Science.gov

Sample records for show prolonged intracellular

  1. Intracellular pH in prolonged hypoxia: effect of a CO/sub 2/ load

    SciTech Connect

    Gonzalez, N.C.; Clancy, R.L.

    1986-03-05

    The authors have previously shown that rats exposed to 0.5 atmosphere for three weeks (3WHx) have a great extracellular pH regulation during acute hypercapnia than normoxic (Nx) rats; this is due, in part, to a more effective renal compensation of hypercapnia in 3WHx. The present experiments were performed to study the intracellular pH (pHi) regulation of heart and of skeletal muscle (SKM) of 3WHx intact, conscious rats exposed acutely to an increase in inspired PCO/sub 2/. pHi was determined with the 5,5-dimethyl, 2-4-oxazolidine dione method. In the absence of inspired CO/sub 2/, there was no significant difference in pHe or pHi of heart or SKM between 3WHx and Nx. Hypercapnia resulted in a smaller decrease in SKM pHi in 3WHx than in Nx rats: intracellular non bicarbonate buffer value of various SKM was 5 to 15 times higher in 3WHx than in Nx. Heart pHi showed similar changes in both 3WHx and Nx. When PCO/sub 2/ was increased in nephrectomized rats, the difference in SKM pHi regulation between 3WHx and Nx either disappeared or was attenuated, depending on the muscle. Nephrectomy did not alter the effect of hypercapnia on heart pHi. The data show that SKM pHi regulation during a CO/sub 2/ load is improved in prolonged hypoxia, and that this appears to be due in part to a more effective renal compensation.

  2. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells

    PubMed Central

    Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo

    2015-01-01

    Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. PMID:26674618

  3. Yersinia pestis Resists Predation by Acanthamoeba castellanii and Exhibits Prolonged Intracellular Survival.

    PubMed

    Benavides-Montaño, Javier A; Vadyvaloo, Viveka

    2017-07-01

    Plague is a flea-borne rodent-associated zoonotic disease caused by Yersinia pestis The disease is characterized by epizootics with high rodent mortalities, punctuated by interepizootic periods when the bacterium persists in an unknown reservoir. This study investigates the interaction between Y. pestis and the ubiquitous soil free-living amoeba (FLA) Acanthamoeba castellanii to assess if the bacterium can survive within soil amoebae and whether intracellular mechanisms are conserved between infection of mammalian macrophages and soil amoebae. The results demonstrate that during coculture with amoebae, representative Y. pestis strains of epidemic biovars Medievalis, Orientalis, and Antiqua are phagocytized and able to survive within amoebae for at least 5 days. Key Y. pestis determinants of the intracellular interaction of Y. pestis and phagocytic macrophages, PhoP and the type three secretion system (T3SS), were then tested for their roles in the Y. pestis-amoeba interaction. Consistent with a requirement for the PhoP transcriptional activator in the intracellular survival of Y. pestis in macrophages, a PhoP mutant is unable to survive when cocultured with amoebae. Additionally, induction of the T3SS blocks phagocytic uptake of Y. pestis by amoebae, similar to that which occurs during macrophage infection. Electron microscopy revealed that in A. castellanii, Y. pestis resides intact within spacious vacuoles which were characterized using lysosomal trackers as being separated from the lysosomal compartment. This evidence for prolonged survival and subversion of intracellular digestion of Y. pestis within FLA suggests that protozoa may serve as a protective soil reservoir for Y. pestisIMPORTANCEYersinia pestis is a reemerging flea-borne zoonotic disease. Sylvatic plague cycles are characterized by an epizootic period during which the disease spreads rapidly, causing high rodent mortality, and an interepizootic period when the bacterium quiescently persists in an

  4. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  5. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials.

    PubMed

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive and large-scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes of a new geometry, namely nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow centre. We show that this nanotube geometry enhances cell-electrode coupling and results in larger signals than solid nanoelectrodes. The nanotube electrodes also afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the nanoelectrode performance can be significantly improved by optimizing the electrode geometry.

  6. Intracellular click reaction with a fluorescent chemical Ca2+ indicator to prolong its cytosolic retention.

    PubMed

    Takei, Yoshiaki; Murata, Atsushi; Yamagishi, Kento; Arai, Satoshi; Nakamura, Hideki; Inoue, Takafumi; Takeoka, Shinji

    2013-08-25

    The powerful strategy of "intracellular click reaction" was used to retain a chemical Ca(2+) indicator in the cytosol. Specifically, a novel clickable Ca(2+) indicator "N3-fura-2 AM" was coupled with dibenzylcyclooctyl-modified biomacromolecules via copper-free click reaction in living cells and Ca(2+) oscillation was observed for an extended period of time.

  7. Intracellular phase for an extracellular bacterial pathogen: MgtC shows the way

    PubMed Central

    Bernut, Audrey; Belon, Claudine; Soscia, Chantal; Bleves, Sophie; Blanc-Potard, Anne-Béatrice

    2015-01-01

    Pseudomonas aeruginosa is an extracellular pathogen known to impair host phagocytic functions. However, our recent results identify MgtC as a novel actor in P. aeruginosa virulence, which plays a role in an intramacrophage phase of this pathogen. In agreement with its intracellular function, P. aeruginosa mgtC gene expression is strongly induced when the bacteria reside within macrophages. MgtC was previously known as a horizontally-acquired virulence factor important for multiplication inside macrophages in several intracellular bacterial pathogens. MgtC thus provides a singular example of a virulence determinant that subverts macrophages both in intracellular and extracellular pathogens. Moreover, we demonstrate that P. aeruginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosa MgtC prevents biofilm formation. We propose that MgtC has a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to the host in relation to the different bacterial lifestyles. MgtC thus appears as an attractive target for antivirulence strategies and our work provides a natural peptide as MgtC antagonist, which paves the way for the development of MgtC inhibitors.

  8. Hearts of surviving MLP-KO mice show transient changes of intracellular calcium handling.

    PubMed

    Kemecsei, Péter; Miklós, Zsuzsanna; Bíró, Tamás; Marincsák, Rita; Tóth, Balázs I; Komlódi-Pásztor, Edina; Barnucz, Eniko; Mirk, Eva; Van der Vusse, Ger J; Ligeti, László; Ivanics, Tamás

    2010-09-01

    The muscle Lim protein knock-out (MLP-KO) mouse model is extensively used for studying the pathophysiology of dilated cardiomyopathy. However, explanation is lacking for the observed long survival of the diseased mice which develop until adulthood despite the gene defect, which theoretically predestines them to early death due to heart failure. We hypothesized that adaptive changes of cardiac intracellular calcium (Ca(i)(2+)) handling might explain the phenomenon. In order to study the progression of changes in cardiac function and Ca(i)(2+) cycling, myocardial Ca(i)(2+)-transients recorded by Indo-1 surface fluorometry were assessed with concomitant measurement of hemodynamic performance in isolated Langendorff-perfused hearts of 3- and 9-month old MLP-KO animals. Hearts were challenged with beta-agonist isoproterenol and the sarcoplasmic reticular Ca(2+)-ATPase (SERCA2a) inhibitor cyclopiazonic acid (CPA). Cardiac mRNA content and levels of key Ca(2+) handling proteins were also measured. A decline in lusitropic function was observed in 3-month old, but not in 9-month old MLP-KO mice under unchallenged conditions. beta-adrenergic responses to isoproterenol were similar in all the studied groups. The CPA induced an increase in end-diastolic Ca(i)(2+)-level and a decrease in Ca(2+)-sequestration capacity in 3-month old MLP-KO mice compared to age-matched controls. This unfavorable condition was absent at 9 months of age. SERCA2a expression was lower in 3-month old MLP-KO than in the corresponding controls and in 9-month old MLP-KO hearts. Our results show time-related recovery of hemodynamic function and an age-dependent compensatory upregulation of Ca(i)(2+) handling in hearts of MLP-KO mice, which most likely involve the normalization of the expression of SERCA2a in the affected hearts.

  9. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing.

    PubMed

    Badgley, Catherine; Barry, John C; Morgan, Michèle E; Nelson, Sherry V; Behrensmeyer, Anna K; Cerling, Thure E; Pilbeam, David

    2008-08-26

    Geohistorical records reveal the long-term impacts of climate change on ecosystem structure. A 5-myr record of mammalian faunas from floodplain ecosystems of South Asia shows substantial change in species richness and ecological structure in relation to vegetation change as documented by stable isotopes of C and O from paleosols. Between 8.5 and 6.0 Ma, C(4) savannah replaced C(3) forest and woodland. Isotopic historical trends for 27 mammalian herbivore species, in combination with ecomorphological data from teeth, show three patterns of response. Most forest frugivores and browsers maintained their dietary habits and disappeared. Other herbivores altered their dietary habits to include increasing amounts of C(4) plants and persisted for >1 myr during the vegetation transition. The few lineages that persisted through the vegetation transition show isotopic enrichment of delta(13)C values over time. These results are evidence for long-term climatic forcing of vegetation structure and mammalian ecological diversity at the subcontinental scale.

  10. Nightmare sufferers show atypical emotional semantic associations and prolonged REM sleep-dependent emotional priming.

    PubMed

    Carr, Michelle; Blanchette-Carrière, Cloé; Marquis, Louis-Philippe; Ting, Cher Tieng; Nielsen, Tore

    2016-04-01

    The objective of this study was to investigate whether nightmare (NM) sufferers exhibit an abnormal network of emotional semantic associations as measured by a recently developed, rapid eye movement (REM) sleep-sensitive, associational breadth (AB) task. NM sufferers were compared to healthy controls (CTL) for their performance on an emotional AB task containing positive and negative cue words both before and after a nap with REM sleep. AB was assessed in both a priming condition, where cue words were explicitly memorized before sleep, and a non-priming condition, where cue words were not memorized. Performance was assessed again 1 week later. The study was conducted in a sleep laboratory with polysomnographic recording at the Hôpital du Sacré-Coeur de Montréal Twenty-eight participants between the ages of 18 and 35 years (Mage = 23.3 ± 3.4) were included in the study. The NM group scored higher than the CTL group on both positive and negative AB, with group differences persisting at the 1-week retest. However, the two groups did not differ as expected in the AB priming effect following REM sleep. Both groups showed decreased REM sleep-related AB priming for negative cue words and increased AB priming for positive cue words. However, the NM group maintained these effects 1 week later, whereas the CTL group did not. NM sufferers may access broader than normal emotional semantic networks in the wake state, a difference that may lead to this group being perceived as more creative. The fact that the AB priming effect is maintained at the 1-week retest for NM sufferers suggests that the presence of frequent NMs may alter REM sleep-dependent emotional processes over time. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Trigeminal Ganglion Neurons of Mice Show Intracellular Chloride Accumulation and Chloride-Dependent Amplification of Capsaicin-Induced Responses

    PubMed Central

    Schöbel, Nicole; Radtke, Debbie; Lübbert, Matthias; Gisselmann, Günter; Lehmann, Ramona; Cichy, Annika; Schreiner, Benjamin S. P.; Altmüller, Janine; Spector, Alan C.; Spehr, Jennifer; Hatt, Hanns; Wetzel, Christian H.

    2012-01-01

    Intracellular Cl− concentrations ([Cl−]i) of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG) and olfactory sensory neurons (OSNs), Cl− is accumulated by the Na+-K+-2Cl− cotransporter 1 (NKCC1), resulting in a [Cl−]i above electrochemical equilibrium and a depolarizing Cl− efflux upon Cl− channel opening. Here, we investigate the [Cl−]i and function of Cl− in primary sensory neurons of trigeminal ganglia (TG) of wild type (WT) and NKCC1−/− mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl−]i of WT TG neurons indicated active NKCC1-dependent Cl− accumulation. Gamma-aminobutyric acid (GABA)A receptor activation induced a reduction of [Cl−]i as well as Ca2+ transients in a corresponding fraction of TG neurons. Ca2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca2+ channels (VGCCs). Ca2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1) were diminished in NKCC1−/− TG neurons, but elevated under conditions of a lowered [Cl−]o suggesting a Cl−-dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS), we found expression of different Ca2+-activated Cl− channels (CaCCs) in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1−/− mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca2+-activated Cl−-dependent signal amplification mechanism in TG neurons that requires intracellular Cl− accumulation by NKCC1 and the activation of CaCCs. PMID:23144843

  12. Randomized, Controlled, Thorough QT/QTc Study Shows Absence of QT Prolongation with Luseogliflozin in Healthy Japanese Subjects

    PubMed Central

    Kumagai, Yuji; Hasunuma, Tomoko; Sakai, Soichi; Ochiai, Hidekazu; Samukawa, Yoshishige

    2015-01-01

    Luseogliflozin is a selective sodium glucose co-transporter 2 (SGLT2) inhibitor. To evaluate the cardiac safety of luseogliflozin, a thorough QT/QTc study was conducted in healthy Japanese subjects. The effects of moxifloxacin on QT prolongation in Japanese subjects were also evaluated. In this double-blind, placebo- and open-label positive-controlled, 4-way crossover study, 28 male and 28 female subjects received a single dose of luseogliflozin 5 mg (therapeutic dose), luseogliflozin 20 mg (supratherapeutic dose), placebo, and moxifloxacin 400 mg. Serial triplicate digital 12-lead electrocardiograms (ECGs) were recorded before and after dosing, and results were analyzed using the Fridericia correction (QTcF) method. Serial blood sampling was performed for pharmacokinetic analyses of luseogliflozin and moxifloxacin to analyze the relationship between QTcF interval and plasma concentration. The upper limits of the two-sided 90% confidence intervals (CIs) for baseline and placebo-adjusted QTcF intervals (ΔΔQTcF) in the 5 mg and 20 mg luseogliflozin groups were less than 10 ms at all time points. No correlation between plasma luseogliflozin concentrations and ΔΔQTcF was observed. In the moxifloxacin group, the lower limits of the two-sided 90% CIs for ΔΔQTcF were greater than 5 ms at all time points. A positive relationship was observed between plasma moxifloxacin concentration and change in ΔΔQTcF. Luseogliflozin was well tolerated at both dose levels. The majority of adverse events were mild in severity, and no serious or life-threatening adverse events occurred. Neither therapeutic (5 mg) nor supratherapeutic (20 mg) doses of luseogliflozin affected QT prolongation in healthy Japanese subjects. PMID:26444986

  13. Prolonged ELS test with the marine flatfish sole (Solea solea) shows delayed toxic effects of previous exposure to PCB 126.

    PubMed

    Foekema, Edwin M; Deerenberg, Charlotte M; Murk, Albertinka J

    2008-11-21

    The effect of the dioxin-like PCB 126 (3,3',4,4',5-pentachlorobiphenyl) on the early development of the marine flatfish sole (Solea solea) was tested in a newly developed early life stage (ELS) test that includes the metamorphosis of the symmetric larvae into an asymmetrical flatfish. Early life stages of sole were exposed to a concentration series of PCB 126 in seawater until 4, 8, 10 and 15 days post fertilisation (dpf). Subsequently the development of the larvae was registered under further unexposed conditions. The LC50s at the start of the free-feeding stage (12 dpf) ranged between 39 and 83 ng PCB 126/l depending on exposure duration. After the fish had completed the metamorphosis, the LC50 values ranged between 1.7 and 3.7 ng PCB 126/l for the groups exposed for 4, 8 and 10 dpf, respectively. Thus exposure for only 4 days, covering only the egg stage, was sufficient to cause adverse effects during a critical developmental phase two weeks later. The internal dosages of these larvae, determined by means of an in vitro gene reporter assay as dioxin-equivalent values (TEQ), revealed a LD50 of 1ng TEQ/g lipid, which is within the same order of magnitude as TEQ levels found in fish from highly polluted areas. This study indicates that ELS fish tests that are terminated shortly after the fish becomes free-feeding, underestimate the toxic potential of compounds with low acute toxicity such as PCBs. Our prolonged ELS with this native marine flatfish suggests that reproductive success of fish populations at contaminated sites can be affected by persistent compounds that are accumulated by the female fish and passed on to the eggs.

  14. Neutrophils from patients with SAPHO syndrome show no signs of aberrant NADPH oxidase-dependent production of intracellular reactive oxygen species

    PubMed Central

    Wekell, Per; Björnsdottir, Halla; Björkman, Lena; Sundqvist, Martina; Christenson, Karin; Osla, Veronica; Berg, Stefan; Fasth, Anders; Welin, Amanda; Bylund, Johan

    2016-01-01

    Objective. We aimed to investigate if aberrant intracellular production of NADPH oxidase-derived reactive oxygen species (ROS) in neutrophils is a disease mechanism in the autoinflammatory disease SAPHO syndrome, characterized by synovitis, acne, pustulosis, hyperostosis and osteitis, as has previously been suggested based on a family with SAPHO syndrome-like disease. Methods. Neutrophil function was explored in a cohort of four patients with SAPHO syndrome, two of whom were sampled during both inflammatory and non-inflammatory phase. Intracellular neutrophil ROS production was determined by luminol-amplified chemiluminescence in response to phorbol myristate acetate. Results. Cells from all patients produced normal amounts of ROS, both intra- and extracellularly, when compared with internal controls as well as with a large collection of healthy controls assayed in the laboratory over time (showing an extensive inter-personal variability in a normal population). Further, intracellular production of ROS increased during the inflammatory phase. Neutrophil activation markers were comparable between patients and controls. Conclusion. Dysfunctional generation of intracellular ROS in neutrophils is not a generalizable feature in SAPHO syndrome. Secondly, serum amyloid A appears to be a more sensitive inflammatory marker than CRP during improvement and relapses in SAPHO syndrome. PMID:27121779

  15. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum

    PubMed Central

    Wesley-Smith, James; Walters, Christina; Pammenter, N. W.

    2015-01-01

    Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Conclusions Autophagic degradation and ultimately autolysis of cells following

  16. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum.

    PubMed

    Wesley-Smith, James; Walters, Christina; Pammenter, N W; Berjak, Patricia

    2015-05-01

    Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than -180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g(-1) dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s(-1) or programmed cooling at 3·3 °C s(-1). Samples were thawed rapidly (177 °C s(-1)) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small

  17. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum

    USDA-ARS?s Scientific Manuscript database

    Intracellular ice formed in rapidly cooled embryonic axes of Acer saccharinum and was not necessarily lethal when ice crystals were small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic a...

  18. FosB Null Mutant Mice Show Enhanced Methamphetamine Neurotoxicity: Potential Involvement of FosB in Intracellular Feedback Signaling and Astroglial Function

    PubMed Central

    Kuroda, Kumi O; Ornthanalai, Veravej G; Kato, Tadafumi; Murphy, Niall P

    2010-01-01

    Previous studies show that (1) two members of fos family transcription factors, c-Fos and FosB, are induced in frontal brain regions by methamphetamine; (2) null mutation of c-Fos exacerbates methamphetamine-induced neurotoxicity; and (3) null mutation of FosB enhances behavioral responses to cocaine. Here we sought a role of FosB in responses to methamphetamine by studying FosB null mutant (−/−) mice. After a 10 mg/kg methamphetamine injection, FosB(−/−) mice were more prone to self-injury. Concomitantly, the intracellular feedback regulators of Sprouty and Rad-Gem-Kir (RGK) family transcripts had lower expression profiles in the frontoparietal cortex and striatum of the FosB(−/−) mice. Three days after administration of four 10 mg/kg methamphetamine injections, the frontoparietal cortex and striatum of FosB(−/−) mice contained more degenerated neurons as determined by Fluoro-Jade B staining. The abundance of the small neutral amino acids, serine, alanine, and glycine, was lower and/or was poorly induced after methamphetamine administration in the frontoparietal cortex and striatum of FosB(−/−) mice. In addition, methamphetamine-treated FosB(−/−) frontoparietal and piriform cortices showed more extravasation of immunoglobulin, which is indicative of blood–brain barrier dysfunction. Methamphetamine-induced hyperthermia, brain dopamine content, and loss of tyrosine hydroxylase immunoreactivity in the striatum, however, were not different between genotypes. These data indicate that FosB is involved in thermoregulation-independent protective functions against methamphetamine neurotoxicity in postsynaptic neurons. Our findings suggest two possible mechanisms of FosB-mediated neuroprotection: one is induction of negative feedback regulation within postsynaptic neurons through Sprouty and RGK. Another is supporting astroglial function such as maintenance of the blood–brain barrier, and metabolism of serine and glycine, which are important

  19. FosB null mutant mice show enhanced methamphetamine neurotoxicity: potential involvement of FosB in intracellular feedback signaling and astroglial function.

    PubMed

    Kuroda, Kumi O; Ornthanalai, Veravej G; Kato, Tadafumi; Murphy, Niall P

    2010-02-01

    Previous studies show that (1) two members of fos family transcription factors, c-Fos and FosB, are induced in frontal brain regions by methamphetamine; (2) null mutation of c-Fos exacerbates methamphetamine-induced neurotoxicity; and (3) null mutation of FosB enhances behavioral responses to cocaine. Here we sought a role of FosB in responses to methamphetamine by studying FosB null mutant (-/-) mice. After a 10 mg/kg methamphetamine injection, FosB(-/-) mice were more prone to self-injury. Concomitantly, the intracellular feedback regulators of Sprouty and Rad-Gem-Kir (RGK) family transcripts had lower expression profiles in the frontoparietal cortex and striatum of the FosB(-/-) mice. Three days after administration of four 10 mg/kg methamphetamine injections, the frontoparietal cortex and striatum of FosB(-/-) mice contained more degenerated neurons as determined by Fluoro-Jade B staining. The abundance of the small neutral amino acids, serine, alanine, and glycine, was lower and/or was poorly induced after methamphetamine administration in the frontoparietal cortex and striatum of FosB(-/-) mice. In addition, methamphetamine-treated FosB(-/-) frontoparietal and piriform cortices showed more extravasation of immunoglobulin, which is indicative of blood-brain barrier dysfunction. Methamphetamine-induced hyperthermia, brain dopamine content, and loss of tyrosine hydroxylase immunoreactivity in the striatum, however, were not different between genotypes. These data indicate that FosB is involved in thermoregulation-independent protective functions against methamphetamine neurotoxicity in postsynaptic neurons. Our findings suggest two possible mechanisms of FosB-mediated neuroprotection: one is induction of negative feedback regulation within postsynaptic neurons through Sprouty and RGK. Another is supporting astroglial function such as maintenance of the blood-brain barrier, and metabolism of serine and glycine, which are important glial modulators of nerve cells.

  20. Intracellular ROS

    PubMed Central

    Leshem, Yehoram

    2007-01-01

    Intracellular localization of stress induced reactive oxygen species (ROS) has emerged as an important aspect towards understanding of cellular responses to environmental stimuli. Our recent study published in the PNAS (103:18008–13)1 shows that NaCl-induced ROS appear within endosomes on the way to tonoplast as part of the vacuolar vesicle trafficking. In addition to showing ROS damage to the tonoplast, this finding may shed light upon recently reported aspects of root water relations during salt stress, suggesting a new signaling role for intracellular ROS in Arabidopsis root cells, during salt stress: ROS that are compartmentalized in endosomes are delivered by the vacuolar vesicle trafficking pathway to the tonoplast, resulting in oxidative gating of TIPs water channels. The closure of the tonoplast aquaporins contributes to the observed reduction in root hydraulic conductivity during salt stress. PMID:19704741

  1. Leishmania donovani: oral therapy with glycosyl 1,4-dihydropyridine analogue showing apoptosis like phenotypes targeting pteridine reductase 1 in intracellular amastigotes.

    PubMed

    Kaur, Jaspreet; Singh, Nasib; Singh, Biswajit Kumar; Dube, Anuradha; Tripathi, Rama Pati; Singh, Prashant; Singh, Neeloo

    2010-07-01

    Glycosyl 1,4-dihydropyridine analogue (2,6-dimethyl-4-(3-O-benzyl-1,2-O-isopropylidene-beta-l-threo pentofuranos-4-yl)-1-phenyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid diethyl ester) synthesized in our laboratory, inhibited Leishmania donovani infection in vitro and in hamsters (Mesocricetus auratus) when administered orally. This analogue is nontoxic, cell-permeable and orally effective. This glycosyl dihydropyridine analogue functioned through arrest of cells in sub-G0/G1-phase, triggering mitochondrial membrane depolarization-mediated programmed cell death of the intracellular amastigotes.

  2. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  3. O-Antigen-Deficient Francisella tularensis Live Vaccine Strain Mutants Are Ingested via an Aberrant Form of Looping Phagocytosis and Show Altered Kinetics of Intracellular Trafficking in Human Macrophages

    PubMed Central

    Lee, Bai-Yu; Horwitz, Marcus A.

    2012-01-01

    We examined the uptake and intracellular trafficking of F. tularensis Live Vaccine Strain (LVS) and LVS with disruptions of wbtDEF and wbtI genes essential for synthesis of the O antigen of lipopolysaccharide. Unlike parental bacteria, O-antigen-deficient LVS is efficiently killed by serum with intact complement but not by serum lacking terminal complement components. Opsonization of O-antigen-deficient LVS in serum lacking terminal complement components allows efficient uptake of these live bacteria by macrophages. In the presence of complement, whereas parental F. tularensis LVS is internalized within spacious pseudopod loops, mutant LVS is internalized within tightly juxtaposed multiple onion-like layers of pseudopodia. Without complement, both parental and mutant LVSs are internalized within spacious pseudopod loops. Thus, molecules other than O antigen are important in triggering dramatic pseudopod extensions and uptake by spacious pseudopod loops. Following uptake, both parental and mutant LVSs enter compartments that show limited staining for the lysosomal membrane glycoprotein CD63 and little fusion with secondary lysosomes. Subsequently, both parental and mutant LVSs lose their CD63 staining. Whereas the majority of parental LVS escapes into the cytosol by 6 h after uptake, mutant LVS shows a marked lag but does escape by 1 day after uptake. Despite the altered kinetics of phagosome escape, both mutant and parental strains grow to high levels within human macrophages. Thus, the O antigen plays a role in the morphology of uptake in the presence of complement and the kinetics of intracellular growth but is not essential for escape, survival, altered membrane trafficking, or intramacrophage growth. PMID:22202123

  4. Intracellular microlasers

    NASA Astrophysics Data System (ADS)

    Humar, Matjaž; Hyun Yun, Seok

    2015-09-01

    Optical microresonators, which confine light within a small cavity, are widely exploited for various applications ranging from the realization of lasers and nonlinear devices to biochemical and optomechanical sensing. Here we use microresonators and suitable optical gain materials inside biological cells to demonstrate various optical functions in vitro including lasing. We explore two distinct types of microresonator—soft and hard—that support whispering-gallery modes. Soft droplets formed by injecting oil or using natural lipid droplets support intracellular laser action. The laser spectra from oil-droplet microlasers can chart cytoplasmic internal stress (˜500 pN μm-2) and its dynamic fluctuations at a sensitivity of 20 pN μm-2 (20 Pa). In a second form, whispering-gallery modes within phagocytized polystyrene beads of different sizes enable individual tagging of thousands of cells easily and, in principle, a much larger number by multiplexing with different dyes.

  5. Intracellular Accumulation of Gold Nanoparticles Leads to Inhibition of Macropinocytosis to Reduce the Endoplasmic Reticulum Stress

    PubMed Central

    Gunduz, Nuray; Ceylan, Hakan; Guler, Mustafa O.; Tekinay, Ayse B.

    2017-01-01

    Understanding the toxicity of nanomaterials remains largely limited to acute cellular response, i.e., short-term in vitro cell-death based assays, and analyses of tissue- and organ-level accumulation and clearance patterns in animal models, which have produced very little information about how these materials (from the toxicity point of view) interact with the complex intracellular machinery. In particular, understanding the mechanism of toxicity caused by the gradual accumulation of nanomaterials due to prolonged exposure times is essential yet still continue to be a largely unexplored territory. Herein, we show intracellular accumulation and the associated toxicity of gold nanoparticles (AuNPs) for over two-months in the cultured vascular endothelial cells. We observed that steady exposure of AuNPs at low (non-lethal) dose leads to rapid intracellular accumulation without causing any detectable cell death while resulting in elevated endoplasmic reticulum (ER) stress. Above a certain intracellular AuNP threshold, inhibition of macropinocytosis mechanism ceases further nanoparticle uptake. Interestingly, the intracellular depletion of nanoparticles is irreversible. Once reaching the maximum achievable intracellular dose, a steady depletion is observed, while no cell death is observed at any stage of this overall process. This depletion is important for reducing the ER stress. To our knowledge, this is the first report suggesting active regulation of nanoparticle uptake by cells and the impact of long-term exposure to nanoparticles in vitro. PMID:28145529

  6. Intracellular Accumulation of Gold Nanoparticles Leads to Inhibition of Macropinocytosis to Reduce the Endoplasmic Reticulum Stress

    NASA Astrophysics Data System (ADS)

    Gunduz, Nuray; Ceylan, Hakan; Guler, Mustafa O.; Tekinay, Ayse B.

    2017-02-01

    Understanding the toxicity of nanomaterials remains largely limited to acute cellular response, i.e., short-term in vitro cell-death based assays, and analyses of tissue- and organ-level accumulation and clearance patterns in animal models, which have produced very little information about how these materials (from the toxicity point of view) interact with the complex intracellular machinery. In particular, understanding the mechanism of toxicity caused by the gradual accumulation of nanomaterials due to prolonged exposure times is essential yet still continue to be a largely unexplored territory. Herein, we show intracellular accumulation and the associated toxicity of gold nanoparticles (AuNPs) for over two-months in the cultured vascular endothelial cells. We observed that steady exposure of AuNPs at low (non-lethal) dose leads to rapid intracellular accumulation without causing any detectable cell death while resulting in elevated endoplasmic reticulum (ER) stress. Above a certain intracellular AuNP threshold, inhibition of macropinocytosis mechanism ceases further nanoparticle uptake. Interestingly, the intracellular depletion of nanoparticles is irreversible. Once reaching the maximum achievable intracellular dose, a steady depletion is observed, while no cell death is observed at any stage of this overall process. This depletion is important for reducing the ER stress. To our knowledge, this is the first report suggesting active regulation of nanoparticle uptake by cells and the impact of long-term exposure to nanoparticles in vitro.

  7. Evolution of intracellular pathogens.

    PubMed

    Casadevall, Arturo

    2008-01-01

    The evolution of intracellular pathogens is considered in the context of ambiguities in basic definitions and the diversity of host-microbe interactions. Intracellular pathogenesis is a subset of a larger world of host-microbe interactions that includes amoeboid predation and endosymbiotic existence. Intracellular pathogens often reveal genome reduction. Despite the uniqueness of each host-microbe interaction, there are only a few general solutions to the problem of intracellular survival, especially in phagocytic cells. Similarities in intracellular pathogenic strategies between phylogenetically distant microbes suggest convergent evolution. For discerning such patterns, it is useful to consider whether the microbe is acquired from another host or directly from the environment. For environmentally acquired microbes, biotic pressures, such as amoeboid predators, may select for the capacity for virulence. Although often viewed as a specialized adaptation, the capacity for intracellular survival may be widespread among microbes, thus questioning whether the intracellular lifestyle warrants a category of special distinctiveness.

  8. [Brain function recovery after prolonged posttraumatic coma].

    PubMed

    Klimash, A V; Zhanaidarov, Z S

    2016-01-01

    To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.

  9. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes.

    PubMed

    Smitha, K T; Nisha, N; Maya, S; Biswas, Raja; Jayakumar, R

    2015-03-01

    Polymorphonuclear leukocytes (PMNs) provide the primary host defence against invading pathogens by producing reactive oxygen species (ROS) and microbicidal products. However, few pathogens can survive for a prolonged period of time within the PMNs. Additionally their intracellular lifestyle within the PMNs protect themselves from the additional lethal action of host immune systems such as antibodies and complements. Antibiotic delivery into the intracellular compartments of PMNs is a major challenge in the field of infectious diseases. In order to deliver antibiotics within the PMNs and for the better treatment of intracellular bacterial infections we synthesized rifampicin (RIF) loaded amorphous chitin nanoparticles (RIF-ACNPs) of 350±50 nm in diameter. RIF-ACNPs nanoparticles are found to be non-hemolytic and non-toxic against a variety of host cells. The release of rifampicin from the prepared nanoparticles was ∼60% in 24 h, followed by a sustained pattern till 72 h. The RIF-ACNPs nanoparticles showed 5-6 fold enhanced delivery of RIF into the intracellular compartments of PMNs. The RIF-ACNPs showed anti-microbial activity against Escherichia coli, Staphylococcus aureus and a variety of other bacteria. In summary, our results suggest that RIF-ACNPs could be used to treat a variety of intracellular bacterial infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Antimicrobials and QT prolongation.

    PubMed

    Mason, Jay W

    2017-05-01

    Solithromycin, a ketolide/macrolide antibiotic, has recently been reported to be free of the expected QT-prolonging effect of macrolides. It appears that its keto substitution provides a structural basis for this observation, as the other two tested ketolides also have minimal QT effect.Among non-cardiovascular therapies, antimicrobials probably carry the greatest potential to cause cardiac arrhythmias. This is a result of their propensity to bind to the delayed rectifier potassium channel, IKr, inducing QT prolongation and risk of torsades de pointes ventricular tachycardia, their frequent interference with the metabolism of other QT prolongers and their susceptibility to metabolic inhibition by numerous commonly used drugs.Unfortunately, there is evidence that medical practitioners do not take account of the QT/arrhythmia risk of antimicrobials in their prescribing practices. Education on this topic is sorely needed. When a macrolide is indicated, a ketolide should be considered in patients with a QT risk. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity.

    PubMed

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R; Kuipers, Eline N; Loef, Marieke; Zonneveld, Tom C M; Lucassen, Eliane A; Sips, Hetty C M; Chatzispyrou, Iliana A; Houtkooper, Riekelt H; Meijer, Johanna H; Coomans, Claudia P; Biermasz, Nienke R; Rensen, Patrick C N

    2015-05-26

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.

  12. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity

    PubMed Central

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R.; Kuipers, Eline N.; Loef, Marieke; Zonneveld, Tom C. M.; Lucassen, Eliane A.; Sips, Hetty C. M.; Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.; Meijer, Johanna H.; Coomans, Claudia P.; Biermasz, Nienke R.; Rensen, Patrick C. N.

    2015-01-01

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity. PMID:25964318

  13. Intracellular Parasite Invasion Strategies

    NASA Astrophysics Data System (ADS)

    Sibley, L. D.

    2004-04-01

    Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called ``gliding'' to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.

  14. Methods to follow intracellular trafficking of cell-penetrating peptides.

    PubMed

    Pärnaste, Ly; Arukuusk, Piret; Zagato, Elisa; Braeckmans, Kevin; Langel, Ülo

    2016-01-01

    Cell-penetrating peptides (CPPs) are efficient vehicles to transport bioactive molecules into the cells. Despite numerous studies the exact mechanism by which CPPs facilitate delivery of cargo to its intracellular target is still debated. The current work presents methods that can be used for tracking CPP/pDNA complexes through endosomal transport and show the role of endosomal transport in the delivery of cargo. Separation of endosomal vesicles by differential centrifugation enables to pinpoint the localization of delivered cargo without labeling it and gives important quantitative information about pDNA trafficing in certain endosomal compartments. Single particle tracking (SPT) allows following individual CPP/cargo complex through endosomal path in live cells, using fluoresently labled cargo and green fluoresent protein expressing cells. These two different methods show similar results about tested NickFect/pDNA complexes intracellular trafficing. NF51 facilitates rapid internalization of complexes into the cells, prolongs their stay in early endosomes and promotes release to cytosol. NF1 is less capable to induce endosomal release and higher amount of complexes are routed to lysosomes for degradation. Our findings offer potential delivery vector for in vivo applications, NF51, where endosomal entrapment has been allayed. Furthermore, these methods are valuable tools to study other CPP-based delivery systems.

  15. The effects of caffeine on tension development and intracellular calcium transients in rat ventricular muscle.

    PubMed Central

    Konishi, M; Kurihara, S; Sakai, T

    1984-01-01

    The effects of caffeine on tension and intracellular [Ca2+] were investigated in rat ventricular muscle using the Ca2+-sensitive photoprotein, aequorin. Contracture was induced by rapid application of 0.5-10 mM-caffeine solution at 20 degrees C. In normal Tyrode solution at 8 degrees C, or in Na+-deficient solution in which Na+ was isotonically replaced by sucrose, peak tension of caffeine contracture was potentiated and relaxation was prolonged. Caffeine contracture could not be induced immediately after a prior contracture. Repriming time was 10 min in Tyrode solution, and was much shorter in Na+-deficient solution or in high-K+ solution containing 105.9 mM-K+. Caffeine prolonged the plateau of action potential dose dependently. At low temperature, prolongation of the plateau phase by caffeine was more marked. Twitch tension showed a triphasic change after application of caffeine; peak tension transiently increased in a potentiating phase (P phase), and then decreased below control level in an inhibitory phase (I phase) followed by gradual recovery in a recovery phase (R phase). The effects of caffeine on the Ca2+ transients during a twitch were also complex, depending on time after application and dose of caffeine. In low caffeine concentration (below 0.5 mM) the peak of the Ca2+ transient was potentiated in the I phase, although the peak tension was suppressed. At high concentration (above 3 mM) the peaks of both the Ca2+ transient and twitch tension were suppressed. In every concentration of caffeine tested (0.1-5 mM), time to the Ca2+ transient and twitch tension peaks was prolonged, and the falling phases of both were delayed. Caffeine might release Ca2+ from intracellular store(s) and enhance the slow inward current. The Ca2+ transient obtained in this study clearly indicate that the prolonged time to peak tension in the presence of caffeine is due to the slow rise of intracellular [Ca2+] and prolonged time to peak of the Ca2+ transient. It is also quite

  16. Aging as a consequence of intracellular water volume and density.

    PubMed

    Bonatto, Diego; Feltes, Bruno César; Poloni, Joice de Faria

    2011-12-01

    Aging is the result of a gradual failure of physiological and/or biochemical pathways that culminates with the death of the organism. Until now, the causative factors of aging are elusive, despite the increasing number of theories that try to explain how aging initiates. Interestingly, aging cells show an increase in intracellular water volume, but this fact is barely explored in aging studies. All cells have a crowded cytoplasm, where the high concentration and proximity of macromolecules create an environment that excludes many small molecules, including water. In this crowded environment, water can be found in two states termed low density water (LDW), which shows low reactivity and has an ice-like structure, and high density water (HDW) that has a disorganized structure and is highly reactive. LDW predominates in a macromolecular crowded environment, while HDW is found only in microenvironments within cytoplasm. In this sense, we hypothesized that the failure in the water homeostasis mechanisms with time changes the equilibrium between LDW and HDW, increasing the concentration of intracellular HDW. Being reactive, HDW leads to the generation of reactive oxygen species and disturbs the crowded cytoplasm environment, resulting in a diminished efficiency of metabolic reactions. Noteworthy, the cell becomes less prone to repair damage when the concentration of HDW increases with time, resulting in aging and finally death. Interestingly, some biological mechanisms (e.g., anhydrobiosis) reduce the concentration of intracellular water and prolong the life of cells and/or organisms. In this sense, anhydrobiosis and related biological mechanisms could be used as a platform to study new anti-aging therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the…

  18. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the…

  19. Deciding about treatments that prolong life

    MedlinePlus

    Palliative care - treatments that prolong life; Palliative care - life support; End-of-life-treatments that prolong life; Ventilator - treatments that prolong life; Respirator - treatments that prolong life; Life-support - ...

  20. Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue

    PubMed Central

    Morley, John W.; Tapson, Jonathan; Breen, Paul P.; van Schaik, André

    2016-01-01

    Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45–150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6–8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals. PMID:27183102

  1. Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue.

    PubMed

    Cameron, Morven; Kékesi, Orsolya; Morley, John W; Tapson, Jonathan; Breen, Paul P; van Schaik, André; Buskila, Yossi

    2016-01-01

    Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45-150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6-8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals.

  2. Chlamydial Intracellular Survival Strategies

    PubMed Central

    Bastidas, Robert J.; Elwell, Cherilyn A.; Engel, Joanne N.

    2013-01-01

    Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host–cellular functions to invade host cells and maintain a replicative niche. PMID:23637308

  3. Show Code.

    PubMed

    Shalev, Daniel

    2017-01-01

    "Let's get one thing straight: there is no such thing as a show code," my attending asserted, pausing for effect. "You either try to resuscitate, or you don't. None of this halfway junk." He spoke so loudly that the two off-service consultants huddled at computers at the end of the unit looked up… We did four rounds of compressions and pushed epinephrine twice. It was not a long code. We did good, strong compressions and coded this man in earnest until the end. Toward the final round, though, as I stepped up to do compressions, my attending looked at me in a deep way. It was a look in between willing me as some object under his command and revealing to me everything that lay within his brash, confident surface but could not be spoken. © 2017 The Hastings Center.

  4. Intracellular Penetration and Activity of Gemifloxacin in Human Polymorphonuclear Leukocytes

    PubMed Central

    García, Isabel; Pascual, Alvaro; Ballesta, Sofía; Joyanes, Providencia; Perea, Evelio J.

    2000-01-01

    The intracellular penetration and activity of gemifloxacin in human polymorphonuclear leukocytes (PMN) were evaluated. Gemifloxacin reached intracellular concentrations eight times higher than extracellular concentrations. The uptake was rapid, reversible, and nonsaturable and was affected by environmental temperature, cell viability, and membrane stimuli. At therapeutic extracellular concentrations, gemifloxacin showed intracellular activity against Staphylococcus aureus. PMID:11036051

  5. Skeletal muscle water and electrolytes following prolonged dehydrating exercise.

    PubMed

    Mora-Rodríguez, R; Fernández-Elías, V E; Hamouti, N; Ortega, J F

    2015-06-01

    We studied if dehydrating exercise would reduce muscle water (H2Omuscle ) and affect muscle electrolyte concentrations. Vastus lateralis muscle biopsies were collected prior, immediately after, and 1 and 4 h after prolonged dehydrating exercise (150 min at 33 ± 1 °C, 25% ± 2% humidity) on nine endurance-trained cyclists (VO2max  = 54.4 ± 1.05 mL/kg/min). Plasma volume (PV) changes and fluid shifts between compartments (Cl(-) method) were measured. Exercise dehydrated subjects 4.7% ± 0.3% of body mass by losing 2.75 ± 0.15 L of water and reducing PV 18.4% ± 1% below pre-exercise values (P < 0.05). Right after exercise H2Omuscle remained at pre-exercise values (i.e., 398 ± 6 mL/100 g dw muscle(-1)) but declined 13% ± 2% (342 ± 12 mL/100 g dw muscle(-1); P < 0.05) after 1 h of supine rest. At that time, PV recovered toward pre-exercise levels. The Cl(-) method corroborated the shift of fluid between extracellular and intracellular compartments. After 4 h of recovery, PV returned to pre-exercise values; however, H2Omuscle remained reduced at the same level. Muscle Na(+) and K(+) increased (P < 0.05) in response to the H2Omuscle reductions. Our findings suggest that active skeletal muscle does not show a net loss of H2O during prolonged dehydrating exercise. However, during the first hour of recovery H2Omuscle decreases seemly to restore PV and thus cardiovascular stability.

  6. Autologous Dendritic Cells Prolong Allograft Survival Through Tmem176b-Dependent Antigen Cross-Presentation

    PubMed Central

    Charnet, P.; Savina, A.; Tilly, G.; Gautreau, L.; Carretero-Iglesia, L.; Beriou, G.; Cebrian, I.; Cens, T.; Hepburn, L.; Chiffoleau, E.; Floto, R. A.; Anegon, I.; Amigorena, S.; Hill, M.; Cuturi, M. C.

    2015-01-01

    The administration of autologous (recipient-derived) tolerogenic dendritic cells (ATDCs) is under clinical evaluation. However, the molecular mechanisms by which these cells prolong graft survival in a donor-specific manner is unknown. Here, we tested mouse ATDCs for their therapeutic potential in a skin transplantation model. ATDC injection in combination with anti-CD3 treatment induced the accumulation of CD8+CD11c+ T cells and significantly prolonged allograft survival. TMEM176B is an intracellular protein expressed in ATDCs and initially identified in allograft tolerance. We show that Tmem176b−/− ATDCs completely failed to trigger both phenomena but recovered their effect when loaded with donor peptides before injection. These results strongly suggested that ATDCs require TMEM176B to cross-present antigens in a tolerogenic fashion. In agreement with this, Tmem176b−/− ATDCs specifically failed to cross-present male antigens or ovalbumin to CD8+ T cells. Finally, we observed that a Tmem176b-dependent cation current controls phagosomal pH, a critical parameter in cross-presentation. Thus, ATDCs require TMEM176B to cross-present donor antigens to induce donor-specific CD8+CD11c+ T cells with regulatory properties and prolong graft survival. PMID:24731243

  7. Simple SPION Incubation as an Efficient Intracellular Labeling Method for Tracking Neural Progenitor Cells Using MRI

    PubMed Central

    D. M., Jayaseema; Lai, Jiann-Shiun; Hueng, Dueng-Yuan; Chang, Chen

    2013-01-01

    Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs. PMID:23468856

  8. Simple SPION incubation as an efficient intracellular labeling method for tracking neural progenitor cells using MRI.

    PubMed

    Chen, Chiao-Chi V; Ku, Min-Chi; D M, Jayaseema; Lai, Jiann-Shiun; Hueng, Dueng-Yuan; Chang, Chen

    2013-01-01

    Cellular magnetic resonance imaging (MRI) has been well-established for tracking neural progenitor cells (NPC). Superparamagnetic iron oxide nanoparticles (SPIONs) approved for clinical application are the most common agents used for labeling. Conventionally, transfection agents (TAs) were added with SPIONs to facilitate cell labeling because SPIONs in the native unmodified form were deemed inefficient for intracellular labeling. However, compelling evidence also shows that simple SPION incubation is not invariably ineffective. The labeling efficiency can be improved by prolonged incubation and elevated iron doses. The goal of the present study was to establish simple SPION incubation as an efficient intracellular labeling method. To this end, NPCs derived from the neonatal subventricular zone were incubated with SPIONs (Feridex®) and then evaluated in vitro with regard to the labeling efficiency and biological functions. The results showed that, following 48 hours of incubation at 75 µg/ml, nearly all NPCs exhibited visible SPION intake. Evidence from light microscopy, electron microscopy, chemical analysis, and magnetic resonance imaging confirmed the effectiveness of the labeling. Additionally, biological assays showed that the labeled NPCs exhibited unaffected viability, oxidative stress, apoptosis and differentiation. In the demonstrated in vivo cellular MRI experiment, the hypointensities representing the SPION labeled NPCs remained observable throughout the entire tracking period. The findings indicate that simple SPION incubation without the addition of TAs is an efficient intracellular magnetic labeling method. This simple approach may be considered as an alternative approach to the mainstream labeling method that involves the use of TAs.

  9. Danger signals, inflammasomes, and the intricate intracellular lives of chlamydiae.

    PubMed

    Pettengill, Matthew A; Abdul-Sater, Ali; Coutinho-Silva, Robson; Ojcius, David M

    2016-10-01

    Chlamydiae are obligate intracellular bacterial pathogens, and as such are sensitive to alterations in the cellular physiology of their hosts. Chlamydial infections often cause pathologic consequences due to prolonged localized inflammation. Considerable advances have been made in the last few years regarding our understanding of how two key inflammation-associated signaling pathways influence the biology of Chlamydia infections: inflammation regulating purinergic signaling pathways significantly impact intracellular chlamydial development, and inflammasome activation modulates both chlamydial growth and infection mediated pro-inflammatory cytokine production. We review here elements of both pathways, presenting the latest developments contributing to our understanding of how chlamydial infections are influenced by inflammasomes and purinergic signaling.

  10. Predictors of prolonged fluoroscopy time in diagnostic coronary angiography.

    PubMed

    Adachi, Yusuke; Sakakura, Kenichi; Wada, Hiroshi; Funayama, Hiroshi; Umemoto, Tomio; Momomura, Shin-Ichi; Fujita, Hideo

    2016-07-01

    Prolonged fluoroscopy time during coronary angiography is a major concern for interventional cardiologists as well as for patients. It is unknown which factors affect the prolonged fluoroscopy time. A total of 458 patients who underwent diagnostic coronary angiography were included. The patients who had the highest decile of fluoroscopy time were assigned to the prolonged fluoroscopy group (fluoroscopy time ≥15.7min), while the other patients were assigned to the non-prolonged fluoroscopy group (fluoroscopy time <15.7min). We performed univariate and multivariate logistic regression analysis to identify the predictors of prolonged fluoroscopy time. Mean fluoroscopy time in 458 patients was 8.5±5.8min. Median and ranges of fluoroscopy time were 19.0 [15.7-47.0]min in the prolonged fluoroscopy group and 6.0 [2.0-15.3]min in the non-prolonged fluoroscopy group, respectively. The multivariate logistic regression analysis showed that significant predictors of prolonged fluoroscopy time were prior surgery of ascending aorta replacement [odds ratios (OR) 11.46, 95% confidence intervals (CI) 1.53-85.74, p=0.02] and the prevalence of moderate to severe aortic regurgitation (OR 2.83, 95% CI 1.20-6.66, p=0.02). The prior surgery of ascending aorta replacement and moderate to severe aortic regurgitation were significant predictors of the prolonged fluoroscopy time. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  11. Mapping intracellular mechanics on micropatterned substrates

    PubMed Central

    Mandal, Kalpana; Asnacios, Atef; Goud, Bruno; Manneville, Jean-Baptiste

    2016-01-01

    The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells. PMID:27799529

  12. Intracellular polyamines enhance astrocytic coupling.

    PubMed

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V; Rivera, Yomarie; Kucheryavykh, Lilia Y; Nichols, Colin G; Eaton, Misty J; Skatchkov, Serguei N

    2012-12-05

    Spermine (SPM) and spermidine, endogenous polyamines with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant, and other effects in vivo such as increasing longevity. These polyamines are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. The results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21-25-day-old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions without SPM. However, there was a robust increase in the spreading of Lucifer yellow through gap junctions to neighboring astrocytes when the cells were patched with intracellular solutions containing 1 mM SPM, a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM through gap junctions and further indicate a new role of polyamines in the regulation of the astroglial network under both normal and pathological conditions.

  13. SUMOylation regulates the intracellular fate of ZO-2.

    PubMed

    Wetzel, Franziska; Mittag, Sonnhild; Cano-Cortina, Misael; Wagner, Tobias; Krämer, Oliver H; Niedenthal, Rainer; Gonzalez-Mariscal, Lorenza; Huber, Otmar

    2017-01-01

    The zonula occludens (ZO)-2 protein links tight junctional transmembrane proteins to the actin cytoskeleton and associates with splicing and transcription factors in the nucleus. Multiple posttranslational modifications control the intracellular distribution of ZO-2. Here, we report that ZO-2 is a target of the SUMOylation machinery and provide evidence on how this modification may affect its cellular distribution and function. We show that ZO-2 associates with the E2 SUMO-conjugating enzyme Ubc9 and with SUMO-deconjugating proteases SENP1 and SENP3. In line with this, modification of ZO-2 by endogenous SUMO1 was detectable. Ubc9 fusion-directed SUMOylation confirmed SUMOylation of ZO-2 and was inhibited in the presence of SENP1 but not by an enzymatic-dead SENP1 protein. Moreover, lysine 730 in human ZO-2 was identified as a potential modification site. Mutation of this site to arginine resulted in prolonged nuclear localization of ZO-2 in nuclear recruitment assays. In contrast, a construct mimicking constitutive SUMOylation of ZO-2 (SUMO1ΔGG-ZO-2) was preferentially localized in the cytoplasm. Based on previous findings the differential localization of these ZO-2 constructs may affect glycogen-synthase-kinase-3β (GSK3β) activity and β-catenin/TCF-4-mediated transcription. In this context we observed that ZO-2 directly binds to GSK3β and SUMO1ΔGG-ZO-2 modulates its kinase activity. Moreover, we show that ZO-2 forms a complex with β-catenin. Wild-type ZO-2 and ZO-2-K730R inhibited transcriptional activity in reporter gene assays, whereas the cytosolic SUMO1ΔGG-ZO-2 did not. From these data we conclude that SUMOylation affects the intracellular localization of ZO-2 and its regulatory role on GSK3β and β-catenin signaling activity.

  14. Carbon Dioxide and Water Vapor Exchange in the Crassulacean Acid Metabolism Plant Kalanchoë pinnáta during a Prolonged Light Period

    PubMed Central

    Winter, Klaus

    1980-01-01

    Net CO2 and water vapor exchange were studied in the Crassulacean acid metabolism plant Kalanchoë pinnáta during a normal 12-hour light/12-hour dark cycle and during a prolonged light period. Leaf temperature and leaf-air vapor pressure difference were kept constant at 20 C and 9 to 10 millibar. There was a 25% increase in the rate of CO2 fixation during the first 6 hours prolonged light without change in stomatal conductance. This was associated with a decrease in the intracellular partial pressure of CO2, a decrease in the stimulation of net CO2 uptake by 2% O2, and a decrease in the CO2 compensation point from 45 to 0 microbar. In the normal light period after deacidification, leaves showed a normal light dependence of CO2 uptake but, in prolonged light, CO2 uptake was scarcely light-dependent. The increase in titratable acidity in prolonged light was similar to that in the dark. The results suggest a change from C3 photosynthetic CO2 fixation in the second part of the 12-hour light period to a mixed metabolism in prolonged light with both ribulose bisphosphate carboxylase and phosphoenolpyruvate carboxylase as primary carboxylating enzymes. PMID:16661552

  15. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  16. Evolution of intracellular compartmentalization.

    PubMed

    Diekmann, Yoan; Pereira-Leal, José B

    2013-01-15

    Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.

  17. Nullifying tumor efflux by prolonged endolysosome vesicles: development of low dose anticancer-carbon nanotube drug.

    PubMed

    Lee, Yeon Kyung; Choi, Jungil; Wang, Wenping; Lee, Soyoung; Nam, Tae-Hyun; Choi, Wan Sung; Kim, Chang-Joon; Lee, Jong Kwon; Kim, Sang-Hyun; Kang, Sang Soo; Khang, Dongwoo

    2013-10-22

    As the majority of side effects of current chemotherapies stems from toxicity due to excessive dosing of anticancer drugs, minimizing the amount of drug while maximizing drug efficacy is essential to increase the life-quality of chemotherapy patients. This study demonstrated that the intracellular delivery of amide linked doxorubicin on carbon nanotube can nullify the efflux of cancer cells by achieving prolonged endolysosome delivery and can induce burst release of doxorubicin in an acidic hydrolase environment and, ultimately, can reduce the amount of anticancer drug by 10-fold compared to conventional effective drug dose. The clearance of accumulated carbon nanotubes in the liver was observed after 4 weeks, and analysis of liver toxicity markers showed no significant changes in GOT and GPT levels and release of pro-inflammatory cytokines across both short- and long-term periods.

  18. Antibody-Mediated Elimination of the Obligate Intracellular Bacterial Pathogen Ehrlichia chaffeensis during Active Infection

    PubMed Central

    Winslow, Gary M.; Yager, Eric; Shilo, Konstantin; Volk, Erin; Reilly, Andrew; Chu, Frederick K.

    2000-01-01

    It is generally accepted that cellular, but not humoral immunity, plays an important role in host defense against intracellular bacteria. However, studies of some of these pathogens have provided evidence that antibodies can provide immunity if present during the initiation of infection. Here, we examined immunity against infection by Ehrlichia chaffeensis, an obligate intracellular bacterium that causes human monocytic ehrlichiosis. Studies with mice have demonstrated that immunocompetent strains are resistant to persistent infection but that SCID mice become persistently and fatally infected. Transfer of immune serum or antibodies obtained from immunocompetent C57BL/6 mice to C57BL/6 scid mice provided significant although transient protection from infection. Bacterial clearance was observed when administration occurred at the time of inoculation or well after infection was established. The effect was dose dependent, occurred within 2 days, and persisted for as long as 2 weeks. Weekly serum administration prolonged the survival of susceptible mice. Although cellular immunity is required for complete bacterial clearance, the data show that antibodies can play a significant role in the elimination of this obligate intracellular bacterium during active infection and thus challenge the paradigm that humoral responses are unimportant for immunity to such organisms. PMID:10722619

  19. Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells

    PubMed Central

    Streng-Ouwehand, Ingeborg; Ho, Nataschja I; Litjens, Manja; Kalay, Hakan; Boks, Martine Annemarie; Cornelissen, Lenneke AM; Kaur Singh, Satwinder; Saeland, Eirikur; Garcia-Vallejo, Juan J; Ossendorp, Ferry A; Unger, Wendy WJ; van Kooyk, Yvette

    2016-01-01

    Antigen uptake by dendritic cells and intracellular routing of antigens to specific compartments is regulated by C-type lectin receptors that recognize glycan structures. We show that the modification of Ovalbumin (OVA) with the glycan-structure LewisX (LeX) re-directs OVA to the C-type lectin receptor MGL1. LeX-modification of OVA favored Th1 skewing of CD4+ T cells and enhanced cross-priming of CD8+ T cells. While cross-presentation of native OVA requires high antigen dose and TLR stimuli, LeX modification reduces the required amount 100-fold and obviates its dependence on TLR signaling. The OVA-LeX-induced enhancement of T cell cross-priming is MGL1-dependent as shown by reduced CD8+ effector T cell frequencies in MGL1-deficient mice. Moreover, MGL1-mediated cross-presentation of OVA-LeX neither required TAP-transporters nor Cathepsin-S and was still observed after prolonged intracellular storage of antigen in Rab11+LAMP1+ compartments. We conclude that controlled neo-glycosylation of antigens can crucially influence intracellular routing of antigens, the nature and strength of immune responses and should be considered for optimizing current vaccination strategies. DOI: http://dx.doi.org/10.7554/eLife.11765.001 PMID:26999763

  20. Dendritic oligoguanidines as intracellular translocators.

    PubMed

    Chung, Hyun-Ho; Harms, Guido; Seong, Churl Min; Choi, Byung Hyune; Min, Changhee; Taulane, Joseph P; Goodman, Murray

    2004-01-01

    A series of polyguanidylated dendritic structures that can be used as molecular translocators have been designed and synthesized based on nonpeptide units. The dendritic oligoguanidines conjugated with fluorescein or with a green fluorescent protein (GFP) mutant as cargos were isolated and characterized. Quantification and time-course analyses of the cellular uptake of the conjugates using HeLa S3 and human cervical carcinoma cells reveal that the polyguanidylated dendrimers have comparable translocation efficiency to the Tat(49-57) peptide. Furthermore, the deconvolution microscopy image analysis shows that they are located inside the cells. These results clearly show that nonlinear, branched dendritic oligoguanidines are capable of translocation through the cell membrane. This work also demonstrates the potential of these nonpeptidic dendritic oligoguanidines as carriers for intracellular delivery of small molecule drugs, bioactive peptides, and proteins. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  1. Intracellular protein topogenesis

    PubMed Central

    Blobel, Günter

    1980-01-01

    Concurrently with or shortly after their synthesis on ribosomes, numerous specific proteins are unidirectionally translocated across or asymmetrically integrated into distinct cellular membranes. Thereafter, subpopulations of these proteins need to be sorted from each other and routed for export or targeted to other intracellular membranes or compartments. It is hypothesized here that the information for these processes, termed “protein topogenesis,” is encoded in discrete “topogenic” sequences that constitute a permanent or transient part of the polypeptide chain. The repertoire of distinct topogenic sequences is predicted to be relatively small because many different proteins would be topologically equivalent—i.e., targeted to the same intracellular address. The information content of topogenic sequences would be decoded and processed by distinct effectors. Four types of topogenic sequences could be distinguished: signal sequences, stop-transfer sequences, sorting sequences, and insertion sequences. Signal sequences initiate translocation of proteins across specific membranes. They would be decoded and processed by protein translocators that, by virtue of their signal sequence-specific domain and their unique location in distinct cellular membranes, effect unidirectional translocation of proteins across specific cellular membranes. Stop-transfer sequences interrupt the translocation process that was previously initiated by a signal sequence and, by excluding a distinct segment of the polypeptide chain from translocation, yield asymmetric integration of proteins into translocation-competent membranes. Sorting sequences would act as determinants for posttranslocational traffic of subpopulations of proteins, originating in translocation-competent donor membranes (and compartments) and going to translocation-incompetent receiver membranes (and compartments). Finally, insertion sequences initiate unilateral integration of proteins into the lipid bilayer

  2. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  3. Intracellular Oscillations and Waves

    NASA Astrophysics Data System (ADS)

    Beta, Carsten; Kruse, Karsten

    2017-03-01

    Dynamic processes in living cells are highly organized in space and time. Unraveling the underlying molecular mechanisms of spatiotemporal pattern formation remains one of the outstanding challenges at the interface between physics and biology. A fundamental recurrent pattern found in many different cell types is that of self-sustained oscillations. They are involved in a wide range of cellular functions, including second messenger signaling, gene expression, and cytoskeletal dynamics. Here, we review recent developments in the field of cellular oscillations and focus on cases where concepts from physics have been instrumental for understanding the underlying mechanisms. We consider biochemical and genetic oscillators as well as oscillations that arise from chemo-mechanical coupling. Finally, we highlight recent studies of intracellular waves that have increasingly moved into the focus of this research field.

  4. Increased persistent sodium current due to decreased PI3K signaling contributes to QT prolongation in the diabetic heart.

    PubMed

    Lu, Zhongju; Jiang, Ya-Ping; Wu, Chia-Yen C; Ballou, Lisa M; Liu, Shengnan; Carpenter, Eileen S; Rosen, Michael R; Cohen, Ira S; Lin, Richard Z

    2013-12-01

    Diabetes is an independent risk factor for sudden cardiac death and ventricular arrhythmia complications of acute coronary syndrome. Prolongation of the QT interval on the electrocardiogram is also a risk factor for arrhythmias and sudden death, and the increased prevalence of QT prolongation is an independent risk factor for cardiovascular death in diabetic patients. The pathophysiological mechanisms responsible for this lethal complication are poorly understood. Diabetes is associated with a reduction in phosphoinositide 3-kinase (PI3K) signaling, which regulates the action potential duration (APD) of individual myocytes and thus the QT interval by altering multiple ion currents, including the persistent sodium current INaP. Here, we report a mechanism for diabetes-induced QT prolongation that involves an increase in INaP caused by defective PI3K signaling. Cardiac myocytes of mice with type 1 or type 2 diabetes exhibited an increase in APD that was reversed by expression of constitutively active PI3K or intracellular infusion of phosphatidylinositol 3,4,5-trisphosphate (PIP3), the second messenger produced by PI3K. The diabetic myocytes also showed an increase in INaP that was reversed by activated PI3K or PIP3. The increases in APD and INaP in myocytes translated into QT interval prolongation for both types of diabetic mice. The long QT interval of type 1 diabetic hearts was shortened by insulin treatment ex vivo, and this effect was blocked by a PI3K inhibitor. Treatment of both types of diabetic mouse hearts with an INaP blocker also shortened the QT interval. These results indicate that downregulation of cardiac PI3K signaling in diabetes prolongs the QT interval at least in part by causing an increase in INaP. This mechanism may explain why the diabetic population has an increased risk of life-threatening arrhythmias.

  5. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  6. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  7. Inhibition in Prolonged Work Tasks.

    ERIC Educational Resources Information Center

    van der Ven, A. H. G. S.; And Others

    1989-01-01

    A new model is presented that explains reaction time fluctuations in prolonged work tasks. The model extends the so-called Poisson-Erlang model and accounts for long-term trend effects in the reaction time curve. The model is consistent with Spearman's hypothesis that inhibition increases during work and decreases during rest. (TJH)

  8. [Prolonged pain in neonates: retrospective analysis].

    PubMed

    Lilla, Michèle; Stadelman-Diaw, Corinne; Ramelet, Anne-Sylvie

    2013-12-01

    Infants hospitalised in neonatology are inevitably exposed to pain repeatedly. Premature infants are particularly vulnerable, because they are hypersensitive to pain and demonstrate diminished behavioural responses to pain. They are therefore at risk of developing short and long-term complications if pain remains untreated. Compared to acute pain, there is limited evidence in the literature on prolonged pain in infants. However, the prevalence is reported between 20 and 40 %. This single case study aimed to identify the bio-contextual characteristics of neonates who experienced prolonged pain. This study was carried out in the neonatal unit of a tertiary referral centre in Western Switzerland. A retrospective data analysis of seven infants' profile, who experienced prolonged pain ,was performed using five different data sources. The mean gestational age of the seven infants was 32weeks. The main diagnosis included prematurity and respiratory distress syndrome. The total observations (N=55) showed that the participants had in average 21.8 (SD 6.9) painful procedures that were estimated to be of moderate to severe intensity each day. Out of the 164 recorded pain scores (2.9 pain assessment/day/infant), 14.6 % confirmed acute pain. Out of those experiencing acute pain, analgesia was given in 16.6 % of them and 79.1 % received no analgesia. This study highlighted the difficulty in managing pain in neonates who are exposed to numerous painful procedures. Pain in this population remains underevaluated and as a result undertreated.Results of this study showed that nursing documentation related to pain assessment is not systematic.Regular assessment and documentation of acute and prolonged pain are recommended. This could be achieved with clear guidelines on the Assessment Intervention Reassessment (AIR) cyclewith validated measures adapted to neonates. The adequacy of pain assessment is a pre-requisite for appropriate pain relief in neonates.

  9. NMR measurements of intracellular ions in hypertension

    NASA Astrophysics Data System (ADS)

    Veniero, Joseph C.; Gupta, R. K.

    1993-08-01

    The NMR methods for the measurement of intracellular free Na+, K+, Mg2+, Ca2+, and H+ are introduced. The recent literature is then presented showing applications of these methods to cells and tissues from hypertensive animal model systems, and humans with essential hypertension. The results support the hypothesis of consistent derangement of the intracellular ionic environment in hypertension. The theory that this derangement may be a common link in the disease states of high blood pressure and abnormal insulin and glucose metabolism, which are often associated clinically, is discussed.

  10. THE ALTERATION OF INTRACELLULAR ENZYMES

    PubMed Central

    Kaplan, J. Gordin

    1954-01-01

    1. The ability of homologous series of alcohols, ketones, and aldehydes to cause alteration of intracellular catalase increases approximately threefold for each methylene group added, thus following Traube's rule. Equiactive concentrations of alcohols (methanol to octanol) varied over a 4,000-fold range, yet the average corresponding surface tension was 42 ± 2 dynes/cm., that for ketones 43 ± 2, and for aldehydes (above C1) 41 ± 3. 2. Above C8 the altering activity of alcohols ceased to follow Traube's rule, and at C18 was nil. Yet the surface activities of alcohols from nonanol to dodecanol did follow Traube's rule. These two facts show that the interface which is being affected by these agents is not the cell surface, for if it were, altering activity should not fall off between C9 and C12 where surface activity is undiminished; they show also that micelle formation by short range association of hydrocarbon "tails," usually invoked to explain decrease in biological activity of compounds above C8, is not responsible for this effect in these experiments, in which permeability of the cell membrane probably is involved. 3. The most soluble alcohols and aldehydes (alcohols C1 to C8; aldehydes C1, C2), but not ketones, cause, above optimal concentration, an irreversible inhibition of yeast catalase. 4. The critical concentration of altering agent (i.e., that concentration just sufficient to cause doubling of the catalase activity of the yeast suspension) was independent of the concentration of the yeast cells. 5. Viability studies show that the number of yeast cells killed by the altering agents was not related to the degree of activation of the catalase produced. While all the cells were invariably killed by concentrations of altering agent which produced complete activation, all the cells had been killed by concentrations which were insufficient to cause more than 50 per cent maximal activation. Further, the evidence suggested that the catalase may be partially

  11. Intracellular microbes and haemophagocytosis.

    PubMed

    Silva-Herzog, Eugenia; Detweiler, Corrella S

    2008-11-01

    Haemophagocytosis (hemophagocytosis) is the phenomenon of activated macrophage consumption of red and white blood cells, including professional phagocytes and lymphocytes. It can occur in patients with severe cases of intracellular microbial infection, including avian influenza, leishmaniasis, tuberculosis and typhoid fever. While well-known to physicians since at least the mid-1800s, haemophagocytosis has been little studied due to a paucity of tractable animal and cell culture models. Recently, haemophagocytosis has been described in a mouse model of typhoid fever, and it was noted that the infectious agent, Salmonella enterica, resides within haemophagocytic macrophages in mice. In addition, a cell culture model for haemophagocytosis revealed that S. enterica preferentially replicate in haemophagocytic macrophages. This review describes how, at the molecular and cellular levels, S. enterica may promote and take advantage of haemophagocytosis to establish long-term systemic infections in mammals. The role, relevance and possible molecular mechanisms of haemophagocytosis are discussed within the context of other microbial infections and of genetic deficiencies in which haemophagocytosis occurs and is associated with morbidity.

  12. Intracellular Sterol Dynamics

    PubMed Central

    Mesmin, Bruno; Maxfield, Frederick R.

    2009-01-01

    We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated. PMID:19286471

  13. Prolonged Incubation of Acute Neuronal Tissue for Electrophysiology and Calcium-imaging.

    PubMed

    Cameron, Morven A; Kekesi, Orsolya; Morley, John W; Bellot-Saez, Alba; Kueh, Sindy; Breen, Paul; van Schaik, André; Tapson, Jonathan; Buskila, Yossi

    2017-02-15

    Acute neuronal tissue preparations, brain slices and retinal wholemount, can usually only be maintained for 6 - 8 h following dissection. This limits the experimental time, and increases the number of animals that are utilized per study. This limitation specifically impacts protocols such as calcium imaging that require prolonged pre-incubation with bath-applied dyes. Exponential bacterial growth within 3 - 4 h after slicing is tightly correlated with a decrease in tissue health. This study describes a method for limiting the proliferation of bacteria in acute preparations to maintain viable neuronal tissue for prolonged periods of time (>24 h) without the need for antibiotics, sterile procedures, or tissue culture media containing growth factors. By cycling the extracellular fluid through UV irradiation and keeping the tissue in a custom holding chamber at 15 - 16 °C, the tissue shows no difference in electrophysiological properties, or calcium signaling through intracellular calcium dyes at >24 h postdissection. These methods will not only extend experimental time for those using acute neuronal tissue, but will reduce the number of animals required to complete experimental goals, and will set a gold standard for acute neuronal tissue incubation.

  14. Mechanisms of intracellular ice formation.

    PubMed Central

    Muldrew, K; McGann, L E

    1990-01-01

    The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling. PMID:2306499

  15. A theoretical model of intracellular devitrification.

    PubMed

    Karlsson, J O

    2001-05-01

    Devitrification of the intracellular solution can cause significant damage during warming of cells cryopreserved by freezing or vitrification. Whereas previous theoretical investigations of devitrification have not considered the effect of cell dehydration on intracellular ice formation, a new model which couples membrane-limited water transport equations, classical nucleation theory, and diffusion-limited crystal growth theory is presented. The model was used to explore the role of cell dehydration in devitrification of human keratinocytes frozen in the presence of glycerol. Numerical simulations demonstrated that water transport during cooling affects subsequent intracellular ice formation during warming, correctly predicting observations that critical warming rate increases with increasing cooling rate. However, for cells with a membrane transport activation energy less than approximately 50 kJ/mol, devitrification was also affected by cell dehydration during warming, leading to a reversal of the relationship between cooling rate and critical warming rate. Thus, for low warming rates (less than 10 degrees C/min for keratinocytes), the size and total volume fraction of intracellular ice crystals forming during warming decreased with decreasing warming rate, and the critical warming rate decreased with increasing cooling rate. The effects of water transport on the kinetics of intracellular nucleation and crystal growth were elucidated by comparison of simulations of cell warming with simulations of devitrification in H(2)O-NaCl-glycerol droplets of constant size and composition. These studies showed that the rate of intracellular nucleation was less sensitive to cell dehydration than was the crystal growth rate. The theoretical methods presented may be of use for the design and optimization of freeze-thaw protocols. Copyright 2001 Academic Press.

  16. Cetirizine and loratadine: minimal risk of QT prolongation.

    PubMed

    2010-02-01

    Some antihistamines, such as mizolastine and ebastine, can prolong the QT interval and provoke severe cardiac arrhythmias. This review examines the effects of two widely used antihistamines, cetirizine and loratadine, on the QT interval. As of mid 2009 very few clinical data had been published on the risk of QT prolongation with cetirizine or loratadine. The very rare reported cases of torsades de pointes linked to loratadine mainly appear to involve drug interactions, especially with amiodarone and enzyme inhibitors. We found no reports of QT prolongation attributed to desloratadine, the main metabolite of loratadine. Two cases of QT prolongation with cetirizine have been published, one of which involved overdose and renal failure. The reports are too vague to conclude that cetirizine was implicated. We found no reports of QT prolongation attributed to levocetirizine. Cetirizine is a metabolite of hydroxyzine, another antihistamine. In the 1960s, a study of patients with psychosis showed a risk of QT prolongation. A case of recurrent syncope with QT prolongation has since been reported, along with rare cases of cardiac arrhythmia. In practice, cetirizine and loratadine are first-line antihistamines. However, caution is needed in certain circumstances. In particular, it is best that patients who have risk factors for torsades de pointes or who are taking certain enzyme inhibitors avoid using loratadine. It is best to avoid using cetirizine in cases of renal failure.

  17. Metabolism of normothermic woodchucks during prolonged fasting.

    PubMed

    Reidy, Shannon P; Weber, Jean-Michel

    2004-12-01

    The energy metabolism of hibernators has not been characterized for normothermic fasting, and our goal was to quantify oxidative fuel selection of non-hibernating woodchucks Marmota monax during prolonged food deprivation. Indirect calorimetry and nitrogen excretion measurements were used to assess changes in metabolic rate (VO2), fuel selection and composition of nitrogen wastes, as well as seasonal differences. For reference, matching experiments were also performed on rabbits. The results show that woodchucks have a higher metabolic rate in summer (271 micromol O2 kg(-1) min(-1)) than in spring (200 micromol O2 kg(-1) min(-1)) and that fasting-induced metabolic depression is only possible in summer (-25% in 14 days). The metabolic rate of rabbits is high at all times (383 micromol O2 kg(-1) min(-1)), but they show a more rapid depression in response to fasting (-32% in 7 days). Woodchucks have a naturally low reliance on proteins in the fed state (accounting for 8% VO2) in spring; 17% VO2 in summer; vs 28% VO2 in rabbits) and are able to decrease it even further during fasting (spring, 5% VO2); summer, 6% VO2; vs 20% VO2 in rabbits). This study shows that, apart from their notorious capacity for hibernation, woodchucks are particularly well adapted for normothermic fasting. Their ability to cope with prolonged food deprivation is based on a series of integrated responses eliciting deep metabolic depression and a rapid change in fuel selection to spare limited protein reserves. Information presently available on prolonged fasting suggests that such an ability for metabolic depression, possibly down to minimal levels still compatible with normothermic life, may be common among mammals. In contrast, the extreme protein sparing demonstrated in woodchucks is a unique metabolic feature of fasting champions.

  18. Intracellular Polyamines Enhance Astrocytic Coupling

    PubMed Central

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V.; Rivera, Yomarie; Kucheryavykh, Lilia Y.; Nichols, Colin G.; Eaton, Misty J.; Skatchkov, Serguei N.

    2013-01-01

    Spermine (SPM) and spermidine (SPD), endogenous polyamines (PA) with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant and other effects in vivo such as increasing longevity. These PA are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. Results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21–25 day old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions (ICS) without SPM. However, there was a robust increase in the spreading of Lucifer yellow via gap junctions to neighboring astrocytes when the cells were patched with ICS containing 1 mM SPM; a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM via gap junctions and further suggest a new role of polyamines in the regulation of the astroglial network in both normal and pathological conditions. PMID:23076119

  19. Protective effect of intracellular ice during freezing?

    PubMed

    Acker, Jason P; McGann, Locksley E

    2003-04-01

    Injury results during freezing when cells are exposed to increasing concentrations of solutes or by the formation of intracellular ice. Methods to protect cells from the damaging effects of freezing have focused on the addition of cryoprotective chemicals and the determination of optimal cooling rates. Based on other studies of innocuous intracellular ice formation, this study investigates the potential for this ice to protect cells from injury during subsequent slow cooling. V-79W Chinese hamster fibroblasts and Madin-Darby Canine Kidney (MDCK) cells were cultured as single attached cells or confluent monolayers. The incidence of intracellular ice formation (IIF) in the cultures at the start of cooling was pre-determined using one of two different extracellular ice nucleation temperatures (-5 or -10 degrees C). Samples were then cooled at 1 degrees C/min to the experimental temperature (-5 to -40 degrees C) where samples were warmed rapidly and cell survival assessed using membrane integrity and metabolic activity. For single attached cells, the lower ice nucleation temperature, corresponding to increased incidence of IIF, resulted in decreased post-thaw cell recovery. In contrast, confluent monolayers in which IIF has been shown to be innocuous, show higher survival after cooling to temperatures as low as -40 degrees C, supporting the concept that intracellular ice confers cryoprotection by preventing cell dehydration during subsequent slow cooling.

  20. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  1. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  2. Outcome of Induction of Labour in Prolonged Pregnancy.

    PubMed

    Nasrin, S; Islam, S; Shahida, S M; Begum, R A; Haque, N

    2015-10-01

    This was a hospital based prospective clinical study conducted among women having prolonged pregnancy to assess the outcome of induction of labour in prolonged pregnancy cases. One hundred and thirty nine women having uncomplicated prolonged pregnancy were studied. The study was carried out in Sir Salimullah Medical College & Mitford Hospital, Dhaka from 01 July 2010 to 30 March 2011. In this study 66% of the respondents had vaginal delivery on routine induction of labour and in 34% cases induction failed. Ninety three percent (93%) of the multigravida had vaginal delivery and in primigravida their vaginal delivery rate was 47.5%. Regarding cervical condition for delivery, 75% of the respondents having favourable cervix had vaginal delivery and in case of unfavourable cervix respondents, they had 55% cases of vaginal delivery. About the foetal outcome it was evidenced from this study that the perinatal adverse outcome increases with the increasing age of gestation beyond 40 completed weeks of gestation. This study showed that the use of prostaglandins for cervical ripening and by confirming the diagnosis of prolonged pregnancy, the delivery outcome in prolonged pregnancy can be improved. The study also showed that induction of labour is not associated with any major complications and the routine induction of labour in prolonged pregnancy is beneficial for both mother and the baby.

  3. Linear Peptides in Intracellular Applications.

    PubMed

    Zuconelli, Cristiane R; Brock, Roland; Adjobo-Hermans, Merel J W

    2017-01-01

    To this point, efforts to develop therapeutic peptides for intracellular applications were guided by the perception that unmodified linear peptides are highly unstable and therefore structural modifications are required to reduce proteolytic breakdown. Largely, this concept is a consequence of the fact that most research on intracellular peptides hitherto has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Interestingly, inside cells, endogenous peptides lacking any chemical modifications to enhance stability escape degradation to the point that they may even modulate intracellular signaling pathways. In addition, many unmodified synthetic peptides designed to interfere with intracellular signaling, following introduction into cells, have the expected activity demonstrating that biologically relevant concentrations can be reached. This review provides an overview of results and techniques relating to the exploration and application of linear, unmodified peptides. After an introduction to intracellular peptide turnover, the review mentions examples for synthetic peptides as modulators of intracellular signaling, introduces endogenous peptides with bioactivity, techniques to measure peptide stability, and peptide delivery. Future experiments should elucidate the rules needed to predict promising peptide candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  5. Sprouty, an intracellular inhibitor of Ras signaling.

    PubMed

    Casci, T; Vinós, J; Freeman, M

    1999-03-05

    Sprouty was identified in a genetic screen as an inhibitor of Drosophila EGF receptor signaling. The Egfr triggers cell recruitment in the eye, and sprouty- eyes have excess photoreceptors, cone cells, and pigment cells. Sprouty's function is, however, more widespread. We show that it also interacts genetically with the receptor tyrosine kinases Torso and Sevenless, and it was first discovered through its effect on FGF receptor signaling. In contrast to an earlier proposal that Sprouty is extracellular, we show by biochemical analysis that Sprouty is an intracellular protein, associated with the inner surface of the plasma membrane. Sprouty binds to two intracellular components of the Ras pathway, Drk and Gap1. Our results indicate that Sprouty is a widespread inhibitor of Ras pathway signal transduction.

  6. A comparative study of QT prolongation with serotonin reuptake inhibitors.

    PubMed

    Ojero-Senard, Ana; Benevent, Justine; Bondon-Guitton, Emmanuelle; Durrieu, Geneviève; Chebane, Leila; Araujo, Melanie; Montastruc, Francois; Montastruc, Jean-Louis

    2017-08-03

    QT interval prolongations were described with citalopram and escitalopram. However, the effects of the other serotonin reuptake inhibitors (SRIs) remained discussed. In order to identify a putative signal with other SRIs, the present study investigates the reports of QT interval prolongation with SRIs in two pharmacovigilance databases (PVDB). Two kinds of investigations were performed: (1) a comparative study in VigiBase®, the WHO PVDB, where notifications of QT prolongation with six SRIs (citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline) were selected. Cases with overdose or pregnancy were excluded. The relationship between the "suspected" SRI and occurrence of QT prolongation was assessed by calculating reporting odds ratio (ROR) in a case/non-case design. (2) A descriptive study of QT prolongation reports with citalopram and escitalopram in the French FPVD. In VigiBase®, 855 notifications were identified (mean age 56.2 years, mainly women 73%). Among them, 172 (20.1%) were associated to escitalopram; 299 (35.0%), to citalopram; 186 (21.8%), to fluoxetine; 94 (11.0%), to sertraline; 66 (7.7%), to paroxetine; and 38 (4.4%) to fluvoxamine. A significant ROR value (higher than 1) was only found for citalopram (3.35 CI95% [2.90-3.87]) or escitalopram (2.50 [2.11-2.95]). In the FPVD, eight reports of QT prolongation were found with citalopram and 27 with escitalopram, mainly in women (77.1%) with a mean age of 73.2 years. In 23 cases (66%), SRIs were associated with other suspected drugs, mainly cardiotropic or psychotropic ones. Hypokalemia was associated in six patients. This study, performed in real conditions of life, shows a clear signal of QT prolongation with only two SRIs, citalopram and escitalopram, indicating that QT prolongation is not a SRI class effect.

  7. Nonlinear intracellular elasticity controlled by myosin-generated fluctuating stress

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Ou-Yang, H. Daniel; Lehigh University Team

    2014-03-01

    The mechanics of biological cells are governed by a network of cytoskeletal filaments and molecular motors forming a dynamic mechanical entity. It has been found that local elasticity of in vitro active polymer networks, a synthesized cytoskeletal network, increase as a result of myosin-generated stresses. It is unknown this also holds in the local intracellular stress. We study the intracellular stress by the combination of the approaches of active and passive microrheology to measure the myosin-generated fluctuating stress and intracellular elasticity. Our experimental data show an increase in the fluctuations of the cellular elasticity with increasing motor-generated fluctuating local stress inside living cells. In addition, we found a direct correlation between the mean intracellular elasticity and steady-state intracellular stress. Our study provides a link between in vitro active polymer networks and in vivo cell experiments.

  8. Carbon Dioxide and Water Vapor Exchange in the Crassulacean Acid Metabolism Plant Kalanchoë pinnáta during a Prolonged Light Period: METABOLIC AND STOMATAL CONTROL OF CARBON METABOLISM.

    PubMed

    Winter, K

    1980-11-01

    Net CO(2) and water vapor exchange were studied in the Crassulacean acid metabolism plant Kalanchoë pinnáta during a normal 12-hour light/12-hour dark cycle and during a prolonged light period. Leaf temperature and leaf-air vapor pressure difference were kept constant at 20 C and 9 to 10 millibar. There was a 25% increase in the rate of CO(2) fixation during the first 6 hours prolonged light without change in stomatal conductance. This was associated with a decrease in the intracellular partial pressure of CO(2), a decrease in the stimulation of net CO(2) uptake by 2% O(2), and a decrease in the CO(2) compensation point from 45 to 0 microbar. In the normal light period after deacidification, leaves showed a normal light dependence of CO(2) uptake but, in prolonged light, CO(2) uptake was scarcely light-dependent. The increase in titratable acidity in prolonged light was similar to that in the dark.The results suggest a change from C(3) photosynthetic CO(2) fixation in the second part of the 12-hour light period to a mixed metabolism in prolonged light with both ribulose bisphosphate carboxylase and phosphoenolpyruvate carboxylase as primary carboxylating enzymes.

  9. Regulatory role of intracellular sodium ions in neurotransmitter secretion.

    PubMed

    Melinek, R; Lev-Tov, A; Meiri, H; Erulkar, S D; Rahamimoff, R

    1982-01-01

    Calcium ions are the main inducer of quantal transmitter release of the frog neuromuscular junction; but even in their virtual absence from the extracellular medium, nerve stimulation causes a prolonged augmentation of transmitter release. These facts led to the hypothesis that an accumulation of intracellular sodium can serve as a slow secondary regulator of neurosecretion. Three lines of evidence presented in this article substantiate this hypothesis: firstly, veratridine, which is known to increase sodium fluxes through the voltage-dependent sodium channels, increases transmitter release after nerve stimulation. Secondly, monensin, which was shown to induce sodium transport through nerve membranes, increases evoked transmitter release, tetanic potentiation and posttetanic potentiation. Thirdly, sodium-filled phosphatidylcholine liposomes increase transmitter release. These effects of sodium are probably not due to a direct effect on the transmitter release mechanism, but are caused by sodium-induced calcium translocation from intracellular stores.

  10. Intracellular serpins, firewalls and tissue necrosis.

    PubMed

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis.

  11. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  12. Blueberry extract prolongs lifespan of Drosophila melanogaster.

    PubMed

    Peng, Cheng; Zuo, Yuanyuan; Kwan, Kin Ming; Liang, Yintong; Ma, Ka Ying; Chan, Ho Yin Edwin; Huang, Yu; Yu, Hongjian; Chen, Zhen-Yu

    2012-02-01

    Blueberry possesses greater antioxidant capacity than most other fruits and vegetables. The present study investigated the lifespan-prolonging activity of blueberry extracts in fruit flies and explored its underlying mechanism. Results revealed that blueberry extracts at 5mg/ml in diet could significantly extend the mean lifespan of fruit flies by 10%, accompanied by up-regulating gene expression of superoxide dismutase (SOD), catalase (CAT) and Rpn11 and down-regulating Methuselah (MTH) gene. Intensive H(2)O(2) and Paraquat challenge tests showed that lifespan was only extended in Oregon-R wild type flies but not in SOD(n108) or Cat(n1) mutant strains. Chronic Paraquat exposure shortened the maximum survival time from 73 to 35days and decreased the climbing ability by 60% while blueberry extracts at 5mg/ml in diet could significantly increase the survival rate and partially restore the climbing ability with up-regulating SOD, CAT, and Rpn11. Furthermore, gustatory assay demonstrated that those changes were not due to the variation of food intake between the control and the experimental diet containing 5mg/ml blueberry extracts. It was therefore concluded that the lifespan-prolonging activity of blueberry extracts was at least partially associated with its interactions with MTH, Rpn11, and endogenous antioxidant enzymes SOD and CAT.

  13. Prolonged sensory-selective nerve blockade

    PubMed Central

    Sagie, Itay; Kohane, Daniel S.

    2010-01-01

    Sensory-selective local anesthesia has long been a key goal in local anesthetic development. For example, it allows women to be pain-free during labor without compromising their ability to push. Here we show that prolonged sensory-selective nerve block can be produced by specific concentrations of surfactants—such as are used to enhance drug flux across skin—in combination with QX-314, a lidocaine derivative that has relative difficulty penetrating nerves. For example, injection of 25 mM QX-314 in 30 mM octyltrimethylammonium bromide (OTAB) lasted up to 7 h. Sensory selectivity was imparted to varying degrees by cationic, neutral, and anionic surfactants, and also was achieved with another lidocaine derivative, QX-222. Simultaneous injection of OTAB at a s.c. injection site remote from the sciatic nerve did not result in prolonged sensory-specific nerve blockade from QX-314, suggesting that the observed effect is due to a local interaction between the surfactant and the lidocaine derivative, not a systemic effect. PMID:20133669

  14. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    NASA Astrophysics Data System (ADS)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  15. Intracellular Pressure Dynamics in Blebbing Cells.

    PubMed

    Strychalski, Wanda; Guy, Robert D

    2016-03-08

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results.

  16. Intracellular Pressure Dynamics in Blebbing Cells

    PubMed Central

    Strychalski, Wanda; Guy, Robert D.

    2016-01-01

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. PMID:26958893

  17. TgERK7 is involved in the intracellular proliferation of Toxoplasma gondii.

    PubMed

    Li, Zhong-Yuan; Wang, Ze-Dong; Huang, Si-Yang; Zhu, Xing-Quan; Liu, Quan

    2016-09-01

    Toxoplasma gondii uses a unique mechanism to fulfill its asexual life cycles by which the parasite can infect all the warm-blooded animals including humans. Mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) pathway widely existed in eukaryotic cells mediates the conversion of environmental stimuli to intracellular events such as proliferation and differentiation. Their counterparts have been identified in Apicomplexan parasites such as ERK7 in T. gondii. To confirm whether the unique mechanism of T. gondii is relevant to MAPK/ERK member, we created a mutant (ΔTgERK7) in GT1 tachyzoites using double homologous recombination method. Our results of virulence evaluation showed 100 % survival of all the ΔTgERK7-infected mice until 35 days post-challenge compared to no survival in wild-type GT1-infected group (10.6 ± 0.34 days). Furthermore, lower parasite loads were detected in the peritoneal fluid of ΔTgERK7-infected mice (P < 0.05). To ensure whether or not ERK7 gene knockout leads to the growth deficiency of T. gondii, the intracellular proliferation of ΔTgERK7 was also examined in vitro. Our data indicated that the proliferation of ΔTgERK7 parasites was significantly prolonged in comparison with wild-type GT1 tachyzoites (P < 0.05). Therefore, we concluded that TgERK7 is important for the intracellular proliferation of T. gondii, which further emphasized that MAPK/ERK derived from T. gondii participates in the regulation of the asexual life cycles to ensure the survival and reinfections of this parasite.

  18. Imaging spreading depression and associated intracellular calcium waves in brain slices.

    PubMed

    Basarsky, T A; Duffy, S N; Andrew, R D; MacVicar, B A

    1998-09-15

    Spreading depression (SD) was analyzed in hippocampal and neocortical brain slices by imaging intrinsic optical signals in combination with either simultaneous electrophysiological recordings or imaging of intracellular calcium dynamics. The goal was to determine the roles of intracellular calcium (Ca2+int) waves in the generation and propagation of SD. Imaging of intrinsic optical signals in the hippocampus showed that ouabain consistently induced SD, which characteristically started in the CA1 region, propagated at 15-35 micrometer/sec, and traversed across the hippocampal fissure to the dentate gyrus. In the dendritic regions of both CA1 and the dentate gyrus, SD caused a transient increase in light transmittance, characterized by both a rapid onset and a rapid recovery. In contrast, in the cell body regions the transmittance increase was prolonged. Simultaneous imaging of intracellular calcium and intrinsic optical signals revealed that a slow Ca2+int increase preceded any change in transmittance. Additionally, a wave of increased Ca2+int typically propagated many seconds ahead of the change in transmittance. These calcium increases were also observed in individual astrocytes injected with calcium orange, indicating that Ca2+int waves were normally associated with SD. However, when hippocampal slices were incubated in calcium-free/EGTA external solutions, SD was still observed, although Ca2+int waves were completely abolished. Under these conditions SD had a comparable peak increase in transmittance but a slower onset and a faster recovery. These results demonstrate that although there are calcium dynamics associated with SD, these increases are not necessary for the initiation or propagation of spreading depression.

  19. An effective intracellular delivery system of monoclonal antibody for treatment of tumors: erythrocyte membrane-coated self-associated antibody nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Lipeng; Han, Lin; Ding, Xiaoling; Xu, Jiaojiao; Wang, Jing; Zhu, Jianzhong; Lu, Weiyue; Sun, Jihong; Yu, Lei; Yan, Zhiqiang; Wang, Yiting

    2017-08-01

    Antibody-based drugs have attracted much attention for their targeting ability, high efficacy and low toxicity. But it is difficult for those intrabodies, a kind of antibody whose targets are intracellular biomarkers, to become effective drugs due to the lack of intracellular delivery strategy and their short circulation time in blood. Human telomerase reverse transcriptase (hTERT), an important biomarker for tumors, is expressed only in cytoplasm instead of on cell membrane. In this study, the anti-hTERT blocking monoclonal antibody (mAb), as the model intrabody, was used to prepare nanoparticles (NPs), followed by the encapsulation of erythrocyte membrane (EM), to obtain the EM-coated anti-hTERT mAb NPs delivery system. The final NPs showed a z-average hydrodynamic diameter of about 197.3 nm. The in vitro cellular uptake by HeLa cells confirmed that compared with free anti-hTERT mAb, the EM-coated anti-hTERT mAb NPs exhibited a significantly increased uptake by tumor cells. Besides, the pharmacokinetic study confirmed that the EM encapsulation can remarkably prolong the circulation time and increase the area under curve (AUC) of NPs in blood. The EM-coated anti-hTERT mAb NPs exhibited a remarkably decreased uptake by macrophages than uncoated NPs, which may be responsible for the prolonged circulation time and increased AUC. Furthermore, the frozen section of tumor tissue was performed and proved that the EM-coated anti-hTERT mAb NPs can be more effectively accumulated in tumor tissues than the free mAb and uncoated NPs. In summary, this study indicated that EM-coated anti-hTERT mAb NPs are an effective delivery system for the long circulation and intracellular delivery of an intrabody, and make it possible for the intracellular biomarkers to become the potential targets of drugs.

  20. Intracellular Acidosis Enhances the Excitability of Working Muscle

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas H.; Nielsen, Ole B.; Lamb, Graham D.; Stephenson, D. George

    2004-08-01

    Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.

  1. Intracellular acidosis enhances the excitability of working muscle.

    PubMed

    Pedersen, Thomas H; Nielsen, Ole B; Lamb, Graham D; Stephenson, D George

    2004-08-20

    Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.

  2. Pharmacometabolomic approach to predict QT prolongation in guinea pigs.

    PubMed

    Park, Jeonghyeon; Noh, Keumhan; Lee, Hae Won; Lim, Mi-sun; Seong, Sook Jin; Seo, Jeong Ju; Kim, Eun-Jung; Kang, Wonku; Yoon, Young-Ran

    2013-01-01

    Drug-induced torsades de pointes (TdP), a life-threatening arrhythmia associated with prolongation of the QT interval, has been a significant reason for withdrawal of several medicines from the market. Prolongation of the QT interval is considered as the best biomarker for predicting the torsadogenic risk of a new chemical entity. Because of the difficulty assessing the risk for TdP during drug development, we evaluated the metabolic phenotype for predicting QT prolongation induced by sparfloxacin, and elucidated the metabolic pathway related to the QT prolongation. We performed electrocardiography analysis and liquid chromatography-mass spectroscopy-based metabolic profiling of plasma samples obtained from 15 guinea pigs after administration of sparfloxacin at doses of 33.3, 100, and 300 mg/kg. Principal component analysis and partial least squares modelling were conducted to select the metabolites that substantially contributed to the prediction of QT prolongation. QTc increased significantly with increasing dose (r = 0.93). From the PLS analysis, the key metabolites that showed the highest variable importance in the projection values (>1.5) were selected, identified, and used to determine the metabolic network. In particular, cytidine-5'-diphosphate (CDP), deoxycorticosterone, L-aspartic acid and stearic acid were found to be final metabolomic phenotypes for the prediction of QT prolongation. Metabolomic phenotypes for predicting drug-induced QT prolongation of sparfloxacin were developed and can be applied to cardiac toxicity screening of other drugs. In addition, this integrative pharmacometabolomic approach would serve as a good tool for predicting pharmacodynamic or toxicological effects caused by changes in dose.

  3. Pharmacometabolomic Approach to Predict QT Prolongation in Guinea Pigs

    PubMed Central

    Lee, Hae Won; Lim, Mi-sun; Seong, Sook Jin; Seo, Jeong Ju; Kim, Eun-Jung; Kang, Wonku; Yoon, Young-Ran

    2013-01-01

    Drug-induced torsades de pointes (TdP), a life-threatening arrhythmia associated with prolongation of the QT interval, has been a significant reason for withdrawal of several medicines from the market. Prolongation of the QT interval is considered as the best biomarker for predicting the torsadogenic risk of a new chemical entity. Because of the difficulty assessing the risk for TdP during drug development, we evaluated the metabolic phenotype for predicting QT prolongation induced by sparfloxacin, and elucidated the metabolic pathway related to the QT prolongation. We performed electrocardiography analysis and liquid chromatography–mass spectroscopy-based metabolic profiling of plasma samples obtained from 15 guinea pigs after administration of sparfloxacin at doses of 33.3, 100, and 300 mg/kg. Principal component analysis and partial least squares modelling were conducted to select the metabolites that substantially contributed to the prediction of QT prolongation. QTc increased significantly with increasing dose (r = 0.93). From the PLS analysis, the key metabolites that showed the highest variable importance in the projection values (>1.5) were selected, identified, and used to determine the metabolic network. In particular, cytidine-5′-diphosphate (CDP), deoxycorticosterone, L-aspartic acid and stearic acid were found to be final metabolomic phenotypes for the prediction of QT prolongation. Metabolomic phenotypes for predicting drug-induced QT prolongation of sparfloxacin were developed and can be applied to cardiac toxicity screening of other drugs. In addition, this integrative pharmacometabolomic approach would serve as a good tool for predicting pharmacodynamic or toxicological effects caused by changes in dose. PMID:23593245

  4. Physiology of prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1988-01-01

    Bed rest has been a normal procedure used by physicians for centuries in the treatment of injury and disease. Exposure of patients to prolonged bed rest in the horizontal position induces adaptive deconditioning responses. While deconditioning responses are appropriate for patients or test subjects in the horizontal position, they usually result in adverse physiological responses (fainting, muscular weakness) when the patient assume the upright posture. These deconditioning responses result from reduction in hydrostatic pressure within the cardiovascular system, virtual elimination of longitudinal pressure on the long bones, some decrease in total body metabolism, changes in diet, and perhaps psychological impact from the different environment. Almost every system in the body is affected. An early stimulus is the cephalic shift of fluid from the legs which increases atrial pressure and induces compensatory responses for fluid and electrolyte redistribution. Without countermeasures, deterioration in strength and muscle function occurs within 1 wk while increased calcium loss may continue for months. Research should also focus on drug and carbohydrate metabolism.

  5. Managing prolonged disorders of consciousness.

    PubMed

    Wade, Derick T

    2014-03-01

    After acute severe brain damage, many people are rendered unconscious or comatose for more than 24 hours. Although a significant number can still recover fully, some will not and a substantial minority remain unconscious for days, weeks or longer. These patients have a prolonged disorder of consciousness. A specialist multidisciplinary team should be closely involved in the management of every patient from the outset. Assessment of a patient's level of awareness is not straightforward, and requires a team with suitable experience and expertise. The underlying neurological damage, whether or not there is an intact primary sensory input and motor output, and if there are reversible causes such as a high level of a sedating drug, or a subdural haematoma have to be established. If recovery of awareness has not occurred by six months after hypoxic or hypoglycaemic brain damage and 12 months after most other causes of brain damage, then the patient is very unlikely to recover any awareness and is described as being in a permanent vegetative state. The family must be closely and fully involved from the outset. Families legally cannot, and should not be asked to, make decisions concerning healthcare, unless a family member is a legally appointed deputy or has been given power of attorney in relation to healthcare matters. Family members can, and should be asked to, give information about the patient's wishes, life choices etc as part of the best interests decision-making process, and they should be involved in best interests meetings.

  6. Thyroid Alterations in Porcine After Prolonged Exposure to Cold or Heat

    DTIC Science & Technology

    1992-01-01

    deiodination at the 5’ position, so T4 levels act as a buffer for rapid T3 changes. No significant differences in thyroid hormone levels between cold and...intracellular thyroid hormone alterations. These studies demonstrated a rise in serum clearance of orally administered triiodothyronine (T 3 ), T3 production...brown fat by the sympathetic nervous system, under permissive control of thyroid hormone (2), but with a different peripheral profile during prolonged

  7. A bacteriophage endolysin that eliminates intracellular streptococci

    PubMed Central

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  8. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer.

    PubMed

    Baker, Erin L; Bonnecaze, Roger T; Zaman, Muhammad H

    2009-08-19

    Little is known about the complex interplay between the extracellular mechanical environment and the mechanical properties that characterize the dynamic intracellular environment. To elucidate this relationship in cancer, we probe the intracellular environment using particle-tracking microrheology. In three-dimensional (3D) matrices, intracellular effective creep compliance of prostate cancer cells is shown to increase with increasing extracellular matrix (ECM) stiffness, whereas modulating ECM stiffness does not significantly affect the intracellular mechanical state when cells are attached to two-dimensional (2D) matrices. Switching from 2D to 3D matrices induces an order-of-magnitude shift in intracellular effective creep compliance and apparent elastic modulus. However, for a given matrix stiffness, partial blocking of beta1 integrins mitigates the shift in intracellular mechanical state that is invoked by switching from a 2D to 3D matrix architecture. This finding suggests that the increased cell-matrix engagement inherent to a 3D matrix architecture may contribute to differences observed in viscoelastic properties between cells attached to 2D matrices and cells embedded within 3D matrices. In total, our observations show that ECM stiffness and architecture can strongly influence the intracellular mechanical state of cancer cells.

  9. Prostaglandin E2 promotes Na1.8 trafficking via its intracellular RRR motif through the protein kinase A pathway.

    PubMed

    Liu, Chao; Li, Qian; Su, Yuanyuan; Bao, Lan

    2010-03-01

    Voltage-gated sodium channels (Na(v)) are essential for the initiation and propagation of action potentials in neurons. Na(v)1.8 activity is regulated by prostaglandin E(2) (PGE(2)). There is, however, no direct evidence showing the regulated trafficking of Na(v)1.8, and the molecular and cellular mechanism of PGE(2)-induced sodium channel trafficking is not clear. Here, we report that PGE(2) regulates the trafficking of Na(v)1.8 through the protein kinase A (PKA) signaling pathway, and an RRR motif in the first intracellular loop of Na(v)1.8 mediates this effect. In rat dorsal root ganglion (DRG) neurons, prolonged PGE(2) treatment enhanced Na(v)1.8 currents by increasing the channel density on the cell surface. Activation of PKA by forskolin had the same effect on DRG neurons and human embryonic kidney 293T cells expressing Na(v)1.8. Inhibition of PKA completely blocked the PGE(2)-promoted effect on Na(v)1.8. Mutation of five PKA phosphorylation sites or the RRR motif in the first intracellular loop of Na(v)1.8 abolished the PKA-promoted Na(v)1.8 surface expression. Furthermore, a membrane-tethered peptide containing the intracellular RRR motif disrupted the PGE(2)-induced promotion of the Na(v)1.8 current in DRG neurons. Our data indicate that PGE(2) promotes the surface expression of Na(v)1.8 via an intracellular RRR motif, and provide a novel mechanism for functional modulation of Na(v)1.8 by hyperalgesic agents.

  10. Calcium Transients Closely Reflect Prolonged Action Potentials in iPSC Models of Inherited Cardiac Arrhythmia

    PubMed Central

    Spencer, C. Ian; Baba, Shiro; Nakamura, Kenta; Hua, Ethan A.; Sears, Marie A.F.; Fu, Chi-cheng; Zhang, Jianhua; Balijepalli, Sadguna; Tomoda, Kiichiro; Hayashi, Yohei; Lizarraga, Paweena; Wojciak, Julianne; Scheinman, Melvin M.; Aalto-Setälä, Katriina; Makielski, Jonathan C.; January, Craig T.; Healy, Kevin E.; Kamp, Timothy J.; Yamanaka, Shinya; Conklin, Bruce R.

    2014-01-01

    Summary Long-QT syndrome mutations can cause syncope and sudden death by prolonging the cardiac action potential (AP). Ion channels affected by mutations are various, and the influences of cellular calcium cycling on LQTS cardiac events are unknown. To better understand LQTS arrhythmias, we performed current-clamp and intracellular calcium ([Ca2+]i) measurements on cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPS-CM). In myocytes carrying an LQT2 mutation (HERG-A422T), APs and [Ca2+]i transients were prolonged in parallel. APs were abbreviated by nifedipine exposure and further lengthened upon releasing intracellularly stored Ca2+. Validating this model, control iPS-CM treated with HERG-blocking drugs recapitulated the LQT2 phenotype. In LQT3 iPS-CM, expressing NaV1.5-N406K, APs and [Ca2+]i transients were markedly prolonged. AP prolongation was sensitive to tetrodotoxin and to inhibiting Na+-Ca2+ exchange. These results suggest that LQTS mutations act partly on cytosolic Ca2+ cycling, potentially providing a basis for functionally targeted interventions regardless of the specific mutation site. PMID:25254341

  11. Recognition Memory Is Impaired in Children after Prolonged Febrile Seizures

    ERIC Educational Resources Information Center

    Martinos, Marina M.; Yoong, Michael; Patil, Shekhar; Chin, Richard F. M.; Neville, Brian G.; Scott, Rod C.; de Haan, Michelle

    2012-01-01

    Children with a history of a prolonged febrile seizure show signs of acute hippocampal injury on magnetic resonance imaging. In addition, animal studies have shown that adult rats who suffered febrile seizures during development reveal memory impairments. Together, these lines of evidence suggest that memory impairments related to hippocampal…

  12. Prolonged idiopathic gastric dilatation following revascularization for chronic mesenteric ischemia.

    PubMed

    Gauci, Julia L; Stoven, Samantha; Szarka, Lawrence; Papadakis, Konstantinos A

    2014-01-01

    A 71-year-old female presented with nausea, emesis, early satiety, and abdominal distension following revascularization for chronic mesenteric ischemia. Computed tomography angiogram showed gastric dilatation. Esophagogastroduodenoscopy, small bowel follow through, and paraneoplastic panel were negative. Gastric emptying was delayed. Despite conservative management, she required a percutaneous endoscopic jejunostomy. The development of a prolonged gastroparetic state has not been previously described.

  13. Prolonged idiopathic gastric dilatation following revascularization for chronic mesenteric ischemia

    PubMed Central

    Gauci, Julia L.; Stoven, Samantha; Szarka, Lawrence; Papadakis, Konstantinos A.

    2014-01-01

    A 71-year-old female presented with nausea, emesis, early satiety, and abdominal distension following revascularization for chronic mesenteric ischemia. Computed tomography angiogram showed gastric dilatation. Esophagogastroduodenoscopy, small bowel follow through, and paraneoplastic panel were negative. Gastric emptying was delayed. Despite conservative management, she required a percutaneous endoscopic jejunostomy. The development of a prolonged gastroparetic state has not been previously described. PMID:24975870

  14. Competing for Consciousness: Prolonged Mask Exposure Reduces Object Substitution Masking

    ERIC Educational Resources Information Center

    Goodhew, Stephanie C.; Visser, Troy A. W.; Lipp, Ottmar V.; Dux, Paul E.

    2011-01-01

    In object substitution masking (OSM) a sparse, temporally trailing 4-dot mask impairs target identification, even though it has different contours from, and does not spatially overlap with the target. Here, we demonstrate a previously unknown characteristic of OSM: Observers show reduced masking at prolonged (e.g., 640 ms) relative to intermediate…

  15. Recognition Memory Is Impaired in Children after Prolonged Febrile Seizures

    ERIC Educational Resources Information Center

    Martinos, Marina M.; Yoong, Michael; Patil, Shekhar; Chin, Richard F. M.; Neville, Brian G.; Scott, Rod C.; de Haan, Michelle

    2012-01-01

    Children with a history of a prolonged febrile seizure show signs of acute hippocampal injury on magnetic resonance imaging. In addition, animal studies have shown that adult rats who suffered febrile seizures during development reveal memory impairments. Together, these lines of evidence suggest that memory impairments related to hippocampal…

  16. Effect of prolonged incubation with copper on endothelium-dependent relaxation in rat isolated aorta

    PubMed Central

    Chiarugi, Alberto; Pitari, Giovanni Mario; Costa, Rosa; Ferrante, Margherita; Villari, Loredana; Amico-Roxas, Matilde; Godfraind, Théophile; Bianchi, Alfredo; Salomone, Salvatore

    2002-01-01

    We investigated the effects of prolonged exposure to copper (Cu2+) on vascular functioning of isolated rat aorta. Aortic rings were exposed to CuSO4 (3–24 h) in Dulbecco's modified Eagle medium with or without 10% foetal bovine serum (FBS) and then challenged with vasoconstrictors or vasodilators in the absence of Cu2+. Exposure to 2 μM Cu2+ in the absence of FBS did not modify the response to phenylephrine (PE) or acetylcholine (ACh) in aortic rings incubated for 24 h. Identical exposure in the presence of FBS increased the contractile response to 1 μM PE by 30% (P<0.05) and impaired the relaxant response to 3 μM ACh or 1 μM A23187 (ACh, from 65.7±7.1 to 6.2±1.1%, n=8; A23187, from 74.6±8.2 to 12.0±0.8%, n=6; P<0.01 for both). Cu2+ exposure did not affect the relaxant response to NO-donors. Impairment of vasorelaxation appeared 3 h after incubation with 2 μM Cu2+ and required 12 h to attain a steady state. Vasorelaxation to ACh was partially restored by 1 mM tiron (intracellular scavenger of superoxide ions; maximum relaxation 34.2±6.4%, n=10, P<0.01 vs Cu2+ alone), whereas catalase, superoxide dismutase or cycloheximide were ineffective. Twenty-four hour-exposure to 2 μM Cu2+ did not affect endothelium integrity or eNOS expression, and increased the Cu content in arterial rings from 6.8±1.1 to 18.9±2.9 ng mg−1 wet weight, n=8; P<0.01. Our results show that, in the presence of FBS, prolonged exposure to submicromolar concentrations of Cu2+ impaired endothelium-dependent vasorelaxation in aortic rings, probably through an intracellular generation of superoxide ions. PMID:12163352

  17. Intracellular concentrations determine the cytotoxicity of adefovir, cidofovir and tenofovir.

    PubMed

    Zhang, Xun; Wang, Ruduan; Piotrowski, Mary; Zhang, Hui; Leach, Karen L

    2015-02-01

    Lack of in vitro to in vivo translation is a major challenge in safety prediction during early drug discovery.One of the most common in vitro assays to evaluate the probability of a compound to cause adverse effects is a cytotoxicity assay. Cytotoxicity of a compound is often measured by dose–response curves assuming the administered doses and intracellular exposures are equal at the time of measurement.However, this may not be true for compounds with low membrane permeability or those which are substrates for drug transporters as intracellular concentrations are determined both by passive permeability and active uptake through drug transporters. We show here that three antiviral drugs, adefovir, cidofovir and tenofovir exhibit significantly increased cytotoxicity in HEK293 cells transfected with organic anion transporter (OAT) 1 and 3 compared to a lack of cytotoxicity in HEK293 wildtype cells. A further look at the media and intracellular drug concentrations showed that 24 h after dosing, all three drugs had higher intracellular drug concentrations than that of media in the HEK-OAT1 cells whereas the intracellular drug concentrations in the wildtype cells were much lower than the administered doses. Comparing cytotoxicity IC(50) values of adefovir, cidofovir and tenofovir based on administered doses and measured intracellular concentrations in HEK-OAT1 cells revealed that intracellular drug concentrations have significant impact on calculated IC(50) values. Tenofovir showed much less intrinsic cytotoxicity than adefovir and cidofovir using intracellular concentrations rather than media concentration. Our data suggest that for low permeable drugs or drugs that are substrates for drug transporters, the choice of cellular model is critical for providing an accurate determination of cytotoxicity.

  18. Intracellular Signalling in Retinal Ischemia

    DTIC Science & Technology

    1990-07-01

    36) However, vascularization of the RPE is not known to occur in human diseases of photoreceptor degeneration, such as retinitis pigmentosa ...A.C. (1986) Retinitis pigmentosa and retinal neovascularization. Ophthalmology 91, 1599- 1603. Figure la: Control rat retina, 8 weeks of age, central...TITLE (Include Security Classification) Intracellular Signalling in Retinal Ischemia 12. PERSONAL AUTHOR(S) Burns, Margaret Sue; Bellhorn, Roy William

  19. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  20. Acute disseminated encephalomyelitis associated with meningitis due to Mycobacterium intracellulare.

    PubMed

    Okada, Hiroshi; Yoshioka, Keiji

    2010-01-01

    A 73-year-old woman was admitted to our hospital because of persistent fever, headache and fatigue for several weeks. On admission, she was diagnosed as having meningitis due to Mycobacterium intracellulare (M. intracellulare) detected in her cerebrospinal fluid (CSF) by polymerase chain reaction. Even though anti-tuberculous therapy improved her CSF findings, her condition was not restored. Brain MRI showed multifocal and asymmetrical increases in T2 signals involving white matter and cortical gray-white junction of cerebral hemispheres, cerebellum and brainstem. Based on the progression of clinical symptoms and radiological features, we diagnosed her illness as acute disseminated encephalomyelitis (ADEM) associated with meningitis due to M. intracellulare. Steroid therapy dramatically improved her condition. This is the first report of ADEM following meningitis due to M. intracellulare in a non-immunocompromized host.

  1. Revisiting intracellular calcium signaling semantics.

    PubMed

    Haiech, Jacques; Audran, Emilie; Fève, Marie; Ranjeva, Raoul; Kilhoffer, Marie-Claude

    2011-12-01

    Cells use intracellular free calcium concentration changes for signaling. Signal encoding occurs through both spatial and temporal modulation of the free calcium concentration. The encoded message is detected by an ensemble of intracellular sensors forming the family of calcium-binding proteins (CaBPs) which must faithfully translate the message using a new syntax that is recognized by the cell. The cell is home to a significant although limited number of genes coding for proteins involved in the signal encoding and decoding processes. In a cell, only a subset of this ensemble of genes is expressed, leading to a genetic regulation of the calcium signal pathways. Calmodulin (CaM), the most ubiquitous expressed intracellular calcium-binding protein, plays a major role in calcium signal translation. Similar to a hub, it is central to a large and finely tuned network, receiving information, integrating it and dispatching the cognate response. In this review, we examine the different steps starting with an external stimulus up to a cellular response, with special emphasis on CaM and the mechanism by which it decodes calcium signals and translates it into exquisitely coordinated cellular events. By this means, we will revisit the calcium signaling semantics, hoping that we will ease communication between scientists dealing with calcium signals in different biological systems and different domains.

  2. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  3. Primary Pulmonary Synovial Sarcoma Showing a Prolonged Survival with Multimodality Therapy.

    PubMed

    Ogino, Hirokazu; Hanibuchi, Masaki; Takizawa, Hiromitsu; Sakiyama, Shoji; Sumitomo, Hiroyuki; Iwamoto, Seiji; Ikushima, Hitoshi; Nakajima, Kohei; Nagahiro, Shinji; Yamago, Taito; Toyoda, Yuko; Bando, Yoshimi; Nishioka, Yasuhiko

    2016-01-01

    A 54-year-old man was referred to our hospital due to a mass shadow noted on a chest X-ray. Thoracoscopic lobectomy yielded a diagnosis of primary pulmonary synovial sarcoma according to the histology and SYT-SSX1 gene analyses. Five months after the thoracic surgery, he developed brain metastasis; therefore, we performed resection of the brain metastatic focus followed by radiotherapy. As a local recurrence in the thoracic cavity concurrently emerged, systemic chemotherapy was also administered. These observations indicated that a multidisciplinary approach may be useful against primary pulmonary synovial sarcoma, although there is presently no established therapeutic strategy due to its rarity and highly aggressive nature.

  4. QTc Prolongation in Acute Pediatric Migraine.

    PubMed

    May, Lindsay J; Millar, Kelly; Barlow, Karen M; Dicke, Frank

    2015-06-01

    Migraine headache is common in pediatrics and is frequently assessed in emergency departments. Altered cardiac conduction, including prolongation of the QTc interval on electrocardiogram, has been observed in adults during migraine headache and resolves interictally. Prolonged QTc is associated with life-threatening arrhythmia, and many acute and prophylactic therapies for migraine can further prolong the QTc interval. It is the objective of this prospective cohort study to examine whether the QTc interval prolongs significantly during periods of acute migraine headache in children. Patients ages 6 to 17 years presenting to the emergency department with acute migraine headache were recruited prospectively. Exclusion criteria included the use of QTc-prolonging medications and medical illnesses, including cardiovascular abnormalities, infection, or head injury. Paired, one-tailed Student t tests compared QTc intervals with and without headache and evaluated for QTc prolongation of 30 ms or longer during headache. Thirteen patients with migraine (mean age, 11.6 ± 2.6 years) were evaluated. Mean QTc interval during headache was significantly longer than the QTc interval in the absence of headache (437.9 ± 27.7 ms compared with 419.3 ± 29.9 ms; p = 0.04). Three patients (23%) had unequivocal prolongation of the QTc (>460 ms) during the migraine, two of which normalized with headache resolution. The mean increase in QTc during headache did not reach or exceed 30 ms (p = 0.86) CONCLUSIONS: This study is the first to illustrate a connection between QTc prolongation and acute migraine headache in children. If confirmed in future studies, children should be monitored for QTc prolongation during the acute treatment of migraine in the emergency department when using medications that can lengthen the QTc interval.

  5. Fitness benefits of prolonged post-reproductive lifespan in women.

    PubMed

    Lahdenperä, Mirkka; Lummaa, Virpi; Helle, Samuli; Tremblay, Marc; Russell, Andrew F

    2004-03-11

    Most animals reproduce until they die, but in humans, females can survive long after ceasing reproduction. In theory, a prolonged post-reproductive lifespan will evolve when females can gain greater fitness by increasing the success of their offspring than by continuing to breed themselves. Although reproductive success is known to decline in old age, it is unknown whether women gain fitness by prolonging lifespan post-reproduction. Using complete multi-generational demographic records, we show that women with a prolonged post-reproductive lifespan have more grandchildren, and hence greater fitness, in pre-modern populations of both Finns and Canadians. This fitness benefit arises because post-reproductive mothers enhance the lifetime reproductive success of their offspring by allowing them to breed earlier, more frequently and more successfully. Finally, the fitness benefits of prolonged lifespan diminish as the reproductive output of offspring declines. This suggests that in female humans, selection for deferred ageing should wane when one's own offspring become post-reproductive and, correspondingly, we show that rates of female mortality accelerate as their offspring terminate reproduction.

  6. Persistent telomere cohesion triggers a prolonged anaphase.

    PubMed

    Kim, Mi Kyung; Smith, Susan

    2014-01-01

    Telomeres use distinct mechanisms (not used by arms or centromeres) to mediate cohesion between sister chromatids. However, the motivation for a specialized mechanism at telomeres is not well understood. Here we show, using fluorescence in situ hybridization and live-cell imaging, that persistent sister chromatid cohesion at telomeres triggers a prolonged anaphase in normal human cells and cancer cells. Excess cohesion at telomeres can be induced by inhibition of tankyrase 1, a poly(ADP-ribose) polymerase that is required for resolution of telomere cohesion, or by overexpression of proteins required to establish telomere cohesion, the shelterin subunit TIN2 and the cohesin subunit SA1. Regardless of the method of induction, excess cohesion at telomeres in mitosis prevents a robust and efficient anaphase. SA1- or TIN2-induced excess cohesion and anaphase delay can be rescued by overexpression of tankyrase 1. Moreover, we show that primary fibroblasts, which accumulate excess telomere cohesion at mitosis naturally during replicative aging, undergo a similar delay in anaphase progression that can also be rescued by overexpression of tankyrase 1. Our study demonstrates that there are opposing forces that regulate telomere cohesion. The observation that cells respond to unresolved telomere cohesion by delaying (but not completely disrupting) anaphase progression suggests a mechanism for tolerating excess cohesion and maintaining telomere integrity. This attempt to deal with telomere damage may be ultimately futile for aging fibroblasts but useful for cancer cells.

  7. Uptake and intracellular activity of fluconazole in human polymorphonuclear leukocytes.

    PubMed Central

    Pascual, A; García, I; Conejo, C; Perea, E J

    1993-01-01

    The penetration of fluconazole into human polymorphonuclear leukocytes (PMNs) and tissue culture epithelial cells (McCoy) was evaluated. At different extracellular concentrations (0.5 to 10 mg/liter), fluconazole reached cell-associated concentrations greater than the extracellular ones in either human PMNs (intracellular concentration to extracellular concentration ratio, > or = 2.2) or McCoy cells (intracellular concentration to extracellular concentration ratio, > or = 1.3). The uptake of fluconazole by PMNs was rapid and reversible but was not energy dependent. The intracellular penetration of fluconazole was not affected by environmental pH or temperature. Ingestion of opsonized zymosan and opsonized Candida albicans did not significantly increase the amount of PMN-associated fluconazole. At therapeutic extracellular concentrations, the intracellular activity of fluconazole against C. albicans in PMNs was significantly lower than that of amphotericin B. It was concluded that fluconazole reaches high intracellular concentrations within PMNs but shows moderate activity against intracellular C. albicans in vitro. PMID:8452347

  8. Invasion of the Central Nervous System by Intracellular Bacteria

    PubMed Central

    Drevets, Douglas A.; Leenen, Pieter J. M.; Greenfield, Ronald A.

    2004-01-01

    Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens. PMID:15084504

  9. QT Prolongation due to Graves' Disease

    PubMed Central

    Deol, Nisha; Tolly, Renee; Manocha, Rohan; Naseer, Maliha

    2017-01-01

    Hyperthyroidism is a highly prevalent disease affecting over 4 million people in the US. The disease is associated with many cardiac complications including atrial fibrillation and also less commonly with ventricular tachycardia and fibrillation. Many cardiac pathologies have been extensively studied; however, the relationship between hyperthyroidism and rate of ventricular repolarization manifesting as a prolonged QTc interval is not well known. Prolonged QTc interval regardless of thyroid status is a risk factor for cardiovascular mortality and life-threatening ventricular arrhythmia. The mechanism regarding the prolongation of the QT interval in a hyperthyroid patient has not been extensively investigated although its clinical implications are relevant. Herein, we describe a case of prolonged QTc in a patient who presented with signs of hyperthyroidism that was corrected with return to euthyroid status. PMID:28154763

  10. Prolonged partial epilepsy: a case report

    SciTech Connect

    Wilson, M.A.

    1980-11-01

    The case study of a patient with prolonged partial epilepsy is presented. There was a discrepancy between the extent of the abnormality seen on the radionuclide angiogram and that seen on the static brain scan.

  11. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  12. Intracellular calcium levels can regulate Importin-dependent nuclear import

    SciTech Connect

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  13. Intracellularly Swollen Polypeptide Nanogel Assists Hepatoma Chemotherapy

    PubMed Central

    Shi, Bo; Huang, Kexin; Ding, Jianxun; Xu, Weiguo; Yang, Yu; Liu, Haiyan; Yan, Lesan; Chen, Xuesi

    2017-01-01

    Nowadays, chemotherapy is one of the principal modes of treatment for tumor patients. However, the traditional formulations of small molecule drugs show short circulation time, low tumor selectivity, and high toxicity to normal tissues. To address these problems, a facilely prepared, and pH and reduction dual-responsive polypeptide nanogel was prepared for selectively intracellular delivery of chemotherapy drug. As a model drug, doxorubicin (DOX) was loaded into the nanogel through a sequential dispersion and dialysis technique, resulting in a high drug loading efficiency (DLE) of 96.7 wt.%. The loading nanogel, defined as NG/DOX, exhibited a uniform spherical morphology with a mean hydrodynamic radius of 58.8 nm, pH and reduction dual-triggered DOX release, efficient cell uptake, and cell proliferation inhibition in vitro. Moreover, NG/DOX exhibited improved antitumor efficacy toward H22 hepatoma-bearing BALB/c mouse model compared with free DOX·HCl. Histopathological and immunohistochemical analyses were implemented to further confirm the tumor suppression activity of NG/DOX. Furthermore, the variations of body weight, histopathological morphology, bone marrow cell micronucleus rate, and white blood cell count verified that NG/DOX showed excellent safety in vivo. With these excellent properties in vitro and in vivo, the pH and reduction dual-responsive polypeptide nanogel exhibits great potential for on-demand intracellular delivery of antitumor drug, and holds good prospect for future clinical application. PMID:28255361

  14. Recognition memory is impaired in children after prolonged febrile seizures

    PubMed Central

    Martinos, Marina M.; Yoong, Michael; Patil, Shekhar; Chin, Richard F. M.; Neville, Brian G.; de Haan, Michelle

    2012-01-01

    Children with a history of a prolonged febrile seizure show signs of acute hippocampal injury on magnetic resonance imaging. In addition, animal studies have shown that adult rats who suffered febrile seizures during development reveal memory impairments. Together, these lines of evidence suggest that memory impairments related to hippocampal injury may be evident in human children after prolonged febrile seizures. The current study addressed this question by investigating memory abilities in 26 children soon after a prolonged febrile seizure (median: 37.5 days) and compared their results to those of 37 normally developing children. Fifteen patients were reassessed at a mean of 12.5 months after their first assessment to determine the transiency of any observed effects. We used the visual paired comparison task to test memory abilities in our group, as this task does not depend on verbal abilities and also because successful performance on the task has been proven to depend on the presence of functional hippocampi. Our findings show that patients perform as well as controls in the absence of a delay between the learning phase and the memory test, suggesting that both groups are able to form representations of the presented stimulus. However, after a 5-min delay, patients’ recognition memory is not different from chance, and comparison of patients and controls points to an accelerated forgetting rate in the prolonged febrile seizure group. The patients’ performance was not related to the time elapsed from the acute event or the duration of the prolonged febrile seizure, suggesting that the observed effect is not a by-product of the seizure itself or a delayed effect of medication administered to terminate the seizure. By contrast, performance was related to hippocampal size; participants with the smallest mean hippocampal volumes revealed the biggest drop in performance from the immediate to the delayed paradigm. At follow-up, children were still showing

  15. Intracellular transport based on actin polymerization.

    PubMed

    Khaitlina, S Yu

    2014-09-01

    In addition to the intracellular transport of particles (cargo) along microtubules, there are in the cell two actin-based transport systems. In the actomyosin system the transport is driven by myosin, which moves the cargo along actin microfilaments. This transport requires the hydrolysis of ATP in the myosin molecule motor domain that induces conformational changes in the molecule resulting in the myosin movement along the actin filament. The other actin-based transport system of the cell does not involve myosin or other motor proteins. This system is based on a unidirectional actin polymerization, which depends on ATP hydrolysis in actin polymers and is initiated by proteins bound to the surface of transported particles. Obligatory components of the actin-based transport are proteins of the WASP/Scar family and a complex of Arp2/3 proteins. Moreover, the actin-based systems often contain dynamin and cortactin. It is known that a system of actin filaments formed on the surface of particles, the so-called "comet-like tail", is responsible for intracellular movements of pathogenic bacteria, micropinocytotic vesicles, clathrin-coated vesicles, and phagosomes. This movement is reproduced in a cell-free system containing extract of Xenopus oocytes. The formation of a comet-like structure capable of transporting vesicles from the plasma membrane into the cell depth has been studied in detail by high performance electron microscopy combined with electron tomography. A similar mechanism provides the movement of vesicles containing membrane rafts enriched with sphingolipids and cholesterol, changes in position of the nuclear spindle at meiosis, and other processes. This review will consider current ideas about actin polymerization and its regulation by actin-binding proteins and show how these mechanisms are realized in the intracellular actin-based vesicular transport system.

  16. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  17. Progesterone Impairs Human Ether-a-go-go-related Gene (HERG) Trafficking by Disruption of Intracellular Cholesterol Homeostasis*

    PubMed Central

    Wu, Zhi-Yuan; Yu, De-Jie; Soong, Tuck Wah; Dawe, Gavin S.; Bian, Jin-Song

    2011-01-01

    The prolongation of QT intervals in both mothers and fetuses during the later period of pregnancy implies that higher levels of progesterone may regulate the function of the human ether-a-go-go-related gene (HERG) potassium channel, a key ion channel responsible for controlling the length of QT intervals. Here, we studied the effect of progesterone on the expression, trafficking, and function of HERG channels and the underlying mechanism. Treatment with progesterone for 24 h decreased the abundance of the fully glycosylated form of the HERG channel in rat neonatal cardiac myocytes and HERG-HEK293 cells, a cell line stably expressing HERG channels. Progesterone also concentration-dependently decreased HERG current density, but had no effect on voltage-gated L-type Ca2+ and K+ channels. Immunofluorescence microscopy and Western blot analysis show that progesterone preferentially decreased HERG channel protein abundance in the plasma membrane, induced protein accumulation in the dilated endoplasmic reticulum (ER), and increased the protein expression of C/EBP homologous protein, a hallmark of ER stress. Application of 2-hydroxypropyl-β-cyclodextrin (a sterol-binding agent) or overexpression of Rab9 rescued the progesterone-induced HERG trafficking defect and ER stress. Disruption of intracellular cholesterol homeostasis with simvastatin, imipramine, or exogenous application of cholesterol mimicked the effect of progesterone on HERG channel trafficking. Progesterone may impair HERG channel folding in the ER and/or block its trafficking to the Golgi complex by disrupting intracellular cholesterol homeostasis. Our findings may reveal a novel molecular mechanism to explain the QT prolongation and high risk of developing arrhythmias during late pregnancy. PMID:21525004

  18. Effects of intracellular pH, blood, and tissue oxygen tension on T1rho relaxation in rat brain.

    PubMed

    Kettunen, Mikko I; Gröhn, Olli H J; Silvennoinen, M Johanna; Penttonen, Markku; Kauppinen, Risto A

    2002-09-01

    The effects of intracellular pH (pH(i)), paramagnetic macroscopic, and microscopic susceptibility on T(1) in the rotating frame (T(1rho)) were studied in rat brain. Intracellular acidosis was induced by hypercapnia and pH(i), T(1rho), T(2), diffusion, and cerebral blood volume (CBV) were quantified. Taking into account the CBV contribution, a prolongation of parenchymal T(1rho) by 4.5% was ascribed to a change in tissue water relaxation caused by a one unit drop in pH(i). Blood T(1rho) was found to prolong linearly with blood oxygenation saturation (Y). The macroscopic susceptibility contribution to parenchymal T(1rho) was assessed both through BOLD and an iron oxide contrast agent, AMI-227. The T(1rho) data from these experiments could be described by intravascular effects with insignificant effects of susceptibility gradients on tissue water. Tissue oxygen tension (PtO(2)) was manipulated and monitored with microelectrodes to assess its plausible contribution to microscopic susceptibility and relaxation. Parenchymal T(1rho) was virtually unaffected by variations in the PtO(2), but T(1) was shortened in hyperoxia and T(2) showed a negative BOLD effect in hypoxia. It is demonstrated that pH(i) directly modulates tissue T(1rho), possibly through its effect on proton exchange; however, neither BOLD nor PtO(2) directly influence tissue T(1rho). The observations are discussed in the light of physicochemical mechanisms contributing to the ischemic T(1rho) changes. Copyright 2002 Wiley-Liss, Inc.

  19. Review: Intracardiac intracellular angiotensin system in diabetes

    PubMed Central

    Kumar, Rajesh; Yong, Qian Chen; Thomas, Candice M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies. PMID:22170614

  20. Peptide modified gold nanoparticles for improved cellular uptake, nuclear transport, and intracellular retention

    NASA Astrophysics Data System (ADS)

    Yang, C.; Uertz, J.; Yohan, D.; Chithrani, B. D.

    2014-09-01

    Gold nanoparticles (GNPs) are being extensively used in cancer therapeutic applications due to their ability to act both as an anticancer drug carrier in chemotherapy and as a dose enhancer in radiotherapy. The therapeutic response can be further enhanced if nanoparticles (NPs) can be effectively targeted into the nucleus. Here, we present an uptake and removal of GNPs functionalized with three peptides. The first peptide (RGD peptide) enhanced the uptake, the second peptide (NLS peptide) facilitated the nuclear delivery, while the third one (pentapeptide) covered the rest of the surface and protected it from the binding of serum proteins onto the NP surface. The pentapeptide also stabilized the conjugated GNP complex. The peptide-capped GNPs showed a five-fold increase in NP uptake followed by effective nuclear localization. The fraction of NPs exocytosed was less for peptide-capped NPs as compared to citrate-capped ones. Enhanced uptake and prolonged intracellular retention of peptide-capped GNPs could allow NPs to perform their desired applications more efficiently in cells. These studies will provide guidelines for developing NPs for therapeutic applications, which will require ``controlling'' of the NP accumulation rate while maintaining low toxicity.Gold nanoparticles (GNPs) are being extensively used in cancer therapeutic applications due to their ability to act both as an anticancer drug carrier in chemotherapy and as a dose enhancer in radiotherapy. The therapeutic response can be further enhanced if nanoparticles (NPs) can be effectively targeted into the nucleus. Here, we present an uptake and removal of GNPs functionalized with three peptides. The first peptide (RGD peptide) enhanced the uptake, the second peptide (NLS peptide) facilitated the nuclear delivery, while the third one (pentapeptide) covered the rest of the surface and protected it from the binding of serum proteins onto the NP surface. The pentapeptide also stabilized the conjugated GNP

  1. Listener perceptions of stuttering, prolonged speech, and verbal avoidance behaviors.

    PubMed

    Von Tiling, Johannes

    2011-01-01

    This study examined listener perceptions of different ways of speaking often produced by people who stutter. Each of 115 independent listeners made quantitative and qualitative judgments upon watching one of four randomly assigned speech samples. Each of the four video clips showed the same everyday conversation between three young men, but differed in how the target person spoke. The four ways of speaking comprised: (1) stuttered speech, i.e., a speech containing repetitions, prolongations, and blocks, (2) hesitant speech, i.e., a speech containing verbal avoidance behaviors like interjections and revisions, (3) a mix of both, and (4) prolonged speech learned in fluency-shaping therapy. Quantitative data revealed that listeners perceived a speaker producing hesitant speech as less pleasant, self-confident, and communicatively competent than a speaker producing stuttered speech or prolonged speech. There were no differences between stuttered speech and prolonged speech. Ratings were partly dependent on the listeners' implicit theory of speaking difficulties, that is, whether they assumed a chronic speech defect or a temporary problem. Implications of these findings are discussed. The reader will: (1) be able to summarize how different ways of speaking produced by people who stutter are connected with different listener perceptions; (2) be able to explain how the listener's implicit theory of speaking problems influences these perceptions; (3) learn about the clinical implications of the data from this study. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Prolonged cholestasis and ductopenia associated with tenoxicam.

    PubMed

    Trak-Smayra, Viviane; Cazals-Hatem, Dominique; Asselah, Tarik; Duchatelle, Veronique; Degott, Claude

    2003-07-01

    Cholestatic liver diseases leading to progressive destruction of intra-hepatic bile ducts and ductopenia encompass multiple etiologies. Pathophysiology and natural history of drug-induced cholangiopathies remain unclear. We report a case of prolonged ductopenia attributed to Tenoxicam (Tilcotil o--a non-steroidal anti-inflammatory drug of the oxicam family) ingested at therapeutic dose. A 36 year-old male patient was admitted for jaundice and Lyell syndrome starting 1 week after the ingestion of Tenoxicam. Liver biopsy showed cholestasis, non-suppurative cholangitis and polymorphous inflammatory infiltrate of the portal tracts (round cells, macrophages an eosinophils). Treatment with ursodesoxycholic acid and cholestyramine was instituted and the patient was asymptomatic 1 year after. Three years later mild biological cholestasis persisted and ductopenia was evidenced on liver biopsy. In this report we found that: (1) The toxicity of tenoxicam was probably mediated by an immunoallergic mechanism (Lyell syndrome and eosinophils on histology); (2) ductopenia was secondary to inflammatory cholangitis. Factors responsible for this chronic evolution are still unknown (genetic predisposition, vascular factors, etc.); and (3) the presence of ductopenia contrasted with the "clinical recovery" of the disease suggesting accessory bile drainage by cholangioles or partial reconstruction of the biliary tree.

  3. [Prospective study of patients with prolonged fever].

    PubMed

    Calderón, E; Legorreta, J; Sztabinski, G; Hernández, M; Wilkins, A; Gómez, D; Dávila, A

    1975-01-01

    A prospective study was made in 283 patients who attended IMAN's Children's Hospital, with fever the main symptom. A clinical and paraclinical procedure was designed for the study of each patient. 112 patients were eliminated because they did not follow the established criteria. All patients had acute infectious diseases considered trivial; 85% were 3 weeks to 2 years of age. They all had an antibacterial treatment without precise diagnosis. It was considered that on admission the patients showed a normal course in the natural history of the basic disease. The study group included 171 patients 2 months to 13 years of age; 62.5% had fever due to infection, 12.2% to collagenopathies, 7% to neoplasias 5.2% to miscellaneous causes and 12.8% were not diagnosed. The most common infectious causes for prolonged fever were tuberculosis, upper respiratory infections, amoebic liver abscess, typhoid fever and malaria. Careful questioning and clinical examination were enough to enlighten diagnosis in more than 80% of the patients.

  4. [A case of prolonged paroxysmal sympathetic hyperactivity].

    PubMed

    Yamamoto, Akiko; Ide, Shuhei; Iwasaki, Yuji; Kaga, Makiko; Arima, Masataka

    2016-03-01

    We report the case of a 4-year-old girl who presented with paroxysmal sympathetic hyperactivity (PSH), after developing severe hypoxic-ischemic-encephalopathy because of cardiopulmonary arrest. She showed dramatic paroxysmal sympathetic activity with dystonia. She was treated with wide variety of medications against PSH, which were found to be effective in previous studies. Among them, morphine, bromocriptine, propranolol, and clonidine were effective in reducing the frequency of her attacks while gabapentin, baclofen, dantrolene, and benzodiazepine were ineffective. Though the paroxysms decreased markedly after the treatment, they could not be completely controlled beyond 500 days. Following the treatment, levels of plasma catecholamines and their urinary metabolites decreased to normal during inter- paroxysms. However, once a paroxysm had recurred, these levels were again very high. This case study is considered significant for two rea- sons. One is that PSH among children have been rarely reported, and the other is that this case of prolonged PSH delineated the transition of plasma catecholamines during the treatment. The excitatory: inhibitory ratio (EIR) model proposed by Baguley was considered while dis- cussing drug sensitivity in this case. Accumulation of similar case studies will help establish more effective treatment strategies and elucidate the pathophysiology of PSH.

  5. Monosynaptic connexions among Aplysia neurones examined by the intracellular application of tea.

    PubMed Central

    Bryant, H L; Weinreich, D

    1975-01-01

    1. Several assumptions underlying the use of intracellularly applied tetraethylammonium (TEA) for assessing monosynaptic connexions were evaluated in identified neurones of Aplysia. 2. In the R2 neurons, intrasomatic TEA application prolongs the duration of the intrasomatically recorded action potential. Subsequently, the action potential in the axon of R2, recorded extracellularly 4-7 mm from the soma, was also prolonged. 3. Intracellular application of TEA into the somata of the multi-action interneurone L10 enhances the duration of the L10 AP and results in larger and more prolonged post-synaptic potentials (p.s.p.s) recorded from neurones believed to be connected monosynaptically with L10. The action potential duration and wave form of p.s.p.s elicited by nerve stimulation in these same post-synaptic neurones were unaffected during the time L10-mediated p.s.p.s were potentiated. 4. Following TEA injection into L10 the p.s.p. recorded in neurone L7 changes wave form in a manner similar to that observed when L10 is tetanized. 5. It is concluded that TEA migrates from its intracellular site of application, does not leave the injected neurone in significant quantities, and alters the wave form of the p.s.p in only those neurones connected monosynaptically to the injected neurone. PMID:1123743

  6. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.

    PubMed

    Nakamura, Toshihide; Takagi, Hiroshi; Shima, Jun

    2009-04-01

    Freezing tolerance is an important characteristic for baker's yeast, Saccharomyces cerevisiae, as it is used to make frozen dough. The ability of yeast cells to survive freezing is thought to depend on various factors. The purpose of this work was to study the viability of yeast cells during the freezing process. We examined factors potentially affecting their survival, including the growth phase, ice-seeding temperature, intracellular trehalose content, freezing period, and duration of supercooling. The results showed that the ice-seeding temperature significantly affected cell viability. In the stationary phase, trehalose accumulation did not affect the viability of yeast cells after brief freezing, although it did significantly affect the viability after prolonged freezing. In the log phase, the ice-seeding temperature was more important for cell survival than the presence of trehalose during prolonged freezing. The importance of increasing the extracellular ice-seeding temperature was verified by comparing frozen yeast survival rates in a freezing test with ice-seeding temperatures of -5 degrees C and -15 degrees C. We also found that the cell survival rates began to increase at 3h of supercooling. The yeast cells may adapt to subzero temperatures and/or acquire tolerance to freezing stress during the supercooling.

  7. Targeted Intracellular Delivery of Antituberculosis Drugs to Mycobacterium tuberculosis-Infected Macrophages via Functionalized Mesoporous Silica Nanoparticles

    PubMed Central

    Lee, Bai-Yu; Xue, Min; Thomas, Courtney R.; Meng, Huan; Ferris, Daniel; Nel, Andre E.; Zink, Jeffrey I.

    2012-01-01

    Delivery of antituberculosis drugs by nanoparticles offers potential advantages over free drug, including the potential to target specifically the tissues and cells that are infected by Mycobacterium tuberculosis, thereby simultaneously increasing therapeutic efficacy and decreasing systemic toxicity, and the capacity for prolonged release of drug, thereby allowing less-frequent dosing. We have employed mesoporous silica nanoparticle (MSNP) drug delivery systems either equipped with a polyethyleneimine (PEI) coating to release rifampin or equipped with cyclodextrin-based pH-operated valves that open only at acidic pH to release isoniazid (INH) into M. tuberculosis-infected macrophages. The MSNP are internalized efficiently by human macrophages, traffic to acidified endosomes, and release high concentrations of antituberculosis drugs intracellularly. PEI-coated MSNP show much greater loading of rifampin than uncoated MSNP and much greater efficacy against M. tuberculosis-infected macrophages. MSNP were devoid of cytotoxicity at the particle doses employed for drug delivery. Similarly, we have demonstrated that the isoniazid delivered by MSNP equipped with pH-operated nanovalves kill M. tuberculosis within macrophages significantly more effectively than an equivalent amount of free drug. These data demonstrate that MSNP provide a versatile platform that can be functionalized to optimize the loading and intracellular release of specific drugs for the treatment of tuberculosis. PMID:22354311

  8. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination.

    PubMed

    Flannagan, Ronald S; Heit, Bryan; Heinrichs, David E

    2016-04-01

    The success of Staphylococcus aureus as a pathogen is partly attributable to its ability to thwart host innate immune responses, which includes resisting the antimicrobial functions of phagocytes. Here, we have studied the interaction of methicillin-resistant S. aureus (MRSA) strain USA300 with murine RAW 264.7 and primary human macrophages using molecular imaging and single cell analysis to obtain an unprecedented understanding of the interaction between the macrophage and MRSA. Herein we demonstrate that macrophages fail to control intracellular infection by MRSA USA300 despite trafficking the bacteria into mature phagolysosomes. Using fluorescence-based proliferation assays we also show that intracellular staphylococci proliferate and that replication commences while the bacteria are residing in mature phagolysosomes hours after initial phagocytosis. Finally, live-cell fluorescence video microscopy allowed for unprecedented visual insight into the escape of MRSA from macrophages, demonstrating that the macrophages die through a pathway characterized by membrane blebbing and activation of caspase-3 followed by acquisition of the vital dye propidium iodide. Moreover, cell death precedes the emergence of MRSA from infected macrophages, and these events can be ablated by prolonged exposure of infected phagocytes to gentamicin. © 2015 John Wiley & Sons Ltd.

  9. Vinyl acetate induces intracellular acidification in mouse oral buccal epithelial cells.

    PubMed

    Nakamoto, Tetsuji; Wagner, Mark; Melvin, James E; Bogdanffy, Matthew S

    2005-08-14

    Vinyl acetate exposure in drinking water has been associated with tumor formation in the upper gastrointestinal tract of rats and mice. One potential mechanism for inducing carcinogenesis involves acidification of the intracellular environment due to the metabolism of vinyl acetate to acetic acid. Prolonged intracellular acidification is thought to produce cytotoxic and/or mitogenic responses that are the sentinel pharmacodynamic steps toward cancer. To determine whether exposure to vinyl acetate affects the intracellular pH of intact oral cavity tissue, isolated mouse oral buccal epithelium was loaded with the pH-sensitive dye BCECF, and then exposed to vinyl acetate concentrations ranging from 10 to 1000 microM for up to 4 min. Extracellular vinyl acetate exposure induced a progressive intracellular acidification that was reversible upon removal of the vinyl acetate. The rate of the acidification was concentration-dependent and increased exponentially within the concentration range tested. The magnitude of the vinyl acetate-induced acidification was inhibited by pretreatment with the carboxylesterase inhibitor bis(p-nitrophenyl)phosphate. These results are consistent with the hypothesis that vinyl acetate contributes to the generation and progression of oral cavity tumors via a process of intracellular acidification. Such a process has been proposed to have practical dose-response thresholds below which the intracellular environment can be maintained within homeostatic bounds and the contribution of exposure to carcinogenic risk is negligible.

  10. Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain.

    PubMed

    Jung, Seungmoon; Bang, Minji; Kim, Byung Sun; Lee, Sungmun; Kotov, Nicholas A; Kim, Bongsoo; Jeon, Daejong

    2014-01-01

    Due to their inert property, gold nanoparticles (AuNPs) have drawn considerable attention; their biological application has recently expanded to include nanomedicine and neuroscience. However, the effect of AuNPs on the bioelectrical properties of a single neuron remains unknown. Here we present the effect of AuNPs on a single neuron under physiological and pathological conditions in vitro. AuNPs were intracellularly applied to hippocampal CA1 neurons from the mouse brain. The electrophysiological property of CA1 neurons treated with 5- or 40-nm AuNPs was assessed using the whole-cell patch-clamp technique. Intracellular application of AuNPs increased both the number of action potentials (APs) and input resistance. The threshold and duration of APs and the after hyperpolarization (AHP) were decreased by the intracellular AuNPs. In addition, intracellular AuNPs elicited paroxysmal depolarizing shift-like firing patterns during sustained repetitive firings (SRF) induced by prolonged depolarization (10 sec). Furthermore, low Mg2+-induced epileptiform activity was aggravated by the intracellular AuNPs. In this study, we demonstrated that intracellular AuNPs alter the intrinsic properties of neurons toward increasing their excitability, and may have deleterious effects on neurons under pathological conditions, such as seizure. These results provide some considerable direction on application of AuNPs into central nervous system (CNS).

  11. Use of in vitro methods to predict QT prolongation

    SciTech Connect

    Hammond, T.G. . E-mail: tim.hammond@astrazeneca.com; Pollard, C.E.

    2005-09-01

    The inhibition of the hERG-encoded potassium channel can lead to prolongation of the cardiac action potential-manifested as a prolongation of the QT interval on the ECG. Although QT interval prolongation is not dangerous per se, in a small percentage of cases, it is associated with a potentially fatal arrhythmia: Torsades de Pointes (TdP). This channel type is pharmacologically promiscuous, so many compounds have caused QT interval prolongation in man and this has led to drugs being withdrawn from the market following evidence of TdP. From a drug discovery perspective, focusing as early as possible on screening out hERG activity is important. Retrospective analysis of hERG potency versus clinical incidence of TdP suggests provisional safety margins that could be used as target values by medicinal chemists. Large safety margins will not always be possible; however, and in such circumstances, if the risk-benefit ratio still favours developing the compound, a pre-clinical assessment of the likelihood that any QT interval prolongation will or will not lead to TdP in man may be important. An isolated rabbit heart model of arrhythmia shows promise in this respect, based on a comparison of clinical data with that obtained from this assay. Specific regulatory guidance on this topic is still in the draft form but the pre-clinical document (ICH S7B) contains a largely useful perspective on how an integrated risk assessment could be formed using in vitro and in vivo assays. The role of this document is evolving however, since the draft clinical guideline (E14) suggests that irrespective of the pre-clinical data, a thorough clinical ECG study will be required at some point during development.

  12. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  13. Neuronal Recordings with Solid-Conductor Intracellular Nanoelectrodes (SCINEs)

    PubMed Central

    Angle, Matthew R.; Schaefer, Andreas T.

    2012-01-01

    Direct electrical recording of the neuronal transmembrane potential has been crucial to our understanding of the biophysical mechanisms subserving neuronal computation. Existing intracellular recording techniques, however, limit the accuracy and duration of such measurements by changing intracellular biochemistry and/or by damaging the plasma membrane. Here we demonstrate that nanoengineered electrodes can be used to record neuronal transmembrane potentials in brain tissue without causing these physiological perturbations. Using focused ion beam milling, we have fabricated Solid-Conductor Intracellular NanoElectrodes (SCINEs), from conventional tungsten microelectrodes. SCINEs have tips that are <300 nm in diameter for several micrometers, but can be easily handled and can be inserted into brain tissue. Performing simultaneous whole-cell patch recordings, we show that SCINEs can record action potentials (APs) as well as slower, subthreshold neuronal potentials without altering cellular properties. These results show a key role for nanotechnology in the development of new electrical recording techniques in neuroscience. PMID:22905231

  14. Intracellular azo decolorization is coupled with aerobic respiration by a Klebsiella oxytoca strain.

    PubMed

    Yu, Lei; Zhang, Xiao-Yu; Xie, Tian; Hu, Jin-Mei; Wang, Shi; Li, Wen-Wei

    2015-03-01

    Reduction of azo dye methyl red coupled with aerobic respiration by growing cultures of Klebsiella oxytoca GS-4-08 was investigated. In liquid media containing dye and 0.6 % glucose in a mineral salts base, 100 mg l(-1) of the dye are completely removed in 3 h under shaking conditions. The dye cannot be aerobically decolorized by strain GS-4-08 without extra carbon sources, indicating a co-metabolism process. Higher initial dye concentration prolonged the lag phase of the cell growth, but final cell concentrations of each batches reached a same level with range from 6.3 to 7.6 mg l(-1) after the dye adaption period. This strain showed stronger dye tolerance and decolorization ability than many reported strains. Furthermore, a new intracellular oxygen-insensitive azoreductase was isolated from this strain, and the specific activity of enzyme was 0.846 and 0.633 U mg(-1) protein in the presence of NADH and NADPH, respectively. N,N dimethyl-p-phenylenediamine and anthranilic acid were stoichiometrically released from MR dye, indicating the breakage of azo bonds accounts for the intracellular decolorization. Combining the characteristics of azoreductase, the stoichiometry of EMP, and TCA cycle, the electron transfer chain theory of aerobic respiration, and the possible mechanism of aerobic respiration coupled with azo reduction by K. oxytoca GS-4-08 are proposed. This study is expected to provide a sound theoretical basis for the development of the K. oxytoca strain in aerobic process for azo dye containing wastewaters.

  15. Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer

    PubMed Central

    Kang, Rui; Xie, Yangchun; Zhang, Qiuhong; Hou, Wen; Jiang, Qingping; Zhu, Shan; Liu, Jinbao; Zeng, Dexing; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Zeh, Herbert J; Lotze, Michael T; Tang, Daolin

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) driven by oncogenic K-Ras remains among the most lethal human cancers despite recent advances in modern medicine. The pathogenesis of PDAC is partly attributable to intrinsic chromosome instability and extrinsic inflammation activation. However, the molecular link between these two events in pancreatic tumorigenesis has not yet been fully established. Here, we show that intracellular high mobility group box 1 (HMGB1) remarkably suppresses oncogenic K-Ras-driven pancreatic tumorigenesis by inhibiting chromosome instability-mediated pro-inflammatory nucleosome release. Conditional genetic ablation of either single or both alleles of HMGB1 in the pancreas renders mice extremely sensitive to oncogenic K-Ras-driven initiation of precursor lesions at birth, including pancreatic intraepithelial neoplasms, intraductal papillary mucinous neoplasms, and mucinous cystic neoplasms. Loss of HMGB1 in the pancreas is associated with oxidative DNA damage and chromosomal instability characterized by chromosome rearrangements and telomere abnormalities. These lead to inflammatory nucleosome release and propagate K-Ras-driven pancreatic tumorigenesis. Extracellular nucleosomes promote interleukin 6 (IL-6) secretion by infiltrating macrophages/neutrophils and enhance oncogenic K-Ras signaling activation in pancreatic lesions. Neutralizing antibodies to IL-6 or histone H3 or knockout of the receptor for advanced glycation end products all limit K-Ras signaling activation, prevent cancer development and metastasis/invasion, and prolong animal survival in Pdx1-Cre;K-RasG12D/+;Hmgb1−/− mice. Pharmacological inhibition of HMGB1 loss by glycyrrhizin limits oncogenic K-Ras-driven tumorigenesis in mice under inflammatory conditions. Diminished nuclear and total cellular expression of HMGB1 in PDAC patients correlates with poor overall survival, supporting intracellular HMGB1 as a novel tumor suppressor with prognostic and therapeutic relevance in

  16. Anomalous dynamics in intracellular transport

    NASA Astrophysics Data System (ADS)

    Dinner, Aaron

    2013-03-01

    This talk will describe quantitative analyses of particle tracking data for systems with cytoskeletally associated molecular motors to better understand the motions contributing to intracellular transport and, more generally, means for characterizing systems far from equilibrium. In particular, we have studied the motions of insulin-containing vesicles (granules) in a pancreatic beta cell line. We find subdiffusive behavior with correlations in both space and time. These data can be modeled by subordinating an ergodic random walk process to a non-ergodic one. We relate the dynamics to the underlying microtubule structure by imaging in the presence of the drug vinblastine. Our results provide a simple physical mechanism for how diverse pools of insulin granules and, in turn, biphasic secretion could arise. Time permitting, these dynamics will be compared with those of actomyosin assemblies.

  17. Characterization of intracellular pteroylpolyglutamate hydrolase (PPH) from human intestinal mucosa

    SciTech Connect

    Wang, T.T.Y.; Chandler, C.J.; Halsted, C.H.

    1986-03-01

    There are two forms of pteroylpolyglutamate hydrolase (PPH) in the human intestinal mucosa, one in the brush border membrane and the other intracellular; brush border PPH is an exopeptidase with optimal activity at pH 6.5 and a requirement for zinc. The presence study characterized human intracellular PPH and compared its properties to those of brush border PPH. Intracellular PPH was purified 30-fold. The enzyme had a MW of 75,000 by gel filtration, was optimally active at pH 4.5, and had an isoelectric point at pH 8.0. In contrast to brush border PPH, intracellular PPH was unstable at increasing temperatures, was unaffected by dialysis against chelating agents and showed no requirement for Zn/sup 2 +/. Using PteGlu/sub 2/(/sup 14/C)Glu as substrate, they demonstrated a K/sub m/ of 1.2 ..mu..M and increasing affinity for folates with longer glutamate chains. Intracellular PPH required the complete folic acid (PteGlu) moiety and a ..gamma..-glutamyl linkage for activity. Using ion exchange chromatography and an HPLC method to determine the hydrolytic products of the reaction, they found intracellular PPH could cleave both internal and terminal ..gamma..-glutamyl linkages, with PteGlu as an end product. After subcellular fractionation of the mucosa, PPH was found in the lysosomes. In summary, the distinct characteristics of brush border and intracellular PPH suggest that the two hydrolases serve different roles in folate metabolism.

  18. Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii

    NASA Astrophysics Data System (ADS)

    Reverey, Julia F.; Jeon, Jae-Hyung; Bao, Han; Leippe, Matthias; Metzler, Ralf; Selhuber-Unkel, Christine

    2015-06-01

    Acanthamoebae are free-living protists and human pathogens, whose cellular functions and pathogenicity strongly depend on the transport of intracellular vesicles and granules through the cytosol. Using high-speed live cell imaging in combination with single-particle tracking analysis, we show here that the motion of endogenous intracellular particles in the size range from a few hundred nanometers to several micrometers in Acanthamoeba castellanii is strongly superdiffusive and influenced by cell locomotion, cytoskeletal elements, and myosin II. We demonstrate that cell locomotion significantly contributes to intracellular particle motion, but is clearly not the only origin of superdiffusivity. By analyzing the contribution of microtubules, actin, and myosin II motors we show that myosin II is a major driving force of intracellular motion in A. castellanii. The cytoplasm of A. castellanii is supercrowded with intracellular vesicles and granules, such that significant intracellular motion can only be achieved by actively driven motion, while purely thermally driven diffusion is negligible.

  19. QT interval prolongation in hospitalized patients on cardiology wards: a prospective observational study.

    PubMed

    Khan, Qasim; Ismail, Mohammad; Haider, Iqbal; Haq, Inam Ul; Noor, Sidra

    2017-08-12

    Prolonged QT interval may lead to a lethal form of arrhythmia, torsades de pointes (TdP), which is associated with cardiovascular mortality. Therefore, we aimed to identify prevalence of QT interval prolongation, compare clinical characteristics of patients with normal and prolonged QT interval, and identify predictors of QT interval prolongation. A prospective observational study was conducted in cardiology wards of two teaching hospitals in Pakistan. Bazett's correction formula was used for the calculation of QTc interval. Prevalence of QT prolongation and pro-QTc scores were calculated. Comparative analysis was performed with respect to various clinical characteristics by applying t test and chi-square test. Odds ratios were calculated using regression analysis. Among 417 patients, 44.6% were found having prolonged QT interval, of which, 17.3% presented with an abnormally high QTc interval (> 500 ms). Significant difference was recorded between the groups (normal vs. prolonged) with respect to age, all prescribed medications, QT drugs, number of risk factors, QT-DDIs (QT-prolonging drug-drug interactions), gender, and diuretics use. Multivariate logistic regression analysis showed significant results for various predictors such as male gender (p = 0.03), various age categories 41-50 years (p = 0.04), 51-60 years (p = 0.01), and > 60 years (p < 0.001), and diuretics (p = 0.008). A substantial number of patients in cardiology wards presented with QT prolongation. Proper considerations are needed in order to minimize the associated risk particularly in patients with abnormally high QT prolongation, old age, polypharmacy, one or more QT-prolonging drugs, and high pro-QTc scores.

  20. Management of children with prolonged diarrhea

    PubMed Central

    Giannattasio, Antonietta; Guarino, Alfredo; Lo Vecchio, Andrea

    2016-01-01

    Prolonged diarrhea is usually defined as acute-onset diarrhea lasting 7 days or more, but less than 14 days. Its trend has been declining in recent years because of improvement in the management of acute diarrhea, which represents the ideal strategy to prevent prolonged diarrhea. The pathogenesis of prolonged diarrhea is multifactorial and essentially based on persistent mucosal damage due to specific infections or sequential infections with different pathogens, host-related factors including micronutrient and/or vitamin deficiency, undernutrition and immunodeficiency, high mucosal permeability due to previous infectious processes and nutrient deficiency with consequential malabsorption, and microbiota disruption. Infections seem to play a major role in causing prolonged diarrhea in both developing and developed areas. However, single etiologic pathogens have not been identified, and the pattern of agents varies according to settings, host risk factors, and previous use of antibiotics and other drugs. The management of prolonged diarrhea is complex. Because of the wide etiologic spectrum, diagnostic algorithms should take into consideration the age of the patient, clinical and epidemiological factors, and the nutritional status and should always include a search for enteric pathogens. Often, expensive laboratory evaluations are of little benefit in guiding therapy, and an empirical approach may be effective in the majority of cases. The presence or absence of weight loss is crucial for driving the initial management of prolonged diarrhea. If there is no weight loss, generally there is no need for further evaluation. If weight loss is present, empiric anti-infectious therapy or elimination diet may be considered once specific etiologies have been excluded. PMID:26962439

  1. Prolongation structures of nonlinear evolution equations

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.; Estabrook, F. B.

    1975-01-01

    A technique is developed for systematically deriving a 'prolongation structure' - a set of interrelated potentials and pseudopotentials - for nonlinear partial differential equations in two independent variables. When this is applied to the Korteweg-de Vries equation, a new infinite set of conserved quantities is obtained. Known solution techniques are shown to result from the discovery of such a structure: related partial differential equations for the potential functions, linear 'inverse scattering' equations for auxiliary functions, Backlund transformations. Generalizations of these techniques will result from the use of irreducible matrix representations of the prolongation structure.

  2. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria.

    PubMed

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-29

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  3. Intracellular Neural Recording with Pure Carbon Nanotube Probes

    PubMed Central

    Yoon, Inho; Hamaguchi, Kosuke; Borzenets, Ivan V.; Finkelstein, Gleb; Mooney, Richard; Donald, Bruce R.

    2013-01-01

    The computational complexity of the brain depends in part on a neuron’s capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications. PMID:23840357

  4. Relevance of intracellular polarity to accuracy of eukaryotic chemotaxis

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Tetsuya; Nagamatsu, Akihiro; Akuzawa, Naohiro; Nishikawa, Masatoshi; Shibata, Tatsuo

    2014-10-01

    Eukaryotic chemotaxis is usually mediated by intracellular signals that tend to localize at the front or back of the cell. Such intracellular polarities frequently require no extracellular guidance cues, indicating that spontaneous polarization occurs in the signal network. Spontaneous polarization activity is considered relevant to the persistent motions in random cell migrations and chemotaxis. In this study, we propose a theoretical model that connects spontaneous intracellular polarity and motile ability in a chemoattractant solution. We demonstrate that the intracellular polarity can enhance the accuracy of chemotaxis. Chemotactic accuracy should also depend on chemoattractant concentration through the concentration-dependent correlation time in the polarity direction. Both the polarity correlation time and the chemotactic accuracy depend on the degree of responsiveness to the chemical gradient. We show that optimally accurate chemotaxis occurs at an intermediate responsiveness of intracellular polarity. Experimentally, we find that the persistence time of randomly migrating Dictyostelium cells depends on the chemoattractant concentration, as predicted by our theory. At the optimum responsiveness, this ameboid cell can enhance its chemotactic accuracy tenfold.

  5. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria

    PubMed Central

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-01-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria. PMID:25009182

  6. Quantitative Analysis of Intracellular Motility Based on Optical Flow Model

    PubMed Central

    Li, Heng

    2017-01-01

    Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions.

  7. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, Nicolas; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-07-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.

  8. Relevance of intracellular polarity to accuracy of eukaryotic chemotaxis.

    PubMed

    Hiraiwa, Tetsuya; Nagamatsu, Akihiro; Akuzawa, Naohiro; Nishikawa, Masatoshi; Shibata, Tatsuo

    2014-08-14

    Eukaryotic chemotaxis is usually mediated by intracellular signals that tend to localize at the front or back of the cell. Such intracellular polarities frequently require no extracellular guidance cues, indicating that spontaneous polarization occurs in the signal network. Spontaneous polarization activity is considered relevant to the persistent motions in random cell migrations and chemotaxis. In this study, we propose a theoretical model that connects spontaneous intracellular polarity and motile ability in a chemoattractant solution. We demonstrate that the intracellular polarity can enhance the accuracy of chemotaxis. Chemotactic accuracy should also depend on chemoattractant concentration through the concentration-dependent correlation time in the polarity direction. Both the polarity correlation time and the chemotactic accuracy depend on the degree of responsiveness to the chemical gradient. We show that optimally accurate chemotaxis occurs at an intermediate responsiveness of intracellular polarity. Experimentally, we find that the persistence time of randomly migrating Dictyostelium cells depends on the chemoattractant concentration, as predicted by our theory. At the optimum responsiveness, this ameboid cell can enhance its chemotactic accuracy tenfold.

  9. The unappreciated intracellular lifestyle of Blastomyces dermatitidis1

    PubMed Central

    Sterkel, Alana; Mettelman, Robert; Wüthrich, Marcel; Klein, Bruce S.

    2015-01-01

    Blastomyces dermatitidis, a dimorphic fungus and the causative agent of blastomycosis, is widely considered an extracellular pathogen, with little evidence for a facultative intracellular lifestyle. We infected mice with spores - the infectious particle - via the pulmonary route and studied intracellular residence, transition to pathogenic yeast and replication inside lung cells. Nearly 80% of spores were inside cells at 24 hours after infection with 104 spores. The majority of spores were located inside of alveolar macrophages, with smaller numbers in neutrophils and dendritic cells. Real time imaging showed rapid uptake of spores into alveolar macrophages, conversion to yeast, and intracellular multiplication during in vitro co-culture. The finding of multiple yeast in a macrophage was chiefly due to intracellular replication rather than multiple phagocytic events or fusion of macrophages. Depletion of alveolar macrophages curtailed infection in mice infected with spores, and lead to a 26-fold reduction in lung CFU by 6 days post-infection vs. non-depleted mice. Phase transition of the spores to yeast was delayed in these depleted mice over a time frame that correlated with reduced lung CFU. Spores cultured in vitro converted to yeast faster in the presence of macrophages than in medium alone. Thus, while advanced B. dermatitidis infection may exhibit extracellular residence in tissue, early lung infection with infectious spores reveals its unappreciated facultative intracellular lifestyle. PMID:25589071

  10. Mechanisms of Obligatory Intracellular Infection with Anaplasma phagocytophilum

    PubMed Central

    Rikihisa, Yasuko

    2011-01-01

    Summary: Anaplasma phagocytophilum persists in nature by cycling between mammals and ticks. Human infection by the bite of an infected tick leads to a potentially fatal emerging disease called human granulocytic anaplasmosis. A. phagocytophilum is an obligatory intracellular bacterium that replicates inside mammalian granulocytes and the salivary gland and midgut cells of ticks. A. phagocytophilum evolved the remarkable ability to hijack the regulatory system of host cells. A. phagocytophilum alters vesicular traffic to create an intracellular membrane-bound compartment that allows replication in seclusion from lysosomes. The bacterium downregulates or actively inhibits a number of innate immune responses of mammalian host cells, and it upregulates cellular cholesterol uptake to acquire cholesterol for survival. It also upregulates several genes critical for the infection of ticks, and it prolongs tick survival at freezing temperatures. Several host factors that exacerbate infection have been identified, including interleukin-8 (IL-8) and cholesterol. Host factors that overcome infection include IL-12 and gamma interferon (IFN-γ). Two bacterial type IV secretion effectors and several bacterial proteins that associate with inclusion membranes have been identified. An understanding of the molecular mechanisms underlying A. phagocytophilum infection will foster the development of creative ideas to prevent or treat this emerging tick-borne disease. PMID:21734244

  11. Intracellular insulin processing is altered in monocytes from patients with type II diabetes mellitus

    SciTech Connect

    Trischitta, V.; Benzi, L.; Brunetti, A.; Cecchetti, P.; Marchetti, P.; Vigneri, R.; Navalesi, R.

    1987-05-01

    We studied total cell-associated A14-(/sup 125/I)insulin radioactivity (including surface-bound and internalized radioactivity), insulin internalization, and its intracellular degradation at 37 C in monocytes from nonobese type II untreated diabetic patients (n = 9) and normal subjects (n = 7). Total cell-associated radioactivity was decreased in diabetic patients (2.65 +/- 1.21% (+/- SD) vs. 4.47 +/- 1.04% of total radioactivity. Insulin internalization was also reduced in diabetic patients (34.0 +/- 6.8% vs. 59.0 +/- 11.3% of cell-associated radioactivity. Using high performance liquid chromatography six intracellular forms of radioactivity derived from A14-(/sup 125/I) insulin were identified; 10-20% of intracellular radioactivity had approximately 300,000 mol wt and was identified as radioactivity bound to the insulin receptor, and the remaining intracellular radioactivity included intact A14-(/sup 125/I)insulin, (/sup 125/I)iodide, or (/sup 125/I)tyrosine, and three intermediate compounds. A progressive reduction of intact insulin and a corresponding increase in iodine were found when the incubation time was prolonged. Intracellular insulin degradation was reduced in monocytes from diabetic patients; intracellular intact insulin was 65.6 +/- 18.1% vs. 37.4 +/- 18.0% of intracellular radioactivity after 2 min and 23.6 +/- 22.3% vs. 3.9 +/- 2.3% after 60 min in diabetic patients vs. normal subjects, respectively. In conclusion, 1) human monocytes internalize and degrade insulin in the intracellular compartment in a stepwise time-dependent manner; and 2) in monocytes from type II diabetic patients total cell-associated radioactivity, insulin internalization, and insulin degradation are significantly reduced. These defects may be related to the cellular insulin resistance present in these patients.

  12. Prolonged grief symptoms related to loss of physical functioning: examining unique associations with medical service utilization.

    PubMed

    Holland, Jason M; Graves, Stacy; Klingspon, Kara L; Rozalski, Vincent

    2016-01-01

    Prolonged grief, a severe and chronic form of grieving most commonly studied in the context of bereavement, may have relevance to losses associated with chronic illness (e.g. grief related to loss of functioning or loss of a planned future). The purpose of the present study is to examine the unique associations between prolonged grief symptoms and service utilization patterns. An online self-report assessment battery was administered among a sample of 275 older adults with at least one chronic illness that caused significant physical impairment. Even after statistically controlling for relevant physical health (e.g. severity of physical limitations, somatic symptoms, number of chronic illnesses) and psychosocial variables (e.g. social support, depression/anxiety), more severe prolonged grief symptoms were associated with a greater number of emergency room visits, overnight stays in the hospital and total nights in the hospital. These findings highlight the importance of screening for prolonged grief symptomatology with older individuals with a debilitating chronic illness. Recent evidence suggests that prolonged grief may have relevance for losses associated with physical illness. The present study shows that prolonged grief reactions related to physical illness (e.g. grieving the loss of functioning) are uniquely associated with increased hospital-based service utilization. Given the relevance of prolonged grief reactions in this population, practitioners may wish to assess for these symptoms. Future clinical research should focus on developing interventions to target prolonged grief symptoms associated with these losses.

  13. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy.

    PubMed Central

    Dubochet, J; Adrian, M; Richter, K; Garces, J; Wittek, R

    1994-01-01

    Intracellular mature vaccinia virus, also called intracellular naked virus, and its core envelope have been observed in their native, unfixed, unstained, hydrated states by cryoelectron microscopy of vitrified samples. The virion appears as a smooth rounded rectangle of ca. 350 by 270 nm. The core seems homogeneous and is surrounded by a 30-nm-thick surface domain delimited by membranes. We show that surface tubules and most likely also the characteristic dumbbell-shaped core with the lateral bodies which are generally observed in negatively stained or conventionally embedded samples are preparation artifacts. Images PMID:8107253

  14. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  15. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  16. Prolonged and tunable residence time using reversible covalent kinase inhibitors

    PubMed Central

    Bradshaw, J. Michael; McFarland, Jesse M.; Paavilainen, Ville O.; Bisconte, Angelina; Tam, Danny; Phan, Vernon T.; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G.; Nunn, Philip A.; Karr, Dane E.; Gerritsen, Mary E.; Funk, Jens Oliver; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Hill, Ronald J.; Goldstein, David M.; Taunton, Jack

    2015-01-01

    Drugs with prolonged, on-target residence time often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here, we demonstrate progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Utilizing an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrate biochemical residence times spanning from minutes to 7 days. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK more than 18 hours after clearance from the circulation. The inverted cyanoacrylamide strategy was further utilized to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating generalizability of the approach. Targeting noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates “residence time by design”, the ability to modulate and improve the duration of target engagement in vivo. PMID:26006010

  17. Prolonged and tunable residence time using reversible covalent kinase inhibitors.

    PubMed

    Bradshaw, J Michael; McFarland, Jesse M; Paavilainen, Ville O; Bisconte, Angelina; Tam, Danny; Phan, Vernon T; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G; Nunn, Philip A; Karr, Dane E; Gerritsen, Mary E; Funk, Jens Oliver; Owens, Timothy D; Verner, Erik; Brameld, Ken A; Hill, Ronald J; Goldstein, David M; Taunton, Jack

    2015-07-01

    Drugs with prolonged on-target residence times often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here we made progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Using an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrated biochemical residence times spanning from minutes to 7 d. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK for more than 18 h after clearance from the circulation. The inverted cyanoacrylamide strategy was further used to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating the generalizability of the approach. Targeting of noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates 'residence time by design', the ability to modulate and improve the duration of target engagement in vivo.

  18. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  19. Effect of sleep deprivation on tolerance of prolonged exercise.

    PubMed

    Martin, B J

    1981-01-01

    Acute loss of sleep produces few apparent physiological effects at rest. Nevertheless, many anecdotes suggest that adequate sleep is essential for optimum endurance athletic performance. To investigate this question, heavy exercise performance after 36 h without sleep was compared with that after normal sleep in eight subjects. During prolonged treadmill walking at about 80% of the VO2 max, sleep loss reduced work time to exhaustion by an average of 11% (p = 0.05). This decrease occurred despite doubling monetary incentives for subjects during work after sleeplessness. Subjects appeared to fall into "resistant" and "susceptible" categories: four showed less than a 5% change in performance after sleep loss, while four others showed decrements in exercise tolerance ranging from 15 to 40%. During the walk, sleep loss resulted in significantly greater perceived exertion (p less than 0.05), even though exercise heart rate and metabolic rate (VO2 and VCO2) were unchanged. Minute ventilation was significantly elevated during exercise after sleep loss ( p less than 0.05). Sleep loss failed to alter the continuous slow rises in VE and heart rate that occurred as work was prolonged. These findings suggest that the psychological effects of acute sleep loss may contribute to decreased tolerance of prolonged heavy exercise.

  20. Intracellular trafficking of VP22 in bovine herpesvirus-1 infected cells

    SciTech Connect

    Lobanov, Vladislav A.; Babiuk, Lorne A.; Drunen Littel-van den Hurk, Sylvia van

    2010-01-20

    The intracellular trafficking of different VP22-enhanced yellow fluorescent protein (EYFP) fusion proteins expressed by bovine herpesvirus-1 (BHV-1) recombinants was examined by live-cell imaging. Our results demonstrate that (i) the fusion of EYFP to the C terminus of VP22 does not alter the trafficking of the protein in infected cells, (ii) VP22 expressed during BHV-1 infection translocates to the nucleus through three different pathways, namely early mitosis-dependent nuclear translocation, late massive nuclear translocation that follows a prolonged cytoplasmic stage of the protein in non-mitotic cells, and accumulation of a small subset of VP22 in discrete dot-like nuclear domains during its early cytoplasmic stage, (iii) the addition of the SV40 large-T-antigen nuclear localization signal (NLS) to VP22-EYFP abrogates its early cytoplasmic stage, and (iv) the VP22 {sup 131}PRPR{sup 134} NLS is not required for the late massive nuclear translocation of the protein, but this motif is essential for the targeting of VP22 to discrete dot-like nuclear domains during the early cytoplasmic stage. These results show that the amount of VP22 in the nucleus is precisely regulated at different stages of BHV-1 infection and suggest that the early pathways of VP22 nuclear accumulation may be more relevant to the infection process as the late massive nuclear influx starts when most of the viral progeny has already emerged from the cell.

  1. Redirecting intracellular trafficking and the secretion pattern of FSH dramatically enhances ovarian function in mice

    PubMed Central

    Wang, Huizhen; Larson, Melissa; Jablonka-Shariff, Albina; Pearl, Christopher A.; Miller, William L.; Conn, P. Michael; Boime, Irving; Kumar, T. Rajendra

    2014-01-01

    FSH and luteinizing hormone (LH) are secreted constitutively or in pulses, respectively, from pituitary gonadotropes in many vertebrates, and regulate ovarian function. The molecular basis for this evolutionarily conserved gonadotropin-specific secretion pattern is not understood. Here, we show that the carboxyterminal heptapeptide in LH is a gonadotropin-sorting determinant in vivo that directs pulsatile secretion. FSH containing this heptapeptide enters the regulated pathway in gonadotropes of transgenic mice, and is released in response to gonadotropin-releasing hormone, similar to LH. FSH released from the LH secretory pathway rescued ovarian defects in Fshb-null mice as efficiently as constitutively secreted FSH. Interestingly, the rerouted FSH enhanced ovarian follicle survival, caused a dramatic increase in number of ovulations, and prolonged female reproductive lifespan. Furthermore, the rerouted FSH vastly improved the in vivo fertilization competency of eggs, their subsequent development in vitro and when transplanted, the ability to produce offspring. Our study demonstrates the feasibility to fine-tune the target tissue responses by modifying the intracellular trafficking and secretory fate of a pituitary trophic hormone. The approach to interconvert the secretory fate of proteins in vivo has pathophysiological significance, and could explain the etiology of several hormone hyperstimulation and resistance syndromes. PMID:24706813

  2. Prolonged fever associated with primary hyperparathyroidism.

    PubMed Central

    Ricci, J; Vlasschaert, J; Salit, I E

    1984-01-01

    A 36-year-old woman presented with hypercalcemia, hypercalciuria, elevated serum parathyroid hormone levels and prolonged fever. Surgical removal of the hyperplastic and adenomatous parathyroid glands led to reversal of the biochemical abnormalities as well as return of her temperature to normal. PMID:6467119

  3. Neurological complications of prolonged hunger strike.

    PubMed

    Başoğlu, M; Yetimalar, Y; Gürgör, N; Büyükçatalbaş, S; Kurt, T; Seçil, Y; Yeniocak, A

    2006-10-01

    We investigated neurological findings in 41 prisoners (mean age: 28.6) who participated in a hunger strike between 2000 and 2002. All cases were evaluated using neuropsychological, neuroradiological, and electrophysiological methods. The total duration of fasting ranged from 130 to 324 days (mean 199 days). All cases had 200-600 mg/day thiamine orally for 60-294 days (mean 156) during the hunger strike, and had neurological findings consistent with Wernicke-Korsakoff syndrome. All 41 patients exhibited altered consciousness which lasted from 3 to 31 days. All patients also presented gaze-evoked horizontal nystagmus and truncal ataxia. Paralysis of lateral rectus muscles was found in 14. Amnesia was apparent in all cases. Abnormal nerve conduction study parameters were not found in the patient group, but the amplitude of compound muscle action potential of the median and fibular nerves and sensory nerve action potential amplitude of the sural nerve were lower than the control group, and distal motor latency of the posterior tibial nerve was significantly prolonged as compared with the control group. The latency of visual evoked potential was prolonged in 22 cases. Somatosensory evoked potential (P37) was prolonged but not statistically significant. Our most significant finding was that the effect of hunger was more prominent on the central nervous system than on the neuromuscular system, despite the fact that all patients were taking thiamine. In our opinion, partial recovery of neurological, and neurocognitive signs in prolonged hunger could be a result of permanent neurological injury.

  4. Intracellular Organisms as Placental Invaders

    PubMed Central

    Vigliani, Marguerite B.; Bakardjiev, Anna I.

    2015-01-01

    In this article we present a novel model for how the human placenta might get infected via the hematogenous route. We present a list of diverse placental pathogens, like Listeria monocytogenes or Cytomegalovirus, which are familiar to most obstetricians, but others, like Salmonella typhi, have only been reported in case studies or small case series. Remarkably, all of these organisms on this list are either obligate or facultative intracellular organisms. These pathogens are able to enter and survive inside host immune cells for at least a portion of their life cycle. We suggest that many blood-borne pathogens might arrive at the placenta via transportation inside of maternal leukocytes that enter the decidua in early pregnancy. We discuss mechanisms by which extravillous trophoblasts could get infected in the decidua and spread infection to other layers in the placenta. We hope to raise awareness among OB/GYN clinicians that organisms not typically associated with the TORCH list might cause placental infections and pregnancy complications. PMID:27695204

  5. Secretome of obligate intracellular Rickettsia

    PubMed Central

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  6. Carotid Baroreflex Function During Prolonged Exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.

    1999-01-01

    Astronauts are often required to work (exercise) at moderate to high intensities for extended periods while performing extra-vehicular activities (EVA). Although the physiologic responses associated with prolonged exercise have been documented, the mechanisms involved in blood pressure regulation under these conditions have not yet been fully elucidated. An understanding of this issue is pertinent to the ability of humans to perform work in microgravity and complies with the emphasis of NASA's Space Physiology and Countermeasures Program. Prolonged exercise at a constant workload is know to result in a progressive decrease in mean arterial pressure (MAP) concomitant with a decrease in stroke volume and a compensatory increase in heart rate. The continuous decrease in MAP during the exercise, which is related to the thermoregulatory redistribution of circulating blood volume to the cutaneous circulation, raises the question as to whether there is a loss of baroreflex regulation of arterial blood pressure. We propose that with prolongation of the exercise to 60 minutes, progressive increases on central command reflect a progressive upward resetting of the carotid baroreflex (CBR) such that the operating point of the CBR is shifted to a pressure below the threshold of the reflex rendering it ineffectual in correcting the downward drift in MAP. In order to test this hypothesis, experiments have been designed to uncouple the global hemodynamic response to prolonged exercise from the central command mediated response via: (1) continuous maintenance of cardiac filling volume by intravenous infusion of a dextran solution; and (2) whole body surface cooling to counteract thermoregulatory cutaneous vasodialation. As the type of work (exercise) performed by astronauts is inherently arm and upper body dependent, we will also examine the physiologic responses to prolonged leg cycling and arm ergometry exercise in the supine positions with and without level lower body negative

  7. Carotid Baroreflex Function During Prolonged Exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.

    1999-01-01

    Astronauts are often required to work (exercise) at moderate to high intensities for extended periods while performing extra-vehicular activities (EVA). Although the physiologic responses associated with prolonged exercise have been documented, the mechanisms involved in blood pressure regulation under these conditions have not yet been fully elucidated. An understanding of this issue is pertinent to the ability of humans to perform work in microgravity and complies with the emphasis of NASA's Space Physiology and Countermeasures Program. Prolonged exercise at a constant workload is know to result in a progressive decrease in mean arterial pressure (MAP) concomitant with a decrease in stroke volume and a compensatory increase in heart rate. The continuous decrease in MAP during the exercise, which is related to the thermoregulatory redistribution of circulating blood volume to the cutaneous circulation, raises the question as to whether there is a loss of baroreflex regulation of arterial blood pressure. We propose that with prolongation of the exercise to 60 minutes, progressive increases on central command reflect a progressive upward resetting of the carotid baroreflex (CBR) such that the operating point of the CBR is shifted to a pressure below the threshold of the reflex rendering it ineffectual in correcting the downward drift in MAP. In order to test this hypothesis, experiments have been designed to uncouple the global hemodynamic response to prolonged exercise from the central command mediated response via: (1) continuous maintenance of cardiac filling volume by intravenous infusion of a dextran solution; and (2) whole body surface cooling to counteract thermoregulatory cutaneous vasodialation. As the type of work (exercise) performed by astronauts is inherently arm and upper body dependent, we will also examine the physiologic responses to prolonged leg cycling and arm ergometry exercise in the supine positions with and without level lower body negative

  8. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    PubMed

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-04

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  9. Resveratrol Improves Survival and Prolongs Life Following Hemorrhagic Shock

    PubMed Central

    Ayub, Ahmar; Poulose, Ninu; Raju, Raghavan

    2015-01-01

    Resveratrol has been shown to potentiate mitochondrial function and extend longevity; however, there is no evidence to support whether resveratrol can improve survival or prolong life following hemorrhagic shock. We sought to determine whether (a) resveratrol can improve survival following hemorrhage and resuscitation and (b) prolong life in the absence of resuscitation. Using a hemorrhagic injury (HI) model in the rat, we describe for the first time that the naturally occurring small molecule, resveratrol, may be an effective adjunct to resuscitation fluid. In a series of three sets of experiments we show that resveratrol administration during resuscitation improves survival following HI (p < 0.05), resveratrol and its synthetic mimic SRT1720 can significantly prolong life in the absence of resuscitation fluid (<30 min versus up to 4 h; p < 0.05), and resveratrol as well as SRT1720 restores left ventricular function following HI. We also found significant changes in the expression level of mitochondria-related transcription factors Ppar-α and Tfam, as well as Pgc-1α in the left ventricular tissues of rats subjected to HI and treated with resveratrol. The results indicate that resveratrol is a strong candidate adjunct to resuscitation following severe hemorrhage. PMID:25879628

  10. Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide.

    PubMed

    Bi, Lin; Yang, Lei; Narsimhan, Ganesan; Bhunia, Arun K; Yao, Yuan

    2011-03-10

    In this work, carbohydrate nanoparticles were created to prolong the efficacy of antimicrobial peptide against pathogens. Nisin and Listeria monocytogenes were used as the peptide and pathogen models, respectively, and phytoglycogen (PG)-based nanoparticles were developed as carriers of nisin. PG from su1 mutant maize was subjected to β-amylolysis as well as subsequent succinate or octenyl succinate substitutions. The goal was to minimize the loss of peptide during storage and meanwhile realize an effective release in the presence of bacteria. The capabilities of PG derivatives as carriers of nisin were evaluated using centrifugal ultrafiltration, zeta-potential, and the initial availability of nisin against L. monocytogenes. All methods indicated that nisin loading was favored by a high degree of substitution (DS), presence of hydrophobic octenyl moiety, and β-amylolysis of PG nanoparticles. To evaluate the prolonged nisin efficacy, preparations containing nisin and PG derivatives were loaded into a BHI-agar deep-well model (mimicking nisin depletion at the nutrient-containing surface). The residual inhibitory activities of preparations against L. monocytogenes were monitored during 21 days of storage at 4 °C. The results showed that all PG derivatives led to the prolonged retention of nisin activity and the longest retention was associated with high DS, β-amylolysis, and octenyl succinate. Evidently, both electrostatic and hydrophobic interactions are the driving forces of nisin adsorption, and the glucan structure at the nanoparticle surface also affects nisin loading and retention during storage.

  11. Slow recovery in desert perennial vegetation following prolonged human disturbance

    USGS Publications Warehouse

    Guo, Q.

    2004-01-01

    Questions: How long may it take for desert perennial vegetation to recover from prolonged human disturbance and how do different plant community variables (i.e. diversity, density and cover) change during the recovery process? Location: Sonoran Desert, Arizona, USA. Methods: Since protection from grazing from 1907 onwards, plant diversity, density and cover of perennial species were monitored intermittently on ten 10 m x 10 m permanent plots on Tumamoc Hill, Tucson, Arizona, USA. Results: The study shows an exceptionally slow recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover had been stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. Conclusions: It took more than 50 yr for the perennial vegetation to recover from prolonged human disturbance. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of a clear relationship between environment (e.g. precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery processes after disturbance.

  12. Translating QT interval prolongation from conscious dogs to humans.

    PubMed

    Dubois, Vincent F S; Smania, Giovanni; Yu, Huixin; Graf, Ramona; Chain, Anne S Y; Danhof, Meindert; Della Pasqua, Oscar

    2017-02-01

    In spite of screening procedures in early drug development, uncertainty remains about the propensity of new chemical entities (NCEs) to prolong the QT/QTc interval. The evaluation of proarrhythmic activity using a comprehensive in vitro proarrhythmia assay does not fully account for pharmacokinetic-pharmacodynamic (PKPD) differences in vivo. In the present study, we evaluated the correlation between drug-specific parameters describing QT interval prolongation in dogs and in humans. Using estimates of the drug-specific parameter, data on the slopes of the PKPD relationships of nine compounds with varying QT-prolonging effects (cisapride, sotalol, moxifloxacin, carabersat, GSK945237, SB237376 and GSK618334, and two anonymized NCEs) were analysed. Mean slope estimates varied between -0.98 ms μM(-1) and 6.1 ms μM(-1) in dogs and -10 ms μM(-1) and 90 ms μM(-1) in humans, indicating a wide range of effects on the QT interval. Linear regression techniques were then applied to characterize the correlation between the parameter estimates across species. For compounds without a mixed ion channel block, a correlation was observed between the drug-specific parameter in dogs and humans (y = -1.709 + 11.6x; R(2)  = 0.989). These results show that per unit concentration, the drug effect on the QT interval in humans is 11.6-fold larger than in dogs. Together with information about the expected therapeutic exposure, the evidence of a correlation between the compound-specific parameter in dogs and in humans represents an opportunity for translating preclinical safety data before progression into the clinic. Whereas further investigation is required to establish the generalizability of our findings, this approach can be used with clinical trial simulations to predict the probability of QT prolongation in humans. © 2016 The British Pharmacological Society.

  13. Tetrodotoxin-bupivacaine-epinephrine combinations for prolonged local anesthesia.

    PubMed

    Berde, Charles B; Athiraman, Umeshkumar; Yahalom, Barak; Zurakowski, David; Corfas, Gabriel; Bognet, Christina

    2011-12-01

    Currently available local anesthetics have analgesic durations in humans generally less than 12 hours. Prolonged-duration local anesthetics will be useful for postoperative analgesia. Previous studies showed that in rats, combinations of tetrodotoxin (TTX) with bupivacaine had supra-additive effects on sciatic block durations. In those studies, epinephrine combined with TTX prolonged blocks more than 10-fold, while reducing systemic toxicity. TTX, formulated as Tectin, is in phase III clinical trials as an injectable systemic analgesic for chronic cancer pain. Here, we examine dose-duration relationships and sciatic nerve histology following local nerve blocks with combinations of Tectin with bupivacaine 0.25% (2.5 mg/mL) solutions, with or without epinephrine 5 µg/mL (1:200,000) in rats. Percutaneous sciatic blockade was performed in Sprague-Dawley rats, and intensity and duration of sensory blockade was tested blindly with different Tectin-bupivacaine-epinephrine combinations. Between-group comparisons were analyzed using ANOVA and post-hoc Sidak tests. Nerves were examined blindly for signs of injury. Blocks containing bupivacaine 0.25% with Tectin 10 µM and epinephrine 5 µg/mL were prolonged by roughly 3-fold compared to blocks with bupivacaine 0.25% plain (P < 0.001) or bupivacaine 0.25% with epinephrine 5 µg/mL (P < 0.001). Nerve histology was benign for all groups. Combinations of Tectin in bupivacaine 0.25% with epinephrine 5 µg/mL appear promising for prolonged duration of local anesthesia.

  14. Tetrodotoxin-Bupivacaine-Epinephrine Combinations for Prolonged Local Anesthesia

    PubMed Central

    Berde, Charles B.; Athiraman, Umeshkumar; Yahalom, Barak; Zurakowski, David; Corfas, Gabriel; Bognet, Christina

    2011-01-01

    Currently available local anesthetics have analgesic durations in humans generally less than 12 hours. Prolonged-duration local anesthetics will be useful for postoperative analgesia. Previous studies showed that in rats, combinations of tetrodotoxin (TTX) with bupivacaine had supra-additive effects on sciatic block durations. In those studies, epinephrine combined with TTX prolonged blocks more than 10-fold, while reducing systemic toxicity. TTX, formulated as Tectin, is in phase III clinical trials as an injectable systemic analgesic for chronic cancer pain. Here, we examine dose-duration relationships and sciatic nerve histology following local nerve blocks with combinations of Tectin with bupivacaine 0.25% (2.5 mg/mL) solutions, with or without epinephrine 5 µg/mL (1:200,000) in rats. Percutaneous sciatic blockade was performed in Sprague-Dawley rats, and intensity and duration of sensory blockade was tested blindly with different Tectin-bupivacaine-epinephrine combinations. Between-group comparisons were analyzed using ANOVA and post-hoc Sidak tests. Nerves were examined blindly for signs of injury. Blocks containing bupivacaine 0.25% with Tectin 10 µM and epinephrine 5 µg/mL were prolonged by roughly 3-fold compared to blocks with bupivacaine 0.25% plain (P < 0.001) or bupivacaine 0.25% with epinephrine 5 µg/mL (P < 0.001). Nerve histology was benign for all groups. Combinations of Tectin in bupivacaine 0.25% with epinephrine 5 µg/mL appear promising for prolonged duration of local anesthesia. PMID:22363247

  15. A Holographic Road Show.

    ERIC Educational Resources Information Center

    Kirkpatrick, Larry D.; Rugheimer, Mac

    1979-01-01

    Describes the viewing sessions and the holograms of a holographic road show. The traveling exhibits, believed to stimulate interest in physics, include a wide variety of holograms and demonstrate several physical principles. (GA)

  16. A Holographic Road Show.

    ERIC Educational Resources Information Center

    Kirkpatrick, Larry D.; Rugheimer, Mac

    1979-01-01

    Describes the viewing sessions and the holograms of a holographic road show. The traveling exhibits, believed to stimulate interest in physics, include a wide variety of holograms and demonstrate several physical principles. (GA)

  17. Nicotinic Acetylcholine Receptors Sensitize a MAPK-linked Toxicity Pathway on Prolonged Exposure to β-Amyloid*

    PubMed Central

    Arora, Komal; Cheng, Justin; Nichols, Robert A.

    2015-01-01

    Among putative downstream synaptic targets of β-amyloid (Aβ) are signaling molecules involved in synaptic function, memory formation and cognition, such as the MAP kinases, MKPs, CaMKII, CREB, Fyn, and Tau. Here, we assessed the activation and interaction of signaling pathways upon prolonged exposure to Aβ in model nerve cells expressing nicotinic acetylcholine receptors (nAChRs). Our goal was to characterize the steps underlying sensitization of the nerve cells to neurotoxicity when Aβ-target receptors are present. Of particular focus was the connection of the activated signaling molecules to oxidative stress. Differentiated neuroblastoma cells expressing mouse α4β2-nAChRs were exposed to Aβ1–42 for intervals from 30 min to 3 days. The cells and cell-derived protein extracts were then probed for activation of signaling pathway molecules (ERK, JNK, CaMKII, CREB, MARCKS, Fyn, tau). Our results show substantial, progressive activation of ERK in response to nanomolar Aβ exposure, starting at the earliest time point. Increased ERK activation was followed by JNK activation as well as an increased expression of PHF-tau, paralleled by increased levels of reactive oxygen species (ROS). The impact of prolonged Aβ on the levels of pERK, pJNK, and ROS was attenuated by MEK-selective and JNK-selective inhibitors. In addition, the MEK inhibitor as well as a JNK inhibitor attenuated Aβ-induced nuclear fragmentation, which followed the changes in ROS levels. These results demonstrate that the presence of nAChRs sensitizes neurons to the neurotoxic action of Aβ through the timed activation of discrete intracellular signaling molecules, suggesting pathways involved in the early stages of Alzheimer disease. PMID:26139609

  18. Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum.

    PubMed

    Nymark, Marianne; Valle, Kristin C; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Bones, Atle M; Brembu, Tore

    2013-01-01

    Photosynthetic diatoms that live suspended throughout the water column will constantly be swept up and down by vertical mixing. When returned to the photic zone after experiencing longer periods in darkness, mechanisms exist that enable the diatoms both to survive sudden light exposure and immediately utilize the available energy in photosynthesis and growth. We have investigated both the response to prolonged darkness and the re-acclimation to moderate intensity white irradiance (E = 100 µmol m(-2) s(-1)) in the diatom Phaeodactylum tricornutum, using an integrated approach involving global transcriptional profiling, pigment analyses, imaging and photo-physiological measurements. The responses were studied during continuous white light, after 48 h of dark treatment and after 0.5 h, 6 h, and 24 h of re-exposure to the initial irradiance. The analyses resulted in several intriguing findings. Dark treatment of the cells led to 1) significantly decreased nuclear transcriptional activity, 2) distinct intracellular changes, 3) fixed ratios of the light-harvesting pigments despite a decrease in the total cell pigment pool, and 4) only a minor drop in photosynthetic efficiency (Φ(PSII_max)). Re-introduction of the cells to the initial light conditions revealed 5) distinct expression profiles for nuclear genes involved in photosynthesis and those involved in photoprotection, 6) rapid rise in photosynthetic parameters (α and rETR(max)) within 0.5 h of re-exposure to light despite a very modest de novo synthesis of photosynthetic compounds, and 7) increasingly efficient resonance energy transfer from fucoxanthin chlorophyll a/c-binding protein complexes to photosystem II reaction centers during the first 0.5 h, supporting the observations stated in 6). In summary, the results show that despite extensive transcriptional, metabolic and intracellular changes, the ability of cells to perform photosynthesis was kept intact during the length of the experiment. We conclude

  19. Carboxymethyl chitosan/phospholipid bilayer-capped mesoporous carbon nanoparticles with pH-responsive and prolonged release properties for oral delivery of the antitumor drug, Docetaxel.

    PubMed

    Zhang, Yanzhuo; Zhu, Wufu; Zhang, Heran; Han, Jin; Zhang, Lihua; Lin, Qisi; Ai, Fengwei

    2017-09-10

    In this article, a new type of carboxymethyl chitosan/phospholipid bilayer-capped mesoporous carbon nanomatrix (CCS/PL/MC) was fabricated as a potential nano-drug delivery system. In this drug delivery system, a mesoporous carbon nanomatrix (MC) acts as the support for loading drug molecules, a positively charged phospholipid (PL) layer works as the inner shell for prolonged drug release and a negatively charged carboxymethyl chitosan (CCS) layer serves as the outer shell for pH-responsive drug release. Docetaxel (DTX) was selected as a model drug. The drug-loaded CCS/PL/MC was synthesized via a combination approach of double emulsion/solvent evaporation followed by lyophilization. The drug-loaded nanoparticles were characterized for their particle size, structure, morphology, zeta (ζ)-potential, specific surface area, porosity, drug loading and solid state. In vitro drug release tests showed that the drug-loaded CCS/PL/MC nanoparticles possess a good pH-sensitivity and prolonged releasing ability with negligible release in gastric media and controlled release in intestinal media. Compared with MC and PL-capped MC, CCS/PL/MC had a greater mucoadhesiveness. Moreover, cellular uptake study indicated that CCS/PL/MC might improve intracellular drug delivery. These results suggest that this hybrid nanocarrier, combining the beneficial features of CCS, PL and MC, is a promising drug delivery system able to improve the oral absorption of antitumor drugs. Copyright © 2017. Published by Elsevier B.V.

  20. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs.

    PubMed

    Li, Xia; Zhi, Chunyi; Hanagata, Nobutaka; Yamaguchi, Maho; Bando, Yoshio; Golberg, Dmitri

    2013-08-25

    Boron nitride nanotube (BNNT)@mesoporous silica hybrids with controllable surface zeta potential were fabricated for intracellular delivery of doxorubicin. The materials showed higher suspension ability, doxorubicin intracellular endocytosis efficiency, and LNcap prostate cancer cell killing ability compared with naked BNNTs.

  1. Biodegradable Polymersomes as Nanocarriers for Doxorubicin Hydrochloride: Enhanced Cytotoxicity in MCF-7/ADR Cells and Prolonged Blood Circulation.

    PubMed

    Chao, Yanhui; Liang, Yuheng; Fang, Guihua; He, Haibing; Yao, Qing; Xu, Hang; Chen, Yinrong; Tang, Xing

    2017-03-01

    DOX is one of the most potent anticancer drugs. But its short half-life and the occurrence of multi-drug resistance (MDR) markedly limit its clinical application. To solve these problems, we develop DOX loaded polymersomes (DOX polymersomes). An methoxy poly(ethylene glycol)-b-poly(epsilon-caprolactone) (mPEG-b-PCL) copolymer was synthesized and used to prepare DOX polymersomes. The pharmaceutical properties of DOX polymersomes were characterized. The in vitro release profile of DOX from polymersomes was investigated. The in vitro cytotoxicity and cell uptake studies were performed on MCF-7 and MCF-7/ADR cells. The in vivo pharmacokinetic profiles were investigated on Sprague-Dawley rats. DOX polymersomes had a nano-scale particle size of about 60 nm with a hydrophobic membrane about 10 nm in thickness. Release of DOX from the polymersomes took place in a sustained manner. Cell experiments showed DOX polymersomes enhanced the cytotoxicity and the intracellular accumulation of DOX in MCF-7/ADR cells, compared with free DOX. In vivo pharmacokinetic study showed the DOX polymersomes increased the bioavailability and prolonged the circulation time in rats. The entrapment of DOX in biodegradable polymersomes could enhance cytotoxicity in MCF-7/ADR cells and improve its in vivo pharmacokinetic profile.

  2. Cardiomyocyte oxidants production may signal to T. cruzi intracellular development.

    PubMed

    Dias, Patrícia Pereira; Capila, Rhayanne Figueiredo; do Couto, Natália Fernanda; Estrada, Damían; Gadelha, Fernanda Ramos; Radi, Rafael; Piacenza, Lucía; Andrade, Luciana O

    2017-08-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, presents a variable clinical course, varying from asymptomatic to serious debilitating pathologies with cardiac, digestive or cardio-digestive impairment. Previous studies using two clonal T. cruzi populations, Col1.7G2 (T. cruzi I) and JG (T. cruzi II) demonstrated that there was a differential tissue distribution of these parasites during infection in BALB/c mice, with predominance of JG in the heart. To date little is known about the mechanisms that determine this tissue selection. Upon infection, host cells respond producing several factors, such as reactive oxygen species (ROS), cytokines, among others. Herein and in agreement with previous data from the literature we show that JG presents a higher intracellular multiplication rate when compared to Col1.7G2. We also showed that upon infection cardiomyocytes in culture may increase the production of oxidative species and its levels are higher in cultures infected with JG, which expresses lower levels of antioxidant enzymes. Interestingly, inhibition of oxidative stress severely interferes with the intracellular multiplication rate of JG. Additionally, upon H2O2-treatment increase in intracellular Ca2+ and oxidants were observed only in JG epimastigotes. Data presented herein suggests that JG and Col1.7G2 may sense extracellular oxidants in a distinct manner, which would then interfere differently with their intracellular development in cardiomyocytes.

  3. Intracellular proliferation of S. aureus in osteoblasts and effects of rifampicin and gentamicin on S. aureus intracellular proliferation and survival.

    PubMed

    Mohamed, W; Sommer, U; Sethi, S; Domann, E; Thormann, U; Schütz, I; Lips, K S; Chakraborty, T; Schnettler, R; Alt, V

    2014-10-23

    Staphylococcus aureus is the most clinically relevant pathogen regarding implant-associated bone infection and its capability to invade osteoblasts is well known. The aim of this study was to investigate firstly whether S. aureus is not only able to invade but also to proliferate within osteoblasts, secondly to delineate the mechanism of invasion and thirdly to clarify whether rifampicin or gentamicin can inhibit intracellular proliferation and survival of S. aureus. The SAOS-2 osteoblast-like cell line and human primary osteoblasts were infected with S. aureus EDCC5055 and S. aureus Rosenbach 1884. Both S. aureus strains were able to invade efficiently and to proliferate within human osteoblasts. Immunofluorescence microscopy showed intracellular invasion of S. aureus and transmission electron microscopy images could demonstrate bacterial division as a sign of intracellular proliferation as well as cytosolic bacterial persistence. Cytochalasin D, the major actin depolymerisation agent, was able to significantly reduce S. aureus invasion, suggesting that invasion was enabled by promoting actin rearrangement at the cell surface. 7.5 μg/mL of rifampicin was able to inhibit bacterial survival in SAOS-2 cells with almost complete elimination of bacteria after 4 h. Gentamicin could also kill intracellular S. aureus in a dose-dependent manner, an effect that was significantly lower than that observed using rifampicin. In conclusion, S. aureus is not only able to invade but also to proliferate in osteoblasts. Invasion seems to be associated with actin rearrangement at the cell surface. Rifampicin is effective in intracellular eradication of S. aureus whereas gentamicin only poorly eliminates intracellularly replicating bacteria.

  4. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    NASA Astrophysics Data System (ADS)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  5. Status of vestibular function after prolonged bedrest

    NASA Astrophysics Data System (ADS)

    Burgeat, M.; Toupet, M.; Loth, D.; Ingster, I.; Guell, A.; Coll, J.

    6 young, healthy, male volunteers were submitted to one week of head down (-4°) bedrest. This position simulates the cerebral hemodynamic conditions in weightlessness. Measurements of vestibular equilibrium and of oculomotor system function were made before and after the prolonged bedrest. Analysis of the results indicates that vestibular responses, as measured by the maximal speed of the slow phase of the provoked nystagmus (caloric and sinusoidal rotatory stimulations), are decreased after prolonged bedrest. This statistically significant diminution requires confirmation with a greater number of cases. The reflex conflicting or interacting with the cervico-ocular and optokinetic reflexes on the one hand and the foveal vision on the other, is one of several possible explanations for the observed changes.

  6. Acute prolongation of myocardial refractoriness by sotalol.

    PubMed Central

    Bennett, D H

    1982-01-01

    Sotalol, a beta adrenoceptor antagonist, was given intravenously to 15 patients with accessory atrioventricular pathways during intracardiac electrophysiological studies. Eleven patients had the Wolff-Parkinson-White syndrome and four patients had concealed left sided accessory pathways. Four patients were restudied while receiving oral sotalol. In contrast to the actions typical of beta blocking agents, intravenous sotalol prolonged the effective refractory periods of the ventricles and accessory pathways and reduced the ventricular response to atrial fibrillation in the patients with the Wolff-Parkinson-White syndrome. Similar results were obtained with oral administration. These findings support the observation that sotalol, unlike other beta blocking agents. causes acute prolongation of the myocardial action potential and suggest that this action might be of therapeutic use. PMID:7082500

  7. Severe bradycardia and prolonged hypotension in ciguatera.

    PubMed

    Chan, Thomas Yan Keung

    2013-06-01

    Ciguatera results when ciguatoxin-contaminated coral reef fish from tropical or subtropical waters are consumed. The clinical features that present in affected persons are mainly gastrointestinal, neurological, general, and much less commonly, cardiovascular. We report the case of a 50-year-old man who developed the characteristic combination of acute gastrointestinal and neurological symptoms after the consumption of an unidentified coral reef fish head. In addition to those symptoms, he developed dizziness, severe bradycardia (46 bpm) and prolonged hypotension, which required the administration of intravenous atropine and over three days of intravenous fluid replacement with dopamine infusion. Patients with ciguatera can develop severe bradycardia and prolonged hypotension. Physicians should recognise the possible cardiovascular complications of ciguatera and promptly initiate treatment with intravenous atropine, intravenous fluid replacement and inotropic therapy if such complications are observed.

  8. Proton Fall or Bicarbonate Rise: GLYCOLYTIC RATE IN MOUSE ASTROCYTES IS PAVED BY INTRACELLULAR ALKALINIZATION.

    PubMed

    Theparambil, Shefeeq M; Weber, Tobias; Schmälzle, Jana; Ruminot, Ivàn; Deitmer, Joachim W

    2016-09-02

    Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H(+)], but those can also be stimulated by an increase in the intracellular [HCO3 (-)]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H(+)] or [HCO3 (-)]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H(+)] or a rise in intracellular [HCO3 (-)], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H(+)] and [CO2]/[HCO3 (-)]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H(+)], irrespective of a concomitant rise or fall in intracellular [HCO3 (-)]. Transport of HCO3 (-) into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3 (-)], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Increased intracellular free calcium and sensitivity to angiotensin II in platelets of preeclamptic women.

    PubMed

    Haller, H; Oeney, T; Hauck, U; Distler, A; Philipp, T

    1989-04-01

    Preeclampsia is characterized by a generalized vasoconstriction and increased vascular sensitivity to angiotensin II. Intracellular free calcium, implicated in vascular smooth muscle contraction, has been found to be elevated in platelets of other hypertensive disorders. We therefore measured intracellular free calcium concentrations by using the fluorescent probe quin-2 in platelets of six patients with preeclampsia and compared them to measurements in ten normotensive pregnant women and ten age-matched nonpregnant women. Intracellular free calcium was also determined in the preeclamptic women after delivery. We found that intracellular free calcium was slightly elevated in normal pregnancy (102 +/- 13 nmol/L v 87 +/- 17 nmol/L) but was markedly increased in preeclampsia (138 +/- 13 nmol/L, P less than .05). This increase disappeared six weeks after delivery (84 + 10 nmol/L, P less than .01). To investigate whether the increased intracellular free calcium was related to angiotensin II, the platelets were exposed to thrombin and angiotensin II in vitro. Exposure to thrombin and angiotensin II caused a dose-dependent increase in intracellular free calcium. The intracellular response to thrombin was not significantly different in the three groups. However, stimulation with angiotensin II revealed an increased response in intracellular free calcium in preeclampsia (P less than .05) that disappeared after delivery. Our findings show a sustained increase in platelet intracellular free calcium in preeclampsia and suggest a functional alteration of the angiotensin II receptor in this disease.

  10. The Significance of Prolonged and Saddleback Fever in Hospitalised Adult Dengue

    PubMed Central

    Thein, Tun-Linn; Leo, Yee-Sin; Lye, David C.

    2016-01-01

    Dengue fever is gaining importance in Singapore with an increase in the number of cases and mortality in recent years. Although prolonged and saddleback fever have been reported in dengue fever, there are no specific studies on their significance in dengue. This study aims to examine the prevalence of prolonged and saddleback fever in dengue as well as their associations with dengue severity. A total of 2843 polymerase-chain reaction (PCR) confirmed dengue patients admitted to Tan Tock Seng Hospital from 2004 to 2008 were included in the study. Sixty-nine percent of them were male with a median age of 34 years. Prolonged fever (fever > 7 days duration) was present in 572 (20.1%) of patients. Dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS) and severe dengue (SD) were significantly more likely to occur in patients with prolonged fever. Mucosal bleeding, anorexia, diarrhea, abdominal pain, nausea or vomiting, lethargy, rash, clinical fluid accumulation, hepatomegaly, nosocomial infection, leukopenia, higher neutrophil count, higher hematocrit, higher alanine transaminase (ALT) and aspartate transaminase (AST), higher creatinine, lower protein and prolonged activated partial thromboplastin time (APTT) were significantly associated with prolonged fever but not platelet count or prothrombin time (PT). Saddleback fever was present in 165 (5.8%). Although DHF and SD were more likely to occur in patients in those with saddleback fever, DSS was not. Compared with prolonged fever, saddleback fever did not show many significant associations except for diarrhea, abdominal pain, clinical fluid accumulation, hematocrit and platelet change, and lower systolic blood pressure. This study demonstrates that prolonged fever may be associated with various warning signs and more severe forms of dengue (SD, DSS, DHF), while saddleback fever showed associations with DHF and SD but not DSS. The presence of prolonged or saddleback fever in dengue patients should therefore prompt

  11. The Significance of Prolonged and Saddleback Fever in Hospitalised Adult Dengue.

    PubMed

    Ng, Deborah Hl; Wong, Joshua Gx; Thein, Tun-Linn; Leo, Yee-Sin; Lye, David C

    2016-01-01

    Dengue fever is gaining importance in Singapore with an increase in the number of cases and mortality in recent years. Although prolonged and saddleback fever have been reported in dengue fever, there are no specific studies on their significance in dengue. This study aims to examine the prevalence of prolonged and saddleback fever in dengue as well as their associations with dengue severity. A total of 2843 polymerase-chain reaction (PCR) confirmed dengue patients admitted to Tan Tock Seng Hospital from 2004 to 2008 were included in the study. Sixty-nine percent of them were male with a median age of 34 years. Prolonged fever (fever > 7 days duration) was present in 572 (20.1%) of patients. Dengue hemorrhagic fever (DHF), dengue shock syndrome (DSS) and severe dengue (SD) were significantly more likely to occur in patients with prolonged fever. Mucosal bleeding, anorexia, diarrhea, abdominal pain, nausea or vomiting, lethargy, rash, clinical fluid accumulation, hepatomegaly, nosocomial infection, leukopenia, higher neutrophil count, higher hematocrit, higher alanine transaminase (ALT) and aspartate transaminase (AST), higher creatinine, lower protein and prolonged activated partial thromboplastin time (APTT) were significantly associated with prolonged fever but not platelet count or prothrombin time (PT). Saddleback fever was present in 165 (5.8%). Although DHF and SD were more likely to occur in patients in those with saddleback fever, DSS was not. Compared with prolonged fever, saddleback fever did not show many significant associations except for diarrhea, abdominal pain, clinical fluid accumulation, hematocrit and platelet change, and lower systolic blood pressure. This study demonstrates that prolonged fever may be associated with various warning signs and more severe forms of dengue (SD, DSS, DHF), while saddleback fever showed associations with DHF and SD but not DSS. The presence of prolonged or saddleback fever in dengue patients should therefore prompt

  12. Show Me the Way

    ERIC Educational Resources Information Center

    Dicks, Matthew J.

    2005-01-01

    Because today's students have grown up steeped in video games and the Internet, most of them expect feedback, and usually gratification, very soon after they expend effort on a task. Teachers can get quick feedback to students by showing them videotapes of their learning performances. The author, a 3rd grade teacher describes how the seemingly…

  13. Stage a Water Show

    ERIC Educational Resources Information Center

    Frasier, Debra

    2008-01-01

    In the author's book titled "The Incredible Water Show," the characters from "Miss Alaineus: A Vocabulary Disaster" used an ocean of information to stage an inventive performance about the water cycle. In this article, the author relates how she turned the story into hands-on science teaching for real-life fifth-grade students. The author also…

  14. The Ozone Show.

    ERIC Educational Resources Information Center

    Mathieu, Aaron

    2000-01-01

    Uses a talk show activity for a final assessment tool for students to debate about the ozone hole. Students are assessed on five areas: (1) cooperative learning; (2) the written component; (3) content; (4) self-evaluation; and (5) peer evaluation. (SAH)

  15. Chemistry Game Shows

    NASA Astrophysics Data System (ADS)

    Campbell, Susan; Muzyka, Jennifer

    2002-04-01

    We present a technological improvement to the use of game shows to help students review for tests. Our approach uses HTML files interpreted with a browser on a computer attached to an LCD projector. The HTML files can be easily modified for use of the game in a variety of courses.

  16. Showing What They Know

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2008-01-01

    Having students show their skills in three dimensions, known as performance-based assessment, dates back at least to Socrates. Individual schools such as Barrington High School--located just outside of Providence--have been requiring students to actively demonstrate their knowledge for years. The Rhode Island's high school graduating class became…

  17. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  18. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  19. Talk Show Science.

    ERIC Educational Resources Information Center

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  20. What Do Maps Show?

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This curriculum packet, appropriate for grades 4-8, features a teaching poster which shows different types of maps (different views of Salt Lake City, Utah), as well as three reproducible maps and reproducible activity sheets which complement the maps. The poster provides teacher background, including step-by-step lesson plans for four geography…

  1. Prolonged Wars: A Post-Nuclear Challenge

    DTIC Science & Technology

    1994-10-01

    Leverage: The National Religious Party of Israel and Its Influence on Foreign Policy (1984); The x Israeli Arms Industry: Foreign Policy, Arms...PROLONGED WARS 8 “innumerable but indecisive battles.”20 This is, of course, anathema to short-war doctrines. Mao’s legacy influenced subsequent...historical rivalry with Iran and Saddam’s leadership ambitions, the Iraqi strongman feared his Shiaa and Kurdish population would be vulnerable to influence

  2. Prolonged Exposure: a Rapid Treatment for Phobias

    PubMed Central

    Watson, J. P.; Gaind, R.; Marks, I. M.

    1971-01-01

    Ten adult patients with long-standing specific phobias were treated by prolonged continuous exposure to their phobic objects in fantasy and reality without avoidance. All patients were greatly helped by four to five hours' treatment in two or three sessions, and all improved more after practice than after imaginal sessions. The treatment method is more economical and efficient than other methods described so far. PMID:5539135

  3. Brain glycogen decreases during prolonged exercise

    PubMed Central

    Matsui, Takashi; Soya, Shingo; Okamoto, Masahiro; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2011-01-01

    Abstract Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here, we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose, we exercised male Wistar rats on a treadmill for different durations (30–120 min) at moderate intensity (20 m min−1) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37–60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise. PMID:21521757

  4. SALIVARY ANTIMICROBIAL PROTEIN RESPONSE TO PROLONGED RUNNING

    PubMed Central

    Kuennen, M.; Gourley, C.; Schneider, S.; Dokladny, K.; Moseley, P.

    2013-01-01

    Introduction Prolonged exercise may compromise immunity through a reduction of salivary antimicrobial proteins (AMPs). Salivary IgA (IgA) has been extensively studied, but little is known about the effect of acute, prolonged exercise on AMPs including lysozyme (Lys) and lactoferrin (Lac). Objective To determine the effect of a 50-km trail race on salivary cortisol (Cort), IgA, Lys, and Lac. Methods 14 subjects: (6 females, 8 males) completed a 50km ultramarathon. Saliva was collected pre, immediately after (post) and 1.5 hrs post race (+1.5). Results Lac concentration was higher at +1.5 hrs post race compared to post exercise (p < 0.05). Lys was unaffected by the race (p > 0.05). IgA concentration, secretion rate, and IgA/Osm were lower +1.5 hrs post compared to pre race (p < 0.05). Cort concentration was higher at post compared to +1.5 (p < 0.05), but was unaltered from pre race levels. Subjects finished in 7.81±1.2 hrs. Saliva flow rate did not differ between time points. Saliva Osm increased at post (p < 0.05) compared to pre race. Conclusions The intensity could have been too low to alter Lys and Lac secretion rates and thus, may not be as sensitive as IgA to changes in response to prolonged running. Results expand our understanding of the mucosal immune system and may have implications for predicting illness after prolonged running. PMID:24744458

  5. Variation in Definition of Prolonged Mechanical Ventilation.

    PubMed

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  6. Prolonging life: legal, ethical, and social dilemmas.

    PubMed

    Paulson, Steve; Comfort, Christopher P; Lee, Barbara Coombs; Shemie, Sam; Solomon, Mildred Z

    2014-11-01

    The ability of modern medicine to prolong life has raised a variety of difficult legal, ethical, and social issues on which reasonable minds can differ. Among these are the morality of euthanasia in cases of deep coma or irreversible injury, as well as the Dead Donor Rule with respect to organ harvesting and transplants. As science continues to refine and develop lifesaving technologies, questions remain as to how much medical effort and financial resources should be expended to prolong the lives of patients suspended between life and death. At what point should death be considered irreversible? What criteria should be used to determine when to withhold or withdraw life-prolonging treatments in cases of severe brain damage and terminal illness? To explore these complex dilemmas, Steve Paulson, executive producer and host of To the Best of Our Knowledge, moderated a discussion panel. Pediatrician Sam Shemie, hospice medical director Christopher P. Comfort, bioethicist Mildred Z. Solomon, and attorney Barbara Coombs Lee examined the underlying assumptions and considerations that ultimately shape individual and societal decisions surrounding these issues. The following is an edited transcript of the discussion that occurred November 12, 2013, 7:00-8:30 PM, at the New York Academy of Sciences in New York City. © 2014 New York Academy of Sciences.

  7. Adrenal insufficiency causes life-threatening arrhythmia with prolongation of QT interval.

    PubMed

    Komuro, Jin; Kaneko, Mitsunobu; Ueda, Kazutaka; Nitta, Shuya; Kasao, Masashi; Shirai, Tetsuro

    2016-06-01

    A 63-year-old woman who had hypopituitarism was re-admitted to our hospital because of fever, diarrhea and disturbance of consciousness with life-threatening arrhythmia due to prolongation of the QT interval. She has been treated with hydrocortisone consequently, and has shown few ventricular arrhythmias with normalization of the QT interval. There have been several reports showing the case of prolonged QT interval with adrenal insufficiency, but there are few reports of isolated adrenocorticotropic hormone deficiency without any electrolytes imbalance that showed polymorphic ventricular tachycardia associated with QT prolongation. We discuss some possible mechanisms of how adrenal insufficiency causes life-threatening arrhythmia. Since lack of glucocorticoid hormone might induce prolongation of the QT interval, patients with adrenal insufficiency should be paid attention as candidates of lethal arrhythmias particularly when exposed to excessive stresses.

  8. A method to study intracellular ice nucleation.

    PubMed

    Tatsutani, K; Rubinsky, B

    1998-02-01

    The thermodynamics of intracellular ice nucleation are important in low-temperature biology for understanding and controlling the process of cell destruction by freezing. We have developed a new apparatus and technique for studying the physics of intracellular ice nucleation. Employing the principle of directional solidification in conjunction with light microscopy, we can generate information on the temperature at which ice nucleates intracellularly as a function of the thermal history the cells experience. The methodology is introduced, and results with primary prostatic cancer cells are described.

  9. The Association between Job-Related Psychosocial Factors and Prolonged Fatigue among Industrial Employees in Taiwan

    PubMed Central

    Tang, Feng-Cheng; Li, Ren-Hau; Huang, Shu-Ling

    2016-01-01

    Background and Objectives Prolonged fatigue is common among employees, but the relationship between prolonged fatigue and job-related psychosocial factors is seldom studied. This study aimed (1) to assess the individual relations of physical condition, psychological condition, and job-related psychosocial factors to prolonged fatigue among employees, and (2) to clarify the associations between job-related psychosocial factors and prolonged fatigue using hierarchical regression when demographic characteristics, physical condition, and psychological condition were controlled. Methods A cross-sectional study was employed. A questionnaire was used to obtain information pertaining to demographic characteristics, physical condition (perceived physical health and exercise routine), psychological condition (perceived mental health and psychological distress), job-related psychosocial factors (job demand, job control, and workplace social support), and prolonged fatigue. Results A total of 3,109 employees were recruited. Using multiple regression with controlled demographic characteristics, psychological condition explained 52.0% of the variance in prolonged fatigue. Physical condition and job-related psychosocial factors had an adjusted R2 of 0.370 and 0.251, respectively. Hierarchical multiple regression revealed that, among job-related psychosocial factors, job demand and job control showed significant associations with fatigue. Conclusion Our findings highlight the role of job demand and job control, in addition to the role of perceived physical health, perceived mental health, and psychological distress, in workers’ prolonged fatigue. However, more research is required to verify the causation among all the variables. PMID:26930064

  10. Evidence of Health Risks Associated with Prolonged Standing at Work and Intervention Effectiveness

    PubMed Central

    Waters, Thomas R.; Dick, Robert B.

    2015-01-01

    Purpose Prolonged standing at work has been shown to be associated with a number of potentially serious health outcomes, such as lower back and leg pain, cardiovascular problems, fatigue, discomfort, and pregnancy related health outcomes. Recent studies have been conducted examining the relationship between these health outcomes and the amount of time spent standing while on the job. The purpose of this article was to provide a review of the health risks and interventions for workers and employers that are involved in occupations requiring prolonged standing. A brief review of recommendations by governmental and professional organizations for hours of prolonged standing is also included. Findings Based on our review of the literature, there seems to be ample evidence showing that prolonged standing at work leads to adverse health outcomes. Review of the literature also supports the conclusion that certain interventions are effective in reducing the hazards associated with prolonged standing. Suggested interventions include the use of floor mats, sit-stand workstations/chairs, shoes, shoe inserts and hosiery or stockings. Studies could be improved by using more precise definitions of prolonged standing (e.g., duration, movement restrictions, and type of work), better measurement of the health outcomes and more rigorous study protocols. Conclusion and Clinical Relevance Use of interventions and following suggested guidelines on hours of standing from governmental and professional organizations should reduce the health risks from prolonged standing. PMID:25041875

  11. The Association between Job-Related Psychosocial Factors and Prolonged Fatigue among Industrial Employees in Taiwan.

    PubMed

    Tang, Feng-Cheng; Li, Ren-Hau; Huang, Shu-Ling

    2016-01-01

    Prolonged fatigue is common among employees, but the relationship between prolonged fatigue and job-related psychosocial factors is seldom studied. This study aimed (1) to assess the individual relations of physical condition, psychological condition, and job-related psychosocial factors to prolonged fatigue among employees, and (2) to clarify the associations between job-related psychosocial factors and prolonged fatigue using hierarchical regression when demographic characteristics, physical condition, and psychological condition were controlled. A cross-sectional study was employed. A questionnaire was used to obtain information pertaining to demographic characteristics, physical condition (perceived physical health and exercise routine), psychological condition (perceived mental health and psychological distress), job-related psychosocial factors (job demand, job control, and workplace social support), and prolonged fatigue. A total of 3,109 employees were recruited. Using multiple regression with controlled demographic characteristics, psychological condition explained 52.0% of the variance in prolonged fatigue. Physical condition and job-related psychosocial factors had an adjusted R2 of 0.370 and 0.251, respectively. Hierarchical multiple regression revealed that, among job-related psychosocial factors, job demand and job control showed significant associations with fatigue. Our findings highlight the role of job demand and job control, in addition to the role of perceived physical health, perceived mental health, and psychological distress, in workers' prolonged fatigue. However, more research is required to verify the causation among all the variables.

  12. Mars Slide Show

    NASA Technical Reports Server (NTRS)

    2006-01-01

    15 September 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a landslide that occurred off of a steep slope in Tithonium Chasma, part of the vast Valles Marineris trough system.

    Location near: 4.8oS, 84.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  13. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy.

    PubMed

    Okabe, Kohki; Inada, Noriko; Gota, Chie; Harada, Yoshie; Funatsu, Takashi; Uchiyama, Seiichi

    2012-02-28

    Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18-0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function.

  14. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy

    PubMed Central

    Okabe, Kohki; Inada, Noriko; Gota, Chie; Harada, Yoshie; Funatsu, Takashi; Uchiyama, Seiichi

    2012-01-01

    Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18–0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function. PMID:22426226

  15. Microsporidia Are Natural Intracellular Parasites of the Nematode Caenorhabditis elegans

    PubMed Central

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-01-01

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes. PMID:19071962

  16. Imaging atrial arrhythmic intracellular calcium in intact heart

    PubMed Central

    Xie, Wenjun; Santulli, Gaetano; Guo, Xiaoxiao; Gao, Melanie; Chen, Bi-Xing; Marks, Andrew R.

    2014-01-01

    Abnormalities in intracellular Ca2+ signaling have been proposed to play an essential role in the pathophysiology of atrial arrhythmias. However, a direct observation of intracellular Ca2+ in atrial myocytes during atrial arrhythmias is lacking. Here, we have developed an ex vivo model of simultaneous Ca2+ imaging and electrocardiographic recording in cardiac atria. Using this system we were able to record atrial arrhythmic intracellular Ca2+ activities. Our results indicate that atrial arrhythmias can be tightly linked to intracellular Ca2+ waves and Ca2+ alternans. Moreover, we applied this strategy to analyze Ca2+ signals in the hearts of WT and knock-in mice harboring a ‘leaky’ type 2 ryanodine receptor (RyR2-R2474S). We showed that sarcoplasmic reticulum (SR) Ca2+ leak increases the susceptibility to Ca2+ alternans and Ca2+ waves increasing the incidence of atrial arrhythmias. Reduction of SR Ca2+ leak via RyR2 by acute treatment with S107 reduced both Ca2+ alternans and Ca2+ waves, and prevented atrial arrhythmias. PMID:24041536

  17. Cell-cell contact affects membrane integrity after intracellular freezing.

    PubMed

    Acker, J P; McGann, L E

    2000-02-01

    The response of cells to freezing depends critically on the presence of an intact cell membrane. During rapid cooling, the cell plasma membrane may no longer be an effective barrier to ice propagation and can be breached by extracellular ice resulting in the nucleation of the supercooled cytoplasm. In tissues, the formation of intracellular ice is compounded by the presence of cell-cell and cell-surface interactions. Three different hamster fibroblast model systems were used to simulate structures found in organized tissues. Samples were supercooled to an experimental temperature on a cryostage and ice nucleated at the constant temperature. A dual fluorescent staining technique was used for the quantitative assessment of the integrity of the cell plasma membrane. A novel technique using the fluorescent stain SYTO was used for the detection of intracellular ice formation (IIF) in cell monolayers. The cumulative incidence of cells with a loss of membrane integrity and the cumulative incidence of IIF were determined as a function of temperature. Cells in suspension and individual attached cells showed no significant difference in the number of cells that formed intracellular ice and those that lost membrane integrity. For cells in a monolayer, with cell-cell contact, intracellular ice formation did not result in the immediate disruption of the plasma membrane in the majority of cells. This introduces the potential for minimizing damage due to IIF and for developing strategies for the cryoprotection of tissues during rapid cooling. Copyright 2000 Academic Press.

  18. Imaging atrial arrhythmic intracellular calcium in intact heart.

    PubMed

    Xie, Wenjun; Santulli, Gaetano; Guo, Xiaoxiao; Gao, Melanie; Chen, Bi-Xing; Marks, Andrew R

    2013-11-01

    Abnormalities in intracellular Ca(2+) signaling have been proposed to play an essential role in the pathophysiology of atrial arrhythmias. However, a direct observation of intracellular Ca(2+) in atrial myocytes during atrial arrhythmias is lacking. Here, we have developed an ex vivo model of simultaneous Ca(2+) imaging and electrocardiographic recording in cardiac atria. Using this system we were able to record atrial arrhythmic intracellular Ca(2+) activities. Our results indicate that atrial arrhythmias can be tightly linked to intracellular Ca(2+) waves and Ca(2+) alternans. Moreover, we applied this strategy to analyze Ca(2+) signals in the hearts of WT and knock-in mice harboring a 'leaky' type 2 ryanodine receptor (RyR2-R2474S). We showed that sarcoplasmic reticulum (SR) Ca(2+) leak increases the susceptibility to Ca(2+) alternans and Ca(2+) waves increasing the incidence of atrial arrhythmias. Reduction of SR Ca(2+) leak via RyR2 by acute treatment with S107 reduced both Ca(2+) alternans and Ca(2+) waves, and prevented atrial arrhythmias.

  19. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  20. Intracellular minerals and metal deposits in prokaryotes.

    PubMed

    Edwards, K J; Bazylinski, D A

    2008-06-01

    Thanks to the work of Terrance J. Beveridge and other pioneers in the field of metal-microbe interactions, prokaryotes are well known to sequester metals and other ions intracellularly in various forms. These forms range from poorly ordered deposits of metals to well-ordered mineral crystals. Studies on well-ordered crystalline structures have generally focused on intracellular organelles produced by magnetotactic bacteria that are ubiquitous in terrestrial and marine environments that precipitate Fe(3)O(4) or Fe(3)S(4), Fe-bearing minerals that have magnetic properties and are enclosed in intracellular membranes. In contrast, studies on less-well ordered minerals have focused on Fe-, As-, Mn-, Au-, Se- and Cd-precipitates that occur intracellularly. The biological and environmental function of these particles remains a matter of debate.

  1. Reduced contraction strength with increased intracellular [Ca2+] in left ventricular trabeculae from failing rat hearts

    PubMed Central

    Ward, Marie-Louise; Pope, Adèle J; Loiselle, Denis S; Cannell, Mark B

    2003-01-01

    Intracellular calcium ([Ca2+]i) and isometric force were measured in left ventricular (LV) trabeculae from spontaneously hypertensive rats (SHR) with failing hearts and normotensive Wistar-Kyoto (WKY) controls. At a physiological stimulation frequency (5 Hz), and at 37 °C, the peak stress of SHR trabeculae was significantly (P ≤; 0.05) reduced compared to WKY (8 ± 1 mN mm−2(n = 8)vs. 21 ± 5 mN mm−2(n = 8), respectively). No differences between strains in either the time-to-peak stress, or the time from peak to 50 % relaxation were detected. Measurements using fura-2 showed that in the SHR both the peak of the Ca2+ transient and the resting [Ca2+]i were increased compared to WKY (peak: 0.69 ± 0.08 vs. 0.51 ± 0.08 μm (P ≤ 0.1) and resting: 0.19 ± 0.02 vs. 0.09 ± 0.02 μm (P ≤ 0.05), SHR vs. WKY, respectively). The decay of the Ca2+ transient was prolonged in SHR, with time constants of: 0.063 ± 0.002 vs. 0.052 ± 0.003 s (SHR vs. WKY, respectively). Similar results were obtained at 1 Hz stimulation, and for[Ca2+]o between 0.5 and 5 mm. The decay of the caffeine-evoked Ca2+ transient was slower in SHR (9.8 ± 0.7 s (n = 8)vs. 7.7 ± 0.2 s (n = 8) in WKY), but this difference was removed by use of the SL Ca2+-ATPase inhibitor carboxyeosin. Histological examination of transverse sections showed that the fractional content of perimysial collagen was increased in SHR compared to WKY (18.0 ± 4.6 % (n = 10)vs. 2.9 ± 0.9 % (n = 11) SHR vs. WKY, respectively). Our results show that differences in the amplitude and the time course of the Ca2+ transient between SHR and WKY do not explain the reduced contractile performance of SHR myocardium per se. Rather, we suggest that, in this animal model of heart failure, contractile function is compromised by increased collagen, and its three-dimensional organisation, and not by reduced availability of intracellular Ca2+. PMID:12527740

  2. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  3. XMM on show

    NASA Astrophysics Data System (ADS)

    1998-01-01

    A unique opportunity for journalists and cameramen to view Europe's next scientific satellite, XMM, will be provided at ESA/ESTEC, Noordwijk, the Netherlands on Tuesday 10 February at 10:00 a.m. On show will be the full-size development version of XMM which has completed engineering tests. Press representatives will be permitted to inspect it and take pictures at close quarters. Robert Lainé, the XMM project manager, and Fred Jansen, the XMM project scientist will present the spacecraft and mission. Roger Bonnet, Director of the ESA Science programme will present Horizons 2000, the future ESA Science programme. After the presentations they will be available to answer questions. Due for launch in 1999, XMM is an unprecedented space observatory for X-ray astronomy, with far greater sensitivity than any previous X-ray mission. It is also ESA's largest scientific spacecraft -- almost 11 metres long and with a mass of nearly 4 tonnes.

  4. Adaptive prolonged postreproductive life span in killer whales.

    PubMed

    Foster, Emma A; Franks, Daniel W; Mazzi, Sonia; Darden, Safi K; Balcomb, Ken C; Ford, John K B; Croft, Darren P

    2012-09-14

    Prolonged life after reproduction is difficult to explain evolutionarily unless it arises as a physiological side effect of increased longevity or it benefits related individuals (i.e., increases inclusive fitness). There is little evidence that postreproductive life spans are adaptive in nonhuman animals. By using multigenerational records for two killer whale (Orcinus orca) populations in which females can live for decades after their final parturition, we show that postreproductive mothers increase the survival of offspring, particularly their older male offspring. This finding may explain why female killer whales have evolved the longest postreproductive life span of all nonhuman animals.

  5. Prolonged ictal monoparesis with parietal Periodic Lateralised Epileptiform Discharges (PLEDs).

    PubMed

    Murahara, Takashi; Kinoshita, Masako; Usami, Kiyohide; Matsui, Masashi; Yamashita, Kouhei; Takahashi, Ryosuke; Ikeda, Akio

    2013-06-01

    We report a patient with prolonged monoparesis and parietal periodic lateralised epileptiform discharges (PLEDs). The patient was a 73-year-old man with chronic myelomonocytic leukaemia who developed persisting monoparesis of the right arm, sensory aphasia, and finger agnosia, initially associated with focal clonic seizures. These neurological deficits remained for seven days without subsequent focal clonic seizures. The EEG showed left-sided PLEDs, maximal in the left occipito-parietal area. Ten days later, following phenytoin treatment, these symptoms suddenly improved and parietal PLEDs disappeared. Sustained PLEDs in the left parietal region may have been causally associated with ictal paresis in this patient.

  6. Intracellular mGluR5 plays a critical role in neuropathic pain

    PubMed Central

    Vincent, Kathleen; Cornea, Virginia M.; Jong, Yuh-Jiin I.; Laferrière, André; Kumar, Naresh; Mickeviciute, Aiste; Fung, Jollee S. T.; Bandegi, Pouya; Ribeiro-da-Silva, Alfredo; O'Malley, Karen L.; Coderre, Terence J.

    2016-01-01

    Spinal mGluR5 is a key mediator of neuroplasticity underlying persistent pain. Although brain mGluR5 is localized on cell surface and intracellular membranes, neither the presence nor physiological role of spinal intracellular mGluR5 is established. Here we show that in spinal dorsal horn neurons >80% of mGluR5 is intracellular, of which ∼60% is located on nuclear membranes, where activation leads to sustained Ca2+ responses. Nerve injury inducing nociceptive hypersensitivity also increases the expression of nuclear mGluR5 and receptor-mediated phosphorylated-ERK1/2, Arc/Arg3.1 and c-fos. Spinal blockade of intracellular mGluR5 reduces neuropathic pain behaviours and signalling molecules, whereas blockade of cell-surface mGluR5 has little effect. Decreasing intracellular glutamate via blocking EAAT-3, mimics the effects of intracellular mGluR5 antagonism. These findings show a direct link between an intracellular GPCR and behavioural expression in vivo. Blockade of intracellular mGluR5 represents a new strategy for the development of effective therapies for persistent pain. PMID:26837579

  7. Intracellular Biopotentials During Static Extracellular Stimulation

    PubMed Central

    Klee, Maurice

    1973-01-01

    Two properties of the intracellular potentials and electric fields resulting from static extracellular stimulation are obtained for arbitrarily shaped cells. First, the values of intracellular potential are shown to be bounded by the maximum and minimum values of extracellular potential on the surface of the cell. Second, the volume average of the magnitude of intracellular electric field is shown to have an upper bound given by the ratio of the magnitude of the largest extracellular potential difference on the surface of the cell to a generalized length constant λ = [σintraVcell/(σmemb Acell)]1/2, where Vcell and Acell are the volume and surface area of the cell, σintra is the intracellular conductivity (reciprocal ohms per centimeter), and σmemb is the membrane conductivity (reciprocal ohms per square centimeter). The use of the upper bound on the volume average of the magnitude of intracellular electric field as an estimate for intracellular isopotentiality is discussed and the use of the generalized length constant for electrically describing arbitrary cells is illustrated for cylindrical- and spheroidal-shaped cells. PMID:4726882

  8. Prolonged storage of packed red blood cells for blood transfusion.

    PubMed

    Martí-Carvajal, Arturo J; Simancas-Racines, Daniel; Peña-González, Barbra S

    2015-07-14

    ('prolonged' or 'older') versus packed red blood cells with < 21 days storage ('fresh'). We pooled data to assess the effect of prolonged storage on death from any cause. The confidence in the results from these trials was very low, due to the bias in their design and their limited sample sizes.The estimated effect of packed red blood cells with ≥ 21 days storage versus packed red blood cells with < 21 days storage for the outcome death from any cause was imprecise (5/45 [11.11%] versus 2/46 [4.34%]; RR 2.36; 95% CI 0.65 to 8.52; I(2): 0%, P = 0.26, very low quality of evidence). Trial sequential analysis, with only two trials, shows that we do not yet have convincing evidence that older packed red blood cells induce a 20% relative risk reduction of death from any cause compared with fresher packed red blood cells. No trial included other outcomes of interest specified in this review, namely transfusion-related acute lung injury, postoperative infections, and adverse events. The safety profile is unknown. Recognising the limitations of the review, relating to the size and nature of the included trials, this Cochrane Review provides no evidence to support or reject the use of packed red blood cells for blood transfusion which have been stored for ≥ 21 days ('prolonged' or 'older') compared with those stored for < 21 days ('fresh'). These results are based on three small single centre trials with high risks of bias. There is insufficient evidence to determine the effects of fresh or older packed red blood cells for blood transfusion. Therefore, we urge readers to interpret the trial results with caution. The results from four large ongoing trials will help to inform future updates of this review.

  9. Public medical shows.

    PubMed

    Walusinski, Olivier

    2014-01-01

    In the second half of the 19th century, Jean-Martin Charcot (1825-1893) became famous for the quality of his teaching and his innovative neurological discoveries, bringing many French and foreign students to Paris. A hunger for recognition, together with progressive and anticlerical ideals, led Charcot to invite writers, journalists, and politicians to his lessons, during which he presented the results of his work on hysteria. These events became public performances, for which physicians and patients were transformed into actors. Major newspapers ran accounts of these consultations, more like theatrical shows in some respects. The resultant enthusiasm prompted other physicians in Paris and throughout France to try and imitate them. We will compare the form and substance of Charcot's lessons with those given by Jules-Bernard Luys (1828-1897), Victor Dumontpallier (1826-1899), Ambroise-Auguste Liébault (1823-1904), Hippolyte Bernheim (1840-1919), Joseph Grasset (1849-1918), and Albert Pitres (1848-1928). We will also note their impact on contemporary cinema and theatre.

  10. Group I mGluRs Evoke K-ATP Current by Intracellular Ca2+ Mobilization in Rat Subthalamus Neurons

    PubMed Central

    Shen, Ke-Zhong

    2013-01-01

    We reported previously that Ca2+ influx through N-methly-d-aspartate-gated channels evokes ATP-sensitive K+ (K-ATP) currents in rat subthalamic nucleus (STN) neurons. By using whole-cell patch clamp recordings in brain slices, we investigated the ability of (RS)-3,5-dihydroxyphenylglycine (DHPG), a group I metabotropic glutamate receptor (mGluR) agonist, to evoke K-ATP currents. DHPG (20 µM) evoked outward current at −70 mV and was associated with a positive slope conductance of 2.7 nS. The sulfonylurea agent tolbutamide (100 µM) converted the positive slope to negative slope conductance, indicating mediation by K-ATP channels (ATP-sensitive K+ channels). Currents evoked by DHPG were significantly reduced by a combination of mGluR1 and mGluR5 negative allosteric modulators. DHPG-evoked outward current was blocked by cyclopiazonic acid and thapsigargin and mimicked by caffeine, suggesting mediation by release of intracellular Ca2+. DHPG outward current was also blocked by ryanodine and 2-aminoethoxydiphenylborane, suggesting mediation by ryanodine- and inositol 1,4,5-triphosphate-sensitive Ca2+ release. The nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester and inhibitors of protein kinase G activity also suppressed DHPG-induced outward current. Voltage recordings showed that tolbutamide prolonged depolarizing plateau potentials and increased the spontaneous firing rate of STN neurons recorded in the presence of DHPG. These results show that group I mGluR stimulation generates K-ATP current by a nitric oxide- and protein kinase G-dependent process that is mediated by release of Ca2+ from intracellular stores. Because burst firing is linked to symptoms of Parkinson’s disease, we suggest that K-ATP channels might provide a physiologically important inhibitory influence on STN neuronal activity. PMID:23335392

  11. Umami changes intracellular Ca2+ levels using intracellular and extracellular sources in mouse taste receptor cells.

    PubMed

    Narukawa, Masataka; Mori, Tomohiko; Hayashi, Yukako

    2006-11-01

    Recently, candidates for umami receptors have been identified in taste cells, but the precise transduction mechanisms of the downstream receptor remain unknown. To investigate how intracellular Ca(2+) increases in the umami transduction pathway, we measured changes in intracellular Ca(2+) levels in response to umami stimuli monosodium glutamate (MSG), IMP, and MSG + IMP in mouse taste receptor cells (TRCs) by Ca(2+) imaging. Even when extracellular Ca(2+) was absent, 1/3 of umami-responsive TRCs exhibited increased intracellular Ca(2+) levels. When intracellular Ca(2+) was depleted, half of the TRCs retained their response to umami. These results suggest that umami-responsive TRCs increase their intracellular Ca(2+) levels through two pathways: by releasing Ca(2+) from intracellular stores and by an influx of Ca(2+) from extracellular sources. We conclude that the Ca(2+) influx from extracellular source might play an important role in the synergistic effect between MSG and IMP.

  12. The Great Cometary Show

    NASA Astrophysics Data System (ADS)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  13. The role of nitric oxide synthase in reduced vasocontractile responsiveness induced by prolonged α1-adrenergic receptor stimulation in rat thoracic aorta

    PubMed Central

    Gürdal, Hakan; Can, Alp; Uğur, Mehmet

    2005-01-01

    Prolonged exposure (6–12 h) of rat aorta to alpha1-adrenergic receptor (α1AR) agonist phenylephrine (Phe) leads to a decrease in α1AR-mediated vasoconstriction. This reduced responsiveness to α1AR stimulation was strongly dependent on the intactness of the endothelium. We examined the effect of Phe on nitric oxide synthase (NOS) activity by measuring the conversion of [3H]L-arginine to [3H]L-citrulline in rat aorta or in endothelial cells isolated from rat aorta. Phe stimulation increased NOS activity in control aortas. This response was antagonized by prazosin. However, Phe increased neither the activity of NOS nor intracellular Ca2+ in the isolated endothelial cells from the control aortas, whereas acetylcholine (Ach) was able to stimulate both responses in these cells. This result suggests that Phe stimulates α1AR on vascular smooth muscle cells and has an indirect influence on endothelial cells to increase NOS activity. In Phe-exposed aortic rings, basal NOS activity was found to have increased compared to vehicle-exposed control rings. Stimulation with Phe or Ach caused a small increase over basal NOS activity in these preparations. Prolonged exposure to Phe also caused an enhancement of Ach-mediated vasorelaxation in rat aorta. Immunoblot and reverse transcription–polymerase chain reaction experiments showed that prolonged exposure of rat aorta to Phe resulted in an increased expression of eNOS, but not iNOS. This increase was antagonized by nonselective antagonist prazosin. Immunohistochemical staining experiments also showed that expression of eNOS increased in endothelial cells after Phe exposure of the aortas. These results, all together, showed that prolonged exposure of rat aorta to α1AR agonist Phe enhanced the expression of eNOS and basal NOS activity, which probably causes a decreased vasocontractile response to Phe or to other agonists such as 5HT (5-hydroxytryptamine) in rat aorta. This phenomenon can be considered more as a functional

  14. Intracellular recording from a spider vibration receptor.

    PubMed

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  15. Uncoupling Caveolae from Intracellular Signaling In Vivo

    PubMed Central

    Kraehling, Jan R.; Hao, Zhengrong; Lee, Monica Y.; Vinyard, David J.; Velazquez, Heino; Liu, X.; Stan, Radu V.; Brudvig, Gary W.; Sessa, William C.

    2015-01-01

    Rationale Caveolin-1 negatively regulates eNOS derived NO production and this has been mapped to several residues on Cav-1 including F92. Herein, we reasoned that endothelial expression of an F92ACav-1 transgene would let us decipher the mechanisms and relationships between caveolae structure and intracellular signaling. Objective This study was designed to separate caveolae formation from its downstream signaling effects. Methods and Results An endothelial-specific doxycycline-regulated mouse model for the expression of Cav-1-F92A was developed. Blood pressure by telemetry and nitric oxide bioavailability by electron paramagnetic resonance and phosphorylation of VASP were determined. Caveolae integrity in the presence of Cav-1-F92A was measured by stabilization of Cav-2, sucrose gradient and electron microscopy. Histological analysis of heart and lung, echocardiography and signaling were performed. Conclusions This study shows that mutant Cav-1-F92A forms caveolae structures similar to WT but leads to increases in NO bioavailability in vivo thereby demonstrating that caveolae formation and downstream signaling events occur through independent mechanisms. PMID:26602865

  16. The Effect of Ethanol on the Release of Opioids from Oral Prolonged-Release Preparations

    PubMed Central

    Walden, Malcolm; Nicholls, Fiona A.; Smith, Kevin J.; Tucker, Geoffrey T.

    2007-01-01

    Recent experience has prompted the US FDA to consider whether ethanol ingestion may modify the release characteristics of prolonged-release formulations, where dose dumping may be an issue for patient safety. The influence of ethanol on the in vitro release of opioid drugs from some prolonged-release formulations utilizing different release technologies was examined. Results indicated that the prolonged-release mechanisms remained intact under the testing conditions, although one product showed initial sensitivity to ethanol in its release characteristics. Nevertheless, in this case, extrapolation of the findings to likely outcome in vivo indicated no risk of dose-dumping. It is proposed that prolonged-release medicinal products should be tested during development to ensure robustness to the effects of ethanol on drug release. PMID:17882730

  17. Prolonged fasting impairs neural reactivity to visual stimulation.

    PubMed

    Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U

    2016-01-01

    Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.

  18. Measurement of the size of intracellular ice crystals in mouse oocytes using a melting point depression method and the influence of intracellular solute concentrations

    PubMed Central

    Han, Xu; Critser, John K.

    2009-01-01

    Characterization of intracellular ice formed during the cooling procedures of cells significantly benefits the development and optimization design of cryopreservation or cryosurgery techniques. In this study, we investigated the influence of the concentration of extracellular non-permeable and permeable solutes on the melting points of the intracellular ice in mouse oocytes using cryomicroscopy. The results showed that the melting points of the intracellular ice are always lower than the extracellular ice. Based on this observation and the Gibbs-Thomson relation, we established a physical model to calculate the size of intracellular ice crystals and described its relationship with the concentrations of intracellular permeating solutes and macromolecules. This model predicts that the increased concentration of macromolecules in cells, by increasing the extracellular non-permeating solute concentration, can significantly lower the required concentration of permeable solutes for intracellular vitrification. The prediction was tested through the cryomicroscopic observation of the co-existence of intracellular vitrification and extracellular crystallization during cooling at 100°C/min when the extracellular solutions contain 5 molal (m) ethylene glycol and 0.3 to 0.6 m NaCl. PMID:19729005

  19. Measurement of the size of intracellular ice crystals in mouse oocytes using a melting point depression method and the influence of intracellular solute concentrations.

    PubMed

    Han, Xu; Critser, John K

    2009-12-01

    Characterization of intracellular ice formed during the cooling procedures of cells significantly benefits the development and optimization design of cryopreservation or cryosurgery techniques. In this study, we investigated the influence of the concentration of extracellular non-permeable and permeable solutes on the melting points of the intracellular ice in mouse oocytes using cryomicroscopy. The results showed that the melting points of the intracellular ice are always lower than the extracellular ice. Based on this observation and the Gibbs-Thomson relation, we established a physical model to calculate the size of intracellular ice crystals and described its relationship with the concentrations of intracellular permeating solutes and macromolecules. This model predicts that the increased concentration of macromolecules in cells, by increasing the extracellular non-permeating solute concentration, can significantly lower the required concentration of permeable solutes for intracellular vitrification. The prediction was tested through the cryomicroscopic observation of the co-existence of intracellular vitrification and extracellular crystallization during cooling at 100 degrees C/min when the extracellular solutions contain 5 molal (m) ethylene glycol and 0.3 to 0.6m NaCl.

  20. Stretched View Showing 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Stretched View Showing 'Victoria'

    This pair of images from the panoramic camera on NASA's Mars Exploration Rover Opportunity served as initial confirmation that the two-year-old rover is within sight of 'Victoria Crater,' which it has been approaching for more than a year. Engineers on the rover team were unsure whether Opportunity would make it as far as Victoria, but scientists hoped for the chance to study such a large crater with their roving geologist. Victoria Crater is 800 meters (nearly half a mile) in diameter, about six times wider than 'Endurance Crater,' where Opportunity spent several months in 2004 examining rock layers affected by ancient water.

    When scientists using orbital data calculated that they should be able to detect Victoria's rim in rover images, they scrutinized frames taken in the direction of the crater by the panoramic camera. To positively characterize the subtle horizon profile of the crater and some of the features leading up to it, researchers created a vertically-stretched image (top) from a mosaic of regular frames from the panoramic camera (bottom), taken on Opportunity's 804th Martian day (April 29, 2006).

    The stretched image makes mild nearby dunes look like more threatening peaks, but that is only a result of the exaggerated vertical dimension. This vertical stretch technique was first applied to Viking Lander 2 panoramas by Philip Stooke, of the University of Western Ontario, Canada, to help locate the lander with respect to orbiter images. Vertically stretching the image allows features to be more readily identified by the Mars Exploration Rover science team.

    The bright white dot near the horizon to the right of center (barely visible without labeling or zoom-in) is thought to be a light-toned outcrop on the far wall of the crater, suggesting that the rover can see over the low rim of Victoria. In figure 1, the northeast and southeast rims are labeled

  1. Stretched View Showing 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Stretched View Showing 'Victoria'

    This pair of images from the panoramic camera on NASA's Mars Exploration Rover Opportunity served as initial confirmation that the two-year-old rover is within sight of 'Victoria Crater,' which it has been approaching for more than a year. Engineers on the rover team were unsure whether Opportunity would make it as far as Victoria, but scientists hoped for the chance to study such a large crater with their roving geologist. Victoria Crater is 800 meters (nearly half a mile) in diameter, about six times wider than 'Endurance Crater,' where Opportunity spent several months in 2004 examining rock layers affected by ancient water.

    When scientists using orbital data calculated that they should be able to detect Victoria's rim in rover images, they scrutinized frames taken in the direction of the crater by the panoramic camera. To positively characterize the subtle horizon profile of the crater and some of the features leading up to it, researchers created a vertically-stretched image (top) from a mosaic of regular frames from the panoramic camera (bottom), taken on Opportunity's 804th Martian day (April 29, 2006).

    The stretched image makes mild nearby dunes look like more threatening peaks, but that is only a result of the exaggerated vertical dimension. This vertical stretch technique was first applied to Viking Lander 2 panoramas by Philip Stooke, of the University of Western Ontario, Canada, to help locate the lander with respect to orbiter images. Vertically stretching the image allows features to be more readily identified by the Mars Exploration Rover science team.

    The bright white dot near the horizon to the right of center (barely visible without labeling or zoom-in) is thought to be a light-toned outcrop on the far wall of the crater, suggesting that the rover can see over the low rim of Victoria. In figure 1, the northeast and southeast rims are labeled

  2. Single-cell intracellular nano-pH probes.

    PubMed

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  3. Electrical shock survival after prolonged cardiopulmonary resuscitation.

    PubMed

    Ahmad, Maqsood; Shabbir, Khawar

    2013-07-01

    Electrical shock is typically an untoward exposure of human body to any source of electricity that causes a sufficient current to pass through the skin, muscles or hair causing undesirable effects ranging from simple burns to death. Ventricular fibrillation is believed to be the most common cause of death following electrical shock. The case under discussion is of a young man who survived following electrical shock after prolonged cardiopulmonary resuscitation (CPR), multiple defibrillations and artificial ventilation due to poor respiratory effort. Early start of chest compressions played a vital role in successful CPR.

  4. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  5. Mutant models of prolonged life span.

    PubMed

    Mahler, J F

    2001-01-01

    Aging is an important biological process that affects all creatures. For humans, age-related diseases and the question of why we age and die also have tremendous social and philosophical impact. We can therefore expect that models to study mechanisms of the aging process will always attract much interest. Until recently, the mutant model approach to study molecular mechanisms of aging has been limited to lower animals such as yeast, worms, and flies. However, given the current power of genetic technology in mammals, we can expect that phenotypes of prolonged life span will increasingly be seen in mice and subject to evaluation by pathologists. A brief review of current models is presented.

  6. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  7. Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus

    PubMed Central

    Fuentealba, Pablo; Timofeev, Igor; Steriade, Mircea

    2004-01-01

    The thalamic reticular (RE) nucleus is a key structure in the generation of spindles, a hallmark bioelectrical oscillation during early stages of sleep. Intracellular recordings of RE neurons in vivo revealed the presence of prolonged hyperpolarizing potentials preceding spindles in a subgroup (30%) of neurons. These hyperpolarizations (6-10 mV) lasted for 200-300 ms and were present just before the onset of spontaneously occurring spindle waves. Corticothalamic volleys also were effective in generating such hyperpolarizations followed by spindles in RE neurons. A drop of up to 40% in the apparent input resistance (Rin) was associated with these hyperpolarizing potentials, suggesting an active process rather than disfacilitation. Accordingly, the reversal potential was approximately -100 mV for both spontaneous and cortically elicited hyperpolarizations, consistent with the activation of slow K+ conductances. QX-314 in the recording pipettes decreased both the amplitude and incidence of prolonged hyperpolarizations, suggesting the participation of G protein-dependent K+ currents in the generation of hyperpolarizations. Simultaneous extracellular and intracellular recordings in the RE nucleus demonstrated that some RE neurons discharged during the hyperpolarizations and, thus, may be implicated in their generation. The prolonged hyperpolarizations preceding spindles may play a role in the transition from tonic to bursting firing of RE neurons within a range of membrane potential (-60 to -65 mV) at which they set favorable conditions for the generation of low-threshold spike bursts that initiate spindle sequences. These data are further arguments for the generation of spindles within the thalamic RE nucleus. PMID:15210981

  8. Metabolic stress-like condition can be induced by prolonged strenuous exercise in athletes.

    PubMed

    Branth, Stefan; Hambraeus, Leif; Piehl-Aulin, Karin; Essén-Gustavsson, Birgitta; Akerfeldt, Torbjörn; Olsson, Roger; Stridsberg, Mats; Ronquist, Gunnar

    2009-01-01

    Few studies have examined energy metabolism during prolonged, strenuous exercise. We wanted therefore to investigate energy metabolic consequences of a prolonged period of continuous strenuous work with very high energy expenditure. Twelve endurance-trained athletes (6 males and 6 females) were recruited. They performed a 7-h bike race on high work-load intensity. Physiological, biochemical, endocrinological, and anthropometric muscular compartment variables were monitored before, during, and after the race. The energy expenditure was high, being 5557 kcal. Work-load intensity (% of VO(2) peak) was higher in females (77.7%) than in men (69.9%). Muscular glycogen utilization was pronounced, especially in type I fibres (>90%). Additionally, muscular triglyceride lipolysis was considerably accelerated. Plasma glucose levels were increased concomitantly with an unchanged serum insulin concentration which might reflect an insulin resistance state in addition to proteolytic glyconeogenesis. Increased reactive oxygen species (malondialdehyde (MDA)) were additional signs of metabolic stress. MDA levels correlated with glycogen utilization rate. A relative deficiency of energy substrate on a cellular level was indicated by increased intracellular water of the leg muscle concomitantly with increased extracellular levels of the osmoregulatory amino acid taurine. A kindred nature of a presumed insulin-resistant state with less intracellular availability of glucose for erythrocytes was also indicated by the findings of decreased MCV together with increased MCHC (haemoconcentration) after the race. This strenuous energy-demanding work created a metabolic stress-like condition including signs of insulin resistance and deteriorated intracellular glucose availability leading to compromised fuelling of ion pumps, culminating in a disturbed cellular osmoregulation indicated by taurine efflux and cellular swelling.

  9. Secretory vesicle rebound hyperacidification and increased quantal size resulting from prolonged methamphetamine exposure.

    PubMed

    Markov, Dmitriy; Mosharov, Eugene V; Setlik, Wanda; Gershon, Michael D; Sulzer, David

    2008-12-01

    Acute exposure to amphetamines (AMPHs) collapses secretory vesicle pH gradients, which increases cytosolic catecholamine levels while decreasing the quantal size of catecholamine release during fusion events. AMPH and methamphetamine (METH), however, are retained in tissues over long durations. We used optical and electron microscopic probes to measure the effects of long-term METH exposure on secretory vesicle pH, and amperometry and intracellular patch electrochemistry to observe the effects on neurosecretion and cytosolic catecholamines in cultured rat chromaffin cells. In contrast to acute METH effects, exposure to the drug for 6-48 h at 10 microM and higher concentrations produced a concentration-dependent rebound hyperacidification of secretory vesicles. At 5-10 microM levels, prolonged METH increased the quantal size and reinstated exocytotic catecholamine release, although very high (> 100 microM) levels of the drug, while continuing to produce rebound hyperacidification, did not increase quantal size. Secretory vesicle rebound hyperacidification was temperature dependent with optimal response at approximately 37 degrees C, was not blocked by the transcription inhibitor, puromycin, and appears to be a general compensatory response to prolonged exposure with membranophilic weak bases, including AMPHs, methylphenidate, cocaine, and ammonia. Thus, under some conditions of prolonged exposure, AMPHs and other weak bases can enhance, rather than deplete, the vesicular release of catecholamines via a compensatory response resulting in vesicle acidification.

  10. A cell-penetrating bispecific antibody for therapeutic regulation of intracellular targets.

    PubMed

    Weisbart, Richard H; Gera, Joseph F; Chan, Grace; Hansen, James E; Li, Erica; Cloninger, Cheri; Levine, Arnold J; Nishimura, Robert N

    2012-10-01

    The therapeutic use of antibodies is restricted by the limited access of antibodies to intracellular compartments. To overcome this limitation, we developed a cell-penetrating monoclonal antibody, mAb 3E10, as an intracellular delivery vehicle for the intracellular and intranuclear delivery of antibodies constructed as bispecific single-chain Fv fragments. Because MDM2 is an important target in cancer therapy, we selected monoclonal antibody (mAb) 3G5 for intracellular transport. mAb 3G5 binds MDM2 and blocks binding of MDM2 to p53. Here, we show that the resulting 3E10-3G5 bispecific antibody retains cell-penetrating and MDM2-binding activity, increases tumor p53 levels, and inhibits growth of MDM2-addicted tumors. The use of cell-penetrating bispecific antibodies in targeted molecular therapy will significantly broaden the spectrum of accessible intracellular targets and may have a profound impact in cancer therapy.

  11. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects.

    PubMed

    Maruyama, Kazuo

    2011-03-18

    The success of an effective drug delivery system using liposomes for solid tumor targeting based on EPR effects is highly dependent on both size ranging from 100-200 nm in diameter and prolonged circulation half-life in the blood. A major development was the synthesis of PEG-liposomes with a prolonged circulation time in the blood. Active targeting of immunoliposomes to the solid tumor tissue can be achieved by the Fab' fragment which is better than whole IgG in terms of designing PEG-immunoliposomes with prolonged circulation. For intracellular targeting delivery to solid tumors based on EPR effects, transferrin-PEG-liposomes can stay in blood circulation for a long time and extravasate into the extravascular of tumor tissue by the EPR effect as PEG-liposomes. The extravasated transferrin-PEG-liposomes can maintain anti cancer drugs in interstitial space for a longer period, and deliver them into the cytoplasm of tumor cells via transferrin receptor-mediated endocytosis. Transferrin-PEG-liposomes improve the safety and efficacy of anti cancer drug by both passive targeting by prolonged circulation and active targeting by transferrin.

  12. Overexpressed PLTP in macrophage may promote cholesterol accumulation by prolonged endoplasmic reticulum stress.

    PubMed

    Yang, Xinquan; Yu, Yang; Wang, Daxin; Qin, Shucun

    2017-01-01

    It is well known that phospholipid transfer protein (PLTP) is involved in the lipid metabolism and development of atherosclerosis (AS). Abundant PLTP is considered to be expressed on the foam cells derived from monocyte/macrophages in atherosclerotic plaques, suggesting that high level of active PLTP may promote the formation of foam cells. However, the exact role of PLTP on the process of macrophage derived foam cell formation remains unclear. The accumulation of free cholesterol (FC) in the cytoplasm may lead to the prolonged endoplasmic reticulum stress (ERs) and the imbalance of intracellular cholesterol homeostasis. Different PLTP level definitely alternates the phospholipids (PL) and cholesterol level in plasma, strongly suggesting that active PLTP may change the level of FC and PL intracellularly, which subsequently induced the ERs in macrophage. Thus, we hypothesize that high level of PLTP may promote the accumulation of cholesterol in macrophage via the alteration ratio of FC to PL. Therefore, validating this hypothesis may clarify the role of PLTP in macrophage ERs in AS and also raise a novel strategy in the regression of AS plaques via restoring intracellular membrane lipid homeostasis and attenuating ERs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Purification and Characterization of a Novel Intracellular Sucrase Enzyme of Leishmania donovani Promastigotes.

    PubMed

    Singh, Arpita; Mandal, Debjani

    2016-01-01

    The promastigote stage of Leishmania resides in the sand fly gut, enriched with sugar molecules. Recently we reported that Leishmania donovani possesses a sucrose uptake system and a stable pool of intracellular sucrose metabolizing enzyme. In the present study, we purified the intracellular sucrase nearly to its homogeneity and compared it with the purified extracellular sucrase. The estimated size of intracellular sucrase is ~112 kDa by gel filtration chromatography, native PAGE, and substrate staining. However, in SDS-PAGE, the protein is resolved at ~56 kDa, indicating the possibility of a homodimer in its native state. The kinetics of purified intracellular sucrase shows its higher substrate affinity with a K m of 1.61 mM than the extracellular form having a K m of 4.4 mM. The highly specific activity of intracellular sucrase towards sucrose is optimal at pH 6.0 and at 30°C. In this report the purification and characterization of intracellular sucrase provide evidence that sucrase enzyme exists at least in two different forms in Leishmania donovani promastigotes. This intracellular sucrase may support further intracellular utilization of transported sucrose.

  14. Purification and Characterization of a Novel Intracellular Sucrase Enzyme of Leishmania donovani Promastigotes

    PubMed Central

    Singh, Arpita; Mandal, Debjani

    2016-01-01

    The promastigote stage of Leishmania resides in the sand fly gut, enriched with sugar molecules. Recently we reported that Leishmania donovani possesses a sucrose uptake system and a stable pool of intracellular sucrose metabolizing enzyme. In the present study, we purified the intracellular sucrase nearly to its homogeneity and compared it with the purified extracellular sucrase. The estimated size of intracellular sucrase is ~112 kDa by gel filtration chromatography, native PAGE, and substrate staining. However, in SDS-PAGE, the protein is resolved at ~56 kDa, indicating the possibility of a homodimer in its native state. The kinetics of purified intracellular sucrase shows its higher substrate affinity with a K m of 1.61 mM than the extracellular form having a K m of 4.4 mM. The highly specific activity of intracellular sucrase towards sucrose is optimal at pH 6.0 and at 30°C. In this report the purification and characterization of intracellular sucrase provide evidence that sucrase enzyme exists at least in two different forms in Leishmania donovani promastigotes. This intracellular sucrase may support further intracellular utilization of transported sucrose. PMID:27190649

  15. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    PubMed

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  16. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation

    PubMed Central

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G. John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg’) shows that cells with the lowest value of intracellular Tg’ survive the freezing process better than cells with a higher intracellular Tg’. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms. PMID:27055246

  17. Review and Outcome of Prolonged Cardiopulmonary Resuscitation

    PubMed Central

    Youness, Houssein; Al Halabi, Tarek; Hussein, Hussein; Awab, Ahmed; Jones, Kellie; Keddissi, Jean

    2016-01-01

    The maximal duration of cardiopulmonary resuscitation (CPR) is unknown. We report a case of prolonged CPR. We have then reviewed all published cases with CPR duration equal to or more than 20 minutes. The objective was to determine the survival rate, the neurological outcome, and the characteristics of the survivors. Measurements and Main Results. The CPR data for 82 patients was reviewed. The median duration of CPR was 75 minutes. Patients mean age was 43 ± 21 years with no significant comorbidities. The main causes of the cardiac arrests were myocardial infarction (29%), hypothermia (21%), and pulmonary emboli (12%). 74% of the arrests were witnessed, with a mean latency to CPR of 2 ± 6 minutes and good quality chest compression provided in 96% of the cases. Adjunct therapy included extracorporeal membrane oxygenation (18%), thrombolysis (15.8%), and rewarming for hypothermia (19.5%). 83% were alive at 1 year, with full neurological recovery reported in 63 patients. Conclusion. Patients undergoing prolonged CPR can survive with good outcome. Young age, myocardial infarction, and potentially reversible causes of cardiac arrest such as hypothermia and pulmonary emboli predict a favorable result, especially when the arrest is witnessed and followed by prompt and good resuscitative efforts. PMID:26885387

  18. [Left ventricular dyssynchrony in prolonged septal stimulation].

    PubMed

    Ferrando-Castagnetto, Federico; Ricca-Mallada, Roberto; Vidal, Alejandro; Martínez, Fabián; Ferrando, Rodolfo

    2016-01-01

    Pacemaker stimulation is associated with unpredictable severe cardiac events. We evaluated left ventricular mechanical dyssynchrony (LVMD) during prolonged septal right ventricular pacing. We performed 99mTc-MIBI gated-SPECT and phase analysis in 6 patients with pacemakers implanted at least one year before scintigraphy due to advanced atrioventricular block. Using V-Sync of Emory Cardiac Toolbox we obtained phase bandwidth (PBW) and standard deviation (PSD) from rest phase histogram. Clinical variables, QRS duration, rate and mode of pacing in septal right ventricle wall, chamber diameters, presence and extension of myocardial scar and ischemia and rest LVEF were recorded. Prolonged septal endocardial pacing is associated with marked LVMD, even when systolic function was preserved. More severe dyssynchrony was found in patients with impaired LVEF, higher left ventricle diameters, extensive infarct or severe ischemia than in patients with preserved LVEF (PBW: 177.3o vs. 88.3o; PSD: 53.1o vs. 33.8o). In the patients with ischemic heart disease and pacemaker, gated-SPECT phase analysis is a valid and potentially useful technique to evaluate LMVD associated with myocardial scar and to decide the upgrading to biventricular pacing mode.

  19. Topical Drug Formulations for Prolonged Corneal Anesthesia

    PubMed Central

    Wang, Liqiang; Shankarappa, Sahadev A.; Tong, Rong; Ciolino, Joseph B.; Tsui, Jonathan H.; Chiang, Homer H.; Kohane, Daniel S.

    2013-01-01

    Purpose Ocular local anesthetics (OLA’s) currently used in routine clinical practice for corneal anesthesia are short acting and their ability to delay corneal healing makes them unsuitable for long-term use. In this study, we examined the effect on the duration of corneal anesthesia of the site-1 sodium channel blocker tetrodotoxin (TTX), applied with either proparacaine or the chemical permeation enhancer OTAB. The effect of test solutions on corneal healing was also studied. Methods Solutions of TTX, proparacaine, and OTAB, singly or in combination were applied topically to the rat cornea. The blink response, an indirect measure of corneal sensitivity, was recorded using a Cochet-Bonnet esthesiometer, and the duration of corneal anesthesia calculated. The effect of test compounds on the rate of corneal epithelialization was studied in vivo following corneal debridement. Results Combination of TTX and proparacaine resulted in corneal anesthesia that was 8–10 times longer in duration than that from either drug administered alone, while OTAB did not prolong anesthesia. The rate of corneal healing was moderately delayed following co-administration of TTX and proparacaine. Conclusion Co-administration of TTX and proparacaine significantly prolonged corneal anesthesia but in view of delayed corneal re-epithelialization, caution is suggested in use of the combination. PMID:23615270

  20. Prolonged energy harvesting for ingestible devices

    PubMed Central

    Nadeau, Phillip; El-Damak, Dina; Glettig, Dean; Kong, Yong Lin; Mo, Stacy; Cleveland, Cody; Booth, Lucas; Roxhed, Niclas; Langer, Robert; Chandrakasan, Anantha P.; Traverso, Giovanni

    2016-01-01

    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW per mm2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract. PMID:28458955

  1. Prolonged energy harvesting for ingestible devices.

    PubMed

    Nadeau, Phillip; El-Damak, Dina; Glettig, Dean; Kong, Yong Lin; Mo, Stacy; Cleveland, Cody; Booth, Lucas; Roxhed, Niclas; Langer, Robert; Chandrakasan, Anantha P; Traverso, Giovanni

    2017-01-01

    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged monitoring systems for patients. Although prior biocompatible power harvesting systems for in vivo use have demonstrated short minute-long bursts of power from the stomach, not much is known about the capacity to power electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW per mm(2) of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell has the capacity to provide power for prolonged periods of time to the next generation of ingestible electronic devices located in the gastrointestinal tract.

  2. Intracellular Survival and Persistence of Chlamydia muridarum Is Determined by Macrophage Polarization

    PubMed Central

    Gracey, Eric; Lin, Aifeng; Akram, Ali; Chiu, Basil; Inman, Robert D.

    2013-01-01

    Macrophages can display a number of distinct phenotypes, known collectively as polarized macrophages. The best defined of these phenotypes are the classically-activated, interferon gamma (IFNγ)/LPS induced (M1) and alternatively-activated, IL-4 induced (M2) macrophages. The goal of this study is to characterize macrophage-Chlamydia interactions in the context of macrophage polarization. Here we use Chlamydia muridarum and murine bone-marrow derived macrophages to show Chlamydia does not induce M2 polarization in macrophages as a survival strategy. Unexpectedly, the infection of macrophages was silent with no upregulation of M1 macrophage-associated genes. We further demonstrate that macrophages polarized prior to infection have a differential capacity to control Chlamydia. M1 macrophages harbor up to 40-fold lower inclusion forming units (IFU) than non-polarized or M2 polarized macrophages. Gene expression analysis showed an increase in 16sRNA in M2 macrophages with no change in M1 macrophages. Suppressed Chlamydia growth in M1 macrophages correlated with the induction of a bacterial gene expression profile typical of persistence as evident by increased Euo expression and decreased Omp1 and Tal expression. Observations of permissive Chlamydia growth in non-polarized and M2 macrophages and persistence in M1 macrophages were supported through electron microscopy. This work supports the importance of IFNγ in the innate immune response to Chlamydia. However, demonstration that the M1 macrophages, despite an antimicrobial signature, fail to eliminate intracellular Chlamydia supports the notion that host–pathogen co-evolution has yielded a pathogen that can evade cellular defenses against this pathogen, and persist for prolonged periods of time in the host. PMID:23967058

  3. HIF-1α-mediated upregulation of SERCA2b: The endogenous mechanism for alleviating the ischemia-induced intracellular Ca(2+) store dysfunction in CA1 and CA3 hippocampal neurons.

    PubMed

    Kopach, Olga; Maistrenko, Anastasiia; Lushnikova, Iryna; Belan, Pavel; Skibo, Galina; Voitenko, Nana

    2016-05-01

    Pyramidal neurons of the hippocampus possess differential susceptibility to the ischemia-induced damage with the highest vulnerability of CA1 and the lower sensitivity of CA3 neurons. This damage is triggered by Ca(2+)-dependent excitotoxicity and can result in a delayed cell death that might be potentially suspended through activation of endogenous neuroprotection with the hypoxia-inducible transcription factors (HIF). However, the molecular mechanisms of this neuroprotection remain poorly understood. Here we show that prolonged (30min) oxygen and glucose deprivation (OGD) in situ impairs intracellular Ca(2+) regulation in CA1 rather than in CA3 neurons with the differently altered expression of genes coding Ca(2+)-ATPases: the mRNA level of plasmalemmal Ca(2+)-ATPases (PMCA1 and PMCA2 subtypes) was downregulated in CA1 neurons, whereas the mRNA level of the endoplasmic reticulum Ca(2+)-ATPases (SERCA2b subtype) was increased in CA3 neurons at 4h of re-oxygenation after prolonged OGD. These demonstrate distinct susceptibility of CA1 and CA3 neurons to the ischemic impairments in intracellular Ca(2+) regulation and Ca(2+)-ATPase expression. Stabilization of HIF-1α by inhibiting HIF-1α hydroxylation prevented the ischemic decrease in both PMCA1 and PMCA2 mRNAs in CA1 neurons, upregulated the SERCA2b mRNA level and eliminated the OGD-induced Ca(2+) store dysfunction in these neurons. Cumulatively, these findings reveal the previously unknown HIF-1α-driven upregulation of Ca(2+)-ATPases as a mechanism opposing the ischemic impairments in intracellular Ca(2+) regulation in hippocampal neurons. The ability of HIF-1α to modulate expression of genes coding Ca(2+)-ATPases suggests SERCA2b as a novel target for HIF-1 and may provide potential implications for HIF-1α-stabilizing strategy in activating endogenous neuroprotection.

  4. Chronic infection due to mycobacterium intracellulare in mice: association with macrophage release of prostaglandin E/sub 2/ and reversal by injection of indomethacin, muramyl dipeptide, or interferon-. gamma

    SciTech Connect

    Edwards, C.K. III; Hedegaard, H.B.; Zlotnik, A.; Gangadharam, P.R.; Johnston, R.B. Jr.; Pabst, M.J.

    1986-03-01

    As a model for the study of human atypical mycobacterial disease, the basis for the prolonged mycobacteriosis in mice infected with Mycobacterium intracellulare was studied. Two weeks after i.v. injection of mycobacteria, peritoneal macrophages were found to be activated, as indicated by their capacity to produce large amounts of superoxide anion (O/sub 2//sup -/) in response in phorbol myristate acetate (PMA) or viable M. intracellulare. However, 4 wk after infection, despite the continued presence of large numbers of mycobacteria in the spleen, macrophages from infected animals produced low amounts of O/sub 2//sup -/. Additional investigation showed that macrophages from infected animals produced large amounts of prostaglandin E/sub 2/ (PGE/sub 2/) when stimulated by mycobacterial antigens. In vitro, such concentrations of PGE/sub 2/ inhibited uptake of (/sup 3/H)thymidine by stimulated spleen lymphocytes from infected animals. The results support the concept that interaction between the host and M. intracellulare is modulated profoundly by PG and suggest that administration of agents that directly promote macrophage activation can enhance resistance to infection by this organism.

  5. High efficiency holographic Bragg grating with optically prolonged memory

    PubMed Central

    Khoo, Iam Choon; Chen, Chun-Wei; Ho, Tsung-Jui

    2016-01-01

    In this paper, we show that photosensitive azo-dye doped Blue-phase liquid crystals (BPLC) formed by natural molecular self-assembly are capable of high diffraction efficiency holographic recording with memory that can be prolonged from few seconds to several minutes by uniform illumination with the reference beam. Operating in the Bragg regime, we have observed 50 times improvement in the grating diffraction efficiency and shorter recording time compared to previous investigations. The enabling mechanism is BPLC’s lattice distortion and index modulation caused by the action of light on the azo-dopant; upon photo-excitation, the azo-molecules undergo transformation from the oblong-shaped Trans-state to the bent-shaped Cis-state, imparting disorder and also cause the surrounding BPLC molecules to undergo coupled flow & reorientation leading to lattice distortion and index modulation. We also showed that the same mechanism at work here that facilitates lattice distortion can be used to frustrate free relaxation of the lattice distortion, thereby prolonging the lifetime of the written grating, provided the reference beam is kept on after recording. Due to the ease in BPLC fabrication and the availability of azo-dopants with photosensitivity throughout the entire visible spectrum, one can optimize the controlling material and optical parameters to obtain even better performance. PMID:27782197

  6. High efficiency holographic Bragg grating with optically prolonged memory

    NASA Astrophysics Data System (ADS)

    Khoo, Iam Choon; Chen, Chun-Wei; Ho, Tsung-Jui

    2016-10-01

    In this paper, we show that photosensitive azo-dye doped Blue-phase liquid crystals (BPLC) formed by natural molecular self-assembly are capable of high diffraction efficiency holographic recording with memory that can be prolonged from few seconds to several minutes by uniform illumination with the reference beam. Operating in the Bragg regime, we have observed 50 times improvement in the grating diffraction efficiency and shorter recording time compared to previous investigations. The enabling mechanism is BPLC’s lattice distortion and index modulation caused by the action of light on the azo-dopant; upon photo-excitation, the azo-molecules undergo transformation from the oblong-shaped Trans-state to the bent-shaped Cis-state, imparting disorder and also cause the surrounding BPLC molecules to undergo coupled flow & reorientation leading to lattice distortion and index modulation. We also showed that the same mechanism at work here that facilitates lattice distortion can be used to frustrate free relaxation of the lattice distortion, thereby prolonging the lifetime of the written grating, provided the reference beam is kept on after recording. Due to the ease in BPLC fabrication and the availability of azo-dopants with photosensitivity throughout the entire visible spectrum, one can optimize the controlling material and optical parameters to obtain even better performance.

  7. Abnormal vascular function in PR-interval prolongation.

    PubMed

    Chan, Yap-Hang; Siu, Chung-Wah; Yiu, Kai-Hang; Li, Sheung-Wai; Lau, Kui-Kai; Lam, Tai-Hing; Lau, Chu-Pak; Tse, Hung-Fat

    2011-10-01

    Underlying mechanisms of PR-interval prolongation leading to increased risk of adverse cardiovascular outcomes, including atrial fibrillation, are unclear. This study aims to investigate the relation between PR interval and changes in vascular function. We hypothesize that there exists an intermediate pathological stage between electrocardiographic PR prolongation and adverse cardiovascular outcomes, which could be reflected by changes in surrogate measurements of vascular function. We recruited 88 healthy subjects (mean age 57.5 ± 9.8 y, 46% male) from a community-based health screening program who had no history of cardiovascular disease or diabetes mellitus. PR interval was determined from a resting 12-lead electrocardiogram. Vascular function was noninvasively assessed by flow-mediated dilation (FMD) using high-resolution ultrasound and brachial-ankle pulse wave velocity (PWV) using a vascular profiling system. Only 3 subjects had a PR-interval length longer than the conventional cutoff of 200 ms. The PR-interval length was associated inversely with FMD (Pearson r = -0.30, P = 0.004) and positively with PWV (r = 0.40, P < 0.001). Adjusting for potential confounders, increased PR-interval length by each 25 ms was independently associated with reduced FMD by -1 unit (absolute %, B = -0.04 [95% confidence interval: -0.080 to -0.002, P = 0.040)] and increased PWV by +103 cm/second (B = +4.1 [95% confidence interval: 0.6-7.6, P = 0.023]). This study shows that PR-interval length, even in the conventionally normal range, is independently associated with endothelial dysfunction and increased arterial stiffness in healthy subjects free of atherosclerotic disease. This suggests the presence of a systemic, intermediate pathologic stage of the vasculature in PR prolongation before clinically manifest cardiovascular events, and could represent a mediating mechanism. © 2011 Wiley Periodicals, Inc.

  8. Intraocular pressure and cerebral oxygenation during prolonged headward acceleration.

    PubMed

    Eiken, Ola; Keramidas, Michail E; Taylor, Nigel A S; Grönkvist, Mikael

    2017-01-01

    Supra-tolerance head-to-foot directed gravitoinertial load (+Gz) typically induces a sequence of symptoms/signs, including loss of: peripheral vision-central vision-consciousness. The risk of unconsciousness is greater when anti-G-garment failure occurs after prolonged rather than brief exposures, presumably because, in the former condition, mental signs are not consistently preceded by impaired vision. The aims were to investigate if prolonged exposure to moderately elevated +Gz reduces intraocular pressure (IOP; i.e., improves provisions for retinal perfusion), or the cerebral anoxia reserve. Subjects were exposed to 4-min +Gz plateaux either at 2 and 3 G (n = 10), or at 4 and 5 G (n = 12). Measurements included eye-level mean arterial pressure (MAP), oxygenation of the cerebral frontal cortex, and at 2 and 3 G, IOP. IOP was similar at 1 (14.1 ± 1.6 mmHg), 2 (14.0 ± 1.6 mmHg), and 3 G (14.0 ± 1.6 mmHg). During the G exposures, MAP exhibited an initial prompt drop followed by a partial recovery, end-exposure values being reduced by ≤30 mmHg. Cerebral oxygenation showed a similar initial drop, but without recovery, and was followed by either a plateau or a further slight decrement to a minimum of about -14 μM. Gz loading did not affect IOP. That cerebral oxygenation remained suppressed throughout these G exposures, despite a concomitant partial recovery of MAP, suggests that the increased risk of unconsciousness upon G-garment failure after prolonged +Gz exposure is due to reduced cerebral anoxia reserve.

  9. Effects of modulators of AMP-activated protein kinase on TASK-1/3 and intracellular Ca2+ concentration in rat carotid body glomus cells

    PubMed Central

    Kim, Donghee; Kang1,2, Dawon; Martin, Elizabeth A.; Kim, Insook; Carroll, John L.

    2014-01-01

    Acute hypoxia depolarizes carotid body chemoreceptor (glomus) cells and elevates intracellular Ca2+ concentration ([Ca2+]i). Recent studies suggest that AMP-activated protein kinase (AMPK) mediates these effects of hypoxia by inhibiting the background K+ channels such as TASK. Here we studied the effects of modulators of AMPK on TASK activity in cell-attached patches. Activators of AMPK (1 mM AICAR and 0.1–0.5 mM A769662) did not inhibit TASK activity or cause depolarization during acute (10 min) or prolonged (2–3 hr) exposure. Hypoxia inhibited TASK activity by ~70% in cells pretreated with AICAR or A769662. Both AICAR and A769662 (15–40 min) failed to increase [Ca2+]i in glomus cells. Compound C (40 µM), an inhibitor of AMPK, showed no effect on hypoxia-induced inhibition of TASK. AICAR and A769662 phosphorylated AMPKα in PC12 cells, and Compound C blocked the phosphorylation. Our results suggest that AMPK does not affect TASK activity and is not involved in hypoxia-induced elevation of intracellular [Ca2+] in isolated rat carotid body glomus cells. PMID:24530802

  10. Prolonged grief disorder and depression in a German community sample.

    PubMed

    Schaal, Susanne; Richter, Anne; Elbert, Thomas

    2014-01-01

    The aims of this study were to examine rates and risk factors for prolonged grief and to investigate the association between prolonged grief and depression. The authors interviewed a heterogeneous bereaved sample of 61 Germans, 6 of whom had prolonged grief and depression, respectively. The 2 syndromes were strongly linked to one another. Risk factors for prolonged grief were being a woman and having high levels of religious beliefs and low levels of satisfaction with one's religious beliefs, emotional closeness to the deceased, and unanticipated loss. Symptoms of prolonged grief may endure years post-loss and often overlap with depression.

  11. Targeted intracellular delivery of therapeutics: an overview.

    PubMed

    Rawat, A; Vaidya, B; Khatri, K; Goyal, A K; Gupta, P N; Mahor, S; Paliwal, R; Rai, S; Vyas, S P

    2007-09-01

    During the last decade, intracellular drug delivery has become an emerging area of research in the medical and pharmaceutical field. Many therapeutic agents such as drugs and DNA/oligonucleotides can be delivered not just to the cell but also to a particular compartment of that cell to achieve better activity e.g. proapoptotic drugs to the mitochondria, antibiotics and enzymes to the lysosomes and various anticancer drugs and gene to the nucleus. The lipidic nature of biological membrans is the major obstacle to the intracellular delivery of macromolecular and ionic drugs. Additionally, after endocytosis, the lysosome, the major degradation compartment, needs to be avoided for better activity. To avoid these problems, various carriers have been investigated for efficient intracellular delivery, either by direct entry to cytoplasm or by escaping the endosomal compartment. These include cell penetrating peptides, and carrier systems such as liposomes, cationic lipids and polymers, polymeric nanoparticles, etc. Various properties of these carriers, including size, surface charge, composition and the presence of cell specific ligands, alter their efficacy and specificity towards particular cells. This review summarizes various aspects of targeted intracellular delivery of therapeutics including pathways, mechanisms and approaches. Various carrier constructs having potential for targeted intracellular delivery are also been discussed.

  12. Internal affairs: investigating the Brucella intracellular lifestyle.

    PubMed

    von Bargen, Kristine; Gorvel, Jean-Pierre; Salcedo, Suzana P

    2012-05-01

    Bacteria of the genus Brucella are Gram-negative pathogens of several animal species that cause a zoonotic disease in humans known as brucellosis or Malta fever. Within their hosts, brucellae reside within different cell types where they establish a replicative niche and remain protected from the immune response. The aim of this article is to discuss recent advances in the field in the specific context of the Brucella intracellular 'lifestyle'. We initially discuss the different host cell targets and their relevance during infection. As it represents the key to intracellular replication, the focus is then set on the maturation of the Brucella phagosome, with particular emphasis on the Brucella factors that are directly implicated in intracellular trafficking and modulation of host cell signalling pathways. Recent data on the role of the type IV secretion system are discussed, novel effector molecules identified and how some of them impact on trafficking events. Current knowledge on Brucella gene regulation and control of host cell death are summarized, as they directly affect intracellular persistence. Understanding how Brucella molecules interplay with their host cell targets to modulate cellular functions and establish the intracellular niche will help unravel how this pathogen causes disease.

  13. Electron Microscopy of Intracellular Protozoa.

    DTIC Science & Technology

    1979-08-15

    medium (TC 199, Grand Island Biological Co) and the sporozoites were I purified by passage through a DEAE-cellulose column, according to previously...enlargement with a fim- I briated end especially in quickly dried blood films is common, and P. i malarie produces no changes in parasitized red blood cells...ra tive glome ruilonephritis. The same aullhors also showed by irnmnofluorescence that the kidneys of popl ( with fal film rum- mnal;h na contained

  14. A Phosphatidic Acid (PA) conveyor system of continuous intracellular transport from cell membrane to nucleus maintains EGF receptor homeostasis

    PubMed Central

    Henkels, Karen M.; Miller, Taylor E.; Ganesan, Ramya; Wilkins, Brandon A.; Fite, Kristen; Gomez-Cambronero, Julian

    2016-01-01

    The intracellular concentration of the mitogen phosphatidic acid (PA) must be maintained at low levels until the need arises for cell proliferation. How temporal and spatial trafficking of PA affects its target proteins in the different cellular compartments is not fully understood. We report that in cancer cells, PA cycles back and forth from the cellular membrane to the nucleus, affecting the function of epidermal growth factor (EGF), in a process that involves PPARα/LXRα signaling. Upon binding to its ligand, EGF receptor (EGFR)-initiated activation of phospholipase D (PLD) causes a spike in intracellular PA production that forms vesicles transporting EGFR from early endosomes (EEA1 marker) and prolonged internalization in late endosomes and Golgi (RCAS marker). Cells incubated with fluorescent-labeled PA (NBD-PA) show PA in “diffuse” locations throughout the cytoplasm, punctae (small, <0.1 μm) vesicles) and large (>0.5 μm) vesicles that co-localize with EGFR. We also report that PPARα/LXRα form heterodimers that bind to new Responsive Elements (RE) in the EGFR promoter. Nuclear PA enhances EGFR expression, a role compatible with the mitogenic ability of the phospholipid. Newly made EGFR is packaged into PA recycling vesicles (Rab11 marker) and transported back to the cytoplasm and plasma membrane. However, a PLD+PA combination impedes binding of PPARα/LXRα to the EGFR promoter. Thus, if PA levels inside the nucleus reach a certain threshold (>100 nM) PA outcompetes the nuclear receptors and transcription is inhibited. This new signaling function of PLD-PA targeting EGFR trafficking and biphasically modulating its transcription, could explain cell proliferation initiation and its maintenance in cancer cells. PMID:27256981

  15. A Phosphatidic Acid (PA) conveyor system of continuous intracellular transport from cell membrane to nucleus maintains EGF receptor homeostasis.

    PubMed

    Henkels, Karen M; Miller, Taylor E; Ganesan, Ramya; Wilkins, Brandon A; Fite, Kristen; Gomez-Cambronero, Julian

    2016-07-26

    The intracellular concentration of the mitogen phosphatidic acid (PA) must be maintained at low levels until the need arises for cell proliferation. How temporal and spatial trafficking of PA affects its target proteins in the different cellular compartments is not fully understood. We report that in cancer cells, PA cycles back and forth from the cellular membrane to the nucleus, affecting the function of epidermal growth factor (EGF), in a process that involves PPARα/LXRα signaling. Upon binding to its ligand, EGF receptor (EGFR)-initiated activation of phospholipase D (PLD) causes a spike in intracellular PA production that forms vesicles transporting EGFR from early endosomes (EEA1 marker) and prolonged internalization in late endosomes and Golgi (RCAS marker). Cells incubated with fluorescent-labeled PA (NBD-PA) show PA in "diffuse" locations throughout the cytoplasm, punctae (small, <0.1 μm) vesicles) and large (>0.5 μm) vesicles that co-localize with EGFR. We also report that PPARα/LXRα form heterodimers that bind to new Responsive Elements (RE) in the EGFR promoter. Nuclear PA enhances EGFR expression, a role compatible with the mitogenic ability of the phospholipid. Newly made EGFR is packaged into PA recycling vesicles (Rab11 marker) and transported back to the cytoplasm and plasma membrane. However, a PLD+PA combination impedes binding of PPARα/LXRα to the EGFR promoter. Thus, if PA levels inside the nucleus reach a certain threshold (>100 nM) PA outcompetes the nuclear receptors and transcription is inhibited. This new signaling function of PLD-PA targeting EGFR trafficking and biphasically modulating its transcription, could explain cell proliferation initiation and its maintenance in cancer cells.

  16. Drug-induced QT interval prolongation: mechanisms and clinical management

    PubMed Central

    Nachimuthu, Senthil; Assar, Manish D.

    2012-01-01

    The prolonged QT interval is both widely seen and associated with the potentially deadly rhythm, Torsades de Pointes (TdP). While it can occur spontaneously in the congenital form, there is a wide array of drugs that have been implicated in the prolongation of the QT interval. Some of these drugs have either been restricted or withdrawn from the market due to the increased incidence of fatal polymorphic ventricular tachycardia. The list of drugs that cause QT prolongation continues to grow, and an updated list of specific drugs that prolong the QT interval can be found at www.qtdrugs.org. This review focuses on the mechanism of drug-induced QT prolongation, risk factors for TdP, culprit drugs, prevention and monitoring of prolonged drug-induced QT prolongation and treatment strategies. PMID:25083239

  17. Effects of the prolonged vertical tube on the separation performance of a cyclone.

    PubMed

    Qian, Fuping; Zhang, Jiguang; Zhang, Mingyao

    2006-08-25

    This article aims at the gas flow into the dustbin of conventional cyclones, the prolonged cyclone (attaching a vertical tube at the bottom of the dust outlet) is proposed by some researchers, which can make flow with dust enter into the tube and separate further. The Reynolds stress transport model (RSTM) has been employed to predict the gas flow fields of the conventional and prolonged cyclones. The tangential velocity, axial velocity profiles and turbulent kinetic energy profiles are presented, and the downward flow rates into the dustbin of the three cyclones are compared. The separation performances of these three cyclones are tested. The result indicates that the tangential velocity, axial velocity and turbulent kinetic energy in the dustbin reduce greatly when the prolonged vertical tube attaching into the dust outlet, which can avoid the re-entrainment of already separated dust effectively. Furthermore, the prolonged vertical tube increases the separation space of dusts. The downward flow rate into the dustbin of the prolonged cyclone decreases compared with the conventional cyclone. The experimental results show that the prolonged vertical tube can improve the separation efficiency by a slightly increased pressure drop. However, for an even longer tube, the separation efficiency is slightly reduced. Thus, there is an optimal tube length for a given cyclone.

  18. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    PubMed

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  19. Dynamical characterization of the last prolonged solar minima

    NASA Astrophysics Data System (ADS)

    Cionco, Rodolfo Gustavo; Compagnucci, Rosa Hilda

    2012-11-01

    The planetary hypothesis of the solar cycle is an old idea in which the gravitational influence of the planets has a non-negligible effect on the causes of the solar magnetic cycle. The advance of this hypothesis is based on phenomenological correlations between dynamical parameters of the Sun's movement around the barycentre of the Solar System and sunspots time series; and more especially, identifying relationships linking solar barycentric dynamics with prolonged minima (especially Grand Minima events). However, at present there is no clear physical mechanism relating these phenomena. The possible celestial influence on solar cycle modulation is of great importance not only in solar physics but also in Earth sciences, because prolonged solar minima have associated important climatic and telluric variations, in particular, during the Maunder and Dalton Minimum. In this work we looked for a possible causal link in relation with solar barycentric dynamics and prolonged minima events. We searched for particular changes in the Sun's acceleration and concentrated on long-term variations of the solar cycle. We show how the orbital angular momentum of the Sun evolves and how the inclination of the solar barycentric orbit varies during the epochs of orbital retrogressions. In particular, at these moments, the radial component of the Sun's acceleration (i.e., in the barycentre-Sun direction) had an exceptional magnitude. These radial impulses occurred at the very beginning of the Maunder Minimum, during the Dalton Minimum and also at the maximum of cycle 22 before the present extended minimum. We also found a strong correlation between the planetary torque and the observed sunspots international number around that maximum. We apply our results in a novel theory of Sun-planets interaction that it is sensitive to Sun barycentric dynamics and found a very important effect on the Sun's capability of storing hypothetical reservoirs of potential energy that could be released by

  20. Isolation of carbon nanohorn assemblies and their potential for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobin; Tan, Juan; Zhang, Guoliang; Zhang, Fengbao

    2007-05-01

    Attributed to its distinctive dahlia-flowerlike structure and already desirable size (usually <100 nm), carbon nanohorn assemblies (CNHs), a new member of the fullerene family, are a potential vehicle for intracellular delivery. This paper shows that isolated CNHs and nanoscale CNH agglomerates can be successfully isolated by a copolymer (Gum Arabic) through steric stabilization. In vitro study shows that the modified CNHs are nontoxic and may be used as a promising vehicle for intracellular delivery.

  1. Silicon nanowires as intracellular devices

    NASA Astrophysics Data System (ADS)

    Zimmerman, John F.

    Semiconductor nanowire devices are an exciting class of materials for biomedical and electrophysiology applications, with current studies primarily delivering substrate bound devices through mechanical abrasion or electroporation. However, the ability to distribute these devices in a drug-like fashion is an important step in developing next-generation active therapeutic devices. In this work, we will discuss the interaction of label free Silicon nanowires (SiNWs) with cellular systems, showing that they can be internalized in multiple cell lines, and undergo an active 'burst-like' transport process. (Abstract shortened by ProQuest.).

  2. Fluorescent nanothermometers for intracellular thermal sensing.

    PubMed

    Jaque, Daniel; Rosal, Blanca Del; Rodríguez, Emma Martín; Maestro, Laura Martínez; Haro-González, Patricia; Solé, José García

    2014-05-01

    The importance of high-resolution intracellular thermal sensing and imaging in the field of modern biomedicine has boosted the development of novel nanosized fluorescent systems (fluorescent nanothermometers) as the next generation of probes for intracellular thermal sensing and imaging. This thermal mapping requires fluorescent nanothermometers with good biocompatibility and high thermal sensitivity in order to obtain submicrometric and subdegree spatial and thermal resolutions, respectively. This review describes the different nanosized systems used up to now for intracellular thermal sensing and imaging. We also include the later advances in molecular systems based on fluorescent proteins for thermal mapping. A critical overview of the state of the art and the future perspective is also included.

  3. Micro- and nanotechnologies for intracellular delivery.

    PubMed

    Yan, Li; Zhang, Jinfeng; Lee, Chun-Sing; Chen, Xianfeng

    2014-11-01

    The majority of drugs and biomolecules need to be delivered into cells to be effective. However, the cell membranes, a biological barrier, strictly resist drugs or biomolecules entering cells, resulting in significantly reduced intracellular delivery efficiency. To overcome this barrier, a variety of intracellular delivery approaches including chemical and physical ways have been developed in recent years. In this review, the focus is on summarizing the nanomaterial routes involved in making use of a collection of receptors for the targeted delivery of drugs and biomolecules and the physical ways of applying micro- and nanotechnologies for high-throughput intracellular delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. BDI-modelling of complex intracellular dynamics.

    PubMed

    Jonker, C M; Snoep, J L; Treur, J; Westerhoff, H V; Wijngaards, W C A

    2008-03-07

    A BDI-based continuous-time modelling approach for intracellular dynamics is presented. It is shown how temporalized BDI-models make it possible to model intracellular biochemical processes as decision processes. By abstracting from some of the details of the biochemical pathways, the model achieves understanding in nearly intuitive terms, without losing veracity: classical intentional state properties such as beliefs, desires and intentions are founded in reality through precise biochemical relations. In an extensive example, the complex regulation of Escherichia coli vis-à-vis lactose, glucose and oxygen is simulated as a discrete-state, continuous-time temporal decision manager. Thus a bridge is introduced between two different scientific areas: the area of BDI-modelling and the area of intracellular dynamics.

  5. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes.

    PubMed Central

    Kagaya, Y; Weinberg, E O; Ito, N; Mochizuki, T; Barry, W H; Lorell, B H

    1995-01-01

    We tested the hypothesis that glycolytic inhibition by 2-deoxyglucose causes greater impairment of diastolic relaxation and intracellular calcium handling in well-oxygenated hypertrophied adult rat myocytes compared with control myocytes. We simultaneously measured cell motion and intracellular free calcium concentration ([Ca2+]i) with indo-1 in isolated paced myocytes from aortic-banded rats and sham-operated rats. There was no difference in either the end-diastolic or peak-systolic [Ca2+]i between control and hypertrophied myocytes (97 +/- 18 vs. 105 +/- 15 nM, 467 +/- 92 vs. 556 +/- 67 nM, respectively). Myocytes were first superfused with oxygenated Hepes-buffered solution containing 1.2 mM CaCl2, 5.6 mM glucose, and 5 mM acetate, and paced at 3 Hz at 36 degrees C. Exposure to 20 mM 2-deoxyglucose as substitution of glucose for 15 min caused an upward shift of end-diastolic cell position in both control (n = 5) and hypertrophied myocytes (n = 10) (P < 0.001 vs. baseline), indicating an impaired extent of relaxation. Hypertrophied myocytes, however, showed a greater upward shift in end-diastolic cell position and slowing of relaxation compared with control myocytes (delta 144 +/- 28 vs. 55 +/- 15% of baseline diastolic position, P < 0.02). Exposure to 2-deoxyglucose increased end-diastolic [Ca2+]i in both groups (P < 0.001 vs. baseline), but there was no difference between hypertrophied and control myocytes (218 +/- 38 vs. 183 +/- 29 nM, respectively). The effects of 2-deoxyglucose were corroborated in isolated oxygenated perfused hearts in which glycolytic inhibition which caused severe elevation of isovolumic diastolic pressure and prolongation of relaxation in the hypertrophied hearts compared with controls. In summary, the inhibition of the glycolytic pathway impairs diastolic relaxation to a greater extent in hypertrophied myocytes than in control myocytes even in well-oxygenated conditions. The severe impairment of diastolic relaxation induced by 2

  6. Intracellular lectins are involved in quality control of glycoproteins

    PubMed Central

    YAMAMOTO, Kazuo

    2014-01-01

    Glycoprotein quality control is categorized into three kinds of reactions; the folding of nascent glycoproteins, ER-associated degradation of misfolded or unassembled glycoproteins, and transport and sorting of correctly folded glycoproteins. In all three processes, N-glycans on the glycoproteins are used as tags that are recognized by intracellular lectins. We analyzed the functions of these intracellular lectins and their sugar-binding specificities. The results clearly showed that the A, B, and C-arms of high mannose-type glycans participate in the folding, transport and sorting, and degradation, respectively, of newly synthesized peptides. After correctly folded glycoproteins are transported to the Golgi apparatus, N-glycans are trimmed into Man3GlcNAc2 and then rebuilt into various complex-type glycans in the Golgi, resulting in the addition of diverse sugar structures that allow glycoproteins to play various roles outside of the cells. PMID:24522156

  7. Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation.

    PubMed

    Sorg, Robin A; Lin, Leo; van Doorn, G Sander; Sorg, Moritz; Olson, Joshua; Nizet, Victor; Veening, Jan-Willem

    2016-12-01

    The structure and composition of bacterial communities can compromise antibiotic efficacy. For example, the secretion of β-lactamase by individual bacteria provides passive resistance for all residents within a polymicrobial environment. Here, we uncover that collective resistance can also develop via intracellular antibiotic deactivation. Real-time luminescence measurements and single-cell analysis demonstrate that the opportunistic human pathogen Streptococcus pneumoniae grows in medium supplemented with chloramphenicol (Cm) when resistant bacteria expressing Cm acetyltransferase (CAT) are present. We show that CAT processes Cm intracellularly but not extracellularly. In a mouse pneumonia model, more susceptible pneumococci survive Cm treatment when coinfected with a CAT-expressing strain. Mathematical modeling predicts that stable coexistence is only possible when antibiotic resistance comes at a fitness cost. Strikingly, CAT-expressing pneumococci in mouse lungs were outcompeted by susceptible cells even during Cm treatment. Our results highlight the importance of the microbial context during infectious disease as a potential complicating factor to antibiotic therapy.

  8. A first step toward liposome-mediated intracellular bacteriophage therapy.

    PubMed

    Nieth, Anita; Verseux, Cyprien; Barnert, Sabine; Süss, Regine; Römer, Winfried

    2015-01-01

    The emergence of antibiotic-resistant bacteria presents a severe challenge to medicine and public health. While bacteriophage therapy is a promising alternative to traditional antibiotics, the general inability of bacteriophages to penetrate eukaryotic cells limits their use against resistant bacteria, causing intracellular diseases like tuberculosis. Bacterial vectors show some promise in carrying therapeutic bacteriophages into cells, but also bring a number of risks like an overload of bacterial antigens or the acquisition of virulence genes from the pathogen. As a first step in the development of a non-bacterial vector for bacteriophage delivery into pathogen-infected cells, we attempted to encapsulate bacteriophages into liposomes. Here we report effective encapsulation of the model bacteriophage λeyfp and the mycobacteriophage TM4 into giant liposomes. Furthermore, we show that liposome-associated bacteriophages are taken up into eukaryotic cells more efficiently than free bacteriophages. These are important milestones in the development of an intracellular bacteriophage therapy that might be useful in the fight against multi-drug-resistant intracellular pathogens like Mycobacterium tuberculosis.

  9. Intracellular signalling proteins as smart' agents in parallel distributed processes.

    PubMed

    Fisher, M J; Paton, R C; Matsuno, K

    1999-06-01

    In eucaryotic organisms, responses to external signals are mediated by a repertoire of intracellular signalling pathways that ultimately bring about the activation/inactivation of protein kinases and/or protein phosphatases. Until relatively recently, little thought had been given to the intracellular distribution of the components of these signalling pathways. However, experimental evidence from a diverse range of organisms indicates that rather than being freely distributed, many of the protein components of signalling cascades show a significant degree of spatial organisation. Here, we briefly review the roles of 'anchor' 'scaffold' and 'adaptor' proteins in the organisation and functioning of intracellular signalling pathways. We then consider some of the parallel distributed processing capacities of these adaptive systems. We focus on signalling proteins-both as individual 'devices' (agents) and as 'networks' (ecologies) of parallel processes. Signalling proteins are described as 'smart thermodynamic machines' which satisfy 'gluing' (functorial) roles in the information economy of the cell. This combines two information-processing views of signalling proteins. Individually, they show 'cognitive' capacities and collectively they integrate (cohere) cellular processes. We exploit these views by drawing comparisons between signalling proteins and verbs. This text/dialogical metaphor also helps refine our view of signalling proteins as context-sensitive information processing agents.

  10. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics.

  11. Salmonella enterica Serovar Typhimurium Response Involved in Attenuation of Pathogen Intracellular Proliferation

    PubMed Central

    Cano, David A.; Martínez-Moya, Marina; Pucciarelli, M. Graciela; Groisman, Eduardo A.; Casadesús, Josep; García-Del Portillo, Francisco

    2001-01-01

    Salmonella enterica serovar Typhimurium proliferates within cultured epithelial and macrophage cells. Intracellular bacterial proliferation is, however, restricted within normal fibroblast cells. To characterize this phenomenon in detail, we investigated the possibility that the pathogen itself might contribute to attenuating the intracellular growth rate. S. enterica serovar Typhimurium mutants were selected in normal rat kidney fibroblasts displaying an increased intracellular proliferation rate. These mutants harbored loss-of-function mutations in the virulence-related regulatory genes phoQ, rpoS, slyA, and spvR. Lack of a functional PhoP-PhoQ system caused the most dramatic change in the intracellular growth rate. phoP- and phoQ-null mutants exhibited an intracellular growth rate 20- to 30-fold higher than that of the wild-type strain. This result showed that the PhoP-PhoQ system exerts a master regulatory function for preventing bacterial overgrowth within fibroblasts. In addition, an overgrowing clone was isolated harboring a mutation in a previously unknown serovar Typhimurium open reading frame, named igaA for intracellular growth attenuator. Mutations in other serovar Typhimurium virulence genes, such as ompR, dam, crp, cya, mviA, spiR (ssrA), spiA, and rpoE, did not result in pathogen intracellular overgrowth. Nonetheless, lack of either SpiA or the alternate sigma factor RpoE led to a substantial decrease in intracellular bacterial viability. These results prove for the first time that specific serovar Typhimurium virulence regulators are involved in a response designed to attenuate the intracellular growth rate within a nonphagocytic host cell. This growth-attenuating response is accompanied by functions that ensure the viability of intracellular bacteria. PMID:11553591

  12. [Prolonged neuromuscular block after mivacurium injection].

    PubMed

    Viggiano, M; Soler, C; Dumont, J C; Pellissier, D; François, G

    1995-01-01

    Mivacurium, a new short acting non depolarizing neuromuscular blocker, is metabolized, as suxamethonium, by plasma cholinesterase. Therefore its duration of action is increased in patients with reduced plasma cholinesterase activity. We report a case of prolonged neuromuscular block after an i.v. bolus of mivacurium (0.20 mg.kg-1) in a 69 year-old ASA II woman with an unrecognized cholinesterase deficiency undergoing a lumbar sympathectomy for arteriopathy of the lower limbs. The duration of the block was 6 h and plasma cholinesterase concentrations were very low (540 and 610 UI.L-1), as well as the dibucaine number (16%), which suggests an homozygous enzymatic deficiency. Mechanical ventilation and sedation were continued until spontaneous return of full neuromuscular function.

  13. Bilateral Scapulohumeral Ankylosis after Prolonged Mechanical Ventilation

    PubMed Central

    Schreinemakers, J. Rieneke; van Noort, Arthur; Rademakers, Maarten V.

    2016-01-01

    This case demonstrates a rarely reported bilateral scapulohumeral bony ankylosis. A young woman developed extensive heterotopic ossifications (HOs) in both shoulder joints after being mechanically ventilated for several months at the intensive care unit in a comatose status. She presented with a severe movement restriction of both shoulder joints. Surgical resection of the bony bridges was performed in 2 separate sessions with a significant improvement of shoulder function afterwards. No postoperative complications, pain, or recurrence of HOs were noted at 1-year follow-up. Mechanical ventilation, immobilization, neuromuscular blockage, and prolonged sedation are known risk factors for the development of HOs in the shoulder joints. Relatively early surgical resection of the HOs can be performed safely in contrary to earlier belief. Afterwards, nonsteroidal anti-inflammatory drugs and/or radiation therapy can be possible treatment modalities to prevent recurrence of HOs. PMID:27583120

  14. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  15. Prolonging entanglement dynamics near periodic plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Iliopoulos, Nikos; Terzis, Andreas F.; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2017-08-01

    We study the dynamics of two initially entangled qubits, where each one interacts locally and independently of the other, with a plasmonic nanostructure. By considering two different cases for the qubits, two identical two-level systems and two identical V-type quantum systems, where one two-level transition plays the role of the qubit while the third level acts as an "umbrella level", we study the corresponding entanglement dynamics for several pure and mixed initial states. As the plasmonic nanostructure we take a two-dimensional lattice of metal-coated dielectric nanoparticles. The presence of this nanostructure leads to highly suppressed spontaneous emission rates of the individual quantum systems, as well as to highly anisotropic spontaneous decay rates for orthogonal dipole matrix elements due to the anisotropic Purcell effect, leading to quantum interference in spontaneous emission. Both of the effects can be used for significantly prolonging the time evolution of entanglement for several system parameters.

  16. Evolution of microbial diversity during prolonged starvation

    PubMed Central

    Finkel, Steven E.; Kolter, Roberto

    1999-01-01

    Models of evolutionary processes postulate that new alleles appear in populations through random spontaneous mutation. Alleles that confer a competitive advantage in particular environments are selected and populations can be taken over by individuals expressing these advantageous mutations. We have studied the evolutionary process by using Escherichia coli cultures incubated for prolonged periods of time in stationary phase. The populations of surviving cells were shown to be highly dynamic, even after many months of incubation. Evolution proceeded along different paths even when the initial conditions were identical. As cultures aged, the takeovers by fitter mutants were incomplete, resulting in the coexistence of multiple mutant forms and increased microbial diversity. Thus, the study of bacterial populations in stationary phase provides a model system for understanding the evolution of diversity in natural populations. PMID:10097156

  17. GTPases in intracellular trafficking: an overview.

    PubMed

    Segev, Nava

    2011-02-01

    Small GTPases that belong to the ras sub-families of Rab, Arf, and Rho, and the large GTPase dynamin, regulate intracellular trafficking. This issue of Seminars of Cell and Developmental Biology highlights topics regarding mechanisms by which these GTPases regulate the different steps of vesicular transport: vesicle formation, scission, targeting and fusion. In addition, the emerging roles of GTPases in coordination of individual transport steps as well as coordination of intracellular trafficking with other cellular processes are reviewed. Finally, common structures and mechanisms underlying the function of the ras-like GTPases and the importance of their function to human health and disease are discussed.

  18. ApoHRP-based Assay to Measure Intracellular Regulatory Heme

    PubMed Central

    Atamna, Hani; Brahmbhatt, Marmik; Atamna, Wafa; Shanower, Gregory A.; Dhahbi, Joseph M.

    2015-01-01

    The majority of the heme-binding proteins possess a “heme-pocket” that stably binds with heme. Usually known as housekeeping heme-proteins, they participate in a variety of metabolic reactions (e.g., catalase). Heme also binds with lower affinity to the “Heme-Regulatory Motifs” (HRM) in specific regulatory proteins. This type of heme binding is known as exchangeable or regulatory heme (RH). Heme binding to HRM proteins regulates their function (e.g., Bach1). Although there are well-established methods for assaying total cellular heme (e.g., heme-proteins plus RH), currently there is no method available for measuring RH independently from the total heme (TH). The current study describes and validates a new method to measure intracellular RH. The method is based on the reconstitution of apo-horseradish peroxidase (apoHRP) with heme to form holoHRP. The resulting holoHRP activity is then measured with a colorimetric substrate. The results show that apoHRP specifically binds RH but not with heme from housekeeping heme-proteins. The RH assay detects intracellular RH. Furthermore, using conditions that create positive (hemin) or negative (N-methyl protoporphyrin IX) controls for heme in normal human fibroblasts (IMR90), the RH assay shows that RH is dynamic and independent from TH. We also demonstrated that short-term exposure to subcytotoxic concentrations of lead (Pb), mercury (Hg), or amyloid-β(Aβ) significantly alters intracellular RH with little effect on TH. In conclusion the RH assay is an effective assay to investigate intracellular RH concentration and demonstrates that RH represents ~6% of total heme in IMR90 cells. PMID:25525887

  19. Effects of Prolonged Centrifugation on Orthostasis

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M..; Hargens, A. R.; Yates, B. J.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    A feasibility study conducted on the Ames 20-G Human Centrifuge examined how well humans can maintain orthostatic tolerance during and after prolonged exposures to hypergravity. Three adult males lived for periods of 22 hours in the centrifuge while it was at rest (1.00 G), and while it rotated at 9.38 RPM to provide 1.25 G-total at the mean radius of 7.62 m. Two participants also experienced 22-hour habitation sessions at 11.46 RPM, which provided 1.50 G-total. Both before and after each habitation session, the participants were given gradual onset rate (GOR) acceleration profiles at 0.067 G/sec to determine their Gz tolerance. In addition, cardiovascular responses were compared while subjects were supine, siting, and standing at various times during the habitation (stand test), and cardiovascular responsiveness was determined using a lower body negative pressure tilt table (LBNPTT) at the beginning of the experiment and after each session. Post-Pre changes in G tolerance were -0.33 (mean) +/- 0.11 (std. error) Gz for habitation at 1.00 G, -0.02 +/- 0.12 Gz for habitation at 1.25 G, and +0.41 +/- 0.13 Gz for habitation at 1.50 G. Performance on the stand test generally improved with duration of habitation in hypergravity. Our results suggest that habitation in a confined chamber at 1.00 G reduces G tolerance and leads to lowered LBNPTT tolerance. Exposure to increased G in the centrifuge leads to enhanced performance on the stand test, and to increased GOR acceleration tolerance, but only when fluid balance is maintained; when motion sickness and negative fluid balance were observed, G tolerance was reduced. The data indicate that enhanced G tolerance can result from prolonged exposure to hypergravity, but that these changes are complex and depend on multiple underlying physiological processes.

  20. Influence of a Prolonged Tennis Match Play on Serve Biomechanics.

    PubMed

    Martin, Caroline; Bideau, Benoit; Delamarche, Paul; Kulpa, Richard

    2016-01-01

    The aim of this study was to quantify kinematic, kinetic and performance changes that occur in the serve throughout a prolonged tennis match play. Serves of eight male advanced tennis players were recorded with a motion capture system before, at mid-match, and after a 3-hour tennis match. Before and after each match, electromyographic data of 8 upper limb muscles obtained during isometric maximal voluntary contraction were compared to determine the presence of muscular fatigue. Vertical ground reaction forces, rating of perceived exertion, ball speed, and ball impact height were measured. Kinematic and upper limb kinetic variables were computed. The results show decrease in mean power frequency values for several upper limb muscles that is an indicator of local muscular fatigue. Decreases in serve ball speed, ball impact height, maximal angular velocities and an increase in rating of perceived exertion were also observed between the beginning and the end of the match. With fatigue, the majority of the upper limb joint kinetics decreases at the end of the match. No change in timing of maximal angular velocities was observed between the beginning and the end of the match. A prolonged tennis match play may induce fatigue in upper limb muscles, which decrease performance and cause changes in serve maximal angular velocities and joint kinetics. The consistency in timing of maximal angular velocities suggests that advanced tennis players are able to maintain the temporal pattern of their serve technique, in spite of the muscular fatigue development.

  1. Zoledronic acid, an aminobisphosphonate, prolongs survival of skin allografts.

    PubMed

    Liu, Chia-Yuan; Yang, Po-Sheng; Cheng, Shih-Ping; Huang, Yu-Chuen; Lee, Jie-Jen; Ko, Chun-Chuan; Shieh, Hui-Ru; Chen, Yu-Jen

    2012-08-04

    Zoledronic acid (ZOL), an effective nitrogen-containing bisphosphonate used to prevent excessive bone loss in clinical practice, has been shown to affect the development of dendritic cells by redirecting differentiation toward a state of atypical maturation. The study was aimed to examine whether ZOL can reduce acute rejection of skin allografts. A skin transplantation model using C57BL/6 to BALB/c mice was used. ZOL was injected intraperitoneally into transplant recipients post-surgically. Graft survival, body weight, leukocyte count, hepatic and renal functions were assessed. ZOL treatment significantly prolonged skin allograft survival in mice. In terms of toxicity, there were no significant differences in body weight, leukocyte count, plasma alanine aminotransferase or creatinine levels between the ZOL-treated and control groups. Histopathology showed that the loss of skin integrity seen in control group was prevented by ZOL treatment. In draining lymph nodes and spleen, the number and clustering extent of mononuclear cells were markedly declined by ZOL treatment. The plasma IL-6 levels were reduced by treatment of ZOL. ZOL can prolong skin allograft survival without major toxicity.

  2. Prolonged preconditioning with natural honey against myocardial infarction injuries.

    PubMed

    Eteraf-Oskouei, Tahereh; Shaseb, Elnaz; Ghaffary, Saba; Najafi, Moslem

    2013-07-01

    Potential protective effects of prolonged preconditioning with natural honey against myocardial infarction were investigated. Male Wistar rats were pre-treated with honey (1%, 2% and 4%) for 45 days then their hearts were isolated and mounted on a Langendorff apparatus and perfused with a modified Krebs-Henseleit solution during 30 min regional ischemia fallowed by 120 min reperfusion. Two important indexes of ischemia-induced damage (infarction size and arrhythmias) were determined by computerized planimetry and ECG analysis, respectively. Honey (1% and 2%) reduced infarct size from 23±3.1% (control) to 9.7±2.4 and 9.5±2.3%, respectively (P<0.001). At the ischemia, honey (1%) significantly reduced (P<0.05) the number and duration of ventricular tachycardia (VT). Honey (1% and 2%) also significantly decreased number of ventricular ectopic beats (VEBs). In addition, incidence and duration of reversible ventricular fibrillation (Rev VF) were lowered by honey 2% (P<0.05). During reperfusion, honey produced significant reduction in the incidences of VT, total and Rev VF, duration and number of VT. The results showed cardioprotective effects of prolonged pre-treatment of rats with honey following myocardial infarction. Maybe, the existence of antioxidants and energy sources (glucose and fructose) in honey composition and improvement of hemodynamic functions may involve in those protective effects.

  3. Influence of a Prolonged Tennis Match Play on Serve Biomechanics

    PubMed Central

    Martin, Caroline; Bideau, Benoit; Delamarche, Paul; Kulpa, Richard

    2016-01-01

    The aim of this study was to quantify kinematic, kinetic and performance changes that occur in the serve throughout a prolonged tennis match play. Serves of eight male advanced tennis players were recorded with a motion capture system before, at mid-match, and after a 3-hour tennis match. Before and after each match, electromyographic data of 8 upper limb muscles obtained during isometric maximal voluntary contraction were compared to determine the presence of muscular fatigue. Vertical ground reaction forces, rating of perceived exertion, ball speed, and ball impact height were measured. Kinematic and upper limb kinetic variables were computed. The results show decrease in mean power frequency values for several upper limb muscles that is an indicator of local muscular fatigue. Decreases in serve ball speed, ball impact height, maximal angular velocities and an increase in rating of perceived exertion were also observed between the beginning and the end of the match. With fatigue, the majority of the upper limb joint kinetics decreases at the end of the match. No change in timing of maximal angular velocities was observed between the beginning and the end of the match. A prolonged tennis match play may induce fatigue in upper limb muscles, which decrease performance and cause changes in serve maximal angular velocities and joint kinetics. The consistency in timing of maximal angular velocities suggests that advanced tennis players are able to maintain the temporal pattern of their serve technique, in spite of the muscular fatigue development. PMID:27532421

  4. Prolonged morphine administration alters protein expression in the rat myocardium

    PubMed Central

    2011-01-01

    Background Morphine is used in clinical practice as a highly effective painkiller as well as the drug of choice for treatment of certain heart diseases. However, there is lack of information about its effect on protein expression in the heart. Therefore, here we aimed to identify the presumed alterations in rat myocardial protein levels after prolonged morphine treatment. Methods Morphine was administered to adult male Wistar rats in high doses (10 mg/kg per day) for 10 days. Proteins from the plasma membrane- and mitochondria-enriched fractions or cytosolic proteins isolated from left ventricles were run on 2D gel electrophoresis, scanned and quantified with specific software to reveal differentially expressed proteins. Results Nine proteins were found to show markedly altered expression levels in samples from morphine-treaded rats and these proteins were identified by mass spectrometric analysis. They belong to different cell pathways including signaling, cytoprotective, and structural elements. Conclusions The present identification of several important myocardial proteins altered by prolonged morphine treatment points to global effects of this drug on heart tissue. These findings represent an initial step toward a more complex view on the action of morphine on the heart. PMID:22129148

  5. Vps13F links bacterial recognition and intracellular killing in Dictyostelium

    PubMed Central

    Leiba, Jade; Sabra, Ayman; Bodinier, Romain; Marchetti, Anna; Lima, Wanessa C.; Melotti, Astrid; Perrin, Jackie; Burdet, Frederic; Pagni, Marco; Soldati, Thierry; Lelong, Emmanuelle

    2017-01-01

    Abstract Bacterial sensing, ingestion, and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. The cellular mechanisms involved in intracellular killing, their relative importance, and their specificity towards different bacteria are however poorly defined. In this study, we used Dictyostelium discoideum, a phagocytic cell model amenable to genetic analysis, to identify new gene products involved in intracellular killing. A random genetic screen led us to identify the role of Vps13F in intracellular killing of Klebsiella pneumoniae. Vps13F knock‐out (KO) cells exhibited a delayed intracellular killing of K. pneumoniae, although the general organization of the phagocytic and endocytic pathway appeared largely unaffected. Transcriptomic analysis revealed that vps13F KO cells may be functionally similar to previously characterized fspA KO cells, shown to be defective in folate sensing. Indeed, vps13F KO cells showed a decreased chemokinetic response to various stimulants, suggesting a direct or indirect role of Vps13F in intracellular signaling. Overstimulation with excess folate restored efficient killing in vps13F KO cells. Finally, genetic inactivation of Far1, the folate receptor, resulted in inefficient intracellular killing of K. pneumoniae. Together, these observations show that stimulation of Dictyostelium by bacterial folate is necessary for rapid intracellular killing of K. pneumoniae. PMID:28076662

  6. Arrhythmogenic consequences of intracellular calcium waves.

    PubMed

    Xie, Lai-Hua; Weiss, James N

    2009-09-01

    Intracellular Ca(2+) (Ca(i)(2+)) waves are known to cause delayed afterdepolarizations (DADs), which have been associated with arrhythmias in cardiac disease states such as heart failure, catecholaminergic polymorphic ventricular tachycardia, and digitalis toxicity. Here we show that, in addition to DADs, Ca(i)(2+) waves also have other consequences relevant to arrhythmogenesis, including subcellular spatially discordant alternans (SDA, in which the amplitude of the local Ca(i)(2+) transient alternates out of phase in different regions of the same cell), sudden repolarization changes promoting the dispersion of refractoriness, and early afterdepolarizations (EADs). Ca(i)(2+) was imaged using a charge-coupled device-based system in fluo-4 AM-loaded isolated rabbit ventricular myocytes paced at constant or incrementally increasing rates, using either field stimulation, current clamp, or action potential (AP) clamp. Ca(i)(2+) waves were induced by Bay K 8644 (50 nM) + isoproterenol (100 nM), or low temperature. When pacing was initiated during a spontaneous Ca(i)(2+) wave, SDA occurred abruptly and persisted during pacing. Similarly, during rapid pacing, SDA typically arose suddenly from spatially concordant alternans, due to an abrupt phase reversal of the subcellular Ca(i)(2+) transient in a region of the myocyte. Ca(i)(2+) waves could be visualized interspersed with AP-triggered Ca(i)(2+) transients, producing a rich variety of subcellular Ca(i)(2+) transient patterns. With free-running APs, complex Ca(i)(2+) release patterns were associated with DADs, EADs, and sudden changes in AP duration. These findings link Ca(i)(2+) waves directly to a variety of arrhythmogenic phenomena relevant to the intact heart.

  7. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  8. Intracellular observations on the effects of muscarinic agonists on rat sympathetic neurones.

    PubMed Central

    Brown, D. A.; Constanti, A.

    1980-01-01

    1 Responses of single neurones in isolated superior cervical ganglia of the rat to muscarinic agonists were recorded with intracellular microelectrodes. 2 (+/-)-Muscarine (1 to 10 microM) and methylfurmethide (1 to 3 microM) produced reversible membrane depolarizations (less than or equal to 15 mV) accompanied by a fall in input conductance and an increased tendency toward repetitive spike discharges. The spike configuration was unchanged. 3 Analysis of steady-state current/voltage curves revealed the most consistent muscarinic effect to be a large reduction (approximately 50% at 10 microM muscarine) in input slope conductance around rest potential. This conductance decrease diminished as the membrane was hyperpolarized, and the normal increase in slope conductance with membrane depolarization was depressed. The current/voltage curves in the between -65 and -88 mV (i.e. 9 to 28 mV hyperpolarized to rest potential). 4 Divalent cations (10 mM [Ca2+] or [Mg2+]) showed a small muscarine-like effect on the current/voltage and slope conductance/voltage curves, but did not affect the action of muscarine itself. 5 Tetraethylammonium (TEA, 5 mM) also had a small muscarine-like effect, and depressed or reversed the action of muscarine. However, TEA differed from muscarine in blocking orthodromic transmission and prolonging direct spike repolarization. 6 It is concluded that the primary effect of muscarinic agonists is to alter the rectifying properties of the cell within the potential range -80 to -40 mV. PMID:7470731

  9. Prolonged pain and disability are common after rib fractures.

    PubMed

    Fabricant, Loic; Ham, Bruce; Mullins, Richard; Mayberry, John

    2013-05-01

    The contribution of rib fractures to prolonged pain and disability may be underappreciated and undertreated. Clinicians are traditionally taught that the pain and disability of rib fractures resolves in 6 to 8 weeks. This study was a prospective observation of 203 patients with rib fractures at a level 1 trauma center. Chest wall pain was evaluated by the McGill Pain Questionnaire (MPQ) pain rating index (PRI) and present pain intensity (PPI). Prolonged pain was defined as a PRI of 8 or more at 2 months after injury. Prolonged disability was defined as a decrease in 1 or more levels of work or functional status at 2 months after injury. Predictors of prolonged pain and disability were determined by multivariate analysis. One hundred forty-five male patients and 58 female patients with a mean injury severity score (ISS) of 20 (range, 1 to 59) had a mean of 5.4 rib fractures (range, 1 to 29). Forty-four (22%) patients had bilateral fractures, 15 (7%) had flail chest, and 92 (45%) had associated injury. One hundred eighty-seven patients were followed 2 months or more. One hundred ten (59%) patients had prolonged chest wall pain and 142 (76%) had prolonged disability. Among 111 patients with isolated rib fractures, 67 (64%) had prolonged chest wall pain and 69 (66%) had prolonged disability. MPQ PPI was predictive of prolonged pain (odds ratio [OR], 1.8; 95% confidence interval [CI], 1.4 to 2.5), and prolonged disability (OR, 2.2; 95% CI, 1.5 to 3.4). The presence of significant associated injuries was predictive of prolonged disability (OR, 5.9; 95% CI, 1.4 to 29). Prolonged chest wall pain is common, and the contribution of rib fractures to disability is greater than traditionally expected. Further investigation into more effective therapies that prevent prolonged pain and disability after rib fractures is needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Activities of Antimicrobial Agents against Intracellular Pneumococci

    PubMed Central

    Mandell, Gerald L.; Coleman, Elizabeth J.

    2000-01-01

    Pneumococci can enter and survive inside human lung alveolar carcinoma cells. We examined the activity of azithromycin, gentamicin, levofloxacin, moxifloxacin, penicillin G, rifampin, telithromycin, and trovafloxacin against pneumococci inside and outside cells. We found that moxifloxacin, trovafloxacin, and telithromycin were the most active, but only telithromycin killed all intracellular organisms. PMID:10952618

  11. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis

    PubMed Central

    Garfoot, Andrew L.; Rappleye, Chad A.

    2016-01-01

    The fungal pathogen Histoplasma capsulatum causes respiratory and disseminated disease, even in immunocompetent hosts. In contrast to opportunistic pathogens, which are readily controlled by phagocytic cells, H. capsulatum yeasts are able to infect macrophages, survive antimicrobial defenses, and proliferate as an intracellular pathogen. In this review, we discuss some of the molecular mechanisms that enable H. capsulatum yeasts to overcome obstacles to intracellular pathogenesis. H. capsulatum yeasts gain refuge from extracellular obstacles such as antimicrobial lung surfactant proteins by engaging the β-integrin family of phagocytic receptors to promote entry into macrophages. In addition, H. capsulatum yeasts conceal immunostimulatory β-glucans to avoid triggering signaling receptors such as the β-glucan receptor Dectin-1. H. capsulatum yeasts counteract phagocyte-produced reactive oxygen species by expression of oxidative stress defense enzymes including an extracellular superoxide dismutase and an extracellular catalase. Within the phagosome, H. capsulatum yeasts block phagosome acidification, acquire essential metals such as iron and zinc, and utilize de novo biosynthesis pathways to overcome nutritional limitations. These mechanisms explain how H. capsulatum yeasts avoid and negate macrophage defense strategies and establish a hospitable intracellular niche, making H. capsulatum a successful intracellular pathogen of macrophages. PMID:26235362

  12. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    PubMed

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  13. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  14. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  15. Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells

    PubMed Central

    Starheim, K K; Holien, T; Misund, K; Johansson, I; Baranowska, K A; Sponaas, A-M; Hella, H; Buene, G; Waage, A; Sundan, A; Bjørkøy, G

    2016-01-01

    Multiple myeloma (myeloma in short) is an incurable cancer of antibody-producing plasma cells that comprise 13% of all hematological malignancies. The proteasome inhibitor bortezomib has improved treatment significantly, but inherent and acquired resistance to the drug remains a problem. We here show that bortezomib-induced cytotoxicity was completely dampened when cells were supplemented with cysteine or its derivative, glutathione (GSH) in ANBL-6 and INA-6 myeloma cell lines. GSH is a major component of the antioxidative defense in eukaryotic cells. Increasing intracellular GSH levels fully abolished bortezomib-induced cytotoxicity and transcriptional changes. Elevated intracellular GSH levels blocked bortezomib-induced nuclear factor erythroid 2-related factor 2 (NFE2L2, NRF2)-associated stress responses, including upregulation of the xCT subunit of the Xc- cystine-glutamate antiporter. INA-6 cells conditioned to increasing bortezomib doses displayed reduced bortezomib sensitivity and elevated xCT levels. Inhibiting Xc- activity potentiated bortezomib-induced cytotoxicity in myeloma cell lines and primary cells, and re-established sensitivity to bortezomib in bortezomib-conditioned cells. We propose that intracellular GSH level is the main determinant of bortezomib-induced cytotoxicity in a subset of myeloma cells, and that combined targeting of the proteasome and the Xc- cystine-glutamate antiporter can circumvent bortezomib resistance. PMID:27421095

  16. Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes.

    PubMed

    Martignier, A; Pacton, M; Filella, M; Jaquet, J-M; Barja, F; Pollok, K; Langenhorst, F; Lavigne, S; Guagliardo, P; Kilburn, M R; Thomas, C; Martini, R; Ariztegui, D

    2017-03-01

    Until now, descriptions of intracellular biomineralization of amorphous inclusions involving alkaline-earth metal (AEM) carbonates other than calcium have been confined exclusively to cyanobacteria (Couradeau et al., 2012). Here, we report the first evidence of the presence of intracellular amorphous granules of AEM carbonates (calcium, strontium, and barium) in unicellular eukaryotes. These inclusions, which we have named micropearls, show concentric and oscillatory zoning on a nanometric scale. They are widespread in certain eukaryote phytoplankters of Lake Geneva (Switzerland) and represent a previously unknown type of non-skeletal biomineralization, revealing an unexpected pathway in the geochemical cycle of AEMs. We have identified Tetraselmis cf. cordiformis (Chlorophyta, Prasinophyceae) as being responsible for the formation of one micropearl type containing strontium ([Ca,Sr]CO3 ), which we also found in a cultured strain of Tetraselmis cordiformis. A different flagellated eukaryotic cell forms barium-rich micropearls [(Ca,Ba)CO3 ]. The strontium and barium concentrations of both micropearl types are extremely high compared with the undersaturated water of Lake Geneva (the Ba/Ca ratio of the micropearls is up to 800,000 times higher than in the water). This can only be explained by a high biological pre-concentration of these elements. The particular characteristics of the micropearls, along with the presence of organic sulfur-containing compounds-associated with and surrounding the micropearls-strongly suggest the existence of a yet-unreported intracellular biomineralization pathway in eukaryotic micro-organisms. © 2016 John Wiley & Sons Ltd.

  17. Effect of ticlopidine ex vivo on platelet intracellular calcium mobilization

    SciTech Connect

    Derian, C.K.; Friedman, P.A.

    1988-04-01

    The antiplatelet compound ticlopidine exerts its potent inhibitory activity through an as yet undetermined mechanism(s). The goal of this study was to determine the effect, if any, of ticlopidine ex vivo on platelet calcium mobilization. Ticlopidine inhibited ADP-induced platelet aggregation by 50-80%. In the presence of 1 mM EGTA, ticlopidine inhibited ADP- and thrombin-stimulated increases in (Ca2+)i in fura-2 loaded platelets. We evaluated further the effect of ticlopidine on calcium mobilization by examining both agonist-stimulated formation of inositol trisphosphate in intact platelets and the ability of inositol trisphosphate to release /sup 45/Ca from intracellular sites in permeabilized cells. We show here that while ticlopidine significantly affected agonist-induced intracellular calcium mobilization in intact platelets, the drug was without effect on agonist-stimulated formation of inositol trisphosphate in intact platelets and on inositol trisphosphate-induced /sup 45/Ca release in saponin-permeabilized platelets. Our study demonstrates that ticlopidine exerts at least part of its effect via inhibition of intracellular calcium mobilization but that its site of action remains to be determined.

  18. Bovine subcommissural organ displays spontaneous and synchronous intracellular calcium oscillations.

    PubMed

    Bermúdez-Silva, F Javier; León-Quinto, Trinidad; Martín, Franz; Soria, Bernat; Nadal, Angel; Pérez, Juan; Fernández-Llebrez, Pedro

    2003-07-04

    The subcommissural organ (SCO) is an ependymal brain gland that secretes into the cerebrospinal fluid glycoproteins that polymerize, forming Reissner's fiber (RF). The SCO-RF complex seems to be involved in vertebrate nervous system development, although its role in adults is unknown. Furthermore, its physiology is still greatly undetermined, and little is known about the release control of SCO secretion and the underlying intracellular mechanisms. In this report, we show that up to 90% of 3-5-day-old in vitro SCO cells from both intact and partially-dispersed SCO explants displayed spontaneous cytosolic Ca2+ oscillations. The putative role of these spontaneous calcium oscillations in SCO secretory activity is discussed taking into consideration several previous findings. Two distinct subpopulations of SCO cells were detected, each one containing cells with synchronized calcium oscillations. A possible existence of different functional domains in SCO is therefore discussed. Oscillations persisted in the absence of extracellular Ca2+, indicating the major involvement of Ca2+ released from internal stores. Depolarization failed to induce intracellular calcium increases, although it disturbed the oscillation frequency, suggesting a putative modulator role of depolarizing agonists on the calcium oscillating pattern through voltage-gated calcium channels. Carbachol, a cholinergic agonist, evoked a switch in Ca2+ signaling from a calcium oscillating mode to a sustained and increased intracellular Ca2+ mode in 30% of measured cells, suggesting the involvement of acetylcholine in SCO activity, via a calcium-mediated response.

  19. Role of intracellular carbon metabolism pathways in Shigella flexneri virulence.

    PubMed

    Waligora, E A; Fisher, C R; Hanovice, N J; Rodou, A; Wyckoff, E E; Payne, S M

    2014-07-01

    Shigella flexneri, which replicates in the cytoplasm of intestinal epithelial cells, can use the Embden-Meyerhof-Parnas, Entner-Doudoroff, or pentose phosphate pathway for glycolytic carbon metabolism. To determine which of these pathways is used by intracellular S. flexneri, mutants were constructed and tested in a plaque assay for the ability to invade, replicate intracellularly, and spread to adjacent epithelial cells. Mutants blocked in the Embden-Meyerhof-Parnas pathway (pfkAB and pykAF mutants) invaded the cells but formed very small plaques. Loss of the Entner-Doudoroff pathway gene eda resulted in small plaques, but the double eda edd mutant formed normal-size plaques. This suggested that the plaque defect of the eda mutant was due to buildup of the toxic intermediate 2-keto-3-deoxy-6-phosphogluconic acid rather than a specific requirement for this pathway. Loss of the pentose phosphate pathway had no effect on plaque formation, indicating that it is not critical for intracellular S. flexneri. Supplementation of the epithelial cell culture medium with pyruvate allowed the glycolysis mutants to form larger plaques than those observed with unsupplemented medium, consistent with data from phenotypic microarrays (Biolog) indicating that pyruvate metabolism was not disrupted in these mutants. Interestingly, the wild-type S. flexneri also formed larger plaques in the presence of supplemental pyruvate or glucose, with pyruvate yielding the largest plaques. Analysis of the metabolites in the cultured cells showed increased intracellular levels of the added compound. Pyruvate increased the growth rate of S. flexneri in vitro, suggesting that it may be a preferred carbon source inside host cells.

  20. Evaluation of two novel methods for assessing intracellular oxygen

    NASA Astrophysics Data System (ADS)

    Williams, Catrin F.; Kombrabail, M.; Vijayalakshmi, K.; White, Nick; Krishnamoorthy, G.; Lloyd, David

    2012-08-01

    The ability to resolve the spatio-temporal complexity of intracellular O2 distribution is the ‘Holy Grail’ of cellular physiology. In an effort to obtain a non-invasive approach of mapping intracellular O2 tensions, two methods of phosphorescent lifetime imaging microscopy were examined in the current study. These were picosecond time-resolved epiphosphorescence microscopy (single 0.5 µm focused spot) and two-photon confocal laser scanning microscopy with pinhole shifting. Both methods utilized nanoparticle-embedded Ru complex (45 nm diameter) as the phosphorescent probe, excited using pulsed outputs of Ti-sapphire Tsunami lasers (710-1050 nm). The former method used a 1 ps pulse width excitation beam with vertical polarization via a dichroic mirror (610 nm, XF43) and a 20× objective (NA 0.55, Nikon). Transmitted luminescence (1-2 × 104 counts s-1) was collected and time-correlated single photon counted decay times measured. Alternatively, an unmodified Zeiss LSM510 Confocal NLO microscope with 40× objective (NA 1.3) used successively shifted pinhole positions to collect image data from the lagging trail of the raster scan. Images obtained from two-photon excitation of a yeast (Schizosaccharomyces pombe) and a flagellate fish parasite (Spironucleus vortens), electroporated with Ru complex, indicated the intracellular location and magnitude of O2 gradients, thus confirming the feasibility of optical mapping under different external O2 concentrations. Both methods gave similar lifetimes for Ru complex phosphorescence under aerobic and anaerobic gas phases. Estimation of O2 tensions within individual fibroblasts (human dermal fibroblast (HDF)) and mammary adenocarcinoma (MCF-7) cells was possible using epiphosphorescence microscopy. MCF-7 cells showed lower intracellular O2 concentrations than HDF cells, possibly due to higher metabolic rates in the former. Future work should involve construction of higher resolution 3D maps of Ru coordinate complex lifetime

  1. Short-Duration Spaceflight Does Not Prolong QTc Intervals in Male Astronauts

    NASA Technical Reports Server (NTRS)

    Mitchell, Brett M.; Meck, Janice V.

    2004-01-01

    Although ventricular dysrhythmias are not increased during, and QTc intervals are not prolonged after, short-duration (5 to 16 days) spaceflights, QTc intervals have not previously been reported during these shorter flights. Holter monitor recordings, obtained in 11 male astronauts who flew on shuttle missions ranging from 5 to 10 days, showed that QTc intervals did not change significantly 10 days before launch, on 2 separate days of spaceflight, and 2 days after landing. Taken together, these data and our previous report show that QTc interval prolongation occurs sometime between the 9th and 30th days of spaceflight.

  2. Intracellular angiotensin II activates rat myometrium

    PubMed Central

    Deliu, Elena; Tica, Andrei A.; Motoc, Dana; Brailoiu, G. Cristina

    2011-01-01

    Angiotensin II is a modulator of myometrial activity; both AT1 and AT2 receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca2+ concentration ([Ca2+]i) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT1 receptor antagonist losartan but not by the AT2 receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca2+]i. Blockade of AT1 receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca2+]i produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca2+-free saline, indicating a major involvement of Ca2+ release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP3) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP3 pathway. Angiotensin II-induced increase in [Ca2+]i was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT1-like receptors on lysosomes and activates PLC-IP3-dependent Ca2+ release from endoplasmic reticulum; the response is further augmented by a Ca2+-induced Ca2+ release mechanism via ryanodine receptors activation. PMID:21613610

  3. Calcium imaging in gentamicin ototoxicity: increased intracellular calcium relates to oxidative stress and late apoptosis.

    PubMed

    Chang, Jiwon; Yang, Ji Yun; Choi, June; Jung, Hak Hyun; Im, Gi Jung

    2011-12-01

    To estimate intracellular calcium changes in gentamicin (GM) ototoxicity using calcium imaging. To investigate GM-induced physiologic changes in auditory cells including cell viability, apoptosis, and oxidative stress. Varying concentrations of GM were applied to the HEI-OC1 cochlear cell line. Calcium imaging tracked changes in intracellular calcium concentration during GM cytotoxicity. Cell viability and intracellular reactive oxygen species (ROS) levels also were measured. Little change in calcium levels occurred in HEI-OC1 cells exposed to less than 35 mM GM. However, calcium rose continuously in cells exposed to more than 60 mM GM. With administration of intermediate concentrations of 40 or 50 mM GM, calcium increased variably in different cells, returning to baseline in some cases, or rising continuously in others. Upon increase of GM concentration, intracellular calcium concentration and ROS were increased, and cell viability was decreased due to late apoptosis. This study shows that GM increased intracellular calcium, ROS, and late apoptosis of HEI-OC1 cells derived from cochlear tissue. Increase of intracellular calcium is related to GM-induced apoptosis and oxidative stress. Calcium imaging can be used to determine change of intracellular calcium concentrations and apoptosis in GM ototoxicity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Roles of cell confluency and fluid shear in 3-dimensional intracellular forces in endothelial cells.

    PubMed

    Hur, Sung Sik; del Álamo, Juan C; Park, Joon Seok; Li, Yi-Shuan; Nguyen, Hong A; Teng, Dayu; Wang, Kuei-Chun; Flores, Leona; Alonso-Latorre, Baldomero; Lasheras, Juan C; Chien, Shu

    2012-07-10

    We use a novel 3D inter-/intracellular force microscopy technique based on 3D traction force microscopy to measure the cell-cell junctional and intracellular tensions in subconfluent and confluent vascular endothelial cell (EC) monolayers under static and shear flow conditions. We found that z-direction cell-cell junctional tensions are higher in confluent EC monolayers than those in subconfluent ECs, which cannot be revealed in the previous 2D methods. Under static conditions, subconfluent cells are under spatially non-uniform tensions, whereas cells in confluent monolayers are under uniform tensions. The shear modulations of EC cytoskeletal remodeling, extracellular matrix (ECM) adhesions, and cell-cell junctions lead to significant changes in intracellular tensions. When a confluent monolayer is subjected to flow shear stresses with a high forward component comparable to that seen in the straight part of the arterial system, the intracellular and junction tensions preferentially increase along the flow direction over time, which may be related to the relocation of adherens junction proteins. The increases in intracellular tensions are shown to be a result of chemo-mechanical responses of the ECs under flow shear rather than a direct result of mechanical loading. In contrast, the intracellular tensions do not show a preferential orientation under oscillatory flow with a very low mean shear. These differences in the directionality and magnitude of intracellular tensions may modulate translation and transcription of ECs under different flow patterns, thus affecting their susceptibility for atherogenesis.

  5. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    NASA Astrophysics Data System (ADS)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  6. Predicting Prolonged Stay in the ICU Attributable to Bleeding in Patients Offered Plasma Transfusion

    PubMed Central

    Ngufor, Che; Murphree, Dennis; Upadhyaya, Sudhi; Madde, Nageswar; Pathak, Jyotishman; Carter, Rickey; Kor, Daryl

    2016-01-01

    In blood transfusion studies, plasma transfusion (PPT) and bleeding are known to be associated with risk of prolonged ICU length of stay (ICU-LOS). However, as patients can show significant heterogeneity in response to a treatment, there might exists subgroups with differential effects. The existence and characteristics of these subpopulations in blood transfusion has not been well-studied. Further, the impact of bleeding in patients offered PPT on prolonged ICU-LOS is not known. This study presents a causal and predictive framework to examine these problems. The two-step approach first estimates the effect of bleeding in PPT patients on prolonged ICU-LOS and then estimates risks of bleeding and prolonged ICU-LOS. The framework integrates a classification model for risks prediction and a regression model to predict actual LOS. Results showed that the effect of bleeding in PPT patients significantly increases risk of prolonged ICU-LOS (55%, p=0.00) while no bleeding significantly reduces ICU-LOS (4%, p=0.046). PMID:28269892

  7. Multivariate analysis of risk factors for QT prolongation following subarachnoid hemorrhage

    PubMed Central

    Fukui, Shinji; Katoh, Hiroshi; Tsuzuki, Nobusuke; Ishihara, Shoichiro; Otani, Naoki; Ooigawa, Hidetoshi; Toyooka, Terushige; Ohnuki, Akira; Miyazawa, Takahito; Nawashiro, Hiroshi; Shima, Katsuji

    2003-01-01

    Background Subarachnoid hemorrhage (SAH) often causes a prolongation of the corrected QT (QTc) interval during the acute phase. The aim of the present study was to examine independent risk factors for QTc prolongation in patients with SAH by means of multivariate analysis. Method We studied 100 patients who were admitted within 24 hours after onset of SAH. Standard 12-lead electrocardiography (ECG) was performed immediately after admission. QT intervals were measured from the ECG and were corrected for heart rate using the Bazett formula. We measured serum levels of sodium, potassium, calcium, adrenaline (epinephrine), noradrenaline (norepinephrine), dopamine, antidiuretic hormone, and glucose. Results The average QTc interval was 466 ± 46 ms. Patients were categorized into two groups based on the QTc interval, with a cutoff line of 470 ms. Univariate analyses showed significant relations between categories of QTc interval, and sex and serum concentrations of potassium, calcium, or glucose. Multivariate analyses showed that female sex and hypokalemia were independent risk factors for severe QTc prolongation. Hypokalemia (<3.5 mmol/l) was associated with a relative risk of 4.53 for severe QTc prolongation as compared with normokalemia, while the relative risk associated with female sex was 4.45 as compared with male sex. There was a significant inverse correlation between serum potassium levels and QTc intervals among female patients. Conclusion These findings suggest that female sex and hypokalemia are independent risk factors for severe QTc prolongation in patients with SAH. PMID:12793884

  8. Grace's story: prolonged incestuous abuse from childhood into adulthood.

    PubMed

    Salter, Michael

    2013-02-01

    Some sexually abused women in mental health settings are reporting prolonged incest and yet little is known about the circumstances that enable fathers to sexually abuse their daughters over a period of decades. This article draws from the life history of Grace, a woman who survived prolonged incest, in order to document and analyze the interplay of familial, social, and political factors that entrap girls and women within prolonged incestuous abuse.

  9. KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    PubMed Central

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-01-01

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the

  10. KRIT1 regulates the homeostasis of intracellular reactive oxygen species.

    PubMed

    Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

    2010-07-26

    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1(-/-) cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1(-/-) cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45alpha, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell

  11. Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic.

    PubMed

    Mulye, Minal; Samanta, Dhritiman; Winfree, Seth; Heinzen, Robert A; Gilk, Stacey D

    2017-02-28

    endocarditis, which can be fatal if untreated. The existing treatment strategy requires prolonged antibiotic treatment, with a 10-year mortality rate of 19% in treated patients. Therefore, new clinical therapies are needed and can be achieved by better understanding C. burnetii pathogenesis. Upon infection of host cells, C. burnetii grows within a specialized replication niche, the parasitophorous vacuole (PV). Recent data have linked cholesterol to intracellular C. burnetii growth and PV formation, leading us to further decipher the role of cholesterol during C. burnetii-host interaction. We observed that increasing PV cholesterol concentration leads to increased acidification of the PV and bacterial death. Further, treatment with FDA-approved drugs that alter host cholesterol homeostasis also killed C. burnetii through PV acidification. Our findings suggest that targeting host cholesterol metabolism might prove clinically efficacious in controlling C. burnetii infection. Copyright © 2017 Mulye et al.

  12. Pregbalin induced recurrent syncopal attacks with prolong QT interval.

    PubMed

    Adar, Adem; Cakan, Fahri; Önalan, Orhan

    2017-08-30

    Long QT syndrome may lead to fatal dysrhythmia. Prolongation of QT interval due to pregabalin has been shown in rats and no data is available in humans. We report a 80-year-old female patient using pregabalin. She was presented to emergency room with syncope attacks. Her admission electrocardiography demonstrated prolonged QT interval. After excluding the possible causes of the long QT syndrome, we attributed prolonged QT interval to pregabalin therapy. After discontinuation of pregabalin QT interval returned to normal range and patient experienced no further syncope attacks. It is first time for documentation of prolonged QT due to pregabalin in humans. © 2017 Wiley Periodicals, Inc.

  13. Inhibition of spontaneous recovery of fear by mGluR5 after prolonged extinction training.

    PubMed

    Mao, Sheng-Chun; Chang, Chih-Hua; Wu, Chia-Chen; Orejarena, M Juliana; Orejanera, Maria Juliana; Manzoni, Olivier J; Gean, Po-Wu

    2013-01-01

    Fear behavior is vital for survival and involves learning contingent associations of non-threatening cues with aversive stimuli. In contrast, excessive levels of fear can be maladaptive and lead to anxiety disorders. Generally, extensive sessions of extinction training correlates with reduced spontaneous recovery. The molecular mechanisms underlying the long-term inhibition of fear recovery following repeated extinction training are not fully understood. Here we show that in rats, prolonged extinction training causes greater reduction in both fear-potentiated startle and spontaneous recovery. This effect was specifically blocked by metabotropic glutamate receptor 5 (mGluR5), but not by mGluR1 antagonists and by a protein synthesis inhibitor. Similar inhibition of memory recovery following prolonged extinction training was also observed in mice. In agreement with the instrumental role of mGluR5 in the prolonged inhibition of fear recovery, we found that FMR1-/- mice which exhibit enhanced mGluR5-mediated signaling exhibit lower spontaneous recovery of fear after extinction training than wild-type littermates. At the molecular level, we discovered that prolonged extinction training reversed the fear conditioning-induced increase in surface expression of GluR1, AMPA/NMDA ratio, postsynaptic density-95 (PSD-95) and synapse-associated protein-97 (SAP97). Accordingly, delivery of Tat-GluR2(3Y), a synthetic peptide that blocks AMPA receptor endocytosis, inhibited prolonged extinction training-induced inhibition of fear recovery. Together, our results demonstrate that prolonged extinction training results in the mGluR5-dependent long-term inhibition of fear recovery. This effect may involve the degradation of original memory and may explain the beneficial effects of prolonged exposure therapy for the treatment of phobias.

  14. Hyperglycemia and subsequent torsades de pointes with marked QT prolongation during refeeding.

    PubMed

    Nakashima, Takashi; Kubota, Tomoki; Takasugi, Nobuhiro; Kitagawa, Yuichiro; Yoshida, Takahiro; Ushikoshi, Hiroaki; Kawasaki, Masanori; Nishigaki, Kazuhiko; Ogura, Shinji; Minatoguchi, Shinya

    2017-01-01

    A fatal cardiac complication can occasionally present in malnourished patients during refeeding; this is known as refeeding syndrome. However, to our knowledge, hyperglycemia preceding torsades de pointes with QT prolongation during refeeding has not been reported. In the present study, we present a case in which hyperglycemia preceded torsades de pointes with QT prolongation during refeeding. The aim of this study was to determine the possible mechanism underlying QT prolongation during refeeding and indicate how to prevent it. A 32-y-old severely malnourished woman (body mass index 14.57 kg/m(2)) was admitted to the intensive care unit of our institution after resuscitation from cardiopulmonary arrest due to ventricular fibrillation. She was diagnosed with anorexia nervosa. Although no obvious electrolyte abnormalities were observed, her blood glucose level was 11 mg/dL. A 12-lead electrocardiogram at admission showed sinus rhythm with normal QT interval (QTc 0.448). Forty mL of 50% glucose (containing 20 g of glucose) was intravenously injected, followed by a drip infusion of glucose to maintain blood glucose level within normal range. After 9 h, the patient's blood glucose level increased to 569 mg/dL. However, after 38 h, an episode of marked QT prolongation (QTc 0.931) followed by torsades de pointes developed. Hyperglycemia during refeeding can present with QT prolongation; consequently, monitoring blood glucose levels may be useful in avoiding hyperglycemia, which can result in QT prolongation. Furthermore, additional monitoring of QT intervals using a 12-lead electrocardiogram should allow the early detection of QT prolongation when glucose solution is administered to a malnourished patient with (severe) hypoglycemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Inhibition of Spontaneous Recovery of Fear by mGluR5 after Prolonged Extinction Training

    PubMed Central

    Wu, Chia-Chen; Orejanera, Maria Juliana; Manzoni, Olivier J.; Gean, Po-Wu

    2013-01-01

    Fear behavior is vital for survival and involves learning contingent associations of non-threatening cues with aversive stimuli. In contrast, excessive levels of fear can be maladaptive and lead to anxiety disorders. Generally, extensive sessions of extinction training correlates with reduced spontaneous recovery. The molecular mechanisms underlying the long-term inhibition of fear recovery following repeated extinction training are not fully understood. Here we show that in rats, prolonged extinction training causes greater reduction in both fear-potentiated startle and spontaneous recovery. This effect was specifically blocked by metabotropic glutamate receptor 5 (mGluR5), but not by mGluR1 antagonists and by a protein synthesis inhibitor. Similar inhibition of memory recovery following prolonged extinction training was also observed in mice. In agreement with the instrumental role of mGluR5 in the prolonged inhibition of fear recovery, we found that FMR1−/− mice which exhibit enhanced mGluR5-mediated signaling exhibit lower spontaneous recovery of fear after extinction training than wild-type littermates. At the molecular level, we discovered that prolonged extinction training reversed the fear conditioning-induced increase in surface expression of GluR1, AMPA/NMDA ratio, postsynaptic density-95 (PSD-95) and synapse-associated protein-97 (SAP97). Accordingly, delivery of Tat-GluR23Y, a synthetic peptide that blocks AMPA receptor endocytosis, inhibited prolonged extinction training-induced inhibition of fear recovery. Together, our results demonstrate that prolonged extinction training results in the mGluR5-dependent long-term inhibition of fear recovery. This effect may involve the degradation of original memory and may explain the beneficial effects of prolonged exposure therapy for the treatment of phobias. PMID:23555716

  16. Apparent life-threatening prolonged infant apnea in Saskatchewan.

    PubMed Central

    Sunkaran, K; McKenna, A; O'Donnell, M; Ninan, A; Kasian, G; Skwarchuk, J; Bingham, W T

    1989-01-01

    Life-threatening events such as prolonged apnea and severe bradycardia are uncommon in infants. When such events occur in a family, however, the results may be disastrous. Over a period of 3 years ending June 1986, we have looked after 111 such infants aged 4 weeks to 40 weeks with a mean age of 14 weeks (male-female ratio 1.26:1). Of these infants, 33 had an identifiable cause and were treated according to the diagnoses. A structural approach to this problem yielded good results. Only 10 infants were treated with a home monitor (4 prescribed by physician and 6 by parental request). Sleep and pneumogram (polysomnogram) studies showed fewer apneic episodes with advancing age (P less than .01). Giving theophylline seemed to abolish pneumogram abnormalities. No infants died. PMID:2735034

  17. Drivers' misjudgement of vigilance state during prolonged monotonous daytime driving.

    PubMed

    Schmidt, Eike A; Schrauf, Michael; Simon, Michael; Fritzsche, Martin; Buchner, Axel; Kincses, Wilhelm E

    2009-09-01

    To investigate the effects of monotonous daytime driving on vigilance state and particularly the ability to judge this state, a real road driving study was conducted. To objectively assess vigilance state, performance (auditory reaction time) and physiological measures (EEG: alpha spindle rate, P3 amplitude; ECG: heart rate) were recorded continuously. Drivers judged sleepiness, attention to the driving task and monotony retrospectively every 20 min. Results showed that prolonged daytime driving under monotonous conditions leads to a continuous reduction in vigilance. Towards the end of the drive, drivers reported a subjectively improved vigilance state, which was contrary to the continued decrease in vigilance as indicated by all performance and physiological measures. These findings indicate a lack of self-assessment abilities after approximately 3h of continuous monotonous daytime driving.

  18. Prolonging the postcomplex spike pause speeds eyeblink conditioning.

    PubMed

    Maiz, Jaione; Karakossian, Movses H; Pakaprot, Narawut; Robleto, Karla; Thompson, Richard F; Otis, Thomas S

    2012-10-09

    Climbing fiber input to the cerebellum is believed to serve as a teaching signal during associative, cerebellum-dependent forms of motor learning. However, it is not understood how this neural pathway coordinates changes in cerebellar circuitry during learning. Here, we use pharmacological manipulations to prolong the postcomplex spike pause, a component of the climbing fiber signal in Purkinje neurons, and show that these manipulations enhance the rate of learning in classical eyelid conditioning. Our findings elucidate an unappreciated aspect of the climbing fiber teaching signal, and are consistent with a model in which convergent postcomplex spike pauses drive learning-related plasticity in the deep cerebellar nucleus. They also suggest a physiological mechanism that could modulate motor learning rates.

  19. Slow recovery in desert perennial vegetation following prolonged human disturbance

    USGS Publications Warehouse

    Guo, Q.

    2004-01-01

    The study shows an exceptionally long-term recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection in 1906, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of clear relationship between environment (e.g., precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery process after disturbances.

  20. Prolonging the postcomplex spike pause speeds eyeblink conditioning

    PubMed Central

    Maiz, Jaione; Karakossian, Movses H.; Pakaprot, Narawut; Robleto, Karla; Thompson, Richard F.; Otis, Thomas S.

    2012-01-01

    Climbing fiber input to the cerebellum is believed to serve as a teaching signal during associative, cerebellum-dependent forms of motor learning. However, it is not understood how this neural pathway coordinates changes in cerebellar circuitry during learning. Here, we use pharmacological manipulations to prolong the postcomplex spike pause, a component of the climbing fiber signal in Purkinje neurons, and show that these manipulations enhance the rate of learning in classical eyelid conditioning. Our findings elucidate an unappreciated aspect of the climbing fiber teaching signal, and are consistent with a model in which convergent postcomplex spike pauses drive learning-related plasticity in the deep cerebellar nucleus. They also suggest a physiological mechanism that could modulate motor learning rates. PMID:22988089

  1. Some measures to reduce effects of prolonged sleep deprivation.

    PubMed

    Lagarde, D; Batejat, D

    1995-01-01

    Prolonged sleep deprivation is an exceptional situation, encountered in special environments such as sports, civilian and military, and which induces deficits in vigilance and performance. Among the array of measures which may be used to counteract these effects, the authors described a protocol using the combination of small naps, and administration of a pharmacological aid. A detailed description of advantages and drawbacks of each one of these measures is given, illustrated by several examples extracted from different studies. Four aspects of pharmacological aid are reviewed: the effects of amphetamines and amphetamine-like substances, caffeine, eugregoric substances, and the effect of the association small nap + eugregoric substances. The use of these various aids is discussed, and findings show that each one of them finds an application in a specific context.

  2. Prolonged incarceration: effects on hostages of terrorism.

    PubMed

    Busuttil, W

    2008-06-01

    In recent years there has been an explosion in the publicity surrounding hostage taking. There have been many well-publicized hostage, prisoner of war and politically motivated incarcerations. Increasingly hostages are being paraded on television and sometimes even films of executions posted on the Internet. Hostage taking has usually occurred in countries where there has been political strife and war, especially, in recent years, in Iraq and Afghanistan, most recently involving British Royal Navy Personnel in Iran and a British journalist in Palestine. The aim of this paper is to review the adult literature regarding hostage taking with a view to highlighting the most likely psychiatric disorders that can develop during such an experience. This will aid planning and implementation of hostage rehabilitation and family reintegration post release. This paper will help build insight into the experiences and potential clinical presentations of those held hostage under conditions of torture and threat of death. It presents a framework of needs allowing the planning of rehabilitation including how to manage the family and the media. Further specific research is needed in order to assess the full needs of those released from prolonged incarceration held under threat of death. This will allow better planning for, and delivery of, rehabilitation of those released.

  3. Prolonging life and allowing death: infants.

    PubMed

    Campbell, A G; McHaffie, H E

    1995-12-01

    Dilemmas about resuscitation and life-prolonging treatment for severely compromised infants have become increasingly complex as skills in neonatal care have developed. Quality of life and resource issues necessarily influence management. Our Institute of Medical Ethics working party, on whose behalf this paper is written, recognises that the ultimate responsibility for the final decision rests with the doctor in clinical charge of the infant. However, we advocate a team approach to decision-making, emphasising the important role of parents and nurses in the process. Assessing the relative burdens and benefits can be troubling, but doctors and parents need to retain a measure of discretion; legislation which would determine action in all cases is inappropriate. Caution should be exercised in involving committees in decision-making and, where they exist, their remit should remain to advise rather than to decide. Support for families who bear the consequences of their decisions is often inadequate, and facilitating access to such services is part of the wider responsibilities of the intensive care team. The authors believe that allowing death by withholding or withdrawing treatment is legitimate, where those closely involved in the care of the infant together deem the burdens to be unacceptable without compensating benefits for the infant. As part of the process accurate and careful recording is essential.

  4. Pulmonary diffusion limitation after prolonged strenuous exercise.

    PubMed

    Manier, G; Moinard, J; Téchoueyres, P; Varène, N; Guénard, H

    1991-02-01

    To determine the effect of strenuous prolonged exercise on alveolo-capillary membrane diffusing capacity, 11 marathon runners aged 37 +/- 7 years (mean +/- SD) were studied before and during early recovery (28 +/- 14 min) from a marathon race. Lung capillary blood volume (Vc) and the alveolo-capillary diffusing capacity (Dm) were determined in a one-step maneuver by simultaneous measurements of CO and NO lung transfer (DLCO and DLNO, respectively) using the single breath, breath-holding method. After the race, both DLCO and DLNO were significantly decreased in all subjects (-10.9 +/- 4.8%, P less than 10(-4) and -29.0 +/- 11.1%, P less than 10(-4), respectively). The mean value of the derived DmCO decreased by -29.3 +/- 11.1%, whereas Vc had not entirely returned to control resting value. Although these results do not indicate the detailed mechanism involved, interstitial lung fluid was suspected to accumulate, particularly in alveoli, during the race. We concluded that the high overall work load and the extended duration of the exercise both contributed to a transient change in the structure of the alveolo-capillary membrane thereby affecting the diffusing capacity of the alveolo-capillary membrane.

  5. Graphene Oxides Show Angiogenic Properties.

    PubMed

    Mukherjee, Sudip; Sriram, Pavithra; Barui, Ayan Kumar; Nethi, Susheel Kumar; Veeriah, Vimal; Chatterjee, Suvro; Suresh, Kattimuttathu Ittara; Patra, Chitta Ranjan

    2015-08-05

    Angiogenesis, a process resulting in the formation of new capillaries from the pre-existing vasculature plays vital role for the development of therapeutic approaches for cancer, atherosclerosis, wound healing, and cardiovascular diseases. In this report, the synthesis, characterization, and angiogenic properties of graphene oxide (GO) and reduced graphene oxide (rGO) have been demonstrated, observed through several in vitro and in vivo angiogenesis assays. The results here demonstrate that the intracellular formation of reactive oxygen species and reactive nitrogen species as well as activation of phospho-eNOS and phospho-Akt might be the plausible mechanisms for GO and rGO induced angiogenesis. The results altogether suggest the possibilities for the development of alternative angiogenic therapeutic approach for the treatment of cardiovascular related diseases where angiogenesis plays a significant role.

  6. Tauroursodeoxycholic Acid Mitigates High Fat Diet-Induced Cardiomyocyte Contractile and Intracellular Ca2+ Anomalies

    PubMed Central

    Turdi, Subat; Hu, Nan; Ren, Jun

    2013-01-01

    Objectives The endoplasmic reticulum (ER) chaperone tauroursodeoxycholic acid (TUDCA) has exhibited promises in the treatment of obesity, although its impact on obesity-induced cardiac dysfunction is unknown. This study examined the effect of TUDCA on cardiomyocyte function in high-fat diet-induced obesity. Methods Adult mice were fed low or high fat diet for 5 months prior to treatment of TUDCA (300 mg/kg. i.p., for 15d). Intraperitoneal glucose tolerance test (IPGTT), cardiomyocyte mechanical and intracellular Ca2+ property, insulin signaling molecules including IRS-1, Akt, AMPK, ACC, GSK-3β, c-Jun, ERK and c-Jun N terminal kinase (JNK) as well as ER stress and intracellular Ca2+ regulatory proteins were examined. Myocardial ultrastructure was evaluated using transmission electron microscopy (TEM). Results High-fat diet depressed peak shortening (PS) and maximal velocity of shortening/relengthenin as well as prolonged relengthening duration. TUDCA reversed or overtly ameliorated high fat diet-induced cardiomyocyte dysfunction including prolongation in relengthening. TUDCA alleviated high-fat diet-induced decrease in SERCA2a and phosphorylation of phospholamban, increase in ER stress (GRP78/BiP, CHOP, phosphorylation of PERK, IRE1α and eIF2α), ultrastructural changes and mitochondrial permeation pore opening. High-fat diet feeding inhibited phosphorylation of AMPK and promoted phosphorylation of GSK-3β. TUDCA prevented high fat-induced dephosphorylation of AMPK but not GSK-3β. High fat diet promoted phosphorylation of IRS-1 (Ser307), JNK, and ERK without affecting c-Jun phosphorylation, the effect of which with the exception of ERK phosphorylation was attenuated by TUDCA. Conclusions These data depict that TUDCA may ameliorate high fat diet feeding-induced cardiomyocyte contractile and intracellular Ca2+ defects through mechanisms associated with mitochondrial integrity, AMPK, JNK and IRS-1 serine phosphorylation. PMID:23667647

  7. Tauroursodeoxycholic acid mitigates high fat diet-induced cardiomyocyte contractile and intracellular Ca2+ anomalies.

    PubMed

    Turdi, Subat; Hu, Nan; Ren, Jun

    2013-01-01

    The endoplasmic reticulum (ER) chaperone tauroursodeoxycholic acid (TUDCA) has exhibited promises in the treatment of obesity, although its impact on obesity-induced cardiac dysfunction is unknown. This study examined the effect of TUDCA on cardiomyocyte function in high-fat diet-induced obesity. Adult mice were fed low or high fat diet for 5 months prior to treatment of TUDCA (300 mg/kg. i.p., for 15d). Intraperitoneal glucose tolerance test (IPGTT), cardiomyocyte mechanical and intracellular Ca(2+) property, insulin signaling molecules including IRS-1, Akt, AMPK, ACC, GSK-3β, c-Jun, ERK and c-Jun N terminal kinase (JNK) as well as ER stress and intracellular Ca(2+) regulatory proteins were examined. Myocardial ultrastructure was evaluated using transmission electron microscopy (TEM). High-fat diet depressed peak shortening (PS) and maximal velocity of shortening/relengthenin as well as prolonged relengthening duration. TUDCA reversed or overtly ameliorated high fat diet-induced cardiomyocyte dysfunction including prolongation in relengthening. TUDCA alleviated high-fat diet-induced decrease in SERCA2a and phosphorylation of phospholamban, increase in ER stress (GRP78/BiP, CHOP, phosphorylation of PERK, IRE1α and eIF2α), ultrastructural changes and mitochondrial permeation pore opening. High-fat diet feeding inhibited phosphorylation of AMPK and promoted phosphorylation of GSK-3β. TUDCA prevented high fat-induced dephosphorylation of AMPK but not GSK-3β. High fat diet promoted phosphorylation of IRS-1 (Ser(307)), JNK, and ERK without affecting c-Jun phosphorylation, the effect of which with the exception of ERK phosphorylation was attenuated by TUDCA. These data depict that TUDCA may ameliorate high fat diet feeding-induced cardiomyocyte contractile and intracellular Ca(2+) defects through mechanisms associated with mitochondrial integrity, AMPK, JNK and IRS-1 serine phosphorylation.

  8. Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout.

    PubMed

    Sokolova, Niina; Vendelin, Marko; Birkedal, Rikke

    2009-12-17

    Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss), which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20 degrees C in the absence and presence of creatine. Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that trout heart lacks mitochondrial creatine kinase tightly

  9. Intracellular mechanisms for alpha 1-adrenergic regulation of the transient outward current in rabbit atrial myocytes.

    PubMed Central

    Braun, A P; Fedida, D; Clark, R B; Giles, W R

    1990-01-01

    1. The intracellular mechanism(s) underlying the decrease of a transient outward K+ current (It) induced by alpha 1-adrenergic agonists was studied in isolated adult rabbit atrial myocytes using whole-cell voltage clamp and cell-attached patch clamp techniques. Experiments were carried out at 22-23 degrees C. 2. Application of the specific alpha 1-adrenergic agonist, methoxamine, produced a decrease in It which was irreversible after the non-hydrolysable GTP analogues, GTP gamma S and Gpp(NH)p, had been introduced into cells via the recording micropipette. 3. Pre-treatment of cells with 0.1-0.15 microgram/ml pertussis toxin (PT) for 8-9 h at 30-34 degrees C did not prevent the alpha 1-induced decrease in It. Yet, this protocol, as measured by the PT-catalysed incorporation of [32P]ADP-ribose in membrane-associated 40 and 41 kDa proteins, effectively caused the ADP-ribosylation of approximately 70% of the PT-sensitive GTP-binding proteins (i.e. Gi) in these treated cells. After taking into account the proportion of non-viable cells (20-30%), the effectiveness of this treatment probably approaches 100% in the viable myocytes from which electrophysiological recordings were made. 4. Cell-attached patch recordings showed that bath application of methoxamine altered the single-channel events underlying It by decreasing their opening probability. Averaged currents from ensemble single-channel openings recorded in the presence of 0.2 mM-methoxamine outside the patch reproduced the features of alpha 1-adrenergic modulation of the macroscopic It observed during whole-cell voltage clamp measurements. This observation provides evidence for the involvement of a diffusible intracellular second messenger in the alpha 1-adrenergic modulation of It. 5. The protein kinase C (PKC) activators, 4 beta-phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl-2-acetylglycerol (OAG) increased It, when included in the bath perfusate, whereas the inactive analogues, 4 alpha-phorbol and 4 alpha

  10. Prolonged mechanical ventilation after CABG: risk factor analysis.

    PubMed

    Gumus, Funda; Polat, Adil; Yektas, Abdulkadir; Totoz, Tolga; Bagci, Murat; Erentug, Vedat; Alagol, Aysin

    2015-02-01

    Prolonged ventilation (PV) after coronary artery bypass graft (CABG) surgery is a common postoperative complication. Preoperative and operative parameters were evaluated in order to identify the patients at risk for prolonged ventilation postoperatively in coronary artery bypass graft (CABG) patients. Retrospective. Research and training hospital, single institution. The authors analyzed the prospectively collected data of 830 on- and off-pump coronary bypass patients. The relationships of PV (>24 hours) with preoperative and operative parameters were evaluated with logistic regression analysis. Forty-six patients (5.6%) required PV postoperatively. Hospital mortality was significantly higher in this group (45.7% v 4.0%; p = 0.0001). Univariate analysis showed that these patients were older (65.6±9.3 v 60.4±9.9; p = 0.001), had higher incidences of cerebrovascular disease (21.7% v 10.5%; p = 0.032), advanced ASA (58.7% v 41.8%; p = 0.026) and NYHA classes (32.6% v 12.2%; p = 0.001), and chronic renal dysfunction (20.0% v 4.0%; p = 0.0001). Concomitant procedures were more commonly performed in these patients (30.4% v 7.8%; p = 0.0001), and total durations of perfusion were longer (147.2±69.1 v 95.7±33.9 minutes; p = 0.0001). In regression analysis, advanced NYHA class (odds ratio = 8.2; 95% CI = 1.5-43.5; p = 0.015), chronic renal dysfunction (odds ratio = 7.7; 95% CI = 1.3-47.6; p = 0.027), and longer perfusion durations (p = 0.012) were found to be independently associated with delayed weaning from the ventilator. Every 1-minute increase over 82.5 minutes of cardiopulmonary bypass increased risk of delayed extubation by 3.5% (95% CI = 0.8%-6.4%). Postoperative prolonged ventilation is associated with advanced NYHA class, chronic renal dysfunction and longer perfusion times in CABG patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle

    PubMed Central

    Zhao, Xiwu; Pack, Weston; Khan, Naheed W.

    2016-01-01

    In addition to rods and cones, mammals have inner retinal photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGCs), which use the photopigment melanopsin and mediate nonimage-forming visual responses, such as pupil reflexes and circadian entrainment. After photic activation, photopigments must be reverted to their dark state to be light-sensitive again. For rods and to some extent cones, photopigment regeneration depends on the retinoid cycle in the adjacent retinal pigment epithelium (RPE). By contrast, ipRGCs are far from the RPE, and previous work suggests that melanopsin is capable of light-dependent self-regeneration. Here, we used in vitro ipRGC recording and in vivo pupillometry to show that the RPE is required for normal melanopsin-based responses to prolonged light, especially at high stimulus intensities. Melanopsin-based photoresponses of rat ipRGCs were remarkably sustained when a functional RPE was attached to the retina, but became far more transient if the RPE was removed, or if the retinoid cycle was inhibited, or when Müller glia were poisoned. Similarly, retinoid cycle inhibition markedly reduced the steady-state amplitude of melanopsin-driven pupil reflexes in both mice and rats. However, melanopsin photoresponses in RPE-separated rat retinas became more sustained in the presence of an 11-cis-retinal analog. In conclusion, during prolonged illumination, melanopsin regeneration depends partly on 11-cis-retinal from the RPE, possibly imported via Müller cells. Implications for RPE-related eye diseases and the acne drug isotretinoin (a retinoid cycle inhibitor) are discussed. SIGNIFICANCE STATEMENT Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin and drive subconscious physiological responses to light, e.g., pupillary constriction and neuroendocrine regulation. In darkness, each photopigment molecule in ipRGCs, as well as rod/cone photoreceptors, contains 11-cis-retinal (a

  12. Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle.

    PubMed

    Zhao, Xiwu; Pack, Weston; Khan, Naheed W; Wong, Kwoon Y

    2016-04-13

    In addition to rods and cones, mammals have inner retinal photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGCs), which use the photopigment melanopsin and mediate nonimage-forming visual responses, such as pupil reflexes and circadian entrainment. After photic activation, photopigments must be reverted to their dark state to be light-sensitive again. For rods and to some extent cones, photopigment regeneration depends on the retinoid cycle in the adjacent retinal pigment epithelium (RPE). By contrast, ipRGCs are far from the RPE, and previous work suggests that melanopsin is capable of light-dependent self-regeneration. Here, we used in vitro ipRGC recording and in vivo pupillometry to show that the RPE is required for normal melanopsin-based responses to prolonged light, especially at high stimulus intensities. Melanopsin-based photoresponses of rat ipRGCs were remarkably sustained when a functional RPE was attached to the retina, but became far more transient if the RPE was removed, or if the retinoid cycle was inhibited, or when Müller glia were poisoned. Similarly, retinoid cycle inhibition markedly reduced the steady-state amplitude of melanopsin-driven pupil reflexes in both mice and rats. However, melanopsin photoresponses in RPE-separated rat retinas became more sustained in the presence of an 11-cis-retinal analog. In conclusion, during prolonged illumination, melanopsin regeneration depends partly on 11-cis-retinal from the RPE, possibly imported via Müller cells. Implications for RPE-related eye diseases and the acne drug isotretinoin (a retinoid cycle inhibitor) are discussed. Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin and drive subconscious physiological responses to light, e.g., pupillary constriction and neuroendocrine regulation. In darkness, each photopigment molecule in ipRGCs, as well as rod/cone photoreceptors, contains 11-cis-retinal (a vitamin A derivative

  13. Standardized Approach to Prolonged Air Leak Reduction After Pulmonary Resection.

    PubMed

    Drahush, Nicholas; Miller, Ashley D; Smith, Jeremiah S; Royer, Anna M; Spiva, Marlana; Headrick, James R

    2016-06-01

    Prolonged air leaks after pulmonary resection lead to patient discomfort, increased hospital length of stay, greater health care costs, and increased morbidity. A standardized approach to air leak reduction (STAR) after lung resection was developed and studied. A retrospective review was conducted of a prospective database from 1 surgeon who had adopted STAR as standard of care. Three independent factors shown to reduce air leaks are incorporated in STAR: fissureless operative technique, staple line buttressing, and protocol-driven chest tube management. Patient characteristics and outcomes were compared against aggregate data from The Society of Thoracic Surgeons National Database (2012-2014). From June 2010 through May 2015, 475 patients met the study criteria. Of these, 264 (55.6%) had lobectomies, 198 (41.7%) had wedge resections, and 13 (2.7%) had segmentectomies. Prolonged air leaks were reduced in the STAR lobectomy group by 52% (5.7% versus 10.9%; p = 0.0079) and in the STAR wedge group by 40% (2.5% versus 4.2%; p = 0.38). Hospital length of stay for lobectomies (3.2 versus 6.3 days; p = 0.0001), wedge resections (3.3 versus 4.5 days; p = 0.0152), and segmentectomies (3.2 versus 5.2 days; p = 0.0001) was significantly reduced. Readmission rate was 4% and none were related to air leak. No difference was seen in mortality rates. Use of STAR for pulmonary resection, particularly for lobectomies, shows decreased postoperative prolonged air leaks when compared with The Society of Thoracic Surgeons National Database. This aggressive approach did not lead to air leak-related hospital readmissions nor compromise postoperative mortality. The STAR protocol is an innovative strategy that has the potential to improve postoperative pulmonary resection outcomes. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Prolonged Temozolomide Maintenance Therapy in Newly Diagnosed Glioblastoma.

    PubMed

    Skardelly, Marco; Dangel, Elena; Gohde, Julia; Noell, Susan; Behling, Felix; Lepski, Guilherme; Borchers, Christian; Koch, Marilin; Schittenhelm, Jens; Bisdas, Sotirios; Naumann, Aline; Paulsen, Frank; Zips, Daniel; von Hehn, Ulrike; Ritz, Rainer; Tatagiba, Marcos Soares; Tabatabai, Ghazaleh

    2017-05-01

    The impact of prolonging temozolomide (TMZ) maintenance beyond six cycles in newly diagnosed glioblastoma (GBM) remains a topic of discussion. We investigated the effects of prolonged TMZ maintenance on progression-free survival (PFS) and overall survival (OS). In this retrospective single-center cohort study, we included patients with GBM who were treated with radiation therapy with concomitant and adjuvant TMZ. For analysis, patients were considered who either completed six TMZ maintenance cycles (group B), continued with TMZ therapy beyond six cycles (group C), or stopped TMZ maintenance therapy within the first six cycles (group A). Patients with progression during the first six TMZ maintenance cycles were excluded. Clinical data from 107 patients were included for Kaplan-Meier analyses and 102 for Cox regressions. Median PFS times were 8.1 months (95% confidence interval [CI] 6.1-12.4) in group A, 13.7 months (95% CI 10.6-17.5) in group B, and 20.9 months (95% CI 15.2-43.5) in group C. At first progression, response rates of TMZ/lomustine rechallenge were 47% in group B and 13% in group C. Median OS times were 12.7 months (95% CI 10.3-16.8) in group A, 25.2 months (95% CI 17.7-55.5) in group B, and 28.6 months (95% CI 24.4-open) in group C. Nevertheless, multivariate Cox regression for patients in group C compared with group B that accounted for imbalances of other risk factors showed no different relative risk (RR) for OS (RR 0.77, p = .46). Our data do not support a general extension of TMZ maintenance therapy beyond six cycles. The Oncologist 2017;22:570-575 IMPLICATIONS FOR PRACTICE: Radiation therapy with concomitant and adjuvant temozolomide (TMZ) maintenance therapy is still the standard of care in patients below the age of 65 years in newly diagnosed glioblastoma. However, in clinical practice, many centers continue TMZ maintenance therapy beyond six cycles. The impact of this continuation is controversial and has not yet been addressed in

  15. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  16. Modeling of spatially-restricted intracellular signaling.

    PubMed

    Neves, Susana R

    2012-01-01

    Understanding the signaling capabilities of a cell presents a major challenge, not only due to the number of molecules involved, but also because of the complex network connectivity of intracellular signaling. Recently, the proliferation of quantitative imaging techniques has led to the discovery of the vast spatial organization of intracellular signaling. Computational modeling has emerged as a powerful tool for understanding how inhomogeneous signaling originates and is maintained. This article covers the current imaging techniques used to obtain quantitative spatial data and the mathematical approaches used to model spatial cell biology. Modeling-derived hypotheses have been experimentally tested and the integration of modeling and imaging approaches has led to non-intuitive mechanistic insights.

  17. Intracellular mechanisms of solar water disinfection

    PubMed Central

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-01-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection. PMID:27909341

  18. Leishmania hijacking of the macrophage intracellular compartments.

    PubMed

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  19. Intracellular mechanisms of solar water disinfection.

    PubMed

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-02

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  20. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  1. Intracellular mechanisms of solar water disinfection

    NASA Astrophysics Data System (ADS)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  2. Sensitivity of Francisella tularensis to ultrapure water and deoxycholate: implications for bacterial intracellular growth assay in macrophages

    PubMed Central

    Chalabaev, Sabina; Anderson, Christine A.; Onderdonk, Andrew B.; Kasper, Dennis L.

    2011-01-01

    The ability of Francisella tularensis to replicate in macrophages is critical for its pathogenesis, therefore intracellular growth assays are important tools for assessing virulence. We show that two lysis solutions commonly used in these assays, deionized water and deoxycholate in PBS, lead to highly inaccurate measurements of intracellular bacterial survival. PMID:21420447

  3. Effect of prolonged exposure to organic solvents on the active site environment of subtilisin Carlsberg.

    PubMed

    Bansal, Vibha; Delgado, Yamixa; Fasoli, Ezio; Ferrer, Amaris; Griebenow, Kai; Secundo, Francesco; Barletta, Gabriel L

    2010-06-01

    The potential of enzyme catalysis as a tool for organic synthesis is nowadays indisputable, as is the fact that organic solvents affect an enzyme's activity, selectivity and stability. Moreover, it was recently realized that an enzyme's initial activity is substantially decreased after prolonged exposure to organic media, an effect that further hampers their potential as catalysts for organic synthesis. Regrettably, the mechanistic reasons for these effects are still debatable. In the present study we have made an attempt to explain the reasons behind the partial loss of enzyme activity on prolonged exposure to organic solvents. Fluorescence spectroscopic studies of the serine protease subtilisin Carlsberg chemically modified with polyethylene glycol (PEG-SC) and inhibited with a Dancyl fluorophore, and dissolved in two organic solvents (acetonitrile and 1,4-dioxane) indicate that when the enzyme is initially introduced into these solvents, the active site environment is similar to that in water; however prolonged exposure to the organic medium causes this environment to resemble that of the solvent in which the enzyme is dissolved. Furthermore, kinetic studies show a reduction on both V(max) and K(M) as a result of prolonged exposure to the solvents. One interpretation of these results is that during this prolonged exposure to organic solvents the active-site fluorescent label inhibitor adopts a different binding conformation. Extrapolating this to an enzymatic reaction we argue that substrates bind in a less catalytically favorable conformation after the enzyme has been exposed to organic media for several hours.

  4. Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution.

    PubMed

    Ogimi, Chikara; Greninger, Alexander L; Waghmare, Alpana A; Kuypers, Jane M; Shean, Ryan C; Xie, Hu; Leisenring, Wendy M; Stevens-Ayers, Terry L; Jerome, Keith R; Englund, Janet A; Boeckh, Michael

    2017-07-15

    Recent data suggest that human coronavirus (HCoV) pneumonia is associated with significant mortality in hematopoietic cell transplant (HCT) recipients. Investigation of risk factors for prolonged shedding and intrahost genome evolution may provide critical information for development of novel therapeutics. We retrospectively reviewed HCT recipients with HCoV detected in nasal samples by polymerase chain reaction (PCR). HCoV strains were identified using strain-specific PCR. Shedding duration was defined as time between first positive and first negative sample. Logistic regression analyses were performed to evaluate factors for prolonged shedding (≥21 days). Metagenomic next-generation sequencing (mNGS) was conducted when ≥4 samples with cycle threshold values of <28 were available. Seventeen of 44 patients had prolonged shedding. Among 31 available samples, 35% were OC43, 32% were NL63, 19% were HKU1, and 13% were 229E; median shedding duration was similar between strains (P = .79). Bivariable logistic regression analyses suggested that high viral load, receipt of high-dose steroids, and myeloablative conditioning were associated with prolonged shedding. mNGS among 5 subjects showed single-nucleotide polymorphisms from OC43 and NL63 starting 1 month following onset of shedding. High viral load, high-dose steroids, and myeloablative conditioning were associated with prolonged shedding of HCoV in HCT recipients. Genome changes were consistent with the expected molecular clock of HCoV.

  5. Metacognition, social cognition, and symptoms in patients with first episode and prolonged psychoses.

    PubMed

    Vohs, J L; Lysaker, P H; Francis, M M; Hamm, J; Buck, K D; Olesek, K; Outcalt, J; Dimaggio, G; Leonhardt, B; Liffick, E; Mehdiyoun, N; Breier, A

    2014-03-01

    While it has been documented that persons with prolonged schizophrenia have deficits in metacognition and social cognition, it is less clear whether these difficulties are already present during a first episode. To explore this issue we assessed and compared metacognition using the Metacognition Assessment Scale-Abbreviated (MAS-A) and social cognition using the Eyes, Hinting and Bell-Lysaker Emotional Recognition Tests (BLERT) in participants with first episode psychosis (FEP; n=26), participants with a prolonged psychosis (n=72), and a psychiatric control group consisting of persons with a substance use disorder and no history of psychosis (n=14). Analyses revealed that both psychosis cohorts scored lower than controls on the MAS-A total and all subscales except metacognitive mastery. Compared to the FEP group, the persons with prolonged psychosis demonstrated greater metacognitive capacities only in those MAS-A domains reflective of the ability to understand the mental state of others and to see that others may have motivations and desires separate from their own. Other domains of metacognition did not differ between psychosis groups. The Eyes, Hinting and BLERT scores of the two psychosis groups did not differ but were poorer than those produced by the control group. Exploratory correlations in the FEP group showed a pattern similar to that previously observed in prolonged psychosis. Taken together, these findings suggest that while certain domains of metacognition could improve with prolonged psychosis, difficulties with global metacognition and social cognition may be stable features of the disorder and perhaps unique to psychosis.

  6. Factors of working conditions and prolonged fatigue among teachers at public elementary and junior high schools.

    PubMed

    Shimizu, Midori; Wada, Koji; Wang, Guoqin; Kawashima, Masatoshi; Yoshino, Yae; Sakaguchi, Hiroko; Ohta, Hiroshi; Miyaoka, Hitoshi; Aizawa, Yoshiharu

    2011-01-01

    Prolonged fatigue among elementary and junior high school teachers not only damages their health but also affects the quality of education. The aim of this study was to determine the factors of working conditions associated with prolonged fatigue among teachers at public elementary and junior high schools. We distributed a self-reported, anonymous questionnaire to 3,154 teachers (1,983 in elementary schools, 1,171 in junior high schools) working in public schools in a city in Japan. They were asked to assess 18 aspects of their working conditions using a seven-point Likert scale. Prolonged fatigue was measured using the Japanese version of the checklist individual strength questionnaire. Multiple regression analysis was used to examine the association between working conditions and prolonged fatigue. Gender, age, and school type were introduced as confounders. In all, 2,167 teachers participated in this study. Results showed that qualitative and quantitative workload (time pressure due to heavy workload, interruptions, physically demanding job, extra work at home), communication with colleagues (poor communication, lack of support), and career factors (underestimation of performance by the board of education or supervisors, occupational position not reflecting training, lack of prospects for work, job insecurity) were associated with prolonged fatigue.

  7. Functions of Intracellular Retinoid Binding-Proteins

    PubMed Central

    2017-01-01

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function. PMID:27830500

  8. Targeting caspases in intracellular protozoan infections.

    PubMed

    Guillermo, Landi V C; Pereira, Wânia F; De Meis, Juliana; Ribeiro-Gomes, Flavia L; Silva, Elisabeth M; Kroll-Palhares, Karina; Takiya, Christina M; Lopes, Marcela F

    2009-06-01

    Caspases are cysteine aspartases acting either as initiators (caspases 8, 9, and 10) or executioners (caspases 3, 6, and 7) to induce programmed cell death by apoptosis. Parasite infections by certain intracellular protozoans increase host cell life span by targeting caspase activation. Conversely, caspase activation, followed by apoptosis of lymphocytes and other cells, prevents effective immune responses to chronic parasite infection. Here we discuss how pharmacological inhibition of caspases might affect the immunity to protozoan infections, by either blocking or delaying apoptosis.

  9. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  10. Prolonged Nightly Fasting and Breast Cancer Prognosis.

    PubMed

    Marinac, Catherine R; Nelson, Sandahl H; Breen, Caitlin I; Hartman, Sheri J; Natarajan, Loki; Pierce, John P; Flatt, Shirley W; Sears, Dorothy D; Patterson, Ruth E

    2016-08-01

    Rodent studies demonstrate that prolonged fasting during the sleep phase positively influences carcinogenesis and metabolic processes that are putatively associated with risk and prognosis of breast cancer. To our knowledge, no studies in humans have examined nightly fasting duration and cancer outcomes. To investigate whether duration of nightly fasting predicted recurrence and mortality among women with early-stage breast cancer and, if so, whether it was associated with risk factors for poor outcomes, including glucoregulation (hemoglobin A1c), chronic inflammation (C-reactive protein), obesity, and sleep. Data were collected from 2413 women with breast cancer but without diabetes mellitus who were aged 27 to 70 years at diagnosis and participated in the prospective Women's Healthy Eating and Living study between March 1, 1995, and May 3, 2007. Data analysis was conducted from May 18 to October 5, 2015. Nightly fasting duration was estimated from 24-hour dietary recalls collected at baseline, year 1, and year 4. Clinical outcomes were invasive breast cancer recurrence and new primary breast tumors during a mean of 7.3 years of study follow-up as well as death from breast cancer or any cause during a mean of 11.4 years of surveillance. Baseline sleep duration was self-reported, and archived blood samples were used to assess concentrations of hemoglobin A1c and C-reactive protein. The cohort of 2413 women (mean [SD] age, 52.4 [8.9] years) reported a mean (SD) fasting duration of 12.5 (1.7) hours per night. In repeated-measures Cox proportional hazards regression models, fasting less than 13 hours per night (lower 2 tertiles of nightly fasting distribution) was associated with an increase in the risk of breast cancer recurrence compared with fasting 13 or more hours per night (hazard ratio, 1.36; 95% CI, 1.05-1.76). Nightly fasting less than 13 hours was not associated with a statistically significant higher risk of breast cancer mortality (hazard ratio, 1.21; 95

  11. Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation.

    PubMed

    Roth, Michael; Will, Britta; Simkin, Guillermo; Narayanagari, Swathi; Barreyro, Laura; Bartholdy, Boris; Tamari, Roni; Mitsiades, Constantine S; Verma, Amit; Steidl, Ulrich

    2012-07-12

    Eltrombopag (EP) is a small-molecule, nonpeptide thrombopoietin receptor (TPO-R) agonist that has been approved recently for the treatment of thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Prior studies have shown that EP stimulates megakaryopoiesis in BM cells from patients with acute myeloid leukemia and myelodysplastic syndrome, and the results also suggested that it may inhibit leukemia cell growth. In the present study, we studied the effects of EP on leukemia cell proliferation and the mechanism of its antiproliferative effects. We found that EP leads to a decreased cell division rate, a block in G(1) phase of cell cycle, and increased differentiation in human and murine leukemia cells. Because EP is species specific in that it can only bind TPO-R in human and primate cells, these findings further suggested that the antileukemic effect is independent of TPO-R. We found that treatment with EP leads to a reduction in free intracellular iron in leukemic cells in a dose-dependent manner. Experimental increase of intracellular iron abrogated the antiproliferative and differentiation-inducing effects of EP, demonstrating that its antileukemic effects are mediated through modulation of intracellular iron content. Finally, determination of EP's antileukemic activity in vivo demonstrated its ability to prolong survival in 2 mouse models of leukemia.

  12. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery

    PubMed Central

    Gordon, Laurie J.; Wayne, Gareth J.; Almqvist, Helena; Axelsson, Hanna; Seashore-Ludlow, Brinton; Treyer, Andrea; Lundbäck, Thomas; West, Andy; Hann, Michael M.; Artursson, Per

    2017-01-01

    Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery. PMID:28701380

  13. Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose.

    PubMed

    Asif, Muhammad H; Ali, Syed M Usman; Nur, Omer; Willander, Magnus; Brännmark, Cecilia; Strålfors, Peter; Englund, Ulrika H; Elinder, Fredrik; Danielsson, Bengt

    2010-06-15

    In this article, we report a functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. To adjust the sensor for intracellular glucose measurements, we grew hexagonal ZnO nanorods on the tip of a silver-covered borosilicate glass capillary (0.7 microm diameter) and coated them with the enzyme glucose oxidase. The enzyme-coated ZnO nanorods exhibited a glucose-dependent electrochemical potential difference versus an Ag/AgCl reference microelectrode. The potential difference was linear over the concentration range of interest (0.5-1000 microM). The measured glucose concentration in human adipocytes or frog oocytes using our ZnO-nanorod sensor was consistent with values of glucose concentration reported in the literature; furthermore, the sensor was able to show that insulin increased the intracellular glucose concentration. This nanoelectrode device demonstrates a simple technique to measure intracellular glucose concentration. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles.

    PubMed

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Remita, Hynd; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2015-11-01

    The pH regulation has a fundamental role in several intracellular processes and its variation via exogenous compounds is a potential tool for intervening in the intracellular processes. Proton caged compounds (PPCs) release protons upon UV irradiation and may efficiently provoke intracellular on-command acidification. Here, we explore the intracellular pH variation, when purposely synthesized PCCs are coupled to gold nanoparticles (AuNPs) and dosed to HEK-293 cells. We detected the acidification process caused by the UV irradiation by monitoring the intensity of the asymmetric stretching mode of the CO(2) molecule at 2343 cm(-1). The comparison between free and AuNPs functionalized proton caged compound demonstrates a highly enhanced CO(2) yield, hence pH variation, in the latter case. Finally, PCC functionalized AuNPs were marked with a purposely synthesized fluorescent marker and dosed to HEK-293 cells. The corresponding fluorescence optical images show green grains throughout the whole cytoplasm.

  15. Fatigue associated with prolonged graded running.

    PubMed

    Giandolini, Marlene; Vernillo, Gianluca; Samozino, Pierre; Horvais, Nicolas; Edwards, W Brent; Morin, Jean-Benoît; Millet, Guillaume Y

    2016-10-01

    Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed.

  16. Fluids and hydration in prolonged endurance performance.

    PubMed

    Von Duvillard, Serge P; Braun, William A; Markofski, Melissa; Beneke, Ralph; Leithäuser, Renate

    2004-01-01

    Numerous studies have confirmed that performance can be impaired when athletes are dehydrated. Endurance athletes should drink beverages containing carbohydrate and electrolyte during and after training or competition. Carbohydrates (sugars) favor consumption and Na(+) favors retention of water. Drinking during competition is desirable compared with fluid ingestion after or before training or competition only. Athletes seldom replace fluids fully due to sweat loss. Proper hydration during training or competition will enhance performance, avoid ensuing thermal stress, maintain plasma volume, delay fatigue, and prevent injuries associated with dehydration and sweat loss. In contrast, hyperhydration or overdrinking before, during, and after endurance events may cause Na(+) depletion and may lead to hyponatremia. It is imperative that endurance athletes replace sweat loss via fluid intake containing about 4% to 8% of carbohydrate solution and electrolytes during training or competition. It is recommended that athletes drink about 500 mL of fluid solution 1 to 2 h before an event and continue to consume cool or cold drinks in regular intervals to replace fluid loss due to sweat. For intense prolonged exercise lasting longer than 1 h, athletes should consume between 30 and 60 g/h and drink between 600 and 1200 mL/h of a solution containing carbohydrate and Na(+) (0.5 to 0.7 g/L of fluid). Maintaining proper hydration before, during, and after training and competition will help reduce fluid loss, maintain performance, lower submaximal exercise heart rate, maintain plasma volume, and reduce heat stress, heat exhaustion, and possibly heat stroke.

  17. Diaphragmatic energetics during prolonged exhaustive exercise.

    PubMed

    Manohar, M; Hassan, A S

    1991-08-01

    The present study was carried out to examine diaphragmatic O2 extraction and lactate and ammonia production during prolonged exhaustive exercise. Experiments were performed on nine healthy exercise-conditioned ponies in which catheters had been implanted in the phrenic vein previously. Blood-gas variables and lactate and ammonia concentrations were determined on simultaneously obtained arterial and phrenic-venous blood samples at rest and during 30 min of exertion at 15 mph + 7% grade (heart rate, 200 beats/min; approximately 90% of maximum). Arterial O2 tension and saturation were maintained near resting value but CO2 tension decreased markedly with exercise, and because of increased hemoglobin concentration, arterial O2 content rose. Concomitantly, phrenic venous O2 tension, saturation and content decreased markedly (23.6 +/- 1 mm Hg, 24.5 +/- 2%, 5.2 +/- 0.3 ml/dl at 3 min of exertion) and significant fluctuations did not occur as exercise duration progressed to 30 min. Diaphragmatic arteriovenous O2 content difference and O2 extraction rose from 4 +/- 0.3 to 16 +/- 0.5 ml/dl and from 30 +/- 3 to 75 +/- 1% at 3 min of exercise, and significant deviations did not occur as exercise duration progressed. Arterial lactate and ammonia levels increased during exercise, indicating their release from working limb muscles. Phrenic-venous values of lactate and ammonia did not exceed arterial values. Ponies sweated profusely and were unable to keep up with the belt speed in the last 4 to 5 min of exercise. Constancy of phrenic arteriovenous O2 content difference in exercise indicated ability to adjust perfusion in diaphragm so as to adequately meet its O2 needs.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Exceptionally prolonged tooth formation in elasmosaurid plesiosaurians

    PubMed Central

    Kear, Benjamin P.; Larsson, Dennis; Lindgren, Johan; Kundrát, Martin

    2017-01-01

    Elasmosaurid plesiosaurians were globally prolific marine reptiles that dominated the Mesozoic seas for over 70 million years. Their iconic body-plan incorporated an exceedingly long neck and small skull equipped with prominent intermeshing ‘fangs’. How this bizarre dental apparatus was employed in feeding is uncertain, but fossilized gut contents indicate a diverse diet of small pelagic vertebrates, cephalopods and epifaunal benthos. Here we report the first plesiosaurian tooth formation rates as a mechanism for servicing the functional dentition. Multiple dentine thin sections were taken through isolated elasmosaurid teeth from the Upper Cretaceous of Sweden. These specimens revealed an average of 950 daily incremental lines of von Ebner, and infer a remarkably protracted tooth formation cycle of about 2–3 years–other polyphyodont amniotes normally take ~1–2 years to form their teeth. Such delayed odontogenesis might reflect differences in crown length and function within an originally uneven tooth array. Indeed, slower replacement periodicity has been found to distinguish larger caniniform teeth in macrophagous pliosaurid plesiosaurians. However, the archetypal sauropterygian dental replacement system likely also imposed constraints via segregation of the developing tooth germs within discrete bony crypts; these partly resorbed to allow maturation of the replacement teeth within the primary alveoli after displacement of the functional crowns. Prolonged dental formation has otherwise been linked to tooth robustness and adaption for vigorous food processing. Conversely, elasmosaurids possessed narrow crowns with an elongate profile that denotes structural fragility. Their apparent predilection for easily subdued prey could thus have minimized this potential for damage, and was perhaps coupled with selective feeding strategies that ecologically optimized elasmosaurids towards more delicate middle trophic level aquatic predation. PMID:28241059

  19. Prolonged swimming performance of northern squawfish

    USGS Publications Warehouse

    Mesa, Matthew G.; Olson, Todd M.

    1993-01-01

    We determined the prolonged swimming performance of two size-classes of northern squawfish Ptychocheilus oregonensis at 12 and 18°C. The percentage of fish fatigued was positively related to water velocity and best described by an exponential model. At 12°C, the velocity at which 50% of the fish fatigued (FV50) was estimated to be 2.91 fork lengths per second (FL/s; 100 cm/s) for medium-sized fish (30–39 cm) and 2.45 FL/s (104 cm/s) for large fish (40–49 cm). At 18°C, estimated FV50 was 3.12 FL/s (107 cm/s) for medium fish and 2.65 FL/s (112 cm/s) for large fish. Rate of change in percent fatigue was affected by fish size and water temperature. Large fish fatigued at a higher rate than medium-sized fish; all fish fatigued faster at 12 than at 18°C. The mean times to fatigue at velocities of 102–115 cm/s ranged from 14 to 28 min and were not affected by fish size or water temperature. Our results indicate that water velocities from 100 to 130 cm/s may exclude or reduce predation by northern squawfish around juvenile salmonid bypass outfalls at Columbia River dams, at least during certain times of the year. We recommend that construction or modification of juvenile salmonid bypass facilities place the outfall in an area of high water velocity and distant from eddies, submerged cover, and littoral areas.

  20. Prolonged swimming performance of northern squawfish

    SciTech Connect

    Mesa, M.G.; Olson, T.M. )

    1993-11-01

    The authors determined the prolonged swimming performance of two size-classes of northern squawfish Ptychocheilus oregonensis at 12 and 18[degrees]C. The percentage of fish fatigued was positively related to water velocity and best described by an exponential model. At 12[degrees]C, the velocity at which 50% of the fish fatigued (FV50) was estimated to be 2.91 fork lengths per second (FL/s; 100 cm/s) for medium-sized fish (30-39 cm) and 2.45 FL/s (104 cm/s) for large fish (40-49 cm). At 18[degrees]C, estimated FV50 was 3.12 FL/s (107 cm/s) for medium fish and 2.65 FL/s (112 cm/s) for large fish. Rate of change in percent fatigue was affected by fish size and water temperature. Large fish fatigued at a higher rate than medium-sized fish; all fish fatigued faster at 12 than at 18[degrees]C. The mean times to fatigue at velocities of 102-115 cm/s ranged from 14 to 28 min and were not affected by fish size or water temperature. The results indicate that water velocities from 100 to 130 cm/s may exclude or reduce predation by northern squawfish around juvenile salmonid bypass outfalls at Columbia River dams, at least during certain times of the year. The authors recommend that construction or modification of juvenile salmonid bypass facilities place the outfall in an area of high water velocity and distant from eddies, submerged cover, and littoral areas. 35 refs., 1 fig., 2 tabs.

  1. Detection of intracellular phosphatidylserine in living cells.

    PubMed

    Calderon, Frances; Kim, Hee-Yong

    2008-03-01

    To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.

  2. Optical nanoparticle sensors for quantitative intracellular imaging.

    PubMed

    Lee, Yong-Eun Koo; Kopelman, Raoul

    2009-01-01

    Real-time measurements of biological/chemical/physical processes, with no interferences, are an ultimate goal for in vivo intracellular studies. To construct intracellular biosensors that meet such a goal, nanoparticle (NP) platforms seem to be most promising, because of their small size and excellent engineerability. This review describes the development of NP-based opical sensors and their intracellular applications. The sensor designs are classified into two types, based on the sensor structures regarding analyte receptor and signal transducer. Type 1 sensors, with a single component for both receptor and transducer, work by mechanisms similar to those of 'molecular probes'. Type 2 sensors, with a separate component for receptor and transducer, work by different mechanisms that require the presence of specific NPs. A synergistic increase in optical signal or selectivity has been reported for these second type of NP sensors. With ongoing rapid advances in nanotechnology and instrumentation, these NP systems will soon be capable of sensing at the single-molecule level, at the point of interest within the living cell, and capable of simultaneously detecting multiple analytes and physical parameters.

  3. Intracellular guest exchange between dynamic supramolecular hosts.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; McCaughan, Bridgeen; Cusido, Janet; Callan, John F; Raymo, Françisco M

    2014-06-04

    Decyl and oligo(ethylene glycol) chains were appended to the same poly(methacrylate) backbone to generate an amphiphilic polymer with a ratio between hydrophobic and hydrophilic segments of 2.5. At concentrations greater than 10 μg mL(-1) in neutral buffer, multiple copies of this particular macromolecule assemble into nanoparticles with a hydrodynamic diameter of 15 nm. In the process of assembling, these nanoparticles can capture anthracene donors and borondipyrromethene acceptors within their hydrophobic interior and permit the transfer of excitation energy with an efficiency of 95%. Energy transfer is observed also if nanocarriers containing exclusively the donors are mixed with nanoparticles preloaded separately with the acceptors in aqueous media. The two sets of supramolecular assemblies exchange their guests with fast kinetics upon mixing to co-localize complementary chromophores within the same nanostructured container and enable energy transfer. After guest exchange, the nanoparticles can cross the membrane of cervical cancer cells and bring the co-entrapped donors and acceptors within the intracellular environment. Alternatively, intracellular energy transfer is also established after sequential cell incubation with nanoparticles containing the donors first and then with nanocarriers preloaded with the acceptors or vice versa. Under these conditions, the nanoparticles exchange their cargo only after internalization and allow energy transfer exclusively within the cell interior. Thus, the dynamic character of such supramolecular containers offers the opportunity to transport independently complementary species inside cells and permit their interaction only within the intracellular space.

  4. Invasion and Intracellular Survival by Protozoan Parasites

    PubMed Central

    Sibley, L. David

    2013-01-01

    Summary Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a nonfusigenic vacuole (e.g. Toxoplasma, Encephalitizoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunological responses and thereby prevent disease. PMID:21349087

  5. Molecular and Photosynthetic Responses to Prolonged Darkness and Subsequent Acclimation to Re-Illumination in the Diatom Phaeodactylum tricornutum

    PubMed Central

    Nymark, Marianne; Valle, Kristin C.; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Bones, Atle M.; Brembu, Tore

    2013-01-01

    Photosynthetic diatoms that live suspended throughout the water column will constantly be swept up and down by vertical mixing. When returned to the photic zone after experiencing longer periods in darkness, mechanisms exist that enable the diatoms both to survive sudden light exposure and immediately utilize the available energy in photosynthesis and growth. We have investigated both the response to prolonged darkness and the re-acclimation to moderate intensity white irradiance (E = 100 µmol m−2 s−1) in the diatom Phaeodactylum tricornutum, using an integrated approach involving global transcriptional profiling, pigment analyses, imaging and photo-physiological measurements. The responses were studied during continuous white light, after 48 h of dark treatment and after 0.5 h, 6 h, and 24 h of re-exposure to the initial irradiance. The analyses resulted in several intriguing findings. Dark treatment of the cells led to 1) significantly decreased nuclear transcriptional activity, 2) distinct intracellular changes, 3) fixed ratios of the light-harvesting pigments despite a decrease in the total cell pigment pool, and 4) only a minor drop in photosynthetic efficiency (ΦPSII_max). Re-introduction of the cells to the initial light conditions revealed 5) distinct expression profiles for nuclear genes involved in photosynthesis and those involved in photoprotection, 6) rapid rise in photosynthetic parameters (α and rETRmax) within 0.5 h of re-exposure to light despite a very modest de novo synthesis of photosynthetic compounds, and 7) increasingly efficient resonance energy transfer from fucoxanthin chlorophyll a/c-binding protein complexes to photosystem II reaction centers during the first 0.5 h, supporting the observations stated in 6). In summary, the results show that despite extensive transcriptional, metabolic and intracellular changes, the ability of cells to perform photosynthesis was kept intact during the length of the experiment. We conclude that

  6. Development of a decision support system for analysis and solutions of prolonged standing in the workplace.

    PubMed

    Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

    2014-06-01

    Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.

  7. Risperidone prolongs cardiac action potential through reduction of K+ currents in rabbit myocytes.

    PubMed

    Gluais, Pascale; Bastide, Michèle; Caron, Jacques; Adamantidis, Monique

    2002-05-31

    Prolongation of QT interval by antipsychotic drugs is an unwanted side effect that may lead to ventricular arrhythmias. The antipsychotic agent risperidone has been shown to cause QT prolongation, especially in case of overdosage. We investigated risperidone effects on action potentials recorded from rabbit Purkinje fibers and ventricular myocardium and on potassium currents recorded from atrial and ventricular rabbit isolated myocytes. The results showed that (1) risperidone (0.1-3 microM) exerted potent lengthening effects on action potential duration in both tissues with higher potency in Purkinje fibers and caused the development of early afterdepolarizations at low stimulation rate; (2) risperidone (0.03-0.3 microM) reduced significantly the current density of the delayed rectifier current and at 30 microM decreased the transient outward and the inward rectifier currents. This study might explain QT prolongation observed in some patients treated with risperidone and gives enlightenment on the risk of cardiac adverse events.

  8. Attachment style dimensions can affect prolonged grief risk in caregivers of terminally ill patients with cancer.

    PubMed

    Lai, Carlo; Luciani, Massimiliano; Galli, Federico; Morelli, Emanuela; Cappelluti, Roberta; Penco, Italo; Aceto, Paola; Lombardo, Luigi

    2015-12-01

    The aim of the present study was to evaluate the predictive role of attachment dimensions on the risk of prolonged grief. Sixty caregivers of 51 terminally ill patients with cancer who had been admitted in a hospice were selected. Caregivers were interviewed using Attachment Scale Questionnaire, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Prolonged Grief Disorder 12 (PG-12). The consort caregivers showed higher PG-12 level compared to the sibling caregivers. Anxiety, depression, need for approval, and preoccupation with relationships levels were significantly correlated with PG-12 scores. Female gender, high levels of depression, and preoccupation with relationships significantly predicted higher levels of prolonged grief risk. © The Author(s) 2014.

  9. Development of a Decision Support System for Analysis and Solutions of Prolonged Standing in the Workplace

    PubMed Central

    Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

    2014-01-01

    Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141

  10. Effects of prolonged wakefulness: the role of PERIOD3 genotypes and personality traits.

    PubMed

    Barbato, Giuseppe; Costanzo, Antonio; Della Monica, Ciro; D'Onofrio, Paolo; Cerrato, Flavia; De Padova, Vittoria

    2013-10-01

    The roles of personality traits, as assessed by Eysenck Personality Inventory, and of the clock gene PERIODS (PER3) were analysed on the subjective effects of prolonged wakefulness. A sample of 70 healthy participants (7 men, 63 women; M age = 24.2 yr., SD = 3.2) was studied during forced wakefulness between 7:30 p.m. and 9:30 a.m. According to Eysenck's arousal model, it was hypothesized that prolonged wakefulness might affect in a different way those classified as Introverted and Extraverted. During the forced wakefulness period, the Introverted group showed greater decrease in subjective measures of vigilance than did the Extraverted group, but no differences were observed between groups with high and low scores on Psychoticism and Neuroticism. Prolonged wakefulness had a negative effect on subjective sleepiness and mood in all three PER3 polymorphisms analysed.

  11. Bacterium-Derived Cell-Penetrating Peptides Deliver Gentamicin To Kill Intracellular Pathogens

    PubMed Central

    Gomarasca, Marta; F. C. Martins, Thaynan; Greune, Lilo; Hardwidge, Philip R.; Schmidt, M. Alexander

    2017-01-01

    ABSTRACT Commonly used antimicrobials show poor cellular uptake and often have limited access to intracellular targets, resulting in low antimicrobial activity against intracellular pathogens. An efficient delivery system to transport these drugs to the intracellular site of action is needed. Cell-penetrating peptides (CPPs) mediate the internalization of biologically active molecules into the cytoplasm. Here, we characterized two CPPs, α1H and α2H, derived from the Yersinia enterocolitica YopM effector protein. These CPPs, as well as Tat (trans-activator of transcription) from HIV-1, were used to deliver the antibiotic gentamicin to target intracellular bacteria. The YopM-derived CPPs penetrated different endothelial and epithelial cells to the same extent as Tat. CPPs were covalently conjugated to gentamicin, and CPP-gentamicin conjugates were used to target infected cells to kill multiple intracellular Gram-negative pathogenic bacteria, including Escherichia coli K1, Salmonella enterica serovar Typhimurium, and Shigella flexneri. Taken together, CPPs show great potential as delivery vehicles for antimicrobial agents and may contribute to the generation of new therapeutic tools to treat infectious diseases caused by intracellular pathogens. PMID:28096156

  12. Modulation of iron metabolism by iron chelation regulates intracellular calcium and increases sensitivity to doxorubicin

    PubMed Central

    Yalcintepe, Leman; Halis, Emre

    2016-01-01

    Increased intracellular iron levels can both promote cell proliferation and death, as such; iron has a “two-sided effect” in the delicate balance of human health. Though the role of iron in the development of cancer remains unclear, investigations of iron chelators as anti-tumor agents have revealed promising results. Here, we investigated the influence of iron and desferrioxamine (DFO), the iron chelating agent on intracellular calcium in a human leukemia cell line, K562. Iron uptake is associated with increased reactive oxygen species (ROS) generation. Therefore, we showed that iron also caused dose-dependent ROS generation in K562 cells. The measurement of intracellular calcium was determined using Furo-2 with a fluorescence spectrophotometer. The iron delivery process to the cytoplasmic iron pool was examined by monitoring the fluorescence of cells loaded with calcein-acetoxymethyl. Our data showed that iron increased intracellular calcium, and this response was 8 times higher when cells were incubated with DFO. K562 cells with DFO caused a 3.5 times increase of intracellular calcium in the presence of doxorubicin (DOX). In conclusion, DFO induces intracellular calcium and increases their sensitivity to DOX, a chemotherapeutic agent. PMID:26773173

  13. Bacterium-Derived Cell-Penetrating Peptides Deliver Gentamicin To Kill Intracellular Pathogens.

    PubMed

    Gomarasca, Marta; F C Martins, Thaynan; Greune, Lilo; Hardwidge, Philip R; Schmidt, M Alexander; Rüter, Christian

    2017-04-01

    Commonly used antimicrobials show poor cellular uptake and often have limited access to intracellular targets, resulting in low antimicrobial activity against intracellular pathogens. An efficient delivery system to transport these drugs to the intracellular site of action is needed. Cell-penetrating peptides (CPPs) mediate the internalization of biologically active molecules into the cytoplasm. Here, we characterized two CPPs, α1H and α2H, derived from the Yersinia enterocolitica YopM effector protein. These CPPs, as well as Tat (trans-activator of transcription) from HIV-1, were used to deliver the antibiotic gentamicin to target intracellular bacteria. The YopM-derived CPPs penetrated different endothelial and epithelial cells to the same extent as Tat. CPPs were covalently conjugated to gentamicin, and CPP-gentamicin conjugates were used to target infected cells to kill multiple intracellular Gram-negative pathogenic bacteria, including Escherichia coli K1, Salmonella enterica serovar Typhimurium, and Shigella flexneri Taken together, CPPs show great potential as delivery vehicles for antimicrobial agents and may contribute to the generation of new therapeutic tools to treat infectious diseases caused by intracellular pathogens.

  14. Hypothyroidism prolongs corpus luteum function in the pregnant rat.

    PubMed

    Hapon, María Belén; Motta, Alicia B; Ezquer, Marcelo; Bonafede, Melisa; Jahn, Graciela A

    2007-01-01

    It has been shown that hypothyroidism in the rat produces a prolongation of pregnancy associated with a delay in the fall of circulating progesterone (P4) at term. The aim of the present work is to determine whether the delayed P4 decline in hypothyroid mother rats is due to a retarded induction of P4 degradation to 20alphaOH P4 or to a stimulation of its synthesis, and to investigate the possible mechanisms that may underlie the altered luteal function. We determined by RIA the circulating profile of the hormones (TSH, PRL, LH, P4, PGF2alpha, and PGE2) involved in luteal regulation at the end of pregnancy and, by semiquantitative RT-PCR, the expression of factors involved in P4 synthesis (CytP450scc, StAR, 3betaHSD, PRLR) and metabolism (20alphaHSD, PGF2alphaR, iNOS and COX2). Our results show that the delay in P4 decline and parturition is the resultant of retarded luteal regression, caused by a combination of decreases in luteolytic factors, mainly luteal PGF2alpha, iNOS mRNA expression and also circulating LH, and increased synthesis or action of luteotrophic factors, such as luteal and circulating PGE2 and circulating PRL. All these changes may be direct causes of the decreased 20alphaHSD mRNA and protein (measured by western blot analysis) expression, which in the presence of unchanged expression of the factors involved in P4 synthesis results in elevated luteal and circulating P4 that prolonged pregnancy and also may favor longer survival of the corpus luteum.

  15. History of Somatization is Associated with Prolonged Recovery from Concussion

    PubMed Central

    Root, Jeremy M; Zuckerbraun, Noel S.; Wang, Li; Winger, Dan; Brent, David; Kontos, Anthony; Hickey, Robert

    2016-01-01

    Objective To determine the association between a history of somatization and prolonged concussion symptoms, including sex differences in recovery. Study design A prospective cohort study of 10–18 year olds with an acute concussion was conducted from July 2014 to April 2015 at a tertiary care pediatric emergency department. 120 subjects completed the validated Children’s Somatization Inventory (CSI) for pre-injury somatization assessment and Post-Concussion Symptoms Score (PCSS) at diagnosis. PCSS was re-assessed by phone at 2- and 4-weeks. CSI was assessed in quartiles with a generalized estimating equation model to determine relationship of CSI to PCSS over time. Results The median age of our study participants was 13.8 years (interquartile range: 11.5, 15.8), 60% male, with analyses carried out separately for each sex. Our model showed a positive interaction between total CSI score, PCSS and time from concussion for females p < 0.01, and a statistical trend for males, p = 0.058. Females in the highest quartile of somatization had higher PCSS than the other three CSI quartiles at each time point (B −26.7 to −41.1, p-values < 0.015). Conclusions Patients with higher pre-injury somatization had higher concussion symptom scores over time. Females in the highest somatization quartile had prolonged concussion recovery with persistently high symptom scores at 4 weeks. Somatization may contribute to sex differences in recovery, and assessment at the time of concussion may help guide management and target therapy. PMID:27059916

  16. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4

    PubMed Central

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E.

    2016-01-01

    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition—including metabolic water produced as a byproduct of metabolism—based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the 18O/16O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ∼30–40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered. PMID:27170190

  17. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4.

    PubMed

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E

    2016-05-24

    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition-including metabolic water produced as a byproduct of metabolism-based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the (18)O/(16)O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ∼30-40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered.

  18. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4

    NASA Astrophysics Data System (ADS)

    Li, Hui; Yu, Chan; Wang, Fei; Chang, Sae Jung; Yao, Jun; Blake, Ruth E.

    2016-05-01

    Knowledge of the relative contributions of different water sources to intracellular fluids and body water is important for many fields of study, ranging from animal physiology to paleoclimate. The intracellular fluid environment of cells is challenging to study due to the difficulties of accessing and sampling the contents of intact cells. Previous studies of multicelled organisms, mostly mammals, have estimated body water composition—including metabolic water produced as a byproduct of metabolism—based on indirect measurements of fluids averaged over the whole organism (e.g., blood) combined with modeling calculations. In microbial cells and aquatic organisms, metabolic water is not generally considered to be a significant component of intracellular water, due to the assumed unimpeded diffusion of water across cell membranes. Here we show that the 18O/16O ratio of PO4 in intracellular biomolecules (e.g., DNA) directly reflects the O isotopic composition of intracellular water and thus may serve as a probe allowing direct sampling of the intracellular environment. We present two independent lines of evidence showing a significant contribution of metabolic water to the intracellular water of three environmentally diverse strains of bacteria. Our results indicate that ˜30-40% of O in PO4 comprising DNA/biomass in early stationary phase cells is derived from metabolic water, which bolsters previous results and also further suggests a constant metabolic water value for cells grown under similar conditions. These results suggest that previous studies assuming identical isotopic compositions for intracellular/extracellular water may need to be reconsidered.

  19. Prolonged Exposure Treatment of Chronic PTSD in Juvenile Sex Offenders: Promising Results from Two Case Studies

    ERIC Educational Resources Information Center

    Hunter, John A.

    2010-01-01

    Prolonged exposure (PE) was used to treat chronic PTSD secondary to severe developmental trauma in two adolescent male sex offenders referred for residential sex offender treatment. Both youth were treatment resistant prior to initiation of PE and showed evidence of long-standing irritability and depression/anxiety. Clinical observation and…

  20. Prolonged Exposure Treatment of Chronic PTSD in Juvenile Sex Offenders: Promising Results from Two Case Studies

    ERIC Educational Resources Information Center

    Hunter, John A.

    2010-01-01

    Prolonged exposure (PE) was used to treat chronic PTSD secondary to severe developmental trauma in two adolescent male sex offenders referred for residential sex offender treatment. Both youth were treatment resistant prior to initiation of PE and showed evidence of long-standing irritability and depression/anxiety. Clinical observation and…

  1. A study of immunological reactions in dogs exposed to prolonged chronic radiation

    NASA Technical Reports Server (NTRS)

    Konstantinova, I. V.; Grigoryev, Y. G.; Markelov, B. A.; Skryabin, A. S.; Zemskov, V. M.; Vasilyev, I. S.; Veysfeyler, Y. K.; Iokai, I.

    1974-01-01

    Immunomorphological studies on dog tissues exposed to long term gamma irradiation show that the number of cells containing antibodies increased and that the blast transformation reaction was activated. Prolonged radiation did not cause a reliable change in the synthesis of nucleic acids in spleen cells.

  2. "QT clock" to improve detection of QT prolongation in long QT syndrome patients.

    PubMed

    Page, Alex; Aktas, Mehmet K; Soyata, Tolga; Zareba, Wojciech; Couderc, Jean-Philippe

    2016-01-01

    The QT interval is a risk marker for cardiac events such as torsades de pointes. However, QT measurements obtained from a 12-lead ECG during clinic hours may not capture the full extent of a patient's daily QT range. The purpose of this study was to evaluate the utility of 24-hour Holter ECG recording in patients with long QT syndrome (LQTS) to identify dynamic changes in the heart rate-corrected QT interval and to investigate methods of visualizing the resulting datasets. Beat-to-beat QTc (Bazett) intervals were automatically measured across 24-hour Holter recordings from 202 LQTS type 1, 89 type 2, and 14 type 3 genotyped patients and a reference group of 200 healthy individuals. We measured the percentage of beats with QTc greater than the gender-specific threshold (QTc ≥470 ms in women and QTc ≥450 ms in men). The percentage of beats with QTc prolongation was determined across the 24-hour recordings. Based on the median percentage of heartbeats per patient with QTc prolongation, LQTS type 1 patients showed more frequent QTc prolongation during the day (~3 PM) than they did at night (~3 AM): 97% vs 48%, P ~10(-4) for men, and 68% vs 30%, P ~10(-5) for women. LQTS type 2 patients showed less frequent QTc prolongation during the day compared to nighttime: 87% vs 100%, P ~10(-4) for men, and 62% vs 100%, P ~10(-3) for women. In patients with genotype-positive LQTS, significant differences exist in the degree of daytime and nocturnal QTc prolongation. Holter monitoring using the "QT clock" concept may provide an easy, fast, and accurate method for assessing the true personalized burden of QTc prolongation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Late recovery of awareness in prolonged disorders of consciousness -a cross-sectional cohort study.

    PubMed

    Yelden, Kudret; Duport, Sophie; James, Leon M; Kempny, Agnieszka; Farmer, Simon F; Leff, Alex P; Playford, E Diane

    2017-06-21

    To detect any improvement of awareness in prolonged disorders of consciousness in the long term. A total of 34 patients with prolonged disorders of consciousness (27 vegetative state and seven minimally conscious state; 16 males; aged 21-73) were included in the study. All patients were initially diagnosed with vegetative/minimally conscious state on admission to our specialist neurological rehabilitation unit. Re-assessment was performed 2-16 years later using Coma Recovery Scale-Revised. Although remaining severely disabled, 32% of the patients showed late improvement of awareness evidenced with development of non-reflexive responses such as reproducible command following and localization behaviors. Most of the late recoveries occurred in patients with subarachnoid hemorrhage (5/11, 45.5%). The ages of patients within the late recovery group (Mean = 45, SD = 11.4) and non-recovery group (Mean = 43, SD = 15.5) were not statistically different (p = 0.76). This study shows that late improvements in awareness are not exceptional in non-traumatic prolonged disorders of consciousness cases. It highlights the importance of long-term follow up of patients with prolonged disorders of consciousness, regardless of the etiology, age, and time passed since the brain injury. Long-term follow up will help clinicians to identify patients who may benefit from further assessment and rehabilitation. Although only one patient achieved recovery of function, recovery of awareness may have important ethical implications especially where withdrawal of artificial nutrition and hydration is considered. Implications for rehabilitation Long-term regular follow-up of people with prolonged disorders of consciousness is important. Albeit with poor functional outcomes late recovery of awareness is possible in both traumatic and non-traumatic prolonged disorders of consciousness cases. Recovery of awareness has significant clinical and ethical implications especially where

  4. Prolonged TNFα primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin

    PubMed Central

    Sohn, Christopher; Lee, Angela; Qiao, Yu; Loupasakis, Konstantinos; Ivashkiv, Lionel B.; Kalliolias, George D.

    2015-01-01

    Objective During the course of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) are chronically exposed to an inflammatory milieu. In the current study we test the hypothesis that chronic exposure of FLS to TNFα augments inflammatory responses to secondary stimuli (priming effect). Methods FLS obtained from RA patients were chronically exposed to TNFα (3 days) and then were stimulated with interferons (IFNs). Expression of IFN-target genes was measured by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Total STAT1 protein and IFN-mediated STAT1 activation were evaluated by Western blotting. Total histone levels, histone acetylation, NF-κB p65 and RNA polymerase II (pol II) recruitment were measured at the promoter of CXCL10 (encodes IP-10) by chromatin immunoprecipitation assays. Results Prolonged pre-exposure of FLS to TNFα enhanced the magnitude and extended the kinetics of CXCL10/IP-10, CXCL9/MIG and CXCL11/ITAC production upon subsequent IFN stimulation. This phenotype was retained over a period of days even after the removal of TNFα. Prolonged TNFα decreased histone levels, increased acetylation of the remaining histones, and heightened recruitment of NF-κB p65 and pol II to the CXCL10 promoter. In parallel, an increase in intracellular STAT1 led to amplification of IFN-induced STAT1 activation. Conclusions Our study reveals a novel pathogenic function of TNFα, namely prolonged and gene-specific priming of FLS for enhanced transcription of inflammatory chemokine genes due to priming of chromatin, sustained activation of NF-κB, and amplification of STAT1 activation downstream of IFNs. These data also suggest that FLS gain an “inflammatory memory” upon chronic exposure to TNFα. PMID:25199798

  5. Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells

    PubMed Central

    Laptev, R; Nisnevitch, M; Siboni, G; Malik, Z; Firer, M A

    2006-01-01

    Photodynamic therapy (PDT) involves a two-stage process. A light-absorbing photosensitiser (Ps) is endocytosed and then stimulated by light, inducing transfer of energy to a cytoplasmic acceptor molecule and the generation of reactive oxygen species that initiate damage to cellular membrane components and cytolysis. The expanded use of PDT in the clinic is hindered by the lack of Ps target-cell specificity and the limited tissue penetration by external light radiation. This study demonstrates that bioconjugates composed of transferrin and haematoporphyrin (Tf–Hp), significantly improve the specificity and efficiency of PDT for erythroleukemic cells by a factor of almost seven-fold. Fluorescence microscopy showed that the conjugates accumulate in intracellular vesicles whereas free Hp was mostly membrane bound. Experiments with cells deliberately exposed to Tf–Hp at showed that surviving cells did not develop resistance to subsequent treatments with the conjugate. Furthermore, we show that the compound luminol induces intracellular chemiluminescence. This strategy was then used to obviate the use of external radiation for Ps activation by incubating the cells with luminol either before or together with Tf–Hp. This novel chemical means of PDT activation induced cytotoxicity in 95% of cells. These combined approaches provide an opportunity to develop broader and more effective applications of PDT. PMID:16819545

  6. Light irradiation helps magnetotactic bacteria eliminate intracellular reactive oxygen species.

    PubMed

    Li, Kefeng; Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Lulu; Song, Tao

    2017-09-01

    Magnetotactic bacteria (MTB) demonstrate photoresponse. However, little is known about the biological significance of this behaviour. Magnetosomes exhibit peroxidase-like activity and can scavenge reactive oxygen species (ROS). Magnetosomes extracted from the Magnetospirillum magneticum strain AMB-1 show enhanced peroxidase-like activity under illumination. The present study investigated the effects of light irradiation on nonmagnetic (without magnetosomes) and magnetic (with magnetosomes) AMB-1 cells. Results showed that light irradiation did not affect the growth of nonmagnetic and magnetic cells but significantly increased magnetosome synthesis and reduced intracellular ROS level in magnetic cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyse the expression level of magnetosome formation-associated genes (mamA, mms6, mms13 and mmsF) and stress-related genes (recA, oxyR, SOD, amb0664 and amb2684). Results showed that light irradiation upregulated the expression of mms6, mms13 and mmsF. Furthermore, light irradiation upregulated the expression of stress-related genes in nonmagnetic cells but downregulated them in magnetic cells. Additionally, magnetic cells exhibited stronger phototactic behaviour than nonmagnetic ones. These results suggested that light irradiation could heighten the ability of MTB to eliminate intracellular ROS and help them adapt to lighted environments. This phenomenon may be related to the enhanced peroxidase-like activity of magnetosomes under light irradiation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Properties of Na,K-ATPase in cerebellum of male and female rats: effects of acute and prolonged diabetes.

    PubMed

    Kaločayová, B; Mézešová, L; Barteková, M; Vlkovičová, J; Jendruchová, V; Vrbjar, N

    2017-01-01

    The present study was oriented to gender specificity of Na,K-ATPase in cerebellum, the crucial enzyme maintaining the intracellular homeostasis of Na ions in healthy and diabetic Wistar rats. The effects of diabetes on properties of the Na,K-ATPase in cerebellum derived from normal and streptozotocin (STZ)-diabetic rats of both genders were investigated. The samples were excised at different time intervals of diabetes induced by STZ (65 mg kg(-1)) for 8 days and 16 weeks. In acute 8-day-lasting model of diabetes, Western blot analysis showed significant depression of α1 isoform of Na,K-ATPase in males only. On the other hand, concerning the activity, the enzyme seems to be resistant to the acute model of diabetes in both genders. Prolongation of diabetes to 16 weeks was followed by increasing the number of active molecules of Na,K-ATPase exclusively in females as indicated by enzyme kinetic studies. Gender specificity was observed also in nondiabetic animals revealing higher Na,K-ATPase activity in control males probably caused by higher number of active enzyme molecules as indicated by increased value of V max when comparing to control female group. This difference seems to be age dependent: at the age of 16 weeks, the V max value in females was higher by more than 90%, whereas at the age of 24 weeks, this difference amounted to only 28%. These data indicate that the properties of Na,K-ATPase in cerebellum, playing crucial role in maintaining the Na(+) and K(+) gradients, depend on gender, age, and duration of diabetic impact.

  8. The effect of intracellular alkalinisation on intracellular Ca(2+) homeostasis in a human chondrocyte cell line.

    PubMed

    Browning, Joseph A; Wilkins, Robert J

    2002-09-01

    Intracellular pH (pH(i)) is a well-established determinant of cartilage matrix metabolism. Changes to chondrocyte pH(i), and therefore matrix turnover rates, arise following joint loading. It is not yet clear whether pH changes exert their effects on matrix metabolism directly, or by changing the concentration of another, as yet unidentified, intracellular factor. In this study the effect of intracellular alkalinisation on intracellular [Ca(2+)] has been examined using the human chondrocyte C-20/A4 cell line. pH(i) was manipulated by the addition of weak bases to suspensions of chondrocytes and fluorimetric techniques were employed to measure pH(i) and [Ca(2+)](i). The effect of pH(i) changes on intracellular inositol 1,4,5-trisphosphate (IP(3)) levels was also determined. The pH-sensitive properties of the Ca(2+)-sensitive fluoroprobe employed in this study, Fura-2, were investigated such that artefactual effects of pH changes upon the dye could be discounted. It was demonstrated that, for dye loaded into cells, alkalinisation resulted in a small increase in the affinity of the dye for Ca(2+) ions. Intracellular alkalinisation elicited by treatment with either of the weak bases trimethylamine or ammonium chloride initiated a rise in [Ca(2+)](i). This effect was too large to be explicable by the effects of pH changes on Fura-2 and was not dependent on the presence of extracellular Ca(2+) ions. Prior depletion of intracellular Ca(2+) stores by treatment with thapsigargin inhibited alkalinisation-induced increases in [Ca(2+)](i) and intracellular alkalinisation was also associated with increased levels of intracellular IP(3). These results confirm that alkaline pH(i) changes associated with dynamic loading of cartilage also result in knock-on alterations to [Ca(2+)](i). Given the sensitivity of cartilage matrix metabolism to [Ca(2+)](i) it is likely that this signalling cascade forms an important part of the mechanotransduction pathway that determines the response of

  9. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    PubMed

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism.

  10. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes.

    PubMed

    Vicencio, Jose Miguel; Ibarra, Cristian; Estrada, Manuel; Chiong, Mario; Soto, Dagoberto; Parra, Valentina; Diaz-Araya, Guillermo; Jaimovich, Enrique; Lavandero, Sergio

    2006-03-01

    Androgens are associated with important effects on the heart, such as hypertrophy or apoptosis. These responses involve the intracellular androgen receptor. However, the mechanisms of how androgens activate several membrane signaling pathways are not fully elucidated. We have investigated the effect of testosterone on intracellular calcium in cultured rat cardiac myocytes. Using fluo3-AM and epifluorescence microscopy, we found that exposure to testosterone rapidly (1-7 min) led to an increase of intracellular Ca2+, an effect that persisted in the absence of external Ca2+. Immunocytochemical analysis showed that these effects occurred before translocation of the intracellular androgen receptor to the perinuclear zone. Pretreatment of the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethylester and thapsigargin blocked this response, suggesting the involvement of internal Ca2+ stores. U-73122, an inhibitor of phospholipase C, and xestospongin C, an inhibitor of inositol 1,4,5-trisphosphate receptor, abolished the Ca2+ signal. The rise in intracellular Ca2+ was not inhibited by cyproterone, an antagonist of intracellular androgen receptor. Moreover, the cell impermeant testosterone-BSA complex also produced the Ca2+ signal, indicating its origin in the plasma membrane. This effect was observed in cultured neonatal and adult rat cardiac myocytes. Pertussis toxin and the adenoviral transduction of beta- adrenergic receptor kinase carboxy terminal peptide, a peptide inhibitor of betagamma-subunits of G protein, abolished the testosterone-induced Ca2+ release. In summary, this is the first study of rapid, nongenomic intracellular Ca2+ signaling of testosterone in cardiac myocytes. Using various inhibitors and testosterone-BSA complex, the mechanism for the rapid, testosterone-induced increase in intracellular Ca2+ is through activation of a plasma membrane receptor associated with a Pertussis toxin-sensitive G protein-phospholipase C

  11. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation

    NASA Astrophysics Data System (ADS)

    Akbari, Vajihe; Abedi, Daryoush; Pardakhty, Abbas; Sadeghi-Aliabadi, Hojjat

    2013-04-01

    In order to propose non-ionic surfactant vesicles (niosomes) for the treatment of intracellular infections, a remote loading method (active drug encapsulation) followed by sonication was used to prepare nano-niosome formulations containing ciprofloxacin (CPFX). Size analysis, size distribution and zeta potentials of niosomes were evaluated and then their antimicrobial activity, cellular uptake, cytotoxicity, intracellular distribution, and antibacterial activity against intracellular Staphylococcus aureus infection of murine macrophage-like, J774, cells were investigated in comparison to free drug. Our findings reveal that size and composition of the niosome formula can influence their in vitro biological properties. Vesicles in the 300-600 nm size range were phagocytosed to a greater degree by macrophages in comparison to other size vesicles. The minimum inhibitory concentrations (MICs) of CPFX-loaded niosomes were two to eightfold lower than MICs of free CPFX. In addition, niosome encapsulation of CPFX provided high intracellular antimicrobial activities while free CPFX is ineffective for eradicating intracellular forms of S. aureus. Encapsulation of CPFX in niosomes generally decreased its in vitro cytotoxicity. Our results show that niosomes are suitable drug delivery systems with good efficacy and safety properties to be proposed for drug targeting against intracellular infections.

  12. Mechanisms Associated with Activation of Intracellular Metabotropic Glutamate Receptor, mGluR5.

    PubMed

    Jong, Yuh-Jiin I; O'Malley, Karen L

    2017-01-01

    The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5.

  13. An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance

    PubMed Central

    Abed, Nadia; Saïd-Hassane, Fatouma; Zouhiri, Fatima; Mougin, Julie; Nicolas, Valérie; Desmaële, Didier; Gref, Ruxandra; Couvreur, Patrick

    2015-01-01

    The “Golden era” of antibiotics is definitely an old story and this is especially true for intracellular bacterial infections. The poor intracellular bioavailability of antibiotics reduces the efficency of many treatments and thereby promotes resistances. Therefore, the development of nanodevices coupled with antibiotics that are capable of targeting and releasing the drug into the infected-cells appears to be a promising solution to circumvent these complications. Here, we took advantage of two natural terpenes (farnesyl and geranyl) to design nanodevices for an efficient intracellular delivery of penicillin G. The covalent linkage between the terpene moieties and the antibiotic leads to formation of prodrugs that self-assemble to form nanoparticles with a high drug payload between 55–63%. Futhermore, the addition of an environmentally-sensitive bond between the antibiotic and the terpene led to an efficient antibacterial activity against the intracellular pathogen Staphylococcus aureus with reduced intracellular replication of about 99.9% compared to untreated infected cells. Using HPLC analysis, we demonstrated and quantified the intracellular release of PenG when this sensitive-bond (SB) was present on the prodrug, showing the success of this technology to deliver antibiotics directly into cells. PMID:26311631

  14. Intracellular Ca(2+) signaling is required for neurotrophin-induced potentiation in the adult rat hippocampus.

    PubMed

    Kang, H; Schuman, E M

    2000-03-24

    Recent studies have demonstrated the importance of neurotrophin function in adult synaptic plasticity. In an effort to characterize the intracellular signaling pathways that couple Trk receptor activation to the final physiological effects of neurotrophins, we have examined the role of intracellular calcium rises in neurotrophin-induced synaptic enhancement in hippocampal slices. Using pharmacological blockers to two different calcium ion (Ca(2+)) sources, voltage-gated Ca(2+) channels and intracellular Ca(2+) stores, we show that the potentiating effects of neurotrophins in hippocampal slices are mediated by intracellular Ca(2+) signaling. Although basal synaptic transmission between hippocampal CA3 and CA1 neurons was not affected by nifedipine or thapsigargin, both drugs significantly attenuated brain-derived neurotrophic factor or neurotrophin-3-induced synaptic enhancement. The pharmacological blockade of Ca(2+) signaling is effective only during the initial period of neurotrophin-induced potentiation. These data suggest that the minimal requirements for inducing potentiation by neurotrophins involve a transient increase in intracellular Ca(2+) concentration, via voltage-gated Ca(2+) channels and/or intracellular Ca(2+) stores.

  15. [Neurotensin: reception and intracellular mechanisms of signaling].

    PubMed

    Osadchiĭ, O E

    2006-01-01

    The review coveres the features of neurotensin receptor, functional role ot its structural elements, nature of conjugation with effectoral cell systems, and mechanisms of receptor decensitization developing as results of prolonged effect of agonist. The author provides pharmacological description of neurotensin antagonists and special features of three subtypes of its receptors. The author reviews the research results establishing a correlation between structural modification of various section of neurotensin molecula and manifestations of its physiological activity. Special focus is mage on discussion of neurotensin's physiological effects developing as results of its modulating impact on discharge of other biologically active substances.

  16. Racial Susceptibility for QT Prolongation in Acute Drug Overdoses Authors

    PubMed Central

    Manini, Alex F.; Stimmel, Barry; Vlahov, David

    2014-01-01

    Background and Purpose QT prolongation independently predicts adverse cardiovascular events in suspected poisoning. We aimed to evaluate the association between race and drug-induced QT prolongation for patients with acute overdose. Methods This was a cross-sectional observational study at two urban teaching hospitals. Consecutive adult ED patients with acute drug overdose were prospectively enrolled over a two year period. The primary outcome, long-QT, was defined using standard criteria: QTc >470ms in females and >460ms in males. The association between race and drug-induced QT prolongation was tested, considering several confounding variables. Results In 472 patients analyzed (46% female, mean age 42.3), QT prolongation occurred in 12.7%. Blacks had two-fold increased odds of drug-induced QT prolongation (OR 2.01, CI 1.03-3.91) and Hispanics had 48% decreased odds of drug-induced QT prolongation (OR 0.52, CI 0.29-0.94). Conclusions We found significant racial susceptibility to drug-induced QT prolongation in this large urban study of acute overdoses. PMID:24438862

  17. Prolonged chewing at lunch decreases later snack intake.

    PubMed

    Higgs, Suzanne; Jones, Alison

    2013-03-01

    Prolonged chewing of food can reduce meal intake. However, whether prolonged chewing influences intake at a subsequent eating occasion is unknown. We hypothesised that chewing each mouthful for 30s would reduce afternoon snack intake more than (a) an habitual chewing control condition, and (b) an habitual chewing condition with a pauses in between each mouthful to equate the meal durations. We further hypothesised that this effect may be related to effects of prolonged chewing on lunch memory. Forty three participants ate a fixed lunch of sandwiches in the laboratory. They were randomly allocated to one of the three experimental groups according to a between-subjects design. Appetite, mood and lunch enjoyment ratings were taken before and after lunch and before snacking. Snack intake of candies at a taste test 2h after lunch was measured as well as rated vividness of lunch memory. Participants in the prolonged chewing group ate significantly fewer candies than participants in the habitual chewing group. Snack intake by the pauses group did not differ from either the prolonged or habitual chewing groups. Participants in the prolonged chewing group were less happy and enjoyed their lunch significantly less than participants in other conditions. Appetite ratings were not different across groups. Rated vividness of lunch memory was negatively correlated with intake but there was no correlation with rated lunch enjoyment. Prolonged chewing of a meal can reduce later snack intake and further investigation of this technique for appetite control is warranted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Mitigating prolonged QT interval in cancer nanodrug development for accelerated clinical translation.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Helson, Lawrence; Vishwanatha, Jamboor K

    2013-12-14

    Cardiac toxicity is the foremost reason for drug discontinuation from development to clinical evaluation and post market surveillance [Fung 35:293-317, 2001; Piccini 158:317-326 2009]. The Food and Drug Administration (FDA) has rejected many potential pharmaceutical agents due to QT prolongation effects. Since drug development and FDA approval takes an enormous amount of time, money and effort with high failure rates, there is an increased focus on rescuing drugs that cause QT prolongation. If these otherwise safe and potent drugs were formulated in a unique way so as to mitigate the QT prolongation associated with them, these potent drugs may get FDA approval for clinical use. Rescuing these compounds not only benefit the patients who need them but also require much less time and money thus leading to faster clinical translation. In this study, we chose curcumin as our drug of choice since it has been shown to posses anti-tumor properties against various cancers with limited toxicity. The major limitations with this pharmacologically active drug are (a) its ability to prolong QT by inhibiting the hERG channel and (b) its low bioavailability. In our previous studies, we found that lipids have protective actions against hERG channel inhibition and therefore QT prolongation. Results of the manual patch clamp assay of HEK 293 cells clearly illustrated that our hybrid nanocurcumin formulation prevented the curcumin induced inhibition of hERG K+ channel at concentrations higher than the therapeutic concentrations of curcumin. Comparing the percent inhibition, the hybrid nanocurcumin limited inhibition to 24.8% at a high curcumin equivalent concentration of 18 μM. Liposomal curcumin could only decrease this inhibition upto 30% only at lower curcumin concentration of 6 μM but not at 18 μM concentration. Here we show a curcumin encapsulated lipopolymeric hybrid nanoparticle formulation which could protect against QT prolongation and also render increased

  19. Marked QTc Prolongation and Torsades de pointes in Patients with Chronic Inflammatory Arthritis

    PubMed Central

    Lazzerini, Pietro Enea; Capecchi, Pier Leopoldo; Bertolozzi, Iacopo; Morozzi, Gabriella; Lorenzini, Sauro; Simpatico, Antonella; Selvi, Enrico; Bacarelli, Maria Romana; Acampa, Maurizio; Lazaro, Deana; El-Sherif, Nabil; Boutjdir, Mohamed; Laghi-Pasini, Franco

    2016-01-01

    Mounting evidence indicates that in chronic inflammatory arthritis (CIA), QTc prolongation is frequent and correlates with systemic inflammatory activation. Notably, basic studies demonstrated that inflammatory cytokines induce profound changes in potassium and calcium channels resulting in a prolonging effect on cardiomyocyte action potential duration, thus on the QT interval on the electrocardiogram. Moreover, it has been demonstrated that in rheumatoid arthritis (RA) patients, the risk of sudden cardiac death is significantly increased when compared to non-RA subjects. Conversely, to date no data are available about torsades de pointes (TdP) prevalence in CIA, and the few cases reported considered CIA only an incidental concomitant disease, not contributing factor to TdP development. We report three patients with active CIA developing marked QTc prolongation, in two cases complicated with TdP degenerating to cardiac arrest. In these patients, a blood sample was obtained within 24 h from TdP/marked QTc prolongation occurrence, and levels of IL-6, TNFα, and IL-1 were evaluated. In all three cases, IL-6 was markedly elevated, ~10 to 100 times more than reference values. Moreover, one patient also showed high circulating levels of TNFα and IL-1. In conclusion, active CIA may represent a currently overlooked QT-prolonging risk factor, potentially contributing in the presence of other “classical” risk factors to TdP occurrence. In particular, a relevant role may be played by elevated circulating IL-6 levels via direct electrophysiological effects on the heart. This fact should be carefully kept in mind, particularly when recognizable risk factors are already present and/or the addition of QT-prolonging drugs is required. PMID:27703966

  20. Identifying the translational gap in the evaluation of drug-induced QTc interval prolongation

    PubMed Central

    Chain, Anne SY; Dubois, Vincent FS; Danhof, Meindert; Sturkenboom, Miriam CJM; Della Pasqua, Oscar

    2013-01-01

    Aims Given the similarities in QTc response between dogs and humans, dogs are used in pre-clinical cardiovascular safety studies. The objective of our investigation was to characterize the PKPD relationships and identify translational gaps across species following the administration of three compounds known to cause QTc interval prolongation, namely cisapride, d, l-sotalol and moxifloxacin. Methods Pharmacokinetic and pharmacodynamic data from experiments in conscious dogs and clinical trials were included in this analysis. First, pharmacokinetic modelling and deconvolution methods were applied to derive drug concentrations at the time of each QT measurement. A Bayesian PKPD model was then used to describe QT prolongation, allowing discrimination of drug-specific effects from other physiological factors known to alter QT interval duration. A threshold of ≥10 ms was used to explore the probability of prolongation after drug administration. Results A linear relationship was found to best describe the pro-arrhythmic effects of cisapride, d,l-sotalol and moxifloxacin both in dogs and in humans. The drug-specific parameter (slope) in dogs was statistically significantly different from humans. Despite such differences, our results show that the probability of QTc prolongation ≥10 ms in dogs nears 100% for all three compounds at the therapeutic exposure range in humans. Conclusions Our findings indicate that the slope of PKPD relationship in conscious dogs may be used as the basis for the prediction of drug-induced QTc prolongation in humans. Furthermore, the risk of QTc prolongation can be expressed in terms of the probability associated with an increase ≥10 ms, allowing direct inferences about the clinical relevance of the pro-arrhythmic potential of a molecule. PMID:23351036

  1. Prolonged corrected QT interval in anti-Ro/SSA-positive adults with systemic lupus erythematosus.

    PubMed

    Bourré-Tessier, Josiane; Clarke, Ann E; Huynh, Thao; Bernatsky, Sasha; Joseph, Lawrence; Belisle, Patrick; Pineau, Christian A

    2011-07-01

    To examine whether anti-Ro/SSA antibodies are associated with an increased risk of corrected QT (QTc) prolongation, and to study the stability of this relationship over time. Patients fulfilling the American College of Rheumatology (ACR) criteria for systemic lupus erythematosus (SLE) were invited to undergo a 12-lead resting electrocardiogram (EKG) in the pilot phase of our project, performed between February 2002 and March 2005. The same study population was used to perform a second similar analysis with a larger sample between April 2005 and May 2007. Multivariate logistic regression models were fit to estimate the cross-sectional association between anti-Ro/SSA and other demographic and clinical variables on QTc prolongation. The other potentially associated factors examined included age, sex, disease duration, lupus activity (Systemic Lupus Erythematosus Disease Activity Index 2000 update), damage (Systemic Lupus International Collaborating Clinics/ACR Damage Index), potassium and magnesium levels, and medications with the potential to prolong the QTc interval. Cross-sectional analysis of the pilot data (n = 150 patients) showed an association of prolonged QTc with the presence of anti-Ro/SSA (adjusted odds ratio [OR] 12.6; 95% confidence interval [95% CI] 2.3, 70.7). In the second larger study (n = 278), the association was replicated, with a narrower 95% CI (adjusted OR 5.1; 95% CI 1.5, 17.4). In the 118 patients with 2 EKG assessments, the results were consistent over time. Anti-Ro/SSA was associated with QTc prolongation in both our pilot data and a larger SLE cohort sample. Patients positive for anti-Ro/SSA may benefit from EKG testing and appropriate counseling should be considered for those identified with QTc prolongation. Copyright © 2011 by the American College of Rheumatology.

  2. Zoledronic acid induces cell-cycle prolongation in murine lung cancer cells by perturbing cyclin and Ras expression.

    PubMed

    Li, Ying-Ying; Chang, John W-C; Liu, Ying-Chieh; Wang, Cheng-Hsu; Chang, Hsin-Ju; Tsai, Meng-Chun; Su, Shiawhwa Paul; Yeh, Kun-Yun

    2011-01-01

    Zoledronic acid (ZOL) was shown earlier to prolong survival in animal models of lung cancer. The aim of this study was to examine whether alteration of intracellular cyclins, cyclin-dependent kinases, cyclin-dependent kinase inhibitors, retinoblastoma, and Ras protein expression and E2F localization are among the possible antilung cancer mechanisms driven by ZOL. Furthermore, we used geranylgeraniol to test whether the mevalonate pathway is involved in the antitumor effects of ZOL against lung cancer. Line-1 cells, a murine lung adenocarcinoma cell line, were examined. ZOL significantly slowed the growth of these cells both in vitro and in vivo. The ZOL-treated cells typically arrested at the S/G2/M phase of the cell cycle, accompanied by increased intracellular levels of cyclin A, B1, and CDC2 and decreased levels of cyclin D, p21, p27, phosphorylated retinoblastoma, and Ras. In addition, ZOL affected the distribution of E2F. When geranylgeraniol was added to the ZOL-treated cells, either in vitro or in vivo, tumor growth, cell-cycle progression, the expression of certain cyclins, and cyclin-related regulatory proteins were partially returned to that of untreated controls. Therefore, ZOL elicits cell-cycle prolongation that seems to be associated with alterations in the levels of certain cyclins and cyclin-related regulatory proteins. Furthermore, the mevalonate pathway regulates ZOL-induced murine lung cancer inhibition both in vitro and in vivo.

  3. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus.

    PubMed

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V

    2016-01-01

    Zinc (Zn(2+)) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.

  4. Intracellular granule formation in response to oxidative stress in Bifidobacterium.

    PubMed

    Qian, Yilei; Borowski, William J; Calhoon, Walter D

    2011-01-31

    Bacteria in the genus Bifidobacterium are commonly known as beneficial colonizers in the human gastrointestinal tract. We found that, when these anaerobic organisms were grown in culture media without the reducing agent, cysteine, they produced intensely stained intracellular granules reminiscent of polyphosphate granules (poly P) produced by other bacteria in response to certain environmental signals, such as starvation and oxidative stress. The addition of cysteine led to a significant reduction in granule formation in bifidobacteria. Specific microscopic staining showed that the intracellular granules in Bifidobacterium scardovii were consistent with the poly P granules. In addition, the expression of the putative polyphosphate kinase gene responsible for poly P synthesis showed a 16-fold increase in the granule-forming cultures of B. scardovii compared with the nongranule-forming cultures, suggesting a role of poly P production in the oxidative stress response. Furthermore, the granule-forming cells exhibited a higher acid tolerance and a higher degree of cell surface hydrophobicity than the nongranule-forming cells. Therefore, we propose that Bifidobacterium cells produce poly P as a part of the oxidative stress response, which in turn allows the cells to better tolerate other environmental stresses such as acidic pH and perhaps allows better host colonization in vivo. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  5. Legionella pneumophilaRequires Polyamines for Optimal Intracellular Growth ▿

    PubMed Central

    Nasrallah, Gheyath K.; Riveroll, Angela L.; Chong, Audrey; Murray, Lois E.; Lewis, P. Jeffrey; Garduño, Rafael A.

    2011-01-01

    The Gram-negative intracellular pathogen Legionella pneumophilareplicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophilaexpressing a translocation reporter consisting of the Bordetella pertussisadenylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophilamay require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophilareplication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophilaproliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila. PMID:21742865

  6. Neuroligin1 drives synaptic and behavioral maturation through intracellular interactions

    PubMed Central

    Hoy, Jennifer L.; Haeger, Paola A.; Constable, John R. L.; Arias, Renee J.; McCallum, Raluca; Kyweriga, Michael; Davis, Lawrence; Schnell, Eric; Wehr, Michael; Castillo, Pablo E.; Washbourne, Philip

    2013-01-01

    In vitro studies suggest that the intracellular C-terminus of Neuroligin1 (NL1) could play a central role in the maturation of excitatory synapses. However, it is unknown how this activity affects synapses in vivo, and whether it may impact the development of complex behaviors. To determine how NL1 influences the state of glutamatergic synapses in vivo, we compared the synaptic and behavioral phenotypes of mice overexpressing a full length version of NL1 (NL1FL) with mice overexpressing a version missing part of the intracellular domain (NL1ΔC). We show that overexpression of full length NL1 yielded an increase in the proportion of synapses with mature characteristics and impaired learning and flexibility. In contrast, the overexpression of NL1ΔC increased the number of excitatory postsynaptic structures and led to enhanced flexibility in mnemonic and social behaviors. Transient overexpression of NL1FL revealed that elevated levels are not necessary to maintain synaptic and behavioral states altered earlier in development. In contrast, overexpression of NL1FL in the fully mature adult was able to impair normal learning behavior after one month of expression. These results provide the first evidence that NL1 significantly impacts key developmental processes that permanently shape circuit function and behavior, as well as the function of fully developed neural circuits. Overall, these manipulations of NL1 function illuminate the significance of NL1 intracellular signaling in vivo, and enhance our understanding of the factors that gate the maturation of glutamatergic synapses and complex behavior. This has significant implications for our ability to address disorders such as ASD. PMID:23719805

  7. Effect of roscovitine on intracellular calcium dynamics: differential enantioselective responses.

    PubMed

    Tamma, Grazia; Ranieri, Marianna; Di Mise, Annarita; Spirlì, Alessia; Russo, Annamaria; Svelto, Maria; Valenti, Giovanna

    2013-12-02

    Cyclin-dependent kinases (CDKs) inhibitors have emerged as interesting therapeutic candidates. Of these, (S)-roscovitine has been proposed as potential neuroprotective molecule for stroke while (R)-roscovitine is currently entering phase II clinical trials against cancers and phase I clinical tests against glomerulonephritis. In addition, (R)-roscovitine has been suggested as potential antihypertensive and anti-inflammatory drug. Dysfunction of intracellular calcium balance is a common denominator of these diseases, and the two roscovitine enantiomers (S and R) are known to modulate calcium voltage channel activity differentially. Here, we provide a detailed description of short- and long-term responses of roscovitine on intracellular calcium handling in renal epithelial cells. Short-term exposure to (S)-roscovitine induced a cytosolic calcium peak, which was abolished after stores depletion with cyclopiazonic acid (CPA). Instead, (R)-roscovitine caused a calcium peak followed by a small calcium plateau. Cytosolic calcium response was prevented after stores depletion. Bafilomycin, a selective vacuolar H(+)-ATPase inhibitor, abolished the small calcium plateau. Long-term exposure to (R)-roscovitine significantly reduced the basal calcium level compared to control and (S)-roscovitine treated cells. However, both enantiomers increased calcium accumulation in the endoplasmic reticulum (ER). Consistently, cells treated with (R)-roscovitine showed a significant increase in SERCA activity, whereas (S)-roscovitine incubation resulted in a reduced PMCA expression. We also found a tonic decreased ability to release calcium from the ER, likely via IP3 signaling, under treatment with (S)- or (R)-roscovitine. Together our data revealed that (S)-roscovitine and (R)-roscovitine exert distinct enantiospecific effects on intracellular calcium signaling in renal epithelial cells. This distinct pharmacological profile can be relevant for roscovitine clinical use.

  8. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin.

    PubMed

    Huang, Carlos P; Fofana, Mariama; Chan, Jefferson; Chang, Christopher J; Howell, Stephen B

    2014-03-01

    Mammalian cells express two copper (Cu) influx transporters, CTR1 and CTR2. CTR1 serves as an influx transporter for both Cu and cisplatin (cDDP). In mouse embryo fibroblasts, reduction of CTR1 expression renders cells resistant to cDDP whereas reduction of CTR2 makes them hypersensitive both in vitro and in vivo. To investigate the role of CTR2 on intracellular Cu and cDDP sensitivity its expression was molecularly altered in the human epithelial 2008 cancer cell model. Intracellular exchangeable Cu(+) was measured with the fluorescent probe Coppersensor-3 (CS3). The ability of CS3 to report on changes in intracellular Cu(+) was validated by showing that Cu chelators reduced its signal, and that changes in signal accompanied alterations in expression of the major Cu influx transporter CTR1 and the two Cu efflux transporters, ATP7A and ATP7B. Constitutive knock down of CTR2 mRNA by ∼50% reduced steady-state exchangeable Cu by 22-23% and increased the sensitivity of 2008 cells by a factor of 2.6-2.9 in two separate clones. Over-expression of CTR2 increased exchangeable Cu(+) by 150% and rendered the 2008 cells 2.5-fold resistant to cDDP. The results provide evidence that CS3 can quantitatively assess changes in exchangeable Cu(+), and that CTR2 regulates both the level of exchangeable Cu(+) and sensitivity to cDDP in a model of human epithelial cancer. This study introduces CS3 and related sensors as novel tools for probing and assaying Cu-dependent sensitivity to anticancer therapeutics.

  9. Intracellular pH in sperm physiology.

    PubMed

    Nishigaki, Takuya; José, Omar; González-Cota, Ana Laura; Romero, Francisco; Treviño, Claudia L; Darszon, Alberto

    2014-08-01

    Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.

  10. Caspases rule the intracellular trafficking cartel.

    PubMed

    Duclos, Catherine; Lavoie, Christine; Denault, Jean-Bernard

    2017-05-01

    During apoptosis, caspases feast on several hundreds of cellular proteins to orchestrate rapid cellular demise. Indeed, caspases are known to get a taste of every cellular process in one way or another, activating some, but most often shutting them down. Thus, it is not surprising that caspases proteolyze proteins involved in intracellular trafficking with particularly devastating consequences for this important process. This review article focuses on how caspases target the machinery responsible for smuggling goods within and outside the cell. © 2017 Federation of European Biochemical Societies.

  11. Landmark discoveries in intracellular transport and secretion

    PubMed Central

    Paknikar, Kishore M

    2007-01-01

    Abstract Cellular protein transport and secretion is fundamental to the very existence of an organism, regulating important physiological functions such as reproduction, digestion, energy production, growth, neurotransmission, hormone release, water and ion transport, etc., all required for the survival and maintenance of homeostasis within an organism. Molecular understanding of transport and secretion of intracellular product has therefore been of paramount importance and aggressively investigated for over six decades. Only in the last 20 years, the general molecular mechanism of the process has come to light, following discovery of key proteins involved in ER-Golgi transport, and discovery of the ‘porosome’– the universal secretion machinery in cells. PMID:17635635

  12. Focal inhibitory seizure with prolonged deficit in adult Sturge-Weber syndrome.

    PubMed

    Aupy, Jerome; Bonnet, Charlotte; Arnould, Jean-Simon; Fernandez, Philippe; Marchal, Cecile; Zanotti-Fregonara, Paolo

    2015-09-01

    Sturge-Weber syndrome is a sporadic congenital neurocutaneous disorder often related to varying degrees of motor impairment. The phenomenon of prolonged ictal paresis is a rare seizure sign that can be due to lesions affecting the centro-parietal lobe. Focal inhibitory motor seizures can be difficult to differentiate from other clinical entities such as stroke, migraine or postictal paresis. We describe the case of a 40-year-old patient suffering from Sturge-Weber syndrome, admitted due to prolonged right-sided hemiparesis following a usual seizure. Repeated EEGs during the prolonged deficit showed only intermittent left fronto-parietal sharp waves. (99m)Tc HMPAO-brain SPECT performed seven days after the last seizure showed a vast area of parieto-occipital hyperperfusion in the left hemisphere. Aggressive antiepileptic therapy dramatically improved the clinical symptoms and scintigraphic images, which corroborated the diagnosis of ictal paresis. This case highlights the role of SPECT in the evaluation of Sturge-Weber syndrome, not only to investigate progressive neurological deterioration, but also exacerbation of seizures or prolonged neurological deficits. In fact, it may be possible to document ongoing epileptic activity using SPECT, despite a non-contributory EEG, which may be of help in adapting a therapeutic strategy.

  13. Translation control during prolonged mTORC1 inhibition mediated by 4E-BP3

    PubMed Central

    Tsukumo, Yoshinori; Alain, Tommy; Fonseca, Bruno D.; Nadon, Robert; Sonenberg, Nahum

    2016-01-01

    Targeting mTORC1 is a highly promising strategy in cancer therapy. Suppression of mTORC1 activity leads to rapid dephosphorylation of eIF4E-binding proteins (4E-BP1–3) and subsequent inhibition of mRNA translation. However, how the different 4E-BPs affect translation during prolonged use of mTOR inhibitors is not known. Here we show that the expression of 4E-BP3, but not that of 4E-BP1 or 4E-BP2, is transcriptionally induced during prolonged mTORC1 inhibition in vitro and in vivo. Mechanistically, our data reveal that 4E-BP3 expression is controlled by the transcription factor TFE3 through a cis-regulatory element in the EIF4EBP3 gene promoter. CRISPR/Cas9-mediated EIF4EBP3 gene disruption in human cancer cells mitigated the inhibition of translation and proliferation caused by prolonged treatment with mTOR inhibitors. Our findings show that 4E-BP3 is an important effector of mTORC1 and a robust predictive biomarker of therapeutic response to prolonged treatment with mTOR-targeting drugs in cancer. PMID:27319316

  14. As time goes by: reasons and characteristics of prolonged episodes of mechanical restraint in forensic psychiatry.

    PubMed

    Gildberg, Frederik A; Fristed, Peter; Makransky, Guido; Moeller, Elsebeth H; Nielsen, Lea D; Bradley, Stephen K

    2015-01-01

    Evidence suggests the prevalence and duration of mechanical restraint are particularly high among forensic psychiatric inpatients. However, only sparse knowledge exists regarding the reasons for, and characteristics of, prolonged use of mechanical restraint in forensic psychiatry. This study therefore aimed to investigate prolonged episodes of mechanical restraint on forensic psychiatric inpatients. Documentary data from medical records were thematically analyzed. Results show that the reasons for prolonged episodes of mechanical restraint on forensic psychiatric inpatients can be characterized by multiple factors: "confounding" (behaviors associated with psychiatric conditions, substance abuse, medical noncompliance, etc.), "risk" (behaviors posing a risk for violence), and "alliance parameters" (qualities of the staff-patient alliance and the patients' openness to alliance with staff), altogether woven into a mechanical restraint spiral that in itself becomes a reason for prolonged mechanical restraint. The study also shows lack of consistent clinical assessment during periods of restraint. Further investigation is indicated to develop an assessment tool with the capability to reduce time spent in mechanical restraint.

  15. Dissection of a type I interferon pathway in controlling bacterial intracellular infection in mice.

    PubMed

    Lippmann, Juliane; Müller, Holger C; Naujoks, Jan; Tabeling, Christoph; Shin, Sunny; Witzenrath, Martin; Hellwig, Katharina; Kirschning, Carsten J; Taylor, Gregory A; Barchet, Winfried; Bauer, Stefan; Suttorp, Norbert; Roy, Craig R; Opitz, Bastian

    2011-11-01

    Defence mechanisms against intracellular bacterial pathogens are incompletely understood. Our study characterizes a type I IFN-dependent cell-autonomous defence pathway directed against Legionella pneumophila, an intracellular model organism and frequent cause of pneumonia. We show that macrophages infected with L. pneumophila produced IFNβ in a STING- and IRF3- dependent manner. Paracrine type I IFNs stimulated upregulation of IFN-stimulated genes and a cell-autonomous defence pathway acting on replicating and non-replicating Legionella within their specialized vacuole. Our infection experiments in mice lacking receptors for type I and/or II IFNs show that type I IFNs contribute to expression of IFN-stimulated genes and to bacterial clearance as well as resistance in L. pneumophila pneumonia in addition to type II IFN. Overall, our study shows that paracrine type I IFNs mediate defence against L. pneumophila, and demonstrates a protective role of type I IFNs in in vivo infections with intracellular bacteria.

  16. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents.

  17. Association between Muscle Synergy and Stability during Prolonged Walking

    PubMed Central

    Suzuki, Keisuke; Nishida, Yusuke; Mitsutomi, Kazuhiko

    2014-01-01

    [Purpose] The purpose of this study was to examine whether changes in muscle synergy could affect gait stability or muscle activity by comparing muscle activity before and after prolonged walking. [Subjects and Methods] Twelve healthy male subjects walked on a treadmill for 10 min as a warm-up. Data were recorded from the participants during the first and last 1 min during 90 min of walking at 4.5 km/h. Electromyographic (EMG) activity was recorded for 7 leg muscles, and patterns of coordination were determined by principal component analysis (PCA). The patterns of activity within the anatomic muscle groups were additionally determined by repeating PCA. iEMG was calculated using the mean EMG for each cycle step during the 1 min walking periods. The largest Lyapunov exponent was calculated to quantify each subject’s inherent local dynamic stability. [Results] The patterns for each of the 7 muscles showed no change between the start and end periods. However, the end period showed a higher co-activation of the triceps surae, lower iEMG of the medial gastrocnemius, and a smaller largest Lyapunov exponent of the mediolateral and anteroposterior directions than those observed during the start period. [Conclusion] The increase in triceps surae co-activation may be associated with gait stability. PMID:25364133

  18. Intracellular calcium modulates gallbladder ion transport.

    PubMed

    Cates, J A; Saunders, K D; Abedin, M Z; Roslyn, J J

    1991-06-01

    Although experimentally induced cholesterol gallstone formation has been associated with altered gallbladder (GB) absorption and increased biliary Ca2+, the relationship between these events remains unclear. Recent studies suggest that extracellular Ca2+ ([Ca2+]ec) influences GB ion transport. Whether the effects of [Ca2+]ec are mediated by changes in intracellular Ca2+ ([Ca2+]ic) has not been determined. This study was designed to define the effects of altered [Ca2+]ic on GB ion transport. Prairie dog GBs were mounted in a Ussing chamber and short-circuit current (Isc), potential difference (Vms), and resistance (Rt) were recorded. Mucosal surfaces were exposed to either Dantrolene (Dt) or nickel (Ni2+). Dt "traps" [Ca2+]ic within intracellular organelles, thereby lowering cytosolic Ca2+; and Ni2+ prevents influx of [Ca2+]ec, presumably by binding Ca2+ channels. Although Dt reduced both Isc and Vms (P less than 0.01), these effects were transient. Transport recovery was probably due to increased [Ca2+]ec influx with restoration of [Ca2+]ic. Ni2+ resulted in sustained decreases in Isc and Vms (P less than 0.05) despite subsequent addition of 10 mM Ca2+. These findings are consistent with the prevention of [Ca2+]ec influx by Ni2+. We conclude that: (1) [Ca2+]ic may be a modulator of GB ion transport and (2) previously reported [Ca2+]ec effects on ion transport may be mediated through [Ca2+]ic concentration changes.

  19. NPC1, intracellular cholesterol trafficking and atherosclerosis.

    PubMed

    Yu, Xiao-Hua; Jiang, Na; Yao, Ping-Bo; Zheng, Xi-Long; Cayabyab, Francisco S; Tang, Chao-Ke

    2014-02-15

    Post-lysosomal cholesterol trafficking is an important, but poorly understood process that is essential to maintain lipid homeostasis. Niemann-Pick type C1 (NPC1), an integral membrane protein on the limiting membrane of late endosome/lysosome (LE/LY), is known to accept cholesterol from NPC2 and then mediate cholesterol transport from LE/LY to endoplasmic reticulum (ER) and plasma membrane in a vesicle- or oxysterol-binding protein (OSBP)-related protein 5 (ORP5)-dependent manner. Mutations in the NPC1 gene can be found in the majority of NPC patients, who accumulate massive amounts of cholesterol and other lipids in the LE/LY due to a defect in intracellular lipid trafficking. Liver X receptor (LXR) is the major positive regulator of NPC1 expression. Atherosclerosis is the pathological basis of coronary heart disease, one of the major causes of death worldwide. NPC1 has been shown to play a critical role in the atherosclerotic progression. In this review, we have summarized the role of NPC1 in regulating intracellular cholesterol trafficking and atherosclerosis.

  20. Small Peptide Recognition Sequence for Intracellular Sorting

    PubMed Central

    Pandey, Kailash N.

    2010-01-01

    Increasing evidence indicate that complex arrays of short signals and recognition peptide sequence ensure accurate trafficking and distribution of transmembrane receptors and/or proteins and their ligands into intracellular compartments. Internalization and subsequent trafficking of cell-surface receptors into the cell interior is mediated by specific short-sequence peptide signals within the cytoplasmic domains of these receptor proteins. The short signals usually consist of small linear amino acid sequences, which are recognized by adaptor coat proteins along the endocytic and sorting pathways. In recent years, much has been learned about the function and mechanisms of endocytic pathways responsible for the trafficking and molecular sorting of membrane receptors and their ligands into intracellular compartments, however, the significance and scope of the short sequence motifs in these cellular events is not well understood. Here a particular emphasis has been given to the functions of short-sequence signal motifs responsible for the itinerary and destination of membrane receptors and proteins moving into subcellular compartments. PMID:20817434

  1. Quantitative proteomics of intracellular Porphyromonas gingivalis

    PubMed Central

    Xia, Qiangwei; Wang, Tiansong; Taub, Fred; Park, Yoonsuk; Capestany, Cindy A.; Lamont, Richard J.; Hackett, Murray

    2009-01-01

    Whole-cell quantitative proteomic analyses were conducted to investigate the change from an extracellular to intracellular lifestyle for Porphyromonas gingivalis, a Gram-negative intracellular pathogen associated with periodontal disease. Global protein abundance data for P. gingivalis strain ATCC 33277 internalized for 18 hours within human gingival epithelial cells and controls exposed to gingival cell culture medium were obtained at sufficient coverage to provide strong evidence that these changes are profound. A total of 385 proteins were over-expressed in internalized P. gingivalis relative to controls; 240 proteins were shown to be under-expressed. This represented in total about 28% of the protein encoding ORFs annotated for this organism, and slightly less than half of the proteins that were observed experimentally. Production of several proteases, including the classical virulence factors RgpA, RgpB, and Kgp, was decreased. A separate validation study was carried out in which a 16-fold dilution of the P. gingivalis proteome was compared to the undiluted sample in order to assess the quantitative false negative rate (all ratios truly alternative). Truly null (no change) abundance ratios from technical replicates were used to assess the rate of quantitative false positives over the entire proteome. A global comparison between the direction of abundance change observed and previously published bioinformatic gene pair predictions for P. gingivalis will assist with future studies of P. gingivalis gene regulation and operon prediction. PMID:17979175

  2. Mechanisms of cellular invasion by intracellular parasites.

    PubMed

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  3. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease

    PubMed Central

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  4. Intracellular accumulation of norfloxacin in Mycobacterium smegmatis.

    PubMed

    Corti, S; Chevalier, J; Cremieux, A

    1995-11-01

    To evaluate the intracellular accumulation of norfloxacin in mycobacteria, two methods were used with Mycobacterium smegmatis. A radiometric method (K. V. Cundy, C. E. Fasching, K. E. Willard, and L. R. Peterson, J. Antimicrob. Chemother. 28:491-497, 1991) was used without great modification, but the fluorometric method (P. G. S. Mortimer and L. J. V. Piddock, J. Antimicrob. Chemother. 28:639-653, 1991) was changed considerably. Indeed, adsorption of the quinolone to the bacterial surface was characterized by measuring the level of accumulation of 0 degree C. Taking into account the adsorption, the pH of the washing buffer was increased from 7.0 to 9.0 to improve the desorption of norfloxacin from the cell surface. Both the fluorometric method, with the technical improvement, and the radiometric method could be used to estimate the intracellular accumulation of norfloxacin, which resulted from the difference between the whole uptake measured at 37 degrees C and the adsorption measured at 0 degrees C. A total of 35 ng of norfloxacin per mg of cells (dry weight) penetrated into the M. smegmatis cell, and the steady state was achieved in 5 min. Use of inhibitors of the proton motive force revealed that transport of norfloxacin was energy independent. Thus, the same mechanisms of quinolone accumulation that occur in eubacteria seem to occur in mycobacteria, at least in M. smegmatis.

  5. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  6. Intracellular distribution of microinjected antisense oligonucleotides.

    PubMed

    Leonetti, J P; Mechti, N; Degols, G; Gagnor, C; Lebleu, B

    1991-04-01

    Antisense oligomers constitute an attractive class of specific tools for genetic analysis and for potential therapeutic applications. Targets with different cellular locations have been described, such as mRNA translation initiation sites, pre-mRNA splicing sites, or the genes themselves. However the mechanism(s) of action and the intracellular distribution of antisense oligomers remain poorly understood. Antisense oligomers conjugated with various fluorochromes or with BrdUrd were microinjected into the cytoplasm of somatic cells, and their cellular distribution was monitored by fluorescence microscopy in fixed and nonfixed cells. A fast translocation in the nuclei and a concentration on nuclear structures were observed whatever probe was used. Nuclear transport occurs by diffusion since it is not affected by depletion of the intracellular ATP pool, temperature, or excess unlabeled oligomer. Accumulation of the oligomers in the nuclei essentially takes place on a set of proteins preferentially extracted between 0.2 M and 0.4 M NaCl as revealed by crosslinking of photosensitive oligomers. The relationship between nuclear location of antisense oligomers and their mechanism of action remains to be ascertained and could be of major interest in the design of more efficient antisense molecules.

  7. Intracellular distribution of microinjected antisense oligonucleotides.

    PubMed Central

    Leonetti, J P; Mechti, N; Degols, G; Gagnor, C; Lebleu, B

    1991-01-01

    Antisense oligomers constitute an attractive class of specific tools for genetic analysis and for potential therapeutic applications. Targets with different cellular locations have been described, such as mRNA translation initiation sites, pre-mRNA splicing sites, or the genes themselves. However the mechanism(s) of action and the intracellular distribution of antisense oligomers remain poorly understood. Antisense oligomers conjugated with various fluorochromes or with BrdUrd were microinjected into the cytoplasm of somatic cells, and their cellular distribution was monitored by fluorescence microscopy in fixed and nonfixed cells. A fast translocation in the nuclei and a concentration on nuclear structures were observed whatever probe was used. Nuclear transport occurs by diffusion since it is not affected by depletion of the intracellular ATP pool, temperature, or excess unlabeled oligomer. Accumulation of the oligomers in the nuclei essentially takes place on a set of proteins preferentially extracted between 0.2 M and 0.4 M NaCl as revealed by crosslinking of photosensitive oligomers. The relationship between nuclear location of antisense oligomers and their mechanism of action remains to be ascertained and could be of major interest in the design of more efficient antisense molecules. Images PMID:1849273

  8. Intracellular accumulation of norfloxacin in Mycobacterium smegmatis.

    PubMed Central

    Corti, S; Chevalier, J; Cremieux, A

    1995-01-01

    To evaluate the intracellular accumulation of norfloxacin in mycobacteria, two methods were used with Mycobacterium smegmatis. A radiometric method (K. V. Cundy, C. E. Fasching, K. E. Willard, and L. R. Peterson, J. Antimicrob. Chemother. 28:491-497, 1991) was used without great modification, but the fluorometric method (P. G. S. Mortimer and L. J. V. Piddock, J. Antimicrob. Chemother. 28:639-653, 1991) was changed considerably. Indeed, adsorption of the quinolone to the bacterial surface was characterized by measuring the level of accumulation of 0 degree C. Taking into account the adsorption, the pH of the washing buffer was increased from 7.0 to 9.0 to improve the desorption of norfloxacin from the cell surface. Both the fluorometric method, with the technical improvement, and the radiometric method could be used to estimate the intracellular accumulation of norfloxacin, which resulted from the difference between the whole uptake measured at 37 degrees C and the adsorption measured at 0 degrees C. A total of 35 ng of norfloxacin per mg of cells (dry weight) penetrated into the M. smegmatis cell, and the steady state was achieved in 5 min. Use of inhibitors of the proton motive force revealed that transport of norfloxacin was energy independent. Thus, the same mechanisms of quinolone accumulation that occur in eubacteria seem to occur in mycobacteria, at least in M. smegmatis. PMID:8585727

  9. [Intracellular signaling mechanisms in thyroid cancer].

    PubMed

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  10. Strategies for Intracellular Survival of Burkholderia pseudomallei

    PubMed Central

    Allwood, Elizabeth M.; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.

    2011-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed. PMID:22007185

  11. Intracellular trafficking of hybrid gene delivery vectors.

    PubMed

    Keswani, Rahul K; Lazebnik, Mihael; Pack, Daniel W

    2015-06-10

    Viral and non-viral gene delivery vectors are in development for human gene therapy, but both exhibit disadvantages such as inadequate efficiency, lack of cell-specific targeting or safety concerns. We have recently reported the design of hybrid delivery vectors combining retrovirus-like particles with synthetic polymers or lipids that are efficient, provide sustained gene expression and are more stable compared to native retroviruses. To guide further development of this promising class of gene delivery vectors, we have investigated their mechanisms of intracellular trafficking. Moloney murine leukemia virus-like particles (M-VLPs) were complexed with chitosan (Chi) or liposomes (Lip) comprising DOTAP, DOPE and cholesterol to form the hybrid vectors (Chi/M-VLPs and Lip/M-VLPs, respectively). Transfection efficiency and cellular internalization of the vectors were quantified in the presence of a panel of inhibitors of various endocytic pathways. Intracellular transport and trafficking kinetics of the hybrid vectors were dependent on the synthetic component and used a combination of clathrin- and caveolar-dependent endocytosis and macropinocytosis. Chi/M-VLPs were slower to transfect compared to Lip/M-VLPs due to the delayed detachment of the synthetic component. The synthetic component of hybrid gene delivery vectors plays a significant role in their cellular interactions and processing and is a key parameter for the design of more efficient gene delivery vehicles.

  12. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  13. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    PubMed Central

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  14. Speech outcomes of a prolonged-speech treatment for stuttering.

    PubMed

    Onslow, M; Costa, L; Andrews, C; Harrison, E; Packman, A

    1996-08-01

    It has been shown that people who stutter can speak with greatly reduced stuttering after treatments that use variations of Goldiamond's (1965) prolonged-speech (PS). However, outcome research to date has not taken account of several important issues. In particular, speech outcome measures in that research have been insufficient to show that lasting relief from stuttering has been achieved by clients outside the clinic for meaningful periods. The present study used extensive speech outcome measures across a variety of situations in evaluating the outcome of an intensive PS treatment (Ingham, 1987). The speech of 12 clients in this treatment was assessed on three occasions prior to treatment and frequently-on eight occasions-after discharge from the residential setting. For 7 clients, a further assessment occurred at 3 years posttreatment. Concurrent dependent measures were percent syllables stuttered, syllables per minute, and speech naturalness. The dependent measures were collected in many speaking situations within and beyond the clinic. Dependent measures were based on speech samples of substantive duration, and covert assessments were included in the study. Detailed data were presented for individual subjects. Results showed that 12 subjects who remained with the entire 2-3-year program achieved zero or near-zero stuttering. The majority of subjects did not show a regression trend in %SS or speech naturalness scores during the posttreatment period, either within or beyond the clinic. Some subjects showed higher posttreatment %SS scores during covert assessment than during overt assessment. Results also showed that stuttering was eliminated without using unusually slow and unnatural speech patterns. This treatment program does not specify a target speech rate range, and many clients maintained stutter-free speech using speech rates that were higher than the range typically specified in intensive PS programs. A significant correlation was found between speech

  15. Association Among Sociodemograhic Factors, Work Ability, Health Behavior, and Mental Health Status for Young People After Prolonged Unemployment.

    PubMed

    Lappalainen, Kirsi; Manninen, Pirjo; Räsänen, Kimmo

    2017-02-01

    The purpose of this study was to explore the associations of prolonged unemployment, health, and work ability among young workers using data from the 2008-2010 Occupational Health Counselling project in Kuopio, Eastern Finland. The total sample for this study was 190 young unemployed adults. The questionnaire included the Work Ability Index (WAI), the Beck Depression Inventory, the Alcohol Use Disorders Identification Test, and the Occupational Health Counselling Survey. Multivariate analyses revealed that men had a higher prevalence of prolonged unemployment than women. Using drugs for purposes other than treatment was associated independently with an increased prevalence of prolonged unemployment. Low WAI scores were associated with a higher prevalence of prolonged unemployment. This study showed that attention should be paid to male workers, those who have poor or moderate work ability and workers who use drugs. Young unemployed workers should be recognized at an early stage. A comprehensive, flexible network of community resources is essential to support young unemployed adults.

  16. Prolonged Antibiotic Use Tied to Precancerous Colon Growths

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_164445.html Prolonged Antibiotic Use Tied to Precancerous Colon Growths Drugs that ... 2017 TUESDAY, April 4, 2017 (HealthDay News) -- Taking antibiotics for an extended period in early to middle ...

  17. Drug Xeloda Prolongs Survival for Some Breast Cancer Patients

    MedlinePlus

    ... 166103.html Drug Xeloda Prolongs Survival for Some Breast Cancer Patients It cut risk of relapse, death by ... can extend the lives of some women whose breast cancer is not wiped out by standard treatment, a ...

  18. Familial qt prolongation and risk of sudden death.

    PubMed

    Furberg, C; Hörnell, H

    1975-09-01

    Two sisters with the syndrome of familial QT prolongation in the ECG and syncope are presented. A recently suggested mechanism of the syndrome is presented and preventive measures to reduce the risk of sudden death associated with it are proposed.

  19. The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure

    PubMed Central

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.

    2013-01-01

    Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824

  20. Prolonged percutaneous SNM testing does not cause infection-related explanation.

    PubMed

    Amend, Bastian; Bedke, Jens; Khalil, Mahmoud; Stenzl, Arnulf; Sievert, Karl-Dietrich

    2013-03-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Sacral neuromodulation (SNM) is an effective treatment option of different pelvic-related dysfunctions. SNM evaluation by either temporary or permanent electrodes is generally accepted. Extended testing with temporary electrodes has been reported on before but less is known about infection-related risks during prolonged evaluation with definitive electrodes. The present findings show that prolonged testing (mean = 52.3 days) with permanent electrodes does not increase infection-associated explantation rates, although bacterial colonization was found in more than one-third of the patients. Prolonged SNM evaluation under everyday conditions might improve long-term success. To evaluate the impact of prolonged stage 1 testing on bacterial electrode colonization, infection and treatment success. In all, 21 patients who underwent sacral neuromodulation (SNM) for periods ≥1 month were prospectively evaluated; nine patients had overactive bladder syndrome (OAB), 10 had urinary retention, two had faecal incontinence (FI), and 13 had diabetes and overweight/obesity. After stage 1 testing electrode extension leads were microbiologically analysed to assess bacterial colonization. The primary measurements were pre- and post-SNM treatment comparisons based on patient-agreed criteria using an increased 70% minimum improvement rate; secondary measurements were bacterial colonization and impact of infection. The mean stage 1 evaluation period was 52.3 days; 16 patients (76%) progressed to stage 2, and five patients were explanted due to inadequate improvement (<70%). There was bacterial colonization in 42.9% of patients and 38.2% of extension leads. Stage 2 patients showed no infection or wound-healing disorders at a mean follow-up of 33.9 months. The success rate for stage 2 implantation treatment was 94%. There are few studies in the literature evaluating SNM testing periods vs the risk of clinically relevant implant

  1. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    PubMed

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling.

  2. 15. Detail showing lower chord pinconnected to vertical member, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15