patients who presented with predominant anterior temporal lobe atrophy were included. Based on imaging, patients were categorized as either predominant left (n = 22) or right (n = 9) semantic dementia. Thirty-three Alzheimer's disease patients and 25 healthy controls were included for comparison. Participants completed the Addenbrooke's Cognitive Examination, a Face and Emotion Processing Battery and the Cambridge Behavioural Inventory, and underwent magnetic resonance imaging annually. Longitudinal neuroimaging analyses showed greater right temporal pole atrophy in left semantic dementia than Alzheimer's disease, whereas right semantic dementia showed greater orbitofrontal and left temporal lobe atrophy than Alzheimer's disease. Importantly, direct comparisons between semantic dementia groups revealed that over time, left semantic dementia showed progressive thinning in the right temporal pole, whereas right semantic dementia showed thinning in the orbitofrontal cortex and anterior cingulate. Behaviourally, longitudinal analyses revealed that general cognition declined in all patients. In contrast, patients with left and right semantic dementia showed greater emotion recognition decline than Alzheimer's disease. In addition, left semantic dementia showed greater motivation loss than Alzheimer's disease. Correlational analyses revealed that emotion recognition was associated with right temporal pole, right medial orbitofrontal and right fusiform integrity, while changes in motivation were associated with right temporal pole cortical thinning. While left and right semantic dementia show distinct profiles at presentation, both phenotypes develop deficits in emotion recognition and behaviour. These findings highlight the pervasive socio-emotional deficits in frontotemporal dementia, even in patients with an initial language presentation. These changes reflect right anterior temporal and orbitofrontal cortex degeneration, underscoring the role of these regions in social cognition and behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Verbal memory after temporal lobe epilepsy surgery in children: Do only mesial structures matter?

    PubMed

    Law, Nicole; Benifla, Mony; Rutka, James; Smith, Mary Lou

    2017-02-01

    Previous findings have been mixed regarding verbal memory outcome after left temporal lobectomy in children, and there are few studies comparing verbal memory change after lateral versus mesial temporal lobe resections. We compared verbal memory outcome associated with sparing or including the mesial structures in children who underwent left or right temporal lobe resection. We also investigated predictors of postsurgical verbal memory change. We retrospectively assessed verbal memory change approximately 1 year after unilateral temporal lobe epilepsy surgery using a list learning task. Participants included 23 children who underwent temporal lobe surgery with sparing of the mesial structures (13 left), and 40 children who had a temporal lobectomy that included resection of mesial structures (22 left). Children who underwent resection from the left lateral and mesial temporal lobe were the only group to show decline in verbal memory. Furthermore, when we considered language representation in the left temporal resection group, patients with left language representation and spared mesial structures showed essentially no change in verbal memory from preoperative to follow-up, whereas those with left language representation and excised mesial structures showed a decline. Postoperative seizure status had no effect on verbal memory change in children after left temporal lobe surgery. Finally, we found that patients with intact preoperative verbal memory experienced a significant decline compared to those with below average preoperative verbal memory. Our findings provide evidence of significant risk factors for verbal memory decline in children, specific to left mesial temporal lobe epilepsy. Children who undergo left temporal lobe surgery that includes mesial structures may be most vulnerable for verbal memory decline, especially when language representation is localized to the left hemisphere and when preoperative verbal memory is intact. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  16. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    PubMed

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Do Indonesian Children's Experiences with Large Currency Units Facilitate Magnitude Estimation of Long Temporal Periods?

    ERIC Educational Resources Information Center

    Cheek, Kim A.

    2017-01-01

    Ideas about temporal (and spatial) scale impact students' understanding across science disciplines. Learners have difficulty comprehending the long time periods associated with natural processes because they have no referent for the magnitudes involved. When people have a good "feel" for quantity, they estimate cardinal number magnitude…

  18. Learning large-scale dynamic discrete choice models of spatio-temporal preferences with application to migratory pastoralism in East Africa

    USDA-ARS?s Scientific Manuscript database

    Understanding spatio-temporal resource preferences is paramount in the design of policies for sustainable development. Unfortunately, resource preferences are often unknown to policy-makers and have to be inferred from data. In this paper we consider the problem of inferring agents’ preferences fro...

  19. Crossed aphasia following cerebral infarction in a right-handed patient with atypical cerebral language dominance.

    PubMed

    Tan, Xiaoping; Guo, Yang; Dun, Saihong; Sun, Hongzan

    2018-05-18

    Crossed aphasia (CA), usually referred to as an acquired language disturbance, is caused by a lesion in the cerebral hemisphere ipsilateral to the dominant hand, and the exact mechanism is not clear. The development of handedness is influenced by education and training and the impact of habitualization, while language is more susceptible to the impact of speech habits, and it is not absolutely accurate to judge cerebral language dominance by the degree of hand preference. We describe a case of CA after right hemispheric stroke in a right-handed patient with atypical language dominance and attempt to analyze the mechanism of CA based on functional imaging methods, including arterial spin labeling (ASL) and positron emission tomography/magnetic resonance imaging (PET-MRI). Brain MRI at 24 h after admission showed a large cerebral infarction in the right cerebral hemisphere, including the posteroinferior part of Broca's area in the right frontal lobe, the right temporal lobe, and the right occipital lobe. The patient exhibited a non-fluent aphasia on a standard language test (the Aphasia Battery of Chinese [ABC]) performed on the 7th day after onset. Thus, atypical language dominance was suspected. One week after admission, ASL imaging showed high perfusion in the infarct core zone and low perfusion in the left cerebellar hemisphere. Two months later, PET/MRI demonstrated low metabolism in the posterior frontal lobe, temporal lobe, temporal occipital junction area, and the right basal ganglia. The findings suggest that the patient has right-sided cerebral language dominance, or that both hemispheres have linguistic functions. Not all patients show linguistic capabilities on the side opposite hand preference. The language dominance should be predicted by a combination of clinical manifestations and functional imaging techniques.

  20. The 5% difference: early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder.

    PubMed

    Kantrowitz, J T; Hoptman, M J; Leitman, D I; Silipo, G; Javitt, D C

    2014-01-01

    Intact sarcasm perception is a crucial component of social cognition and mentalizing (the ability to understand the mental state of oneself and others). In sarcasm, tone of voice is used to negate the literal meaning of an utterance. In particular, changes in pitch are used to distinguish between sincere and sarcastic utterances. Schizophrenia patients show well-replicated deficits in auditory function and functional connectivity (FC) within and between auditory cortical regions. In this study we investigated the contributions of auditory deficits to sarcasm perception in schizophrenia. Auditory measures including pitch processing, auditory emotion recognition (AER) and sarcasm detection were obtained from 76 patients with schizophrenia/schizo-affective disorder and 72 controls. Resting-state FC (rsFC) was obtained from a subsample and was analyzed using seeds placed in both auditory cortex and meta-analysis-defined core-mentalizing regions relative to auditory performance. Patients showed large effect-size deficits across auditory measures. Sarcasm deficits correlated significantly with general functioning and impaired pitch processing both across groups and within the patient group alone. Patients also showed reduced sensitivity to alterations in mean pitch and variability. For patients, sarcasm discrimination correlated exclusively with the level of rsFC within primary auditory regions whereas for controls, correlations were observed exclusively within core-mentalizing regions (the right posterior superior temporal gyrus, anterior superior temporal sulcus and insula, and left posterior medial temporal gyrus). These findings confirm the contribution of auditory deficits to theory of mind (ToM) impairments in schizophrenia, and demonstrate that FC within auditory, but not core-mentalizing, regions is rate limiting with respect to sarcasm detection in schizophrenia.

  1. Temporal Stability and Authenticity of Self-Representations in Adulthood

    PubMed Central

    Diehl, Manfred; Jacobs, Laurie M.; Hastings, Catherine T.

    2008-01-01

    The temporal stability of role-specific self-representations was examined in a sample of 188 young, middle-aged, and older adults. Considerable stability was observed for all self-representations. Central self-descriptors showed significantly greater temporal stability than peripheral self-descriptors. Temporal stability of self-representations was positively associated with self-concept clarity, self-esteem, and positive affect (PA). Age differences were obtained for three of the five self-representations, with older adults showing significantly lower stabilities for self with family, self with friend, and self with significant other compared to young and middle-aged adults. Assessment of the authenticity of adults’ role-specific self-representations showed that greater authenticity tended to be associated with greater temporal stability. Authenticity and the number of positive daily events were significant positive predictors of the stability of self-representations. PMID:18820732

  2. A functional model for characterizing long-distance movement behaviour

    USGS Publications Warehouse

    Buderman, Frances E.; Hooten, Mevin B.; Ivan, Jacob S.; Shenk, Tanya M.

    2016-01-01

    Advancements in wildlife telemetry techniques have made it possible to collect large data sets of highly accurate animal locations at a fine temporal resolution. These data sets have prompted the development of a number of statistical methodologies for modelling animal movement.Telemetry data sets are often collected for purposes other than fine-scale movement analysis. These data sets may differ substantially from those that are collected with technologies suitable for fine-scale movement modelling and may consist of locations that are irregular in time, are temporally coarse or have large measurement error. These data sets are time-consuming and costly to collect but may still provide valuable information about movement behaviour.We developed a Bayesian movement model that accounts for error from multiple data sources as well as movement behaviour at different temporal scales. The Bayesian framework allows us to calculate derived quantities that describe temporally varying movement behaviour, such as residence time, speed and persistence in direction. The model is flexible, easy to implement and computationally efficient.We apply this model to data from Colorado Canada lynx (Lynx canadensis) and use derived quantities to identify changes in movement behaviour.

  3. DISRUPTION OF LARGE-SCALE NEURAL NETWORKS IN NON-FLUENT/AGRAMMATIC VARIANT PRIMARY PROGRESSIVE APHASIA ASSOCIATED WITH FRONTOTEMPORAL DEGENERATION PATHOLOGY

    PubMed Central

    Grossman, Murray; Powers, John; Ash, Sherry; McMillan, Corey; Burkholder, Lisa; Irwin, David; Trojanowski, John Q.

    2012-01-01

    Non-fluent/agrammatic primary progressive aphasia (naPPA) is a progressive neurodegenerative condition most prominently associated with slowed, effortful speech. A clinical imaging marker of naPPA is disease centered in the left inferior frontal lobe. We used multimodal imaging to assess large-scale neural networks underlying effortful expression in 15 patients with sporadic naPPA due to frontotemporal lobar degeneration (FTLD) spectrum pathology. Effortful speech in these patients is related in part to impaired grammatical processing, and to phonologic speech errors. Gray matter (GM) imaging shows frontal and anterior-superior temporal atrophy, most prominently in the left hemisphere. Diffusion tensor imaging reveals reduced fractional anisotropy in several white matter (WM) tracts mediating projections between left frontal and other GM regions. Regression analyses suggest disruption of three large-scale GM-WM neural networks in naPPA that support fluent, grammatical expression. These findings emphasize the role of large-scale neural networks in language, and demonstrate associated language deficits in naPPA. PMID:23218686

  4. Avoiding and tolerating latency in large-scale next-generation shared-memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Probst, David K.

    1993-01-01

    A scalable solution to the memory-latency problem is necessary to prevent the large latencies of synchronization and memory operations inherent in large-scale shared-memory multiprocessors from reducing high performance. We distinguish latency avoidance and latency tolerance. Latency is avoided when data is brought to nearby locales for future reference. Latency is tolerated when references are overlapped with other computation. Latency-avoiding locales include: processor registers, data caches used temporally, and nearby memory modules. Tolerating communication latency requires parallelism, allowing the overlap of communication and computation. Latency-tolerating techniques include: vector pipelining, data caches used spatially, prefetching in various forms, and multithreading in various forms. Relaxing the consistency model permits increased use of avoidance and tolerance techniques. Each model is a mapping from the program text to sets of partial orders on program operations; it is a convention about which temporal precedences among program operations are necessary. Information about temporal locality and parallelism constrains the use of avoidance and tolerance techniques. Suitable architectural primitives and compiler technology are required to exploit the increased freedom to reorder and overlap operations in relaxed models.

  5. Spatial and temporal avoidance of risk within a large carnivore guild.

    PubMed

    Dröge, Egil; Creel, Scott; Becker, Matthew S; M'soka, Jassiel

    2017-01-01

    Within a large carnivore guild, subordinate competitors (African wild dog, Lycaon pictus , and cheetah, Acinonyx jubatus ) might reduce the limiting effects of dominant competitors (lion, Panthera leo , and spotted hyena, Crocuta crocuta ) by avoiding them in space, in time, or through patterns of prey selection. Understanding how these competitors cope with one other can inform strategies for their conservation. We tested how mechanisms of niche partitioning promote coexistence by quantifying patterns of prey selection and the use of space and time by all members of the large carnivore guild within Liuwa Plain National Park in western Zambia. Lions and hyenas specialized on wildebeest, whereas wild dogs and cheetahs selected broader diets including smaller and less abundant prey. Spatially, cheetahs showed no detectable avoidance of areas heavily used by dominant competitors, but wild dogs avoided areas heavily used by lions. Temporally, the proportion of kills by lions and hyenas did not detectably differ across four time periods (day, crepuscular, early night, and late night), but wild dogs and especially cheetahs concentrated on time windows that avoided nighttime hunting by lions and hyenas. Our results provide new insight into the conditions under which partitioning may not allow for coexistence for one subordinate species, the African wild dog, while it does for cheetah. Because of differences in responses to dominant competitors, African wild dogs may be more prone to competitive exclusion (local extirpation), particularly in open, uniform ecosystems with simple (often wildebeest dominated) prey communities, where spatial avoidance is difficult.

  6. Corticocortical evoked potentials reveal projectors and integrators in human brain networks.

    PubMed

    Keller, Corey J; Honey, Christopher J; Entz, Laszlo; Bickel, Stephan; Groppe, David M; Toth, Emilia; Ulbert, Istvan; Lado, Fred A; Mehta, Ashesh D

    2014-07-02

    The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways) or functional connectivity (mapping inter-regional statistical dependencies in ongoing activity). Here we combined direct electrical stimulation with recordings from the cortical surface to provide a novel insight into directed, inter-regional influence within the cerebral cortex of awake humans. These networks of directed interaction were reproducible across strength thresholds and across subjects. Directed network properties included (1) a decrease in the reciprocity of connections with distance; (2) major projector nodes (sources of influence) were found in peri-Rolandic cortex and posterior, basal and polar regions of the temporal lobe; and (3) major receiver nodes (receivers of influence) were found in anterolateral frontal, superior parietal, and superior temporal regions. Connectivity maps derived from electrical stimulation and from resting electrocorticography (ECoG) correlations showed similar spatial distributions for the same source node. However, higher-level network topology analysis revealed differences between electrical stimulation and ECoG that were partially related to the reciprocity of connections. Together, these findings inform our understanding of large-scale corticocortical influence as well as the interpretation of functional connectivity networks. Copyright © 2014 the authors 0270-6474/14/349152-12$15.00/0.

  7. Spatio-temporal Organization During Ventricular Fibrillation in the Human Heart.

    PubMed

    Robson, Jinny; Aram, Parham; Nash, Martyn P; Bradley, Chris P; Hayward, Martin; Paterson, David J; Taggart, Peter; Clayton, Richard H; Kadirkamanathan, Visakan

    2018-06-01

    In this paper, we present a novel approach to quantify the spatio-temporal organization of electrical activation during human ventricular fibrillation (VF). We propose three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, we quantified the level of spatio-temporal organization during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. Our findings show a steady decline in spatio-temporal organization from the onset of VF with coronary perfusion. We observed transient increases in spatio-temporal organization during global myocardial ischaemia. However, the decline in spatio-temporal organization continued during reflow. Our results were consistent across all patients, and were consistent with the numbers of phase singularities. Our findings show that the complex spatio-temporal patterns can be studied using complex network analysis.

  8. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Shiyang; Song, Peng; Pei, Wenbing

    2013-09-15

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux canmore » be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.« less

  9. Temporal Resolution Needed for Auditory Communication: Measurement With Mosaic Speech

    PubMed Central

    Nakajima, Yoshitaka; Matsuda, Mizuki; Ueda, Kazuo; Remijn, Gerard B.

    2018-01-01

    Temporal resolution needed for Japanese speech communication was measured. A new experimental paradigm that can reflect the spectro-temporal resolution necessary for healthy listeners to perceive speech is introduced. As a first step, we report listeners' intelligibility scores of Japanese speech with a systematically degraded temporal resolution, so-called “mosaic speech”: speech mosaicized in the coordinates of time and frequency. The results of two experiments show that mosaic speech cut into short static segments was almost perfectly intelligible with a temporal resolution of 40 ms or finer. Intelligibility dropped for a temporal resolution of 80 ms, but was still around 50%-correct level. The data are in line with previous results showing that speech signals separated into short temporal segments of <100 ms can be remarkably robust in terms of linguistic-content perception against drastic manipulations in each segment, such as partial signal omission or temporal reversal. The human perceptual system thus can extract meaning from unexpectedly rough temporal information in speech. The process resembles that of the visual system stringing together static movie frames of ~40 ms into vivid motion. PMID:29740295

  10. A computational model for how cells choose temporal or spatial sensing during chemotaxis.

    PubMed

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2018-03-01

    Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable.

  11. A computational model for how cells choose temporal or spatial sensing during chemotaxis

    PubMed Central

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2018-01-01

    Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable. PMID:29505572

  12. PANTHER. Pattern ANalytics To support High-performance Exploitation and Reasoning.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuchlewski, Kristina Rodriguez; Hart, William E.

    Sandia has approached the analysis of big datasets with an integrated methodology that uses computer science, image processing, and human factors to exploit critical patterns and relationships in large datasets despite the variety and rapidity of information. The work is part of a three-year LDRD Grand Challenge called PANTHER (Pattern ANalytics To support High-performance Exploitation and Reasoning). To maximize data analysis capability, Sandia pursued scientific advances across three key technical domains: (1) geospatial-temporal feature extraction via image segmentation and classification; (2) geospatial-temporal analysis capabilities tailored to identify and process new signatures more efficiently; and (3) domain- relevant models of humanmore » perception and cognition informing the design of analytic systems. Our integrated results include advances in geographical information systems (GIS) in which we discover activity patterns in noisy, spatial-temporal datasets using geospatial-temporal semantic graphs. We employed computational geometry and machine learning to allow us to extract and predict spatial-temporal patterns and outliers from large aircraft and maritime trajectory datasets. We automatically extracted static and ephemeral features from real, noisy synthetic aperture radar imagery for ingestion into a geospatial-temporal semantic graph. We worked with analysts and investigated analytic workflows to (1) determine how experiential knowledge evolves and is deployed in high-demand, high-throughput visual search workflows, and (2) better understand visual search performance and attention. Through PANTHER, Sandia's fundamental rethinking of key aspects of geospatial data analysis permits the extraction of much richer information from large amounts of data. The project results enable analysts to examine mountains of historical and current data that would otherwise go untouched, while also gaining meaningful, measurable, and defensible insights into overlooked relationships and patterns. The capability is directly relevant to the nation's nonproliferation remote-sensing activities and has broad national security applications for military and intelligence- gathering organizations.« less

  13. Validation of prediction models: examining temporal and geographic stability of baseline risk and estimated covariate effects

    PubMed Central

    Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.

    2018-01-01

    Background Stability in baseline risk and estimated predictor effects both geographically and temporally is a desirable property of clinical prediction models. However, this issue has received little attention in the methodological literature. Our objective was to examine methods for assessing temporal and geographic heterogeneity in baseline risk and predictor effects in prediction models. Methods We studied 14,857 patients hospitalized with heart failure at 90 hospitals in Ontario, Canada, in two time periods. We focussed on geographic and temporal variation in baseline risk (intercept) and predictor effects (regression coefficients) of the EFFECT-HF mortality model for predicting 1-year mortality in patients hospitalized for heart failure. We used random effects logistic regression models for the 14,857 patients. Results The baseline risk of mortality displayed moderate geographic variation, with the hospital-specific probability of 1-year mortality for a reference patient lying between 0.168 and 0.290 for 95% of hospitals. Furthermore, the odds of death were 11% lower in the second period than in the first period. However, we found minimal geographic or temporal variation in predictor effects. Among 11 tests of differences in time for predictor variables, only one had a modestly significant P value (0.03). Conclusions This study illustrates how temporal and geographic heterogeneity of prediction models can be assessed in settings with a large sample of patients from a large number of centers at different time periods. PMID:29350215

  14. Temporal processing asymmetries between the cerebral hemispheres: evidence and implications.

    PubMed

    Nicholls, M E

    1996-07-01

    This paper reviews a large body of research which has investigated the capacities of the cerebral hemispheres to process temporal information. This research includes clinical, non-clinical, and electrophysiological experimentation. On the whole, the research supports the notion of a left hemisphere advantage for temporal resolution. The existence of such an asymmetry demonstrates that cerebral lateralisation is not limited to the higher-order functions such as language. The capacity for the resolution of fine temporal events appears to play an important role in other left hemisphere functions which require a rapid sequential processor. The functions that are facilitated by such a processor include verbal, textual, and fine movement skills. The co-development of these functions with an efficient temporal processor can be accounted for with reference to a number of evolutionary scenarios. Physiological evidence favours a temporal processing mechanism located within the left temporal cortex. The function of this mechanism may be described in terms of intermittency or travelling moment models of temporal processing. The travelling moment model provides the most plausible account of the asymmetry.

  15. Temporal Organization of Sound Information in Auditory Memory.

    PubMed

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  16. The dimensions of land use change in rural landscapes: lessons learnt from the GB Countryside Surveys.

    PubMed

    Petit, Sandrine

    2009-07-01

    Rural landscapes are highly dynamic and their change impacts on a number of ecological processes such as the dynamics of biodiversity. Although a substantial amount of research has focused on quantifying these changes and their impact on biodiversity, most studies have focused on single dimensions of land use change. This lack of integration in land use change studies can be explained by the fact that data on the spatial, temporal, and ecological dimensions of land use are seldom available for the same geographical location. In this paper, the benefits of taking into account these three dimensions are illustrated with results derived from the Great Britain Countryside Surveys (CS), a large-scale monitoring programme designed to assess change in the extent and ecological condition of British habitats. The overview of CS results presented in this paper shows that (1) changes in land use composition will translate into a variety of spatial patterns; (2) the temporal stability of land use is often lower than can be expected; and (3) there can be large-scale shifts in the ecological condition of the land use types that form our rural landscapes. The benefits of integrated rural landscape studies are discussed in the context of other national monitoring programmes.

  17. Seasonal dynamics of bacterioplankton community in a large, shallow, highly dynamic freshwater lake.

    PubMed

    Kong, Zhaoyu; Kou, Wenbo; Ma, Yantian; Yu, Haotian; Ge, Gang; Wu, Lan

    2018-05-23

    The spatio-temporal shifts of bacterioplankton community can mirror their transition of functional traits in aquatic ecosystem. However, our understanding of spatio-temporal variation of bacterioplankton community composition structure (BCCs) within large, shallow and highly dynamic freshwater lake is still elusive. Here we examined the seasonal and spatial variability of BCCs in the Poyang Lake by 16S rRNA gene amplicon sequencing to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of BCCs were mainly attributed to the differences between autumn and spring/winter. Higher alpha diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significant lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1 and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature and nutrient status shaped the seasonal patterns of BCCs in the Poyang Lake.

  18. Regional variability in sea ice melt in a changing Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2015-07-13

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. SOMA: A Proposed Framework for Trend Mining in Large UK Diabetic Retinopathy Temporal Databases

    NASA Astrophysics Data System (ADS)

    Somaraki, Vassiliki; Harding, Simon; Broadbent, Deborah; Coenen, Frans

    In this paper, we present SOMA, a new trend mining framework; and Aretaeus, the associated trend mining algorithm. The proposed framework is able to detect different kinds of trends within longitudinal datasets. The prototype trends are defined mathematically so that they can be mapped onto the temporal patterns. Trends are defined and generated in terms of the frequency of occurrence of pattern changes over time. To evaluate the proposed framework the process was applied to a large collection of medical records, forming part of the diabetic retinopathy screening programme at the Royal Liverpool University Hospital.

  20. A new framework to increase the efficiency of large-scale solar power plants.

    NASA Astrophysics Data System (ADS)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  1. An analysis of the first two years of GASP data. [Global Atmospheric Sampling Program

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.

    1978-01-01

    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes. The GASP water vapor data, analyzed with respect to the location of the tropopause, correlates well with the simultaneously obtained ozone and cloud data.

  2. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  3. Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance

    NASA Astrophysics Data System (ADS)

    Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola

    2013-04-01

    Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into four reoccurring patterns of typical model performance, which can be related to different phases of the hydrograph. Overall, the baseflow cluster has the lowest performance. By combining the periods with poor model performance with the dominant model components during these phases, the groundwater module was detected as the model part with the highest potential for model improvements. The detection of dominant processes in periods of poor model performance enhances the understanding of the SWAT model. Based on this, concepts how to improve the SWAT model structure for the application in German lowland catchment are derived.

  4. The role of temporal synchrony as a binding cue for visual persistence in early visual areas: an fMRI study.

    PubMed

    Wong, Yvonne J; Aldcroft, Adrian J; Large, Mary-Ellen; Culham, Jody C; Vilis, Tutis

    2009-12-01

    We examined the role of temporal synchrony-the simultaneous appearance of visual features-in the perceptual and neural processes underlying object persistence. When a binding cue (such as color or motion) momentarily exposes an object from a background of similar elements, viewers remain aware of the object for several seconds before it perceptually fades into the background, a phenomenon known as object persistence. We showed that persistence from temporal stimulus synchrony, like that arising from motion and color, is associated with activation in the lateral occipital (LO) area, as measured by functional magnetic resonance imaging. We also compared the distribution of occipital cortex activity related to persistence to that of iconic visual memory. Although activation related to iconic memory was largely confined to LO, activation related to object persistence was present across V1 to LO, peaking in V3 and V4, regardless of the binding cue (temporal synchrony, motion, or color). Although persistence from motion cues was not associated with higher activation in the MT+ motion complex, persistence from color cues was associated with increased activation in V4. Taken together, these results demonstrate that although persistence is a form of visual memory, it relies on neural mechanisms different from those of iconic memory. That is, persistence not only activates LO in a cue-independent manner, it also recruits visual areas that may be necessary to maintain binding between object elements.

  5. Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis.

    PubMed

    Mueller, Susanne G; Ebel, Andreas; Barakos, Jerome; Scanlon, Cathy; Cheong, Ian; Finlay, Daniel; Garcia, Paul; Weiner, Michael W; Laxer, Kenneth D

    2011-04-01

    MR spectroscopy has demonstrated extrahippocampal NAA/(Cr+Cho) reductions in medial temporal lobe epilepsy with (TLE-MTS) and without (TLE-no) mesial temporal sclerosis. Because of the limited brain coverage of those previous studies, it was, however, not possible to assess differences in the distribution and extent of these abnormalities between TLE-MTS and TLE-no. This study used a 3D whole brain echoplanar spectroscopic imaging (EPSI) sequence to address the following questions: (1) Do TLE-MTS and TLE-no differ regarding severity and distribution of extrahippocampal NAA/(Cr+Cho) reductions? (2) Do extrahippocampal NAA/(Cr+Cho) reductions provide additional information for focus lateralization? Forty-three subjects (12 TLE-MTS, 13 TLE-no, 18 controls) were studied with 3D EPSI. Statistical parametric mapping (SPM2) was used to identify regions of significantly decreased NAA/(Cr+Cho) in TLE groups and in individual patients. TLE-MTS and TLE-no had widespread extrahippocampal NAA/(Cr+Cho) reductions. NAA/(Cr+Cho) reductions had a bilateral fronto-temporal distribution in TLE-MTS and a more diffuse, less well defined distribution in TLE-no. Extrahippocampal NAA/(Cr+Cho) decreases in the single subject analysis showed a large inter-individual variability and did not provide additional focus lateralizing information. Extrahippocampal NAA/(Cr+Cho) reductions in TLE-MTS and TLE-no are neither focal nor homogeneous. This reduces their value for focus lateralization and suggests a heterogeneous etiology of extrahippocampal spectroscopic metabolic abnormalities in TLE.

  6. Dynamic Repertoire of Intrinsic Brain States Is Reduced in Propofol-Induced Unconsciousness

    PubMed Central

    Liu, Xiping; Pillay, Siveshigan

    2015-01-01

    Abstract The richness of conscious experience is thought to scale with the size of the repertoire of causal brain states, and it may be diminished in anesthesia. We estimated the state repertoire from dynamic analysis of intrinsic functional brain networks in conscious sedated and unconscious anesthetized rats. Functional resonance images were obtained from 30-min whole-brain resting-state blood oxygen level-dependent (BOLD) signals at propofol infusion rates of 20 and 40 mg/kg/h, intravenously. Dynamic brain networks were defined at the voxel level by sliding window analysis of regional homogeneity (ReHo) or coincident threshold crossings (CTC) of the BOLD signal acquired in nine sagittal slices. The state repertoire was characterized by the temporal variance of the number of voxels with significant ReHo or positive CTC. From low to high propofol dose, the temporal variances of ReHo and CTC were reduced by 78%±20% and 76%±20%, respectively. Both baseline and propofol-induced reduction of CTC temporal variance increased from lateral to medial position. Group analysis showed a 20% reduction in the number of unique states at the higher propofol dose. Analysis of temporal variance in 12 anatomically defined regions of interest predicted that the largest changes occurred in visual cortex, parietal cortex, and caudate-putamen. The results suggest that the repertoire of large-scale brain states derived from the spatiotemporal dynamics of intrinsic networks is substantially reduced at an anesthetic dose associated with loss of consciousness. PMID:24702200

  7. Regulatory heterochronies and loose temporal scaling between sea star and sea urchin regulatory circuits.

    PubMed

    Gildor, Tsvia; Hinman, Veronica; Ben-Tabou-De-Leon, Smadar

    2017-01-01

    It has long been argued that heterochrony, a change in relative timing of a developmental process, is a major source of evolutionary innovation. Heterochronic changes of regulatory gene activation could be the underlying molecular mechanism driving heterochronic changes through evolution. Here, we compare the temporal expression profiles of key regulatory circuits between sea urchin and sea star, representative of two classes of Echinoderms that shared a common ancestor about 500 million years ago. The morphologies of the sea urchin and sea star embryos are largely comparable, yet, differences in certain mesodermal cell types and ectodermal patterning result in distinct larval body plans. We generated high resolution temporal profiles of 17 mesodermally-, endodermally- and ectodermally-expressed regulatory genes in the sea star, Patiria miniata, and compared these to their orthologs in the Mediterranean sea urchin, Paracentrotus lividus. We found that the maternal to zygotic transition is delayed in the sea star compared to the sea urchin, in agreement with the longer cleavage stage in the sea star. Interestingly, the order of gene activation shows the highest variation in the relatively diverged mesodermal circuit, while the correlations of expression dynamics are the highest in the strongly conserved endodermal circuit. We detected loose scaling of the developmental rates of these species and observed interspecies heterochronies within all studied regulatory circuits. Thus, after 500 million years of parallel evolution, mild heterochronies between the species are frequently observed and the tight temporal scaling observed for closely related species no longer holds.

  8. The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements.

    PubMed

    Arenz, Alexander; Drews, Michael S; Richter, Florian G; Ammer, Georg; Borst, Alexander

    2017-04-03

    Detecting the direction of motion contained in the visual scene is crucial for many behaviors. However, because single photoreceptors only signal local luminance changes, motion detection requires a comparison of signals from neighboring photoreceptors across time in downstream neuronal circuits. For signals to coincide on readout neurons that thus become motion and direction selective, different input lines need to be delayed with respect to each other. Classical models of motion detection rely on non-linear interactions between two inputs after different temporal filtering. However, recent studies have suggested the requirement for at least three, not only two, input signals. Here, we comprehensively characterize the spatiotemporal response properties of all columnar input elements to the elementary motion detectors in the fruit fly, T4 and T5 cells, via two-photon calcium imaging. Between these input neurons, we find large differences in temporal dynamics. Based on this, computer simulations show that only a small subset of possible arrangements of these input elements maps onto a recently proposed algorithmic three-input model in a way that generates a highly direction-selective motion detector, suggesting plausible network architectures. Moreover, modulating the motion detection system by octopamine-receptor activation, we find the temporal tuning of T4 and T5 cells to be shifted toward higher frequencies, and this shift can be fully explained by the concomitant speeding of the input elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Neural coding of sound envelope in reverberant environments.

    PubMed

    Slama, Michaël C C; Delgutte, Bertrand

    2015-03-11

    Speech reception depends critically on temporal modulations in the amplitude envelope of the speech signal. Reverberation encountered in everyday environments can substantially attenuate these modulations. To assess the effect of reverberation on the neural coding of amplitude envelope, we recorded from single units in the inferior colliculus (IC) of unanesthetized rabbit using sinusoidally amplitude modulated (AM) broadband noise stimuli presented in simulated anechoic and reverberant environments. Although reverberation degraded both rate and temporal coding of AM in IC neurons, in most neurons, the degradation in temporal coding was smaller than the AM attenuation in the stimulus. This compensation could largely be accounted for by the compressive shape of the modulation input-output function (MIOF), which describes the nonlinear transformation of modulation depth from acoustic stimuli into neural responses. Additionally, in a subset of neurons, the temporal coding of AM was better for reverberant stimuli than for anechoic stimuli having the same modulation depth at the ear. Using hybrid anechoic stimuli that selectively possess certain properties of reverberant sounds, we show that this reverberant advantage is not caused by envelope distortion, static interaural decorrelation, or spectral coloration. Overall, our results suggest that the auditory system may possess dual mechanisms that make the coding of amplitude envelope relatively robust in reverberation: one general mechanism operating for all stimuli with small modulation depths, and another mechanism dependent on very specific properties of reverberant stimuli, possibly the periodic fluctuations in interaural correlation at the modulation frequency. Copyright © 2015 the authors 0270-6474/15/354452-17$15.00/0.

  10. Simultaneous detection of landmarks and key-frame in cardiac perfusion MRI using a joint spatial-temporal context model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens

    2011-03-01

    Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.

  11. Temporal variations of Escherichia coli concentrations in a large Midwestern river

    USGS Publications Warehouse

    Schilling, K.E.; Zhang, Y.-K.; Hill, D.R.; Jones, C.S.; Wolter, C.F.

    2009-01-01

    The Raccoon River used by the Des Moines Water Works to serve more than 400,000 people in central Iowa is threatened by contamination from Escherichia coli bacteria from point and nonpoint sources. The 9389 km2 watershed is highly agricultural, with 73% of the land in row crop production and widespread animal production. Results from 2155 grab samples from 1997 to 2005 for E. coli analysis were examined for temporal variations. E. coli concentrations were found to vary across years, seasons, and flow conditions, with a 9-year mean value of 1156 most probable number (MPN)/100 ml. Monthly concentrations exhibited clear seasonality with highest values in May through July. Although E. coli concentrations were higher during periods of greater discharge, the relation of log E. coli to log discharge was not particularly strong (r2 = 0.35). The variogram of E. coli concentrations showed temporal correlation within a span of 4 days suggesting that concentrations measured on 1 day may be related in time to concentrations measured up to 3 days later and beyond 4 days the concentrations vary randomly. The spectral analysis of the time series of E. coli was also carried out and was fitted well with the spectrum of an exponential covariance function. Deciphering temporal patterns and correlation of E. coli bacteria in streams may be useful for developing future monitoring strategies to track concentration patterns and loads. ?? 2008 Elsevier B.V. All rights reserved.

  12. Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat.

    PubMed

    Aasebø, Ida E J; Lepperød, Mikkel E; Stavrinou, Maria; Nøkkevangen, Sandra; Einevoll, Gaute; Hafting, Torkel; Fyhn, Marianne

    2017-01-01

    The activity pattern and temporal dynamics within and between neuron ensembles are essential features of information processing and believed to be profoundly affected by anesthesia. Much of our general understanding of sensory information processing, including computational models aimed at mathematically simulating sensory information processing, rely on parameters derived from recordings conducted on animals under anesthesia. Due to the high variety of neuronal subtypes in the brain, population-based estimates of the impact of anesthesia may conceal unit- or ensemble-specific effects of the transition between states. Using chronically implanted tetrodes into primary visual cortex (V1) of rats, we conducted extracellular recordings of single units and followed the same cell ensembles in the awake and anesthetized states. We found that the transition from wakefulness to anesthesia involves unpredictable changes in temporal response characteristics. The latency of single-unit responses to visual stimulation was delayed in anesthesia, with large individual variations between units. Pair-wise correlations between units increased under anesthesia, indicating more synchronized activity. Further, the units within an ensemble show reproducible temporal activity patterns in response to visual stimuli that is changed between states, suggesting state-dependent sequences of activity. The current dataset, with recordings from the same neural ensembles across states, is well suited for validating and testing computational network models. This can lead to testable predictions, bring a deeper understanding of the experimental findings and improve models of neural information processing. Here, we exemplify such a workflow using a Brunel network model.

  13. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure.

    PubMed

    Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin

    2017-01-01

    This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.

  14. Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat

    PubMed Central

    Aasebø, Ida E. J.; Stavrinou, Maria; Nøkkevangen, Sandra; Einevoll, Gaute

    2017-01-01

    Abstract The activity pattern and temporal dynamics within and between neuron ensembles are essential features of information processing and believed to be profoundly affected by anesthesia. Much of our general understanding of sensory information processing, including computational models aimed at mathematically simulating sensory information processing, rely on parameters derived from recordings conducted on animals under anesthesia. Due to the high variety of neuronal subtypes in the brain, population-based estimates of the impact of anesthesia may conceal unit- or ensemble-specific effects of the transition between states. Using chronically implanted tetrodes into primary visual cortex (V1) of rats, we conducted extracellular recordings of single units and followed the same cell ensembles in the awake and anesthetized states. We found that the transition from wakefulness to anesthesia involves unpredictable changes in temporal response characteristics. The latency of single-unit responses to visual stimulation was delayed in anesthesia, with large individual variations between units. Pair-wise correlations between units increased under anesthesia, indicating more synchronized activity. Further, the units within an ensemble show reproducible temporal activity patterns in response to visual stimuli that is changed between states, suggesting state-dependent sequences of activity. The current dataset, with recordings from the same neural ensembles across states, is well suited for validating and testing computational network models. This can lead to testable predictions, bring a deeper understanding of the experimental findings and improve models of neural information processing. Here, we exemplify such a workflow using a Brunel network model. PMID:28791331

  15. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    PubMed

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  16. Investigating the relationship between subjective drug craving and temporal dynamics of the default mode network, executive control network, and salience network in methamphetamine dependents using rsfMRI

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Somayyeh; Hossein-Zadeh, Gholam-Ali; Shahbabaie, Alireza; Ekhtiari, Hamed

    2016-03-01

    Resting state functional connectivity (rsFC) studies using fMRI provides a great deal of knowledge on the spatiotemporal organization of the brain. The relationships between and within a number of resting state functional networks, namely the default mode network (DMN), salience network (SN) and executive control network (ECN) have been intensely studied in basic and clinical cognitive neuroscience [1]. However, the presumption of spatial and temporal stationarity has mostly restricted the assessment of rsFC [1]. In this study, sliding window correlation analysis and k-means clustering were exploited to examine the temporal dynamics of rsFC of these three networks in 24 abstinent methamphetamine dependents. Afterwards, using canonical correlation analysis (CCA) the possible relationship between the level of self-reported craving and the temporal dynamics was examined. Results indicate that the rsFC transits between 6 discrete "FC states" in the meth dependents. CCA results show that higher levels of craving are associated with higher probability of transiting from state 4 to 6 (positive FC of DMN-ECN getting weak and negative FC of DMN-SN appearing) and staying in state 4 (positive FC of DMN-ECN), lower probability of staying in state 2 (negative FC of DMN-ECN), transiting from state 4 to 2 (change of positive FC of DMN-ECN to negative FC), and transiting from state 3 to 5 (appearance of negative FC of DMN-SN and positive FC of DMN-ECN with the presence of negative FC of SN-ECN). Quantitative measures of temporal dynamics in large-scale brain networks could bring new added values to increase potentials for applications of rsfMRI in addiction medicine.

  17. Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers

    NASA Astrophysics Data System (ADS)

    Zameroski, Nathan D.; Wanke, Michael; Bossert, David

    2013-03-01

    The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Personal semantic and episodic autobiographical memories in Korsakoff syndrome: A comparison of interview methods.

    PubMed

    Rensen, Yvonne C M; Kessels, Roy P C; Migo, Ellen M; Wester, Arie J; Eling, Paul A T M; Kopelman, Michael D

    2017-08-01

    The temporal gradient in patients with Korsakoff's syndrome has been of particular interest in the literature, as many studies have found evidence for a steep temporal gradient, but others have observed more uniform remote memory impairment across all past time periods. Inconsistencies might be the result of the nature of remote memory impairment under study (i.e., nonpersonal or autobiographical memory) and of methodological differences in the examination of remote memory loss. The aim of this study was to examine whether differences between autobiographical memory interview (AMI) and autobiographical interview (AI) procedures influence the presence of a temporal gradient in semantic and episodic autobiographical memory in Korsakoff patients. The procedure used in the present study combined the AMI and AI into one study session. We compared the performance of 20 patients with Korsakoff's syndrome and 27 healthy controls. First, participants were asked to recall knowledge from different life periods. Second, participants were asked to recall memories from five life periods. Thirdly, participants were asked to rate their subjective experience of each event recalled on a 5-point scale. Finally, we analyzed the findings in terms of all the memories recalled versus the first memory from each life-period only. Both the AMI and the AI showed a temporally graded retrograde amnesia in the Korsakoff patients for personal semantic and episodic autobiographical memories. The pattern of amnesia in Korsakoff patients was not affected by examining only one event per life-period. Subjective ratings of recalled memories were largely comparable between the groups. The findings were generally consistent across the AMI and AI. Varying the number of events did not affect the pattern of the gradient. Hence, the temporal gradient in Korsakoff patients is not an artefact of either the AMI or the AI method.

  19. Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops.

    PubMed

    Ives, Anthony R; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A; Haygood, Ralph; Zalucki, Myron P; Schellhorn, Nancy A

    2017-01-01

    Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.

  20. Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View

    NASA Astrophysics Data System (ADS)

    Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.

    2017-09-01

    Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  1. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis

    PubMed Central

    Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin

    2012-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960

  2. Spatial and temporal modulation of joint stiffness during multijoint movement.

    PubMed

    Mah, C D

    2001-02-01

    Joint stiffness measurements during small transient perturbations have suggested that stiffness during movement is different from that observed during posture. These observations are problematic for theories like the classical equilibrium point hypothesis, which suggest that desired trajectories during movement are enforced by joint stiffness. We measured arm impedances during large, slow perturbations to obtain detailed information about the spatial and temporal modulation of stiffness and viscosity during movement. While our measurements of stiffness magnitudes during movement generally agreed with the results of measurements using fast perturbations, they revealed that joint stiffness undergoes stereotyped changes in magnitude and aspect ratio which depend on the direction of movement and show a strong dependence on joint angles. Movement simulations using measured parameters show that the measured modulation of impedance acts as an energy conserving force field to constrain movement. This mechanism allows for a computationally simplified account of the execution of multijoint movement. While our measurements do not rule out a role for afferent feedback in force generation, the observed stereotyped restoring forces can allow a dramatic relaxation of the accuracy requirements for forces generated by other control mechanisms, such as inverse dynamical models.

  3. Multimodal Image Analysis in Alzheimer’s Disease via Statistical Modelling of Non-local Intensity Correlations

    NASA Astrophysics Data System (ADS)

    Lorenzi, Marco; Simpson, Ivor J.; Mendelson, Alex F.; Vos, Sjoerd B.; Cardoso, M. Jorge; Modat, Marc; Schott, Jonathan M.; Ourselin, Sebastien

    2016-04-01

    The joint analysis of brain atrophy measured with magnetic resonance imaging (MRI) and hypometabolism measured with positron emission tomography with fluorodeoxyglucose (FDG-PET) is of primary importance in developing models of pathological changes in Alzheimer’s disease (AD). Most of the current multimodal analyses in AD assume a local (spatially overlapping) relationship between MR and FDG-PET intensities. However, it is well known that atrophy and hypometabolism are prominent in different anatomical areas. The aim of this work is to describe the relationship between atrophy and hypometabolism by means of a data-driven statistical model of non-overlapping intensity correlations. For this purpose, FDG-PET and MRI signals are jointly analyzed through a computationally tractable formulation of partial least squares regression (PLSR). The PLSR model is estimated and validated on a large clinical cohort of 1049 individuals from the ADNI dataset. Results show that the proposed non-local analysis outperforms classical local approaches in terms of predictive accuracy while providing a plausible description of disease dynamics: early AD is characterised by non-overlapping temporal atrophy and temporo-parietal hypometabolism, while the later disease stages show overlapping brain atrophy and hypometabolism spread in temporal, parietal and cortical areas.

  4. Functional requirements for reward-modulated spike-timing-dependent plasticity.

    PubMed

    Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram

    2010-10-06

    Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.

  5. On the use of EEG or MEG brain imaging tools in neuromarketing research.

    PubMed

    Vecchiato, Giovanni; Astolfi, Laura; De Vico Fallani, Fabrizio; Toppi, Jlenia; Aloise, Fabio; Bez, Francesco; Wei, Daming; Kong, Wanzeng; Dai, Jounging; Cincotti, Febo; Mattia, Donatella; Babiloni, Fabio

    2011-01-01

    Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI) methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries.

  6. On the Use of EEG or MEG Brain Imaging Tools in Neuromarketing Research

    PubMed Central

    Vecchiato, Giovanni; Astolfi, Laura; De Vico Fallani, Fabrizio; Toppi, Jlenia; Aloise, Fabio; Bez, Francesco; Wei, Daming; Kong, Wanzeng; Dai, Jounging; Cincotti, Febo; Mattia, Donatella; Babiloni, Fabio

    2011-01-01

    Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI) methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries. PMID:21960996

  7. Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Johnson, Richard K.

    2013-01-01

    1. Ecosystems at high altitudes and latitudes are expected to be particularly vulnerable to the effects of global change. We assessed the responses of littoral invertebrate communities to changing abiotic conditions in subarctic Swedish lakes with long-term data (1988–2010) and compared the responses of subarctic lakes with those of more southern, hemiboreal lakes. 2. We used a complex systems approach, based on multivariate time-series modelling, and identified dominant and distinct temporal frequencies in the data; that is, we tracked community change at distinct temporal scales. We determined the distribution of functional feeding groups of invertebrates within and across temporal scales. Within and cross-scale distributions of functions have been considered to confer resilience to ecosystems, despite changing environmental conditions. 3. Two patterns of temporal change within the invertebrate communities were identified that were consistent across the lakes. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second was one of showing fluctuation patterns largely unrelated to gradual environmental change. Thus, two dominant and distinct temporal frequencies (temporal scales) were present in all lakes analysed. 4. Although the contribution of individual feeding groups varied between subarctic and hemiboreal lakes, they shared overall similar functional attributes (richness, evenness, diversity) and redundancies of functions within and between the observed temporal scales. This highlights similar resilience characteristics in subarctic and hemiboreal lakes. 5. Synthesis and applications. The effects of global change can be particularly strong at a single scale in ecosystems. Over time, this can cause monotonic change in communities and eventually lead to a loss of important ecosystem services upon reaching a critical threshold. Dynamics at other spatial or temporal scales can be unrelated to environmental change. The relative ‘intactness’ of these scales that are unaffected by global change and the persistence of functions at those scales may safeguard the whole system from the potential loss of functions at the scale at which global change impacts can be substantial. Thus, an understanding of scale-specific processes provides managers with a realistic assessment of vulnerabilities and the relative resilience of ecosystems to environmental change. Explicit consideration of ‘intact’ and ‘affected’ scales in analyses of global change impacts provides opportunities to tailor more specific management plans.

  8. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales

    PubMed Central

    Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias

    2016-01-01

    Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625

  9. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?

    PubMed

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2015-09-01

    Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. A study of temporal and radial dependencies of the anomalous helium and oxygen nuclei

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Mcdonald, F. B.; Von Rosenvinge, T. T.; Mewaldt, R. A.

    1982-01-01

    The intensity of the low energy anomalous helium and oxygen components has been continuously monitored by telescopes on the Pioneer 10 and IMP 7 and 8 spacecraft since 1972. After a period of relatively small temporal changes at earth between 1972 and 1978, during which it was possible to study the radial gradients of these components out to about 15 AU, large temporal changes were observed in 1978-1980 associated with the onset of the new solar modulation cycle. During this time period the anomalous He and O intensities at Pioneer 10 have decreased by a factor of greater than 10; however, both anomalous components were still present in the summer of 1980 at about 20 AU. At the earth similar large intensity changes have occurred. At Pioneer 10 the relative modulation of He nuclei is about 1.4x that of O nuclei at the same energy/nuc during this time period.

  11. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  12. Statistical properties of edge plasma turbulence in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Dewhurst, J. M.; Hnat, B.; Ohno, N.; Dendy, R. O.; Masuzaki, S.; Morisaki, T.; Komori, A.

    2008-09-01

    Ion saturation current (Isat) measurements made by three tips of a Langmuir probe array in the Large Helical Device are analysed for two plasma discharges. Absolute moment analysis is used to quantify properties on different temporal scales of the measured signals, which are bursty and intermittent. Strong coherent modes in some datasets are found to distort this analysis and are consequently removed from the time series by applying bandstop filters. Absolute moment analysis of the filtered data reveals two regions of power-law scaling, with the temporal scale τ ≈ 40 µs separating the two regimes. A comparison is made with similar results from the Mega-Amp Spherical Tokamak. The probability density function is studied and a monotonic relationship between connection length and skewness is found. Conditional averaging is used to characterize the average temporal shape of the largest intermittent bursts.

  13. Examining Procrastination Across Multiple Goal Stages: A Longitudinal Study of Temporal Motivation Theory

    PubMed Central

    Steel, Piers; Svartdal, Frode; Thundiyil, Tomas; Brothen, Thomas

    2018-01-01

    Procrastination is among the most common of motivational failures, putting off despite expecting to be worse off. We examine this dynamic phenomenon in a detailed and realistic longitudinal design (Study 1) as well as in a large correlational data set (N = 7400; Study 2). The results are largely consistent with temporal motivation theory. People’s pacing style reflects a hyperbolic curve, with the steepness of the curve predicted by self-reported procrastination. Procrastination is related to intention-action gaps, but not intentions. Procrastinators are susceptible to proximity of temptation and to the temporal separation between their intention and the planned act; the more distal, the greater the gap. Critical self-regulatory skills in explaining procrastination are attention control, energy regulation and automaticity, accounting for 74% of the variance. Future research using this design is recommended, as it provides an almost ideal blend of realism and detailed longitudinal assessment. PMID:29666590

  14. Examining Procrastination Across Multiple Goal Stages: A Longitudinal Study of Temporal Motivation Theory.

    PubMed

    Steel, Piers; Svartdal, Frode; Thundiyil, Tomas; Brothen, Thomas

    2018-01-01

    Procrastination is among the most common of motivational failures, putting off despite expecting to be worse off. We examine this dynamic phenomenon in a detailed and realistic longitudinal design (Study 1) as well as in a large correlational data set ( N = 7400; Study 2). The results are largely consistent with temporal motivation theory. People's pacing style reflects a hyperbolic curve, with the steepness of the curve predicted by self-reported procrastination. Procrastination is related to intention-action gaps, but not intentions. Procrastinators are susceptible to proximity of temptation and to the temporal separation between their intention and the planned act; the more distal, the greater the gap. Critical self-regulatory skills in explaining procrastination are attention control, energy regulation and automaticity, accounting for 74% of the variance. Future research using this design is recommended, as it provides an almost ideal blend of realism and detailed longitudinal assessment.

  15. Effect of confounding variables on hemodynamic response function estimation using averaging and deconvolution analysis: An event-related NIRS study.

    PubMed

    Aarabi, Ardalan; Osharina, Victoria; Wallois, Fabrice

    2017-07-15

    Slow and rapid event-related designs are used in fMRI and functional near-infrared spectroscopy (fNIRS) experiments to temporally characterize the brain hemodynamic response to discrete events. Conventional averaging (CA) and the deconvolution method (DM) are the two techniques commonly used to estimate the Hemodynamic Response Function (HRF) profile in event-related designs. In this study, we conducted a series of simulations using synthetic and real NIRS data to examine the effect of the main confounding factors, including event sequence timing parameters, different types of noise, signal-to-noise ratio (SNR), temporal autocorrelation and temporal filtering on the performance of these techniques in slow and rapid event-related designs. We also compared systematic errors in the estimates of the fitted HRF amplitude, latency and duration for both techniques. We further compared the performance of deconvolution methods based on Finite Impulse Response (FIR) basis functions and gamma basis sets. Our results demonstrate that DM was much less sensitive to confounding factors than CA. Event timing was the main parameter largely affecting the accuracy of CA. In slow event-related designs, deconvolution methods provided similar results to those obtained by CA. In rapid event-related designs, our results showed that DM outperformed CA for all SNR, especially above -5 dB regardless of the event sequence timing and the dynamics of background NIRS activity. Our results also show that periodic low-frequency systemic hemodynamic fluctuations as well as phase-locked noise can markedly obscure hemodynamic evoked responses. Temporal autocorrelation also affected the performance of both techniques by inducing distortions in the time profile of the estimated hemodynamic response with inflated t-statistics, especially at low SNRs. We also found that high-pass temporal filtering could substantially affect the performance of both techniques by removing the low-frequency components of HRF profiles. Our results emphasize the importance of characterization of event timing, background noise and SNR when estimating HRF profiles using CA and DM in event-related designs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Organised Motion in a Tall Spruce Canopy: Temporal Scales, Structure Spacing and Terrain Effects

    NASA Astrophysics Data System (ADS)

    Thomas, Christoph; Foken, Thomas

    2007-01-01

    This study investigates the organised motion near the canopy-atmosphere interface of a moderately dense spruce forest in heterogeneous, complex terrain. Wind direction is used to assess differences in topography and surface properties. Observations were obtained at several heights above and within the canopy using sonic anemometers and fast-response gas analysers over the course of several weeks. Analysed variables include the three-dimensional wind vector, the sonic temperature, and the concentration of carbon dioxide. Wavelet analysis was used to extract the organised motion from time series and to derive its temporal scales. Spectral Fourier analysis was deployed to compute power spectra and phase spectra. Profiles of temporal scales of ramp-like coherent structures in the vertical and longitudinal wind components showed a reversed variation with height and were of similar size within the canopy. Temporal scales of scalar fields were comparable to those of the longitudinal wind component suggesting that the lateral scalar transport dominates. The existence of a 1 power law in the longitudinal power spectra was confirmed for a few cases only, with a majority showing a clear 5/3 decay. The variation of effective scales of organised motion in the longitudinal velocity and temperature were found to vary with atmospheric stability, suggesting that both Kelvin-Helmholtz instabilities and attached eddies dominate the flow with increasing convectional forcing. The canopy mixing-layer analogy was observed to be applicable for ramp-like coherent structures in the vertical wind component for selected wind directions only. Departures from the prediction of m = Λ w L {/s -1} = 8 10 (where Λ w is the streamwise spacing of coherent structures in the vertical wind w and L s is a canopy shear length scale) were caused by smaller shear length scales associated with large-scale changes in the terrain as well as the vertical structure of the canopy. The occurrence of linear gravity waves was related to a rise in local topography and can therefore be referred to as mountain-type gravity waves. Temporal scales of wave motion and ramp-like coherent structures were observed to be comparable.

  17. Transformation of social networks in the late pre-Hispanic US Southwest.

    PubMed

    Mills, Barbara J; Clark, Jeffery J; Peeples, Matthew A; Haas, W R; Roberts, John M; Hill, J Brett; Huntley, Deborah L; Borck, Lewis; Breiger, Ronald L; Clauset, Aaron; Shackley, M Steven

    2013-04-09

    The late pre-Hispanic period in the US Southwest (A.D. 1200-1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure.

  18. Transformation of social networks in the late pre-Hispanic US Southwest

    PubMed Central

    Mills, Barbara J.; Clark, Jeffery J.; Peeples, Matthew A.; Haas, W. R.; Roberts, John M.; Hill, J. Brett; Huntley, Deborah L.; Borck, Lewis; Breiger, Ronald L.; Clauset, Aaron; Shackley, M. Steven

    2013-01-01

    The late pre-Hispanic period in the US Southwest (A.D. 1200–1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure. PMID:23530201

  19. Spatial Temporal Mathematics at Scale: An Innovative and Fully Developed Paradigm to Boost Math Achievement among All Learners

    ERIC Educational Resources Information Center

    Rutherford, Teomara; Kibrick, Melissa; Burchinal, Margaret; Richland, Lindsey; Conley, AnneMarie; Osborne, Keara; Schneider, Stephanie; Duran, Lauren; Coulson, Andrew; Antenore, Fran; Daniels, Abby; Martinez, Michael E.

    2010-01-01

    This paper describes the background, methodology, preliminary findings, and anticipated future directions of a large-scale multi-year randomized field experiment addressing the efficacy of ST Math [Spatial-Temporal Math], a fully-developed math curriculum that uses interactive animated software. ST Math's unique approach minimizes the use of…

  20. How Geoscience Novices Reason about Temporal Duration: The Role of Spatial Thinking and Large Numbers

    ERIC Educational Resources Information Center

    Cheek, Kim A.

    2013-01-01

    Research about geologic time conceptions generally focuses on the placement of events on the geologic timescale, with few studies dealing with the duration of geologic processes or events. Those studies indicate that students often have very poor conceptions about temporal durations of geologic processes, but the reasons for that are relatively…

  1. The temporal distribution and carbon storage of large oak wood in streams and floodplain deposits

    Treesearch

    Richard P. Guyette; Daniel C. Dey; Michael C. Stambaugh

    2008-01-01

    We used tree-ring dating and 14C dating to document the temporal distribution and carbon storage of oak (Quercus spp.) wood in trees recruited and buried by streams and floodplains in northern Missouri, USA. Frequency distributions indicated that oak wood has been accumulating in Midwest streams continually since at least the...

  2. Large-scale Watershed Modeling: NHDPlus Resolution with Achievable Conservation Scenarios in the Western Lake Erie Basin

    NASA Astrophysics Data System (ADS)

    Yen, H.; White, M. J.; Arnold, J. G.; Keitzer, S. C.; Johnson, M. V. V.; Atwood, J. D.; Daggupati, P.; Herbert, M. E.; Sowa, S. P.; Ludsin, S.; Robertson, D. M.; Srinivasan, R.; Rewa, C. A.

    2016-12-01

    By the substantial improvement of computer technology, large-scale watershed modeling has become practically feasible in conducting detailed investigations of hydrologic, sediment, and nutrient processes. In the Western Lake Erie Basin (WLEB), water quality issues caused by anthropogenic activities are not just interesting research subjects but, have implications related to human health and welfare, as well as ecological integrity, resistance, and resilience. In this study, the Soil and Water Assessment Tool (SWAT) and the finest resolution stream network, NHDPlus, were implemented on the WLEB to examine the interactions between achievable conservation scenarios with corresponding additional projected costs. During the calibration/validation processes, both hard (temporal) and soft (non-temporal) data were used to ensure the modeling outputs are coherent with actual watershed behavior. The results showed that widespread adoption of conservation practices intended to provide erosion control could deliver average reductions of sediment and nutrients without additional nutrient management changes. On the other hand, responses of nitrate (NO3) and dissolved inorganic phosphorus (DIP) dynamics may be different than responses of total nitrogen and total phosphorus dynamics under the same conservation practice. Model results also implied that fewer financial resources are required to achieve conservation goals if the goal is to achieve reductions in targeted watershed outputs (ex. NO3 or DIP) rather than aggregated outputs (ex. total nitrogen or total phosphorus). In addition, it was found that the model's capacity to simulate seasonal effects and responses to changing conservation adoption on a seasonal basis could provide a useful index to help alleviate additional cost through temporal targeting of conservation practices. Scientists, engineers, and stakeholders can take advantage of the work performed in this study as essential information while conducting policy making processes in the future.

  3. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE.

    PubMed

    Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M; Grün, Sonja

    2017-01-01

    Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis.

  4. Microseismic Precursory Characteristics of Rock Burst Hazard in Mining Areas Near a Large Residual Coal Pillar: A Case Study from Xuzhuang Coal Mine, Xuzhou, China

    NASA Astrophysics Data System (ADS)

    Cao, An-ye; Dou, Lin-ming; Wang, Chang-bin; Yao, Xiao-xiao; Dong, Jing-yuan; Gu, Yu

    2016-11-01

    Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial-temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial-temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.

  5. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE

    PubMed Central

    Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M.; Grün, Sonja

    2017-01-01

    Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis. PMID:28596729

  6. Spatial and temporal variability of N2O emission on grazed pastures - influence of management and meteorological drivers

    NASA Astrophysics Data System (ADS)

    Ammann, Christof; Voglmeier, Karl; Jocher, Markus

    2017-04-01

    Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.

  7. Haul-Out Behavior of Harbor Seals (Phoca vitulina) in Hood Canal, Washington

    PubMed Central

    London, Josh M.; Ver Hoef, Jay M.; Jeffries, Steven J.; Lance, Monique M.; Boveng, Peter L.

    2012-01-01

    The goal of this study was to model haul-out behavior of harbor seals (Phoca vitulina) in the Hood Canal region of Washington State with respect to changes in physiological, environmental, and temporal covariates. Previous research has provided a solid understanding of seal haul-out behavior. Here, we expand on that work using a generalized linear mixed model (GLMM) with temporal autocorrelation and a large dataset. Our dataset included behavioral haul-out records from archival and VHF radio tag deployments on 25 individual seals representing 61,430 seal hours. A novel application for increased computational efficiency allowed us to examine this large dataset with a GLMM that appropriately accounts for temporal autocorellation. We found significant relationships with the covariates hour of day, day of year, minutes from high tide and year. Additionally, there was a significant effect of the interaction term hour of day : day of year. This interaction term demonstrated that seals are more likely to haul out during nighttime hours in August and September, but then switch to predominantly daylight haul-out patterns in October and November. We attribute this change in behavior to an effect of human disturbance levels. This study also examined a unique ecological event to determine the role of increased killer whale (Orcinus orca) predation on haul-out behavior. In 2003 and 2005 these harbor seals were exposed to unprecedented levels of killer whale predation and results show an overall increase in haul-out probability after exposure to killer whales. The outcome of this study will be integral to understanding any changes in population abundance as a result of increased killer whale predation. PMID:22723851

  8. Atmospheric variability of methane over Pakistan, Afghanistan and adjoining areas using retrievals from SCIAMACHY/ENVISAT

    NASA Astrophysics Data System (ADS)

    ul-Haq, Zia; Tariq, Salman; Ali, Muhammad

    2015-12-01

    In the present work we have studied spatial and temporal variability of methane total column (MTC) over Pakistan and neighboring regions of Afghanistan, India and Iran by using observations of SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard EOS ENVISAT. Satellite measurements show large spatio-temporal variations in MTC over the study domain at different time scales. We find an average MTC of 1787±22 ppb (annual average±standard deviation) with 3.7% (slope 7.14±1.28, y-intercept 1751±7.19, r=0.91) increase during the period of January 2003 to April 2012. An enhanced MTC is observed mostly over the Indo-Gangetic Plain and areas with high anthropogenic activities. MTC exhibits a seasonal peak of 1804±28 ppb in summer followed by autumn (1800±25 ppb) and winter (1777±24 ppb). We have also discussed anthropogenic emission estimates in the study area obtained from EDGAR database. Substantial increments of 77% and 61% are observed in anthropogenic CH4 emissions for Pakistan and Afghanistan, respectively, during 1990-2008. Anthropogenic CH4 emissions from enteric fermentation and livestock sectors are found to be the highest. EDGAR data have also identified megacity Lahore, Sukkur, megacity Karachi, Dera Ghazi Khan, megacity Delhi and Ahmedabad as large point sources of CH4 emissions in the region. The emissions from Karachi show the highest increase of 107%, while Lahore is found with the highest annual average emissions of 8.8×10-10 kg m-2 s-1.

  9. Large-scale climatic phenomena drive fluctuations in macroinvertebrate assemblages in lowland tropical streams, Costa Rica: The importance of ENSO events in determining long-term (15y) patterns

    PubMed Central

    Ramírez, Alonso; Pringle, Catherine M.

    2018-01-01

    Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548

  10. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    PubMed

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  11. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    PubMed Central

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  12. Optical Flow Applied to Time-Lapse Image Series to Estimate Glacier Motion in the Southern Patagonia Ice Field

    NASA Astrophysics Data System (ADS)

    Lannutti, E.; Lenzano, M. G.; Toth, C.; Lenzano, L.; Rivera, A.

    2016-06-01

    In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.

  13. Spatial and temporal synchrony in reptile population dynamics in variable environments.

    PubMed

    Greenville, Aaron C; Wardle, Glenda M; Nguyen, Vuong; Dickman, Chris R

    2016-10-01

    Resources are seldom distributed equally across space, but many species exhibit spatially synchronous population dynamics. Such synchrony suggests the operation of large-scale external drivers, such as rainfall or wildfire, or the influence of oasis sites that provide water, shelter, or other resources. However, testing the generality of these factors is not easy, especially in variable environments. Using a long-term dataset (13-22 years) from a large (8000 km(2)) study region in arid Central Australia, we tested firstly for regional synchrony in annual rainfall and the dynamics of six reptile species across nine widely separated sites. For species that showed synchronous spatial dynamics, we then used multivariate follow a multivariate auto-regressive state-space (MARSS) models to predict that regional rainfall would be positively associated with their populations. For asynchronous species, we used MARSS models to explore four other possible population structures: (1) populations were asynchronous, (2) differed between oasis and non-oasis sites, (3) differed between burnt and unburnt sites, or (4) differed between three sub-regions with different rainfall gradients. Only one species showed evidence of spatial population synchrony and our results provide little evidence that rainfall synchronizes reptile populations. The oasis or the wildfire hypotheses were the best-fitting models for the other five species. Thus, our six study species appear generally to be structured in space into one or two populations across the study region. Our findings suggest that for arid-dwelling reptile populations, spatial and temporal dynamics are structured by abiotic events, but individual responses to covariates at smaller spatial scales are complex and poorly understood.

  14. Truly sedentary? The multi-range tactic as a response to resource heterogeneity and unpredictability in a large herbivore.

    PubMed

    Couriot, Ophélie; Hewison, A J Mark; Saïd, Sonia; Cagnacci, Francesca; Chamaillé-Jammes, Simon; Linnell, John D C; Mysterud, Atle; Peters, Wibke; Urbano, Ferdinando; Heurich, Marco; Kjellander, Petter; Nicoloso, Sandro; Berger, Anne; Sustr, Pavel; Kroeschel, Max; Soennichsen, Leif; Sandfort, Robin; Gehr, Benedikt; Morellet, Nicolas

    2018-05-01

    Much research on large herbivore movement has focused on the annual scale to distinguish between resident and migratory tactics, commonly assuming that individuals are sedentary at the within-season scale. However, apparently sedentary animals may occupy a number of sub-seasonal functional home ranges (sfHR), particularly when the environment is spatially heterogeneous and/or temporally unpredictable. The roe deer (Capreolus capreolus) experiences sharply contrasting environmental conditions due to its widespread distribution, but appears markedly sedentary over much of its range. Using GPS monitoring from 15 populations across Europe, we evaluated the propensity of this large herbivore to be truly sedentary at the seasonal scale in relation to variation in environmental conditions. We studied movement using net square displacement to identify the possible use of sfHR. We expected that roe deer should be less sedentary within seasons in heterogeneous and unpredictable environments, while migratory individuals should be seasonally more sedentary than residents. Our analyses revealed that, across the 15 populations, all individuals adopted a multi-range tactic, occupying between two and nine sfHR during a given season. In addition, we showed that (i) the number of sfHR was only marginally influenced by variation in resource distribution, but decreased with increasing sfHR size; and (ii) the distance between sfHR increased with increasing heterogeneity and predictability in resource distribution, as well as with increasing sfHR size. We suggest that the multi-range tactic is likely widespread among large herbivores, allowing animals to track spatio-temporal variation in resource distribution and, thereby, to cope with changes in their local environment.

  15. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China.

    PubMed

    Zeng, Jianfei; Shen, Xiuli; Sun, Xiaoxi; Liu, Ning; Han, Lujia; Huang, Guangqun

    2018-05-01

    With the advantages of high treatment capacity and low operational cost, large-scale trough composting has become one of the mainstream composting patterns in composting plants in China. This study measured concentrations of O 2 , CO 2 , CH 4 and NH 3 on-site to investigate the spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. The results showed that the temperature in the center of the pile was obviously higher than that in the side of the pile. Pore O 2 concentration rapidly decreased and maintained <5% (in volume) for 38 days or more in both the center and side of the pile and effective O 2 diffusion occurred at most in every two contiguous layers. Pore CO 2 and CH 4 concentrations at each measurement point were positively correlated (0.436 ≤ r ≤ 0.570, P < 0.01) and the concentrations in the side of the pile were obviously lower than those in the center. The top layer exhibited highest pore O 2 concentration and lowest CO 2 and CH 4 concentrations, and the bottom layer was on the contrary. No significant differences in pore NH 3 concentrations between different layers or between different measurement points in the same layer were found. Therefore, mixing the center and the side of the pile when mechanical turning and adjusting the height of the pile according to the physical properties of bulking agents are suggested to optimize the oxygen distribution and promote the composting process during large-scale trough composting when the pile was naturally aerated, which will contribute to improving the current undesirable atmosphere environment in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Predicting spatio-temporal failure in large scale observational and micro scale experimental systems

    NASA Astrophysics Data System (ADS)

    de las Heras, Alejandro; Hu, Yong

    2006-10-01

    Forecasting has become an essential part of modern thought, but the practical limitations still are manifold. We addressed future rates of change by comparing models that take into account time, and models that focus more on space. Cox regression confirmed that linear change can be safely assumed in the short-term. Spatially explicit Poisson regression, provided a ceiling value for the number of deforestation spots. With several observed and estimated rates, it was decided to forecast using the more robust assumptions. A Markov-chain cellular automaton thus projected 5-year deforestation in the Amazonian Arc of Deforestation, showing that even a stable rate of change would largely deplete the forest area. More generally, resolution and implementation of the existing models could explain many of the modelling difficulties still affecting forecasting.

  17. Observation of spatial and temporal variations in X-ray bright point emergence patterns. [at solar surface

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full-sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be equivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes varies in phase with the low-latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.

  18. Communication Dynamics in Finite Capacity Social Networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim

    2012-10-01

    In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.

  19. A dynamical systems approach to studying midlatitude weather extremes

    NASA Astrophysics Data System (ADS)

    Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide

    2017-04-01

    Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.

  20. Pitting temporal against spatial integration in schizophrenic patients.

    PubMed

    Herzog, Michael H; Brand, Andreas

    2009-06-30

    Schizophrenic patients show strong impairments in visual backward masking possibly caused by deficits on the early stages of visual processing. The underlying aberrant mechanisms are not clearly understood. Spatial as well as temporal processing deficits have been proposed. Here, by combining a spatial with a temporal integration paradigm, we show further evidence that temporal but not spatial processing is impaired in schizophrenic patients. Eleven schizophrenic patients and ten healthy controls were presented with sequences composed of Vernier stimuli. Patients needed significantly longer presentation times for sequentially presented Vernier stimuli to reach a performance level comparable to that of healthy controls (temporal integration deficit). When we added spatial contextual elements to some of the Vernier stimuli, performance changed in a complex but comparable manner in patients and controls (intact spatial integration). Hence, temporal but not spatial processing seems to be deficient in schizophrenia.

Top