Sample records for show small deviations

  1. Large Deviations and Transitions Between Equilibria for Stochastic Landau-Lifshitz-Gilbert Equation

    NASA Astrophysics Data System (ADS)

    Brzeźniak, Zdzisław; Goldys, Ben; Jegaraj, Terence

    2017-11-01

    We study a stochastic Landau-Lifshitz equation on a bounded interval and with finite dimensional noise. We first show that there exists a pathwise unique solution to this equation and that this solution enjoys the maximal regularity property. Next, we prove the large deviations principle for the small noise asymptotic of solutions using the weak convergence method. An essential ingredient of the proof is the compactness, or weak to strong continuity, of the solution map for a deterministic Landau-Lifschitz equation when considered as a transformation of external fields. We then apply this large deviations principle to show that small noise can cause magnetisation reversal. We also show the importance of the shape anisotropy parameter for reducing the disturbance of the solution caused by small noise. The problem is motivated by applications from ferromagnetic nanowires to the fabrication of magnetic memories.

  2. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    PubMed

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  3. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry

    PubMed Central

    Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-01

    Small fields smaller than 4×4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model‐based algorithms, X‐ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS‐Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth‐of‐dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth‐dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1×1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1×1 cm2 field showed maximum deviation, except in 6 MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower‐density materials compared to high‐density materials. PACS numbers: 87.53.Bn, 87.53.kn, 87.56.bd, 87.55.Kd, 87.56.jf PMID:26894345

  4. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    NASA Astrophysics Data System (ADS)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  5. Asymptotics of small deviations of the Bogoliubov processes with respect to a quadratic norm

    NASA Astrophysics Data System (ADS)

    Pusev, R. S.

    2010-10-01

    We obtain results on small deviations of Bogoliubov’s Gaussian measure occurring in the theory of the statistical equilibrium of quantum systems. For some random processes related to Bogoliubov processes, we find the exact asymptotic probability of their small deviations with respect to a Hilbert norm.

  6. Sub-grain induced crack deviation in multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Lv; Nelias, Daniel; Bardel, Didier; Wang, Meng; Marie, Benoit

    2017-06-01

    The fracture process in crystalline silicon is dictated by energy dissipation. Here, we show that sub-grains can deviate the crack path from the most energetically favorable ( 111) plane. Albeit a small misorientation across the sub-grain boundary is identified, upon entering into the sub-grain region, the crack either slightly deviates from the ideal ( 111) plane or directly chooses the secondly most favorable ( 110) one. We propose that the deviation is related to the dislocation core in the ( 111) crystal plane, which leads to a discontinuous atom debonding process and consequently a pronounced lattice trapping. In this circumstance, localized crystal defects prevail in the fracture process of silicon, while energetical criterion fails to interpret the crack path.

  7. Micro-bubbles and Micro-particles are Not Faithful Tracers of Turbulent Acceleration

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Mathai, Varghese; Calzavarini, Enrico; Brons, Jon; Lohse, Detlef

    2016-11-01

    We report on the Lagrangian statistics of acceleration of small (sub-Kolmogorov) bubbles and tracer particles with Stokes number St <<1 in turbulent flow. At decreasing Reynolds number, the bubble accelerations show deviations from that of tracer particles, i.e. they deviate from the Heisenberg-Yaglom prediction and show a quicker decorrelation despite their small size and minute St. Using direct numerical simulations, we show that these effects arise due the drift of these particles through the turbulent flow. We theoretically predict this gravity-driven effect for developed isotropic turbulence, with the ratio of Stokes to Froude number or equivalently the particle drift-velocity governing the enhancement of acceleration variance and the reductions in correlation time and intermittency. Our predictions are in good agreement with experimental and numerical results. The present findings are relevant to a range of scenarios encompassing tiny bubbles and droplets that drift through the turbulent oceans and the atmosphere.

  8. Relationship between chin deviation and the position and morphology of the mandible in individuals with a unilateral cleft lip and palate

    PubMed Central

    Kim, Kyung-Seon; Park, Soo-Byung; Kim, Seong-Sik; Kim, Yong-Il

    2013-01-01

    Objective In this study, we aimed to examine the relationship between chin deviation and the positional and morphological features of the mandible and to determine the factors that contributed to chin deviation in individuals with a unilateral cleft lip and palate (UCLP). Methods Cone-beam computed tomography (CBCT) images of 28 adults with UCLP were analyzed in this study. Segmented three-dimensional temporomandibular fossa and mandible images were reconstructed, and angular, linear, and volumetric parameters were measured. Results For all 28 individuals, the chin was found to deviate to the cleft side by 1.59 mm. Moreover, among these 28 individuals, only 7 showed distinct (more than 4 mm) chin deviation, which was toward the cleft side. Compared to the non-cleft side, the mandibular body length, frontal ramal inclination, and vertical position of the condyle were lower and inclination of the temporomandibular fossa was steeper on the cleft side. Furthermore, the differences in inclination of the temporomandibular fossa, mandibular body length, ramus length, and condylar volume ratio (non-deviated/deviated) were positively correlated with chin deviation. Conclusions UCLP individuals show mild chin deviation to the cleft side. Statistical differences were noted in the parameters that represented positional and morphological asymmetries of the mandible and temporomandibular fossa; however, these differences were too small to indicate clinical significance. PMID:24015386

  9. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less

  10. Current fluctuations in periodically driven systems

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Chetrite, Raphael

    2018-05-01

    Small nonequelibrium systems driven by an external periodic protocol can be described by Markov processes with time-periodic transition rates. In general, current fluctuations in such small systems are large and may play a crucial role. We develop a theoretical formalism to evaluate the rate of such large deviations in periodically driven systems. We show that the scaled cumulant generating function that characterizes current fluctuations is given by a maximal Floquet exponent. Comparing deterministic protocols with stochastic protocols, we show that, with respect to large deviations, systems driven by a stochastic protocol with an infinitely large number of jumps are equivalent to systems driven by deterministic protocols. Our results are illustrated with three case studies: a two-state model for a heat engine, a three-state model for a molecular pump, and a biased random walk with a time-periodic affinity.

  11. Optical Layout Analysis of Polarization Interference Imaging Spectrometer by Jones Calculus in View of both Optical Throughput and Interference Fringe Visibility

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanni; Zhang, Chunmin

    2013-01-01

    A polarization interference imaging spectrometer based on Savart polariscope was presented. Its optical throughput was analyzed by Jones calculus. The throughput expression was given, and clearly showed that the optical throughput mainly depended on the intensity of incident light, transmissivity, refractive index and the layout of optical system. The simulation and analysis gave the optimum layout in view of both optical throughput and interference fringe visibility, and verified that the layout of our former design was optimum. The simulation showed that a small deviation from the optimum layout influenced interference fringe visibility little for the optimum one, but influenced severely for others, so a small deviation is admissible in the optimum, and this can mitigate the manufacture difficulty. These results pave the way for further research and engineering design.

  12. A deviation display method for visualising data in mobile gamma-ray spectrometry.

    PubMed

    Kock, Peder; Finck, Robert R; Nilsson, Jonas M C; Ostlund, Karl; Samuelsson, Christer

    2010-09-01

    A real time visualisation method, to be used in mobile gamma-spectrometric search operations using standard detector systems is presented. The new method, called deviation display, uses a modified waterfall display to present relative changes in spectral data over energy and time. Using unshielded (137)Cs and (241)Am point sources and different natural background environments, the behaviour of the deviation displays is demonstrated and analysed for two standard detector types (NaI(Tl) and HPGe). The deviation display enhances positive significant changes while suppressing the natural background fluctuations. After an initialization time of about 10min this technique leads to a homogeneous display dominated by the background colour, where even small changes in spectral data are easy to discover. As this paper shows, the deviation display method works well for all tested gamma energies and natural background radiation levels and with both tested detector systems.

  13. Microbubbles and Microparticles are Not Faithful Tracers of Turbulent Acceleration

    NASA Astrophysics Data System (ADS)

    Mathai, Varghese; Calzavarini, Enrico; Brons, Jon; Sun, Chao; Lohse, Detlef

    2016-07-01

    We report on the Lagrangian statistics of acceleration of small (sub-Kolmogorov) bubbles and tracer particles with Stokes number St ≪1 in turbulent flow. At a decreasing Reynolds number, the bubble accelerations show deviations from that of tracer particles; i.e., they deviate from the Heisenberg-Yaglom prediction and show a quicker decorrelation despite their small size and minute St. Using direct numerical simulations, we show that these effects arise due the drift of these particles through the turbulent flow. We theoretically predict this gravity-driven effect for developed isotropic turbulence, with the ratio of Stokes to Froude number or equivalently the particle drift velocity governing the enhancement of acceleration variance and the reductions in correlation time and intermittency. Our predictions are in good agreement with experimental and numerical results. The present findings are relevant to a range of scenarios encompassing tiny bubbles and droplets that drift through the turbulent oceans and the atmosphere. They also question the common usage of microbubbles and microdroplets as tracers in turbulence research.

  14. Effect of Random Circuit Fabrication Errors on Small Signal Gain and Phase in Helix Traveling Wave Tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, P.; Chernin, D. P.; Lau, Y. Y.; Luginsland, J. W.; Gilgenbach, R. M.

    2007-11-01

    Motivated by the current interest in mm-wave and THz sources, which use miniature, difficult-to-fabricate circuit components, we evaluate the statistical effects of random fabrication errors on a helix traveling wave tube amplifier's small signal characteristics. The small signal theory is treated in a continuum model in which the electron beam is assumed to be monoenergetic, and axially symmetric about the helix axis. Perturbations that vary randomly along the beam axis are introduced in the dimensionless Pierce parameters b, the beam-wave velocity mismatch, C, the gain parameter, and d, the cold tube circuit loss. Our study shows, as expected, that perturbation in b dominates the other two. The extensive numerical data have been confirmed by our analytic theory. They show in particular that the standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C, and d. Simple formulas have been derived which yield the output phase variations in terms of the statistical random manufacturing errors. This work was supported by AFOSR and by ONR.

  15. Standard Deviation for Small Samples

    ERIC Educational Resources Information Center

    Joarder, Anwar H.; Latif, Raja M.

    2006-01-01

    Neater representations for variance are given for small sample sizes, especially for 3 and 4. With these representations, variance can be calculated without a calculator if sample sizes are small and observations are integers, and an upper bound for the standard deviation is immediate. Accessible proofs of lower and upper bounds are presented for…

  16. Sea surface temperature measurements with AIRS

    NASA Technical Reports Server (NTRS)

    Aumann, H.

    2003-01-01

    The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.

  17. Bandwagon effects and error bars in particle physics

    NASA Astrophysics Data System (ADS)

    Jeng, Monwhea

    2007-02-01

    We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit "bandwagon effects": reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations.

  18. Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish.

    PubMed

    Selwyn, Jason D; Hogan, J Derek; Downey-Wall, Alan M; Gurski, Lauren M; Portnoy, David S; Heath, Daniel D

    2016-01-01

    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.

  19. A critical assessment of two types of personal UV dosimeters.

    PubMed

    Seckmeyer, Gunther; Klingebiel, Marcus; Riechelmann, Stefan; Lohse, Insa; McKenzie, Richard L; Liley, J Ben; Allen, Martin W; Siani, Anna-Maria; Casale, Giuseppe R

    2012-01-01

    Doses of erythemally weighted irradiances derived from polysulphone (PS) and electronic ultraviolet (EUV) dosimeters have been compared with measurements obtained using a reference spectroradiometer. PS dosimeters showed mean absolute deviations of 26% with a maximum deviation of 44%, the calibrated EUV dosimeters showed mean absolute deviations of 15% (maximum 33%) around noon during several test days in the northern hemisphere autumn. In the case of EUV dosimeters, measurements with various cut-off filters showed that part of the deviation from the CIE erythema action spectrum was due to a small, but significant sensitivity to visible radiation that varies between devices and which may be avoided by careful preselection. Usually the method of calibrating UV sensors by direct comparison to a reference instrument leads to reliable results. However, in some circumstances the quality of measurements made with simple sensors may be over-estimated. In the extreme case, a simple pyranometer can be used as a UV instrument, providing acceptable results for cloudless skies, but very poor results under cloudy conditions. It is concluded that while UV dosimeters are useful for their design purpose, namely to estimate personal UV exposures, they should not be regarded as an inexpensive replacement for meteorological grade instruments. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  20. Anomaly detection in reconstructed quantum states using a machine-learning technique

    NASA Astrophysics Data System (ADS)

    Hara, Satoshi; Ono, Takafumi; Okamoto, Ryo; Washio, Takashi; Takeuchi, Shigeki

    2014-02-01

    The accurate detection of small deviations in given density matrices is important for quantum information processing. Here we propose a method based on the concept of data mining. We demonstrate that the proposed method can more accurately detect small erroneous deviations in reconstructed density matrices, which contain intrinsic fluctuations due to the limited number of samples, than a naive method of checking the trace distance from the average of the given density matrices. This method has the potential to be a key tool in broad areas of physics where the detection of small deviations of quantum states reconstructed using a limited number of samples is essential.

  1. Approaching sub-50 nanoradian measurements by reducing the saw-tooth deviation of the autocollimator in the Nano-Optic-Measuring Machine

    NASA Astrophysics Data System (ADS)

    Qian, Shinan; Geckeler, Ralf D.; Just, Andreas; Idir, Mourad; Wu, Xuehui

    2015-06-01

    Since the development of the Nano-Optic-Measuring Machine (NOM), the accuracy of measuring the profile of an optical surface has been enhanced to the 100-nrad rms level or better. However, to update the accuracy of the NOM system to sub-50 nrad rms, the large saw-tooth deviation (269 nrad rms) of an existing electronic autocollimator, the Elcomat 3000/8, must be resolved. We carried out simulations to assess the saw-tooth-like deviation. We developed a method for setting readings to reduce the deviation to sub-50 nrad rms, suitable for testing plane mirrors. With this method, we found that all the tests conducted in a slowly rising section of the saw-tooth show a small deviation of 28.8 to <40 nrad rms. We also developed a dense-measurement method and an integer-period method to lower the saw-tooth deviation during tests of sphere mirrors. Further research is necessary for formulating a precise test for a spherical mirror. We present a series of test results from our experiments that verify the value of the improvements we made.

  2. Refractivity of Molten Nitrates and Chlorides: Binary Mixtures Containing Cesium Ions

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yohji; Karawacki, Ernest

    1981-05-01

    By using an interferometric technique, the refractive index of some molten salt mixtures containing Cs+ ions was measured with high accuracy: (Li-Cs)NO3, (Na-Cs)NO3, (Ag-Cs)NO3, (Li-Cs)Cl, and also pure RbCl. The isotherms of molar refractivity show a small negative deviation from additivity in the (Li-Cs)NO3 and (Li-Cs)Cl systems and a positive deviation in the (Ag-Cs)NO3 mixture. A tentative attempt was made to relate the excess molar refractivities with the absorption bands of the ions.

  3. Crystalline solution series and order-disorder within the natrolite mineral group

    USGS Publications Warehouse

    Ross, M.; Flohr, M.J.K.; Ross, D.R.

    1992-01-01

    Electron microprobe and X-ray analyses were made of natrolite, tetranatrolite, gonnardite, and thomsonite from the Magnet Cove alkaline igneous complex, Arkansas, and of selected specimens from the U.S. National Museum. This information and data from the literature indicate that natrolite, mesolite, scolecite, edingtonite, and tetraedingtonite show only small deviations from the ideal stoichiometry. In contrast, gonnardite, tetranatrolite, and thomsonite show large deviations from the ideal end-member compositions and compose three crystalline series. The structures of the natrolite minerals are defined by combining each of the three types of framework structures with various combinations of channel-occupying polyhedra. Various polysomatic series can be constructed by combining slices of two basic structures to form new hybrid structures. -from Authors

  4. [A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].

    PubMed

    Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y

    2016-04-18

    To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed axis movement. The new method can replace the traditional method in accuracy. It can make up the deficiency of the traditional fixed axis method.

  5. Resistance Training Increases the Variability of Strength Test Scores

    DTIC Science & Technology

    2009-06-08

    standard deviations for pretest and posttest strength measurements. This information was recorded for every strength test used in a total of 377 samples...significant if the posttest standard deviation consistently was larger than the pretest standard deviation. This condition could be satisfied even if...the difference in the standard deviations was small. For example, the posttest standard deviation might be 1% larger than the pretest standard

  6. 48 CFR 201.404 - Class deviations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and the Defense Logistics Agency, may approve any class deviation, other than those described in 201...) Diminish any preference given small business concerns by the FAR or DFARS; or (D) Extend to requirements imposed by statute or by regulations of other agencies such as the Small Business Administration and the...

  7. ERP correlates of unexpected word forms in a picture–word study of infants and adults

    PubMed Central

    Duta, M.D.; Styles, S.J.; Plunkett, K.

    2012-01-01

    We tested 14-month-olds and adults in an event-related potentials (ERPs) study in which pictures of familiar objects generated expectations about upcoming word forms. Expected word forms labelled the picture (word condition), while unexpected word forms mismatched by either a small deviation in word medial vowel height (mispronunciation condition) or a large deviation from the onset of the first speech segment (pseudoword condition). Both infants and adults showed sensitivity to both types of unexpected word form. Adults showed a chain of discrete effects: positivity over the N1 wave, negativity over the P2 wave (PMN effect) and negativity over the N2 wave (N400 effect). Infants showed a similar pattern, including a robust effect similar to the adult P2 effect. These observations were underpinned by a novel visualisation method which shows the dynamics of the ERP within bands of the scalp over time. The results demonstrate shared processing mechanisms across development, as even subtle deviations from expected word forms were indexed in both age groups by a reduction in the amplitude of characteristic waves in the early auditory evoked potential. PMID:22483072

  8. The O'Connor cinch revisited.

    PubMed Central

    Williams, A. T.; Metz, H. S.; Jampolsky, A.

    1978-01-01

    The modified O'Connor cinch operation is a useful, but little used, adjustable resection operation. For increased understanding of its shortening and adjustment characteristics, a standard cinch was performed in animals and patients with strabismus. Animal studies showed that, as each strand of the cinch was removed, a small, relatively equal release of the cinch effect occurred. Measurement of the shortening obtained in patients with strabismus showed a consistent resection effect of about 4 mm. Review of 17 cases in which the cinch was used as part of the surgical treatment showed the technique to be adjustable by reducing the overcorrection in 6 cases. Ten to 20 prism dioptres of reduction in the deviation was obtained with adjustment of the cinch on the first postoperative day. All 17 cases had satisfactory adjustment. The largest residual deviation was 12 prism dioptres. Images PMID:718816

  9. Band-aid for information loss from black holes

    NASA Astrophysics Data System (ADS)

    Israel, Werner; Yun, Zinkoo

    2010-12-01

    We summarize, simplify and extend recent work showing that small deviations from exact thermality in Hawking radiation, first uncovered by Kraus and Wilczek, have the capacity to carry off the maximum information content of a black hole. This goes a considerable way toward resolving a long-standing “information loss paradox.”

  10. New, small, fast acting blood glucose meters--an analytical laboratory evaluation.

    PubMed

    Weitgasser, Raimund; Hofmann, Manuela; Gappmayer, Brigitta; Garstenauer, Christa

    2007-09-22

    Patients and medical personnel are eager to use blood glucose meters that are easy to handle and fast acting. We questioned whether accuracy and precision of these new, small and light weight devices would meet analytical laboratory standards and tested four meters with the above mentioned conditions. Approximately 300 capillary blood samples were collected and tested using two devices of each brand and two different types of glucose test strips. Blood from the same samples was used for comparison. Results were evaluated using maximum deviation of 5% and 10% from the comparative method, the error grid analysis, the overall deviation of the devices, the linear regression analysis as well as the CVs for measurement in series. Of all 1196 measurements a deviation of less than 5% resp. 10% from the reference method was found for the FreeStyle (FS) meter in 69.5% and 96%, the Glucocard X Meter (GX) in 44% and 75%, the One Touch Ultra (OT) in 29% and 60%, the Wellion True Track (WT) in 28.5% and 58%. The error grid analysis gave 99.7% for FS, 99% for GX, 98% for OT and 97% for WT in zone A. The remainder of the values lay within zone B. Linear regression analysis resembled these results. CVs for measurement in series showed higher deviations for OT and WT compared to FS and GX. The four new, small and fast acting glucose meters fulfil clinically relevant analytical laboratory requirements making them appropriate for use by medical personnel. However, with regard to the tight and restrictive limits of the ADA recommendations, the devices are still in need of improvement. This should be taken into account when the devices are used by primarily inexperienced persons and is relevant for further industrial development of such devices.

  11. Statistical characteristics of cloud variability. Part 1: Retrieved cloud liquid water path at three ARM sites

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Campos, Edwin; Liu, Yangang

    2014-09-01

    Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness all quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the lognormal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.

  12. Statistical characteristics of cloud variability. Part 1: Retrieved cloud liquid water path at three ARM sites: Observed cloud variability at ARM sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dong; Campos, Edwin; Liu, Yangang

    2014-09-17

    Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy’s Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness allmore » quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the log normal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.« less

  13. Unveiling the Dependence of Glass Transitions on Mixing Thermodynamics in Miscible Systems

    NASA Astrophysics Data System (ADS)

    Tu, Wenkang; Wang, Yunxi; Li, Xin; Zhang, Peng; Tian, Yongjun; Jin, Shaohua; Wang, Li-Min

    2015-02-01

    The dependence of the glass transition in mixtures on mixing thermodynamics is examined by focusing on enthalpy of mixing, ΔHmix with the change in sign (positive vs. negative) and magnitude (small vs. large). The effects of positive and negative ΔHmix are demonstrated based on two isomeric systems of o- vs. m- methoxymethylbenzene (MMB) and o- vs. m- dibromobenzene (DBB) with comparably small absolute ΔHmix. Two opposite composition dependences of the glass transition temperature, Tg, are observed with the MMB mixtures showing a distinct negative deviation from the ideal mixing rule and the DBB mixtures having a marginally positive deviation. The system of 1, 2- propanediamine (12PDA) vs. propylene glycol (PG) with large and negative ΔHmix is compared with the systems of small ΔHmix, and a considerably positive Tg shift is seen. Models involving the properties of pure components such as Tg, glass transition heat capacity increment, ΔCp, and density, ρ, do not interpret the observed Tg shifts in the systems. In contrast, a linear correlation is revealed between ΔHmix and maximum Tg shifts.

  14. Implementation of small field radiotherapy dosimetry for spinal metastase case

    NASA Astrophysics Data System (ADS)

    Rofikoh, Wibowo, W. E.; Pawiro, S. A.

    2017-07-01

    The main objective of this study was to know dose profile of small field radiotherapy in the spinal metastase case with source axis distance (SAD) techniques. In addition, we evaluated and compared the dose planning of stereotactic body radiation therapy (SBRT) and conventional techniques to measurements with Exradin A16 and Gafchromic EBT3 film dosimeters. The results showed that film EBT3 had a highest precision and accuracy with the average of the standard deviation of ±1.7 and maximum discrepancy of 2.6 %. In addition, the average value of Full Wave Half Maximum (FWHM) and its largest deviation in small field size of 0.8 x 0.8 cm2 are 0.82 cm and 16.3 % respectively, while it was found around 2.36 cm and 3 % for the field size of 2.4 x 2.4 cm2. The comparison between penumbra width and the collimation was around of 37.1 % for the field size of 0.8 x 0.8 cm2, while it was found of 12.4 % for the field size of 2.4 x 2.4 cm2.

  15. Perceptions of midline deviations among different facial types.

    PubMed

    Williams, Ryan P; Rinchuse, Daniel J; Zullo, Thomas G

    2014-02-01

    The correction of a deviated midline can involve complicated mechanics and a protracted treatment. The threshold below which midline deviations are considered acceptable might depend on multiple factors. The objective of this study was to evaluate the effect of facial type on laypersons' perceptions of various degrees of midline deviation. Smiling photographs of male and female subjects were altered to create 3 facial type variations (euryprosopic, mesoprosopic, and leptoprosopic) and deviations in the midline ranging from 0.0 to 4.0 mm. Evaluators rated the overall attractiveness and acceptability of each photograph. Data were collected from 160 raters. The overall threshold for the acceptability of a midline deviation was 2.92 ± 1.10 mm, with the threshold for the male subject significantly lower than that for the female subject. The euryprosopic facial type showed no decrease in mean attractiveness until the deviations were 2 mm or more. All other facial types were rated as decreasingly attractive from 1 mm onward. Among all facial types, the attractiveness of the male subject was only affected at deviations of 2 mm or greater; for the female subject, the attractiveness scores were significantly decreased at 1 mm. The mesoprosopic facial type was most attractive for the male subject but was the least attractive for the female subject. Facial type and sex may affect the thresholds at which a midline deviation is detected and above which a midline deviation is considered unacceptable. Both the euryprosopic facial type and male sex were associated with higher levels of attractiveness at relatively small levels of deviations. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Deviation from Power Law Behavior in Landslide Phenomenon

    NASA Astrophysics Data System (ADS)

    Li, L.; Lan, H.; Wu, Y.

    2013-12-01

    Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law behavior in landslide phenomenon. Figure shows that a rollover of landslide size distribution in the small size end is produced as the probability for V/S (the failure volume to failure surface ratio of landslide) exceeding the mechanical threshold applied to the power law distribution of landslide volume.

  17. Deviations from Newton's law in supersymmetric large extra dimensions

    NASA Astrophysics Data System (ADS)

    Callin, P.; Burgess, C. P.

    2006-09-01

    Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case.

  18. Influence of asymmetrical drawing radius deviation in micro deep drawing

    NASA Astrophysics Data System (ADS)

    Heinrich, L.; Kobayashi, H.; Shimizu, T.; Yang, M.; Vollertsen, F.

    2017-09-01

    Nowadays, an increasing demand for small metal parts in electronic and automotive industries can be observed. Deep drawing is a well-suited technology for the production of such parts due to its excellent qualities for mass production. However, the downscaling of the forming process leads to new challenges in tooling and process design, such as high relative deviation of tool geometry or blank displacement compared to the macro scale. FEM simulation has been a widely-used tool to investigate the influence of symmetrical process deviations as for instance a global variance of the drawing radius. This study shows a different approach that allows to determine the impact of asymmetrical process deviations on micro deep drawing. In this particular case the impact of an asymmetrical drawing radius deviation and blank displacement on cup geometry deviation was investigated for different drawing ratios by experiments and FEM simulation. It was found that both variations result in an increasing cup height deviation. Nevertheless, with increasing drawing ratio a constant drawing radius deviation has an increasing impact, while blank displacement results in a decreasing offset of the cups geometry. This is explained by different mechanisms that result in an uneven cup geometry. While blank displacement leads to material surplus on one side of the cup, an unsymmetrical radius deviation on the other hand generates uneven stretching of the cups wall. This is intensified for higher drawing ratios. It can be concluded that the effect of uneven radius geometry proves to be of major importance for the production of accurately shaped micro cups and cannot be compensated by intentional blank displacement.

  19. Using Heteroskedastic Ordered Probit Models to Recover Moments of Continuous Test Score Distributions from Coarsened Data

    ERIC Educational Resources Information Center

    Reardon, Sean F.; Shear, Benjamin R.; Castellano, Katherine E.; Ho, Andrew D.

    2017-01-01

    Test score distributions of schools or demographic groups are often summarized by frequencies of students scoring in a small number of ordered proficiency categories. We show that heteroskedastic ordered probit (HETOP) models can be used to estimate means and standard deviations of multiple groups' test score distributions from such data. Because…

  20. [Fibrin glue for operative correction of septal deviations].

    PubMed

    Boenisch, M; Nolst Trenité, G J

    2004-11-01

    The routine procedure after correction of septal deviations is the utilization of endonasal packing in order to avoid septal haematoma. However, the mechanical pressure of this packing damages the mucociliar activity of the mucosa and causes lymphoedema by blocking the lymphatic vessels. Besides it represents a foreign body within the nose causing pain and unpleasant feeling for the patient. In order to avoid these disadvantages, in 57 patients we used fibrin glue instead of nasal packing. After correction of the septal deviation the two mucoperichondrium blades where fixed together with Tissucol Duo Quick. This technique not only leads to haemostasis, but also provides fixation of the newly modeled septum. In only one patient we found a small unilateral septal haematoma, in all other cases the postoperative period showed no complications. Patients had a significant reduction of endonasal crusts and postoperative swelling. Patients comfort increased significant without the (standard) nasal packing.

  1. Diode‐based transmission detector for IMRT delivery monitoring: a validation study

    PubMed Central

    Li, Taoran; Wu, Q. Jackie; Matzen, Thomas; Yin, Fang‐Fang

    2016-01-01

    The purpose of this work was to evaluate the potential of a new transmission detector for real‐time quality assurance of dynamic‐MLC‐based radiotherapy. The accuracy of detecting dose variation and static/dynamic MLC position deviations was measured, as well as the impact of the device on the radiation field (surface dose, transmission). Measured dose variations agreed with the known variations within 0.3%. The measurement of static and dynamic MLC position deviations matched the known deviations with high accuracy (0.7–1.2 mm). The absorption of the device was minimal (∼ 1%). The increased surface dose was small (1%–9%) but, when added to existing collimator scatter effects could become significant at large field sizes (≥30×30 cm2). Overall the accuracy and speed of the device show good potential for real‐time quality assurance. PACS number(s): 87.55.Qr PMID:27685115

  2. Assessment of Spasticity by a Pendulum Test in SCI Patients Who Exercise FES Cycling or Receive Only Conventional Therapy.

    PubMed

    Popovic-Maneski, Lana; Aleksic, Antonina; Metani, Amine; Bergeron, Vance; Cobeljic, Radoje; Popovic, Dejan B

    2018-01-01

    Increased muscle tone and exaggerated tendon reflexes characterize most of the individuals after a spinal cord injury (SCI). We estimated seven parameters from the pendulum test and used them to compare with the Ashworth modified scale of spasticity grades in three populations (retrospective study) to assess their spasticity. Three ASIA B SCI patients who exercised on a stationary FES bicycle formed group F, six ASIA B SCI patients who received only conventional therapy were in the group C, and six healthy individuals constituted the group H. The parameters from the pendulum test were used to form a single measure, termed the PT score, for each subject. The pendulum test parameters show differences between the F and C groups, but not between the F and H groups, however, statistical significance was limited due to the small study size. Results show a small deviation from the mean for all parameters in the F group and substantial deviations from the mean for the parameters in the C group. PT scores show significant differences between the F and C groups and the C and H groups and no differences between the F and C groups. The correlation between the PT score and Ashworth score was 0.88.

  3. Demographic stochasticity in small remnant populations of the declining distylous plant Primula veris

    USGS Publications Warehouse

    Kery, M.; Matthies, D.; Schmid, B.

    2003-01-01

    We studied ecological consequences of distyly for the declining perennial plant Primula veris in the Swiss Jura. Distyly favours cross-fertilization and avoids inbreeding, but may lead to pollen limitation and reduced reproduction if morph frequencies deviate from 50 %. Disassortative mating is promoted by the reciprocal position of stigmas and anthers in the two morphs (pin and thrum) and by intramorph incompatibility and should result in equal frequencies of morphs at equilibrium. However, deviations could arise because of demographic stochasticity, the lower intra-morph incompatibility of the pin morph, and niche differentiation between morphs. Demographic stochasticity should result in symmetric deviations from an even morph frequency among populations and in increased deviations with decreasing population size. If crosses between pins occurred, these would only generate pins, and this could result in a pin-bias of morph frequencies in general and in small populations in particular. If the morphs have different niches, morph frequencies should be related to environmental factors, morphs might be spatially segregated, and morphological differences between morphs would be expected. We tested these hypotheses in the declining distylous P. veris. We studied morph frequencies in relation to environmental conditions and population size, spatial segregation in field populations, morphological differences between morphs, and growth responses to nutrient addition. Morph frequencies in 76 populations with 1 - 80000 flowering plants fluctuated symmetrically about 50 %. Deviations from 50 % were much larger in small populations, and sixof the smallest populations had lost one morph altogether. In contrast, morph frequencies were neither related to population size nor to 17 measures of environmental conditions. We found no spatial segregation or morphological differences in the field or in the common garden. The results suggest that demographic stochasticity caused deviations of the morph ratiofrom unity in small populations. Demographic stochasticity was probably caused by the random elimination of plants during the fragmentation of formerly large continuous populations. Biased morph frequencies may be one of the reasons for the strongly reduced reproduction in small populations of P. veris.

  4. How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?

    NASA Astrophysics Data System (ADS)

    Samadi, M.; Abbassi, S.; Lovelace, R. V. E.

    2017-09-01

    This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.

  5. Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Nemcik, Jan; Ma, Shuqi

    2013-12-01

    Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re > 32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.

  6. Effectiveness of various innovative learning methods in health science classrooms: a meta-analysis.

    PubMed

    Kalaian, Sema A; Kasim, Rafa M

    2017-12-01

    This study reports the results of a meta-analysis of the available literature on the effectiveness of various forms of innovative small-group learning methods on student achievement in undergraduate college health science classrooms. The results of the analysis revealed that most of the primary studies supported the effectiveness of the small-group learning methods in improving students' academic achievement with an overall weighted average effect-size of 0.59 in standard deviation units favoring small-group learning methods. The subgroup analysis showed that the various forms of innovative and reform-based small-group learning interventions appeared to be significantly more effective for students in higher levels of college classes (sophomore, junior, and senior levels), students in other countries (non-U.S.) worldwide, students in groups of four or less, and students who choose their own group. The random-effects meta-regression results revealed that the effect sizes were influenced significantly by the instructional duration of the primary studies. This means that studies with longer hours of instruction yielded higher effect sizes and on average every 1 h increase in instruction, the predicted increase in effect size was 0.009 standard deviation units, which is considered as a small effect. These results may help health science and nursing educators by providing guidance in identifying the conditions under which various forms of innovative small-group learning pedagogies are collectively more effective than the traditional lecture-based teaching instruction.

  7. On the origins of logarithmic number-to-position mapping.

    PubMed

    Dotan, Dror; Dehaene, Stanislas

    2016-11-01

    The number-to-position task, in which children and adults are asked to place numbers on a spatial number line, has become a classic measure of number comprehension. We present a detailed experimental and theoretical dissection of the processing stages that underlie this task. We used a continuous finger-tracking technique, which provides detailed information about the time course of processing stages. When adults map the position of 2-digit numbers onto a line, their final mapping is essentially linear, but intermediate finger location show a transient logarithmic mapping. We identify the origins of this log effect: Small numbers are processed faster than large numbers, so the finger deviates toward the target position earlier for small numbers than for large numbers. When the trajectories are aligned on the finger deviation onset, the log effect disappears. The small-number advantage and the log effect are enhanced in dual-task setting and are further enhanced when the delay between the 2 tasks is shortened, suggesting that these effects originate from a central stage of quantification and decision making. We also report cases of logarithmic mapping-by children and by a brain-injured individual-which cannot be explained by faster responding to small numbers. We show that these findings are captured by an ideal-observer model of the number-to-position mapping task, comprising 3 distinct stages: a quantification stage, whose duration is influenced by both exact and approximate representations of numerical quantity; a Bayesian accumulation-of-evidence stage, leading to a decision about the target location; and a pointing stage. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Deployment and evaluation of a dual-sensor autofocusing method for on-machine measurement of patterns of small holes on freeform surfaces.

    PubMed

    Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan

    2014-04-01

    This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.

  9. Data on crystal organization in the structure of the Fab fragment from the NIST reference antibody, RM 8671.

    PubMed

    Gallagher, D T; Karageorgos, I; Hudgens, J W; Galvin, C V

    2018-02-01

    The reported data describe the crystallization, crystal packing, structure determination and twinning of the unliganded Fab (antigen-binding fragment) from the NISTmAb (standard reference material 8671). The raw atomic coordinates are available as Protein Data Bank structure 5K8A and biological aspects are described in the article, (Karageorgos et al., 2017) [1]. Crystal data show that the packing is unique, and show the basis for the crystal's twinned growth. Twinning is a common and often serious problem in protein structure determination by x-ray crystallography [2]. In the present case the twinning is due to a small deviation (about 0.3 nm) from 4-fold symmetry in the primary intermolecular interface. The deviation produces pseudosymmetry, generating slightly different conformations of the protein, and alternating strong and weak forms of key packing interfaces throughout the lattice.

  10. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also indicating the dosimetric differences are small when a field is delivered at different gantry angles. Utilizing the online beam delivery records, the gantry angle dependencies of the PBS beam delivery were assessed and quantified. The study confirms the variations of the physical properties to be sufficiently small within the clinical tolerances without taking into account the gantry angle variation.

  11. A neurophysiological explanation for biases in visual localization.

    PubMed

    Moreland, James C; Boynton, Geoffrey M

    2017-02-01

    Observers show small but systematic deviations from equal weighting of all elements when asked to localize the center of an array of dots. Counter-intuitively, with small numbers of dots drawn from a Gaussian distribution, this bias results in subjects overweighting the influence of outlier dots - inconsistent with traditional statistical estimators of central tendency. Here we show that this apparent statistical anomaly can be explained by the observation that outlier dots also lie in regions of lower dot density. Using a standard model of V1 processing, which includes spatial integration followed by a compressive static nonlinearity, we can successfully predict the finding that dots in less dense regions of an array have a relatively greater influence on the perceived center.

  12. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments.

    PubMed

    Tyler, Madelaine K

    2016-01-08

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5-30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ± 2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ± 15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ± 3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI.

  13. Polarization correlation study of the electron-impact excitation of neon and argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M.A.; McConkey, J.W.

    1986-08-11

    The recent development of a circular polarization analyzer for the vacuum ultraviolet spectral region has enabled a Stokes parameter analysis to be carried out for the excitation of neon and argon by 80-eV incident electrons. The results show that the transfer of angular momentum to the atom is positive and is in fact surprisingly ''heliumlike.'' Small deviations from total coherence were observed and are discussed.

  14. Evaluation of Small-Sized Platinum Resistance Thermometers with ITS-90 Characteristics

    NASA Astrophysics Data System (ADS)

    Yamazawa, K.; Anso, K.; Widiatmo, J. V.; Tamba, J.; Arai, M.

    2011-12-01

    Many platinum resistance thermometers (PRTs) are applied for high precision temperature measurements in industry. Most of the applications use PRTs that follow the industrial standard of PRTs, IEC 60751. However, recently, some applications, such as measurements of the temperature distribution within equipments, require a more precise temperature scale at the 0.01 °C level. In this article the evaluation of remarkably small-sized PRTs that have temperature-resistance characteristics very close to that of standard PRTs of the International Temperature Scale of 1990 (ITS-90) is reported. Two types of the sensing element were tested, one is 1.2 mm in diameter and 10 mm long, the other is 0.8 mm and 8 mm. The resistance of the sensor is 100 Ω at the triple-point-of-water temperature. The resistance ratio at the Ga melting-point temperature of the sensing elements exceeds 1.11807. To verify the closeness of the temperature-resistance characteristics, comparison measurements up to 157 °C were employed. A pressure-controlled water heat-pipe furnace was used for the comparison measurement. Characteristics of 19 thermometers with these small-sized sensing elements were evaluated. The deviation from the temperature measured using a standard PRT used as a reference thermometer in the comparison was remarkably small, when we apply the same interpolating function for the ITS-90 sub-range to these small thermometers. Results including the stability of the PRTs and the uncertainty evaluation of the comparison measurements, and the comparison results showing the small deviation from the ITS-90 temperature-resistance characteristics are reported. The development of such a PRT might be a good solution for applications such as temperature measurements of small objects or temperature distribution measurements that need the ITS-90 temperature scale.

  15. Analysis of the impacts of horizontal translation and scaling on wavefront approximation coefficients with rectangular pupils for Chebyshev and Legendre polynomials.

    PubMed

    Sun, Wenqing; Chen, Lei; Tuya, Wulan; He, Yong; Zhu, Rihong

    2013-12-01

    Chebyshev and Legendre polynomials are frequently used in rectangular pupils for wavefront approximation. Ideally, the dataset completely fits with the polynomial basis, which provides the full-pupil approximation coefficients and the corresponding geometric aberrations. However, if there are horizontal translation and scaling, the terms in the original polynomials will become the linear combinations of the coefficients of the other terms. This paper introduces analytical expressions for two typical situations after translation and scaling. With a small translation, first-order Taylor expansion could be used to simplify the computation. Several representative terms could be selected as inputs to compute the coefficient changes before and after translation and scaling. Results show that the outcomes of the analytical solutions and the approximated values under discrete sampling are consistent. With the computation of a group of randomly generated coefficients, we contrasted the changes under different translation and scaling conditions. The larger ratios correlate the larger deviation from the approximated values to the original ones. Finally, we analyzed the peak-to-valley (PV) and root mean square (RMS) deviations from the uses of the first-order approximation and the direct expansion under different translation values. The results show that when the translation is less than 4%, the most deviated 5th term in the first-order 1D-Legendre expansion has a PV deviation less than 7% and an RMS deviation less than 2%. The analytical expressions and the computed results under discrete sampling given in this paper for the multiple typical function basis during translation and scaling in the rectangular areas could be applied in wavefront approximation and analysis.

  16. Radar sea reflection for low-e targets

    NASA Astrophysics Data System (ADS)

    Chow, Winston C.; Groves, Gordon W.

    1998-09-01

    Modeling radar signal reflection from a wavy sea surface uses a realistic characteristic of the large surface features and parameterizes the effect of the small roughness elements. Representation of the reflection coefficient at each point of the sea surface as a function of the Specular Deviation Angle is, to our knowledge, a novel approach. The objective is to achieve enough simplification and retain enough fidelity to obtain a practical multipath model. The 'specular deviation angle' as used in this investigation is defined and explained. Being a function of the sea elevations, which are stochastic in nature, this quantity is also random and has a probability density function. This density function depends on the relative geometry of the antenna and target positions, and together with the beam- broadening effect of the small surface ripples determined the reflectivity of the sea surface at each point. The probability density function of the specular deviation angle is derived. The distribution of the specular deviation angel as function of position on the mean sea surface is described.

  17. Spacetime and orbits of bumpy black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeland, Sarah J.; Hughes, Scott A.

    2010-01-15

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation ismore » zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.« less

  18. Single-stage surgery for symptomatic small-angle strabismus under topical anaesthesia.

    PubMed

    Zou, Leilei; Liu, Rui; Liu, Hong; Huang, Liwen; Liu, Yan; Wang, Aihou

    2014-04-01

    To report outcomes of single-stage surgery under topical anaesthesia for the treatment of small-angle strabismus. Case series. Thirteen patients, 7 males and 6 females, with a median age of 32 years (range, 20-59 years) were included. Patients with symptomatic small-angle strabismus with stable deviations of no more than 20 prism diopters (PD) in horizontal and 10 PD in vertical were consecutively recruited from the Eye and ENT Hospital of Fudan University between January 2010 and April 2012. Single-stage surgery was performed under topical anaesthesia. Outcome measures were PD, Amblyopia and Strabismus Questionnaire (ASQE) scores, and subjective reduction of symptoms. The median duration of symptoms was 40 months (range, 6-96 months). Nine patients had horizontal deviations, 3 had vertical deviations, and 1 had an exodeviation combined with a vertical deviation. All surgeries were completed without complications, and no patients experienced significant discomfort. All patients reported elimination of symptoms on postoperative day 1. Two patients required a second procedure at 1 week because of a return of symptoms. At 6-month follow-up, no patient reported recurrence of symptoms. The overall ASQE score improved from 70 preoperatively to 96 postoperatively (p = 0.001). These results suggest single-stage surgery under topical anaesthesia is an effective treatment for small-angle strabismus. A large, randomized, prospective study to confirm these findings is warranted. © 2013 Canadian Ophthalmological Society Published by Canadian Ophthalmological Society All rights reserved.

  19. Resting-State Oscillatory Activity in Children Born Small for Gestational Age: An MEG Study

    PubMed Central

    Boersma, Maria; de Bie, Henrica M. A.; Oostrom, Kim J.; van Dijk, Bob W.; Hillebrand, Arjan; van Wijk, Bernadette C. M.; Delemarre-van de Waal, Henriëtte A.; Stam, Cornelis J.

    2013-01-01

    Growth restriction in utero during a period that is critical for normal growth of the brain, has previously been associated with deviations in cognitive abilities and brain anatomical and functional changes. We measured magnetoencephalography (MEG) in 4- to 7-year-old children to test if children born small for gestational age (SGA) show deviations in resting-state brain oscillatory activity. Children born SGA with postnatally spontaneous catch-up growth [SGA+; six boys, seven girls; mean age 6.3 year (SD = 0.9)] and children born appropriate for gestational age [AGA; seven boys, three girls; mean age 6.0 year (SD = 1.2)] participated in a resting-state MEG study. We calculated absolute and relative power spectra and used non-parametric statistics to test for group differences. SGA+ and AGA born children showed no significant differences in absolute and relative power except for reduced absolute gamma band power in SGA children. At the time of MEG investigation, SGA+ children showed significantly lower head circumference (HC) and a trend toward lower IQ, however there was no association of HC or IQ with absolute or relative power. Except for reduced absolute gamma band power, our findings suggest normal brain activity patterns at school age in a group of children born SGA in which spontaneous catch-up growth of bodily length after birth occurred. Although previous findings suggest that being born SGA alters brain oscillatory activity early in neonatal life, we show that these neonatal alterations do not persist at early school age when spontaneous postnatal catch-up growth occurs after birth. PMID:24068993

  20. Putative golden proportions as predictors of facial esthetics in adolescents.

    PubMed

    Kiekens, Rosemie M A; Kuijpers-Jagtman, Anne Marie; van 't Hof, Martin A; van 't Hof, Bep E; Maltha, Jaap C

    2008-10-01

    In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. Seventy-six adult laypeople evaluated sets of photographs of 64 adolescents on a visual analog scale (VAS) from 0 to 100. The facial esthetic value of each subject was calculated as a mean VAS score. Three observers recorded the position of 13 facial landmarks included in 19 putative golden proportions, based on the golden proportions as defined by Ricketts. The proportions and each proportion's deviation from the golden target (1.618) were calculated. This deviation was then related to the VAS scores. Only 4 of the 19 proportions had a significant negative correlation with the VAS scores, indicating that beautiful faces showed less deviation from the golden standard than less beautiful faces. Together, these variables explained only 16% of the variance. Few golden proportions have a significant relationship with facial esthetics in adolescents. The explained variance of these variables is too small to be of clinical importance.

  1. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments

    PubMed Central

    2016-01-01

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5–30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ±2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ±15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ±3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI. PACS numbers: 87.55.km, 87.56.Fc PMID:26894347

  2. General model for the pointing error analysis of Risley-prism system based on ray direction deviation in light refraction

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen; Bai, Qing

    2016-09-01

    The Risley-prism-based light beam steering apparatus delivers superior pointing accuracy and it is used in imaging LIDAR and imaging microscopes. A general model for pointing error analysis of the Risley prisms is proposed in this paper, based on ray direction deviation in light refraction. This model captures incident beam deviation, assembly deflections, and prism rotational error. We derive the transmission matrixes of the model firstly. Then, the independent and cumulative effects of different errors are analyzed through this model. Accuracy study of the model shows that the prediction deviation of pointing error for different error is less than 4.1×10-5° when the error amplitude is 0.1°. Detailed analyses of errors indicate that different error sources affect the pointing accuracy to varying degree, and the major error source is the incident beam deviation. The prism tilting has a relative big effect on the pointing accuracy when prism tilts in the principal section. The cumulative effect analyses of multiple errors represent that the pointing error can be reduced by tuning the bearing tilting in the same direction. The cumulative effect of rotational error is relative big when the difference of these two prism rotational angles equals 0 or π, while it is relative small when the difference equals π/2. The novelty of these results suggests that our analysis can help to uncover the error distribution and aid in measurement calibration of Risley-prism systems.

  3. Spatial uniformity inspection apparatus for solar cells using a projection display.

    PubMed

    Yoo, Jae-Keun; Kim, Seung Kwan; Lee, Dong-Hoon; Park, Seung-Nam

    2012-07-10

    We demonstrate a measurement apparatus to inspect spatial uniformity of quantum efficiency of solar cells using a beam projector. Deviation of irradiance from the used beam projector over the area of 1.5×0.8 m on the cell plane was flattened within ±2.6% through gray scale adjustment, which was originally about 200%. Scanning a small square image with an area of 3×3 mm over a square-shaped photovoltaic cell with an area of 15.6×15.6 cm, we could identify the locations according to efficiency level and showed that the cell had quantum efficiency deviation of more than 10%. Utilizing the advantageous feature of a projection display, we also demonstrated that this apparatus can inspect the spatial uniformity of solar modules and panels consisting of multiple solar cells.

  4. Implicit Incompressible SPH.

    PubMed

    Ihmsen, Markus; Cornelis, Jens; Solenthaler, Barbara; Horvath, Christopher; Teschner, Matthias

    2013-07-25

    We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01% can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.

  5. Implicit incompressible SPH.

    PubMed

    Ihmsen, Markus; Cornelis, Jens; Solenthaler, Barbara; Horvath, Christopher; Teschner, Matthias

    2014-03-01

    We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01 percent can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.

  6. Comparison of Flattening Filter (FF) and Flattening-Filter-Free (FFF) 6 MV photon beam characteristics for small field dosimetry using EGSnrc Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Sureka, C. S.

    2017-06-01

    The present study is focused to compare the characteristics of Varian Clinac 600 C/D flattened and unflattened 6 MV photon beams for small field dosimetry using EGSnrc Monte Carlo Simulation since the small field dosimetry is considered to be the most crucial and provoking task in the field of radiation dosimetry. A 6 MV photon beam of a Varian Clinac 600 C/D medical linear accelerator operates with Flattening Filter (FF) and Flattening-Filter-Free (FFF) mode for small field dosimetry were performed using EGSnrc Monte Carlo user codes (BEAMnrc and DOSXYZnrc) in order to calculate the beam characteristics using Educated-trial and error method. These includes: Percentage depth dose, lateral beam profile, dose rate delivery, photon energy spectra, photon beam uniformity, out-of-field dose, surface dose, penumbral dose and output factor for small field dosimetry (0.5×0.5 cm2 to 4×4 cm2) and are compared with magna-field sizes (5×5 cm2 to 40×40 cm2) at various depths. The results obtained showed that the optimized beam energy and Full-width-half maximum value for small field dosimetry and magna-field dosimetry was found to be 5.7 MeV and 0.13 cm for both FF and FFF beams. The depth of dose maxima for small field size deviates minimally for both FF and FFF beams similar to magna-fields. The depths greater than dmax depicts a steeper dose fall off in the exponential region for FFF beams comparing FF beams where its deviations gets increased with the increase in field size. The shape of the lateral beam profiles of FF and FFF beams varies remains similar for the small field sizes less than 4×4 cm2 whereas it varies in the case of magna-fields. Dose rate delivery for FFF beams shows an eminent increase with a two-fold factor for both small field dosimetry and magna-field sizes. The surface dose measurements of FFF beams for small field size were found to be higher whereas it gets lower for magna-fields than FF beam. The amount of out-of-field dose reduction gets increased with the increase in field size. It is also observed that the photon energy spectrum gets increased with the increase in field size for FFF beam mode. Finally, the output factors for FFF beams were relatively quite low for small field sizes than FF beams whereas it gets higher for magna-field sizes. From this study, it is concluded that the FFF beams depicted minimal deviations in the treatment field region irrespective to the normal tissue region for small field dosimetry compared to FF beams. The more prominent result observed from the study is that the shape of the beam profile remains similar for FF and FFF beams in the case of smaller field size that leads to more accurate treatment planning in the case of IMRT (Image-Guided Radiation Therapy), IGAT (Image-Guided Adaptive Radiation Therapy), SBRT (Stereotactic Body Radiation Therapy), SRS (Stereotactic Radio Surgery), and Tomotherapy techniques where homogeneous dose is not necessary. On the whole, the determination of dosimetric beam characteristics of Varian linac machine using Monte Carlo simulation provides accurate dose calculation as the clinical golden data.

  7. A Visual Model for the Variance and Standard Deviation

    ERIC Educational Resources Information Center

    Orris, J. B.

    2011-01-01

    This paper shows how the variance and standard deviation can be represented graphically by looking at each squared deviation as a graphical object--in particular, as a square. A series of displays show how the standard deviation is the size of the average square.

  8. Estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean.

    PubMed

    Schillaci, Michael A; Schillaci, Mario E

    2009-02-01

    The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential. We present a method for estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean using small (n<10) or very small (n < or = 5) sample sizes. This method can be used by researchers to determine post hoc the probability that their sample is a meaningful approximation of the population parameter. We tested the method using a large craniometric data set commonly used by researchers in the field. Given our results, we suggest that sample estimates of the population mean can be reasonable and meaningful even when based on small, and perhaps even very small, sample sizes.

  9. Development of a Small Area Sniffer

    NASA Technical Reports Server (NTRS)

    Meade, Laurie A.

    1995-01-01

    The aim of this project is to develop and implement a sniffer that is capable of measuring the mass flow rate of air through a small area of pinholes whose diameters are on the magnitude of thousandths of an inch. The sniffer is used to scan a strip of a leading edge panel, which is being used in a hybrid laminar flow control experiment, in order to survey the variations in the amount of air that passes through the porous surface at different locations. Spanwise scans are taken at different chord locations by increasing the pressure in a control volume that is connected to the sniffer head, and recording the drop in pressure as the air is allowed to flow through the tiny holes. This information is used to obtain the mass flow through the structure. More importantly, the deviations from the mean flow rate are found and used to determine whether there are any significant variations in the flow rate from one area to the next. The preliminary results show little deviation in the spanwise direction. These results are important when dealing with the location and amount of suction that will be applied to the leading edge in the active laminar flow control experiment.

  10. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  11. Structure-Activity Relationships of Small Molecule Autotaxin Inhibitors with a Discrete Binding Mode.

    PubMed

    Miller, Lisa M; Keune, Willem-Jan; Castagna, Diana; Young, Louise C; Duffy, Emma L; Potjewyd, Frances; Salgado-Polo, Fernando; Engel García, Paloma; Semaan, Dima; Pritchard, John M; Perrakis, Anastassis; Macdonald, Simon J F; Jamieson, Craig; Watson, Allan J B

    2017-01-26

    Autotaxin (ATX) is a secreted enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) to the bioactive lysophosphatidic acid (LPA) and choline. The ATX-LPA signaling pathway is implicated in cell survival, migration, and proliferation; thus, the inhibition of ATX is a recognized therapeutic target for a number of diseases including fibrotic diseases, cancer, and inflammation, among others. Many of the developed synthetic inhibitors for ATX have resembled the lipid chemotype of the native ligand; however, a small number of inhibitors have been described that deviate from this common scaffold. Herein, we report the structure-activity relationships (SAR) of a previously reported small molecule ATX inhibitor. We show through enzyme kinetics studies that analogues of this chemotype are noncompetitive inhibitors, and by using a crystal structure with ATX we confirm the discrete binding mode.

  12. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    PubMed

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  13. Effects of refraction by means flow velocity gradients on the standing wave pattern in three-dimensional, rectangular waveguides

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.

    1979-01-01

    The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.

  14. High storage capacity in the Hopfield model with auto-interactions—stability analysis

    NASA Astrophysics Data System (ADS)

    Rocchi, Jacopo; Saad, David; Tantari, Daniele

    2017-11-01

    Recent studies point to the potential storage of a large number of patterns in the celebrated Hopfield associative memory model, well beyond the limits obtained previously. We investigate the properties of new fixed points to discover that they exhibit instabilities for small perturbations and are therefore of limited value as associative memories. Moreover, a large deviations approach also shows that errors introduced to the original patterns induce additional errors and increased corruption with respect to the stored patterns.

  15. Brain mass estimation by head circumference and body mass methods in neonatal glycaemic modelling and control.

    PubMed

    Gunn, Cameron Allan; Dickson, Jennifer L; Pretty, Christopher G; Alsweiler, Jane M; Lynn, Adrienne; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-07-01

    Hyperglycaemia is a common complication of stress and prematurity in extremely low-birth-weight infants. Model-based insulin therapy protocols have the ability to safely improve glycaemic control for this group. Estimating non-insulin-mediated brain glucose uptake by the central nervous system in these models is typically done using population-based body weight models, which may not be ideal. A head circumference-based model that separately treats small-for-gestational-age (SGA) and appropriate-for-gestational-age (AGA) infants is compared to a body weight model in a retrospective analysis of 48 patients with a median birth weight of 750g and median gestational age of 25 weeks. Estimated brain mass, model-based insulin sensitivity (SI) profiles, and projected glycaemic control outcomes are investigated. SGA infants (5) are also analyzed as a separate cohort. Across the entire cohort, estimated brain mass deviated by a median 10% between models, with a per-patient median difference in SI of 3.5%. For the SGA group, brain mass deviation was 42%, and per-patient SI deviation 13.7%. In virtual trials, 87-93% of recommended insulin rates were equal or slightly reduced (Δ<0.16mU/h) under the head circumference method, while glycaemic control outcomes showed little change. The results suggest that body weight methods are not as accurate as head circumference methods. Head circumference-based estimates may offer improved modelling accuracy and a small reduction in insulin administration, particularly for SGA infants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Assessment of the generalization of learned image reconstruction and the potential for transfer learning.

    PubMed

    Knoll, Florian; Hammernik, Kerstin; Kobler, Erich; Pock, Thomas; Recht, Michael P; Sodickson, Daniel K

    2018-05-17

    Although deep learning has shown great promise for MR image reconstruction, an open question regarding the success of this approach is the robustness in the case of deviations between training and test data. The goal of this study is to assess the influence of image contrast, SNR, and image content on the generalization of learned image reconstruction, and to demonstrate the potential for transfer learning. Reconstructions were trained from undersampled data using data sets with varying SNR, sampling pattern, image contrast, and synthetic data generated from a public image database. The performance of the trained reconstructions was evaluated on 10 in vivo patient knee MRI acquisitions from 2 different pulse sequences that were not used during training. Transfer learning was evaluated by fine-tuning baseline trainings from synthetic data with a small subset of in vivo MR training data. Deviations in SNR between training and testing led to substantial decreases in reconstruction image quality, whereas image contrast was less relevant. Trainings from heterogeneous training data generalized well toward the test data with a range of acquisition parameters. Trainings from synthetic, non-MR image data showed residual aliasing artifacts, which could be removed by transfer learning-inspired fine-tuning. This study presents insights into the generalization ability of learned image reconstruction with respect to deviations in the acquisition settings between training and testing. It also provides an outlook for the potential of transfer learning to fine-tune trainings to a particular target application using only a small number of training cases. © 2018 International Society for Magnetic Resonance in Medicine.

  17. MO-F-CAMPUS-T-03: Data Driven Approaches for Determination of Treatment Table Tolerance Values for Record and Verification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N; DiCostanzo, D; Fullenkamp, M

    2015-06-15

    Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations weremore » computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.« less

  18. A Measuring System for Well Logging Attitude and a Method of Sensor Calibration

    PubMed Central

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-01-01

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028

  19. A measuring system for well logging attitude and a method of sensor calibration.

    PubMed

    Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

    2014-05-23

    This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

  20. Measurement of erythrocyte deformability by two laser diffraction methods.

    PubMed

    Wang, X; Zhao, H; Zhuang, F Y; Stoltz, J F

    1999-01-01

    The aim of this work is to study the deformability of red blood cells (RBC) by two laser diffraction methods: the Laser-assisted Optical Rotational Cell Analyser (LORCA, Mechatronics, Amsterdam, Netherlands) and a Shear Stress Diffractometer (RHEODYN SSD, Myrenne, Roetgen, Germany). Experiments were carried out on 46 healthy human subjects. The elongation index EI of normal and hardened RBCs (obtained by heating blood at 49 degrees C or by incubating RBCs in solutions of diamide) was measured. The results showed that the standard deviations of the experimental data for normal RBCs were relatively small, especially at high shear stresses (more than 3.0 Pa), but higher than those reported before. Some correlations between the results given by the two instruments were also found. It should be noted that for hardened RBCs, the standard deviations of the measurements were important compared with the mean values in the two instruments.

  1. Segregation of liquid crystal mixtures in topological defects

    DOE PAGES

    Rahimi, Mohammad; Ramezani-Dakhel, Hadi; Zhang, Rui; ...

    2017-04-28

    The structure and physical properties of liquid crystal (LC) mixtures are a function of composition, and small changes can have pronounced effects on observables, such as phase-transition temperatures. Traditionally, LC mixtures have been assumed to be compositionally homogenous. The results of chemically detailed simulations presented here show that this is not the case; pronounced deviations of the local order from that observed in the bulk at defects and interfaces lead to significant compositional segregation effects. More specifically, two disclination lines are stabilized in this work by introducing into a nematic liquid crystal mixture a cylindrical body that exhibits perpendicular anchoring.more » Here, it is found that the local composition deviates considerably from that of the bulk at the interface with the cylinder and in the defects, thereby suggesting new assembly and synthetic strategies that may capitalize on the unusual molecular environment provided by liquid crystal mixtures.« less

  2. Assessment of Facial Golden Proportions among North Maharashtri-an Population

    PubMed Central

    Sunilkumar, L N; Jadhav, Kalpana S; Nazirkar, Girish; Singh, Shailendra; Nagmode, Pradnya S; Ali, Fareedi Mukram

    2013-01-01

    Background: Divine Proportion in Orthodontics and Prosthodontics has always been intriguing. This was applied to the North Maharashtrian population to evaluate the relationship between facial esthetics and the golden proportions. Materials & Methods: Facial proportions were assessed by examining photographs of sum total of 300 subjects of North Maharashtrian population. Young adults with a skeletal and dental Class 1 occlusion, competent lips, and balanced facial proportion were selected. Photographic prints were taken and manually parameters were plotted and analysis was done. Results: The measurements of anterior facial height showed proportionality with the total facial height. The values showed shorter lower anterior facial height and deviation of facial width parameters from the divine proportion indicating small mouth, nose, and narrow-set eyes with respect to the inter-temporal width. Conclusion: There is soft-tissue facial balance of North Maharashtrian population in comparison with the golden proportion. However, certain parameters show some deviation from the divine proportion.. How to cite this article: Sunilkumar L N, Jadhav K S, Nazirkar G, Singh S, Nagmode P S, Ali F M. Assessment of Facial Golden Proportions among North Maharashtrian Population. J Int Oral Health 2013; 5(3):48-54. PMID:24155602

  3. 75 FR 25844 - Class Deviation From FAR 52.219-7, Notice of Partial Small Business Set-Aside

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Small Business Set-Aside AGENCY: Defense Logistics Agency, DoD. ACTION: Notice. SUMMARY: This is to...) regarding partial small business set-asides for Defense Logistics Agency (DLA), Defense Energy Support Center (DESC) bulk fuels solicitations and resulting contract awards. DLA is requesting Department of...

  4. Critical re-appraisal of blood component quality after overnight hold of whole blood outside current room temperature limits.

    PubMed

    Bontekoe, I J; van der Meer, P F; de Korte, D

    2017-02-01

    According to European guidelines, the temperature of whole blood (WB) has to be maintained at 20-24°C until processing within 24 h, but in blood bank practice, WB is frequently held at temperatures between 18-25°C. We aimed to assess the impact of these small temperature deviations on the quality of the blood components. After rapid cooling, 7 WB units were held overnight at 18°C and 8 units at 25°C, reflecting worst case holding conditions, and separated into a red cell concentrate (RCC), plasma and buffy coat (BC). RCCs were filtered at test temperature and stored for 42 days at 2-6°C. BCs were processed to single-BC platelet concentrates (sPC) and stored up to Day 8 at 20-24°C. After overnight hold at 18°C, 2,3-DPG in WB decreased by 34 ± 9%, while at 25°C the decrease was 82 ± 6%. Accordingly, the 2,3-DPG levels in the RCCs in the 25°C group were significantly lower than in the 18°C group (2·2 ± 1·4 vs. 10·4 ± 2·9 μmol/g Hb). RCCs and sPCs in the 25°C group showed higher initial lactate levels and lower pH compared to the 18°C group, but these differences levelled off at the end of storage. RCCs showed small differences in ATP levels and haemolysis. Plasma in both groups showed comparable Factor VIII:C levels. The temperature of WB during overnight hold strongly affects initial 2,3-DPG levels of RCCs and supports the maintenance of temperature limits between 20 and 24°C. Other in vitro effects of the temperature deviations were small and of no practical relevance. © 2016 International Society of Blood Transfusion.

  5. Categorizing moving objects into film genres: the effect of animacy attribution, emotional response, and the deviation from non-fiction.

    PubMed

    Visch, Valentijn T; Tan, Ed S

    2009-02-01

    The reported study follows the footsteps of Heider, and Simmel (1944) [Heider, F., & Simmel, M. (1944). An experimental study of apparent behavior. American Journal of Psychology, 57, 243-249] and Michotte (1946/1963) [Michotte, A. (1963). The perception of causality (T.R. Miles & E. Miles, Trans.). London: Methuen (Original work published 1946)] who demonstrated the role of object movement in attributions of life-likeness to figures. It goes one step further in studying the categorization of film scenes as to genre as a function of object movements. In an animated film scene portraying a chase, movements of the chasing object were systematically varied as to parameters: velocity, efficiency, fluency, detail, and deformation. The object movements were categorized by viewers into genres: non-fiction, comedy, drama, and action. Besides this categorization, viewers rated their animacy attribution and emotional response. Results showed that non-expert viewers were consistent in categorizing the genres according to object movement parameters. The size of its deviation from the unmanipulated movement scene determined the assignment of any target scene to one of the fiction genres: small and moderate deviations resulted in categorization as drama and action, and large deviations as comedy. The results suggest that genre classification is achieved by, at least, three distinct cognitive processes: (a) animacy attribution, which influences the fiction versus non-fiction classification; (b) emotional responses, which influences the classification of a specific fiction genre; and (c) the amount of deviation from reality, at least with regard to movements.

  6. Determination of Small Animal Long Bone Properties Using Densitometry

    NASA Technical Reports Server (NTRS)

    Breit, Gregory A.; Goldberg, BethAnn K.; Whalen, Robert T.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Assessment of bone structural property changes due to loading regimens or pharmacological treatment typically requires destructive mechanical testing and sectioning. Our group has accurately and non-destructively estimated three dimensional cross-sectional areal properties (principal moments of inertia, Imax and Imin, and principal angle, Theta) of human cadaver long bones from pixel-by-pixel analysis of three non-coplanar densitometry scans. Because the scanner beam width is on the order of typical small animal diapbyseal diameters, applying this technique to high-resolution scans of rat long bones necessitates additional processing to minimize errors induced by beam smearing, such as dependence on sample orientation and overestimation of Imax and Imin. We hypothesized that these errors are correctable by digital image processing of the raw scan data. In all cases, four scans, using only the low energy data (Hologic QDR-1000W, small animal mode), are averaged to increase image signal-to-noise ratio. Raw scans are additionally processed by interpolation, deconvolution by a filter derived from scanner beam characteristics, and masking using a variable threshold based on image dynamic range. To assess accuracy, we scanned an aluminum step phantom at 12 orientations over a range of 180 deg about the longitudinal axis, in 15 deg increments. The phantom dimensions (2.5, 3.1, 3.8 mm x 4.4 mm; Imin/Imax: 0.33-0.74) were comparable to the dimensions of a rat femur which was also scanned. Cross-sectional properties were determined at 0.25 mm increments along the length of the phantom and femur. The table shows average error (+/- SD) from theory of Imax, Imin, and Theta) over the 12 orientations, calculated from raw and fully processed phantom images, as well as standard deviations about the mean for the femur scans. Processing of phantom scans increased agreement with theory, indicating improved accuracy. Smaller standard deviations with processing indicate increased precision and repeatability. Standard deviations for the femur are consistent with those of the phantom. We conclude that in conjunction with digital image enhancement, densitometry scans are suitable for non-destructive determination of areal properties of small animal bones of comparable size to our phantom, allowing prediction of Imax and Imin within 2.5% and Theta within a fraction of a degree. This method represents a considerable extension of current methods of analyzing bone tissue distribution in small animal bones.

  7. Introducing a Method for Calculating the Allocation of Attention in a Cognitive “Two-Armed Bandit” Procedure: Probability Matching Gives Way to Maximizing

    PubMed Central

    Heyman, Gene M.; Grisanzio, Katherine A.; Liang, Victor

    2016-01-01

    We tested whether principles that describe the allocation of overt behavior, as in choice experiments, also describe the allocation of cognition, as in attention experiments. Our procedure is a cognitive version of the “two-armed bandit choice procedure.” The two-armed bandit procedure has been of interest to psychologistsand economists because it tends to support patterns of responding that are suboptimal. Each of two alternatives provides rewards according to fixed probabilities. The optimal solution is to choose the alternative with the higher probability of reward on each trial. However, subjects often allocate responses so that the probability of a response approximates its probability of reward. Although it is this result which has attracted most interest, probability matching is not always observed. As a function of monetary incentives, practice, and individual differences, subjects tend to deviate from probability matching toward exclusive preference, as predicted by maximizing. In our version of the two-armed bandit procedure, the monitor briefly displayed two, small adjacent stimuli that predicted correct responses according to fixed probabilities, as in a two-armed bandit procedure. We show that in this setting, a simple linear equation describes the relationship between attention and correct responses, and that the equation’s solution is the allocation of attention between the two stimuli. The calculations showed that attention allocation varied as a function of the degree to which the stimuli predicted correct responses. Linear regression revealed a strong correlation (r = 0.99) between the predictiveness of a stimulus and the probability of attending to it. Nevertheless there were deviations from probability matching, and although small, they were systematic and statistically significant. As in choice studies, attention allocation deviated toward maximizing as a function of practice, feedback, and incentives. Our approach also predicts the frequency of correct guesses and the relationship between attention allocation and response latencies. The results were consistent with these two predictions, the assumptions of the equations used to calculate attention allocation, and recent studies which show that predictiveness and reward are important determinants of attention. PMID:27014109

  8. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the ``sorting all permutations'' method of selecting the most frequently occurring variables, we show that the results of a single 10-variable discriminant analysis are consistent with the ranking. We demonstrate that individually, the variables considered here have little ability to differentiate between flaring and flare-quiet populations, but with multivariable combinations, the populations may be distinguished.

  9. Scalar-tensor theories and modified gravity in the wake of GW170817

    NASA Astrophysics Data System (ADS)

    Langlois, David; Saito, Ryo; Yamauchi, Daisuke; Noui, Karim

    2018-03-01

    Theories of dark energy and modified gravity can be strongly constrained by astrophysical or cosmological observations, as illustrated by the recent observation of the gravitational wave event GW170817 and of its electromagnetic counterpart GRB 170817A, which showed that the speed of gravitational waves, cg , is the same as the speed of light, within deviations of order 10-15 . This observation implies severe restrictions on scalar-tensor theories, in particular theories whose action depends on second derivatives of a scalar field. Working in the very general framework of degenerate higher-order scalar-tensor (DHOST) theories, which encompass Horndeski and beyond Horndeski theories, we present the DHOST theories that satisfy cg=c . We then examine, for these theories, the screening mechanism that suppresses scalar interactions on small scales, namely the Vainshtein mechanism, and compute the corresponding gravitational laws for a nonrelativistic spherical body. We show that it can lead to a deviation from standard gravity inside matter, parametrized by three coefficients which satisfy a consistency relation and can be constrained by present and future astrophysical observations.

  10. Severity of Illness Scores May Misclassify Critically Ill Obese Patients.

    PubMed

    Deliberato, Rodrigo Octávio; Ko, Stephanie; Komorowski, Matthieu; Armengol de La Hoz, M A; Frushicheva, Maria P; Raffa, Jesse D; Johnson, Alistair E W; Celi, Leo Anthony; Stone, David J

    2018-03-01

    Severity of illness scores rest on the assumption that patients have normal physiologic values at baseline and that patients with similar severity of illness scores have the same degree of deviation from their usual state. Prior studies have reported differences in baseline physiology, including laboratory markers, between obese and normal weight individuals, but these differences have not been analyzed in the ICU. We compared deviation from baseline of pertinent ICU laboratory test results between obese and normal weight patients, adjusted for the severity of illness. Retrospective cohort study in a large ICU database. Tertiary teaching hospital. Obese and normal weight patients who had laboratory results documented between 3 days and 1 year prior to hospital admission. None. Seven hundred sixty-nine normal weight patients were compared with 1,258 obese patients. After adjusting for the severity of illness score, age, comorbidity index, baseline laboratory result, and ICU type, the following deviations were found to be statistically significant: WBC 0.80 (95% CI, 0.27-1.33) × 10/L; p = 0.003; log (blood urea nitrogen) 0.01 (95% CI, 0.00-0.02); p = 0.014; log (creatinine) 0.03 (95% CI, 0.02-0.05), p < 0.001; with all deviations higher in obese patients. A logistic regression analysis suggested that after adjusting for age and severity of illness at least one of these deviations had a statistically significant effect on hospital mortality (p = 0.009). Among patients with the same severity of illness score, we detected clinically small but significant deviations in WBC, creatinine, and blood urea nitrogen from baseline in obese compared with normal weight patients. These small deviations are likely to be increasingly important as bigger data are analyzed in increasingly precise ways. Recognition of the extent to which all critically ill patients may deviate from their own baseline may improve the objectivity, precision, and generalizability of ICU mortality prediction and severity adjustment models.

  11. Dark matter, proton decay and other phenomenological constraints in F-SU(5)

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.

    2011-07-01

    We study gravity mediated supersymmetry breaking in F-SU(5) and its low-energy supersymmetric phenomenology. The gaugino masses are not unified at the traditional grand unification scale, but we nonetheless have the same one-loop gaugino mass relation at the electroweak scale as minimal supergravity (mSUGRA). We introduce parameters testable at the colliders to measure the small second loop deviation from the mSUGRA gaugino mass relation at the electroweak scale. In the minimal SU(5) model with gravity mediated supersymmetry breaking, we show that the deviations from the mSUGRA gaugino mass relations are within 5%. However, in F-SU(5), we predict the deviations from the mSUGRA gaugino mass relations to be larger due to the presence of vector-like particles, which can be tested at the colliders. We determine the viable parameter space that satisfies all the latest experimental constraints and find it is consistent with the CDMS II experiment. Further, we compute the cross-sections of neutralino annihilations into gamma-rays and compare to the first published Fermi-LAT measurement. Finally, the corresponding range of proton lifetime predictions is calculated and found to be within reach of the future Hyper-Kamiokande and DUSEL experiments.

  12. On the definition of a Monte Carlo model for binary crystal growth.

    PubMed

    Los, J H; van Enckevort, W J P; Meekes, H; Vlieg, E

    2007-02-01

    We show that consistency of the transition probabilities in a lattice Monte Carlo (MC) model for binary crystal growth with the thermodynamic properties of a system does not guarantee the MC simulations near equilibrium to be in agreement with the thermodynamic equilibrium phase diagram for that system. The deviations remain small for systems with small bond energies, but they can increase significantly for systems with large melting entropy, typical for molecular systems. These deviations are attributed to the surface kinetics, which is responsible for a metastable zone below the liquidus line where no growth occurs, even in the absence of a 2D nucleation barrier. Here we propose an extension of the MC model that introduces a freedom of choice in the transition probabilities while staying within the thermodynamic constraints. This freedom can be used to eliminate the discrepancy between the MC simulations and the thermodynamic equilibrium phase diagram. Agreement is achieved for that choice of the transition probabilities yielding the fastest decrease of the free energy (i.e., largest growth rate) of the system at a temperature slightly below the equilibrium temperature. An analytical model is developed, which reproduces quite well the MC results, enabling a straightforward determination of the optimal set of transition probabilities. Application of both the MC and analytical model to conditions well away from equilibrium, giving rise to kinetic phase diagrams, shows that the effect of kinetics on segregation is even stronger than that predicted by previous models.

  13. Quantum shot noise in tunnel junctions

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Mottola, E.; Schoen, G.

    1983-01-01

    The current and voltage fluctuations in a normal tunnel junction are calculated from microscopic theory. The power spectrum can deviate from the familiar Johnson-Nyquist form when the self-capacitance of the junction is small, at low temperatures permitting experimental verification. The deviation reflects the discrete nature of the charge transfer across the junction and should be present in a wide class of similar systems.

  14. Deviations in expected price impact for small transaction volumes under fee restructuring

    NASA Astrophysics Data System (ADS)

    Harvey, M.; Hendricks, D.; Gebbie, T.; Wilcox, D.

    2017-04-01

    We report on the occurrence of an anomaly in the price impacts of small transaction volumes following a change in the fee structure of an electronic market. We first review evidence for the existence of a master curve for price impact on the Johannesburg Stock Exchange (JSE). On attempting to re-estimate a master curve after fee reductions, it is found that the price impact corresponding to smaller volume trades is greater than expected relative to prior estimates for a range of listed stocks. We show that a master curve for price impact can be found following rescaling by an appropriate liquidity proxy, providing a means for practitioners to approximate price impact curves without onerous processing of tick data.

  15. Interval singing links to phenotypic quality in a songbird

    PubMed Central

    2016-01-01

    Darwin was fascinated by melodic performances of insects, fish, birds, mammals, and men. He considered the ability to produce musical notes without direct use the most mysterious endowment of mankind. Bird song is attributed to sexual selection, but it remains unknown how the expected relationship between melodic performance and phenotypic quality arises. Melodies consist of sequences of notes, and both Pythagoras and music theorists in the Middle Ages found that their tonal frequencies form simple ratios that correspond to small-integer proportions derived from the harmonic series. Harmonics are acoustically predictable, and thus form the basis of the natural, just tuning system in music. Here I analyze the songs of the great tit (Parus major), a bird with a stereotyped song of typically two notes, and test the prediction that the deviations of the intervals from small-integer frequency ratios based on the harmonic series are related to the quality of the singer. I show that the birds with the smallest deviations from small-integer ratios possess the largest melanin-based black ventral tie, a signal that has been demonstrated to indicate social status and dominance, past exposure to parasites, and reproductive potential. The singing of notes with exact frequency relationships requires high levels of motor control and auditory sensory feedback. The finding provides a missing link between melodic precision and phenotypic quality of individuals, which is key for understanding the evolution of vocal melodic expression in animals, and elucidates pathways for the evolution of melodic expression in music. PMID:27791124

  16. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.

    PubMed

    Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th

    2010-07-01

    We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.

  17. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics

    PubMed Central

    Cotter, C. J.

    2017-01-01

    In Holm (Holm 2015 Proc. R. Soc. A 471, 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow. PMID:28989316

  18. Reliability-Based Life Assessment of Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Halford, Gary R.; Korovaichuk, Igor

    2004-01-01

    Onboard radioisotope power systems being developed and planned for NASA's deep-space missions require reliable design lifetimes of up to 14 yr. The structurally critical heater head of the high-efficiency Stirling power convertor has undergone extensive computational analysis of operating temperatures, stresses, and creep resistance of the thin-walled Inconel 718 bill of material. A preliminary assessment of the effect of uncertainties in the material behavior was also performed. Creep failure resistance of the thin-walled heater head could show variation due to small deviations in the manufactured thickness and in uncertainties in operating temperature and pressure. Durability prediction and reliability of the heater head are affected by these deviations from nominal design conditions. Therefore, it is important to include the effects of these uncertainties in predicting the probability of survival of the heater head under mission loads. Furthermore, it may be possible for the heater head to experience rare incidences of small temperature excursions of short duration. These rare incidences would affect the creep strain rate and, therefore, the life. This paper addresses the effects of such rare incidences on the reliability. In addition, the sensitivities of variables affecting the reliability are quantified, and guidelines developed to improve the reliability are outlined. Heater head reliability is being quantified with data from NASA Glenn Research Center's accelerated benchmark testing program.

  19. Increase in the Amplitude of Line-of-sight Velocities of the Small-scale Motions in a Solar Filament before Eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Daikichi; Isobe, Hiroaki; Otsuji, Kenichi

    We present a study on the evolution of the small-scale velocity field in a solar filament as it approaches the eruption. The observation was carried out by the Solar Dynamics Doppler Imager (SDDI) that was newly installed on the Solar Magnetic Activity Research Telescope at Hida Observatory. The SDDI obtains a narrowband full-disk image of the Sun at 73 channels from H α − 9.0 Å to H α + 9.0 Å, allowing us to study the line-of-sight (LOS) velocity of the filament before and during the eruption. The observed filament is a quiescent filament that erupted on 2016 Novembermore » 5. We derived the LOS velocity at each pixel in the filament using the Becker’s cloud model, and made the histograms of the LOS velocity at each time. The standard deviation of the LOS velocity distribution can be regarded as a measure for the amplitude of the small-scale motion in the filament. We found that the standard deviation on the previous day of the eruption was mostly constant around 2–3 km s{sup −1}, and it slightly increased to 3–4 km s{sup −1} on the day of the eruption. It shows a further increase, with a rate of 1.1 m s{sup −2}, about three hours before eruption, and another increase, with a rate of 2.8 m s{sup −2}, about an hour before eruption. From this result we suggest that the increase in the amplitude of the small-scale motions in a filament can be regarded as a precursor of the eruption.« less

  20. The average direct current offset values for small digital audio recorders in an acoustically consistent environment.

    PubMed

    Koenig, Bruce E; Lacey, Douglas S

    2014-07-01

    In this research project, nine small digital audio recorders were tested using five sets of 30-min recordings at all available recording modes, with consistent audio material, identical source and microphone locations, and identical acoustic environments. The averaged direct current (DC) offset values and standard deviations were measured for 30-sec and 1-, 2-, 3-, 6-, 10-, 15-, and 30-min segments. The research found an inverse association between segment lengths and the standard deviation values and that lengths beyond 30 min may not meaningfully reduce the standard deviation values. This research supports previous studies indicating that measured averaged DC offsets should only be used for exclusionary purposes in authenticity analyses and exhibit consistent values when the general acoustic environment and microphone/recorder configurations were held constant. Measured average DC offset values from exemplar recorders may not be directly comparable to those of submitted digital audio recordings without exactly duplicating the acoustic environment and microphone/recorder configurations. © 2014 American Academy of Forensic Sciences.

  1. Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravenni, Andrea; Verde, Licia; Cuesta, Antonio J., E-mail: andrea.ravenni@pd.infn.it, E-mail: liciaverde@icc.ub.edu, E-mail: ajcuesta@icc.ub.edu

    2016-08-01

    We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidencemore » for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.« less

  2. Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure

    NASA Astrophysics Data System (ADS)

    Ravenni, Andrea; Verde, Licia; Cuesta, Antonio J.

    2016-08-01

    We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.

  3. Development of a benchmark factor to detect wrinkles in bending parts

    NASA Astrophysics Data System (ADS)

    Engel, Bernd; Zehner, Bernd-Uwe; Mathes, Christian; Kuhnhen, Christopher

    2013-12-01

    The rotary draw bending process finds special use in the bending of parts with small bending radii. Due to the support of the forming zone during the bending process, semi-finished products with small wall thicknesses can be bent. One typical quality characteristic is the emergence of corrugations and wrinkles at the inside arc. Presently, the standard for the evaluation of wrinkles is insufficient. The wrinkles' distribution along the longitudinal axis of the tube results in an average value [1]. An evaluation of the wrinkles is not carried out. Due to the lack of an adequate basis of assessment, coordination problems between customers and suppliers occur. They result from an imprecision caused by the lack of quantitative evaluability of the geometric deviations at the inside arc. The benchmark factor for the inside arc presented in this article is an approach to holistically evaluate the geometric deviations at the inside arc. The classification of geometric deviations is carried out according to the area of the geometric characteristics and the respective flank angles.

  4. Co-existence of monomers and clusters in concentrated protein solutions

    NASA Astrophysics Data System (ADS)

    Chinchalikar, Akshay J.; Kumar, Sugam; Aswal, V. K.; Callow, P.; Wagh, A. G.

    2012-06-01

    Small-angle neutron scattering (SANS) measurements have been performed on concentrated protein solutions in order to study aggregation of lysozyme molecules at different pH. The variation of correlation peak in concentration (C) dependent SANS data shows deviation from C1/3 behavior suggesting the aggregation phenomena in these systems. The aggregates or clusters coexist along with monomers with cluster fraction proportional to protein concentration. The clustering is also favored at higher pH approaching isoelectric point (pI) because of decrease in charge on the protein molecule.

  5. Individuality That is Unheard of: Systematic Temporal Deviations in Scale Playing Leave an Inaudible Pianistic Fingerprint

    PubMed Central

    Van Vugt, Floris Tijmen; Jabusch, Hans-Christian; Altenmüller, Eckart

    2013-01-01

    Whatever we do, we do it in our own way, and we recognize master artists by small samples of their work. This study investigates individuality of temporal deviations in musical scales in pianists in the absence of deliberate expressive intention. Note-by-note timing deviations away from regularity form a remarkably consistent “pianistic fingerprint.” First, eight professional pianists played C-major scales in two sessions, separated by 15 min. Euclidian distances between deviation traces originating from different pianists were reliably larger than traces originating from the same pianist. As a result, a simple classifier that matched deviation traces by minimizing their distance was able to recognize each pianist with 100% accuracy. Furthermore, within each pianist, fingerprints produced by the same movements were more similar than fingerprints resulting in the same scale sound. This allowed us to conclude that the fingerprints are mostly neuromuscular rather than intentional or expressive in nature. However, human listeners were not able to distinguish the temporal fingerprints by ear. Next, 18 pianists played C-major scales on a normal or muted piano. Recognition rates ranged from 83 to 100%, further supporting the view that auditory feedback is not implicated in the creation of the temporal signature. Finally, 20 pianists were recognized 20 months later at above chance level, showing signature effects to be long lasting. Our results indicate that even non-expressive playing of scales reveals consistent, partially effector-unspecific, but inaudible inter-individual differences. We suggest that machine learning studies into individuality in performance will need to take into account unintentional but consistent variability below the perceptual threshold. PMID:23519688

  6. Electrostatic and Small-Signal Analysis of CMUTs With Circular and Square Anisotropic Plates.

    PubMed

    Funding la Cour, Mette; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-08-01

    Traditionally, capacitive micromachined ultrasonic transducers (CMUTs) are modeled using the isotropic plate equation, and this leads to deviations between analytical calculations and finite element modeling (FEM). In this paper, the deflection is calculated for both circular and square plates using the full anisotropic plate equation. It is shown that the anisotropic calculations match excellently with FEM, whereas an isotropic approach causes up to 10% deviations in deflection. For circular plates, an exact solution can be found. For square plates using the Galerkin method, and utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is <0.1%. The theory of multilayer plates is also applied to the CMUT. The deflection of a square plate was measured on fabricated CMUTs using a white light interferometer. Fitting the plate parameter for the anisotropic calculated deflection to the measurement, a deviation of 0.07% is seen. Electrostatic and small-signal dynamic analysis are performed using energy considerations including anisotropy. The stable position, effective spring constant, pullin distance, and pull-in voltage are found for both circular and square anisotropic plates, and the pressure dependence is included by comparison with the corresponding analysis for a parallel plate. Measurements on fabricated devices with both circular and square plates subjected to increasing bias voltage are performed, and it is observed that the models including anisotropic effects are within the uncertainty interval of the measurements. Finally, a lumped element small-signal model for both circular and square anisotropic plates is derived to describe the dynamics of the CMUT.

  7. Diet models with linear goal programming: impact of achievement functions.

    PubMed

    Gerdessen, J C; de Vries, J H M

    2015-11-01

    Diet models based on goal programming (GP) are valuable tools in designing diets that comply with nutritional, palatability and cost constraints. Results derived from GP models are usually very sensitive to the type of achievement function that is chosen.This paper aims to provide a methodological insight into several achievement functions. It describes the extended GP (EGP) achievement function, which enables the decision maker to use either a MinSum achievement function (which minimizes the sum of the unwanted deviations) or a MinMax achievement function (which minimizes the largest unwanted deviation), or a compromise between both. An additional advantage of EGP models is that from one set of data and weights multiple solutions can be obtained. We use small numerical examples to illustrate the 'mechanics' of achievement functions. Then, the EGP achievement function is demonstrated on a diet problem with 144 foods, 19 nutrients and several types of palatability constraints, in which the nutritional constraints are modeled with fuzzy sets. Choice of achievement function affects the results of diet models. MinSum achievement functions can give rise to solutions that are sensitive to weight changes, and that pile all unwanted deviations on a limited number of nutritional constraints. MinMax achievement functions spread the unwanted deviations as evenly as possible, but may create many (small) deviations. EGP comprises both types of achievement functions, as well as compromises between them. It can thus, from one data set, find a range of solutions with various properties.

  8. 48 CFR 1480.403 - Deviations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is a civilian serving in a position in a grade above GS-15 under the General Schedule or in a... market research; and (3) If appropriate, compete the purchase using an unrestricted small business set... small business suppliers through market research; and (3) If appropriate, compete the purchase using an...

  9. Offshell quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin; Horwitz, Lawrence P.

    2013-04-01

    In this paper, we develop the quantum field theory of off-shell electromagnetism, and use it to calculate the Møller scattering cross-section. This calculation leads to qualitative deviations from the usual scattering cross-sections, which are, however, small effects, but may be visible at small angles near the forward direction.

  10. SU-E-T-469: A Practical Approach for the Determination of Small Field Output Factors Using Published Monte Carlo Derived Correction Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderon, E; Siergiej, D

    2014-06-01

    Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detectormore » (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.« less

  11. Structural characterization of casein micelles: shape changes during film formation.

    PubMed

    Gebhardt, R; Vendrely, C; Kulozik, U

    2011-11-09

    The objective of this study was to determine the effect of size-fractionation by centrifugation on the film structure of casein micelles. Fractionated casein micelles in solution were asymmetrically distributed with a small distribution width as measured by dynamic light scattering. Films prepared from the size-fractionated samples showed a smooth surface in optical microscopy images and a homogeneous microstructure in atomic force micrographs. The nano- and microstructure of casein films was probed by micro-beam grazing incidence small angle x-ray scattering (μGISAXS). Compared to the solution measurements, the sizes determined in the film were larger and broadly distributed. The measured GISAXS patterns clearly deviate from those simulated for a sphere and suggest a deformation of the casein micelles in the film. © 2011 IOP Publishing Ltd

  12. Effect of hole geometry and Electric-Discharge Machining (EDM) on airflow rates through small diameter holes in turbine blade material

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Cochran, R. P.

    1980-01-01

    The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.

  13. Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments

    DTIC Science & Technology

    2015-08-01

    control RPD relative percent difference RSD relative standard deviation SERDP Strategic Environmental Research and Development Program SOPs...sediments from 2 stations, each at 4 PCB spike levels, for four individual congeners was 22 ± 6 % relative standard deviation ( RSD ). Also, comparison of... RSD (Table 3). However, larger congeners (e.g., congeners #153 and 180) whose approach to equilibrium is less certain, based on small fractions of

  14. Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, Flores: population affinities and pathological abnormalities.

    PubMed

    Jacob, T; Indriati, E; Soejono, R P; Hsü, K; Frayer, D W; Eckhardt, R B; Kuperavage, A J; Thorne, A; Henneberg, M

    2006-09-05

    Liang Bua 1 (LB1) exhibits marked craniofacial and postcranial asymmetries and other indicators of abnormal growth and development. Anomalies aside, 140 cranial features place LB1 within modern human ranges of variation, resembling Australomelanesian populations. Mandibular and dental features of LB1 and LB6/1 either show no substantial deviation from modern Homo sapiens or share features (receding chins and rotated premolars) with Rampasasa pygmies now living near Liang Bua Cave. We propose that LB1 is drawn from an earlier pygmy H. sapiens population but individually shows signs of a developmental abnormality, including microcephaly. Additional mandibular and postcranial remains from the site share small body size but not microcephaly.

  15. SU-E-J-32: Dosimetric Evaluation Based On Pre-Treatment Cone Beam CT for Spine Stereotactic Body Radiotherapy: Does Region of Interest Focus Matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelli, A; Xia, P

    2015-06-15

    Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, amore » large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.« less

  16. Monitor unit settings for intensity modulated beams delivered using a step-and-shoot approach.

    PubMed

    Sharpe, M B; Miller, B M; Yan, D; Wong, J W

    2000-12-01

    Two linear accelerators have been commissioned for delivering IMRT treatments using a step-and-shoot approach. To assess beam startup stability for 6 and 18 MV x-ray beams, dose delivered per monitor unit (MU), beam flatness, and beam symmetry were measured as a function of the total number of MU delivered at a clinical dose rate of 400 MU per minute. Relative to a 100 MU exposure, the dose delivered per MU by both linear accelerators was found to be within +/-2% for exposures larger than 4 MU. Beam flatness and symmetry also met accepted quality assurance standards for a minimum exposure of 4 MU. We have found that the performance of the two machines under study is well suited to the delivery of step-and-shoot IMRT. A system of dose calculation has also been commissioned for applying head scatter corrections to fields as small as 1x1 cm2. The accuracy and precision of the relative output calculations in water was validated for small fields and fields offset from the axis of collimator rotation. For both 6 and 18 MV x-ray beams, the dose per MU calculated in a water phantom agrees with measured data to within 1% on average, with a maximum deviation of 2.5%. The largest output factor discrepancies were seen when the actual radiation field size deviated from the set field size. The measured output in water can vary by as much 16% for 1x1 cm2 fields, when the measured field size deviates from the set field size by 2 mm. For a 1 mm deviation, this discrepancy was reduced to 8%. Steps should be taken to ensure collimator precision is tightly controlled when using such small fields. If this is not possible, very small fields should not contribute to a significant portion of the treatment, or uncertainties in the collimator position may effect the accuracy of the dose delivered.

  17. European Starlings Are Capable of Discriminating Subtle Size Asymmetries in Paired Stimuli

    ERIC Educational Resources Information Center

    Swaddle, John P.; Johnson, Charles W.

    2007-01-01

    Small deviations from bilateral symmetry (fluctuating asymmetries) are cues to fitness differences in some animals. Therefore, researchers have considered whether animals use these small asymmetries as visual cues to determine appropriate behavioral responses (e.g., mate preferences). However, there have been few systematic studies of animals'…

  18. Fiber moisture content measurements of lint and seed cotton by a small microwave instrument

    USDA-ARS?s Scientific Manuscript database

    The timely and accurate measurement of cotton fiber moisture content is important, as deviations in moisture fiber content can impact the fiber quality and processing of cotton fiber. The Mesdan Aqualab is a small, modular, microwave-based fiber moisture measurement instrument for samples with mode...

  19. Asymdystopia: The Threat of Small Biases in Evaluations of Education Interventions That Need to Be Powered to Detect Small Impacts. NCEE 2018-4002

    ERIC Educational Resources Information Center

    Deke, John; Wei, Thomas; Kautz, Tim

    2017-01-01

    Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…

  20. Non-specific filtering of beta-distributed data.

    PubMed

    Wang, Xinhui; Laird, Peter W; Hinoue, Toshinori; Groshen, Susan; Siegmund, Kimberly D

    2014-06-19

    Non-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias. We compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets. We found two different filter statistics that tended to prioritize features with different characteristics, each performed well for identifying clusters of cancer and non-cancer tissue, and identifying a cancer CpG island hypermethylation phenotype. Since cluster analysis is for discovery, we would suggest trying both filters on any new data sets, evaluating the overlap of features selected and clusters discovered.

  1. Design and test of voltage and current probes for EAST ICRF antenna impedance measurement

    NASA Astrophysics Data System (ADS)

    Jianhua, WANG; Gen, CHEN; Yanping, ZHAO; Yuzhou, MAO; Shuai, YUAN; Xinjun, ZHANG; Hua, YANG; Chengming, QIN; Yan, CHENG; Yuqing, YANG; Guillaume, URBANCZYK; Lunan, LIU; Jian, CHENG

    2018-04-01

    On the experimental advanced superconducting tokamak (EAST), a pair of voltage and current probes (V/I probes) is installed on the ion cyclotron radio frequency transmission lines to measure the antenna input impedance, and supplement the conventional measurement technique based on voltage probe arrays. The coupling coefficients of V/I probes are sensitive to their sizes and installing locations, thus they should be determined properly to match the measurement range of data acquisition card. The V/I probes are tested in a testing platform at low power with various artificial loads. The testing results show that the deviation of coupling resistance is small for loads R L > 2.5 Ω, while the resistance deviations appear large for loads R L < 1.5 Ω, which implies that the power loss cannot be neglected at high VSWR. As the factors that give rise to the deviation of coupling resistance calculation, the phase measurement error is the more significant factor leads to deleterious results rather than the amplitude measurement error. To exclude the possible ingredients that may lead to phase measurement error, the phase detector can be calibrated in steady L-mode scenario and then use the calibrated data for calculation under H-mode cases in EAST experiments.

  2. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  3. Use of botulinum toxin in small-angle heterotropia and decompensating heterophoria: a review of the literature.

    PubMed

    Ripley, L; Rowe, F J

    2007-01-01

    Botulinum toxin has been used extensively in strabismus management. However, less is published regarding its use in small-angled manifest deviations or decompensating heterophorias, where an alternative to surgery is required. The aim of this review is to look at the use and effectiveness of botulinum toxin in managing small-angled manifest deviations, both constant and intermittent, and decompensating heterophorias. These types of strabismus can prove difficult to manage, as the angle present is often too small for surgery to be advised, but it may still cause a cosmetic or symptom-producing problem. A search of the English speaking literature was undertaken using Medline facilities as well as a limited manual search of non-Medline journals and transactions. A brief overview is provided for mechanisms of action, complications and dose effects, and diagnostic and therapeutic uses of botulinum toxin. The main reported complications are those of ptosis, induced vertical deviation and subconjunctival haemorrhage. The higher the dose, the greater the risk of complications. In small-angle strabismus, botulinum toxin is reported as particularly useful in cases of acquired and acute-onset esotropia in aiding maintenance of binocular vision. It is useful for additional management of surgically under- or over-corrected esotropia, particularly for those with potential for binocular vision. Less effect is reported in primary exotropia versus primary esotropia. It is the management of choice for consecutive exotropia, particularly when patients have had previous multiple surgery and where there is a risk for postoperative diplopia. Botulinum toxin has a specific role in decompensated heterophoria, allowing the visual axes a chance to 'lock on' and subsequently maintain binocular vision. Successful outcomes are reported after 1-2 injections only but the results are best in cases of heterophoria with little near-distance angle disparity.

  4. [Study on the characteristics of radiance calibration using nonuniformity extended source].

    PubMed

    Wang, Jian-Wei; Huang, Min; Xiangli, Bin; Tu, Xiao-Long

    2013-07-01

    Integrating sphere and diffuser are always used as extended source, and they have different effects on radiance calibration of imaging spectrometer with parameter difference. In the present paper, a mathematical model based on the theory of radiative transfer and calibration principle is founded to calculate the irradiance and calibration coefficients on CCD, taking relatively poor uniformity lights-board calibration system for example. The effects of the nonuniformity on the calibration was analyzed, which makes up the correlation of calibration coefficient matrix under ideal and unideal situation. The results show that the nonuniformity makes the viewing angle and the position of the point of intersection of the optical axis and the diffuse reflection plate have relatively large effects on calibration, while the observing distance's effect is small; under different viewing angles, a deviation value can be found that makes the calibration results closest to the desired results. So, the calibration error can be reduced by choosing appropriate deviation value.

  5. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brainmore » were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.« less

  6. Theory of injection locking and rapid start-up of magnetrons, and effects of manufacturing errors in terahertz traveling wave tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, Phongphaeth

    In this thesis, several contemporary issues on coherent radiation sources are examined. They include the fast startup and the injection locking of microwave magnetrons, and the effects of random manufacturing errors on phase and small signal gain of terahertz traveling wave amplifiers. In response to the rapid startup and low noise magnetron experiments performed at the University of Michigan that employed periodic azimuthal perturbations in the axial magnetic field, a systematic study of single particle orbits is performed for a crossed electric and periodic magnetic field. A parametric instability in the orbits, which brings a fraction of the electrons from the cathode toward the anode, is discovered. This offers an explanation of the rapid startup observed in the experiments. A phase-locking model has been constructed from circuit theory to qualitatively explain various regimes observed in kilowatt magnetron injection-locking experiments, which were performed at the University of Michigan. These experiments utilize two continuous-wave magnetrons; one functions as an oscillator and the other as a driver. Time and frequency domain solutions are developed from the model, allowing investigations into growth, saturation, and frequency response of the output. The model qualitatively recovers many of the phase-locking frequency characteristics observed in the experiments. Effects of frequency chirp and frequency perturbation on the phase and lockability have also been quantified. Development of traveling wave amplifier operating at terahertz is a subject of current interest. The small circuit size has prompted a statistical analysis of the effects of random fabrication errors on phase and small signal gain of these amplifiers. The small signal theory is treated with a continuum model in which the electron beam is monoenergetic. Circuit perturbations that vary randomly along the beam axis are introduced through the dimensionless Pierce parameters describing the beam-wave velocity mismatch (b), the gain parameter (C), and the cold tube circuit loss ( d). Our study shows that perturbation in b dominates the other two in terms of power gain and phase shift. Extensive data show that standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C and d.

  7. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.

    PubMed

    Bressloff, Paul C

    2015-01-01

    We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.

  8. Spatiotemporal Parameters are not Substantially Influenced by Load Carriage or Inclination During Treadmill and Overground Walking

    PubMed Central

    Seay, Joseph F.; Gregorczyk, Karen N.; Hasselquist, Leif

    2016-01-01

    Abstract Influences of load carriage and inclination on spatiotemporal parameters were examined during treadmill and overground walking. Ten soldiers walked on a treadmill and overground with three load conditions (00 kg, 20 kg, 40 kg) during level, uphill (6% grade) and downhill (-6% grade) inclinations at self-selected speed, which was constant across conditions. Mean values and standard deviations for double support percentage, stride length and a step rate were compared across conditions. Double support percentage increased with load and inclination change from uphill to level walking, with a 0.4% stance greater increase at the 20 kg condition compared to 00 kg. As inclination changed from uphill to downhill, the step rate increased more overground (4.3 ± 3.5 steps/min) than during treadmill walking (1.7 ± 2.3 steps/min). For the 40 kg condition, the standard deviations were larger than the 00 kg condition for both the step rate and double support percentage. There was no change between modes for step rate standard deviation. For overground compared to treadmill walking, standard deviation for stride length and double support percentage increased and decreased, respectively. Changes in the load of up to 40 kg, inclination of 6% grade away from the level (i.e., uphill or downhill) and mode (treadmill and overground) produced small, yet statistically significant changes in spatiotemporal parameters. Variability, as assessed by standard deviation, was not systematically lower during treadmill walking compared to overground walking. Due to the small magnitude of changes, treadmill walking appears to replicate the spatiotemporal parameters of overground walking. PMID:28149338

  9. Open inflation in the landscape

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Linde, Andrei; Naruko, Atsushi; Sasaki, Misao; Tanaka, Takahiro

    2011-08-01

    The open inflation scenario is attracting a renewed interest in the context of the string landscape. Since there are a large number of metastable de Sitter vacua in the string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally, which leads to a natural realization of open inflation. Although the deviation of Ω0 from unity is small by the observational bound, we argue that the effect of this small deviation on the large-angle CMB anisotropies can be significant for tensor-type perturbation in the open inflation scenario. We consider the situation in which there is a large hierarchy between the energy scale of the quantum tunneling and that of the slow-roll inflation in the nucleated bubble. If the potential just after tunneling is steep enough, a rapid-roll phase appears before the slow-roll inflation. In this case the power spectrum is basically determined by the Hubble rate during the slow-roll inflation. On the other hand, if such a rapid-roll phase is absent, the power spectrum keeps the memory of the high energy density there in the large angular components. Furthermore, the amplitude of large angular components can be enhanced due to the effects of the wall fluctuation mode if the bubble wall tension is small. Therefore, although even the dominant quadrupole component is suppressed by the factor (1-Ω0)2, one can construct some models in which the deviation of Ω0 from unity is large enough to produce measurable effects. We also consider a more general class of models, where the false vacuum decay may occur due to Hawking-Moss tunneling, as well as the models involving more than one scalar field. We discuss scalar perturbations in these models and point out that a large set of such models is already ruled out by observational data, unless there was a very long stage of slow-roll inflation after the tunneling. These results show that observational data allow us to test various assumptions concerning the structure of the string theory potentials and the duration of the last stage of inflation.

  10. Annealed Scaling for a Charged Polymer

    NASA Astrophysics Data System (ADS)

    Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.

    2016-03-01

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems. What happens for the quenched free energy per monomer remains open. We state two modest results and raise a few questions.

  11. Beyond multi-fractals: surrogate time series and fields

    NASA Astrophysics Data System (ADS)

    Venema, V.; Simmer, C.

    2007-12-01

    Most natural complex are characterised by variability on a large range of temporal and spatial scales. The two main methodologies to generate such structures are Fourier/FARIMA based algorithms and multifractal methods. The former is restricted to Gaussian data, whereas the latter requires the structure to be self-similar. This work will present so-called surrogate data as an alternative that works with any (empirical) distribution and power spectrum. The best-known surrogate algorithm is the iterative amplitude adjusted Fourier transform (IAAFT) algorithm. We have studied six different geophysical time series (two clouds, runoff of a small and a large river, temperature and rain) and their surrogates. The power spectra and consequently the 2nd order structure functions were replicated accurately. Even the fourth order structure function was more accurately reproduced by the surrogates as would be possible by a fractal method, because the measured structure deviated too strong from fractal scaling. Only in case of the daily rain sums a fractal method could have been more accurate. Just as Fourier and multifractal methods, the current surrogates are not able to model the asymmetric increment distributions observed for runoff, i.e., they cannot reproduce nonlinear dynamical processes that are asymmetric in time. Furthermore, we have found differences for the structure functions on small scales. Surrogate methods are especially valuable for empirical studies, because the time series and fields that are generated are able to mimic measured variables accurately. Our main application is radiative transfer through structured clouds. Like many geophysical fields, clouds can only be sampled sparsely, e.g. with in-situ airborne instruments. However, for radiative transfer calculations we need full 3-dimensional cloud fields. A first study relating the measured properties of the cloud droplets and the radiative properties of the cloud field by generating surrogate cloud fields yielded good results within the measurement error. A further test of the suitability of the surrogate clouds for radiative transfer is evaluated by comparing the radiative properties of model cloud fields of sparse cumulus and stratocumulus with their surrogate fields. The bias and root mean square error in various radiative properties is small and the deviations in the radiances and irradiances are not statistically significant, i.e. these deviations can be attributed to the Monte Carlo noise of the radiative transfer calculations. We compared these results with optical properties of synthetic clouds that have either the correct distribution (but no spatial correlations) or the correct power spectrum (but a Gaussian distribution). These clouds did show statistical significant deviations. For more information see: http://www.meteo.uni-bonn.de/venema/themes/surrogates/

  12. When things go pear shaped: contour variations of contacts

    NASA Astrophysics Data System (ADS)

    Utzny, Clemens

    2013-04-01

    Traditional control of critical dimensions (CD) on photolithographic masks considers the CD average and a measure for the CD variation such as the CD range or the standard deviation. Also systematic CD deviations from the mean such as CD signatures are subject to the control. These measures are valid for mask quality verification as long as patterns across a mask exhibit only size variations and no shape variation. The issue of shape variations becomes especially important in the context of contact holes on EUV masks. For EUV masks the CD error budget is much smaller than for standard optical masks. This means that small deviations from the contact shape can impact EUV waver prints in the sense that contact shape deformations induce asymmetric bridging phenomena. In this paper we present a detailed study of contact shape variations based on regular product data. Two data sets are analyzed: 1) contacts of varying target size and 2) a regularly spaced field of contacts. Here, the methods of statistical shape analysis are used to analyze CD SEM generated contour data. We demonstrate that contacts on photolithographic masks do not only show size variations but exhibit also pronounced nontrivial shape variations. In our data sets we find pronounced shape variations which can be interpreted as asymmetrical shape squeezing and contact rounding. Thus we demonstrate the limitations of classic CD measures for describing the feature variations on masks. Furthermore we show how the methods of statistical shape analysis can be used for quantifying the contour variations thus paving the way to a new understanding of mask linearity and its specification.

  13. Rheological signatures of gelation and effect of shear melting on aging colloidal suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatav, Shweta; Joshi, Yogesh M, E-mail: joshi@iitk.ac.in

    2014-09-01

    Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work, we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time, tan δ is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration beforemore » applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with an increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.« less

  14. SU-F-J-29: Dosimetric Effect of Image Registration ROI Size and Focus in Automated CBCT Registration for Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelli, A; Smith, A; Chao, S

    2016-06-15

    Purpose: Spinal stereotactic body radiotherapy (SBRT) involves highly conformal dose distributions and steep dose gradients due to the proximity of the spinal cord to the treatment volume. To achieve the planning goals while limiting the spinal cord dose, patients are setup using kV cone-beam CT (kV-CBCT) with 6 degree corrections. The kV-CBCT registration with the reference CT is dependent on a user selected region of interest (ROI). The objective of this work is to determine the dosimetric impact of ROI selection. Methods: Twenty patients were selected for this study. For each patient, the kV-CBCT was registered to the reference CTmore » using three ROIs including: 1) the external body, 2) a large anatomic region, and 3) a small region focused in the target volume. Following each registration, the aligned CBCTs and contours were input to the treatment planning system for dose evaluation. The minimum dose, dose to 99% and 90% of the tumor volume (D99%, D90%), dose to 0.03cc and the dose to 10% of the spinal cord subvolume (V10Gy) were compared to the planned values. Results: The average deviations in the tumor minimum dose were 2.68%±1.7%, 4.6%±4.0%, 14.82%±9.9% for small, large and the external ROIs, respectively. The average deviations in tumor D99% were 1.15%±0.7%, 3.18%±1.7%, 10.0%±6.6%, respectively. The average deviations in tumor D90% were 1.00%±0.96%, 1.14%±1.05%, 3.19%±4.77% respectively. The average deviations in the maximum dose to the spinal cord were 2.80%±2.56%, 7.58%±8.28%, 13.35%±13.14%, respectively. The average deviation in V10Gy to the spinal cord were 1.69%±0.88%, 1.98%±2.79%, 2.71%±5.63%. Conclusion: When using automated registration algorithms for CBCT-Reference alignment, a small target-focused ROI results in the least dosimetric deviation from the plan. It is recommended to focus narrowly on the target volume to keep the spinal cord dose below tolerance.« less

  15. Micromachined piconewton force sensor for biophysics investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.

    2006-10-23

    We describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, we measured the force field produced by an electromagnet on individual 2.8 {mu}m magnetic beads glued to the sensor. By repeating with 11 different beads, we measured a 9% standard deviation in saturation magnetization. We next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.

  16. Non-equilibrium diffusion combustion of a fuel droplet

    NASA Astrophysics Data System (ADS)

    Tyurenkova, Veronika V.

    2012-06-01

    A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius. Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.

  17. On the magnetic attitude control for spacecraft via the ɛ-strategies method

    NASA Astrophysics Data System (ADS)

    Smirnov, Georgi V.; Ovchinnikov, Mikhail; Miranda, Francisco

    2008-09-01

    We develop a new approach to stabilization problems based on a combination of the Lyapunov functions method with local controllability properties. The stabilizability is understood in the sense of ɛ-strategies introduced by Pontryagin in the frame of differential games theory. To illustrate the possibilities of our approach we consider a satellite with two magnetic coils directed along its principal inertia axes. Its circular orbit is neither polar nor equatorial. We show that there exists an ɛ-strategy stabilizing an Earth pointing satellite, whenever the deviations from the equilibrium position are small enough.

  18. Summary Article: IEA HPP Annex 36: Quality Installation / Quality Maintenance Sensitivity Studies

    DOE PAGES

    Hourahan, Glenn; Domanski, Piotr; Baxter, Van D.

    2015-01-30

    The outcome from this Annex activity clearly identifies that poorly designed, installed, and/or maintained heat pumps operate inefficiently and waste considerable energy compared to their as-designed potential. Additionally, it is clear that small faults for a given field-observed practice are significant, that some attribute deviations (in various equipment applications and geographical locations) have a larger impact than others, and that multiple faults or deviations have a cumulative impact on heat pump performance.

  19. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    PubMed

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear regression model. Analysis of variance was used to determine whether the absolute log proportional error differed by the intended injection volume. Interindividual and intraindividual deviation from the intended injection volume was also characterized. As the intended injection volumes decreased, the absolute log proportional injection volume error increased (analysis of variance, P < .0018). The exploratory analysis revealed no significant difference in the standard deviations of the log proportional errors for injection volumes between physicians and pediatric PACU nurses; however, the difference in absolute bias was significantly higher for nurses with a 2-sided significance of P = .03. Clinically significant dose variation occurs when injecting volumes ≤0.5 mL. Administering small volumes of medications may result in unintended medication administration errors.

  20. In vivo dosimetry for external photon treatments of head and neck cancers by diodes and TLDS.

    PubMed

    Tung, C J; Wang, H C; Lo, S H; Wu, J M; Wang, C J

    2004-01-01

    In vivo dosimetry was implemented for treatments of head and neck cancers in the large fields. Diode and thermoluminescence dosemeter (TLD) measurements were carried out for the linear accelerators of 6 MV photon beams. ESTRO in vivo dosimetry protocols were followed in the determination of midline doses from measurements of entrance and exit doses. Of the fields monitored by diodes, the maximum absolute deviation of measured midline doses from planned target doses was 8%, with the mean value and the standard deviation of -1.0 and 2.7%. If planned target doses were calculated using radiological water equivalent thicknesses rather than patient geometric thicknesses, the maximum absolute deviation dropped to 4%, with the mean and the standard deviation of 0.7 and 1.8%. For in vivo dosimetry monitored by TLDs, the shift in mean dose remained small but the statistical precision became poor.

  1. Scaling behavior of EEG amplitude and frequency time series across sleep stages

    NASA Astrophysics Data System (ADS)

    Kantelhardt, Jan W.; Tismer, Sebastian; Gans, Fabian; Schumann, Aicko Y.; Penzel, Thomas

    2015-10-01

    We study short-term and long-term persistence properties (related with auto-correlations) of amplitudes and frequencies of EEG oscillations in 176 healthy subjects and 40 patients during nocturnal sleep. The amplitudes show scaling from 2 to 500 seconds (depending on the considered band) with large fluctuation exponents during (nocturnal) wakefulness (0.73-0.83) and small ones during deep sleep (0.50-0.69). Light sleep is similar to deep sleep, while REM sleep (0.64-0.76) is closer to wakefulness except for the EEG γ band. Some of the frequency time series also show long-term scaling, depending on the selected bands and stages. Only minor deviations are seen for patients with depression, anxiety, or Parkinson's disease.

  2. Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, Flores: Population affinities and pathological abnormalities

    PubMed Central

    Jacob, T.; Indriati, E.; Soejono, R. P.; Hsü, K.; Frayer, D. W.; Eckhardt, R. B.; Kuperavage, A. J.; Thorne, A.; Henneberg, M.

    2006-01-01

    Liang Bua 1 (LB1) exhibits marked craniofacial and postcranial asymmetries and other indicators of abnormal growth and development. Anomalies aside, 140 cranial features place LB1 within modern human ranges of variation, resembling Australomelanesian populations. Mandibular and dental features of LB1 and LB6/1 either show no substantial deviation from modern Homo sapiens or share features (receding chins and rotated premolars) with Rampasasa pygmies now living near Liang Bua Cave. We propose that LB1 is drawn from an earlier pygmy H. sapiens population but individually shows signs of a developmental abnormality, including microcephaly. Additional mandibular and postcranial remains from the site share small body size but not microcephaly. PMID:16938848

  3. Estimating accuracy of land-cover composition from two-stage cluster sampling

    USGS Publications Warehouse

    Stehman, S.V.; Wickham, J.D.; Fattorini, L.; Wade, T.D.; Baffetta, F.; Smith, J.H.

    2009-01-01

    Land-cover maps are often used to compute land-cover composition (i.e., the proportion or percent of area covered by each class), for each unit in a spatial partition of the region mapped. We derive design-based estimators of mean deviation (MD), mean absolute deviation (MAD), root mean square error (RMSE), and correlation (CORR) to quantify accuracy of land-cover composition for a general two-stage cluster sampling design, and for the special case of simple random sampling without replacement (SRSWOR) at each stage. The bias of the estimators for the two-stage SRSWOR design is evaluated via a simulation study. The estimators of RMSE and CORR have small bias except when sample size is small and the land-cover class is rare. The estimator of MAD is biased for both rare and common land-cover classes except when sample size is large. A general recommendation is that rare land-cover classes require large sample sizes to ensure that the accuracy estimators have small bias. ?? 2009 Elsevier Inc.

  4. A Meta-Analytic Study of Couple Interventions during the Transition to Parenthood

    ERIC Educational Resources Information Center

    Pinquart, Martin; Teubert, Daniela

    2010-01-01

    The present meta-analysis integrates results of 21 controlled couple-focused interventions with expectant and new parents. The interventions had, on average, small effects on couple communication (d = 0.28 standard deviation units) and psychological well-being (d = 0.21), as well as very small effects on couple adjustment (d = 0.09). Stronger…

  5. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less

  7. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    PubMed Central

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421

  8. Elastic geobarometry: uncertainties arising from the geometry of the host-inclusion system

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, Mattia L.; Burnley, Pamela; Angel, Ross J.; Chiara Domeneghetti, M.; Nestola, Fabrizio; Alvaro, Matteo

    2017-04-01

    Ultra-high-pressure metamorphic (UHPM) rocks are the only rocks that can provide insights into the detailed processes of deep and ultra-deep subduction. The application of conventional geobarometry to these rocks can be extremely challenging. Elastic geobarometry is an alternative and complementary method independent of chemistry and chemical equilibria. Minerals trapped as inclusions within other host minerals develop residual pressure (Pinc) on exhumation as a result of the differences between the thermo-elastic properties of the host and the inclusion. If correctly interpreted, measurement of the Pinc allows for a good estimate of the entrapment pressure. The solution for isotropic non-linear elasticity has been recently incorporated into the classic host-inclusion model [1; 2] and is now available in the EoSFit7c software [3]. However, this solution assumes a simple geometry for the host inclusion system with a small spherical inclusion located at the center of an infinite host. To verify the results of the analytical solution and to extend the analysis beyond the existing geometrical assumptions we performed numerical calculations using Finite Element Modelling (FEM). This approach has allowed us to evaluate the deviation from the pressure calculated with the isotropic solution if applied to real host-inclusion systems where the geometry is far from ideal, for example when the inclusion is not small, not at the center of the host and not spherical. In order to determine the effects of shape alone, we performed calculations with isotropic elasticity. Our results show that the deviations from the analytical solution arising from the geometry of the system are smaller than 1% if a spherical inclusion has a radius smaller than 1/4 of that of the host and is located at more than two inclusion radii from the external surface of the host. Deviations produced by changes in the shape of the inclusions include two contributions. First, the effect of edges and corners is small and introduces deviations of less than 2%. Second, the aspect ratio of the inclusion gives rise to large deviations in Pinc with shifts in the calculated pressures of more than 10% for platy inclusions (i.e. aspect ratio 1:5:5). The exact effect on Pinc is a complex function of both the values of the bulk and shear moduli of both host and inclusion, and the contrast in these values. For a soft quartz-like inclusion, the influence of the aspect ratio and of the presence of edges and corners becomes greater as the host is made softer and approaches the bulk modulus of the inclusion, provided a contrast in shear moduli remains. These deviations from the analytical solution induced by the shape are smaller than 1% only when inclusions are approximately spherical (i.e. ellipsoids with aspect ratios of less than 1:2:2) and the host is significantly stiffer than the inclusion. This work is supported by MIUR-SIR grant "MILE DEEp" (RBSI140351) to M. Alvaro, and ERC starting grant 307322 to F. Nestola. References: [1] Angel, R.J et al. (2014a) Am Mineral,99, 2146-2149 [2] Angel R.J et al. (2015) J. Metamorph. Geol.33, 801-813. [3] Angel RJ et al. (2014b) Z Kristallogr,229, 405-419.

  9. "It is not guaranteed that you will benefit": True but misleading?

    PubMed

    Kim, Scott Y H; Wilson, Renee; De Vries, Raymond; Kim, H Myra; Holloway, Robert G; Kieburtz, Karl

    2015-08-01

    Participants of early-phase intervention trials for serious conditions provide high estimates of likelihood of benefit, even when informed consent forms do not promise such benefits. However, some technically correct, negatively stated benefits statements—such as "it is not guaranteed that you will benefit"—could play a role in raising expectations of benefit because in ordinary English usage such statements denote a likely but not a certain-to-occur event. An experimental online survey of 584 English-speaking adults recruited online. They were randomized to receive one of two benefit statements ("not guaranteed" vs "some but very small chance"), using a hypothetical scenario of an early-phase clinical trial testing an intervention to treat amyotrophic lateral sclerosis. We assessed respondents' willingness to consider participating in the amyotrophic lateral sclerosis trial, their estimates of likelihood of benefit, and their explanations for those estimates. The two arms did not differ in willingness to consider participation in the amyotrophic lateral sclerosis trial. Those receiving "not guaranteed" benefit statement had higher estimates of benefit than those receiving "some but very small chance" statement (35.7% (standard deviation 20.2) vs 28.3% (standard deviation 22.0), p < 0.0001). A total of 43% of all respondents chose expressions of positive sentiment (hope and need to stay positive) as explanations of their estimates; these respondents' estimates of benefit were higher than others but similar between the two arms. The effect of benefit statements was greatest among those who chose "Those are just the facts" as the explanation for their estimate (31.0% (standard deviation 22.4%) in "not guaranteed" arm vs 18.9% (standard deviation 21.0%) in comparison arm, p = 0.008). The use of "not guaranteed" language in benefit statements, when compared to "small but very small chance" language, appeared to increase the perception of likelihood of benefit of entering an early-phase trial, especially among those who view their estimates of benefits as "facts." Such "no guarantee" benefit statements may be misleading and should not be used in informed consent forms. © The Author(s) 2015.

  10. Detecting deviations from metronomic timing in music: effects of perceptual structure on the mental timekeeper.

    PubMed

    Repp, B H

    1999-04-01

    The detectability of a deviation from metronomic timing--of a small local increment in interonset interval (IOI) duration--in a musical excerpt is subject to positional biases, or "timing expectations," that are closely related to the expressive timing (sequence of IOI durations) typically produced by musicians in performance (Repp, 1992b, 1998c, 1998d). Experiment 1 replicated this finding with some changes in procedure and showed that the perception-performance correlation is not the result of formal musical training or availability of a musical score. Experiments 2 and 3 used a synchronization task to examine the hypothesis that participants' perceptual timing expectations are due to systematic modulations in the period of a mental timekeeper that also controls perceptual-motor coordination. Indeed, there was systematic variation in the asynchronies between taps and metronomically timed musical event onsets, and this variation was correlated both with the variations in IOI increment detectability (Experiment 1) and with the typical expressive timing pattern in performance. When the music contained local IOI increments (Experiment 2), they were almost perfectly compensated for on the next tap, regardless of their detectability in Experiment 1, which suggests a perceptual-motor feedback mechanism that is sensitive to subthreshold timing deviations. Overall, the results suggest that aspects of perceived musical structure influence the predictions of mental timekeeping mechanisms, thereby creating a subliminal warping of experienced time.

  11. Comparison of Profile Total Ozone from SBUV (v8.6) with GOME-Type and Ground-Based Total Ozone for a 16-Year Period (1996 to 2011)

    NASA Technical Reports Server (NTRS)

    Chiou, E. W.; Bhartia, P. K.; McPeters, R. D.; Loyola, D. G.; Coldewey-Egbers, M.; Fioletov, V. E.; Van Roozendael, M.; Spurr, R.; Lerot, C.; Frith, S. M.

    2014-01-01

    This paper describes the comparison of the variability of total column ozone inferred from the three independent multi-year data records, namely, (i) Solar Backscatter Ultraviolet Instrument (SBUV) v8.6 profile total ozone, (ii) GTO (GOME-type total ozone), and (iii) ground-based total ozone data records covering the 16-year overlap period (March 1996 through June 2011). Analyses are conducted based on area-weighted zonal means for 0-30degS, 0-30degN, 50-30degS, and 30-60degN. It has been found that, on average, the differences in monthly zonal mean total ozone vary between -0.3 and 0.8% and are well within 1 %. For GTO minus SBUV, the standard deviations and ranges (maximum minus minimum) of the differences regarding monthly zonal mean total ozone vary between 0.6-0.7% and 2.8-3.8% respectively, depending on the latitude band. The corresponding standard deviations and ranges regarding the differences in monthly zonal mean anomalies show values between 0.4-0.6% and 2.2-3.5 %. The standard deviations and ranges of the differences ground-based minus SBUV regarding both monthly zonal means and anomalies are larger by a factor of 1.4-2.9 in comparison to GTO minus SBUV. The ground-based zonal means demonstrate larger scattering of monthly data compared to satellite-based records. The differences in the scattering are significantly reduced if seasonal zonal averages are analyzed. The trends of the differences GTO minus SBUV and ground-based minus SBUV are found to vary between -0.04 and 0.1%/yr (-0.1 and 0.3DU/yr). These negligibly small trends have provided strong evidence that there are no significant time-dependent differences among these multiyear total ozone data records. Analyses of the annual deviations from pre-1980 level indicate that, for the 15-year period of 1996 to 2010, all three data records show a gradual increase at 30-60degN from -5% in 1996 to -2% in 2010. In contrast, at 50-30degS and 30degS- 30degN there has been a leveling off in the 15 years after 1996. The deviations inferred from GTO and SBUV show agreement within 1 %, but a slight increase has been found in the differences during the period 1996-2010.

  12. Using CMB spectral distortions to distinguish between dark matter solutions to the small-scale crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diacoumis, James A.D.; Wong, Yvonne Y.Y., E-mail: j.diacoumis@unsw.edu.au, E-mail: yvonne.y.wong@unsw.edu.au

    The dissipation of small-scale perturbations in the early universe produces a distortion in the blackbody spectrum of cosmic microwave background photons. In this work, we propose to use these distortions as a probe of the microphysics of dark matter on scales 1 Mpc{sup -1}∼< k ∼< 10{sup 4} Mpc{sup -1}. We consider in particular models in which the dark matter is kinetically coupled to either neutrinos or photons until shortly before recombination, and compute the photon heating rate and the resultant μ-distortion in both cases. We show that the μ-parameter is generally enhanced relative to ΛCDM for interactions with neutrinos,more » and may be either enhanced or suppressed in the case of interactions with photons. The deviations from the ΛCDM signal are potentially within the sensitivity reach of a PRISM-like experiment if σ{sub DM-γ} ∼> 1.1 × 10{sup -30} (m{sub DM}/GeV) cm{sup 2} and σ{sub DM-ν} ∼> 4.8 × 10{sup -32} (m{sub DM}/GeV) cm{sup 2} for time-independent cross sections, and σ{sup 0}{sub DM-γ} ∼> 1.8 × 10{sup -40} (m{sub DM}/GeV) cm{sup 2} and σ{sup 0}{sub DM-ν} ∼> 2.5 × 10{sup -47} (m{sub DM}/GeV) cm{sup 2} for cross sections scaling as temperature squared, coinciding with the parameter regions in which late kinetic decoupling may serve as a solution to the small-scale crisis. Furthermore, these μ-distortion signals differ from those of warm dark matter (no deviation from ΛCDM) and a suppressed primordial power spectrum (a strongly suppressed or negative μ-parameter), demonstrating that CMB spectral distortion can potentially be used to distinguish between solutions to the small-scale crisis.« less

  13. Uav-Based Photogrammetric Point Clouds and Hyperspectral Imaging for Mapping Biodiversity Indicators in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.

    2017-10-01

    Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.

  14. Intrinsic plasma rotation and Reynolds stress at the plasma edge in the HSX stellarator

    DOE PAGES

    Wilcox, Robert S.; Talmadge, J. N.; Anderson, David T.; ...

    2016-02-05

    Using multi-tipped Langmuir probes in the edge of the HSX stellarator, the radial electric field and parallel flows are found to deviate from the values calculated by the neoclassical transport code PENTA for the optimized quasi-helically symmetric (QHS) configuration. To understand whether Reynolds stress might explain the discrepancy, fluctuating floating potential measurements are made at two locations in the torus corresponding to the low field and high field sides of the device. The measurements at the two locations show clear evidence of a gradient in the Reynolds stress. However, the resulting flow due to the gradient in the stress ismore » found to be large and in opposite directions for the two locations. This makes an estimation of the flux surface average using a small number of measurement locations impractical from an experimental perspective. These results neither confirm nor rule out whether Reynolds stress plays an important role for the QHS configuration. Measurements made in configurations with the quasi-symmetry degraded show even larger flows and greater deviations from the neoclassically calculated velocity profiles than the QHS configuration while the fluctuation magnitudes are reduced. Lastly, for these configurations in particular, the Reynolds stress is most likely not responsible for the additional momentum.« less

  15. 48 CFR 1352.219-72 - Notification of competition limited to eligible 8(a) concerns, Alternate III (Deviation).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... limitation set forth in its approved business plan; and (2) The Offeror is in conformance with the Business Activity Targets set forth in its approved business plan or any remedial action directed by the SBA. (b) By...) (APR 2010) (a) Offers are solicited only from small business concerns expressly certified by the Small...

  16. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    PubMed Central

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  17. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    PubMed

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  18. Kinetic energy spectra in thermionic emission from small tungsten cluster anions: evidence for nonclassical electron capture.

    PubMed

    Concina, Bruno; Baguenard, Bruno; Calvo, Florent; Bordas, Christian

    2010-03-14

    The delayed electron emission from small mass-selected anionic tungsten clusters W(n)(-) has been studied for sizes in the range 9 < or = n < or = 21. Kinetic energy spectra have been measured for delays of about 100 ns after laser excitation by a velocity-map imaging spectrometer. They are analyzed in the framework of microreversible statistical theories. The low-energy behavior shows some significant deviations with respect to the classical Langevin capture model, which we interpret as possibly due to the influence of quantum dynamical effects such as tunneling through the centrifugal barrier, rather than shape effects. The cluster temperature has been extracted from both the experimental kinetic energy spectrum and the absolute decay rate. Discrepancies between the two approaches suggest that the sticking probability can be as low as a few percent for the smallest clusters.

  19. SU-F-T-386: Analysis of Three QA Methods for Predicting Dose Deviation Pass Percentage for Lung SBRT VMAT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, M; To, D; Giaddui, T

    2016-06-15

    Purpose: To investigate the significance of using pinpoint ionization chambers (IC) and RadCalc (RC) in determining the quality of lung SBRT VMAT plans with low dose deviation pass percentage (DDPP) as reported by ScandiDos Delta4 (D4). To quantify the relationship between DDPP and point dose deviations determined by IC (ICDD), RadCalc (RCDD), and median dose deviation reported by D4 (D4DD). Methods: Point dose deviations and D4 DDPP were compiled for 45 SBRT VMAT plans. Eighteen patients were treated on Varian Truebeam linear accelerators (linacs); the remaining 27 were treated on Elekta Synergy linacs with Agility collimators. A one-way analysis ofmore » variance (ANOVA) was performed to determine if there were any statistically significant differences between D4DD, ICDD, and RCDD. Tukey’s test was used to determine which pair of means was statistically different from each other. Multiple regression analysis was performed to determine if D4DD, ICDD, or RCDD are statistically significant predictors of DDPP. Results: Median DDPP, D4DD, ICDD, and RCDD were 80.5% (47.6%–99.2%), −0.3% (−2.0%–1.6%), 0.2% (−7.5%–6.3%), and 2.9% (−4.0%–19.7%), respectively. The ANOVA showed a statistically significant difference between D4DD, ICDD, and RCDD for a 95% confidence interval (p < 0.001). Tukey’s test revealed a statistically significant difference between two pairs of groups, RCDD-D4DD and RCDD-ICDD (p < 0.001), but no difference between ICDD-D4DD (p = 0.485). Multiple regression analysis revealed that ICDD (p = 0.04) and D4DD (p = 0.03) are statistically significant predictors of DDPP with an adjusted r{sup 2} of 0.115. Conclusion: This study shows ICDD predicts trends in D4 DDPP; however this trend is highly variable as shown by our low r{sup 2}. This work suggests that ICDD can be used as a method to verify DDPP in delivery of lung SBRT VMAT plans. RCDD may not validate low DDPP discovered in D4 QA for small field SBRT treatments.« less

  20. Diagnostic classification of macular ganglion cell and retinal nerve fiber layer analysis: differentiation of false-positives from glaucoma.

    PubMed

    Kim, Ko Eun; Jeoung, Jin Wook; Park, Ki Ho; Kim, Dong Myung; Kim, Seok Hwan

    2015-03-01

    To investigate the rate and associated factors of false-positive diagnostic classification of ganglion cell analysis (GCA) and retinal nerve fiber layer (RNFL) maps, and characteristic false-positive patterns on optical coherence tomography (OCT) deviation maps. Prospective, cross-sectional study. A total of 104 healthy eyes of 104 normal participants. All participants underwent peripapillary and macular spectral-domain (Cirrus-HD, Carl Zeiss Meditec Inc, Dublin, CA) OCT scans. False-positive diagnostic classification was defined as yellow or red color-coded areas for GCA and RNFL maps. Univariate and multivariate logistic regression analyses were used to determine associated factors. Eyes with abnormal OCT deviation maps were categorized on the basis of the shape and location of abnormal color-coded area. Differences in clinical characteristics among the subgroups were compared. (1) The rate and associated factors of false-positive OCT maps; (2) patterns of false-positive, color-coded areas on the GCA deviation map and associated clinical characteristics. Of the 104 healthy eyes, 42 (40.4%) and 32 (30.8%) showed abnormal diagnostic classifications on any of the GCA and RNFL maps, respectively. Multivariate analysis revealed that false-positive GCA diagnostic classification was associated with longer axial length and larger fovea-disc angle, whereas longer axial length and smaller disc area were associated with abnormal RNFL maps. Eyes with abnormal GCA deviation map were categorized as group A (donut-shaped round area around the inner annulus), group B (island-like isolated area), and group C (diffuse, circular area with an irregular inner margin in either). The axial length showed a significant increasing trend from group A to C (P=0.001), and likewise, the refractive error was more myopic in group C than in groups A (P=0.015) and B (P=0.014). Group C had thinner average ganglion cell-inner plexiform layer thickness compared with other groups (group A=B>C, P=0.004). Abnormal OCT diagnostic classification should be interpreted with caution, especially in eyes with long axial lengths, large fovea-disc angles, and small optic discs. Our findings suggest that the characteristic patterns of OCT deviation map can provide useful clues to distinguish glaucomatous changes from false-positive findings. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. Hierarchical clustering in chameleon f(R) gravity

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Li, Baojiu; Frenk, Carlos S.; Cole, Shaun

    2013-11-01

    We use a suite of high-resolution state-of-the-art N-body dark matter simulations of chameleon f(R) gravity to study the higher order volume-averaged correlation functions overline{ξ _n} together with the hierarchical nth-order correlation amplitudes S_n=overline{ξ }_n/overline{ξ }_2^{n-1} and density distribution functions (PDF). We show that under the non-linear modifications of gravity the hierarchical scaling of the reduced cumulants is preserved. This is however characterized by significant changes in the values of both overline{ξ _n} and Sn and their scale dependence with respect to General Relativity gravity (GR). In addition, we measure a significant increase of the non-linear σ8 parameter reaching 14, 5 and 0.5 per cent in excess of the GR value for the three flavours of our f(R) models. We further note that the values of the reduced cumulants up to order n = 9 are significantly increased in f(R) gravity for all our models at small scales R ≲ 30 h-1 Mpc. In contrast, the values of the hierarchical amplitudes, Sn, are smaller in f(R) indicating that the modified gravity density distribution functions are deviating from the GR case. Furthermore, we find that the redshift evolution of relative deviations of the f(R) hierarchical correlation amplitudes is fastest at high and moderate redshifts 1 ≤ z ≤ 4. The growth of these deviations significantly slows down in the low-redshift universe. We also compute the PDFs and show that for scales below ˜20 h-1 Mpc, they are significantly shifted in f(R) gravity towards the low densities. Finally, we discuss the implications of our theoretical predictions for measurements of the hierarchical clustering in galaxy redshift surveys, including the important problems of the galaxy biasing and redshift space distortions.

  2. Small intestinal obstruction by remnants of the omphalomesenteric duct: findings on contrast enema.

    PubMed

    Fenton, L Z; Buonomo, C; Share, J C; Chung, T

    2000-03-01

    We reviewed the contrast enema examinations and medical records of six patients with small intestinal obstruction due to omphalomesenteric duct remnant to evaluate for characteristic imaging findings. In five out of the six patients the point of obstruction was demonstrated on the enema; in three patients, the characteristic "beak" of a volvulus was seen, either in the terminal ileum or cecum. In three patients, there was medial deviation of the cecum. The characteristic radiographic features of volvulus at the cecum or terminal ileum and medial deviation of the cecum should suggest persistence of an omphalomesenteric duct remnant as the etiology of obstruction in a child less than 2 years of age. The appearance of omphalomesenteric duct remnant obstruction on enema examination, though not specific, is characteristic and should be familiar to pediatric radiologists.

  3. Undamped electrostatic plasma waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentini, F.; Perrone, D.; Veltri, P.

    2012-09-15

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations withmore » phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.« less

  4. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  5. Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model

    NASA Astrophysics Data System (ADS)

    Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi

    2017-10-01

    We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., Phys. Rev. Lett. 103, 177402 (2009)]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.

  6. Experimental study on the flow separation and self-excited oscillation phenomenon in a rectangular duct

    NASA Astrophysics Data System (ADS)

    Xiong, Bing; Wang, Zhen-Guo; Fan, Xiao-Qiang; Wang, Yi

    2017-04-01

    To study the characteristics of flow separation and self-excited oscillation of a shock train in a rectangular duct, a simple test case has been conducted and analyzed. The high-speed Schlieren technique and high-frequency pressure measurements have been adopted to collect the data. The experimental results show that there are two separation modes in the duct under M3 incoming condition. The separation mode switch has great effects on the flow effects, such as the pressure distribution, the standard deviation distribution and so on. The separation mode switch can be judged by the history of pressure standard deviation. When it comes to the self-excited oscillation of a shock train, the frequency contents in the undisturbed region, the intermittent region, and the separated bubble have been compared. It was found that the low-frequency disturbance induced by the upstream shock foot motions can travel downstream and the frequency will be magnified by the separation bubble. The oscillation of the small shock foot and the oscillation of the large shock foot are associated with each other rather than oscillating independently.

  7. Developing an intervention to address physical activity barriers for African–American women in the deep south (USA)

    PubMed Central

    Pekmezi, Dori; Marcus, Bess; Meneses, Karen; Baskin, Monica L; Ard, Jamy D; Martin, Michelle Y; Adams, Natasia; Robinson, Cody; Demark-Wahnefried, Wendy

    2013-01-01

    Aim To address high rates of inactivity and related chronic diseases among African–American women. Materials & methods Eleven focus groups on physical activity barriers for African–American women in the deep south (USA) were conducted (n = 56). Feedback guided an intervention development process. The resulting Home-Based Individually Tailored Physical Activity Print intervention was vetted with the target population in a 1-month, single arm, pre–post test demonstration trial (n = 10). Results Retention was high (90%). Intent-to-treat analyses indicated increases in motivational readiness for physical activity (70% of sample) and physical activity (7-day Physical Activity Recall) from baseline (mean: 89.5 min/week, standard deviation: 61.17) to 1 month (mean: 155 min/week, standard deviation: 100.86). Small improvements in fitness (6-Min Walk Test), weight and psychosocial process measures were also found. Conclusion Preliminary findings show promise and call for future randomized controlled trials with larger samples to determine efficacy. Such low-cost, high-reach approaches to promoting physical activity have great potential for addressing health disparities and benefiting public health. PMID:23638785

  8. More reliable inference for the dissimilarity index of segregation

    PubMed Central

    Allen, Rebecca; Burgess, Simon; Davidson, Russell; Windmeijer, Frank

    2015-01-01

    Summary The most widely used measure of segregation is the so‐called dissimilarity index. It is now well understood that this measure also reflects randomness in the allocation of individuals to units (i.e. it measures deviations from evenness, not deviations from randomness). This leads to potentially large values of the segregation index when unit sizes and/or minority proportions are small, even if there is no underlying systematic segregation. Our response to this is to produce adjustments to the index, based on an underlying statistical model. We specify the assignment problem in a very general way, with differences in conditional assignment probabilities underlying the resulting segregation. From this, we derive a likelihood ratio test for the presence of any systematic segregation, and bias adjustments to the dissimilarity index. We further develop the asymptotic distribution theory for testing hypotheses concerning the magnitude of the segregation index and show that the use of bootstrap methods can improve the size and power properties of test procedures considerably. We illustrate these methods by comparing dissimilarity indices across school districts in England to measure social segregation. PMID:27774035

  9. Probability evolution method for exit location distribution

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Chen, Zhen; Liu, Xianbin

    2018-03-01

    The exit problem in the framework of the large deviation theory has been a hot topic in the past few decades. The most probable escape path in the weak-noise limit has been clarified by the Freidlin-Wentzell action functional. However, noise in real physical systems cannot be arbitrarily small while noise with finite strength may induce nontrivial phenomena, such as noise-induced shift and noise-induced saddle-point avoidance. Traditional Monte Carlo simulation of noise-induced escape will take exponentially large time as noise approaches zero. The majority of the time is wasted on the uninteresting wandering around the attractors. In this paper, a new method is proposed to decrease the escape simulation time by an exponentially large factor by introducing a series of interfaces and by applying the reinjection on them. This method can be used to calculate the exit location distribution. It is verified by examining two classical examples and is compared with theoretical predictions. The results show that the method performs well for weak noise while may induce certain deviations for large noise. Finally, some possible ways to improve our method are discussed.

  10. Developing an intervention to address physical activity barriers for African-American women in the deep south (USA).

    PubMed

    Pekmezi, Dori; Marcus, Bess; Meneses, Karen; Baskin, Monica L; Ard, Jamy D; Martin, Michelle Y; Adams, Natasia; Robinson, Cody; Demark-Wahnefried, Wendy

    2013-05-01

    To address high rates of inactivity and related chronic diseases among African-American women. Eleven focus groups on physical activity barriers for African-American women in the deep south (USA) were conducted (n = 56). Feedback guided an intervention development process. The resulting Home-Based Individually Tailored Physical Activity Print intervention was vetted with the target population in a 1-month, single arm, pre-post test demonstration trial (n = 10). Retention was high (90%). Intent-to-treat analyses indicated increases in motivational readiness for physical activity (70% of sample) and physical activity (7-day Physical Activity Recall) from baseline (mean: 89.5 min/week, standard deviation: 61.17) to 1 month (mean: 155 min/week, standard deviation: 100.86). Small improvements in fitness (6-Min Walk Test), weight and psychosocial process measures were also found. Preliminary findings show promise and call for future randomized controlled trials with larger samples to determine efficacy. Such low-cost, high-reach approaches to promoting physical activity have great potential for addressing health disparities and benefiting public health.

  11. Off-design computer code for calculating the aerodynamic performance of axial-flow fans and compressors

    NASA Technical Reports Server (NTRS)

    Schmidt, James F.

    1995-01-01

    An off-design axial-flow compressor code is presented and is available from COSMIC for predicting the aerodynamic performance maps of fans and compressors. Steady axisymmetric flow is assumed and the aerodynamic solution reduces to solving the two-dimensional flow field in the meridional plane. A streamline curvature method is used for calculating this flow-field outside the blade rows. This code allows for bleed flows and the first five stators can be reset for each rotational speed, capabilities which are necessary for large multistage compressors. The accuracy of the off-design performance predictions depend upon the validity of the flow loss and deviation correlation models. These empirical correlations for the flow loss and deviation are used to model the real flow effects and the off-design code will compute through small reverse flow regions. The input to this off-design code is fully described and a user's example case for a two-stage fan is included with complete input and output data sets. Also, a comparison of the off-design code predictions with experimental data is included which generally shows good agreement.

  12. Age estimation using cortical surface pattern combining thickness with curvatures

    PubMed Central

    Wang, Jieqiong; Li, Wenjing; Miao, Wen; Dai, Dai; Hua, Jing; He, Huiguang

    2014-01-01

    Brain development and healthy aging have been proved to follow a specific pattern, which, in turn, can be applied to help doctors diagnose mental diseases. In this paper, we design a cortical surface pattern (CSP) combining the cortical thickness with curvatures, which constructs an accurate human age estimation model with relevance vector regression. We test our model with two public databases. One is the IXI database (360 healthy subjects aging from 20 to 82 years old were selected), and the other is the INDI database (303 subjects aging from 7 to 22 years old were selected). The results show that our model can achieve as small as 4.57 years deviation in the IXI database and 1.38 years deviation in the INDI database. Furthermore, we employ this surface pattern to age groups classification, and get a remarkably high accuracy (97.77%) and a significantly high sensitivity/specificity (97.30%/98.10%). These results suggest that our designed CSP combining thickness with curvatures is stable and sensitive to brain development, and it is much more powerful than voxel-based morphometry used in previous methods for age estimation. PMID:24395657

  13. UV-light-assisted functionalization for sensing of light molecules

    NASA Astrophysics Data System (ADS)

    Funari, Riccardo; Della Ventura, Bartolomeo; Ambrosio, Antonio; Lettieri, Stefano; Maddalena, Pasqualino; Altucci, Carlo; Velotta, Raffaele

    2013-05-01

    An antibody immobilization technique based on the formation of thiol groups after UV irradiation of the proteins is shown to be able to orient upside antibodies on a gold electrode of a Quartz Crystal Microbalance (QCM). This greatly affects the aptitude of antibodies in recognizing small antigens thereby increasing the sensitivity of the QCM. The capability of such a procedure to orient antibodies is confirmed by the Atomic Force Microscopy (AFM) of the surface that shows different statistical distributions for the height of the detected peaks, whether the irradiation is performed or not. In particular, the distributions are Gaussian with a standard deviation smaller when irradiated antibodies are used compared to that obtained with no treated antibodies. The standard deviation reduction is explained in terms of higher order induced on the host surface resulting from the trend of irradiated antibodies to be anchored upside on the surface with their antigen binding sites free to catch recognized analytes. As a result the sensitivity of the realized biosensor is increased by even more than one order of magnitude.

  14. Characterizing the uncertainty in holddown post load measurements

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Townsend, J. S.

    1993-01-01

    In order to understand unexpectedly erratic load measurements in the launch-pad supports for the space shuttle, the sensitivities of the load cells in the supports were analyzed using simple probabilistic techniques. NASA engineers use the loads in the shuttle's supports to calculate critical stresses in the shuttle vehicle just before lift-off. The support loads are measured with 'load cells' which are actually structural components of the mobile launch platform which have been instrumented with strain gauges. Although these load cells adequately measure vertical loads, the horizontal load measurements have been erratic. The load measurements were simulated in this study using Monte Carlo simulation procedures. The simulation studies showed that the support loads are sensitive to small deviations in strain and calibration. In their current configuration, the load cells will not measure loads with sufficient accuracy to reliably calculate stresses in the shuttle vehicle. A simplified model of the holddown post (HDP) load measurement system was used to study the effect on load measurement accuracy for several factors, including load point deviations, gauge heights, and HDP geometry.

  15. Resveratrol and Malignancies

    PubMed Central

    Bunaciu, Rodica P.

    2015-01-01

    Carcinogenesis is a multifactorial process, frequently encompassing 3 stages: initiation, promotion and progression. It is characterized by multiple deviations from normal both at the cell and organism levels. Although most people have a small number of cells that present deviations from normal, most of those cells will not cause cancer. However, some will. What tips the balance between normal and abnormal is the subject of intense scientific research as well as unfounded speculations. Chronic inflammation is one of the risk factors for cancer. Resveratrol is consumed by the population as a dietary supplement in the hope of decreasing the risk of inflammation and cancer and other chronic diseases such as diabetes and vascular diseases. There is a discrepancy between the doses used in the animal studies showing that resveratrol decreases all three stages of carcinogenesis, and the doses ingested by the population either as supplements or in the diet. While there is health benefit from using high resveratrol doses, it might be also of practical and scientific benefit to focus future effort in understanding the effects of normal dietary resveratrol levels. PMID:26478855

  16. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    NASA Astrophysics Data System (ADS)

    Sarkar, Abir; Sethi, Shiv. K.; Das, Subinoy

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 104 Mpc-1, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y-parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift zf = 105 (7%); WDM for mass mwdm = 1 keV (2%); CHDM for decay redshift zdecay = 105 (5%); ULA for mass ma = 10-24 eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y-distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.

  17. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Abir; Sethi, Shiv K.; Das, Subinoy, E-mail: abir@rri.res.in, E-mail: sethi@rri.res.in, E-mail: subinoy@iiap.res.in

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 10{sup 4} Mpc{sup −1}, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as amore » probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y -parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift z {sub f} = 10{sup 5} (7%); WDM for mass m {sub wdm} = 1 keV (2%); CHDM for decay redshift z {sub decay} = 10{sup 5} (5%); ULA for mass m {sub a} = 10{sup −24} eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y -distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.« less

  18. Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities

    USGS Publications Warehouse

    Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.

    2006-01-01

    NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  19. Dosimetric characterization of small fields using a plastic scintillator detector: A large multicenter study.

    PubMed

    Mancosu, Pietro; Pasquino, Massimo; Reggiori, Giacomo; Masi, Laura; Russo, Serenella; Stasi, Michele

    2017-09-01

    In modern radiation therapy accurate small fields dosimetry is a challenge and its standardization is fundamental to harmonize delivered dose in different institutions. This study presents a multicenter characterization of MLC-defined small field for Elekta and Varian linear accelerators. Measurements were performed using the Exradin W1 plastic scintillator detector. The project enrolled 24 Italian centers. Each center performed Tissue Phantom Ratio (TPR), in-plane and cross-plane dose profiles of 0.8×0.8cm 2 field, and Output Factor (OF) measurements for square field sizes ranging from 0.8 to 10cm. Set-up conditions were 10cm depth in water phantom at SSD 90cm. Measurements were performed using two twin Exradin W1 plastic scintillator detectors (PSD) correcting for the Cerenkov effect as proposed by the manufacturer. Data analysis from 12 Varian and 12 Elekta centers was performed. Measurements of 7 centers were not included due to cable problems. TPR measurements showed standard deviations (SD)<1%; SD<0.4mm for the profile penumbra was obtained, while FWHM measurements showed SD<0.5mm. OF measurements showed SD<1.5% for field size greater than 2×2cm 2 . Median OFs values were in agreement with the recent bibliography. High degree of consistency was registered for all the considered parameters. This work confirmed the importance of multicenter dosimetric intercomparison. W1 PSD could be considered as a good candidate for small field measurements. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2015-05-12

    We have investigated the performance of two classes of fragmentation methods developed in our group (Molecules-in-Molecules (MIM) and Many-Overlapping-Body (MOB) expansion), to reproduce the unfragmented MP2 energies on a test set composed of 10 small to large biomolecules. They have also been assessed to recover the relative energies of different motifs of the acetyl(ala)18NH2 system. Performance of different bond-cutting environments and the use of Hartree-Fock and different density functionals (as a low level of theory) in conjunction with the fragmentation strategies have been analyzed. Our investigation shows that while a low level of theory (for recovering long-range interactions) may not be necessary for small peptides, it provides a very effective strategy to accurately reproduce the total and relative energies of larger peptides such as the different motifs of the acetyl(ala)18NH2 system. Employing M06-2X as the low level of theory, the calculated mean total energy deviation (maximum deviation) in the total MP2 energies for the 10 molecules in the test set at MIM(d=3.5Å), MIM(η=9), and MOB(d=5Å) are 1.16 (2.31), 0.72 (1.87), and 0.43 (2.02) kcal/mol, respectively. The excellent performance suggests that such fragment-based methods should be of general use for the computation of accurate energies of large biomolecular systems.

  1. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.

    PubMed

    Ye, Ting; Li, Hua; Lam, K Y

    2015-02-01

    In this paper, we numerically explore the possibility of separating two groups of deformable cells, by a very small dielectrophoretic (DEP) microchip with the characteristic length of several cell diameters. A 2D two-fluid model is developed to describe the separation process, where three types of forces are considered, the aggregation force for cell-cell interaction, the deformation force for cell deformation, and the DEP force for cell dielectrophoresis. As a model validation, we calculate the levitation height of a cell subject to DEP force, and compare it with the experimental data. After that, we simulate the separation of two groups of cells with different dielectric properties at high and low frequencies, respectively. The simulation results show that the deformable cells can be separated successfully by a very small DEP microchip, according to not only their different permittivities at the high frequency, but also their different conductivities at the low frequency. In addition, both two groups of cells have a shape deformation from an original shape to a lopsided slipper shape during the separation process. It is found that the cell motion is mainly determined by the DEP force arising from the electric field, causing the cells to deviate from the centerline of microchannel. However, the cell deformation is mainly determined by the deformation force arising from the fluid flow, causing the deviated cells to undergo an asymmetric motion with the deformation of slipper shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Developmental Dyslexia, Neurolinguistic Theory and Deviations in Brain Morphology.

    ERIC Educational Resources Information Center

    Hynd, George W.; And Others

    1991-01-01

    Reviews computer tomography and magnetic resonance imaging studies examining deviations in brain morphology. Discusses methodological and technical issues. Concludes that dyslexics show variations in specific brain regions. Suggests that neuroimaging procedures appear to provide direct evidence supporting the importance of deviations in normal…

  3. Windage Jump of a Rocket Fired Nearly Vertically

    DTIC Science & Technology

    1947-12-16

    Angular Velocity and Small Initial Yaw", by A. 3. Peters, August l?u5. —~ >- .■^’i*’:v^-X ’^ In thj jliBs^.cal «ind ♦.hsory (■•• Gr»n...Deviations Since the angle of projection was taken as #/2, the angular deviation fron the vertical In the moving reference frame at time t^ is...the angle of projection may easily be rewovedc ?hat- ever the angle of projection, the results may be applied without change to the angular effects

  4. New approach to CT pixel-based photon dose calculations in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, J.W.; Henkelman, R.M.

    The effects of small cavities on dose in water and the dose in a homogeneous nonunit density medium illustrate that inhomogeneities do not act independently in photon dose perturbation, and serve as two constraints which should be satisfied by approximate methods of computed tomography (CT) pixel-based dose calculations. Current methods at best satisfy only one of the two constraints and show inadequacies in some intermediate geometries. We have developed an approximate method that satisfies both these constraints and treats much of the synergistic effect of multiple inhomogeneities correctly. The method calculates primary and first-scatter doses by first-order ray tracing withmore » the first-scatter contribution augmented by a component of second scatter that behaves like first scatter. Multiple-scatter dose perturbation values extracted from small cavity experiments are used in a function which approximates the small residual multiple-scatter dose. For a wide range of geometries tested, our method agrees very well with measurements. The average deviation is less than 2% with a maximum of 3%. In comparison, calculations based on existing methods can have errors larger than 10%.« less

  5. The relationship between physical workload and quality within line-based assembly.

    PubMed

    Ivarsson, Anna; Eek, Frida

    2016-07-01

    Reducing costs and improvement of product quality are considered important to ensure productivity within a company. Quality deviations during production processes and ergonomics have previously shown to be associated. This study explored the relationship between physical workload and real (found during production processes) and potential (need of extra time and assistance to complete tasks) quality deviations in a line-based assembly plant. The physical workload on and the work rotation between 52 workstations were assessed. As the outcome, real and potential quality deviations were studied during 10 weeks. Results show that workstations with higher physical workload had significantly more real deviations compared to lower workload stations. Static work posture had significantly more potential deviations. Rotation between high and low workload was related to fewer quality deviations compared to rotation between only high workload stations. In conclusion, physical ergonomics seems to be related to real and potential quality deviation within line-based assembly. Practitioner Summary: To ensure good productivity in manufacturing industries, it is important to reduce costs and improve product quality. This study shows that high physical workload is associated with quality deviations and need of extra time and assistance to complete tasks within line-based assembly, which can be financially expensive for a company.

  6. Influence of the adsorption geometry of PTCDA on Ag(111) on the tip-molecule forces in non-contact atomic force microscopy.

    PubMed

    Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald

    2014-01-01

    Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.

  7. Investigation of compositional segregation during unidirectional solidification of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Wang, J. C.

    1982-01-01

    Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.

  8. Modeling the Zeeman effect in high altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line model

    NASA Astrophysics Data System (ADS)

    Larsson, R.; Milz, M.; Rayer, P.; Saunders, R.; Bell, W.; Booton, A.; Buehler, S. A.; Eriksson, P.; John, V.

    2015-10-01

    We present a comparison of a reference and a fast radiative transfer model using numerical weather prediction profiles for the Zeeman-affected high altitude Special Sensor Microwave Imager/Sounder channels 19-22. We find that the models agree well for channels 21 and 22 compared to the channels' system noise temperatures (1.9 and 1.3 K, respectively) and the expected profile errors at the affected altitudes (estimated to be around 5 K). For channel 22 there is a 0.5 K average difference between the models, with a standard deviation of 0.24 K for the full set of atmospheric profiles. Same channel, there is 1.2 K in average between the fast model and the sensor measurement, with 1.4 K standard deviation. For channel 21 there is a 0.9 K average difference between the models, with a standard deviation of 0.56 K. Same channel, there is 1.3 K in average between the fast model and the sensor measurement, with 2.4 K standard deviation. We consider the relatively small model differences as a validation of the fast Zeeman effect scheme for these channels. Both channels 19 and 20 have smaller average differences between the models (at below 0.2 K) and smaller standard deviations (at below 0.4 K) when both models use a two-dimensional magnetic field profile. However, when the reference model is switched to using a full three-dimensional magnetic field profile, the standard deviation to the fast model is increased to almost 2 K due to viewing geometry dependencies causing up to ± 7 K differences near the equator. The average differences between the two models remain small despite changing magnetic field configurations. We are unable to compare channels 19 and 20 to sensor measurements due to limited altitude range of the numerical weather prediction profiles. We recommended that numerical weather prediction software using the fast model takes the available fast Zeeman scheme into account for data assimilation of the affected sensor channels to better constrain the upper atmospheric temperatures.

  9. Modeling the Zeeman effect in high-altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line model

    NASA Astrophysics Data System (ADS)

    Larsson, Richard; Milz, Mathias; Rayer, Peter; Saunders, Roger; Bell, William; Booton, Anna; Buehler, Stefan A.; Eriksson, Patrick; John, Viju O.

    2016-03-01

    We present a comparison of a reference and a fast radiative transfer model using numerical weather prediction profiles for the Zeeman-affected high-altitude Special Sensor Microwave Imager/Sounder channels 19-22. We find that the models agree well for channels 21 and 22 compared to the channels' system noise temperatures (1.9 and 1.3 K, respectively) and the expected profile errors at the affected altitudes (estimated to be around 5 K). For channel 22 there is a 0.5 K average difference between the models, with a standard deviation of 0.24 K for the full set of atmospheric profiles. Concerning the same channel, there is 1.2 K on average between the fast model and the sensor measurement, with 1.4 K standard deviation. For channel 21 there is a 0.9 K average difference between the models, with a standard deviation of 0.56 K. Regarding the same channel, there is 1.3 K on average between the fast model and the sensor measurement, with 2.4 K standard deviation. We consider the relatively small model differences as a validation of the fast Zeeman effect scheme for these channels. Both channels 19 and 20 have smaller average differences between the models (at below 0.2 K) and smaller standard deviations (at below 0.4 K) when both models use a two-dimensional magnetic field profile. However, when the reference model is switched to using a full three-dimensional magnetic field profile, the standard deviation to the fast model is increased to almost 2 K due to viewing geometry dependencies, causing up to ±7 K differences near the equator. The average differences between the two models remain small despite changing magnetic field configurations. We are unable to compare channels 19 and 20 to sensor measurements due to limited altitude range of the numerical weather prediction profiles. We recommended that numerical weather prediction software using the fast model takes the available fast Zeeman scheme into account for data assimilation of the affected sensor channels to better constrain the upper atmospheric temperatures.

  10. Playing off the curve - testing quantitative predictions of skill acquisition theories in development of chess performance.

    PubMed

    Gaschler, Robert; Progscha, Johanna; Smallbone, Kieran; Ram, Nilam; Bilalić, Merim

    2014-01-01

    Learning curves have been proposed as an adequate description of learning processes, no matter whether the processes manifest within minutes or across years. Different mechanisms underlying skill acquisition can lead to differences in the shape of learning curves. In the current study, we analyze the tournament performance data of 1383 chess players who begin competing at young age and play tournaments for at least 10 years. We analyze the performance development with the goal to test the adequacy of learning curves, and the skill acquisition theories they are based on, for describing and predicting expertise acquisition. On the one hand, we show that the skill acquisition theories implying a negative exponential learning curve do a better job in both describing early performance gains and predicting later trajectories of chess performance than those theories implying a power function learning curve. On the other hand, the learning curves of a large proportion of players show systematic qualitative deviations from the predictions of either type of skill acquisition theory. While skill acquisition theories predict larger performance gains in early years and smaller gains in later years, a substantial number of players begin to show substantial improvements with a delay of several years (and no improvement in the first years), deviations not fully accounted for by quantity of practice. The current work adds to the debate on how learning processes on a small time scale combine to large-scale changes.

  11. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR.

    PubMed

    Ouyang, Jinsong; Chun, Se Young; Petibon, Yoann; Bonab, Ali A; Alpert, Nathaniel; Fakhri, Georges El

    2013-10-01

    This study was to obtain voxel-wise PET accuracy and precision using tissue-segmentation for attenuation correction. We applied multiple thresholds to the CTs of 23 patients to classify tissues. For six of the 23 patients, MR images were also acquired. The MR fat/in-phase ratio images were used for fat segmentation. Segmented tissue classes were used to create attenuation maps, which were used for attenuation correction in PET reconstruction. PET bias images were then computed using the PET reconstructed with the original CT as the reference. We registered the CTs for all the patients and transformed the corresponding bias images accordingly. We then obtained the mean and standard deviation bias atlas using all the registered bias images. Our CT-based study shows that four-class segmentation (air, lungs, fat, other tissues), which is available on most PET-MR scanners, yields 15.1%, 4.1%, 6.6%, and 12.9% RMSE bias in lungs, fat, non-fat soft-tissues, and bones, respectively. An accurate fat identification is achievable using fat/in-phase MR images. Furthermore, we have found that three-class segmentation (air, lungs, other tissues) yields less than 5% standard deviation of bias within the heart, liver, and kidneys. This implies that three-class segmentation can be sufficient to achieve small variation of bias for imaging these three organs. Finally, we have found that inter- and intra-patient lung density variations contribute almost equally to the overall standard deviation of bias within the lungs.

  12. [Prism correction in heterophoria].

    PubMed

    Kommerell, G; Kromeier, M

    2002-01-01

    Unlike heterotropia (= manifest strabismus), heterophoria (= latent strabismus) is not a primarily existing condition but is a reaction to an interruption of the sensory-motor feedback control system. The reaction consists of a deviation from the orthovergence position. Binocular vision causes a continuous calibration of the vergence position. This "orthophorisation" explains that in most persons, heterophoria differs only slightly from zero. Nevertheless, a small heterophoria is common (70-80% of the population). The need to compensate for heterophoria by sensory-motor fusion can cause asthenopic complaints, such as headaches with prolonged reading. Since a variety of other defects can lead to similar symptoms, a causal relationship with heterophoria can be assumed only after a thorough differential diagnosis. Prism spectacles or eye muscle surgery for heterophoria should be recommended only after prism trials in free space, which include yoked prisms as a placebo control. Heterophoria should be distinguished from "Winkelfehlsichtigkeit", which is a deviation from orthoposition that results from the "measuring and correcting methodology after H.-J. Haase" (MKH) and is based on the idea that fixation disparity, a minute deviation from orthovergence position, indicates an inability to overcome a larger "vergence angle at rest". Objective recordings have, however, revealed that the subjective tests with stereo cues applied in the MKH can mislead to the assumption of a fixation disparity although both eyes are aligned exactly to the fixation point. A trial conducted in the Netherlands concerning the therapy of asthenopic complaints showed no statistically significant advantage of prism spectacles determined with the MKH over conventional spectacles.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios

    According to the no-hair theorem, astrophysical black holes are fully characterized by their masses and spins and are described by the Kerr metric. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we calculate the profiles of fluorescent iron lines emitted from the accretion flows around black hole candidates within a framework that allows us to perform the calculation as a function of its mass and spin as well as of a free parameter that measures potential deviations from the Kerr metric. We show that suchmore » deviations lead to line profiles that are significantly altered and may exhibit a modified flux ratio of the two peaks in their characteristic double-peaked shape. We also show that the disk inclination can be measured independently of the spin and the deviation parameter at low to intermediate inclination angles, as in the case of Kerr black holes. We estimate the precision that near-future X-ray missions such as Astro-H and ATHENA+ are required to achieve in order to resolve deviations from the Kerr metric in iron line profiles and show that constraints on such deviations will be strongest for rapidly spinning black holes. More generally, we show that measuring the line profile with a precision of {approx}5% at disk inclinations of 30 Degree-Sign or 60 Degree-Sign constrains the deviation parameter to order unity for values of the spin a {approx}> 0.5M.« less

  14. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models.

    PubMed

    Genheden, Samuel

    2017-10-01

    We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.

  15. Net Reaction Rate and Neutrino Cooling Rate for the Urca Process in Departure from Chemical Equilibrium in the Crust of Fast-accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping

    We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.

  16. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models

    NASA Astrophysics Data System (ADS)

    Genheden, Samuel

    2017-10-01

    We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.

  17. Richmond public transportation study report.

    DOT National Transportation Integrated Search

    2000-05-01

    This study looked at the possible costs and benefits associated with the creation of a small deviated fixed route bus service in Richmond. It concluded that the circumstances in Richmond favor the creation of such a system. It also concluded that onl...

  18. Linear maps preserving maximal deviation and the Jordan structure of quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamhalter, Jan

    2012-12-15

    In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less

  19. Phenomenology of small violations of Fermi and Bose statistics

    NASA Astrophysics Data System (ADS)

    Greenberg, O. W.; Mohapatra, Rabindra N.

    1989-04-01

    In a recent paper, we proposed a ``paronic'' field-theory framework for possible small deviations from the Pauli exclusion principle. This theory cannot be represented in a positive-metric (Hilbert) space. Nonetheless, the issue of possible small violations of the exclusion principle can be addressed in the framework of quantum mechanics, without being connected with a local quantum field theory. In this paper, we discuss the phenomenology of small violations of both Fermi and Bose statistics. We consider the implications of such violations in atomic, nuclear, particle, and condensed-matter physics and in astrophysics and cosmology. We also discuss experiments that can detect small violations of Fermi and Bose statistics or place stringent bounds on their validity.

  20. Tunable multiphoton Rabi oscillations in an electronic spin system

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.

    2011-10-01

    We report on multiphoton Rabi oscillations and controlled tuning of a multilevel system at room temperature (S=5/2 for Mn2+:MgO) in and out of a quasiharmonic level configuration. The anisotropy is much smaller than the Zeeman splittings, e.g., the six-level scheme shows only a small deviation from an equidistant diagram. This allows us to tune the spin dynamics by compensating for the cubic anisotropy with either a precise static-field orientation or a microwave field intensity. Using the rotating-frame approximation, the experiments are explained very well by both an analytical model and a generalized numerical model. The calculated multiphoton Rabi frequencies are in excellent agreement with the experimental data.

  1. A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Lu, Dan; Zhang, Ruikang; Liu, Songtao; Sun, Mengdie; Kan, Qiang; Ji, Chen

    2017-01-01

    A monolithically integrated four-channel directly modulated laser (DML) array working at the 1.3-μm band is demonstrated. The laser was manufactured by using the techniques of selective area growth (SAG) of the upper separate confinement heterostructure (Upper-SCH) and modified butt-joint method. The fabricated device showed stable single mode operation with the side mode suppression ratio (SMSR) >35 dB, and high wavelength accuracy with the deviations from the linear fitted values <±0.03 nm for all channels. Furthermore, small signal modulation bandwidth >7 GHz was obtained, which may be suitable for 40 GbE applications in the 1.3-μm band.

  2. Spatial trends in Pearson Type III statistical parameters

    USGS Publications Warehouse

    Lichty, R.W.; Karlinger, M.R.

    1995-01-01

    Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors

  3. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    PubMed

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  4. Gene Expression Signatures Based on Variability can Robustly Predict Tumor Progression and Prognosis

    PubMed Central

    Dinalankara, Wikum; Bravo, Héctor Corrada

    2015-01-01

    Gene expression signatures are commonly used to create cancer prognosis and diagnosis methods, yet only a small number of them are successfully deployed in the clinic since many fail to replicate performance on subsequent validation. A primary reason for this lack of reproducibility is the fact that these signatures attempt to model the highly variable and unstable genomic behavior of cancer. Our group recently introduced gene expression anti-profiles as a robust methodology to derive gene expression signatures based on the observation that while gene expression measurements are highly heterogeneous across tumors of a specific cancer type relative to the normal tissue, their degree of deviation from normal tissue expression in specific genes involved in tissue differentiation is a stable tumor mark that is reproducible across experiments and cancer types. Here we show that constructing gene expression signatures based on variability and the anti-profile approach yields classifiers capable of successfully distinguishing benign growths from cancerous growths based on deviation from normal expression. We then show that this same approach generates stable and reproducible signatures that predict probability of relapse and survival based on tumor gene expression. These results suggest that using the anti-profile framework for the discovery of genomic signatures is an avenue leading to the development of reproducible signatures suitable for adoption in clinical settings. PMID:26078586

  5. Multiplicative Versus Additive Filtering for Spacecraft Attitude Determination

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2003-01-01

    The absence of a globally nonsingular three-parameter representation of rotations forces attitude Kalman filters to estimate either a singular or a redundant attitude representation. We compare two filtering strategies using simplified kinematics and measurement models. Our favored strategy estimates a three-parameter representation of attitude deviations from a reference attitude specified by a higher- dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. We point out some disadvantages of the other strategy, which directly estimates the four-parameter quaternion representation.

  6. A passive autofocus system by using standard deviation of the image on a liquid lens

    NASA Astrophysics Data System (ADS)

    Rasti, Pejman; Kesküla, Arko; Haus, Henry; Schlaak, Helmut F.; Anbarjafari, Gholamreza; Aabloo, Alvo; Kiefer, Rudolf

    2015-04-01

    Today most of applications have a small camera such as cell phones, tablets and medical devices. A micro lens is required in order to reduce the size of the devices. In this paper an auto focus system is used in order to find the best position of a liquid lens without any active components such as ultrasonic or infrared. In fact a passive auto focus system by using standard deviation of the images on a liquid lens which consist of a Dielectric Elastomer Actuator (DEA) membrane between oil and water is proposed.

  7. Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field

    NASA Astrophysics Data System (ADS)

    Sallabi, A. K.; Alkhttab, M.

    2014-12-01

    Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).

  8. CAD/CAM produces dentures with improved fit.

    PubMed

    Steinmassl, Otto; Dumfahrt, Herbert; Grunert, Ingrid; Steinmassl, Patricia-Anca

    2018-02-22

    Resin polymerisation shrinkage reduces the congruence of the denture base with denture-bearing tissues and thereby decreases the retention of conventionally fabricated dentures. CAD/CAM denture manufacturing is a subtractive process, and polymerisation shrinkage is not an issue anymore. Therefore, CAD/CAM dentures are assumed to show a higher denture base congruence than conventionally fabricated dentures. It has been the aim of this study to test this hypothesis. CAD/CAM dentures provided by four different manufacturers (AvaDent, Merz Dental, Whole You, Wieland/Ivoclar) were generated from ten different master casts. Ten conventional dentures (pack and press, long-term heat polymerisation) made from the same master casts served as control group. The master casts and all denture bases were scanned and matched digitally. The absolute incongruences were measured using a 2-mm mesh. Conventionally fabricated dentures showed a mean deviation of 0.105 mm, SD = 0.019 from the master cast. All CAD/CAM dentures showed lower mean incongruences. From all CAD/CAM dentures, AvaDent Digital Dentures showed the highest congruence with the master cast surface with a mean deviation of 0.058 mm, SD = 0.005. Wieland Digital Dentures showed a mean deviation of 0.068 mm, SD = 0.005, Whole You Nexteeth prostheses showed a mean deviation of 0.074 mm, SD = 0.011 and Baltic Denture System prostheses showed a mean deviation of 0.086 mm, SD = 0.012. CAD/CAM produces dentures with better fit than conventional dentures. The present study explains the clinically observed enhanced retention and lower traumatic ulcer-frequency in CAD/CAM dentures.

  9. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lye, Jessica, E-mail: jessica.lye@arpansa.gov.au; Dunn, Leon; Kenny, John

    Purpose: On 1 July 2012, the Australian Clinical Dosimetry Service (ACDS) released its Optically Stimulated Luminescent Dosimeter (OSLD) Level I audit, replacing the previous TLD based audit. The aim of this work is to present the results from this new service and the complete uncertainty analysis on which the audit tolerances are based. Methods: The audit release was preceded by a rigorous evaluation of the InLight® nanoDot OSLD system from Landauer (Landauer, Inc., Glenwood, IL). Energy dependence, signal fading from multiple irradiations, batch variation, reader variation, and dose response factors were identified and quantified for each individual OSLD. The detectorsmore » are mailed to the facility in small PMMA blocks, based on the design of the existing Radiological Physics Centre audit. Modeling and measurement were used to determine a factor that could convert the dose measured in the PMMA block, to dose in water for the facility's reference conditions. This factor is dependent on the beam spectrum. The TPR{sub 20,10} was used as the beam quality index to determine the specific block factor for a beam being audited. The audit tolerance was defined using a rigorous uncertainty calculation. The audit outcome is then determined using a scientifically based two tiered action level approach. Audit outcomes within two standard deviations were defined as Pass (Optimal Level), within three standard deviations as Pass (Action Level), and outside of three standard deviations the outcome is Fail (Out of Tolerance). Results: To-date the ACDS has audited 108 photon beams with TLD and 162 photon beams with OSLD. The TLD audit results had an average deviation from ACDS of 0.0% and a standard deviation of 1.8%. The OSLD audit results had an average deviation of −0.2% and a standard deviation of 1.4%. The relative combined standard uncertainty was calculated to be 1.3% (1σ). Pass (Optimal Level) was reduced to ≤2.6% (2σ), and Fail (Out of Tolerance) was reduced to >3.9% (3σ) for the new OSLD audit. Previously with the TLD audit the Pass (Optimal Level) and Fail (Out of Tolerance) were set at ≤4.0% (2σ) and >6.0% (3σ). Conclusions: The calculated standard uncertainty of 1.3% at one standard deviation is consistent with the measured standard deviation of 1.4% from the audits and confirming the suitability of the uncertainty budget derived audit tolerances. The OSLD audit shows greater accuracy than the previous TLD audit, justifying the reduction in audit tolerances. In the TLD audit, all outcomes were Pass (Optimal Level) suggesting that the tolerances were too conservative. In the OSLD audit 94% of the audits have resulted in Pass (Optimal level) and 6% of the audits have resulted in Pass (Action Level). All Pass (Action level) results have been resolved with a repeat OSLD audit, or an on-site ion chamber measurement.« less

  10. The Ghanaian Economic Recovery

    DTIC Science & Technology

    2013-12-01

    Adjustment Programs6 instituted by the IMF and World Bank, combined with currency devaluation and smaller government, are responsible for Ghana’s recent...study shows that every negative deviation year was preceded by protectionist policies, and, with one exception (explained by currency devaluation ...negative deviation year was preceded by protectionist policies, and, with one exception (explained by currency devaluation ), every positive deviation

  11. Should short children born small for gestational age with a distance to target height <1 standard deviation score be excluded from growth hormone treatment?

    PubMed

    Lem, Annemieke J; de Kort, Sandra W K; de Ridder, Maria A J; Hokken-Koelega, Anita C S

    2010-09-01

    The criteria for starting growth hormone (GH), an approved treatment for short children born small for gestational age (SGA), differ between Europe and the USA. One European requirement for starting GH, a distance to target height (DTH) of > or =1 standard deviation score (SDS), is controversial. To investigate the influence of DTH on growth during GH treatment in short SGA children and to ascertain whether it is correct to exclude children with a DTH <1 SDS from GH. A large group of short prepubertal SGA children (baseline n = 446; 4 years GH n = 215). We analysed the prepubertal growth response during 4 years of GH. We investigated the influence of the continuous variable DTH SDS on growth response and a possible DTH SDS cut-off level below which point the growth response is insufficient. Height gain SDS during 4 years of GH showed a wide variation at every DTH SDS level. Multiple regression analyses demonstrated that, after correction for other significant variables, an additional DTH of 1 SDS resulted in 0.13 SDS more height gain during 4 years of GH. We found no significant differences in height gain below and above certain DTH SDS cut-off levels. DTH SDS had a weak positive effect on height gain during 4 years of GH, while several other determinants had much larger effects. We found no support for using any DTH cut-off level. Based on our data, excluding children with a DTH <1 SDS from GH treatment is not justified.

  12. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow.

    PubMed

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-07

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  13. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-01

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  14. Role of the standard deviation in the estimation of benchmark doses with continuous data.

    PubMed

    Gaylor, David W; Slikker, William

    2004-12-01

    For continuous data, risk is defined here as the proportion of animals with values above a large percentile, e.g., the 99th percentile or below the 1st percentile, for the distribution of values among control animals. It is known that reducing the standard deviation of measurements through improved experimental techniques will result in less stringent (higher) doses for the lower confidence limit on the benchmark dose that is estimated to produce a specified risk of animals with abnormal levels for a biological effect. Thus, a somewhat larger (less stringent) lower confidence limit is obtained that may be used as a point of departure for low-dose risk assessment. It is shown in this article that it is important for the benchmark dose to be based primarily on the standard deviation among animals, s(a), apart from the standard deviation of measurement errors, s(m), within animals. If the benchmark dose is incorrectly based on the overall standard deviation among average values for animals, which includes measurement error variation, the benchmark dose will be overestimated and the risk will be underestimated. The bias increases as s(m) increases relative to s(a). The bias is relatively small if s(m) is less than one-third of s(a), a condition achieved in most experimental designs.

  15. An Ambulatory Method of Identifying Anterior Cruciate Ligament Reconstructed Gait Patterns

    PubMed Central

    Patterson, Matthew R.; Delahunt, Eamonn; Sweeney, Kevin T.; Caulfield, Brian

    2014-01-01

    The use of inertial sensors to characterize pathological gait has traditionally been based on the calculation of temporal and spatial gait variables from inertial sensor data. This approach has proved successful in the identification of gait deviations in populations where substantial differences from normal gait patterns exist; such as in Parkinsonian gait. However, it is not currently clear if this approach could identify more subtle gait deviations, such as those associated with musculoskeletal injury. This study investigates whether additional analysis of inertial sensor data, based on quantification of gyroscope features of interest, would provide further discriminant capability in this regard. The tested cohort consisted of a group of anterior cruciate ligament reconstructed (ACL-R) females and a group of non-injured female controls, each performed ten walking trials. Gait performance was measured simultaneously using inertial sensors and an optoelectronic marker based system. The ACL-R group displayed kinematic and kinetic deviations from the control group, but no temporal or spatial deviations. This study demonstrates that quantification of gyroscope features can successfully identify changes associated with ACL-R gait, which was not possible using spatial or temporal variables. This finding may also have a role in other clinical applications where small gait deviations exist. PMID:24451464

  16. Score distributions of gapped multiple sequence alignments down to the low-probability tail

    NASA Astrophysics Data System (ADS)

    Fieth, Pascal; Hartmann, Alexander K.

    2016-08-01

    Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.

  17. Determination of wind from NIMBUS 6 satellite sounding data

    NASA Technical Reports Server (NTRS)

    Carle, W. E.; Scoggins, J. R.

    1981-01-01

    Objective methods of computing upper level and surface wind fields from NIMBUS 6 satellite sounding data are developed. These methods are evaluated by comparing satellite derived and rawinsonde wind fields on gridded constant pressure charts in four geographical regions. Satellite-derived and hourly observed surface wind fields are compared. Results indicate that the best satellite-derived wind on constant pressure charts is a geostrophic wind derived from highly smoothed fields of geopotential height. Satellite-derived winds computed in this manner and rawinsonde winds show similar circulation patterns except in areas of small height gradients. Magnitudes of the standard deviation of the differences between satellite derived and rawinsonde wind speeds range from approximately 3 to 12 m/sec on constant pressure charts and peak at the jet stream level. Fields of satellite-derived surface wind computed with the logarithmic wind law agree well with fields of observed surface wind in most regions. Magnitudes of the standard deviation of the differences in surface wind speed range from approximately 2 to 4 m/sec, and satellite derived surface winds are able to depict flow across a cold front and around a low pressure center.

  18. Numerical performance analysis of quartz tuning fork-based force sensors

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Schwarz, Udo D.

    2017-01-01

    Quartz tuning fork-based force sensors where one prong is immobilized onto a holder while the other one is allowed to oscillate freely (‘qPlus’ configuration) are in widespread use for high-resolution scanning probe microscopy applications. Due to the small size of the tuning forks (≈3 mm) and the complexity of the sensor assemblies, the reliable and repeatable manufacturing of the sensors has been challenging. In this paper, we investigate the contribution of the amount and location of the epoxy glue used to attach the tuning fork to its holder on the sensor’s performance. Towards this end, we use finite element analysis to model the entire sensor assembly and to perform static and dynamic numerical simulations. Our analysis reveals that increasing the thickness of the epoxy layer between prong and holder results in a decrease of the sensor’s spring constant, eigenfrequency, and quality factor while showing an increasing deviation from oscillation in its primary modal shape. Adding epoxy at the sides of the tuning fork also leads to a degradation of the quality factor even though in this case, spring constant and eigenfrequency rise in tandem with a lessening of the deviation from its ideal modal shape.

  19. Quantifying expert diagnosis variability when grading tumor-infiltrating lymphocytes

    NASA Astrophysics Data System (ADS)

    Toro, Paula; Corredor, Germán.; Wang, Xiangxue; Arias, Viviana; Velcheti, Vamsidhar; Madabhushi, Anant; Romero, Eduardo

    2017-11-01

    Tumor-infiltrating lymphocytes (TILs) have proved to play an important role in predicting prognosis, survival, and response to treatment in patients with a variety of solid tumors. Unfortunately, currently, there are not a standardized methodology to quantify the infiltration grade. The aim of this work is to evaluate variability among the reports of TILs given by a group of pathologists who examined a set of digitized Non-Small Cell Lung Cancer samples (n=60). 28 pathologists answered a different number of histopathological images. The agreement among pathologists was evaluated by computing the Kappa index coefficient and the standard deviation of their estimations. Furthermore, TILs reports were correlated with patient's prognosis and survival using the Pearson's correlation coefficient. General results show that the agreement among experts grading TILs in the dataset is low since Kappa values remain below 0.4 and the standard deviation values demonstrate that in none of the images there was a full consensus. Finally, the correlation coefficient for each pathologist also reveals a low association between the pathologists' predictions and the prognosis/survival data. Results suggest the need of defining standardized, objective, and effective strategies to evaluate TILs, so they could be used as a biomarker in the daily routine.

  20. Topological inflation with graceful exit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marunović, Anja; Prokopec, Tomislav, E-mail: a.marunovic@uu.nl, E-mail: t.prokopec@uu.nl

    We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that themore » monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as n {sub s} ≅ 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.« less

  1. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  2. Research on material removal accuracy analysis and correction of removal function during ion beam figuring

    NASA Astrophysics Data System (ADS)

    Wu, Weibin; Dai, Yifan; Zhou, Lin; Xu, Mingjin

    2016-09-01

    Material removal accuracy has a direct impact on the machining precision and efficiency of ion beam figuring. By analyzing the factors suppressing the improvement of material removal accuracy, we conclude that correcting the removal function deviation and reducing the removal material amount during each iterative process could help to improve material removal accuracy. Removal function correcting principle can effectively compensate removal function deviation between actual figuring and simulated processes, while experiments indicate that material removal accuracy decreases with a long machining time, so a small amount of removal material in each iterative process is suggested. However, more clamping and measuring steps will be introduced in this way, which will also generate machining errors and suppress the improvement of material removal accuracy. On this account, a free-measurement iterative process method is put forward to improve material removal accuracy and figuring efficiency by using less measuring and clamping steps. Finally, an experiment on a φ 100-mm Zerodur planar is preformed, which shows that, in similar figuring time, three free-measurement iterative processes could improve the material removal accuracy and the surface error convergence rate by 62.5% and 17.6%, respectively, compared with a single iterative process.

  3. Fluctuations and symmetries in two-dimensional active gels.

    PubMed

    Sarkar, N; Basu, A

    2011-04-01

    Motivated by the unique physical properties of biological active matter, e.g., cytoskeletal dynamics in eukaryotic cells, we set up effective two-dimensional (2d) coarse-grained hydrodynamic equations for the dynamics of thin active gels with polar or nematic symmetries. We use the well-known three-dimensional (3d) descriptions (K. Kruse et al., Eur. Phys. J. E 16, 5 (2005); A. Basu et al., Eur. Phys. J. E 27, 149 (2008)) for thin active-gel samples confined between parallel plates with appropriate boundary conditions to derive the effective 2d constitutive relations between appropriate thermodynamic fluxes and generalised forces for small deviations from equilibrium. We consider three distinct cases, characterised by spatial symmetries and boundary conditions, and show how such considerations dictate the structure of the constitutive relations. We use these to study the linear instabilities, calculate the correlation functions and the diffusion constant of a small tagged particle, and elucidate their dependences on the activity or nonequilibrium drive.

  4. Newton to Einstein — dust to dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas, E-mail: michael.kopp@physik.lmu.de, E-mail: cora.uhlemann@physik.lmu.de, E-mail: thomas.haugg@physik.lmu.de

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show thatmore » this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.« less

  5. Evaluation of reactive oxygen metabolites in patients with non-small cell lung cancer after chemotherapy.

    PubMed

    Wakabayashi, Toru; Kawashima, Tatsuo; Matsuzawa, Yasuo

    2014-01-01

    The aim of this study was to evaluate the level of reactive oxygen metabolites (ROMs) after chemotherapy in patients with non-small cell lung cancer (NSCLC) and its association with response to treatment. Fifty-eight untreated NSCLC patients and twenty-three healthy subjects were selected for the study. Patients received two courses of platinum-based chemotherapy and were evaluated for oxidative stress and treatment response. As a marker of reactive oxygen species, ROMs levels were measured using the d-ROMs test. ROMs level (mean ± standard deviation) before chemotherapy in NSCLC patients (416 ± 135 U.CARR) was significantly elevated (p = 0.016) compared to normal healthy subjects (320 ± 59 U.CARR). Patients who responded to chemotherapy showed significantly decreased (p = 0.014) ROMs levels after chemotherapy, whereas patients who had stable disease or progressive disease showed no change in ROMs level (p = 0.387). NSCLC patients had significantly elevated ROMs levels before chemotherapy compared with normal healthy subjects. Chemotherapy may suppress ROMs production in responders but not in non-responders. ROMs level may be a predictor of clinical outcome in patients receiving chemotherapy for NSCLC.

  6. Estimating Spectra from Photometry

    NASA Astrophysics Data System (ADS)

    Kalmbach, J. Bryce; Connolly, Andrew J.

    2017-12-01

    Measuring the physical properties of galaxies such as redshift frequently requires the use of spectral energy distributions (SEDs). SED template sets are, however, often small in number and cover limited portions of photometric color space. Here we present a new method to estimate SEDs as a function of color from a small training set of template SEDs. We first cover the mathematical background behind the technique before demonstrating our ability to reconstruct spectra based upon colors and then compare our results to other common interpolation and extrapolation methods. When the photometric filters and spectra overlap, we show that the error in the estimated spectra is reduced by more than 65% compared to the more commonly used techniques. We also show an expansion of the method to wavelengths beyond the range of the photometric filters. Finally, we demonstrate the usefulness of our technique by generating 50 additional SED templates from an original set of 10 and by applying the new set to photometric redshift estimation. We are able to reduce the photometric redshifts standard deviation by at least 22.0% and the outlier rejected bias by over 86.2% compared to original set for z ≤ 3.

  7. Consistency relations for sharp inflationary non-Gaussian features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris

    If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming frommore » the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.« less

  8. Experiments with central-limit properties of spatial samples from locally covariant random fields

    USGS Publications Warehouse

    Barringer, T.H.; Smith, T.E.

    1992-01-01

    When spatial samples are statistically dependent, the classical estimator of sample-mean standard deviation is well known to be inconsistent. For locally dependent samples, however, consistent estimators of sample-mean standard deviation can be constructed. The present paper investigates the sampling properties of one such estimator, designated as the tau estimator of sample-mean standard deviation. In particular, the asymptotic normality properties of standardized sample means based on tau estimators are studied in terms of computer experiments with simulated sample-mean distributions. The effects of both sample size and dependency levels among samples are examined for various value of tau (denoting the size of the spatial kernel for the estimator). The results suggest that even for small degrees of spatial dependency, the tau estimator exhibits significantly stronger normality properties than does the classical estimator of standardized sample means. ?? 1992.

  9. Differential Deposition Technique for Figure Corrections in Grazing Incidence X-ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail

    2009-01-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter type grazing incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of the optics by limiting the achievable angular resolution. In the differential deposition technique, material of varying thickness is selectively deposited along the length of the optic to minimize these deviations, thereby improving the overall figure. High resolution focusing optics being developed at MSFC for small animal radionuclide imaging are being coated to test the differential deposition technique. The required spatial resolution for these optics is 100 m. This base resolution is achievable with the regular electroform-nickel-replication fabrication technique used at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim at significantly improving the resolution beyond this value.

  10. High resolution ion chamber array delivery quality assurance for robotic radiosurgery: Commissioning and validation.

    PubMed

    Blanck, Oliver; Masi, Laura; Chan, Mark K H; Adamczyk, Sebastian; Albrecht, Christian; Damme, Marie-Christin; Loutfi-Krauss, Britta; Alraun, Manfred; Fehr, Roman; Ramm, Ulla; Siebert, Frank-Andre; Stelljes, Tenzin Sonam; Poppinga, Daniela; Poppe, Björn

    2016-06-01

    High precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans. Preliminary evaluation consisted of beam profile validation and analysis of source-detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference⩽2%, distance-to-agreement⩽2mm, pass-rate⩾90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions. The 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10cm source-detector-distance change, but remains within 1% for the clinically relevant source-detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1mm distance-to-agreement criterion while 2mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria. We demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source-detector-distance response. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Quantitative analysis of ions in spring water in three different areas of Hyogo Prefecture in Japan by far ultraviolet spectroscopy.

    PubMed

    Mitsuoka, Motoki; Shinzawa, Hideyuki; Morisawa, Yusuke; Kariyama, Naomi; Higashi, Noboru; Tsuboi, Motohiro; Ozaki, Yukihiro

    2011-01-01

    Far-ultraviolet (FUV) spectra in the 190-300 nm region were measured for spring water in Awaji-Akashi area, Tamba area and Rokko-Arima area in Hyogo Prefecture, Japan, these areas have quite different geology features. The spectra of the spring water in the Awaji-Akashi area can be divided into two groups: the spring water samples containing large amounts of NO(3)(-) and/or Cl(-), and those containing only small amounts of NO(3)(-) and Cl(-). The former shows a saturated band below 190 nm due to NO(3)(-) and/or Cl(-). These two types of spectra correspond to different lithological areas: sedimentary lithology near the sea shore containing many ions in the seawater and gravitic lithology far from the sea side, in the Awaji-Akashi area. The spring water from the Tamba area, which is far from the sea, contains relatively small amounts of NO(3)(-) and Cl(-); it does not yield a strong band in the region observed. The FUV spectra of three of four kinds of spring water samples in the Arima Hotspring show characteristic spectral patterns. They are quite different from the spectra of the spring water samples of the Rokko area. Calibration models were developed for NO(3)(-), Cl(-), SO(4)(2-), Na(+), and Mg(2+) in the nine kinds of spring water collected in the Awaji-Akashi area, Tamba, and Rokko-Arima area by using univariate analysis of the first derivative spectra and the actual values obtained by ion chromatography. NO(3)(-) yields the best results: correlation coefficient of 0.999 and standard deviation of 0.09 ppm with the wavelength of 212 nm. Cl(-) also gives good results: correlation coefficient of 0.993 and standard deviation of 0.5 ppm with the wavelength of 192 nm.

  12. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device.

    PubMed

    Zarghami, Niloufar; Jensen, Michael D; Talluri, Srikanth; Foster, Paula J; Chambers, Ann F; Dick, Frederick A; Wong, Eugene

    2015-11-01

    Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. A mouse head holder was designed for a microCT couch using cad software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14±0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2°±1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  13. Tungsten Isotopic Compositions in Stardust SiC Grains from the Murchison Meteorite: Constraints on the s-process in the Hf-Ta-W-Re-Os Region

    NASA Astrophysics Data System (ADS)

    Ávila, Janaína N.; Lugaro, Maria; Ireland, Trevor R.; Gyngard, Frank; Zinner, Ernst; Cristallo, Sergio; Holden, Peter; Buntain, Joelene; Amari, Sachiko; Karakas, Amanda

    2012-01-01

    We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes 182,183,184,186W and 179,180Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the 182W/184W and 183W/184W ratios, with deficits in 182W and 183W with respect to 184W. The 186W/184W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar 182W/184W, 183W/184W, and 186W/184W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their 182W/184W, 183W/184W, and 179Hf/180Hf isotopic compositions, although a small adjustment in the s-process production of 183W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the 186W/184W ratios observed in the SiC grains, even when the current 185W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e.g., the formation of the 13C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the 22Ne neutron source) may affect current s-process predictions.

  14. Interior micro-CT with an offset detector

    PubMed Central

    Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge; Cao, Guohua

    2014-01-01

    Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three extended reconstruction methods by suppressing artifacts and maintaining pixel values. PMID:24877826

  15. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarghami, Niloufar, E-mail: nzargham@uwo.ca; Jensen, Michael D.; Talluri, Srikanth

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate themore » precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.« less

  16. Effects of lateral boundary condition resolution and update frequency on regional climate model predictions

    NASA Astrophysics Data System (ADS)

    Pankatz, Klaus; Kerkweg, Astrid

    2015-04-01

    The work presented is part of the joint project "DecReg" ("Regional decadal predictability") which is in turn part of the project "MiKlip" ("Decadal predictions"), an effort funded by the German Federal Ministry of Education and Research to improve decadal predictions on a global and regional scale. In MiKlip, one big question is if regional climate modeling shows "added value", i.e. to evaluate, if regional climate models (RCM) produce better results than the driving models. However, the scope of this study is to look more closely at the setup specific details of regional climate modeling. As regional models only simulate a small domain, they have to inherit information about the state of the atmosphere at their lateral boundaries from external data sets. There are many unresolved questions concerning the setup of lateral boundary conditions (LBC). External data sets come from global models or from global reanalysis data-sets. A temporal resolution of six hours is common for this kind of data. This is mainly due to the fact, that storage space is a limiting factor, especially for climate simulations. However, theoretically, the coupling frequency could be as high as the time step of the driving model. Meanwhile, it is unclear if a more frequent update of the LBCs has a significant effect on the climate in the domain of the RCM. The first study examines how the RCM reacts to a higher update frequency. The study is based on a 30 year time slice experiment for three update frequencies of the LBC, namely six hours, one hour and six minutes. The evaluation of means, standard deviations and statistics of the climate in the regional domain shows only small deviations, some statistically significant though, of 2m temperature, sea level pressure and precipitation. The second part of the first study assesses parameters linked to cyclone activity, which is affected by the LBC update frequency. Differences in track density and strength are found when comparing the simulations. Theoretically, regional down-scaling should act like a magnifying glass. It should reveal details on small scales which a global model cannot resolve, but it should not affect the large scale flow. As the development of the small scale features takes some time, it is important that the air stays long enough within the regional domain. The spin-up time of the small scale features is, of course, dependent on the resolution of the LBC and the resolution of the RCM. The second study examines the quality of decadal hind-casts over Europe of the decade 2001-2010 when the horizontal resolution of the driving model, namely 2.8°, 1.8°, 1.4°, 1.1°, from which the LBC are calculated, is altered. The study shows, that a smaller resolution gap between LBC resolution and RCM resolution might be beneficial.

  17. Dosimetric challenges of small animal irradiation with a commercial X-ray unit.

    PubMed

    Kuess, Peter; Bozsaky, Eva; Hopfgartner, Johannes; Seifritz, Gerhard; Dörr, Wolfgang; Georg, Dietmar

    2014-12-01

    A commercial X-ray unit was recently installed at the Medical University Vienna for partial and whole body irradiation of small experimental animals. For 200 kV X-rays the dose deviations with respect to the reference dose measured in the geometrical center of the potential available field size was investigated for various experimental setup plates used for mouse irradiations. Furthermore, the HVL was measured in mm Al and mm Cu at 200 kV for two types of filtration. Three different setup constructions for small animal irradiation were dosimetrically characterized, covering field sizes from 9×20 mm2 to 210×200 mm2. Different types of detectors were investigated. Additionally LiF:MG,Ti TLD chips were used for mouse in-vivo dosimetry. The use of an additional 0.5 mm Cu filter reduced the deviation of the dose between each irradiation position on the setup plates. Multiple animals were irradiated at the same time using an individual setup plate for each experimental purpose. The dose deviations of each irradiation position to the center was measured to be ±4% or better. The depth dose curve measured in a solid water phantom was more pronounced for smaller field sizes. The comparison between estimated dose and measured dose in a PMMA phantom regarding the dose decline yielded in a difference of 3.9% at 20 mm depth. In-vivo measurements in a mouse snouts irradiation model confirmed the reference dosimetry, accomplished in PMMA phantoms, in terms of administered dose and deviation within different points of measurement. The outlined experiments dealt with a wide variety of dosimetric challenges during the installation of a new X-ray unit in the laboratory. The depth dose profiles measured for different field sizes were in good agreement with literature data. Different field sizes and spatial arrangement of the animals (depending on each purpose) provide additional challenges for the dosimetric measurements. Thorough dosimetric commissioning has to be performed before a new experimental setup is approved for biological experiments. Copyright © 2014. Published by Elsevier GmbH.

  18. Binocular function in patients with pseudophakic monovision.

    PubMed

    Ito, Misae; Shimizu, Kimiya; Niida, Takahiro; Amano, Rie; Ishikawa, Hitoshi

    2014-08-01

    To evaluate the relationship between ocular deviation and stereopsis and fusion in patients who had pseudophakic monovision surgery. Department of Ophthalmology, Kitasato University Hospital, Kanagawa, Japan. Retrospective comparative case series. Patients had surgical monovision correction with monofocal intraocular lens placement followed by routine postoperative examinations. The alternate prism cover test was used to measure motor alignment. Sensory tests for binocularity included sensory fusion determinations using the Worth 4-dot test, near stereopsis test, and fusion amplitude measured with a prism bar. Patients with monovision were categorized as having small-angle exophoria (≤10.0 prism diopters [Δ]) or moderate-angle exophoria (>10.0 Δ). This study comprised 60 patients with a mean age of 70.2 years ± 7.7 (SD). The difference in the mean stereopsis values between patients with small-angle exophoria and patients with moderate-angle exophoria was statistically significant (P<.001). In the moderate-angle exophoria group, 10 patients (62.5%) developed intermittent exotropia after surgery; however, no serious ocular deviation problems were observed. The fusion amplitudes in patients with pseudophakic monovision were approximately similar to normal values. Patients with moderate-angle exophoria were more likely to fail the Worth 4-dot test than those with small-angle exophoria. In patients with pseudophakic monovision having a near exophoria angle of more than 10.0 Δ, the possibility of changes in ocular deviation and stereopsis after surgery is a concern. Moreover, the application of monovision in patients with a previous moderate-angle exophoria should be carefully considered. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. [Evaluation of the quality of three-dimensional data acquired by using two kinds of structure light intra-oral scanner to scan the crown preparation model].

    PubMed

    Zhang, X Y; Li, H; Zhao, Y J; Wang, Y; Sun, Y C

    2016-07-01

    To quantitatively evaluate the quality and accuracy of three-dimensional (3D) data acquired by using two kinds of structure intra-oral scanner to scan the typical teeth crown preparations. Eight typical teeth crown preparations model were scanned 3 times with two kinds of structured light intra-oral scanner(A, B), as test group. A high precision model scanner were used to scan the model as true value group. The data above the cervical margin was extracted. The indexes of quality including non-manifold edges, the self-intersections, highly-creased edges, spikes, small components, small tunnels, small holes and the anount of triangles were measured with the tool of mesh doctor in Geomagic studio 2012. The scanned data of test group were aligned to the data of true value group. 3D deviations of the test group compared with true value group were measured for each scanned point, each preparation and each group. Independent-samples Mann-Whitney U test was applied to analyze 3D deviations for each scanned point of A and B group. Correlation analysis was applied to index values and 3D deviation values. The total number of spikes in A group was 96, and that in B group and true value group were 5 and 0 respectively. Trueness: A group 8.0 (8.3) μm, B group 9.5 (11.5) μm(P>0.05). Correlation analysis of the number of spikes with data precision of A group was r=0.46. In the study, the qulity of the scanner B is better than scanner A, the difference of accuracy is not statistically significant. There is correlation between quality and data precision of the data scanned with scanner A.

  20. Complexity analysis based on generalized deviation for financial markets

    NASA Astrophysics Data System (ADS)

    Li, Chao; Shang, Pengjian

    2018-03-01

    In this paper, a new modified method is proposed as a measure to investigate the correlation between past price and future volatility for financial time series, known as the complexity analysis based on generalized deviation. In comparison with the former retarded volatility model, the new approach is both simple and computationally efficient. The method based on the generalized deviation function presents us an exhaustive way showing the quantization of the financial market rules. Robustness of this method is verified by numerical experiments with both artificial and financial time series. Results show that the generalized deviation complexity analysis method not only identifies the volatility of financial time series, but provides a comprehensive way distinguishing the different characteristics between stock indices and individual stocks. Exponential functions can be used to successfully fit the volatility curves and quantify the changes of complexity for stock market data. Then we study the influence for negative domain of deviation coefficient and differences during the volatile periods and calm periods. after the data analysis of the experimental model, we found that the generalized deviation model has definite advantages in exploring the relationship between the historical returns and future volatility.

  1. Comparison between Different Methods for Biomechanical Assessment of Ex Vivo Fracture Callus Stiffness in Small Animal Bone Healing Studies

    PubMed Central

    Steiner, Malte; Volkheimer, David; Meyers, Nicholaus; Wehner, Tim; Wilke, Hans-Joachim; Claes, Lutz; Ignatius, Anita

    2015-01-01

    For ex vivo measurements of fracture callus stiffness in small animals, different test methods, such as torsion or bending tests, are established. Each method provides advantages and disadvantages, and it is still debated which of those is most sensitive to experimental conditions (i.e. specimen alignment, directional dependency, asymmetric behavior). The aim of this study was to experimentally compare six different testing methods regarding their robustness against experimental errors. Therefore, standardized specimens were created by selective laser sintering (SLS), mimicking size, directional behavior, and embedding variations of respective rat long bone specimens. For the latter, five different geometries were created which show shifted or tilted specimen alignments. The mechanical tests included three-point bending, four-point bending, cantilever bending, axial compression, constrained torsion, and unconstrained torsion. All three different bending tests showed the same principal behavior. They were highly dependent on the rotational direction of the maximum fracture callus expansion relative to the loading direction (creating experimental errors of more than 60%), however small angular deviations (<15°) were negligible. Differences in the experimental results between the bending tests originate in their respective location of maximal bending moment induction. Compared to four-point bending, three-point bending is easier to apply on small rat and mouse bones under realistic testing conditions and yields robust measurements, provided low variation of the callus shape among the tested specimens. Axial compressive testing was highly sensitive to embedding variations, and therefore cannot be recommended. Although it is experimentally difficult to realize, unconstrained torsion testing was found to be the most robust method, since it was independent of both rotational alignment and embedding uncertainties. Constrained torsional testing showed small errors (up to 16.8%, compared to corresponding alignment under unconstrained torsion) due to a parallel offset between the specimens’ axis of gravity and the torsional axis of rotation. PMID:25781027

  2. SU-E-T-506: Intercomparison Study On Small Field Output Factor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamonti, C; Casati, M; Compagnucci, A

    2015-06-15

    Purpose In radiotherapy, uncertainties due to small field measurements (SFM) introduce systematic errors to the treatment process and the development of new dosimeters for quality assurance programs is a challenge. In this work we analyze the behavior of seven detectors measuring output factors of 6MV photon beam. Methods The dosimeters employed are: a single cristal diamond detector (SCCD) developed at the University of Rome Tor Vergata, a silicon diode developed within the project MAESTRO, a IBA Razor silicon diode, A1SL and A26 Exradin ion chambers, an EBT3 Gafchromic film and the Exradin W1 Scintillator.Diamond sensitive volume is a cylinder 2.2mmmore » in diameter and 1μm thick. MAESTRO diode is 2×2mm2 active area. Razor sensitive volume is a cylinder 0.6 mm in diameter and 0.02 mm thick. A16 and A1Sl have a collecting volume of 0,015cc and 0,053cc. The W1 is an optical fiber with an active volume of 0.002cc. All measurements were performed in a water phantom, with detector positioned at the isocenter (SSD=90cm, d=10cm), MAESTRO diode being sandwiched in solid water to obtain an equivalent experimental setup. Results These measurements are challenging due to the absence of charged particle equilibrium conditions, detector size and positioning problems. They are in good agreement among each other, especially GAF, Razor, W1 and SCDD. Maximum deviations reported are related to the field 0.8×0.8cm2 for MAESTRO and chambers data with respect to EBT3: around 15% (A1SLvsEBT3), 16% (MAESTROvsEBT3). Razor and W1 show a deviation around 3% with respect to SCDD. Conclusion In this work measurements made with a variety of detectors are compared. These study show the possibility to choose different detectors for SFM and that smaller ion chambers are still not competitive with solid state detectors. Silicon, diamond and optical fiber dosimeters show a similar behavior with minor discrepancies for the smallest field.« less

  3. Small field models with gravitational wave signature supported by CMB data

    PubMed Central

    Brustein, Ramy

    2018-01-01

    We study scale dependence of the cosmic microwave background (CMB) power spectrum in a class of small, single-field models of inflation which lead to a high value of the tensor to scalar ratio. The inflaton potentials that we consider are degree 5 polynomials, for which we precisely calculate the power spectrum, and extract the cosmological parameters: the scalar index ns, the running of the scalar index nrun and the tensor to scalar ratio r. We find that for non-vanishing nrun and for r as small as r = 0.001, the precisely calculated values of ns and nrun deviate significantly from what the standard analytic treatment predicts. We study in detail, and discuss the probable reasons for such deviations. As such, all previously considered models (of this kind) are based upon inaccurate assumptions. We scan the possible values of potential parameters for which the cosmological parameters are within the allowed range by observations. The 5 parameter class is able to reproduce all of the allowed values of ns and nrun for values of r that are as high as 0.001. Subsequently this study at once refutes previous such models built using the analytical Stewart-Lyth term, and revives the small field brand, by building models that do yield an appreciable r while conforming to known CMB observables. PMID:29795608

  4. vSDC: a method to improve early recognition in virtual screening when limited experimental resources are available.

    PubMed

    Chaput, Ludovic; Martinez-Sanz, Juan; Quiniou, Eric; Rigolet, Pascal; Saettel, Nicolas; Mouawad, Liliane

    2016-01-01

    In drug design, one may be confronted to the problem of finding hits for targets for which no small inhibiting molecules are known and only low-throughput experiments are available (like ITC or NMR studies), two common difficulties encountered in a typical academic setting. Using a virtual screening strategy like docking can alleviate some of the problems and save a considerable amount of time by selecting only top-ranking molecules, but only if the method is very efficient, i.e. when a good proportion of actives are found in the 1-10 % best ranked molecules. The use of several programs (in our study, Gold, Surflex, FlexX and Glide were considered) shows a divergence of the results, which presents a difficulty in guiding the experiments. To overcome this divergence and increase the yield of the virtual screening, we created the standard deviation consensus (SDC) and variable SDC (vSDC) methods, consisting of the intersection of molecule sets from several virtual screening programs, based on the standard deviations of their ranking distributions. SDC allowed us to find hits for two new protein targets by testing only 9 and 11 small molecules from a chemical library of circa 15,000 compounds. Furthermore, vSDC, when applied to the 102 proteins of the DUD-E benchmarking database, succeeded in finding more hits than any of the four isolated programs for 13-60 % of the targets. In addition, when only 10 molecules of each of the 102 chemical libraries were considered, vSDC performed better in the number of hits found, with an improvement of 6-24 % over the 10 best-ranked molecules given by the individual docking programs.Graphical abstractIn drug design, for a given target and a given chemical library, the results obtained with different virtual screening programs are divergent. So how to rationally guide the experimental tests, especially when only a few number of experiments can be made? The variable Standard Deviation Consensus (vSDC) method was developed to answer this issue. Left panel the vSDC principle consists of intersecting molecule sets, chosen on the basis of the standard deviations of their ranking distributions, obtained from various virtual screening programs. In this study Glide, Gold, FlexX and Surflex were used and tested on the 102 targets of the DUD-E database. Right panel Comparison of the average percentage of hits found with vSDC and each of the four programs, when only 10 molecules from each of the 102 chemical libraries of the DUD-E database were considered. On average, vSDC was capable of finding 38 % of the findable hits, against 34 % for Glide, 32 % for Gold, 16 % for FlexX and 14 % for Surflex, showing that with vSDC, it was possible to overcome the unpredictability of the virtual screening results and to improve them.

  5. Anderson Localization for Schrödinger Operators on with Strongly Mixing Potentials

    NASA Astrophysics Data System (ADS)

    Bourgain, Jean; Schlag, Wilhelm

    In this paper we show that for a.e. x∈[ 0,2 π) the operators defined on as and with Dirichlet condition ψ- 1= 0, have pure point spectrum in with exponentially decaying eigenfunctions where δ > 0 and are small. As it is a simple consequence of known techniques that for small λ one has [- 2 +δ, 2-δ]⊂ spectrum (H(x)) for a.e.x∈[ 0, 2 π), we thus established Anderson localization on the spectrum up to the edges and the center. More general potentials than cosine can be treated, but only those energies with nonzero spectral density are allowed. Finally, we prove the same result for operators on the whole line with potential , where A:?2-->?2 is a hyperbolic toral automorphism, F∈C1(?2), ∫F= 0, and λ small. The basis for our analysis is an asymptotic formula for the Lyapunov exponent for λ--> 0 by Figotin-Pastur, and generalized by Chulaevski-Spencer. We combine this asymptotic expansion with certain martingale large deviation estimates in order to apply the methods developed by Bourgain and Goldstein in the quasi-periodic case.

  6. The Effect of Viewing Eccentricity on Enumeration

    PubMed Central

    Palomares, Melanie; Smith, Paul R.; Pitts, Carole Holley; Carter, Breana M.

    2011-01-01

    Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities. PMID:21695212

  7. The effect of viewing eccentricity on enumeration.

    PubMed

    Palomares, Melanie; Smith, Paul R; Pitts, Carole Holley; Carter, Breana M

    2011-01-01

    Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities.

  8. Effects of encapsulation damping on the excitation threshold for subharmonic generation from contrast microbubbles.

    PubMed

    Katiyar, Amit; Sarkar, Kausik

    2012-11-01

    A recent study [Katiyar and Sarkar (2011). J. Acoust. Soc. Am. 130, 3137-3147] showed that in contrast to the analytical result for free bubbles, the minimum threshold for subharmonic generation for contrast microbubbles does not necessarily occur at twice the resonance frequency. Here increased damping-either due to the small radius or the encapsulation-is shown to shift the minimum threshold away from twice the resonance frequency. Free bubbles as well as four models of the contrast agent encapsulation are investigated varying the surface dilatational viscosity. Encapsulation properties are determined using measured attenuation data for a commercial contrast agent. For sufficiently small damping, models predict two minima for the threshold curve-one at twice the resonance frequency being lower than the other at resonance frequency-in accord with the classical analytical result. However, increased damping damps the bubble response more at twice the resonance than at resonance, leading to a flattening of the threshold curve and a gradual shift of the absolute minimum from twice the resonance frequency toward the resonance frequency. The deviation from the classical result stems from the fact that the perturbation analysis employed to obtain it assumes small damping, not always applicable for contrast microbubbles.

  9. Multiple-wavelength transmission measurements in rocket motor plumes

    NASA Astrophysics Data System (ADS)

    Kim, Hong-On

    1991-09-01

    Multiple-wavelength light transmission measurements were used to measure the mean particle size (d(sub 32)), index of refraction (m), and standard deviation of the small particles in the edge of the plume of a small solid propellant rocket motor. The results have shown that the multiple-wavelength light transmission measurement technique can be used to obtain these variables. The technique was shown to be more sensitive to changes in d(sub 32) and standard deviation (sigma) than to m. A GAP/AP/4.7 percent aluminum propellant burned at 25 atm produced particles with d32 = 0.150 +/- 0.006 microns, standard deviation = 1.50 +/- 0.04 and m = 1.63 +/- 0.13. The good correlation of the data indicated that only submicron particles were present in the edge of the plume. In today's budget conscious industry, the solid propellant rocket motor is an ideal propulsion system due to its low cost and simplicity. The major obstacle for solid rocket motors, however, is their limited specific impulse compared to airbreathing motors. One way to help overcome this limitation is to utilize metal fuel additives. Solid propellant rocket motors can achieve high specific impulse with metal fuel additives such as aluminum. Aluminum propellants also increase propellant densities and suppress transverse modes of combustion oscillations by damping the oscillations with the aluminum agglomerates in the combustion chamber.

  10. Small-Signal Analysis of Autonomous Hybrid Distributed Generation Systems in Presence of Ultracapacitor and Tie-Line Operation

    NASA Astrophysics Data System (ADS)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2010-07-01

    This paper presents small-signal analysis of isolated as well as interconnected autonomous hybrid distributed generation system for sudden variation in load demand, wind speed and solar radiation. The hybrid systems comprise of different renewable energy resources such as wind, photovoltaic (PV) fuel cell (FC) and diesel engine generator (DEG) along with the energy storage devices such as flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitors (UC) as an alternative energy storage element and interconnection of hybrid systems through tie-line is incorporated into the system for improved performance. A comparative assessment of deviation of frequency profile for different hybrid systems in the presence of different storage system combinations is carried out graphically as well as in terms of the performance index (PI), ie integral square error (ISE). Both qualitative and quantitative analysis reflects the improvements of the deviation in frequency profiles in the presence of the ultracapacitors (UC) as compared to other energy storage elements.

  11. Deviation from the law of energy equipartition in a small dynamic-random-access memory

    NASA Astrophysics Data System (ADS)

    Carles, Pierre-Alix; Nishiguchi, Katsuhiko; Fujiwara, Akira

    2015-06-01

    A small dynamic-random-access memory (DRAM) coupled with a high charge sensitivity electrometer based on a silicon field-effect transistor is used to study the law of equipartition of energy. By statistically analyzing the movement of single electrons in the DRAM at various temperature and voltage conditions in thermal equilibrium, we are able to observe a behavior that differs from what is predicted by the law of equipartition energy: when the charging energy of the capacitor of the DRAM is comparable to or smaller than the thermal energy kBT/2, random electron motion is ruled perfectly by thermal energy; on the other hand, when the charging energy becomes higher in relation to the thermal energy kBT/2, random electron motion is suppressed which indicates a deviation from the law of equipartition of energy. Since the law of equipartition is analyzed using the DRAM, one of the most familiar devices, we believe that our results are perfectly universal among all electronic devices.

  12. Disease quantification on PET/CT images without object delineation

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Wu, Caiyun; Fitzpatrick, Danielle; Winchell, Nicole; Schuster, Stephen J.; Torigian, Drew A.

    2017-03-01

    The derivation of quantitative information from images to make quantitative radiology (QR) clinically practical continues to face a major image analysis hurdle because of image segmentation challenges. This paper presents a novel approach to disease quantification (DQ) via positron emission tomography/computed tomography (PET/CT) images that explores how to decouple DQ methods from explicit dependence on object segmentation through the use of only object recognition results to quantify disease burden. The concept of an object-dependent disease map is introduced to express disease severity without performing explicit delineation and partial volume correction of either objects or lesions. The parameters of the disease map are estimated from a set of training image data sets. The idea is illustrated on 20 lung lesions and 20 liver lesions derived from 18F-2-fluoro-2-deoxy-D-glucose (FDG)-PET/CT scans of patients with various types of cancers and also on 20 NEMA PET/CT phantom data sets. Our preliminary results show that, on phantom data sets, "disease burden" can be estimated to within 2% of known absolute true activity. Notwithstanding the difficulty in establishing true quantification on patient PET images, our results achieve 8% deviation from "true" estimates, with slightly larger deviations for small and diffuse lesions where establishing ground truth becomes really questionable, and smaller deviations for larger lesions where ground truth set up becomes more reliable. We are currently exploring extensions of the approach to include fully automated body-wide DQ, extensions to just CT or magnetic resonance imaging (MRI) alone, to PET/CT performed with radiotracers other than FDG, and other functional forms of disease maps.

  13. NMR and SAXS characterization of the denatured state of the chemotactic protein Che Y: Implications for protein folding initiation

    PubMed Central

    Garcia, Pascal; Serrano, Luis; Durand, Dominique; Rico, Manuel; Bruix, Marta

    2001-01-01

    The denatured state of a double mutant of the chemotactic protein CheY (F14N/V83T) has been analyzed in the presence of 5 M urea, using small angle X-ray scattering (SAXS) and heteronuclear magnetic resonance. SAXS studies show that the denatured protein follows a wormlike chain model. Its backbone can be described as a chain composed of rigid elements connected by flexible links. A comparison of the contour length obtained for the chain at 5 M urea with the one expected for a fully expanded chain suggests that ∼25% of the residues are involved in residual structures. Conformational shifts of the α-protons, heteronuclear 15N-{1H} NOEs and 15N relaxation properties have been used to identify some regions in the protein that deviate from a random coil behavior. According to these NMR data, the protein can be divided into two subdomains, which largely coincide with the two folding subunits identified in a previous kinetic study of the folding of the protein. The first of these subdomains, spanning residues 1–70, is shown here to exhibit a restricted mobility as compared to the rest of the protein. Two regions, one in each subdomain, were identified as deviating from the random coil chemical shifts. Peptides corresponding to these sequences were characterized by NMR and their backbone 1H chemical shifts were compared to those in the intact protein under identical denaturing conditions. For the region located in the first subdomain, this comparison shows that the observed deviation from random coil parameters is caused by interactions with the rest of the molecule. The restricted flexibility of the first subdomain and the transient collapse detected in that subunit are consistent with the conclusions obtained by applying the protein engineering method to the characterization of the folding reaction transition state. PMID:11369848

  14. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision.

    PubMed

    Ender, Andreas; Mehl, Albert

    2013-02-01

    A new approach to both 3-dimensional (3D) trueness and precision is necessary to assess the accuracy of intraoral digital impressions and compare them to conventionally acquired impressions. The purpose of this in vitro study was to evaluate whether a new reference scanner is capable of measuring conventional and digital intraoral complete-arch impressions for 3D accuracy. A steel reference dentate model was fabricated and measured with a reference scanner (digital reference model). Conventional impressions were made from the reference model, poured with Type IV dental stone, scanned with the reference scanner, and exported as digital models. Additionally, digital impressions of the reference model were made and the digital models were exported. Precision was measured by superimposing the digital models within each group. Superimposing the digital models on the digital reference model assessed the trueness of each impression method. Statistical significance was assessed with an independent sample t test (α=.05). The reference scanner delivered high accuracy over the entire dental arch with a precision of 1.6 ±0.6 µm and a trueness of 5.3 ±1.1 µm. Conventional impressions showed significantly higher precision (12.5 ±2.5 µm) and trueness values (20.4 ±2.2 µm) with small deviations in the second molar region (P<.001). Digital impressions were significantly less accurate with a precision of 32.4 ±9.6 µm and a trueness of 58.6 ±15.8µm (P<.001). More systematic deviations of the digital models were visible across the entire dental arch. The new reference scanner is capable of measuring the precision and trueness of both digital and conventional complete-arch impressions. The digital impression is less accurate and shows a different pattern of deviation than the conventional impression. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure.

    PubMed

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-05-01

    Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.

  16. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Joscha, E-mail: joscha.maier@dkfz.de; Sawall, Stefan; Kachelrieß, Marc

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levelsmore » from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. Conclusions: LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.« less

  17. Turbomachinery noise studies of the AiResearch QCGAT engine with inflow control

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Homyak, L.; Chrulski, D. D.

    1981-01-01

    The AiResearch Quiet Clean General Aviation Turbofan engine was tested on an outdoor test stand to compare the acoustic performance of two inflow control devices (ICD's) of similar design, and three inlet lips of different external shape. Only small performance differences were found. Far-field directivity patterns calculated by applicable existing analyses were compared with the measured tone and broadband patterns. For some of these comparisons, tests were made with an ICD to reduce rotor/inflow disturbance interaction noise, or with the acoustic suppression panels in the inlet or bypass duct covered with aluminum tape to determine hard wall acoustic performance. The comparisons showed that the analytical expressions used predict many directivity pattern features and trends, but can deviate in shape from the measured patterns under certain engine operating conditions. Some patterns showed lobes from modes attributable to rotor/engine strut interaction sources.

  18. Using satellite measurements of N2O to remove dynamical variability from HCl measurements

    NASA Astrophysics Data System (ADS)

    Stolarski, Richard S.; Douglass, Anne R.; Strahan, Susan E.

    2018-04-01

    Column HCl measurements show deviations from the expected slow decline following the regulation of chlorine-containing compounds by the Montreal Protocol. We use the simultaneous measurements of N2O and HCl by the Microwave Limb Sounder (MLS) instrument on the Aura satellite to examine this problem. We find that the use of N2O measurements at a specific altitude to represent the impact of dynamical variability on HCl results in a derived linear trend in HCl that is negative (ranging from -2.5 to 5.3 % decade-1) at all altitudes between 68 and 10 hPa. These trends are at or near 2σ statistical significance at all pressure levels between 68 and 10 hPa. This shows that analysis of simultaneous measurements of several constituents is a useful approach to identify small trends from data records that are strongly influenced by dynamical interannual variability.

  19. The two errors of using the within-subject standard deviation (WSD) as the standard error of a reliable change index.

    PubMed

    Maassen, Gerard H

    2010-08-01

    In this Journal, Lewis and colleagues introduced a new Reliable Change Index (RCI(WSD)), which incorporated the within-subject standard deviation (WSD) of a repeated measurement design as the standard error. In this note, two opposite errors in using WSD this way are demonstrated. First, being the standard error of measurement of only a single assessment makes WSD too small when practice effects are absent. Then, too many individuals will be designated reliably changed. Second, WSD can grow unlimitedly to the extent that differential practice effects occur. This can even make RCI(WSD) unable to detect any reliable change.

  20. Apparatus for correcting precision errors in slide straightness in machine tools

    DOEpatents

    Robinson, Samuel C.; Gerth, Howard L.

    1981-01-01

    The present invention is directed to a mechanism by which small deviations in slideway straightness and roll of a precision machining apparatus may be compensated for. The mechanism of the present invention comprises a fixture support disposed between the slideway carriage and the tool or workpiece fixture and provided with a hinge-like coupling between the carriage and the fixture support so as to allow for the minute and precise displacement of the fixture support in a direction normal to the direction of the slide path so as to readily compensate for slight deviations in the straightness and roll of the slide path.

  1. Apparatus for correcting precision errors in slide straigntness in machine tools

    DOEpatents

    Robinson, S.C.; Gerth, H.L.

    The present invention is directed to a mechanism by which small deviations in slideway straightness and roll of a precision machining apparatus may be compensated for. The mechanism of the present invention comprises a fixture support disposed between the slideway carriage and the tool or workpiece fixture and provided with a hinge-like coupling between the carriage and the fixture support so as to allow for the minute and precise displacement of the fixture support in a direction normal to the direction of the slide path soa as to readily compensate for slight deviations in the straightness and roll of the slide path.

  2. Effects of Gas Rarefaction on Dynamic Characteristics of Micro Spiral-Grooved Thrust Bearing.

    PubMed

    Liu, Ren; Wang, Xiao-Li; Zhang, Xiao-Qing

    2012-04-01

    The effects of gas-rarefaction on dynamic characteristics of micro spiral-grooved-thrust-bearing are studied. The Reynolds equation is modified by the first order slip model, and the corresponding perturbation equations are then obtained on the basis of the linear small perturbation method. In the converted spiral-curve-coordinates system, the finite-volume-method (FVM) is employed to discrete the surface domain of micro bearing. The results show, compared with the continuum-flow model, that under the slip-flow regime, the decrease in the pressure and stiffness become obvious with the increasing of the compressibility number. Moreover, with the decrease of the relative gas-film-thickness, the deviations of dynamic coefficients between slip-flow-model and continuum-flow-model are increasing.

  3. Design of Small MEMS Microphone Array Systems for Direction Finding of Outdoors Moving Vehicles

    PubMed Central

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-01-01

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636

  4. Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.

    PubMed

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-03-05

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise.

  5. Implications of the Observed Ultraluminous X-Ray Source Luminosity Function

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Tennant, Allyn; Soria, Roberto; Yukita, Mihoko

    2012-01-01

    We present the X-ray luminosity function (XLF) of ultraluminous X-ray (ULX) sources with 0.3-10.0 keV luminosities in excess of 10(sup 39) erg/s in a complete sample of nearby galaxies. The XLF shows a break or cut-off at high luminosities that deviates from its pure power law distribution at lower luminosities. The cut-off is at roughly the Eddington luminosity for a 90-140 solar mass accretor. We examine the effects on the observed XLF of sample biases, of small-number statistics (at the high luminosity end) and of measurement uncertainties. We consider the physical implications of the shape and normalization of the XLF. The XLF is also compared and contrasted to results of other recent surveys.

  6. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing

    2017-07-01

    We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  7. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Li, Guang-Hui; Wang, An-Bang; Feng, Ye; Wang, Yang

    2010-07-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.

  8. Fabrication of superconductor-ferromagnet-insulator-superconductor Josephson junctions with critical current uniformity applicable to integrated circuits

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Taniguchi, Soya; Ishikawa, Kouta; Akaike, Hiroyuki; Fujimaki, Akira

    2017-03-01

    Nb Josephson junctions (JJs) were fabricated with a Pd89Ni11 ferromagnetic interlayer and an AlO x tunnel barrier layer for use in large-scale superconducting integrated circuits. The junctions had a small critical current (I c) spread, where the standard deviation 1σ was less than 2% at 4.2 K for junctions with the same designed size. It was observed that the electrical behavior of the junctions could be controlled by manipulating the film thickness of the PdNi interlayer. The junctions behaved as a π-JJ for thicknesses of 9 and 11 nm, showing 1σ in the I c spread of 1.2% for 9 nm.

  9. [Demographic consequences of genetic load: a model of the origin of the incest taboo].

    PubMed

    Buzin, A Iu

    1987-12-01

    The prohibition of copulations among near relatives may raise the fitness of population. This effect being irregular and insignificant for a distinct generation, becomes apparent in evolutionary time intervals through the natural selection of populations with incest-taboo. The "characteristic selection time" theta depends on typical population size, genetic damage and the mean rate of population growth. The estimation obtained for theta permit us to assert that the model describes the phenomenon of "socio-cultural selection" in prehistory. The model shows the demographic specificity of small populations. The problem of the number of consanguineous marriages is considered in detail. New explanation for deviation of the observed frequency of consanguineous marriages from classical estimations is proposed.

  10. An efficient predictor-corrector-based dynamic mesh method for multi-block structured grid with extremely large deformation and its applications

    NASA Astrophysics Data System (ADS)

    Guo, Tongqing; Chen, Hao; Lu, Zhiliang

    2018-05-01

    Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.

  11. 40 CFR 63.8640 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to show continuous compliance with each emission limitation that applies to you. (c) You must also... deviation of an operating limit parameter value, the date, time, and duration of the deviation, a brief...

  12. 48 CFR 1480.403 - Deviations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., or a designee who is a civilian serving in a position in a grade above GS-15 under the General... business suppliers through market research; and (3) If appropriate, compete the purchase using an... availability of small business suppliers through market research; and (3) If appropriate, compete the purchase...

  13. Prediction uncertainty and optimal experimental design for learning dynamical systems.

    PubMed

    Letham, Benjamin; Letham, Portia A; Rudin, Cynthia; Browne, Edward P

    2016-06-01

    Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.

  14. M-estimator for the 3D symmetric Helmert coordinate transformation

    NASA Astrophysics Data System (ADS)

    Chang, Guobin; Xu, Tianhe; Wang, Qianxin

    2018-01-01

    The M-estimator for the 3D symmetric Helmert coordinate transformation problem is developed. Small-angle rotation assumption is abandoned. The direction cosine matrix or the quaternion is used to represent the rotation. The 3 × 1 multiplicative error vector is defined to represent the rotation estimation error. An analytical solution can be employed to provide the initial approximate for iteration, if the outliers are not large. The iteration is carried out using the iterative reweighted least-squares scheme. In each iteration after the first one, the measurement equation is linearized using the available parameter estimates, the reweighting matrix is constructed using the residuals obtained in the previous iteration, and then the parameter estimates with their variance-covariance matrix are calculated. The influence functions of a single pseudo-measurement on the least-squares estimator and on the M-estimator are derived to theoretically show the robustness. In the solution process, the parameter is rescaled in order to improve the numerical stability. Monte Carlo experiments are conducted to check the developed method. Different cases to investigate whether the assumed stochastic model is correct are considered. The results with the simulated data slightly deviating from the true model are used to show the developed method's statistical efficacy at the assumed stochastic model, its robustness against the deviations from the assumed stochastic model, and the validity of the estimated variance-covariance matrix no matter whether the assumed stochastic model is correct or not.

  15. Closure of the energy balance equation over bare soil during the formation and evaporation of non-rainfall water inputs

    NASA Astrophysics Data System (ADS)

    Florentin, Anat; Agam, Nurit

    2015-04-01

    The Negev desert is characterized by an arid climate (annual mean precipitation is 90 mm) with sea breeze carrying moisture from the Mediterranean Sea during the afternoon regularly. Non-rainfall water inputs (NRWIs) are thus of great importance to the hydrometeorology and the ecological functioning of the region. The small magnitude of NRWIs challenges attempts to quantify these processes. The aim of this research was to test commonly used micrometeorological methods to quantify the energy balance components during the deposition and evaporation of NRWIs. A fully equipped micrometeorological station was set up near the Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev (30o 51' 35.6" N; 34o 46' 24.8" E) during September-October 2014. Net-radiation was measured with a 4-way net radiometer, and soil heat flux was quantified by the calorimetric method in three replicates. Latent heat was measured using an eddy-covariance (EC) and compared to a micro-lysimeter (ML); sensible heat flux was measured with an EC and a surface layer scintillometer (SLS). Sensible heat fluxes measured by the EC and the SLS showed good agreement. EC latent heat fluxes were in good agreement with those derived by the ML. Nevertheless, derivation of latent heat flux from the SLS measurements through the energy balance equation showed a relatively large deviation from the directly measured latent heat flux. This deviation is likely attributed to measurement errors of the soil heat flux.

  16. A bench-top megavoltage fan-beam CT using CdWO4-photodiode detectors. I. System description and detector characterization.

    PubMed

    Rathee, S; Tu, D; Monajemi, T T; Rickey, D W; Fallone, B G

    2006-04-01

    We describe the components of a bench-top megavoltage computed tomography (MVCT) scanner that uses an 80-element detector array consisting of CdWO4 scintillators coupled to photodiodes. Each CdWO4 crystal is 2.75 x 8 x 10 mm3. The detailed design of the detector array, timing control, and multiplexer are presented. The detectors show a linear response to dose (dose rate was varied by changing the source to detector distance) with a correlation coefficient (R2) nearly unity with the standard deviation of signal at each dose being less than 0.25%. The attenuation of a 6 MV beam by solid water measured by this detector array indicates a small, yet significant spectral hardening that needs to be corrected before image reconstruction. The presampled modulation transfer function is strongly affected by the detector's large pitch and a large improvement can be obtained by reducing the detector pitch. The measured detective quantum efficiency at zero spatial frequency is 18.8% for 6 MV photons which will reduce the dose to the patient in MVCT applications. The detector shows a less than a 2% reduction in response for a dose of 24.5 Gy accumulated in 2 h; however, the lost response is recovered on the following day. A complete recovery can be assumed within the experimental uncertainty (standard deviation <0.5%); however, any smaller permanent damage could not be assessed.

  17. Extreme Right Axis Deviation in Acute Myocardial Infarction: A Hazardous Signal of Poor Prognosis.

    PubMed

    Wang, Qingyu; Pan, Shuo; Liu, Fuqiang; Yang, Dan; Wang, Jun-Kui

    2018-05-11

    BACKGROUND New-onset extreme right axis deviation and right bundle branch block (RBBB) are rare during acute myocardial infarction (AMI), and has only been reported in several cases reflecting the severity of AMI. It could predict severe clinical complications and higher risks in coronary artery disease. Although there is little electrophysiological explanation, the complications are severe. They should be emphasized in newly diagnosed extreme right axis deviation and RBBB in AMI. CASE REPORT A 72-year-old male was admitted to our department with a chief complaint of intermittent retrosternal chest pain and was diagnosed with extensive anterior myocardial infarction with RBBB, by elevated myocardial enzymes and ECG. The main wave direction of QRS in lead aVR was positive and showed an extreme right axis deviation. After a month, the patient's chest distress and the RBBB vanished, but a right axis deviation still existed. The echocardiogram showed prior extensive anterior myocardial infarction (including apex myocardia) and lower LVEF. CONCLUSIONS New diagnosed RBBB and right axis deviation is uncommon and could be a useful clue to evaluate myocardial ischemia in AMI cases. This electrocardiographic marker can identify coronary artery occlusion where ST-segments are hard to evaluate, and hence, patients may benefit most from early and complete revascularization strategies such as primary angioplasty.

  18. Density Large Deviations for Multidimensional Stochastic Hyperbolic Conservation Laws

    NASA Astrophysics Data System (ADS)

    Barré, J.; Bernardin, C.; Chetrite, R.

    2018-02-01

    We investigate the density large deviation function for a multidimensional conservation law in the vanishing viscosity limit, when the probability concentrates on weak solutions of a hyperbolic conservation law. When the mobility and diffusivity matrices are proportional, i.e. an Einstein-like relation is satisfied, the problem has been solved in Bellettini and Mariani (Bull Greek Math Soc 57:31-45, 2010). When this proportionality does not hold, we compute explicitly the large deviation function for a step-like density profile, and we show that the associated optimal current has a non trivial structure. We also derive a lower bound for the large deviation function, valid for a more general weak solution, and leave the general large deviation function upper bound as a conjecture.

  19. Precision analysis for standard deviation measurements of immobile single fluorescent molecule images.

    PubMed

    DeSantis, Michael C; DeCenzo, Shawn H; Li, Je-Luen; Wang, Y M

    2010-03-29

    Standard deviation measurements of intensity profiles of stationary single fluorescent molecules are useful for studying axial localization, molecular orientation, and a fluorescence imaging system's spatial resolution. Here we report on the analysis of the precision of standard deviation measurements of intensity profiles of single fluorescent molecules imaged using an EMCCD camera.We have developed an analytical expression for the standard deviation measurement error of a single image which is a function of the total number of detected photons, the background photon noise, and the camera pixel size. The theoretical results agree well with the experimental, simulation, and numerical integration results. Using this expression, we show that single-molecule standard deviation measurements offer nanometer precision for a large range of experimental parameters.

  20. The Achievement of Indigenous Students in Guatemalan Primary Schools

    ERIC Educational Resources Information Center

    McEwan, Patrick J.; Trowbridge, Marisol

    2007-01-01

    This paper analyses the difference in academic achievement between indigenous and nonindigenous children that attend rural primary schools in Guatemala. The gap ranges between 0.8 and 1 standard deviation in Spanish, and approximately half that in Mathematics. A decomposition procedure suggests that a relatively small portion of the achievement…

  1. 10 CFR 605.15 - Fee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) ASSISTANCE REGULATIONS THE OFFICE OF ENERGY RESEARCH FINANCIAL ASSISTANCE PROGRAM § 605.15 Fee... which is a small business concern as qualified under the criteria and size standards of 13 CFR part 121... be paid to other entities except as a deviation from 10 CFR part 600, nor shall fees be paid under...

  2. The VMC survey - XXIII. Model fitting of light and radial velocity curves of Small Magellanic Cloud classical Cepheids

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Molinaro, R.; Ripepi, V.; Cioni, M.-R. L.; Clementini, G.; Moretti, M. I.; Ragosta, F.; de Grijs, R.; Groenewegen, M. A. T.; Ivanov, V. D.

    2017-04-01

    We present the results of the χ2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of nine fundamental and three first overtone classical Cepheids in the Small Magellanic Cloud (SMC). The near-infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey 'VISTA near-infrared Y, J, Ks survey of the Magellanic Clouds system' (VMC). For each pulsator, isoperiodic model sequences have been computed by adopting a non-linear convective hydrodynamical code in order to reproduce the multifilter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover, the intrinsic masses and luminosities of the best-fitting model show that all these pulsators are brighter than the canonical evolutionary mass-luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass-loss. Assuming that the inferred deviation from the canonical MLR is only due to mass-loss, we derive the expected distribution of percentage mass-loss as a function of both the pulsation period and the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current period-radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way for the application to other extensive data bases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.

  3. Particle shape-controlled sorting and transport behaviour of mixed siliciclastic/bioclastic sediments in a mesotidal lagoon, South Africa

    NASA Astrophysics Data System (ADS)

    Flemming, Burghard W.

    2017-08-01

    This study investigates the effect of particle shape on the transport and deposition of mixed siliciclastic-bioclastic sediments in the lower mesotidal Langebaan Lagoon along the South Atlantic coast of South Africa. As the two sediment components have undergone mutual sorting for the last 7 ka, they can be expected to have reached a highest possible degree of hydraulic equivalence. A comparison of sieve and settling tube data shows that, with progressive coarsening of the size fractions, the mean diameters of individual sediment components increasingly depart from the spherical quartz standard, the experimental data demonstrating the hydraulic incompatibility of the sieve data. Overall, the spatial distribution patterns of textural parameters (mean settling diameter, sorting and skewness) of the siliciclastic and bioclastic sediment components are very similar. Bivariate plots between them reveal linear trends when averaged over small intervals. A systematic deviation is observed in sorting, the trend ranging from uniformity at poorer sorting levels to a progressively increasing lag of the bioclastic component relative to the siliciclastic one as overall sorting improves. The deviation amounts to 0.8 relative sorting units at the optimal sorting level. The small textural differences between the two components are considered to reflect the influence of particle shape, which prevents the bioclastic fraction from achieving complete textural equivalence with the siliciclastic one. This is also reflected in the inferred transport behaviour of the two shape components, the bioclastic fraction moving closer to the bed than the siliciclastic one because of the higher drag experienced by low shape factor particles. As a consequence, the bed-phase development of bioclastic sediments departs significantly from that of siliciclastic sediments. Systematic flume experiments, however, are currently still lacking.

  4. Quantitative impact of small angle forward scatter on whole blood oximetry using a Beer-Lambert absorbance model.

    PubMed

    LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean

    2011-04-21

    It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Gautam

    A data-driven realistic design and evalua- tion of vehicular mobility has been particularly chal- lenging due to a lack of large-scale real-world mea- surements in the research community. Current research methodologies rely on articial scenarios, random con- nectivity, and use small and biased samples. In this pa- per, we perform a combined study to learn the struc- ture and connectivity of urban streets and modeling and characterization of vehicular trac densities on them. Our dataset is a collection of more than 222 thousand routes and 25 million vehicular mobility images from 1091 online web cameras located in six dierent re-more » gions of the world. Our results centered around four major observations: i. study shows that driving routes and visiting locations of regions demonstrate power-law distribution, indicating a planned or recently designed road infrastructure; ii. we represent regions by network graphs in which nodes are camera locations and edges are urban streets that connect the nodes. Such represen- tation exhibits small world properties with short path lengths and large clustering coecient; iii. trac densi- ties show 80% temporal correlation during several hours of a day; iv. modeling trac densities against known theoretical distributions show less than 5% deviation for heavy-trailed models such as log-logistic and log- gamma distributions. We believe this work will provide a much-needed contribution to the research community for design and evaluation of future vehicular networks and smart cities.« less

  6. Solute-solvent cavity and bridge functions. I. Varying size of the solute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyalov, I., E-mail: ivan.vyalov@iit.it; Chuev, G., E-mail: genchuev@rambler.ru; Georgi, N., E-mail: georgi@mis.mpg.de

    2014-08-21

    In this work we present the results of the extensive molecular simulations of solute-solvent cavity and bridge functions. The mixtures of Lennard-Jones solvent with Lennard-Jones solute at infinite dilution are considered for different solute-solvent size ratios—up to 4:1. The Percus-Yevick and hypernetted chain closures deviate substantially from simulation results in the investigated temperature and density ranges. We also find that the behavior of the indirect and cavity correlation functions is non-monotonous within the hard-core region, but the latter can be successfully approximated by mean-field theory if the solute-solvent interaction energy is divided into repulsive and attractive contribution, according to Weeks-Chandler-Andersenmore » theory. Furthermore, in spite of the non-monotonous behavior of logarithm of the cavity function and the indirect correlation function, their difference, i.e., the bridge function remains constant within the hard-core region. Such behavior of the bridge and indirect correlation functions at small distances and for small values of indirect correlation function is well known from the Duh-Haymet plots, where the non-unique relationship results in loops of the bridge function vs. indirect correlation function graphs. We show that the same pathological behavior appears also when distance is small and indirect correlation function is large. We further show that the unique functional behavior of the bridge function can be established when bridge is represented as a function of the renormalized, repulsive indirect correlation function.« less

  7. Interferometric measurement of displacements and displacement velocities for nondestructive quality control

    NASA Astrophysics Data System (ADS)

    Shpeĭzman, V. V.; Peschanskaya, N. N.

    2007-07-01

    It is shown that the interferometric measurement of small displacements and small-displacement velocities can be used to determine internal stresses or the stresses induced by an applied load in solids and to control structural changes in them. The interferometric method based on the measurement of the reaction of a solid to a small perturbation in its state of stress is applied to determine stresses from the deviation of the reaction to perturbations from that in the standard stress-free case. For structural control, this method is employed to study the specific features of the characteristics of microplastic deformation that appear after material treatment or operation and manifest themselves in the temperature and force dependences of the rate of a small inelastic strain.

  8. Analysis of using the tongue deviation angle as a warning sign of a stroke

    PubMed Central

    2012-01-01

    Background The symptom of tongue deviation is observed in a stroke or transient ischemic attack. Nevertheless, there is much room for the interpretation of the tongue deviation test. The crucial factor is the lack of an effective quantification method of tongue deviation. If we can quantify the features of the tongue deviation and scientifically verify the relationship between the deviation angle and a stroke, the information provided by the tongue will be helpful in recognizing a warning of a stroke. Methods In this study, a quantification method of the tongue deviation angle was proposed for the first time to characterize stroke patients. We captured the tongue images of stroke patients (15 males and 10 females, ranging between 55 and 82 years of age); transient ischemic attack (TIA) patients (16 males and 9 females, ranging between 53 and 79 years of age); and normal subjects (14 males and 11 females, ranging between 52 and 80 years of age) to analyze whether the method is effective. In addition, we used the receiver operating characteristic curve (ROC) for the sensitivity analysis, and determined the threshold value of the tongue deviation angle for the warning sign of a stroke. Results The means and standard deviations of the tongue deviation angles of the stroke, TIA, and normal groups were: 6.9 ± 3.1, 4.9 ± 2.1 and 1.4 ± 0.8 degrees, respectively. Analyzed by the unpaired Student’s t-test, the p-value between the stroke group and the TIA group was 0.015 (>0.01), indicating no significant difference in the tongue deviation angle. The p-values between the stroke group and the normal group, as well as between the TIA group and the normal group were both less than 0.01. These results show the significant differences in the tongue deviation angle between the patient groups (stroke and TIA patients) and the normal group. These results also imply that the tongue deviation angle can effectively identify the patient group (stroke and TIA patients) and the normal group. With respect to the visual examination, 40% and 32% of stroke patients, 24% and 16% of TIA patients, and 4% and 0% of normal subjects were found to have tongue deviations when physicians “A” and “B” examined them. The variation showed the essentiality of the quantification method in a clinical setting. In the receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.96) indicates good discrimination. The tongue deviation angle more than the optimum threshold value (= 3.2°) predicts a risk of stroke. Conclusions In summary, we developed an effective quantification method to characterize the tongue deviation angle, and we confirmed the feasibility of recognizing the tongue deviation angle as an early warning sign of an impending stroke. PMID:22908956

  9. Analysis of using the tongue deviation angle as a warning sign of a stroke.

    PubMed

    Wei, Ching-Chuan; Huang, Shu-Wen; Hsu, Sheng-Lin; Chen, Hsing-Chung; Chen, Jong-Shin; Liang, Hsinying

    2012-08-21

    The symptom of tongue deviation is observed in a stroke or transient ischemic attack. Nevertheless, there is much room for the interpretation of the tongue deviation test. The crucial factor is the lack of an effective quantification method of tongue deviation. If we can quantify the features of the tongue deviation and scientifically verify the relationship between the deviation angle and a stroke, the information provided by the tongue will be helpful in recognizing a warning of a stroke. In this study, a quantification method of the tongue deviation angle was proposed for the first time to characterize stroke patients. We captured the tongue images of stroke patients (15 males and 10 females, ranging between 55 and 82 years of age); transient ischemic attack (TIA) patients (16 males and 9 females, ranging between 53 and 79 years of age); and normal subjects (14 males and 11 females, ranging between 52 and 80 years of age) to analyze whether the method is effective. In addition, we used the receiver operating characteristic curve (ROC) for the sensitivity analysis, and determined the threshold value of the tongue deviation angle for the warning sign of a stroke. The means and standard deviations of the tongue deviation angles of the stroke, TIA, and normal groups were: 6.9 ± 3.1, 4.9 ± 2.1 and 1.4 ± 0.8 degrees, respectively. Analyzed by the unpaired Student's t-test, the p-value between the stroke group and the TIA group was 0.015 (>0.01), indicating no significant difference in the tongue deviation angle. The p-values between the stroke group and the normal group, as well as between the TIA group and the normal group were both less than 0.01. These results show the significant differences in the tongue deviation angle between the patient groups (stroke and TIA patients) and the normal group. These results also imply that the tongue deviation angle can effectively identify the patient group (stroke and TIA patients) and the normal group. With respect to the visual examination, 40% and 32% of stroke patients, 24% and 16% of TIA patients, and 4% and 0% of normal subjects were found to have tongue deviations when physicians "A" and "B" examined them. The variation showed the essentiality of the quantification method in a clinical setting. In the receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.96) indicates good discrimination. The tongue deviation angle more than the optimum threshold value (= 3.2°) predicts a risk of stroke. In summary, we developed an effective quantification method to characterize the tongue deviation angle, and we confirmed the feasibility of recognizing the tongue deviation angle as an early warning sign of an impending stroke.

  10. Unification of small and large time scales for biological evolution: deviations from power law.

    PubMed

    Chowdhury, Debashish; Stauffer, Dietrich; Kunwar, Ambarish

    2003-02-14

    We develop a unified model that describes both "micro" and "macro" evolutions within a single theoretical framework. The ecosystem is described as a dynamic network; the population dynamics at each node of this network describes the "microevolution" over ecological time scales (i.e., birth, ageing, and natural death of individual organisms), while the appearance of new nodes, the slow changes of the links, and the disappearance of existing nodes accounts for the "macroevolution" over geological time scales (i.e., the origination, evolution, and extinction of species). In contrast to several earlier claims in the literature, we observe strong deviations from power law in the regime of long lifetimes.

  11. Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis

    USGS Publications Warehouse

    Coplen, T.B.; Wildman, J.D.; Chen, J.

    1991-01-01

    Improved precision in the H2-H2O equilibration method for ??D analysis has been achieved in an automated system. Reduction in 1-?? standard deviation of a single mass-spectrometer analysis to 1.3??? is achieved by (1) bonding catalyst to glass rods and assigning use to specific equilibration chambers to monitor performance of catalyst, (2) improving the apparatus design, and (3) reducing the H3+ contribution of the mass-spectrometer ion source. For replicate analysis of a water sample, the standard deviation improved to 0.8???. H2S-bearing samples and samples as small as 0.1 mL can be analyzed routinely with this method.

  12. Skewness and kurtosis analysis for non-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Celikoglu, Ahmet; Tirnakli, Ugur

    2018-06-01

    In this paper we address a number of pitfalls regarding the use of kurtosis as a measure of deviations from the Gaussian. We treat kurtosis in both its standard definition and that which arises in q-statistics, namely q-kurtosis. We have recently shown that the relation proposed by Cristelli et al. (2012) between skewness and kurtosis can only be verified for relatively small data sets, independently of the type of statistics chosen; however it fails for sufficiently large data sets, if the fourth moment of the distribution is finite. For infinite fourth moments, kurtosis is not defined as the size of the data set tends to infinity. For distributions with finite fourth moments, the size, N, of the data set for which the standard kurtosis saturates to a fixed value, depends on the deviation of the original distribution from the Gaussian. Nevertheless, using kurtosis as a criterion for deciding which distribution deviates further from the Gaussian can be misleading for small data sets, even for finite fourth moment distributions. Going over to q-statistics, we find that although the value of q-kurtosis is finite in the range of 0 < q < 3, this quantity is not useful for comparing different non-Gaussian distributed data sets, unless the appropriate q value, which truly characterizes the data set of interest, is chosen. Finally, we propose a method to determine the correct q value and thereby to compute the q-kurtosis of q-Gaussian distributed data sets.

  13. Accounting for body size deviations when reporting bone mineral density variables in children.

    PubMed

    Webber, C E; Sala, A; Barr, R D

    2009-01-01

    In a child, bone mineral density (BMD) may differ from an age-expected normal value, not only because of the presence of disease, but also because of deviations of height or weight from population averages. Appropriate adjustment for body size deviations simplifies interpretation of BMD measurements. For children, a bone mineral density (BMD) measurement is normally expressed as a Z score. Interpretation is complicated when weight or height distinctly differ from age-matched children. We develop a procedure to allow for the influence of body size deviations upon measured BMD. We examined the relation between body size deviation and spine, hip and whole body BMD deviation in 179 normal children (91 girls). Expressions were developed that allowed derivation of an expected BMD based on age, gender and body size deviation. The difference between measured and expected BMD was expressed as a HAW score (Height-, Age-, Weight-adjusted score). In a second independent sample of 26 normal children (14 girls), measured spine, total femur and whole body BMD all fell within the same single normal range after accounting for age, gender and body size deviations. When traditional Z scores and HAW scores were compared in 154 children, 17.5% showed differences of more than 1 unit and such differences were associated with height and weight deviations. For almost 1 in 5 children, body size deviations influence BMD to an extent that could alter clinical management.

  14. Nanoscale modulations in (KLa)(CaW)O-6 and (NaLa)(CaW)O-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licurse, Mark; Borisevich, Albina Y; Davies, Peter

    2012-01-01

    Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 x 9.4 a{sub p} periodicity (a{sub p} {approx} 4 {angstrom} for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the <1 1 0> orientation of the nanostripes is different from the <1 0 0> stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complexmore » modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases.« less

  15. Depositional history of core section 74001 - Depth profiles of maturity, FeO, and metal

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Gose, W. A.

    1977-01-01

    Samples from every 0.5-cm interval of soil in core section 74001 have been studied by ferromagnetic resonance (FMR) and magnetic techniques. The values of the FMR maturity index show that the 74001 samples are very immature (the index ranges from 0.14 to 0.29 units) and have not seen appreciable, if any, surface exposure since their deposition. In fact, the small amount of fine-grained metal in the 74001 samples is probably not acquired as a result of their exposure to the micrometeoroid flux at the lunar surface. Thus, the black-glass soil of 74001 was deposited very rapidly, probably in a single episode or several closely spaced episodes of lunar fire fountaining. The average concentration of FeO and its standard deviation for all the 74001 samples are 22.5 + or - 0.3 wt.%. Since the FeO concentration is so uniform, no large variations in the major-element chemistry of 74001 are expected, with the possible exception of the volatile elements. The concentration of coarse-grained metal, which is measured magnetically, and its standard deviation are 0.15 + or - 0.01 wt.%. The coarse-grained metal probably precipitated contemporaneously with the silicate and oxide phases in the black-glass droplets.

  16. A tale of two climbers: hypothermia, death, and survival on Mount Everest.

    PubMed

    Moore, G W Kent; Semple, John L

    2012-03-01

    Hypothermia is an acknowledged risk for those who venture into high altitude regions. There is however little quantitative information on this risk that can be used to implement mitigation strategies. Here we provide an analysis of the meteorological and hypothermic risk parameters, wind chill temperature, and facial frostbite time, during the spring 2006 Mount Everest climbing season. This season was marked by two high profile events where a solo climber was forced to spend the night in highly exposed conditions near the summit. One climber survived, while the other did not. Although this retrospective examination of two individual cases has admittedly a small sample size, and there are other factors that undoubtedly contributed to the difference in outcomes, we show that wind chill temperature and facial frostbite time experienced by the two climbers were dramatically different. In particular, the climber who did not survive experienced conditions that were approximately one standard deviation more severe that usual for that time of the year; while the climber who survived experienced conditions that were approximately one standard deviation less severe then usual. This suggests that the environmental conditions associated with hypothermia played an important role in the outcomes. This report confirms the importance of providing quantitative guidance to climbers as the risk of hypothermia on high mountains.

  17. Automatic estimation of voice onset time for word-initial stops by applying random forest to onset detection.

    PubMed

    Lin, Chi-Yueh; Wang, Hsiao-Chuan

    2011-07-01

    The voice onset time (VOT) of a stop consonant is the interval between its burst onset and voicing onset. Among a variety of research topics on VOT, one that has been studied for years is how VOTs are efficiently measured. Manual annotation is a feasible way, but it becomes a time-consuming task when the corpus size is large. This paper proposes an automatic VOT estimation method based on an onset detection algorithm. At first, a forced alignment is applied to identify the locations of stop consonants. Then a random forest based onset detector searches each stop segment for its burst and voicing onsets to estimate a VOT. The proposed onset detection can detect the onsets in an efficient and accurate manner with only a small amount of training data. The evaluation data extracted from the TIMIT corpus were 2344 words with a word-initial stop. The experimental results showed that 83.4% of the estimations deviate less than 10 ms from their manually labeled values, and 96.5% of the estimations deviate by less than 20 ms. Some factors that influence the proposed estimation method, such as place of articulation, voicing of a stop consonant, and quality of succeeding vowel, were also investigated. © 2011 Acoustical Society of America

  18. Estimation of time-series properties of gourd observed solar irradiance data using cloud properties derived from satellite observations

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Nohara, D.

    2017-12-01

    The shorter temporal scale variation in the downward solar irradiance at the ground level (DSI) is not understood well because researches in the shorter-scale variation in the DSI is based on the ground observation and ground observation stations are located coarsely. Use of dataset derived from satellite observation will overcome such defect. DSI data and MODIS cloud properties product are analyzed simultaneously. Three metrics: mean, standard deviation and sample entropy, are used to evaluate time-series properties of the DSI. Three metrics are computed from two-hours time-series centered at the observation time of MODIS over the ground observation stations. We apply the regression methods to design prediction models of each three metrics from cloud properties. The validation of the model accuracy show that mean and standard deviation are predicted with a higher degree of accuracy and that the accuracy of prediction of sample entropy, which represents the complexity of time-series, is not high. One of causes of lower prediction skill of sample entropy is the resolution of the MODIS cloud properties. Higher sample entropy is corresponding to the rapid fluctuation, which is caused by the small and unordered cloud. It seems that such clouds isn't retrieved well.

  19. Force direction patterns promote whole body stability even in hip-flexed walking, but not upper body stability in human upright walking

    NASA Astrophysics Data System (ADS)

    Müller, Roy; Rode, Christian; Aminiaghdam, Soran; Vielemeyer, Johanna; Blickhan, Reinhard

    2017-11-01

    Directing the ground reaction forces to a focal point above the centre of mass of the whole body promotes whole body stability in human and animal gaits similar to a physical pendulum. Here we show that this is the case in human hip-flexed walking as well. For all upper body orientations (upright, 25°, 50°, maximum), the focal point was well above the centre of mass of the whole body, suggesting its general relevance for walking. Deviations of the forces' lines of action from the focal point increased with upper body inclination from 25 to 43 mm root mean square deviation (RMSD). With respect to the upper body in upright gait, the resulting force also passed near a focal point (17 mm RMSD between the net forces' lines of action and focal point), but this point was 18 cm below its centre of mass. While this behaviour mimics an unstable inverted pendulum, it leads to resulting torques of alternating sign in accordance with periodic upper body motion and probably provides for low metabolic cost of upright gait by keeping hip torques small. Stabilization of the upper body is a consequence of other mechanisms, e.g. hip reflexes or muscle preflexes.

  20. Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series

    NASA Astrophysics Data System (ADS)

    Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.

    2011-11-01

    We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.

  1. Time reversal for localization of sources of infrasound signals in a windy stratified atmosphere.

    PubMed

    Lonzaga, Joel B

    2016-06-01

    Time reversal is used for localizing sources of recorded infrasound signals propagating in a windy, stratified atmosphere. Due to the convective effect of the background flow, the back-azimuths of the recorded signals can be substantially different from the source back-azimuth, posing a significant difficulty in source localization. The back-propagated signals are characterized by negative group velocities from which the source back-azimuth and source-to-receiver (STR) distance can be estimated using the apparent back-azimuths and trace velocities of the signals. The method is applied to several distinct infrasound arrivals recorded by two arrays in the Netherlands. The infrasound signals were generated by the Buncefield oil depot explosion in the U.K. in December 2005. Analyses show that the method can be used to substantially enhance estimates of the source back-azimuth and the STR distance. In one of the arrays, for instance, the deviations between the measured back-azimuths of the signals and the known source back-azimuth are quite large (-1° to -7°), whereas the deviations between the predicted and known source back-azimuths are small with an absolute mean value of <1°. Furthermore, the predicted STR distance is off only by <5% of the known STR distance.

  2. Effect of gluten-free diet on the growth and nutritional status of children with coeliac disease.

    PubMed

    Radlović, Nedeljko; Mladenović, Marija; Leković, Zoran; Zivanović, Dragana; Brdar, Radivoj; Radlović, Vladimir; Ristić, Dragana; Pavlović, Momcilo; Stojsić, Zorica; Vuletić, Biljana; Djurdjević, Jelena; Gajić, Milan

    2009-01-01

    Gluten-free diet (GFD) presents the basis of coeliac disease (CD) treatment. If strictly applied, the disorders of the small bowel mucosa and other disease signs rapidly resolve. The goal of the study was to evaluate the effect of GFD on the growth and nutritional status of children with the classical form of CD. In addition, we analyzed the differences between these parameters with the duration and the patients' compliance with GFD. The study goals were achieved on a sample of 90 children, 56 female and 34 male, aged 0.5-7.5 (1.53 +/- 1.05) years, with the classic CD diagnosed on the basis of typical pathohistological findings of the small bowel mucosa and clinical recovery of patients on GFD. The duration of the patients' follow-up was 1.08-8.75 (3.03 +/- 1.14) years, i.e. until the age of 2.5-15 (4.59 +/- 1.78) years. The initial and control values of body height (BH) in relation to matched values for age and gender were expressed in percentiles, while the deviation in body weight (BW) for the matched values of height and gender was expressed in percentages. The referent haemoglobin (Hb) rate in blood, as a laboratory indicator of nutritional status in children aged up to 5 years was > or = 110 g/L, and for those aged above 5 years it was > or = 115 g/L Compliance with GFD was based on the pathohistological findings of the small bowel mucosa or determination of tissue transglutaminase. Over the studied period, the effect of GFD was highly significant, both on the increase of BH percentiles (37.62 +/- 26.26 vs. 57.22 +/- 25.29; p < 0.001), and on the decrease of BW deficit 11.58 +/- 10.80 vs. 0.89 +/- 8.194; p < 0.001). After the treatment period, none of the children showed slowed growth rate or BW deficit above 20%, while BW deviation ranging between 10-20% in relation to the referent values was registered in 17 (18.19%) and the excess of over 20% in 2 patients. In 86 (95.56%) patients, control Hb values in blood were normal, while mild anaemia was registered in 4 patients, all compliant with GFD. The difference between the compliant and non-compliant patients with GFD was not detected either in BH percentiles (p = 0.586) or in BW percentage deviation as compared to standard values (p = 0.516) or in blood Hb values (p = 0.445). In addition, differences between the children on GFD lasting over and below 3 years were not detected either in BH percentiles (p = 0.915) or in BW deviation percentages in relation to the ideal rate (p = 0.476). GFD applied for 1-3 years has a highly significant effect on the growth rate and nutritional status of children with the classical form of CD. Significant differences in these parameters of the disease were not detected between strictly compliant and non-compliant patients on GFD.

  3. On the basis set convergence of electron–electron entanglement measures: helium-like systems

    PubMed Central

    Hofer, Thomas S.

    2013-01-01

    A systematic investigation of three different electron–electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li+ and Be2+ using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one–electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li+ and Be2+. In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used. PMID:24790952

  4. On the basis set convergence of electron-electron entanglement measures: helium-like systems.

    PubMed

    Hofer, Thomas S

    2013-01-01

    A systematic investigation of three different electron-electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li(+) and Be(2+) using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one-electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li(+) and Be(2+). In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used.

  5. Drop size distribution comparisons between Parsivel and 2-D video disdrometers

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Petersen, W. A.; Tokay, A.; Schultz, C.; Gatlin, P.

    2011-05-01

    Measurements from a 2-D video disdrometer (2DVD) have been used for drop size distribution (DSD) comparisons with co-located Parsivel measurements in Huntsville, Alabama. The comparisons were made in terms of the mass-weighted mean diameter, Dm, the standard deviation of the mass-spectrum, σm, and the rainfall rate, R, all based on 1-min DSD from the two instruments. Time series comparisons show close agreement in all three parameters for cases where R was less than 20 mm h-1. In four cases, discrepancies in all three parameters were seen for "heavy" events, with the Parsivel showing higher Dm, σm and R, when R reached high values (particularly above 30 mm h-1). Possible causes for the discrepancies include the presence of a small percentage of non-fully melted hydrometers, with higher than expected fall velocity and with very different axis ratios as compared with rain, indicating small hail or ice pellets or graupel. We also present here Parsivel-to-Parsivel comparisons as well as comparisons between two 2DVD instruments, namely a low-profile unit and the latest generation, "compact unit" which was installed at the same site in November 2009. The comparisons are included to assess the variability between the same types of instrument. Correlation coefficients and the fractional standard errors are compared.

  6. Evaluation of reactive oxygen metabolites in patients with non-small cell lung cancer after chemotherapy

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the level of reactive oxygen metabolites (ROMs) after chemotherapy in patients with non-small cell lung cancer (NSCLC) and its association with response to treatment. Methods Fifty-eight untreated NSCLC patients and twenty-three healthy subjects were selected for the study. Patients received two courses of platinum-based chemotherapy and were evaluated for oxidative stress and treatment response. As a marker of reactive oxygen species, ROMs levels were measured using the d-ROMs test. Results ROMs level (mean ± standard deviation) before chemotherapy in NSCLC patients (416 ± 135 U.CARR) was significantly elevated (p = 0.016) compared to normal healthy subjects (320 ± 59 U.CARR). Patients who responded to chemotherapy showed significantly decreased (p = 0.014) ROMs levels after chemotherapy, whereas patients who had stable disease or progressive disease showed no change in ROMs level (p = 0.387). Conclusions NSCLC patients had significantly elevated ROMs levels before chemotherapy compared with normal healthy subjects. Chemotherapy may suppress ROMs production in responders but not in non-responders. ROMs level may be a predictor of clinical outcome in patients receiving chemotherapy for NSCLC. PMID:25180083

  7. Functional analysis of circadian pacemaker neurons in Drosophila melanogaster.

    PubMed

    Rieger, Dirk; Shafer, Orie Thomas; Tomioka, Kenji; Helfrich-Förster, Charlotte

    2006-03-01

    The molecular mechanisms of circadian rhythms are well known, but how multiple clocks within one organism generate a structured rhythmic output remains a mystery. Many animals show bimodal activity rhythms with morning (M) and evening (E) activity bouts. One long-standing model assumes that two mutually coupled oscillators underlie these bouts and show different sensitivities to light. Three groups of lateral neurons (LN) and three groups of dorsal neurons govern behavioral rhythmicity of Drosophila. Recent data suggest that two groups of the LN (the ventral subset of the small LN cells and the dorsal subset of LN cells) are plausible candidates for the M and E oscillator, respectively. We provide evidence that these neuronal groups respond differently to light and can be completely desynchronized from one another by constant light, leading to two activity components that free-run with different periods. As expected, a long-period component started from the E activity bout. However, a short-period component originated not exclusively from the morning peak but more prominently from the evening peak. This reveals an interesting deviation from the original Pittendrigh and Daan (1976) model and suggests that a subgroup of the ventral subset of the small LN acts as "main" oscillator controlling M and E activity bouts in Drosophila.

  8. Strong Scaling and a Scarcity of Small Earthquakes Point to an Important Role for Thermal Runaway in Intermediate-Depth Earthquake Mechanics

    NASA Astrophysics Data System (ADS)

    Barrett, S. A.; Prieto, G. A.; Beroza, G. C.

    2015-12-01

    There is strong evidence that metamorphic reactions play a role in enabling the rupture of intermediate-depth earthquakes; however, recent studies of the Bucaramanga Nest at a depth of 135-165 km under Colombia indicate that intermediate-depth seismicity shows low radiation efficiency and strong scaling of stress drop with slip/size, which suggests a dramatic weakening process, as proposed in the thermal shear instability model. Decreasing stress drop with slip and low seismic efficiency could have a measurable effect on the magnitude-frequency distribution of small earthquakes by causing them to become undetectable at substantially larger seismic moment than would be the case if stress drop were constant. We explore the population of small earthquakes in the Bucaramanga Nest using an empirical subspace detector to push the detection limit to lower magnitude. Using this approach, we find ~30,000 small, previously uncatalogued earthquakes during a 6-month period in 2013. We calculate magnitudes for these events using their relative amplitudes. Despite the additional detections, we observe a sharp deviation from a Gutenberg-Richter magnitude frequency distribution with a marked deficiency of events at the smallest magnitudes. This scarcity of small earthquakes is not easily ascribed to the detectability threshold; tests of our ability to recover small-magnitude waveforms of Bucaramanga Nest earthquakes in the continuous data indicate that we should be able to detect events reliably at magnitudes that are nearly a full magnitude unit smaller than the smallest earthquakes we observe. The implication is that nearly 100,000 events expected for a Gutenberg-Richter MFD are "missing," and that this scarcity of small earthquakes may provide new support for the thermal runaway mechanism in intermediate-depth earthquake mechanics.

  9. Accuracy of various impression materials and methods for two implant systems: An effect size study.

    PubMed

    Schmidt, Alexander; Häussling, Teresa; Rehmann, Peter; Schaaf, Heidrun; Wöstmann, Bernd

    2018-04-01

    An accurate impression is required for implant treatment. The aim of this in-vitro study was to determine the effect size of the impression material/method, implant system and implant angulation on impression transfer precision. An upper jaw model with three BEGO and three Straumann implants (angulations 0°, 15°, 20°) in the left and right maxilla was used as a reference model. One polyether (Impregum Penta) and two polyvinyl siloxanes (Flexitime Monophase/Aquasil Ultra Monophase) were examined with two impression techniques (open and closed tray). A total of 60 impressions were made. A coordinate measurement machine was used to measure the target variables for 3D-shift, implant axis inclination and implant axis rotation. All the data were subjected to a four-way ANOVA. The effect size (partial eta-squared [η 2 P ]) was reported. The impression material had a significant influence on the 3D shift and the implant axis inclination deviation (p-values=.000), and both factors had very large effect sizes (3D-shift [η 2 P ]=.599; implant axis inclination [η 2 P ]=.298). Impressions made with polyvinyl siloxane exhibited the highest transfer precision. When the angulation of the implants was larger, more deviations occurred for the implant axis rotational deviation. The implant systems and impression methods showed partially significant variations (p-values=.001-.639) but only very small effect sizes (η 2 P =.001-.031). The impression material had the greatest effect size on accuracy in terms of the 3D shift and the implant axis inclination. For multiunit restorations with disparallel implants, polyvinyl siloxane materials should be considered. In addition, the effect size of a multivariate investigation should be reported. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Poster - Thurs Eve-23: Effect of lung density and geometry variation on inhomogeneity correction algorithms: A Monte Carlo dosimetry evaluation.

    PubMed

    Chow, J; Leung, M; Van Dyk, J

    2008-07-01

    This study provides new information on the evaluation of the lung dose calculation algorithms as a function of the relative electron density of lung, ρ e,lung . Doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) algorithm in lung with the Pinnacle 3 system were compared to those calculated using the Monte Carlo (MC) simulation (EGSnrc-based code). Three groups of lung phantoms, namely, "Slab", "Column" and "Cube" with different ρ e,lung (0.05-0.7), positions, volumes and shapes of lung in water were used. 6 and 18MV photon beams with 4×4 and 10×10cm 2 field sizes produced by a Varian 21EX Linac were used in the MC dose calculations. Results show that the CCC algorithm agrees well with AC to within ±1% for doses calculated in the lung phantoms, indicating that the AC, with 3-4 times less computing time required than CCC, is a good substitute for the CCC method. Comparing the CCC and AC with MC, dose deviations are found when ρ e,lung are ⩽0.1-0.3. The degree of deviation depends on the photon beam energy and field size, and is relatively large when high-energy photon beams with small field are used. For the penumbra widths (20%-80%), the CCC and AC agree well with MC for the "Slab" and "Cube" phantoms with the lung volumes at the central beam axis (CAX). However, deviations >2mm occur in the "Column" phantoms, with two lung volumes separated by a water column along the CAX, using the 18MV (4×4cm 2 ) photon beams with ρ e,lung ⩽0.1. © 2008 American Association of Physicists in Medicine.

  11. The stability of steady state accommodation in human infants

    PubMed Central

    Candy, T. Rowan; Bharadwaj, Shrikant R.

    2009-01-01

    Retinal image quality in infants is largely determined by the accuracy and the stability of their accommodative responses. Although the accuracy of infants’ accommodation has been investigated previously, little is known about the stability of their responses. We performed two experiments that characterized the stability of infants’ steady state accommodation. Analyses were performed in the time domain (root mean square [RMS] deviation) and in the frequency domain (spectral analysis). In Experiment 1, accommodation responses were recorded for a period of 3 s from the left eye of four groups of infants (8–10, 11–13, 14–19, and 20–30 weeks of age) and eight prepresbyopic adults while they focused on a small toy placed at a dioptric viewing distance of 1.0 D (at 1 m). In Experiment 2, accommodation responses were recorded for a period of 14 s from the left eye of a group of 8- to 12-week-old infants and six prepresbyopic adults while they focused on a cartoon image placed at three different dioptric viewing distances (1.25, 2.0, and 3.0 D). The data, collected using a photorefractor sampling at 25 Hz, showed two important characteristics. First, the RMS deviations and the power were quantitatively similar across different infant age groups, and they were significantly larger in infants than in adults. Second, the overall and relative power also increased with the dioptric viewing distance both in infants and adults. At all three dioptric viewing distances, the measures of power were larger in infants than in adults. These data demonstrate that infants’ accommodative responses contain instabilities that are qualitatively very similar to those observed in adults. However, the larger RMS deviations suggest that infants are likely to experience larger fluctuations in retinal image quality than adults. PMID:17997659

  12. A Bayesian Method for Identifying Contaminated Detectors in Low-Level Alpha Spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maclellan, Jay A.; Strom, Daniel J.; Joyce, Kevin E.

    2011-11-02

    Analyses used for radiobioassay and other radiochemical tests are normally designed to meet specified quality objectives, such relative bias, precision, and minimum detectable activity (MDA). In the case of radiobioassay analyses for alpha emitting radionuclides, a major determiner of the process MDA is the instrument background. Alpha spectrometry detectors are often restricted to only a few counts over multi-day periods in order to meet required MDAs for nuclides such as plutonium-239 and americium-241. A detector background criterion is often set empirically based on experience, or frequentist or classical statistics are applied to the calculated background count necessary to meet amore » required MDA. An acceptance criterion for the detector background is set at the multiple of the estimated background standard deviation above the assumed mean that provides an acceptably small probability of observation if the mean and standard deviation estimate are correct. The major problem with this method is that the observed background counts used to estimate the mean, and thereby the standard deviation when a Poisson distribution is assumed, are often in the range of zero to three counts. At those expected count levels it is impossible to obtain a good estimate of the true mean from a single measurement. As an alternative, Bayesian statistical methods allow calculation of the expected detector background count distribution based on historical counts from new, uncontaminated detectors. This distribution can then be used to identify detectors showing an increased probability of contamination. The effect of varying the assumed range of background counts (i.e., the prior probability distribution) from new, uncontaminated detectors will be is discussed.« less

  13. Static Scene Statistical Non-Uniformity Correction

    DTIC Science & Technology

    2015-03-01

    Error NUC Non-Uniformity Correction RMSE Root Mean Squared Error RSD Relative Standard Deviation S3NUC Static Scene Statistical Non-Uniformity...Deviation ( RSD ) which normalizes the standard deviation, σ, to the mean estimated value, µ using the equation RS D = σ µ × 100. The RSD plot of the gain...estimates is shown in Figure 4.1(b). The RSD plot shows that after a sample size of approximately 10, the different photocount values and the inclusion

  14. Energy consumption model on WiMAX subscriber station

    NASA Astrophysics Data System (ADS)

    Mubarakah, N.; Suherman; Al-Hakim, M. Y.; Warman, E.

    2018-02-01

    Mobile communication technologies move toward miniaturization. Mobile device’s energy source relies on its battery endurance. The smaller the mobile device, it is expected the slower the battery drains. Energy consumption reduction in mobile devices has been of interest of researcher. In order to optimize energy consumption, its usage should be predictable. This paper proposes a model of predicted energy amount consumed by the WiMAX subscriber station by using regression analysis of active WiMAX states and their durations. The proposed model was assessed by using NS-2 simulation for more than a hundred thousand of recorded energy consumptions data in every WiMAX states. The assessment show a small average deviation between predicted and measured energy consumptions, about 0.18% for training data and 0.187% and 0.191% for test data.

  15. Some methodical peculiarities of analysis of small-mass samples by SRXFA

    NASA Astrophysics Data System (ADS)

    Kudryashova, A. F.; Tarasov, L. S.; Ulyanov, A. A.; Baryshev, V. B.

    1989-10-01

    The stability of work of the element analysis station on the storage rings VEPP-3 and VEPP-4 in INP (Novosibirsk, USSR) was demonstrated on the example of three sets of rare element analyses carried out by SRXFA in May 1985, January and May-June 1988. These data show that there are some systematic deviations in the results of measurements of Zr and La contents. SRXFA and INAA data have been compared for the latter element. A false linear correlation on the Rb-Sr plot in one set of analyses has been attributed to an overlapping artificial Sr peak on a Rb peak. The authors proposed sequences of registration of spectra and computer treatment for samples and standards. Such sequences result in better final concentration data.

  16. Contingency plans for the ISEE-3 libration-point mission

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.

    1979-01-01

    During the planning stage of the International Sun-Earth Explorer-3 (ISEE-3) mission, a recovery strategy was developed in case the Delta rocket underperformed during the launch phase. If a large underburn had occurred, the ISEE-3 spacecraft would have been allowed to complete one revolution of its highly elliptical earth orbit. The recovery plan called for a maneuver near perigee to increase the energy of the off-nominal orbit; a relatively small second maneuver would then insert the spacecraft into a new transfer trajectory toward the desired halo orbit target, and a third maneuver would place the spacecraft in the halo orbit. Results of the study showed that a large range of underburns could be corrected for a total nominal velocity deviation cost within the ISEE-3 fuel budget.

  17. Optimal line drop compensation parameters under multi-operating conditions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Li, Hang; Wang, Kai; He, Zhe

    2017-01-01

    Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.

  18. Estimating Achievement Gaps from Test Scores Reported in Ordinal "Proficiency" Categories

    ERIC Educational Resources Information Center

    Ho, Andrew D.; Reardon, Sean F.

    2012-01-01

    Test scores are commonly reported in a small number of ordered categories. Examples of such reporting include state accountability testing, Advanced Placement tests, and English proficiency tests. This paper introduces and evaluates methods for estimating achievement gaps on a familiar standard-deviation-unit metric using data from these ordered…

  19. A Comparison of Heuristic Procedures for Minimum within-Cluster Sums of Squares Partitioning

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Steinley, Douglas

    2007-01-01

    Perhaps the most common criterion for partitioning a data set is the minimization of the within-cluster sums of squared deviation from cluster centroids. Although optimal solution procedures for within-cluster sums of squares (WCSS) partitioning are computationally feasible for small data sets, heuristic procedures are required for most practical…

  20. The mare: a 1000-pound guinea pig for study of the ovulatory follicular wave in women.

    PubMed

    Ginther, O J

    2012-03-15

    The mare is a good comparative model for study of ovarian follicles in women, owing to striking similarities in follicular waves and the mechanism for selection of a dominant follicle. Commonality in follicle dynamics between mares and women include: (1) a ratio of 2.2:1 (mare:woman) in diameter of the largest follicle at wave emergence when the wave-stimulating FSH surge reaches maximum, in diameter increase of the two largest follicles between emergence and the beginning of deviation between the future dominant and subordinate follicles, in diameter of each of the two largest follicles at the beginning of deviation, and in maximum diameter of the preovulatory follicle; (2) emergence of the future ovulatory follicle before the largest subordinate follicle; (3) a mean interval of 1 day between emergence of individual follicles of the wave; (4) percentage increase in diameter of follicles for the 3 days before deviation; (5) deviation 3 or 4 days after emergence; (6) 25% incidence of a major anovulatory follicular wave emerging before the ovulatory wave; (7) 40% incidence of a predeviation follicle preceding the ovulatory wave; (8) small but significant increase in estradiol and LH before deviation; (9) cooperative roles of FSH and insulin-like growth factor 1 and its proteases in the deviation process; (10) age-related effects on the follicles and oocytes; (11) approximate 37-hour interval between administration of hCG and ovulation; and (12) similar gray-scale and color-Doppler ultrasound changes in the preovulatory follicle. In conclusion, the mare may be the premier nonprimate model for study of follicle dynamics in women. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Fabrication of setup for high temperature thermal conductivity measurement.

    PubMed

    Patel, Ashutosh; Pandey, Sudhir K

    2017-01-01

    In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi 0.36 Sb 1.45 Te 3 , polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.

  2. Thermodynamic constraints on a varying cosmological-constant-like term from the holographic equipartition law with a power-law corrected entropy

    NASA Astrophysics Data System (ADS)

    Komatsu, Nobuyoshi

    2017-11-01

    A power-law corrected entropy based on a quantum entanglement is considered to be a viable black-hole entropy. In this study, as an alternative to Bekenstein-Hawking entropy, a power-law corrected entropy is applied to Padmanabhan's holographic equipartition law to thermodynamically examine an extra driving term in the cosmological equations for a flat Friedmann-Robertson-Walker universe at late times. Deviations from the Bekenstein-Hawking entropy generate an extra driving term (proportional to the α th power of the Hubble parameter, where α is a dimensionless constant for the power-law correction) in the acceleration equation, which can be derived from the holographic equipartition law. Interestingly, the value of the extra driving term in the present model is constrained by the second law of thermodynamics. From the thermodynamic constraint, the order of the driving term is found to be consistent with the order of the cosmological constant measured by observations. In addition, the driving term tends to be constantlike when α is small, i.e., when the deviation from the Bekenstein-Hawking entropy is small.

  3. The implication of non-cyclic intrafractional longitudinal motion in SBRT by TomoTherapy

    NASA Astrophysics Data System (ADS)

    Yang, Wensha; Van Ausdal, Ray; Read, Paul; Larner, James; Benedict, Stan; Sheng, Ke

    2009-05-01

    To determine the dosimetric impact of non-cyclic longitudinal intrafractional motion, TomoTherapy plans with different field sizes were interrupted during a phantom delivery, and a displacement between -5 mm and 5 mm was induced prior to the delivery of the completion procedure. The planar dose was measured by film and a cylindrical phantom, and under-dosed or over-dosed volume was observed for either positive or negative displacement. For a 2.5 cm field, there was a 4% deviation for every mm of motion and for a 1 cm field, the deviation was 8% per mm. The dimension of the under/over-dosed area was independent of the motion but dependent on the field size. The results have significant implication in small-field high-dose treatments (i.e. stereotactic body radiation therapy (SBRT)) that deliver doses in only a few fractions. Our studies demonstrate that a small longitudinal motion may cause a dose error that is difficult to compensate; however, dividing a SBRT fraction into smaller passes is helpful to reduce such adverse effects.

  4. Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto

    2010-10-01

    A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.

  5. Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests

    PubMed Central

    Duncanson, L.; Rourke, O.; Dubayah, R.

    2015-01-01

    Accurate quantification of forest carbon stocks is required for constraining the global carbon cycle and its impacts on climate. The accuracies of forest biomass maps are inherently dependent on the accuracy of the field biomass estimates used to calibrate models, which are generated with allometric equations. Here, we provide a quantitative assessment of the sensitivity of allometric parameters to sample size in temperate forests, focusing on the allometric relationship between tree height and crown radius. We use LiDAR remote sensing to isolate between 10,000 to more than 1,000,000 tree height and crown radius measurements per site in six U.S. forests. We find that fitted allometric parameters are highly sensitive to sample size, producing systematic overestimates of height. We extend our analysis to biomass through the application of empirical relationships from the literature, and show that given the small sample sizes used in common allometric equations for biomass, the average site-level biomass bias is ~+70% with a standard deviation of 71%, ranging from −4% to +193%. These findings underscore the importance of increasing the sample sizes used for allometric equation generation. PMID:26598233

  6. Magnetic and critical properties of Pr0.6Sr0.4MnO3 nanocrystals prepared by a combination of the solid state reaction and the mechanical ball milling methods

    NASA Astrophysics Data System (ADS)

    Dung, Nguyen Thi; Linh, Dinh Chi; Huyen Yen, Pham Duc; Yu, Seong Cho; Van Dang, Nguyen; Dang Thanh, Tran

    2018-06-01

    Influence of the crystallite size on the magnetic and critical properties of nanocrystals has been investigated. The results show that Curie temperature and magnetization slightly decrease with decreasing average crystallite size . Based on the mean-field theory and the magnetic-field dependences of magnetization at different temperatures , we pointed out that the ferromagnetic-paramagnetic phase transition in the samples undergoes the second-order phase transition with the critical exponents (, , and ) close to those of the mean-field theory. However, there is a small deviation from those expected for the mean-field theory of the values of , and obtained for the samples. It means that short-range ferromagnetic interactions appear in the smaller particles. In other words, nanocrystals become more magnetically inhomogeneous with smaller crystallite sizes that could be explained by the presence of surface-related effects, lattice strain and distortions, which lead the strength of ferromagnetic interaction is decreased in the small crystallite sizes.

  7. Apparatus for measuring Seebeck coefficient and electrical resistivity of small dimension samples using infrared microscope as temperature sensor.

    PubMed

    Jaafar, W M N Wan; Snyder, J E; Min, Gao

    2013-05-01

    An apparatus for measuring the Seebeck coefficient (α) and electrical resistivity (ρ) was designed to operate under an infrared microscope. A unique feature of this apparatus is its capability of measuring α and ρ of small-dimension (sub-millimeter) samples without the need for microfabrication. An essential part of this apparatus is a four-probe assembly that has one heated probe, which combines the hot probe technique with the Van der Pauw method for "simultaneous" measurements of the Seebeck coefficient and electrical resistivity. The repeatability of the apparatus was investigated over a temperature range of 40 °C-100 °C using a nickel plate as a standard reference. The results show that the apparatus has an uncertainty of ±4.9% for Seebeck coefficient and ±5.0% for electrical resistivity. The standard deviation of the apparatus against a nickel reference sample is -2.43 μVK(-1) (-12.5%) for the Seebeck coefficient and -0.4 μΩ cm (-4.6%) for the electrical resistivity, respectively.

  8. Convergent chaos

    NASA Astrophysics Data System (ADS)

    Pradas, Marc; Pumir, Alain; Huber, Greg; Wilkinson, Michael

    2017-07-01

    Chaos is widely understood as being a consequence of sensitive dependence upon initial conditions. This is the result of an instability in phase space, which separates trajectories exponentially. Here, we demonstrate that this criterion should be refined. Despite their overall intrinsic instability, trajectories may be very strongly convergent in phase space over extremely long periods, as revealed by our investigation of a simple chaotic system (a realistic model for small bodies in a turbulent flow). We establish that this strong convergence is a multi-facetted phenomenon, in which the clustering is intense, widespread and balanced by lacunarity of other regions. Power laws, indicative of scale-free features, characterize the distribution of particles in the system. We use large-deviation and extreme-value statistics to explain the effect. Our results show that the interpretation of the ‘butterfly effect’ needs to be carefully qualified. We argue that the combination of mixing and clustering processes makes our specific model relevant to understanding the evolution of simple organisms. Lastly, this notion of convergent chaos, which implies the existence of conditions for which uncertainties are unexpectedly small, may also be relevant to the valuation of insurance and futures contracts.

  9. Validation of a New Small-Volume Sodium Citrate Collection Tube for Coagulation Testing in Critically Ill Patients with Coagulopathy.

    PubMed

    Adam, Elisabeth H; Zacharowski, Kai; Hintereder, Gudrun; Raimann, Florian; Meybohm, Patrick

    2018-06-01

    Blood loss due to phlebotomy leads to hospital-acquired anemia and more frequent blood transfusions that may be associated with increased risk of morbidity and mortality in critically ill patients. Multiple blood conservation strategies have been proposed in the context of patient blood management to minimize blood loss. Here, we evaluated a new small-volume sodium citrate collection tube for coagulation testing in critically ill patients. In 46 critically adult ill patients admitted to an interdisciplinary intensive care unit, we prospectively compared small-volume (1.8 mL) sodium citrate tubes with the conventional (3 mL) sodium citrate tubes. The main inclusion criterium was a proven coagulopathy (Quick < 60% and/or aPTT > 40 second) due to anticoagulation therapy or perioperative coagulopathy. In total, 92 coagulation analyses were obtained. Linear correlation analysis detected a positive relationship for 7 coagulation parameters (Prothrombin Time, r = 0.987; INR, r = 0.985; activated Partial Thromboplastin Time, r = 0.967; Thrombin Clotting Time, r = 0.969; Fibrinogen, r = 0.986; Antithrombin, r = 0.988; DDimer, r = 0.969). Bland-Altman analyses revealed an absolute mean of differences of almost zero. Ninety-five percent of data were within two standard deviations of the mean difference suggesting interchangeability. As systematic deviations between measured parameters of the two tubes were very unlikely, test results of small-volume (1.8 mL) sodium citrate tubes were equal to conventional (3 mL) sodium citrate tubes and can be considered interchangeable. Small-volume sodium citrate tubes reduced unnecessary diagnostic-related blood loss by about 40% and, therefore, should be the new standard of care for routine coagulation analysis in critically ill patients.

  10. A semi-nested real-time PCR method to detect low chimerism percentage in small quantity of hematopoietic stem cell transplant DNA samples.

    PubMed

    Aloisio, Michelangelo; Bortot, Barbara; Gandin, Ilaria; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2017-02-01

    Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.

  11. Effect of the intra-layer potential distributions and spatial currents on the performance of graphene SymFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Mehdi; Sensale-Rodriguez, Berardi, E-mail: berardi.sensale@utah.edu

    2015-09-15

    In this paper, a two-dimensional (2-D) model for a graphene symmetric field effect transistor (SymFET), which considers (a) the intra-graphene layer potential distributions and (b) the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i) when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN) or a small coherence length, the voltage distributions along the graphene electrodes have almostmore » zero variations upon including these distributed effects, (ii) when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN) or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.« less

  12. Stochastic resonance in the majority vote model on regular and small-world lattices

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    2017-11-01

    The majority vote model with two states on regular and small-world networks is considered under the influence of periodic driving. Monte Carlo simulations show that the time-dependent magnetization, playing the role of the output signal, exhibits maximum periodicity at nonzero values of the internal noise parameter q, which is manifested as the occurrence of the maximum of the spectral power amplification; the location of the maximum depends in a nontrivial way on the amplitude and frequency of the periodic driving as well as on the network topology. This indicates the appearance of stochastic resonance in the system as a function of the intensity of the internal noise. Besides, for low frequencies and for certain narrow ranges of the amplitudes of the periodic driving double maxima of the spectral power amplification as a function of q occur, i.e., stochastic multiresonance appears. The above-mentioned results quantitatively agree with those obtained from numerical simulations of the mean-field equations for the time-dependent magnetization. In contrast, analytic solutions for the spectral power amplification obtained from the latter equations using the linear response approximation deviate significanlty from the numerical results since the effect of the periodic driving on the system is not small even for vanishing amplitude.

  13. Borehole deviation and correction factor data for selected wells in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.

    2016-11-29

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949. The purpose of the program is to systematically measure and report water-level data to assess the eastern Snake River Plain aquifer and long term changes in groundwater recharge, discharge, movement, and storage. Water-level data are commonly used to generate potentiometric maps and used to infer increases and (or) decreases in the regional groundwater system. Well deviation is one component of water-level data that is often overlooked and is the result of the well construction and the well not being plumb. Depending on measured slant angle, where well deviation generally increases linearly with increasing slant angle, well deviation can suggest artificial anomalies in the water table. To remove the effects of well deviation, the USGS INL Project Office applies a correction factor to water-level data when a well deviation survey indicates a change in the reference elevation of greater than or equal to 0.2 ft.Borehole well deviation survey data were considered for 177 wells completed within the eastern Snake River Plain aquifer, but not all wells had deviation survey data available. As of 2016, USGS INL Project Office database includes: 57 wells with gyroscopic survey data; 100 wells with magnetic deviation survey data; 11 wells with erroneous gyroscopic data that were excluded; and, 68 wells with no deviation survey data available. Of the 57 wells with gyroscopic deviation surveys, correction factors for 16 wells ranged from 0.20 to 6.07 ft and inclination angles (SANG) ranged from 1.6 to 16.0 degrees. Of the 100 wells with magnetic deviation surveys, a correction factor for 21 wells ranged from 0.20 to 5.78 ft and SANG ranged from 1.0 to 13.8 degrees, not including the wells that did not meet the correction factor criteria of greater than or equal to 0.20 ft.Forty-seven wells had gyroscopic and magnetic deviation survey data for the same well. Datasets for both survey types were compared for the same well to determine whether magnetic survey data were consistent with gyroscopic survey data. Of those 47 wells, 96 percent showed similar correction factor estimates (≤ 0.20 ft) for both magnetic and gyroscopic well deviation surveys. A linear comparison of correction factor estimates for both magnetic and gyroscopic deviation well surveys for all 47 wells indicate good linear correlation, represented by an r-squared of 0.88. The correction factor difference between the gyroscopic and magnetic surveys for 45 of 47 wells ranged from 0.00 to 0.18 ft, not including USGS 57 and USGS 125. Wells USGS 57 and USGS 125 show a correction factor difference of 2.16 and 0.36 ft, respectively; however, review of the data files suggest erroneous SANG data for both magnetic deviation well surveys. The difference in magnetic and gyroscopic well deviation SANG measurements, for all wells, ranged from 0.0 to 0.9 degrees. These data indicate good agreement between SANG data measured using the magnetic deviation survey methods and SANG data measured using gyroscopic deviation survey methods, even for surveys collected years apart.

  14. Dosimetry audit simulation of treatment planning system in multicenters radiotherapy

    NASA Astrophysics Data System (ADS)

    Kasmuri, S.; Pawiro, S. A.

    2017-07-01

    Treatment Planning System (TPS) is an important modality that determines radiotherapy outcome. TPS requires input data obtained through commissioning and the potentially error occurred. Error in this stage may result in the systematic error. The aim of this study to verify the TPS dosimetry to know deviation range between calculated and measurement dose. This study used CIRS phantom 002LFC representing the human thorax and simulated all external beam radiotherapy stages. The phantom was scanned using CT Scanner and planned 8 test cases that were similar to those in clinical practice situation were made, tested in four radiotherapy centers. Dose measurement using 0.6 cc ionization chamber. The results of this study showed that generally, deviation of all test cases in four centers was within agreement criteria with average deviation about -0.17±1.59 %, -1.64±1.92 %, 0.34±1.34 % and 0.13±1.81 %. The conclusion of this study was all TPS involved in this study showed good performance. The superposition algorithm showed rather poor performance than either analytic anisotropic algorithm (AAA) and convolution algorithm with average deviation about -1.64±1.92 %, -0.17±1.59 % and -0.27±1.51 % respectively.

  15. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si

    DOE PAGES

    Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...

    2016-02-20

    Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less

  16. [The highest proportion of tobacco materials in the blend analysis using PPF projection method for the near-infrared spectrum and Monte Carlo method].

    PubMed

    Mi, Jin-Rui; Ma, Xiang; Zhang, Ya-Juan; Wang, Yi; Wen, Ya-Dong; Zhao, Long-Lian; Li, Jun-Hui; Zhang, Lu-Da

    2011-04-01

    The present paper builds a model based on Monte Carlo method in the projection of the blending tobacco. This model is made up of two parts: the projecting points of tobacco materials, whose coordinates are calculated by means of the PPF (projection based on principal component and Fisher criterion) projection method for the tobacco near-infrared spectrum; and the point of tobacco blend, which is produced by linear additive to the projecting point coordinates of tobacco materials. In order to analyze the projection points deviation from initial state levels, Monte Carlo method is introduced to simulate the differences and changes of raw material projection. The results indicate that there are two major factors affecting the relative deviation: the highest proportion of tobacco materials in the blend, which is too high to make the deviation under control; and the quantity of materials, which is so small to control the deviation. The conclusion is close to the principle of actual formulating designing, particularly, the more in the quantity while the lower in proportion of each. Finally the paper figures out the upper limit of the proportions in the different quantity of materials by theory. It also has important reference value for other agricultural products blend.

  17. Adaptive Neural Mechanism for Listing’s Law Revealed in Patients with Skew Deviation Caused by Brainstem or Cerebellar Lesion

    PubMed Central

    Fesharaki, Maryam; Karagiannis, Peter; Tweed, Douglas; Sharpe, James A.; Wong, Agnes M. F.

    2016-01-01

    Purpose Skew deviation is a vertical strabismus caused by damage to the otolithic–ocular reflex pathway and is associated with abnormal ocular torsion. This study was conducted to determine whether patients with skew deviation show the normal pattern of three-dimensional eye control called Listing’s law, which specifies the eye’s torsional angle as a function of its horizontal and vertical position. Methods Ten patients with skew deviation caused by brain stem or cerebellar lesions and nine normal control subjects were studied. Patients with diplopia and neurologic symptoms less than 1 month in duration were designated as acute (n = 4) and those with longer duration were classified as chronic (n = 10). Serial recordings were made in the four patients with acute skew deviation. With the head immobile, subjects made saccades to a target that moved between straight ahead and eight eccentric positions, while wearing search coils. At each target position, fixation was maintained for 3 seconds before the next saccade. From the eye position data, the plane of best fit, referred to as Listing’s plane, was fitted. Violations of Listing’s law were quantified by computing the “thickness” of this plane, defined as the SD of the distances to the plane from the data points. Results Both the hypertropic and hypotropic eyes in patients with acute skew deviation violated Listing’s and Donders’ laws—that is, the eyes did not show one consistent angle of torsion in any given gaze direction, but rather an abnormally wide range of torsional angles. In contrast, each eye in patients with chronic skew deviation obeyed the laws. However, in chronic skew deviation, Listing’s planes in both eyes had abnormal orientations. Conclusions Patients with acute skew deviation violated Listing’s law, whereas those with chronic skew deviation obeyed it, indicating that despite brain lesions, neural adaptation can restore Listing’s law so that the neural linkage between horizontal, vertical, and torsional eye position remains intact. Violation of Listing’s and Donders’ laws during fixation arises primarily from torsional drifts, indicating that patients with acute skew deviation have unstable torsional gaze holding that is independent of their horizontal–vertical eye positions. PMID:18172094

  18. Parabolic trough receiver heat loss and optical efficiency round robin 2015/2016

    NASA Astrophysics Data System (ADS)

    Pernpeintner, Johannes; Schiricke, Björn; Sallaberry, Fabienne; de Jalón, Alberto García; López-Martín, Rafael; Valenzuela, Loreto; de Luca, Antonio; Georg, Andreas

    2017-06-01

    A round robin for parabolic trough receiver heat loss and optical efficiency in the laboratory was performed between five institutions using five receivers in 2015/2016. Heat loss testing was performed at three cartridge heater test benches and one Joule heating test bench in the temperature range between 100 °C and 550 °C. Optical efficiency testing was performed with two spectrometric test bench and one calorimetric test bench. Heat loss testing results showed standard deviations at the order of 6% to 12 % for most temperatures and receivers and a standard deviation of 17 % for one receiver at 100 °C. Optical efficiency is presented normalized for laboratories showing standard deviations of 0.3 % to 1.3 % depending on the receiver.

  19. Hurricane track forecast cones from fluctuations

    PubMed Central

    Meuel, T.; Prado, G.; Seychelles, F.; Bessafi, M.; Kellay, H.

    2012-01-01

    Trajectories of tropical cyclones may show large deviations from predicted tracks leading to uncertainty as to their landfall location for example. Prediction schemes usually render this uncertainty by showing track forecast cones representing the most probable region for the location of a cyclone during a period of time. By using the statistical properties of these deviations, we propose a simple method to predict possible corridors for the future trajectory of a cyclone. Examples of this scheme are implemented for hurricane Ike and hurricane Jimena. The corridors include the future trajectory up to at least 50 h before landfall. The cones proposed here shed new light on known track forecast cones as they link them directly to the statistics of these deviations. PMID:22701776

  20. Transverse dental compensation in relation to sagittal and transverse skeletal discrepancies in skeletal Class III patients.

    PubMed

    Ahn, Jaechan; Kim, Sung-Jin; Lee, Ji-Yeon; Chung, Chooryung J; Kim, Kyung-Ho

    2017-01-01

    The purposes of this study were to compare the buccolingual inclinations of the posterior teeth in skeletal Class III patients with and without facial asymmetry with those of skeletal Class I patients and to investigate their relationships with sagittal and transverse skeletal discrepancies. Sixty-three skeletal Class III adult patients were divided into 2 groups according to the degree of menton deviation: a symmetry group with deviation less than 2 mm (n = 30), and an asymmetry group with deviation greater than 4 mm (n = 33). The control group comprised 25 skeletal Class I patients. The buccolingual inclinations of the posterior teeth measured on cone-beam computed tomography images were compared among the 3 groups, and regression analysis was performed to investigate the relationships between the inclinations and the sagittal and transverse skeletal discrepancies. The symmetry group showed greater buccal inclinations of the maxillary posterior teeth and lingual inclinations of the mandibular second molars than did the control, and this was correlated with the ANB angles. The deviated sides in the asymmetry group showed the greatest transverse dental compensation, which was correlated with menton deviation, whereas the nondeviated sides showed no significant transverse dental compensation. Transverse dental compensation is closely related to sagittal and transverse skeletal discrepancy in skeletal Class III patients. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.

  2. Assessment of facial golden proportions among young Japanese women.

    PubMed

    Mizumoto, Yasushi; Deguchi, Toshio; Fong, Kelvin W C

    2009-08-01

    Facial proportions are of interest in orthodontics. The null hypothesis is that there is no difference in golden proportions of the soft-tissue facial balance between Japanese and white women. Facial proportions were assessed by examining photographs of 3 groups of Asian women: group 1, 30 young adult patients with a skeletal Class 1 occlusion; group 2, 30 models; and group 3, 14 popular actresses. Photographic prints or slides were digitized for image analysis. Group 1 subjects had standardized photos taken as part of their treatment. Photos of the subjects in groups 2 and 3 were collected from magazines and other sources and were of varying sizes; therefore, the output image size was not considered. The range of measurement errors was 0.17% to 1.16%. ANOVA was selected because the data set was normally distributed with homogeneous variances. The subjects in the 3 groups showed good total facial proportions. The proportions of the face-height components in group 1 were similar to the golden proportion, which indicated a longer, lower facial height and shorter nose. Group 2 differed from the golden proportion, with a short, lower facial height. Group 3 had golden proportions in all 7 measurements. The proportion of the face width deviated from the golden proportion, indicating a small mouth or wide-set eyes in groups 1 and 2. The null hypothesis was verified in the group 3 actresses in the facial height components. Some measurements in groups 1 and 2 showed different facial proportions that deviated from the golden proportion (ratio).

  3. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    NASA Astrophysics Data System (ADS)

    Thieberger, P.; Gassner, D.; Hulsart, R.; Michnoff, R.; Miller, T.; Minty, M.; Sorrell, Z.; Bartnik, A.

    2018-04-01

    A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.

  4. Theoretical foundations of the chronometric cosmology.

    PubMed

    Segal, I E

    1976-03-01

    The derivation of the redshift (z)-distance (r) relation in the chronometric theory of the Cosmos is amplified. The basic physical quantities are represented by precisely defined self-adjoint operators in global Hilbert spaces. Computations yielding explicit bounds for the deviation of the theoretical prediction from the relation z = tan(2)(r/2R) (where R denotes the radius of the universe), earlier derived employing less formal procedures, are carried out for: (a) a cut-off plane wave in two dimensions; (b) a scalar spherical wave in four dimensions; (c) the same as (b) with appropriate incorporation of the photon spin. Both this deviation and the (quantum) dispersion in redshift are shown to be unobservably small. A parallel classical treatment is possible and leads to similar results.

  5. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    DOE PAGES

    Thieberger, Peter; Gassner, D.; Hulsart, R.; ...

    2018-04-25

    Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less

  6. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thieberger, Peter; Gassner, D.; Hulsart, R.

    Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less

  7. Fast readout algorithm for cylindrical beam position monitors providing good accuracy for particle bunches with large offsets.

    PubMed

    Thieberger, P; Gassner, D; Hulsart, R; Michnoff, R; Miller, T; Minty, M; Sorrell, Z; Bartnik, A

    2018-04-01

    A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.

  8. Using walker during walking: a pilot study for health elder.

    PubMed

    Po-Chan, Yeh; Cherng-Yee, Leung

    2012-01-01

    Walker operation completely relies on the walker handle, however most marketed walkers possess two horizontal handles. Several researchers have suggested that horizontal handles might lead to wrist injury. Therefore, the purpose of this study is to assess the relevant design aspects of walker for elderly people. 28 elders participated in this study; when the experiment was started, subject walked on the tile for 3 meter distance twice by using walker. Data for analysis were selected at the corresponding wrist deviation and vertical force. The results showed that during walker using, the mean wrist deviation was greater than zero. The largest vertical force is significantly larger than the smallest one, and different wrist deviation occurred at three phases, the largest wrist deviation while raising walker is larger than the smallest one, however, no significant different was found between the largest and smallest wrist deviation while pressing walker. No significant correlation occurred between weight and wrist deviation. The correlation between weight and vertical force was significantly positive. With wrist deviation walker use may cause injury to upper-limb, however wrists remain in a neutral position during hand movement to prevent damage. The findings of this study should improve the design of walker handles to reduce the wrist deviations of users.

  9. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.

    PubMed

    Lappe, Claudia; Lappe, Markus; Pantev, Christo

    2016-01-01

    Rhythm and melody are two basic characteristics of music. Performing musicians have to pay attention to both, and avoid errors in either aspect of their performance. To investigate the neural processes involved in detecting melodic and rhythmic errors from auditory input we tested musicians on both kinds of deviations in a mismatch negativity (MMN) design. We found that MMN responses to a rhythmic deviation occurred at shorter latencies than MMN responses to a melodic deviation. Beamformer source analysis showed that the melodic deviation activated superior temporal, inferior frontal and superior frontal areas whereas the activation pattern of the rhythmic deviation focused more strongly on inferior and superior parietal areas, in addition to superior temporal cortex. Activation in the supplementary motor area occurred for both types of deviations. We also recorded responses to similar pitch and tempo deviations in a simple, non-musical repetitive tone pattern. In this case, there was no latency difference between the MMNs and cortical activation was smaller and mostly limited to auditory cortex. The results suggest that prediction and error detection of musical stimuli in trained musicians involve a broad cortical network and that rhythmic and melodic errors are processed in partially different cortical streams. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map

    NASA Astrophysics Data System (ADS)

    AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong

    2017-04-01

    The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by using truncated spectra or model spectra as the input. Analyses show that most of the SGS statistics agree well with those from MTLM fields with DNS spectra as the input. For the mean SGS energy dissipation, some significant deviation is observed. However, it is shown that the deviation can be parametrized by the input energy spectrum, which demonstrates the robustness of the MTLM procedure.

  11. Overcoming barriers to effective pain management: the use of professionally directed small group discussions.

    PubMed

    Lewis, C Preston; Corley, Donna J; Lake, Norma; Brockopp, Dorothy; Moe, Krista

    2015-04-01

    Inadequate assessment and management of pain among critical care patients can lead to ineffective care delivery and an increased length of stay. Nurses' lack of knowledge regarding appropriate assessment and treatment, as well as negative biases toward specific patient populations, can lead to poor pain control. Our aim was to evaluate the effectiveness of professionally directed small group discussions on critical care nurses' knowledge and biases related to pain management. A quasi-experiment was conducted at a 383-bed Magnet(®) redesignated hospital in the southeastern United States. Critical care nurses (N = 32) participated in the study. A modified Brockopp and Warden Pain Knowledge Questionnaire was administered before and after the small group sessions. These sessions were 45 minutes in length, consisted of two to six nurses per group, and focused on effective pain management strategies. Results indicated that mean knowledge scores differed significantly and in a positive direction after intervention [preintervention mean = 18.28, standard deviation = 2.33; postintervention mean = 22.16, standard deviation = 1.70; t(31) = -8.87, p < .001]. Post-bias scores (amount of time and energy nurses would spend attending to patients' pain) were significantly higher for 6 of 15 patient populations. The strongest bias against treating patients' pain was toward unconscious and mechanically ventilated individuals. After the implementation of professionally directed small group discussions with critical care nurses, knowledge levels related to pain management increased and biases toward specific patient populations decreased. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  12. An accelerating precursor to predict "time-to-failure" in creep and volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Hao, Shengwang; Yang, Hang; Elsworth, Derek

    2017-09-01

    Real-time prediction by monitoring of the evolution of response variables is a central goal in predicting rock failure. A linear relation Ω˙Ω¨-1 = C(tf - t) has been developed to describe the time to failure, where Ω represents a response quantity, C is a constant and tf represents the failure time. Observations from laboratory creep failure experiments and precursors to volcanic eruptions are used to test the validity of the approach. Both cumulative and simple moving window techniques are developed to perform predictions and to illustrate the effects of data selection on the results. Laboratory creep failure experiments on granites show that the linear relation works well during the final approach to failure. For blind prediction, the simple moving window technique is preferred because it always uses the most recent data and excludes effects of early data deviating significantly from the predicted trend. When the predicted results show only small fluctuations, failure is imminent.

  13. Vortex with fourfold defect lines in a simple model of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Seyed-Allaei, Hamid; Ejtehadi, Mohammad Reza

    2016-03-01

    We study the formation of a vortex with fourfold symmetry in a minimal model of self-propelled particles, confined inside a squared box, using computer simulations and also theoretical analysis. In addition to the vortex pattern, we observe five other regimes in the system: a homogeneous gaseous phase, band structures, moving clumps, moving clusters, and vibrating rings. All six regimes emerge from controlling the strength of noise and from the contribution of repulsion and alignment interactions. We study the shape of the vortex and its symmetry in detail. The pattern shows exponential defect lines where incoming and outgoing flows of particles collide. We show that alignment and repulsion interactions between particles are necessary to form such patterns. We derive hydrodynamical equations with an introduction of the "small deviation" technique to describe the vortex phase. The method is applicable to other systems as well. Finally, we compare the theory with the results of both computer simulations and an experiment using Quincke rotors. A good agreement between the three is observed.

  14. Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Živković, I.; Pajić, D.; Ivek, T.; Berger, H.

    2012-06-01

    We report a detailed single-crystal investigation of a magnetoelectric ferrimagnet Cu2OSeO3 using dc magnetization and ac susceptibility along the three principal directions [100], [110], and [111]. We have observed that in small magnetic fields two magnetic transitions occur, one at Tc=57 K and the second one at TN=58 K. At Tc the nonlinear susceptibility reveals the emergence of the ferromagnetic component and below Tc the magnetization measurements show the splitting between field-cooled and zero-field-cooled regimes. Above 1000 Oe the magnetization saturates and the system is in a single domain state. The temperature dependence of the saturation below Tc can be well described by μ(T)=μ(0)[1-(T/Tc)2]β, with μ(0)=0.56μB/Cu, corresponding to the 3-up-1-down configuration. The dielectric constant measured on a thin single crystal shows a systematic deviation below the transition, indicating an intrinsic magnetoelectric effect.

  15. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE PAGES

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  16. Composition and structure of a large online social network in The Netherlands.

    PubMed

    Corten, Rense

    2012-01-01

    Limitations in data collection have long been an obstacle in research on friendship networks. Most earlier studies use either a sample of ego-networks, or complete network data on a relatively small group (e.g., a single organization). The rise of online social networking services such as Friendster and Facebook, however, provides researchers with opportunities to study friendship networks on a much larger scale. This study uses complete network data from Hyves, a popular online social networking service in The Netherlands, comprising over eight million members and over 400 million online friendship relations. In the first study of its kind for The Netherlands, I examine the structure of this network in terms of the degree distribution, characteristic path length, clustering, and degree assortativity. Results indicate that this network shares features of other large complex networks, but also deviates in other respects. In addition, a comparison with other online social networks shows that these networks show remarkable similarities.

  17. Discrete stochastic charging of aggregate grains

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  18. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations.

    PubMed

    Sargsyan, Karen; Grauffel, Cédric; Lim, Carmay

    2017-04-11

    The root-mean-square deviation (RMSD) is a similarity measure widely used in analysis of macromolecular structures and dynamics. As increasingly larger macromolecular systems are being studied, dimensionality effects such as the "curse of dimensionality" (a diminishing ability to discriminate pairwise differences between conformations with increasing system size) may exist and significantly impact RMSD-based analyses. For such large bimolecular systems, whether the RMSD or other alternative similarity measures might suffer from this "curse" and lose the ability to discriminate different macromolecular structures had not been explicitly addressed. Here, we show such dimensionality effects for both weighted and nonweighted RMSD schemes. We also provide a mechanism for the emergence of the "curse of dimensionality" for RMSD from the law of large numbers by showing that the conformational distributions from which RMSDs are calculated become increasingly similar as the system size increases. Our findings suggest the use of weighted RMSD schemes for small proteins (less than 200 residues) and nonweighted RMSD for larger proteins when analyzing molecular dynamics trajectories.

  19. Genetic Engineering of Optical Properties of Biomaterials

    NASA Astrophysics Data System (ADS)

    Gourley, Paul; Naviaux, Robert; Yaffe, Michael

    2008-03-01

    Baker's yeast cells are easily cultured and can be manipulated genetically to produce large numbers of bioparticles (cells and mitochondria) with controllable size and optical properties. We have recently employed nanolaser spectroscopy to study the refractive index of individual cells and isolated mitochondria from two mutant strains. Results show that biomolecular changes induced by mutation can produce bioparticles with radical changes in refractive index. Wild-type mitochondria exhibit a distribution with a well-defined mean and small variance. In striking contrast, mitochondria from one mutant strain produced a histogram that is highly collapsed with a ten-fold decrease in the mean and standard deviation. In a second mutant strain we observed an opposite effect with the mean nearly unchanged but the variance increased nearly a thousand-fold. Both histograms could be self-consistently modeled with a single, log-normal distribution. The strains were further examined by 2-dimensional gel electrophoresis to measure changes in protein composition. All of these data show that genetic manipulation of cells represents a new approach to engineering optical properties of bioparticles.

  20. Holographic corrections to the Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Armoni, Adi; Ireson, Edwin

    2017-08-01

    We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.

  1. The state of Hawking radiation is non-classical

    NASA Astrophysics Data System (ADS)

    Brustein, Ram; Medved, A. J. M.; Zigdon, Yoav

    2018-01-01

    We show that the state of the Hawking radiation emitted from a large Schwarzschild black hole (BH) deviates significantly from a classical state, in spite of its apparent thermal nature. For this state, the occupation numbers of single modes of massless asymptotic fields, such as photons, gravitons and possibly neutrinos, are small and, as a result, their relative fluctuations are large. The occupation numbers of massive fields are much smaller and suppressed beyond even the expected Boltzmann suppression. It follows that this type of thermal state cannot be viewed as classical or even semiclassical. We substantiate this claim by showing that, in a state with low occupation numbers, physical observables have large quantum fluctuations and, as such, cannot be faithfully described by a mean-field or by a WKB-like semiclassical state. Since the evolution of the BH is unitary, our results imply that the state of the BH interior must also be non-classical when described in terms of the asymptotic fields. We show that such a non-classical interior cannot be described in terms of a semiclassical geometry, even though the average curvature is sub-Planckian.

  2. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.

  3. Flexner 3.0-Democratization of Medical Knowledge for the 21st Century: Teaching Medical Science Using K-12 General Pathology as a Gateway Course.

    PubMed

    Weinstein, Ronald S; Krupinski, Elizabeth A; Weinstein, John B; Graham, Anna R; Barker, Gail P; Erps, Kristine A; Holtrust, Angelette L; Holcomb, Michael J

    2016-01-01

    A medical school general pathology course has been reformatted into a K-12 general pathology course. This new course has been implemented at a series of 7 to 12 grade levels and the student outcomes compared. Typically, topics covered mirrored those in a medical school general pathology course serving as an introduction to the mechanisms of diseases. Assessment of student performance was based on their score on a multiple-choice final examination modeled after an examination given to medical students. Two Tucson area schools, in a charter school network, participated in the study. Statistical analysis of examination performances showed that there were no significant differences as a function of school ( F = 0.258, P = .6128), with students at school A having an average test scores of 87.03 (standard deviation = 8.99) and school B 86.00 (standard deviation = 8.18; F = 0.258, P = .6128). Analysis of variance was also conducted on the test scores as a function of gender and class grade. There were no significant differences as a function of gender ( F = 0.608, P = .4382), with females having an average score of 87.18 (standard deviation = 7.24) and males 85.61 (standard deviation = 9.85). There were also no significant differences as a function of grade level ( F = 0.627, P = .6003), with 7th graders having an average of 85.10 (standard deviation = 8.90), 8th graders 86.00 (standard deviation = 9.95), 9th graders 89.67 (standard deviation = 5.52), and 12th graders 86.90 (standard deviation = 7.52). The results demonstrated that middle and upper school students performed equally well in K-12 general pathology. Student course evaluations showed that the course met the student's expectations. One class voted K-12 general pathology their "elective course-of-the-year."

  4. Flexner 3.0—Democratization of Medical Knowledge for the 21st Century

    PubMed Central

    Krupinski, Elizabeth A.; Weinstein, John B.; Graham, Anna R.; Barker, Gail P.; Erps, Kristine A.; Holtrust, Angelette L.; Holcomb, Michael J.

    2016-01-01

    A medical school general pathology course has been reformatted into a K-12 general pathology course. This new course has been implemented at a series of 7 to 12 grade levels and the student outcomes compared. Typically, topics covered mirrored those in a medical school general pathology course serving as an introduction to the mechanisms of diseases. Assessment of student performance was based on their score on a multiple-choice final examination modeled after an examination given to medical students. Two Tucson area schools, in a charter school network, participated in the study. Statistical analysis of examination performances showed that there were no significant differences as a function of school (F = 0.258, P = .6128), with students at school A having an average test scores of 87.03 (standard deviation = 8.99) and school B 86.00 (standard deviation = 8.18; F = 0.258, P = .6128). Analysis of variance was also conducted on the test scores as a function of gender and class grade. There were no significant differences as a function of gender (F = 0.608, P = .4382), with females having an average score of 87.18 (standard deviation = 7.24) and males 85.61 (standard deviation = 9.85). There were also no significant differences as a function of grade level (F = 0.627, P = .6003), with 7th graders having an average of 85.10 (standard deviation = 8.90), 8th graders 86.00 (standard deviation = 9.95), 9th graders 89.67 (standard deviation = 5.52), and 12th graders 86.90 (standard deviation = 7.52). The results demonstrated that middle and upper school students performed equally well in K-12 general pathology. Student course evaluations showed that the course met the student’s expectations. One class voted K-12 general pathology their “elective course-of-the-year.” PMID:28725762

  5. Misperceptions in the Trajectories of Objects undergoing Curvilinear Motion

    PubMed Central

    Yilmaz, Ozgur; Tripathy, Srimant P.; Ogmen, Haluk

    2012-01-01

    Trajectory perception is crucial in scene understanding and action. A variety of trajectory misperceptions have been reported in the literature. In this study, we quantify earlier observations that reported distortions in the perceived shape of bilinear trajectories and in the perceived positions of their deviation. Our results show that bilinear trajectories with deviation angles smaller than 90 deg are perceived smoothed while those with deviation angles larger than 90 degrees are perceived sharpened. The sharpening effect is weaker in magnitude than the smoothing effect. We also found a correlation between the distortion of perceived trajectories and the perceived shift of their deviation point. Finally, using a dual-task paradigm, we found that reducing attentional resources allocated to the moving target causes an increase in the perceived shift of the deviation point of the trajectory. We interpret these results in the context of interactions between motion and position systems. PMID:22615775

  6. How do we assign punishment? The impact of minimal and maximal standards on the evaluation of deviants.

    PubMed

    Kessler, Thomas; Neumann, Jörg; Mummendey, Amélie; Berthold, Anne; Schubert, Thomas; Waldzus, Sven

    2010-09-01

    To explain the determinants of negative behavior toward deviants (e.g., punishment), this article examines how people evaluate others on the basis of two types of standards: minimal and maximal. Minimal standards focus on an absolute cutoff point for appropriate behavior; accordingly, the evaluation of others varies dichotomously between acceptable or unacceptable. Maximal standards focus on the degree of deviation from that standard; accordingly, the evaluation of others varies gradually from positive to less positive. This framework leads to the prediction that violation of minimal standards should elicit punishment regardless of the degree of deviation, whereas punishment in response to violations of maximal standards should depend on the degree of deviation. Four studies assessed or manipulated the type of standard and degree of deviation displayed by a target. Results consistently showed the expected interaction between type of standard (minimal and maximal) and degree of deviation on punishment behavior.

  7. Endometrioid adenocarcinoma of the uterus with a minimal deviation invasive pattern.

    PubMed

    Landry, D; Mai, K T; Senterman, M K; Perkins, D G; Yazdi, H M; Veinot, J P; Thomas, J

    2003-01-01

    Minimal deviation adenocarcinoma of endometrioid type is a rare pathological entity. We describe a variant of typical endometrioid adenocarcinoma associated with minimal deviation adenocarcinoma of endometrioid type. One 'pilot' case of minimal deviation adenocarcinoma of endometrioid type associated with typical endometrioid adenocarcinoma was encountered at our institution in 2001. A second case of same type was received in consultation. We reviewed 168 consecutive hysterectomy specimens diagnosed with 'endometrioid adenocarcinoma' specifically to identify areas of minimal deviation adenocarcinoma of endometrioid type. Immunohistochemistry was done with the following antibodies: MIB1, p53, oestrogen receptor (ER), progesterone receptor (PR), cytokeratin 7 (CK7), cytokeratin 20 (CK20), carcinoembryonic antigen (CEA), and vimentin (VIM). Four additional cases of minimal deviation adenocarcinoma of endometrioid type were identified. All six cases of minimal deviation adenocarcinoma of endometrioid type were associated with superficial endometrioid adenocarcinoma. In two cases with a large amount of minimal deviation adenocarcinoma of endometrioid type, the cervix was involved. The immunoprofile of two representative cases was ER+, PR+, CK7+, CK20-, CEA-, VIM+. MIB1 immunostaining of four cases revealed little proliferative activity of the minimal deviation adenocarcinoma of endometrioid type glandular cells (0-1%) compared with the associated 'typical' endometrioid adenocarcinoma (20-30%). The same four cases showed no p53 immunostaining in minimal deviation adenocarcinoma of endometrioid type compared with a range of positive staining in the associated endometrioid adenocarcinoma. Minimal deviation adenocarcinoma of endometrioid type more often develops as a result of differentiation from typical endometrioid adenocarcinoma than de novo. Due to its deceptively benign microscopic appearance, minimal deviation adenocarcinoma of endometrioid type may be overlooked and may lead to incorrect assessment of tumour depth and pathological stage. There was a tendency for tumour with a large amount of minimal deviation adenocarcinoma of endometrioid type to invade the cervix.

  8. A Correlational Study of Scoliosis and Trunk Balance in Adult Patients with Mandibular Deviation

    PubMed Central

    Yang, Yang; Wang, Na; Wang, Wenyong; Ding, Yin; Sun, Shiyao

    2013-01-01

    Previous studies have confirmed that patients with mandibular deviation often have abnormal morphology of their cervical vertebrae. However, the relationship between mandibular deviation, scoliosis, and trunk balance has not been studied. Currently, mandibular deviation is usually treated as a single pathology, which leads to poor clinical efficiency. We investigated the relationship of spine coronal morphology and trunk balance in adult patients with mandibular deviation, and compared the finding to those in healthy volunteers. 35 adult patients with skeletal mandibular deviation and 10 healthy volunteers underwent anterior X-ray films of the head and posteroanterior X-ray films of the spine. Landmarks and lines were drawn and measured on these films. The axis distance method was used to measure the degree of scoliosis and the balance angle method was used to measure trunk balance. The relationship of mandibular deviation, spine coronal morphology and trunk balance was evaluated with the Pearson correlation method. The spine coronal morphology of patients with mandibular deviation demonstrated an “S” type curve, while a straight line parallel with the gravity line was found in the control group (significant difference, p<0.01). The trunk balance of patients with mandibular deviation was disturbed (imbalance angle >1°), while the control group had a normal trunk balance (imbalance angle <1°). There was a significant difference between the two groups (p<0.01). The degree of scoliosis and shoulder imbalance correlated with the degree of mandibular deviation, and presented a linear trend. The direction of mandibular deviation was the same as that of the lateral bending of thoracolumbar vertebrae, which was opposite to the direction of lateral bending of cervical vertebrae. Our study shows the degree of mandibular deviation has a high correlation with the degree of scoliosis and trunk imbalance, all the three deformities should be clinically evaluated in the management of mandibular deviation. PMID:23555836

  9. Stable isotope chemistry of fossil bone as a new paleoclimate indicator

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Law, J. Mclver

    2006-02-01

    During fossilization, bone is thought to recrystallize and alter chemically on timescales of kyr to a few tens of kyr, i.e., similar to the timescale for formation of soils. Therefore, C- and O-isotope compositions of bone apatite should correlate with trends in soil water composition and aridity, and serve as paleoclimate indicators. This hypothesis was tested by analyzing C- and O-isotope compositions of the CO 3 component of fossil bone apatite from mid-Oligocene through late Pleistocene units in Oregon and western Idaho, including the John Day (19.4-30.0 Ma), Mascall (15.2-15.8 Ma), and Rattlesnake (7.2-7.8 Ma) Formations, whose paleosol sequences have been studied in detail, and the Juntura (10-11 Ma), Hagerman (3.2 Ma), and Fossil Lake (<23-650 ka) fossil localities. Tooth enamel δ18O values provide a baseline of meteoric water compositions. Stable isotope compositions of bone CO 3 do change in response to broad climatic trends, but show poor correlation with compositions of corresponding paleosol CO 3 at specific horizons. Instead, compositional deviations between bone and paleosol CO 3 correlate with compositional deviations with the next higher paleosol; this suggests that the timescale for fossilization exceeds one paleosol cycle. Based on stratigraphic evidence and simple alteration models, fossilization timescales are estimated at 20-50 kyr, indicating that bone CO 3 will prove most useful for sequences spanning >100 kyr. C-isotopes show negative and strong positive deviations during wet and dry climates respectively, and short-term trends correspond well with changes in aridity within the Mascall and Rattlesnake Formations, as inferred from paleosols. A proposed correction to δ18O values based on δ13C anomalies implies a small, ˜1.5‰ increase in meteoric water δ18O during the late Oligocene global warming event, consistent with a minimum temperature increase of ˜4 °C. A strong inferred decrease in δ18O of 4-5‰ after 7 Ma closely parallels compositional changes in tooth enamel, and reflects a doubling in the height of the Cascade Range.

  10. Comparative evaluation of Kodak EDR2 and XV2 films for verification of intensity modulated radiation therapy.

    PubMed

    Dogan, Nesrin; Leybovich, Leonid B; Sethi, Anil

    2002-11-21

    Film dosimetry provides a convenient tool to determine dose distributions, especially for verification of IMRT plans. However, the film response to radiation shows a significant dependence on depth, energy and field size that compromise the accuracy of measurements. Kodak's XV2 film has a low saturation dose (approximately 100 cGy) and, consequently, a relatively short region of linear dose-response. The recently introduced Kodak extended range EDR2 film was reported to have a linear dose-response region extending to 500 cGy. This increased dose range may be particularly useful in the verification of IMRT plans. In this work, the dependence of Kodak EDR2 film's response on the depth, field size and energy was evaluated and compared with Kodak XV2 film. Co-60, 6 MV, 10 MV and 18 MV beams were used. Field sizes were 2 x 2, 6 x 6, 10 x 10, 14 x 14, 18 x 18 and 24 x 24 cm2. Doses for XV2 and EDR2 films were 80 cGy and 300 cGy, respectively. Optical density was converted to dose using depth-corrected sensitometric (Hurter and Driffield, or H&D) curves. For each field size, XV2 and EDR2 depth-dose curves were compared with ion chamber depth-dose curves. Both films demonstrated similar (within 1%) field size dependence. The deviation from the ion chamber for both films was small forthe fields ranging from 2 x 2 to 10 x 10 cm2: < or =2% for 6, 10 and 18 MV beams. No deviation was observed for the Co-60 beam. As the field size increased to 24 x 24 cm2, the deviation became significant for both films: approximately 7.5% for Co-60, approximately 5% for 6 MV and 10 MV, and approximately 6% for 18 MV. During the verification of IMRT plans, EDR2 film showed a better agreement with the calculated dose distributions than the XV2 film.

  11. In Terms of the Logarithmic Mean Annual Seismicity Rate and Its Standard Deviation to Present the Gutenberg-Richter Relation

    NASA Astrophysics Data System (ADS)

    Chen, K. P.; Chang, W. Y.; Tsai, Y. B.

    2016-12-01

    The main purpose of this study is to apply an innovative approach to assess the median annual seismicity rates and their dispersions for Taiwan earthquakes in different depth ranges. This approach explicitly represents the Gutenberg-Richter (G-R) relation in terms of both the logarithmic mean annual seismicity rate and its standard deviation, instead of just the arithmetic mean. We use the high-quality seismicity data obtained by the Institute of Earth Sciences (IES) and the Central Weather Bureau (CWB) in an earthquake catalog with homogenized moment magnitudes from 1975 to 2014 for our study. The selected data set is shown to be complete for Mw>3.0. We first use it to illustrate the merits of our new approach for dampening the influence of spuriously large or small event numbers in individual years on the determination of median annual seismicity rate and its standard deviation. We further show that the logarithmic annual seismicity rates indeed possess a well-behaved lognormal distribution. The final results are summarized as follows: log10N=5.75-0.90Mw+/-(0.245-0.01Mw) for focal depth 0 300 km; log10N=5.78-0.94Mw+/-(0.195+0.01Mw) for focal depth 0-35 km; log10N=4.72-0.89Mw+/-(-0.075+0.075Mw) for focal depth 35-70 km; and log10N=4.69-0.88Mw+/-(-0.47+0.16Mw) for focal depth 70-300 km. Above results show distinctly different values for the parameters a and b in the G-R relations for Taiwan earthquakes in different depth ranges. These analytical equations can be readily used for comprehensive probabilistic seismic hazard assessment. Furthermore, a numerical table on the corresponding median annual seismicity rates and their upper and lower bounds at median +/- one standard deviation levels, as calculated from above analytical equations, is presented at the end. This table offers an overall glance of the estimated median annual seismicity rates and their dispersions for Taiwan earthquakes of various magnitudes and focal depths. It is interesting to point out that the seismicity rate of crustal earthquakes, which tend to contribute most hazards, accounts for only about 74% of the overall seismicity rate in Taiwan. Accordingly, direct use of the entire earthquake catalog without differentiating the focal depth may result in substantial overestimates of potential seismic hazards.

  12. Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

    NASA Astrophysics Data System (ADS)

    Rodionov, Andrey

    An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.

  13. Minimizing the cost of locomotion with inclined trunk predicts crouched leg kinematics of small birds at realistic levels of elastic recoil.

    PubMed

    Rode, Christian; Sutedja, Yefta; Kilbourne, Brandon M; Blickhan, Reinhard; Andrada, Emanuel

    2016-02-01

    Small birds move with pronograde trunk orientation and crouched legs. Although the pronograde trunk has been suggested to be beneficial for grounded running, the cause(s) of the specific leg kinematics are unknown. Here we show that three charadriiform bird species (northern lapwing, oystercatcher, and avocet; great examples of closely related species that differ remarkably in their hind limb design) move their leg segments during stance in a way that minimizes the cost of locomotion. We imposed measured trunk motions and ground reaction forces on a kinematic model of the birds. The model was used to search for leg configurations that minimize leg work that accounts for two factors: elastic recoil in the intertarsal joint, and cheaper negative muscle work relative to positive muscle work. A physiological level of elasticity (∼ 0.6) yielded segment motions that match the experimental data best, with a root mean square of angular deviations of ∼ 2.1 deg. This finding suggests that the exploitation of elastic recoil shapes the crouched leg kinematics of small birds under the constraint of pronograde trunk motion. Considering that an upright trunk and more extended legs likely decrease the cost of locomotion, our results imply that the cost of locomotion is a secondary movement criterion for small birds. Scaling arguments suggest that our approach may be utilized to provide new insights into the motion of extinct species such as dinosaurs. © 2016. Published by The Company of Biologists Ltd.

  14. The influence of image sensor irradiation damage on the tracking and pointing accuracy of optical communication system

    NASA Astrophysics Data System (ADS)

    Li, Xiaoliang; Luo, Lei; Li, Pengwei; Yu, Qingkui

    2018-03-01

    The image sensor in satellite optical communication system may generate noise due to space irradiation damage, leading to deviation for the determination of the light spot centroid. Based on the irradiation test data of CMOS devices, simulated defect spots in different sizes have been used for calculating the centroid deviation value by grey-level centroid algorithm. The impact on tracking & pointing accuracy of the system has been analyzed. The results show that both the amount and the position of irradiation-induced defect pixels contribute to spot centroid deviation. And the larger spot has less deviation. At last, considering the space radiation damage, suggestions are made for the constraints of spot size selection.

  15. Seismic velocity deviation log: An effective method for evaluating spatial distribution of reservoir pore types

    NASA Astrophysics Data System (ADS)

    Shirmohamadi, Mohamad; Kadkhodaie, Ali; Rahimpour-Bonab, Hossain; Faraji, Mohammad Ali

    2017-04-01

    Velocity deviation log (VDL) is a synthetic log used to determine pore types in reservoir rocks based on a combination of the sonic log with neutron-density logs. The current study proposes a two step approach to create a map of porosity and pore types by integrating the results of petrographic studies, well logs and seismic data. In the first step, velocity deviation log was created from the combination of the sonic log with the neutron-density log. The results allowed identifying negative, zero and positive deviations based on the created synthetic velocity log. Negative velocity deviations (below - 500 m/s) indicate connected or interconnected pores and fractures, while positive deviations (above + 500 m/s) are related to isolated pores. Zero deviations in the range of [- 500 m/s, + 500 m/s] are in good agreement with intercrystalline and microporosities. The results of petrographic studies were used to validate the main pore type derived from velocity deviation log. In the next step, velocity deviation log was estimated from seismic data by using a probabilistic neural network model. For this purpose, the inverted acoustic impedance along with the amplitude based seismic attributes were formulated to VDL. The methodology is illustrated by performing a case study from the Hendijan oilfield, northwestern Persian Gulf. The results of this study show that integration of petrographic, well logs and seismic attributes is an instrumental way for understanding the spatial distribution of main reservoir pore types.

  16. Perception of midline deviations in smile esthetics by laypersons.

    PubMed

    Ferreira, Jamille Barros; Silva, Licínio Esmeraldo da; Caetano, Márcia Tereza de Oliveira; Motta, Andrea Fonseca Jardim da; Cury-Saramago, Adriana de Alcantara; Mucha, José Nelson

    2016-01-01

    To evaluate the esthetic perception of upper dental midline deviation by laypersons and if adjacent structures influence their judgment. An album with 12 randomly distributed frontal view photographs of the smile of a woman with the midline digitally deviated was evaluated by 95 laypersons. The frontal view smiling photograph was modified to create from 1 mm to 5 mm deviations in the upper midline to the left side. The photographs were cropped in two different manners and divided into two groups of six photographs each: group LCN included the lips, chin, and two-thirds of the nose, and group L included the lips only. The laypersons performed the rate of each smile using a visual analog scale (VAS). Wilcoxon test, Student's t-test and Mann-Whitney test were applied, adopting a 5% level of significance. Laypersons were able to perceive midline deviations starting at 1 mm. Statistically significant results (p< 0.05) were found for all multiple comparisons of the values in photographs of group LCN and for almost all comparisons in photographs of group L. Comparisons between the photographs of groups LCN and L showed statistically significant values (p< 0.05) when the deviation was 1 mm. Laypersons were able to perceive the upper dental midline deviations of 1 mm, and above when the adjacent structures of the smiles were included. Deviations of 2 mm and above when the lips only were included. The visualization of structures adjacent to the smile demonstrated influence on the perception of midline deviation.

  17. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    PubMed

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.

  18. Second-order (2 +1 ) -dimensional anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Strickland, Michael

    2014-11-01

    We present a complete formulation of second-order (2 +1 ) -dimensional anisotropic hydrodynamics. The resulting framework generalizes leading-order anisotropic hydrodynamics by allowing for deviations of the one-particle distribution function from the spheroidal form assumed at leading order. We derive complete second-order equations of motion for the additional terms in the macroscopic currents generated by these deviations from their kinetic definition using a Grad-Israel-Stewart 14-moment ansatz. The result is a set of coupled partial differential equations for the momentum-space anisotropy parameter, effective temperature, the transverse components of the fluid four-velocity, and the viscous tensor components generated by deviations of the distribution from spheroidal form. We then perform a quantitative test of our approach by applying it to the case of one-dimensional boost-invariant expansion in the relaxation time approximation (RTA) in which case it is possible to numerically solve the Boltzmann equation exactly. We demonstrate that the second-order anisotropic hydrodynamics approach provides an excellent approximation to the exact (0+1)-dimensional RTA solution for both small and large values of the shear viscosity.

  19. Deployment of titanium thermal barrier for low-temperature carbon nanotube growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G.Y.; Poa, C.H.P.; Henley, S.J.

    2005-12-19

    Chemical vapor-synthesized carbon nanotubes are typically grown at temperatures around 600 deg. C. We report on the deployment of a titanium layer to help elevate the constraints on the substrate temperature during plasma-assisted growth. The growth is possible through the lowering of the hydrocarbon content used in the deposition, with the only source of heat provided by the plasma. The nanotubes synthesized have a small diameter distribution, which deviates from the usual trend that the diameter is determined by the thickness of the catalyst film. Simple thermodynamic simulations also show that the quantity of heat, that can be distributed, ismore » determined by the thickness of the titanium layer. Despite the lower synthesis temperature, it is shown that this technique allows for high growth rates as well as better quality nanotubes.« less

  20. Extended self-similarity in the two-dimensional metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Moriconi, L.

    2003-09-01

    We show that extended self-similarity, a scaling phenomenon first observed in classical turbulent flows, holds for a two-dimensional metal-insulator transition that belongs to the universality class of random Dirac fermions. Deviations from multifractality, which in turbulence are due to the dominance of diffusive processes at small scales, appear in the condensed-matter context as a large-scale, finite-size effect related to the imposition of an infrared cutoff in the field theory formulation. We propose a phenomenological interpretation of extended self-similarity in the metal-insulator transition within the framework of the random β-model description of multifractal sets. As a natural step, our discussion is bridged to the analysis of strange attractors, where crossovers between multifractal and nonmultifractal regimes are found and extended self-similarity turns out to be verified as well.

  1. Water boiling inside carbon nanotubes: toward efficient drug release.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  2. Identifying Threats Using Graph-based Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Eberle, William; Holder, Lawrence; Cook, Diane

    Much of the data collected during the monitoring of cyber and other infrastructures is structural in nature, consisting of various types of entities and relationships between them. The detection of threatening anomalies in such data is crucial to protecting these infrastructures. We present an approach to detecting anomalies in a graph-based representation of such data that explicitly represents these entities and relationships. The approach consists of first finding normative patterns in the data using graph-based data mining and then searching for small, unexpected deviations to these normative patterns, assuming illicit behavior tries to mimic legitimate, normative behavior. The approach is evaluated using several synthetic and real-world datasets. Results show that the approach has high truepositive rates, low false-positive rates, and is capable of detecting complex structural anomalies in real-world domains including email communications, cellphone calls and network traffic.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    The optical configuration of a Fabry-Perot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Perot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Perot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Perot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Perot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experimentsmore » is less than 0.3 {mu}m in the traveling range of 30 mm. The experimental results show that the Fabry-Perot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.« less

  4. Graphic analysis and multifractal on percolation-based return interval series

    NASA Astrophysics Data System (ADS)

    Pei, A. Q.; Wang, J.

    2015-05-01

    A financial time series model is developed and investigated by the oriented percolation system (one of the statistical physics systems). The nonlinear and statistical behaviors of the return interval time series are studied for the proposed model and the real stock market by applying visibility graph (VG) and multifractal detrended fluctuation analysis (MF-DFA). We investigate the fluctuation behaviors of return intervals of the model for different parameter settings, and also comparatively study these fluctuation patterns with those of the real financial data for different threshold values. The empirical research of this work exhibits the multifractal features for the corresponding financial time series. Further, the VGs deviated from both of the simulated data and the real data show the behaviors of small-world, hierarchy, high clustering and power-law tail for the degree distributions.

  5. HF radar transmissions that deviate from great-circle paths: new insight from e-POP RRI

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; Miller, E. S.; James, H. G.; Howarth, A. D.; St-Maurice, J. P.; Yau, A. W.

    2016-12-01

    Significant deviations of SuperDARN radar transmissions from their expected great-circle paths have been detected at ionospheric altitudes using the Radio Receiver Instrument (RRI) on the Enhanced Polar Outflow Probe (e-POP). Experiments between SuperDARN Rankin Inlet and e-POP RRI were conducted at similar local times over consecutive days. Customized experiment modes which incorporated the agile frequency switching capabilities of each system were used. The RRI measurements show deviations of radar transmissions from their expected paths by as much as 2 or 3 SuperDARN beam widths, equivalent to 6° - 10° in bearing from Rankin Inlet. The deviations displayed a dependence on the radar carrier frequency and a day-to-day variability, suggesting that the deviations were transient in nature. We will discuss the deviations in the context of 3D ray trace modeling and measurements from the Resolute Bay Incoherent Scatter Radar - North (RISR-N). The latter provided diagnostic information of the ionosphere along the ray path between RRI and Rankin Inlet during the experiments.

  6. Regionally variant collagen alignment correlates with viscoelastic properties of the disc of the human temporomandibular joint.

    PubMed

    Gutman, Shawn; Kim, Daniel; Tarafder, Solaiman; Velez, Sergio; Jeong, Julia; Lee, Chang H

    2018-02-01

    To determine the regionally variant quality of collagen alignment in human TMJ discs and its statistical correlation with viscoelastic properties. For quantitative analysis of the quality of collagen alignment, horizontal sections of human TMJ discs with Pricrosirius Red staining were imaged under circularly polarized microscopy. Mean angle and angular deviation of collagen fibers in each region were analyzed using a well-established automated image-processing for angular gradient. Instantaneous and relaxation moduli of each disc region were measured under stress-relaxation test both in tensile and compression. Then Spearman correlation analysis was performed between the angular deviation and the moduli. To understand the effect of glycosaminoglycans on the correlation, TMJ disc samples were treated by chondroitinase ABC (C-ABC). Our imaging processing analysis showed the region-variant direction of collagen alignment, consistently with previous findings. Interestingly, the quality of collagen alignment, not only the directions, was significantly different in between the regions. The angular deviation of fiber alignment in the anterior and intermediate regions were significantly smaller than the posterior region. Medial and lateral regions showed significantly bigger angular deviation than all the other regions. The regionally variant angular deviation values showed statistically significant correlation with the tensile instantaneous modulus and the relaxation modulus, partially dependent on C-ABC treatment. Our findings suggest the region-variant degree of collagen fiber alignment is likely attributed to the heterogeneous viscoelastic properties of TMJ disc that may have significant implications in development of regenerative therapy for TMJ disc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hunger and microbiology: is a low gastric acid-induced bacterial overgrowth in the small intestine a contributor to malnutrition in developing countries?

    PubMed

    Sarker, Shafiqul A; Ahmed, Tahmeed; Brüssow, Harald

    2017-09-01

    Underproduction of hydrochloric acid into the stomach is frequently encountered in subjects from developing countries. We explore the hypothesis that hypochlorhydria compromises the gastric barrier and favours bacterial overgrowth in the proximal parts of the small intestine where nutrient absorption takes place. Food calories are thus deviated into bacterial metabolism. In addition to an adequate caloric supply, correcting hypochlorhydria might be needed to decrease childhood malnutrition. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Simulation studies for surfaces and materials strength

    NASA Technical Reports Server (NTRS)

    Halicioglu, Timur

    1987-01-01

    A realistic potential energy function comprising angle dependent terms was employed to describe the potential surface of the N+O2 system. The potential energy parameters were obtained from high level ab-initio results using a nonlinear fitting procedure. It was shown that the potential function is able to reproduce a large number of points on the potential surface with a small rms deviation. A literature survey was conducted to analyze exclusively the status of current small cluster research. This survey turned out to be quite useful in understanding and finding out the existing relationship between theoretical as well as experimental investigative techniques employed by different researchers. Additionally, the importance of the role played by computer simulation in small cluster research, was documented.

  9. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOEpatents

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  10. Digital stereophotogrammetry based on circular markers and zooming cameras: evaluation of a method for 3D analysis of small motions in orthopaedic research

    PubMed Central

    2011-01-01

    Background Orthopaedic research projects focusing on small displacements in a small measurement volume require a radiation free, three dimensional motion analysis system. A stereophotogrammetrical motion analysis system can track wireless, small, light-weight markers attached to the objects. Thereby the disturbance of the measured objects through the marker tracking can be kept at minimum. The purpose of this study was to develop and evaluate a non-position fixed compact motion analysis system configured for a small measurement volume and able to zoom while tracking small round flat markers in respect to a fiducial marker which was used for the camera pose estimation. Methods The system consisted of two web cameras and the fiducial marker placed in front of them. The markers to track were black circles on a white background. The algorithm to detect a centre of the projected circle on the image plane was described and applied. In order to evaluate the accuracy (mean measurement error) and precision (standard deviation of the measurement error) of the optical measurement system, two experiments were performed: 1) inter-marker distance measurement and 2) marker displacement measurement. Results The first experiment of the 10 mm distances measurement showed a total accuracy of 0.0086 mm and precision of ± 0.1002 mm. In the second experiment, translations from 0.5 mm to 5 mm were measured with total accuracy of 0.0038 mm and precision of ± 0.0461 mm. The rotations of 2.25° amount were measured with the entire accuracy of 0.058° and the precision was of ± 0.172°. Conclusions The description of the non-proprietary measurement device with very good levels of accuracy and precision may provide opportunities for new, cost effective applications of stereophotogrammetrical analysis in musculoskeletal research projects, focusing on kinematics of small displacements in a small measurement volume. PMID:21284867

  11. Curvature and frontier orbital energies in density functional theory

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Baer, Roi

    2013-03-01

    Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump'' by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of DFT. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.

  12. Optical transillumination tomography with tolerance against refraction mismatch.

    PubMed

    Haidekker, Mark A

    2005-12-01

    Optical transillumination tomography (OT) is a laser-based imaging modality where ballistic photons are used for projection generation. Image reconstruction is therefore similar to X-ray computed tomography. This modality promises fast image acquisition, good resolution and contrast, and inexpensive instrumentation for imaging of weakly scattering objects, such as for example tissue-engineered constructs. In spite of its advantages, OT is not widely used. One reason is its sensitivity towards changes in material refractive index along the light path. Beam refraction artefacts cause areas of overestimated tissue density and blur geometric details. A spatial filter, introduced into the beam path to eliminate scattered photons, will also remove refracted photons from the projections. In the projections, zones affected by refraction can be detected by thresholding. By using algebraic reconstruction techniques (ART) in conjunction with suitable interpolation algorithms, reconstruction artefacts can be partly avoided. Reconstructions from a test image were performed. Standard filtered backprojection (FBP) showed a round mean square (RMS) deviation from the original image of 9.9. RMS deviation with refraction-tolerant ART reconstruction was 0.33 and 0.24, depending on the algorithm, compared to 0.57 (FBP) and 0.06 (ART) in a non-refracting case. In addition, modified ART reconstruction allowed detection of small geometric details that were invisible in standard reconstructions. Refraction-tolerant ART may be the key to eliminating one of the major challenges of OT.

  13. Correlation of anomalous write error rates and ferromagnetic resonance spectrum in spin-transfer-torque-magnetic-random-access-memory devices containing in-plane free layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evarts, Eric R.; Rippard, William H.; Pufall, Matthew R.

    In a small fraction of magnetic-tunnel-junction-based magnetic random-access memory devices with in-plane free layers, the write-error rates (WERs) are higher than expected on the basis of the macrospin or quasi-uniform magnetization reversal models. In devices with increased WERs, the product of effective resistance and area, tunneling magnetoresistance, and coercivity do not deviate from typical device properties. However, the field-swept, spin-torque, ferromagnetic resonance (FS-ST-FMR) spectra with an applied DC bias current deviate significantly for such devices. With a DC bias of 300 mV (producing 9.9 × 10{sup 6} A/cm{sup 2}) or greater, these anomalous devices show an increase in the fraction of the power presentmore » in FS-ST-FMR modes corresponding to higher-order excitations of the free-layer magnetization. As much as 70% of the power is contained in higher-order modes compared to ≈20% in typical devices. Additionally, a shift in the uniform-mode resonant field that is correlated with the magnitude of the WER anomaly is detected at DC biases greater than 300 mV. These differences in the anomalous devices indicate a change in the micromagnetic resonant mode structure at high applied bias.« less

  14. New reference charts for testicular volume in Dutch children and adolescents allow the calculation of standard deviation scores.

    PubMed

    Joustra, Sjoerd D; van der Plas, Evelyn M; Goede, Joery; Oostdijk, Wilma; Delemarre-van de Waal, Henriette A; Hack, Wilfried W M; van Buuren, Stef; Wit, Jan M

    2015-06-01

    Accurate calculations of testicular volume standard deviation (SD) scores are not currently available. We constructed LMS-smoothed age-reference charts for testicular volume in healthy boys. The LMS method was used to calculate reference data, based on testicular volumes from ultrasonography and Prader orchidometer of 769 healthy Dutch boys aged 6 months to 19 years. We also explored the association between testicular growth and pubic hair development, and data were compared to orchidometric testicular volumes from the 1997 Dutch nationwide growth study. The LMS-smoothed reference charts showed that no revision of the definition of normal onset of male puberty - from nine to 14 years of age - was warranted. In healthy boys, the pubic hair stage SD scores corresponded with testicular volume SD scores (r = 0.394). However, testes were relatively small for pubic hair stage in Klinefelter's syndrome and relatively large in immunoglobulin superfamily member 1 deficiency syndrome. The age-corrected SD scores for testicular volume will aid in the diagnosis and follow-up of abnormalities in the timing and progression of male puberty and in research evaluations. The SD scores can be compared with pubic hair SD scores to identify discrepancies between cell functions that result in relative microorchidism or macroorchidism. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  15. Reference Values for Human Posture Measurements Based on Computerized Photogrammetry: A Systematic Review.

    PubMed

    Macedo Ribeiro, Ana Freire; Bergmann, Anke; Lemos, Thiago; Pacheco, Antônio Guilherme; Mello Russo, Maitê; Santos de Oliveira, Laura Alice; de Carvalho Rodrigues, Erika

    The main objective of this study was to review the literature to identify reference values for angles and distances of body segments related to upright posture in healthy adult women with the Postural Assessment Software (PAS/SAPO). Electronic databases (BVS, PubMed, SciELO and Scopus) were assessed using the following descriptors: evaluation, posture, photogrammetry, physical therapy, postural alignment, postural assessment, and physiotherapy. Studies that performed postural evaluation in healthy adult women with PAS/SAPO and were published in English, Portuguese and Spanish, between the years 2005 and 2014 were included. Four studies met the inclusion criteria. Data from the included studies were grouped to establish the statistical descriptors (mean, variance, and standard deviation) of the body angles and distances. A total of 29 variables were assessed (10 in the anterior views, 16 in the lateral right and left views, and 3 in the posterior views), and its respective mean and standard deviation were calculated. Reference values for the anterior and posterior views showed no symmetry between the right and left sides of the body in the frontal plane. There were also small differences in the calculated reference values for the lateral view. The proposed reference values for quantitative evaluation of the upright posture in healthy adult women estimated in the present study using PAS/SAPO could guide future studies and help clinical practice. Copyright © 2017. Published by Elsevier Inc.

  16. A Weld Position Recognition Method Based on Directional and Structured Light Information Fusion in Multi-Layer/Multi-Pass Welding.

    PubMed

    Zeng, Jinle; Chang, Baohua; Du, Dong; Wang, Li; Chang, Shuhe; Peng, Guodong; Wang, Wenzhu

    2018-01-05

    Multi-layer/multi-pass welding (MLMPW) technology is widely used in the energy industry to join thick components. During automatic welding using robots or other actuators, it is very important to recognize the actual weld pass position using visual methods, which can then be used not only to perform reasonable path planning for actuators, but also to correct any deviations between the welding torch and the weld pass position in real time. However, due to the small geometrical differences between adjacent weld passes, existing weld position recognition technologies such as structured light methods are not suitable for weld position detection in MLMPW. This paper proposes a novel method for weld position detection, which fuses various kinds of information in MLMPW. First, a synchronous acquisition method is developed to obtain various kinds of visual information when directional light and structured light sources are on, respectively. Then, interferences are eliminated by fusing adjacent images. Finally, the information from directional and structured light images is fused to obtain the 3D positions of the weld passes. Experiment results show that each process can be done in 30 ms and the deviation is less than 0.6 mm. The proposed method can be used for automatic path planning and seam tracking in the robotic MLMPW process as well as electron beam freeform fabrication process.

  17. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. 3: Tension-compression anisotropy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gaab, T. P.; Gayda, J.; Hemker, K. J.

    1985-01-01

    Single crystal superalloy specimens with various crystallographic directions along their axes were tested in compression at room temperature, 650, 760, 870, and 980 deg C. These results are compared with the tensile behavior studied previously. The alloy, Rene N4, was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 4.2 Ti, 4 Ta, 0.5 Nb, 6 W, 1.5 Mo 9 Cr. 7.5 Co, balance Ni, in weight percent. Slip trace analysis showed that primary cube slip occurred even at room temperature for the 111 specimens. With increasing test temperature more orientations exhibited primary cube slip, until at 870 deg C only the 100 and 011 specimens exhibited normal octahedral slip. The yield strength for octahedral slip was numerically analysed using a model proposed by Lall, Chin, and Pope to explain deviations from Schmid's Law in the yielding behavior of a single phase Gamma prime alloy, Ni3(Al, Nb). The Schmid's Law deviations in Rene N4 were found to be largely due to a tension-compression anisotropy. A second effect, which increases trength for orientations away from 001, was found to be small in Rene N4. Analysis of recently published data on the single crystal superalloy PWA 1480 yielded the same result.

  18. Safe insertion of S-2 alar iliac screws: radiological comparison between 2 insertion points using computed tomography and 3D analysis software.

    PubMed

    Yamada, Kentaro; Abe, Yuichiro; Satoh, Shigenobu

    2018-05-01

    OBJECTIVE S-2 alar iliac (S2AI) screws are commonly used as anchors for lumbosacral fixation. A serious potential complication of screw insertion is major vascular injury due to anterior or caudal screw deviation. To avoid screw deviation, the pelvic inlet view on intraoperative fluoroscopy images is recommended. However, there has been no detailed investigation of optimal fluoroscopic incline with the pelvic inlet view. The purpose of this study was to investigate the safety margins and to optimize fluoroscopic settings to avoid screw deviation with 2 reported insertion techniques using 3D analysis software and CT. METHODS The study included 50 patients (25 men and 25 women) who underwent abdominal-pelvic CT. With the use of software, the ideal S2AI screws were set from 2 entry points: A) the midpoint between the S-1 dorsal foramen and the S-2 dorsal foramen where they meet the lateral sacral crest, and B) 1 mm inferior and 1 mm lateral to the S-1 dorsal foramen. Anteriorly or caudally deviated screws were defined as deviation of a half thread of the ideal screw by rotation anteriorly or caudally from the entry point. The angular safety margins were compared between the 2 entry points, and patients with small safety margins were investigated. Subsequently, fluoroscopic images were virtualized on ray sum-rendered images. Conditions that provided proper recognition of screw deviation were investigated via lateral and anteroposterior views with the beam tilted caudally. RESULTS The safety margins of S2AI screws were smaller in the anterior direction than in the caudal direction and by entry point A than by entry point B (A: 9.1° ± 1.6° and B: 9.7° ± 1.5° in the anterior direction; A: 10.9° ± 3.8° and B: 13.9° ± 4.1° in the caudal direction). In contrast, patients with a deep-seated L-5 vertebral body tended to have smaller safety margins in the caudal direction. All anteriorly deviated screws were recognized with a 60°-70° inlet view from the S-1 slope. The caudally deviated screws were all recognized on the lateral view, but 31% of screws at entry point A and 21% of screws at entry point B were not recognized on the pelvic inlet view. CONCLUSIONS S2AI screws should be carefully placed to avoid anterior deviation compared with caudal deviation in terms of the safety margin, except in patients with a deep-seated L-5. The difference in safety margins between entry points A and B was negligible. Intraoperative fluoroscopy is recommended with a pelvic inlet view tilted 60°-70° from the S-1 slope to avoid anterior screw deviation. The lateral view is recommended to confirm that the screw is not deviated caudally.

  19. A randomized controlled trial investigating the effects of craniosacral therapy on pain and heart rate variability in fibromyalgia patients.

    PubMed

    Castro-Sánchez, Adelaida María; Matarán-Peñarrocha, Guillermo A; Sánchez-Labraca, Nuria; Quesada-Rubio, José Manuel; Granero-Molina, José; Moreno-Lorenzo, Carmen

    2011-01-01

    Fibromyalgia is a prevalent musculoskeletal disorder associated with widespread mechanical tenderness, fatigue, non-refreshing sleep, depressed mood and pervasive dysfunction of the autonomic nervous system: tachycardia, postural intolerance, Raynaud's phenomenon and diarrhoea. To determine the effects of craniosacral therapy on sensitive tender points and heart rate variability in patients with fibromyalgia. A randomized controlled trial. Ninety-two patients with fibromyalgia were randomly assigned to an intervention group or placebo group. Patients received treatments for 20 weeks. The intervention group underwent a craniosacral therapy protocol and the placebo group received sham treatment with disconnected magnetotherapy equipment. Pain intensity levels were determined by evaluating tender points, and heart rate variability was recorded by 24-hour Holter monitoring. After 20 weeks of treatment, the intervention group showed significant reduction in pain at 13 of the 18 tender points (P < 0.05). Significant differences in temporal standard deviation of RR segments, root mean square deviation of temporal standard deviation of RR segments and clinical global impression of improvement versus baseline values were observed in the intervention group but not in the placebo group. At two months and one year post therapy, the intervention group showed significant differences versus baseline in tender points at left occiput, left-side lower cervical, left epicondyle and left greater trochanter and significant differences in temporal standard deviation of RR segments, root mean square deviation of temporal standard deviation of RR segments and clinical global impression of improvement. Craniosacral therapy improved medium-term pain symptoms in patients with fibromyalgia.

  20. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    PubMed

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Different long-term response to growth hormone therapy in small- versus appropriate-for-gestational-age children with growth hormone deficiency.

    PubMed

    Meazza, Cristina; Pagani, Sara; Pietra, Benedetta; Tinelli, Carmine; Calcaterra, Valeria; Bozzola, Elena; Bozzola, Mauro

    2013-01-01

    The role of birth weight on growth hormone (GH) therapy response in GH-deficient (GHD) children has not been fully elucidated. Therefore, we examined the growth of 23 small-for-gestational-age GHD children (SGA-GHD, 11 females and 12 males), 26 appropriate-for-gestational-age GHD children (AGA-GHD, 11 females and 15 males) during the first 5 years of GH therapy and that of 22 non-GH-treated SGA children (12 females and 10 males). We collected height and height velocity measurements yearly. In AGA-GHD children, height was always greater than in the SGA groups and significantly increased from the fourth year of treatment. Height velocity was higher (SGA-GHD: 1.72 ± 0.30 standard deviation score, SDS, AGA-GHD: 2.67 ± 0.21 SDS; p = 0.039) in AGA-GHD children during the first year of treatment. The AGA-GHD group showed the highest percentage (52.4%) of subjects surpassing mid-parental height and the greatest height gain after 5 years of follow-up. Our results show that birth size is an important factor affecting the response to GH therapy in GHD children during the first 5 years of treatment. The paediatric endocrinologist should be aware of this factor when planning the management of GHD children born SGA. Copyright © 2013 S. Karger AG, Basel.

  2. T-RMSD: a fine-grained, structure-based classification method and its application to the functional characterization of TNF receptors.

    PubMed

    Magis, Cedrik; Stricher, François; van der Sloot, Almer M; Serrano, Luis; Notredame, Cedric

    2010-07-16

    This study addresses the relation between structural and functional similarity in proteins. We introduce a novel method named tree based on root mean square deviation (T-RMSD), which uses distance RMSD (dRMSD) variations to build fine-grained structure-based classifications of proteins. The main improvement of the T-RMSD over similar methods, such as Dali, is its capacity to produce the equivalent of a bootstrap value for each cluster node. We validated our approach on two domain families studied extensively for their role in many biological and pathological pathways: the small GTPase RAS superfamily and the cysteine-rich domains (CRDs) associated with the tumor necrosis factor receptors (TNFRs) family. Our analysis showed that T-RMSD is able to automatically recover and refine existing classifications. In the case of the small GTPase ARF subfamily, T-RMSD can distinguish GTP- from GDP-bound states, while in the case of CRDs it can identify two new subgroups associated with well defined functional features (ligand binding and formation of ligand pre-assembly complex). We show how hidden Markov models (HMMs) can be built on these new groups and propose a methodology to use these models simultaneously in order to do fine-grained functional genomic annotation without known 3D structures. T-RMSD, an open source freeware incorporated in the T-Coffee package, is available online. 2010 Elsevier Ltd. All rights reserved.

  3. Dynamics of meso and thermo citrate synthases with implicit solvation

    NASA Astrophysics Data System (ADS)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  4. Quasi-periodic Oscillation of a Coronal Bright Point

    NASA Astrophysics Data System (ADS)

    Samanta, Tanmoy; Banerjee, Dipankar; Tian, Hui

    2015-06-01

    Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.

  5. Source of Quasi-Periodic Brightenings of Solar Coronal Bright Points: Waves or Repeated Reconnections

    NASA Astrophysics Data System (ADS)

    Samanta, Tanmoy; Tian, Hui; Banerjee, Dipankar

    2016-07-01

    Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.

  6. A Correction for the Epsilon Approximate Test in Repeated Measures Designs with Two or More Independent Groups.

    ERIC Educational Resources Information Center

    Lecoutre, Bruno

    1991-01-01

    The routine epsilon approximate test in repeated measures designs when the condition of circularity is unfulfilled uses an erroneous formula in the case of two or more groups. Because this may lead to underestimation of the deviation from circularity when the subject number is small, a correction is proposed. (Author/SLD)

  7. Characterization of UAV Performance and Development of a Formation Flight Controller for Multiple Small UAVS

    DTIC Science & Technology

    2006-06-01

    61 Figure 29 - Simulation #1 2-D Deviation at Waypoints...92 Figure 60 - Simulation #5 Airspeed 16m/s, Track Convergence 250..................................... 92 Figure 61 - Simulation #6...oz fuel tank, which puts its endurance close to 2 hrs. The Rascal makes use of a hybrid airfoil that, according to the manufacturer, is a

  8. Optimal Asset Distribution for Environmental Assessment and Forecasting Based on Observations, Adaptive Sampling, and Numerical Prediction

    DTIC Science & Technology

    2013-03-18

    Soliton Ocean Services Inc. to Steve Ramp to complete the work on the grant. Computations in support of Steve Ramp’s work were carried out by Fred...dominant term, even when averaged over the dark hours, which accounts for the large standard deviation. The net long-wave radiation was small and

  9. The relationship between purely stochastic sampling error and the number of technical replicates used to estimate concentration at an extreme dilution

    USDA-ARS?s Scientific Manuscript database

    For any analytical system the population mean (mu) number of entities (e.g., cells or molecules) per tested volume, surface area, or mass also defines the population standard deviation (sigma = square root of mu ). For a preponderance of analytical methods, sigma is very small relative to mu due to...

  10. Testing the equivalence principle on cosmological scales

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Fleury, Pierre

    2018-05-01

    The equivalence principle, that is one of the main pillars of general relativity, is very well tested in the Solar system; however, its validity is more uncertain on cosmological scales, or when dark matter is concerned. This article shows that relativistic effects in the large-scale structure can be used to directly test whether dark matter satisfies Euler's equation, i.e. whether its free fall is characterised by geodesic motion, just like baryons and light. After having proposed a general parametrisation for deviations from Euler's equation, we perform Fisher-matrix forecasts for future surveys like DESI and the SKA, and show that such deviations can be constrained with a precision of order 10%. Deviations from Euler's equation cannot be tested directly with standard methods like redshift-space distortions and gravitational lensing, since these observables are not sensitive to the time component of the metric. Our analysis shows therefore that relativistic effects bring new and complementary constraints to alternative theories of gravity.

  11. Eisenmenger ventricular septal defect in a Humboldt penguin (Spheniscus humboldti).

    PubMed

    Laughlin, D S; Ialeggio, D M; Trupkiewicz, J G; Sleeper, M M

    2016-09-01

    The Eisenmenger ventricular septal defect is an uncommon type of ventricular septal defect characterised in humans by a traditionally perimembranous ventricular septal defect, anterior deviation (cranioventral deviation in small animal patients) of the muscular outlet septum causing malalignment relative to the remainder of the muscular septum, and overriding of the aortic valve. This anomaly is reported infrequently in human patients and was identified in a 45-day-old Humboldt Penguin, Spheniscus humboldti, with signs of poor growth and a cardiac murmur. This case report describes the findings in this penguin and summarises the anatomy and classification of this cardiac anomaly. To the authors' knowledge this is the first report of an Eisenmenger ventricular septal defect in a veterinary patient. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  13. Neoclassical canons of facial beauty: Do we see the deviations?

    PubMed

    Pavlic, Andrej; Trinajstic Zrinski, Magda; Katic, Visnja; Spalj, Stjepan

    2017-05-01

    To explore the presence of neoclassical canons of facial beauty among young people in Croatia and to question possible psychosocial repercussions occurring in those who demonstrate deviations in relation to canons. The study was cross-sectional and the sample included 249 subjects (60% female) aged 12-39 (median 20). Their en face and profile photographs were taken in Natural Head Position. Photogrammetry included analysis of nine neoclassical canons of facial beauty originating from the Renaissance. Psychosocial issues were assessed using the Self-Esteem Scale, Big Five Inventory and three domains of Orthognathic Quality of Life Questionnaire. Significant deviations from neoclassical facial beauty canons were observed in 55-65% of adolescents and young adults. Gender and age showed no relation to deviations. The deviations from canons that influenced the quality of life were mainly those related to vertical facial proportions and demonstrated increased facial aesthetics concern and social impact, and higher self-reported treatment need (p < 0.05). Deviations from canons were not related to self-esteem but a decrease in openness, agreeableness and neuroticism was observed. Neoclassical canons were not valid for the majority of adolescents and young adults in Croatia. Only deviations from some canons appear to provoke mild psychosocial repercussions. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Distractor Evoked Deviations of Saccade Trajectory Are Modulated by Fixation Activity in the Superior Colliculus: Computational and Behavioral Evidence

    PubMed Central

    Wang, Zhiguo; Theeuwes, Jan

    2014-01-01

    Previous studies have shown that saccades may deviate towards or away from task irrelevant visual distractors. This observation has been attributed to active suppression (inhibition) of the distractor location unfolding over time: early in time inhibition at the distractor location is incomplete causing deviation towards the distractor, while later in time when inhibition is complete the eyes deviate away from the distractor. In a recent computational study, Wang, Kruijne and Theeuwes proposed an alternative theory that the lateral interactions in the superior colliculus (SC), which are characterized by short-distance excitation and long-distance inhibition, are sufficient for generating both deviations towards and away from distractors. In the present study, we performed a meta-analysis of the literature, ran model simulations and conducted two behavioral experiments to further explore this unconventional theory. Confirming predictions generated by the model simulations, the behavioral experiments show that a) saccades deviate towards close distractors and away from remote distractors, and b) the amount of deviation depends on the strength of fixation activity in the SC, which can be manipulated by turning off the fixation stimulus before or after target onset (Experiment 1), or by varying the eccentricity of the target and distractor (Experiment 2). PMID:25551552

  15. Measurement errors in polymerase chain reaction are a confounding factor for a correct interpretation of 5-HTTLPR polymorphism effects on lifelong premature ejaculation: a critical analysis of a previously published meta-analysis of six studies.

    PubMed

    Janssen, Paddy K C; Olivier, Berend; Zwinderman, Aeilko H; Waldinger, Marcel D

    2014-01-01

    To analyze a recently published meta-analysis of six studies on 5-HTTLPR polymorphism and lifelong premature ejaculation (PE). Calculation of fraction observed and expected genotype frequencies and Hardy Weinberg equilibrium (HWE) of cases and controls. LL,SL and SS genotype frequencies of patients were subtracted from genotype frequencies of an ideal population (LL25%, SL50%, SS25%, p = 1 for HWE). Analysis of PCRs of six studies and re-analysis of the analysis and Odds ratios (ORs) reported in the recently published meta-analysis. Three studies deviated from HWE in patients and one study deviated from HWE in controls. In three studies in-HWE the mean deviation of genotype frequencies from a theoretical population not-deviating from HWE was small: LL(1.7%), SL(-2.3%), SS(0.6%). In three studies not-in-HWE the mean deviation of genotype frequencies was high: LL(-3.3%), SL(-18.5%) and SS(21.8%) with very low percentage SL genotype concurrent with very high percentage SS genotype. The most serious PCR deviations were reported in the three not-in-HWE studies. The three in-HWE studies had normal OR. In contrast, the three not-in-HWE studies had a low OR. In three studies not-in-HWE and with very low OR, inadequate PCR analysis and/or inadequate interpretation of its gel electrophoresis resulted in very low SL and a resulting shift to very high SS genotype frequency outcome. Consequently, PCRs of these three studies are not reliable. Failure to note the inadequacy of PCR tests makes such PCRs a confounding factor in clinical interpretation of genetic studies. Currently, a meta-analysis can only be performed on three studies-in-HWE. However, based on the three studies-in-HWE with OR of about 1 there is not any indication that in men with lifelong PE the frequency of LL,SL and SS genotype deviates from the general male population and/or that the SL or SS genotype is in any way associated with lifelong PE.

  16. Research on frequency control strategy of interconnected region based on fuzzy PID

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Chunlan

    2018-05-01

    In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.

  17. Stimuli eliciting sexual arousal in males who offend adult women: an experimental study.

    PubMed

    Kolárský, A; Madlafousek, J; Novotná, V

    1978-03-01

    The sexually arousing effects of short film scenes showing a naked actress's seductive behavior were phalloplethysmographically measured in 14 sexual deviates. These were males who had offended adult women, predominantly exhibitionists. Controls were 14 normal men. Deviates responded positively to the scenes and differentiated strong and weak seduction scenes similarly to normals. Consequently, the question arises of why deviates avoid their victim's erotic cooperation and why they do not offend their regular sexual partners. Post hoc analysis of five scenes which elicited a strikingly higher response in deviates than in normals suggested that these scenes contained reduced seductive behavior but unrestrained presentation of the genitals. This finding further encourages the laboratory study of stimulus conditions for abnormal sexual arousal which occurs during the sexual offense.

  18. Scaling Deviations for Neutrino Reactions in Aysmptotically Free Field Theories

    DOE R&D Accomplishments Database

    Wilczek, F. A.; Zee, A.; Treiman, S. B.

    1974-11-01

    Several aspects of deep inelastic neutrino scattering are discussed in the framework of asymptotically free field theories. We first consider the growth behavior of the total cross sections at large energies. Because of the deviations from strict scaling which are characteristic of such theories the growth need not be linear. However, upper and lower bounds are established which rather closely bracket a linear growth. We next consider in more detail the expected pattern of scaling deviation for the structure functions and, correspondingly, for the differential cross sections. The analysis here is based on certain speculative assumptions. The focus is on qualitative effects of scaling breakdown as they may show up in the X and y distributions. The last section of the paper deals with deviations from the Callan-Gross relation.

  19. Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Muji Susantoro, Tri; Wikantika, Ketut; Saepuloh, Asep; Handoyo Harsolumakso, Agus

    2018-05-01

    Selection of vegetation indices in plant mapping is needed to provide the best information of plant conditions. The methods used in this research are the standard deviation and the linear regression. This research tried to determine the vegetation indices used for mapping the sugarcane conditions around oil and gas fields. The data used in this study is Landsat 8 OLI/TIRS. The standard deviation analysis on the 23 vegetation indices with 27 samples has resulted in the six highest standard deviations of vegetation indices, termed as GRVI, SR, NLI, SIPI, GEMI and LAI. The standard deviation values are 0.47; 0.43; 0.30; 0.17; 0.16 and 0.13. Regression correlation analysis on the 23 vegetation indices with 280 samples has resulted in the six vegetation indices, termed as NDVI, ENDVI, GDVI, VARI, LAI and SIPI. This was performed based on regression correlation with the lowest value R2 than 0,8. The combined analysis of the standard deviation and the regression correlation has obtained the five vegetation indices, termed as NDVI, ENDVI, GDVI, LAI and SIPI. The results of the analysis of both methods show that a combination of two methods needs to be done to produce a good analysis of sugarcane conditions. It has been clarified through field surveys and showed good results for the prediction of microseepages.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, D; Meier, J; Mawlawi, O

    Purpose: Use a NEMA-IEC PET phantom to assess the robustness of FDG-PET-based radiomics features to changes in reconstruction parameters across different scanners. Methods: We scanned a NEMA-IEC PET phantom on 3 different scanners (GE Discovery VCT, GE Discovery 710, and Siemens mCT) using a FDG source-to-background ratio of 10:1. Images were retrospectively reconstructed using different iterations (2–3), subsets (21–24), Gaussian filter widths (2, 4, 6mm), and matrix sizes (128,192,256). The 710 and mCT used time-of-flight and point-spread-functions in reconstruction. The axial-image through the center of the 6 active spheres was used for analysis. A region-of-interest containing all spheres was ablemore » to simulate a heterogeneous lesion due to partial volume effects. Maximum voxel deviations from all retrospectively reconstructed images (18 per scanner) was compared to our standard clinical protocol. PET Images from 195 non-small cell lung cancer patients were used to compare feature variation. The ratio of a feature’s standard deviation from the patient cohort versus the phantom images was calculated to assess for feature robustness. Results: Across all images, the percentage of voxels differing by <1SUV and <2SUV ranged from 61–92% and 88–99%, respectively. Voxel-voxel similarity decreased when using higher resolution image matrices (192/256 versus 128) and was comparable across scanners. Taking the ratio of patient and phantom feature standard deviation was able to identify features that were not robust to changes in reconstruction parameters (e.g. co-occurrence correlation). Metrics found to be reasonably robust (standard deviation ratios > 3) were observed for routinely used SUV metrics (e.g. SUVmean and SUVmax) as well as some radiomics features (e.g. co-occurrence contrast, co-occurrence energy, standard deviation, and uniformity). Similar standard deviation ratios were observed across scanners. Conclusions: Our method enabled a comparison of feature variability across scanners and was able to identify features that were not robust to changes in reconstruction parameters.« less

  1. Perception of midline deviations in smile esthetics by laypersons

    PubMed Central

    Ferreira, Jamille Barros; da Silva, Licínio Esmeraldo; Caetano, Márcia Tereza de Oliveira; da Motta, Andrea Fonseca Jardim; Cury-Saramago, Adriana de Alcantara; Mucha, José Nelson

    2016-01-01

    ABSTRACT Objective: To evaluate the esthetic perception of upper dental midline deviation by laypersons and if adjacent structures influence their judgment. Methods: An album with 12 randomly distributed frontal view photographs of the smile of a woman with the midline digitally deviated was evaluated by 95 laypersons. The frontal view smiling photograph was modified to create from 1 mm to 5 mm deviations in the upper midline to the left side. The photographs were cropped in two different manners and divided into two groups of six photographs each: group LCN included the lips, chin, and two-thirds of the nose, and group L included the lips only. The laypersons performed the rate of each smile using a visual analog scale (VAS). Wilcoxon test, Student’s t-test and Mann-Whitney test were applied, adopting a 5% level of significance. Results: Laypersons were able to perceive midline deviations starting at 1 mm. Statistically significant results (p< 0.05) were found for all multiple comparisons of the values in photographs of group LCN and for almost all comparisons in photographs of group L. Comparisons between the photographs of groups LCN and L showed statistically significant values (p< 0.05) when the deviation was 1 mm. Conclusions: Laypersons were able to perceive the upper dental midline deviations of 1 mm, and above when the adjacent structures of the smiles were included. Deviations of 2 mm and above when the lips only were included. The visualization of structures adjacent to the smile demonstrated influence on the perception of midline deviation. PMID:28125140

  2. Predictive model for disinfection by-product in Alexandria drinking water, northern west of Egypt.

    PubMed

    Abdullah, Ali M; Hussona, Salah El-dien

    2013-10-01

    Chlorine has been utilized in the early stages of water treatment processes as disinfectant. Disinfection for drinking water reduces the risk of pathogenic infection but may pose a chemical threat to human health due to disinfection residues and their by-products (DBP) when the organic and inorganic precursors are present in water. In the last two decades, many modeling attempts have been made to predict the occurrence of DBP in drinking water. Models have been developed based on data generated in laboratory-scale and field-scale investigations. The objective of this paper is to develop a predictive model for DBP formation in the Alexandria governorate located at the northern west of Egypt based on field-scale investigations as well as laboratory-controlled experimentations. The present study showed that the correlation coefficient between trihalomethanes (THM) predicted and THM measured was R (2)=0.88 and the minimum deviation percentage between THM predicted and THM measured was 0.8 %, the maximum deviation percentage was 89.3 %, and the average deviation was 17.8 %, while the correlation coefficient between dichloroacetic acid (DCAA) predicted and DCAA measured was R (2)=0.98 and the minimum deviation percentage between DCAA predicted and DCAA measured was 1.3 %, the maximum deviation percentage was 47.2 %, and the average deviation was 16.6 %. In addition, the correlation coefficient between trichloroacetic acid (TCAA) predicted and TCAA measured was R (2)=0.98 and the minimum deviation percentage between TCAA predicted and TCAA measured was 4.9 %, the maximum deviation percentage was 43.0 %, and the average deviation was 16.0 %.

  3. Spatial distribution of Qinghai spruce forests and the thresholds of influencing factors in a small catchment, Qilian Mountains, northwest China.

    PubMed

    Yang, Wenjuan; Wang, Yanhui; Wang, Shunli; Webb, Ashley A; Yu, Pengtao; Liu, Xiande; Zhang, Xuelong

    2017-07-17

    Forest restoration in dryland mountainous areas is extremely difficult due to dry climate, complex topography and accelerating climate change. Thus, exact identification of suitable sites is required. This study at a small watershed of Qilian Mountains, Northwest China, aimed to determine the important factors and their thresholds limiting the spatial distribution of forests of Qinghai spruce (Picea crassifolia), a locally dominant tree species. The watershed was divided into 342 spatial units. Their location, terrain and vegetation characteristics were recorded. Statistical analysis showed that the potential distribution area of Qinghai spruce forests is within an ellipse with the axes of elevation (from 2673.6 to 3202.2 m a.s.l.) and slope aspect (from -162.1° to 75.1° deviated from North). Within this ellipse, the forested sites have a soil thickness ≥40 cm, and slope positions of lower-slope, lower- or middle-slope, anywhere if the elevation is <2800, 2800-2900, >2900 m a.s.l, respectively. The corresponding mean annual air temperature at upper elevation boundary is -2.69 °C, while the mean annual precipitation at lower elevation boundary is 374 (331) mm within the small watershed (study area). The high prediction accuracy using these 4 factors can help to identify suitable sites and increase the success of afforestation.

  4. Effect of temperature on magnetic and impedance properties of Fe3BO6 of nanotubular structure with a bonded B2O3 surface layer

    NASA Astrophysics Data System (ADS)

    Kumari, Kalpana; Ram, S.; Kotnala, R. K.

    2018-03-01

    In this investigation, we explore a facile synthesis of Fe3BO6 in the form of small crystallites in the specific shape of nanotubes crystallized from a supercooled liquid Fe2O3-B2O3 precursor. This study includes high resolution transmission electron microscopy (HRTEM) images, magnetic, optical, and impedance properties of the sample. HRTEM images reveal small tubes of Fe3BO6 of 20 nm diameter. A well resolved hysteresis loop appears at 5 K in which the magnetization does not saturate even up to as high field as 50 kOe. It means that the Fe3BO6 nanotubes behave as highly antiferromagnetic in nature in which the surface spins do not align along the field so easily. The temperature dependent impedance describes an ionic Fe3BO6 conductor with a reasonably small activation energy Ea ˜ 0.33 eV. Impedance formalism in terms of a Cole-Cole plot shows a deviation from an ideal Debye-like behavior. We have also reported that electronic absorption spectra are over a spectral range 200-800 nm of wavelengths in order to find out how a bonded surface layer present on the Fe3BO6 crystallites tunes the 3d → 3d electronic transitions in Fe3+ ions.

  5. Screen Twice, Cut Once: Assessing the Predictive Validity of Teacher Selection Tools

    ERIC Educational Resources Information Center

    Goldhaber, Dan; Grout, Cyrus; Huntington-Klein, Nick

    2015-01-01

    It is well documented that teachers can have profound effects on student outcomes. Empirical estimates find that a one standard deviation increase in teacher quality raises student test achievement by 10 to 25 percent of a standard deviation. More recent evidence shows that the effectiveness of teachers can affect long-term student outcomes, such…

  6. Cumulants and large deviations of the current through non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Bodineau, Thierry; Derrida, Bernard

    2007-06-01

    Using a generalisation of detailed balance for systems maintained out of equilibrium by contact with 2 reservoirs at unequal temperatures or at unequal densities, one can recover the fluctuation theorem for the large deviation function of the current. For large diffusive systems, we show how the large deviation function of the current can be computed using a simple additivity principle. The validity of this additivity principle and the occurrence of phase transitions are discussed in the framework of the macroscopic fluctuation theory. To cite this article: T. Bodineau, B. Derrida, C. R. Physique 8 (2007).

  7. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    NASA Astrophysics Data System (ADS)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  8. Importance sampling large deviations in nonequilibrium steady states. I.

    PubMed

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T

    2018-03-28

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  9. Importance sampling large deviations in nonequilibrium steady states. I

    NASA Astrophysics Data System (ADS)

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.

    2018-03-01

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  10. Effect of drivers' age and push button locations on visual time off road, steering wheel deviation and safety perception.

    PubMed

    Dukic, T; Hanson, L; Falkmer, T

    2006-01-15

    The study examined the effects of manual control locations on two groups of randomly selected young and old drivers in relation to visual time off road, steering wheel deviation and safety perception. Measures of visual time off road, steering wheel deviations and safety perception were performed with young and old drivers during real traffic. The results showed an effect of both driver's age and button location on the dependent variables. Older drivers spent longer visual time off road when pushing the buttons and had larger steering wheel deviations. Moreover, the greater the eccentricity between the normal line of sight and the button locations, the longer the visual time off road and the larger the steering wheel deviations. No interaction effect between button location and age was found with regard to visual time off road. Button location had an effect on perceived safety: the further away from the normal line of sight the lower the rating.

  11. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    NASA Astrophysics Data System (ADS)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  12. Compensation of significant parametric uncertainties using sliding mode online learning

    NASA Astrophysics Data System (ADS)

    Schnetter, Philipp; Kruger, Thomas

    An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.

  13. Oxide-confined 2D VCSEL arrays for high-density inter/intra-chip interconnects

    NASA Astrophysics Data System (ADS)

    King, Roger; Michalzik, Rainer; Jung, Christian; Grabherr, Martin; Eberhard, Franz; Jaeger, Roland; Schnitzer, Peter; Ebeling, Karl J.

    1998-04-01

    We have designed and fabricated 4 X 8 vertical-cavity surface-emitting laser (VCSEL) arrays intended to be used as transmitters in short-distance parallel optical interconnects. In order to meet the requirements of 2D, high-speed optical links, each of the 32 laser diodes is supplied with two individual top contacts. The metallization scheme allows flip-chip mounting of the array modules junction-side down on silicon complementary metal oxide semiconductor (CMOS) chips. The optical and electrical characteristics across the arrays with device pitch of 250 micrometers are quite homogeneous. Arrays with 3 micrometers , 6 micrometers and 10 micrometers active diameter lasers have been investigated. The small devices show threshold currents of 600 (mu) A, single-mode output powers as high as 3 mW and maximum wavelength deviations of only 3 nm. The driving characteristics of all arrays are fully compatible to advanced 3.3 V CMOS technology. Using these arrays, we have measured small-signal modulation bandwidths exceeding 10 GHz and transmitted pseudo random data at 8 Gbit/s channel over 500 m graded index multimode fiber. This corresponds to a data transmission rate of 256 Gbit/s per array of 1 X 2 mm2 footprint area.

  14. Distribution of velocities and acceleration for a particle in Brownian correlated disorder: Inertial case

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Petković, Aleksandra; Wiese, Kay Jörg

    2012-06-01

    We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia. We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom. It is the extension of the mean-field Alessandro-Beatrice- Bertotti-Montorsi (ABBM) model in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion. The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical progress, we consider two variants which coincide with the original model whenever the particle moves only forward. Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity, all three models share the same large-deviation function for positive velocities, which is obtained analytically for small and large m, as well as for m=6/25. The effect of small additional thermal and quantum fluctuations can be treated within an approximate method.

  15. Probing new physics in B→f0(980)K decays

    NASA Astrophysics Data System (ADS)

    Giri, A. K.; Mawlong, B.; Mohanta, R.

    2006-12-01

    We study the hadronic decay modes B±(0)→f0(980)K±(0), involving a scalar and a pseudoscalar meson in the final state. These decay modes are dominated by the loop induced b→sq¯q(q=s,u,d) penguins along with a small b→u tree level transition (for B+→f0K+) and annihilation diagrams. Therefore, the standard model expectation of direct CP violation is negligibly small and the mixing-induced CP violation parameter in the mode B0→f0KS is expected to give the same value of sin⁡(2β), as extracted from B0→J/ψKS but with opposite sign. Using the generalized factorization approach we find the direct CP violation in the decay mode B+→f0K+ to be of the order of few percent. We then study the effect of the R-parity violating supersymmetric model and show that the direct CP violating asymmetry in B+→f0(980)K+ could be as large as ˜80% and the mixing-induced CP asymmetry in B0→f0KS (i.e., -Sf0KS) could deviate significantly from that of sin⁡(2β)J/ψKS.

  16. Short stature, unusual face, delta phalanx, and abnormal vertebrae and ribs in a girl born to half-siblings.

    PubMed

    Pogue, Robert; Marques, Felipe A; Kopacek, Cristiane; Rosa, Rosana C M; Dorfman, Luiza E; Mazzeu, Juliana F; Flores, José A M; Zen, Paulo R G; Rosa, Rafael F M

    2017-05-01

    Delta phalanx is a rare abnormality typically associated with additional features. We describe a patient with a phenotype resembling Catel-Manzke syndrome, but with delta phalanx and abnormal vertebrae and ribs. The patient was the only child of half siblings born with a marked prenatal growth deficiency. At 10 years of age, she had a short stature, long face, long and tubular nose with small alae nasi, high palate, short and broad thorax, and short index fingers with radial deviation. There were hyperpigmentations following Blaschko's lines. Radiology showed a proximal delta phalanx in the index finger of hands, abnormal vertebrae, and fused and small ribs. GTG-Banding karyotype and microarray analysis yielded normal results. Exome sequencing identified 25 genes that harbored homozygous variants, but none of these is assumed to be a good candidate to explain (part of) the phenotype. The here described patient may have a new condition, possibly following an autosomal recessive pattern of inheritance, although due to the high degree of consanguinity a compound etiology of the phenotype by variants in various genes may be present as well. © 2017 Wiley Periodicals, Inc.

  17. Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling

    NASA Astrophysics Data System (ADS)

    Grobbe, N.; Slob, E. C.; Thorbecke, J. W.

    2016-07-01

    We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.

  18. The spatial distributions of large gap-like structure on Fe(Se,Te) single crystals observed by STM/STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Sakai, Yuta; Nagasaka, Kouhei; Ekino, Toshikazu

    2015-11-01

    The nanoscale spatial distributions of large gap-like structure on superconducting FeSe1-xTex were investigated by scanning tunneling microscopy/spectroscopy (STM/STS). The STM topography shows regular atomic lattice arrangements with the lattice spacing ∼0.38 nm, together with the randomly distributed large spots due to the excess Fe atoms. From the STS measurements, the small gap structures of Δ ∼ 7 meV were partly observed. On the other hand, the high-bias dI/dV curves exhibit the broad peak structures at the negative biases of VPG = -200 to -400 mV in the measured whole surface area. The average of these large gaps is |VPGave| ∼ 305 mV with the standard deviation of σ ∼ 48 mV. The spatial distributions of the VPG exhibit the domain structures consisting of the relatively smaller gaps (<250 meV), which correspond to the excess Fe positions. The small gap Δ ∼ 7 meV is also observed at those positions, suggesting that the excess Fe affects the electronic structures of FeSe1-xTex.

  19. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  20. Validity of flowmeter data in heterogeneous alluvial aquifers

    NASA Astrophysics Data System (ADS)

    Bianchi, Marco

    2017-04-01

    Numerical simulations are performed to evaluate the impact of medium-scale sedimentary architecture and small-scale heterogeneity on the validity of the borehole flowmeter test, a widely used method for measuring hydraulic conductivity (K) at the scale required for detailed groundwater flow and solute transport simulations. Reference data from synthetic K fields representing the range of structures and small-scale heterogeneity typically observed in alluvial systems are compared with estimated values from numerical simulations of flowmeter tests. Systematic errors inherent in the flowmeter K estimates are significant when the reference K field structure deviates from the hypothetical perfectly stratified conceptual model at the basis of the interpretation method of flowmeter tests. Because of these errors, the true variability of the K field is underestimated and the distributions of the reference K data and log-transformed spatial increments are also misconstrued. The presented numerical analysis shows that the validity of flowmeter based K data depends on measureable parameters defining the architecture of the hydrofacies, the conductivity contrasts between the hydrofacies and the sub-facies-scale K variability. A preliminary geological characterization is therefore essential for evaluating the optimal approach for accurate K field characterization.

  1. Climatology of Neutral vertical winds in the midlatitude thermosphere

    NASA Astrophysics Data System (ADS)

    Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.

    2017-12-01

    More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.

  2. Baryon-antibaryon dynamics in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Seifert, E.; Cassing, W.

    2018-04-01

    The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.

  3. Effect of stoichiometry on magnetic and transport properties in polycrystalline Y2Ir2O7

    NASA Astrophysics Data System (ADS)

    Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik

    2018-05-01

    In this paper we discuss synthesis of polycrystalline Y2Ir2O7 by solid state reaction route. XRD analysis shows deviation from stoichiometry which is also confirmed by SEM-EDX analysis. SEM analysis indicates average particle size ranging from 100 nm to 800 µm. EDX analysis gives clear evidence for deviation of stoichiometry of the product. Magnetic analysis is indicating effect of stoichiometry and showing ferromagnetic interaction unlike antiferromagnetic feature. Electrical resistivity is showing similar behavior as reported earlier and reveals no effect of different size of grains or grain boundaries from room temperature to 125 K.

  4. Effect of different breath alcohol concentrations on driving performance in horizontal curves.

    PubMed

    Zhang, Xingjian; Zhao, Xiaohua; Du, Hongji; Ma, Jianming; Rong, Jian

    2014-11-01

    Driving under the influence of alcohol on curved roadway segments has a higher risk than driving on straight segments. To explore the effect of different breath alcohol concentration (BrAC) levels on driving performance in roadway curves, a driving simulation experiment was designed to collect 25 participants' driving performance parameters (i.e., speed and lane position) under the influence of 4 BrAC levels (0.00%, 0.03%, 0.06% and 0.09%) on 6 types of roadway curves (3 radii×2 turning directions). Driving performance data for 22 participants were collected successfully. Then the average and standard deviation of the two parameters were analyzed, considering the entire curve and different sections of the curve, respectively. The results show that the speed throughout curves is higher when drinking and driving than during sober driving. The significant interaction between alcohol and radius exists in the middle and tangent segments after a curve exit, indicating that a small radius can reduce speed at high BrAC levels. The significant impairment of alcohol on the stability of speed occurs mainly in the curve section between the point of curve (PC) and point of tangent (PT), with no impairment noted in tangent sections. The stability of speed is significantly worsened at higher BrAC levels. Alcohol and radius have interactive effects on the standard deviation of speed in the entry segment of curves, indicating that the small radius amplifies the instability of speed at high BrAC levels. For lateral movement, drivers tend to travel on the right side of the lane when drinking and driving, mainly in the approach and middle segments of curves. Higher BrAC levels worsen the stability of lateral movement in every segment of the curve, regardless of its radius and turning direction. The results are expected to provide reference for detecting the drinking and driving state. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Does Assessment Type Matter? A Measurement Invariance Analysis of Online and Paper and Pencil Assessment of the Community Assessment of Psychic Experiences (CAPE)

    PubMed Central

    Vleeschouwer, Marloes; Schubart, Chris D.; Henquet, Cecile; Myin-Germeys, Inez; van Gastel, Willemijn A.; Hillegers, Manon H. J.; van Os, Jim J.; Boks, Marco P. M.; Derks, Eske M.

    2014-01-01

    Background The psychometric properties of an online test are not necessarily identical to its paper and pencil original. The aim of this study is to test whether the factor structure of the Community Assessment of Psychic Experiences (CAPE) is measurement invariant with respect to online vs. paper and pencil assessment. Method The factor structure of CAPE items assessed by paper and pencil (N = 796) was compared with the factor structure of CAPE items assessed by the Internet (N = 21,590) using formal tests for Measurement Invariance (MI). The effect size was calculated by estimating the Signed Item Difference in the Sample (SIDS) index and the Signed Test Difference in the Sample (STDS) for a hypothetical subject who scores 2 standard deviations above average on the latent dimensions. Results The more restricted Metric Invariance model showed a significantly worse fit compared to the less restricted Configural Invariance model (χ2(23) = 152.75, p<0.001). However, the SIDS indices appear to be small, with an average of −0.11. A STDS of −4.80 indicates that Internet sample members who score 2 standard deviations above average would be expected to score 4.80 points lower on the CAPE total scale (ranging from 42 to 114 points) than would members of the Paper sample with the same latent trait score. Conclusions Our findings did not support measurement invariance with respect to assessment method. Because of the small effect sizes, the measurement differences between the online assessed CAPE and its paper and pencil original can be neglected without major consequences for research purposes. However, a person with a high vulnerability for psychotic symptoms would score 4.80 points lower on the total scale if the CAPE is assessed online compared to paper and pencil assessment. Therefore, for clinical purposes, one should be cautious with online assessment of the CAPE. PMID:24465389

  6. [Use of Plusoptix as a screening method for refractive ambliopia].

    PubMed

    Bogdănici, T; Tone, Silvia; Miron, Mihaela; Boboc, Mihaela; Bogdănici, Camelia

    2012-01-01

    Highlighting the differences in the objective refraction using the Plusoptix AO9 comparing them with the refraction performed with TOPCON KR-8900 autorefractor. Prospective study for 3 months held in the Ophthalmology Clinic in Iasi, Hospital Sf. Spiridon on a total of 39 children (21 girls and 18 boys) with mean age of 10.61 +/- 5.67 years. Clinical parameters: sex, age, objective refraction obtained with Plusoptix and with autorefractor corrected visual acuity (with different methods depending on each patient age), ortoptic examination (strabic deviation, binocular vision), the presence of symetry/asymetry while measuring with Plusoptix. The results were statistically processed by F-TEST calculating the correlation coefficient, standard deviation, significance level (using the spherical equivalent of the obtained values). Age limits of the studied cases ranged between 2-23 years. Visual acuity of children who had cooperate was between 0.2-1 with correction, achieving best values on right eye than left eye. 8 cases (20.51%) had large differences between measurements made with Plusoptix and autorefractor, half of that (4 cases) had strabismus. Three of these cases were with small hypermetropia and one with small myopia (Plusoptix shows a lower value). In 2 cases occurred higher differences (about 2-2,5D) between the 2 measurements, in patients with average hypermetropia. Plusoptix refraction was not possible at high hypermetropia or high myopia. This type of determining objective refraction using Plusoptix is a useful method of screening for discovery of refractive errors that can cause refractive amblyopia in young children and in those cases with a difficult collaboration. Because there are differences betweeti this 2 methods, for children with refractive errors are recommended further exploration to determine the appropriate optical correction. Plusoptix is a limited method because it cannot detect the exact values in those cases with high hypermetropia or high myopia.

  7. How does a probe inserted into the discharge influence the plasma structure?

    NASA Astrophysics Data System (ADS)

    Yordanov, D.; Lishev, St.; Shivarova, A.

    2016-05-01

    Shielding the bias applied to the probe by the sheath formed around it and determination of parameters of unperturbed plasmas are in the basis of the probe diagnostics. The results from a two-dimensional model of a discharge with a probe inserted in it show that the probe influences the spatial distribution of the plasma parameters in the entire discharge. The increase (although slight) in the electron temperature, due to the increased losses of charged particles on the additional wall in the discharge (mainly the probe holder), leads to redistribution of the plasma density and plasma potential, as shown by the results obtained at the floating potential of the probe. The deviations due to the bias applied to the probe tip are stronger in the ion saturation region of the probe characteristics. The pattern of the spatial redistribution of the plasma parameters advances together with the movement of the probe deeper in the discharge. Although probe sheaths and probe characteristics resulting from the model are shown, the study does not aim at discussions on the theories for determination of the plasma density from the ion saturation current. Regardless of the modifications in the plasma behavior in the entire discharge, the deviations of the plasma parameters at the position of the probe tip and, respectively, the uncertainty which should be added as an error when the accuracy of the probe diagnostics is estimated do not exceed 10%. Consequently, the electron density and temperature obtained, respectively, at the position of the plasma potential on the probe characteristics and from its transition region are in reasonable agreement with the results from the model of the discharge without a probe. Being in the scope of research on a source of negative hydrogen ions with the design of a matrix of small radius inductive discharges, the model is specified for a low-pressure hydrogen discharge sustained in a small-radius tube.

  8. Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at age 18 years.

    PubMed

    Pearson, Rebecca M; Evans, Jonathan; Kounali, Daphne; Lewis, Glyn; Heron, Jon; Ramchandani, Paul G; O'Connor, Tom G; Stein, Alan

    2013-12-01

    Some small studies suggest that maternal postnatal depression is a risk factor for offspring adolescent depression. However, to our knowledge, no large cohort studies have addressed this issue. Furthermore, only 1 small study has examined the association between antenatal depression and later offspring depression. Understanding these associations is important to inform prevention. To investigate the hypothesis that there are independent associations between antenatal and postnatal depression with offspring depression and that the risk pathways are different, such that the risk is moderated by disadvantage (low maternal education) with postnatal depression but not with antenatal depression. Prospective investigation of associations between symptoms of antenatal and postnatal parental depression with offspring depression at age 18 years in a UK community-based birth cohort (Avon Longitudinal Study of Parents and Children) with data from more than 4500 parents and their adolescent offspring. Diagnosis of offspring aged 18 years with major depression using the International Classification of Diseases, 10th Revision. Antenatal depression was an independent risk factor. Offspring were 1.28 times (95% CI, 1.08-1.51; P = .003) more likely to have depression at age 18 years for each standard deviation increase in maternal depression score antenatally, independent of later maternal depression. Postnatal depression was also a risk factor for mothers with low education, with offspring 1.26 times (95% CI, 1.06-1.50; P = .01) more likely to have depression for each standard deviation increase in postnatal depression score. However, for more educated mothers, there was little association (odds ratio, 1.09; 95% CI, 0.88-1.36; P = .42). Analyses found that maternal education moderated the effects of postnatal but not antenatal depression. Paternal depression antenatally was not associated with offspring depression, while postnatally, paternal depression showed a similar pattern to maternal depression. The findings suggest that treating maternal depression antenatally could prevent offspring depression during adulthood and that prioritizing less advantaged mothers postnatally may be most effective.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A.

    Shielding the bias applied to the probe by the sheath formed around it and determination of parameters of unperturbed plasmas are in the basis of the probe diagnostics. The results from a two-dimensional model of a discharge with a probe inserted in it show that the probe influences the spatial distribution of the plasma parameters in the entire discharge. The increase (although slight) in the electron temperature, due to the increased losses of charged particles on the additional wall in the discharge (mainly the probe holder), leads to redistribution of the plasma density and plasma potential, as shown by themore » results obtained at the floating potential of the probe. The deviations due to the bias applied to the probe tip are stronger in the ion saturation region of the probe characteristics. The pattern of the spatial redistribution of the plasma parameters advances together with the movement of the probe deeper in the discharge. Although probe sheaths and probe characteristics resulting from the model are shown, the study does not aim at discussions on the theories for determination of the plasma density from the ion saturation current. Regardless of the modifications in the plasma behavior in the entire discharge, the deviations of the plasma parameters at the position of the probe tip and, respectively, the uncertainty which should be added as an error when the accuracy of the probe diagnostics is estimated do not exceed 10%. Consequently, the electron density and temperature obtained, respectively, at the position of the plasma potential on the probe characteristics and from its transition region are in reasonable agreement with the results from the model of the discharge without a probe. Being in the scope of research on a source of negative hydrogen ions with the design of a matrix of small radius inductive discharges, the model is specified for a low-pressure hydrogen discharge sustained in a small-radius tube.« less

  10. High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites

    NASA Astrophysics Data System (ADS)

    Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.

    2014-10-01

    High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a

  11. In Vitro Stability Evaluation of Different Pharmaceutical Products Containing Meropenem

    PubMed Central

    Tomasello, Cristina; Leggieri, Anna; Cavalli, Roberta; Di Perri, Giovanni; D’Avolio, Antonio

    2015-01-01

    Background: Meropenem is a beta-lactam antibiotic for treating multidrug-resistant gram-negative bacilli infections. The expiry of the drug’s patent (Merrem) allowed the production of generics to be commercialized by a few companies, including Hospira and Hikma. The stability of these medicines after reconstitution as reported on a data sheet report is 6 hours for Merrem and 1 hour for generics. Objectives: The aim of this work was to evaluate the stability profile of 3 products in 0.9% sodium chloride until 6 hours. Methods: Six polyolefin bags (2 for each drug, stored in the light and in the dark) were prepared for every test run (n =10) at concentrations of 4 and 10 mg/mL. All solutions were stored at controlled room temperature (25°C ± 3°C) and sampled immediately after preparation and at every hour until 6 hours had passed. The concentrations, pH changes, and the visual clarity were used as stability and compatibility indicators. Results: All 3 drugs retained over 95% of the initial concentration at 3 to 4 hours. At the sixth hour, all the concentrations decayed 8% to 10%. No statistical differences were observed in the percentage deviation values of the stability profile between generics and the branded drug. Conclusion: The stability profile of the products in polyolefin bags, at 4 and 10 mg/mL, was superimposable during the period of analysis and seems to show small values of deviation (1%-2%). These data do not affect the pharmacokinetics because these variations could be attributed to the intra- and interindividual variability between patients. The products showed the same stability, and consequently they could be used interchangeably in hospital pharmacy. PMID:26448659

  12. Effects of chemical composition on the corrosion of dental alloys.

    PubMed

    Galo, Rodrigo; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira; Rocha, Luís Augusto; de Mattos, Maria da Glória Chiarello

    2012-01-01

    The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.

  13. Characteristics of Turbulent Transfer during Episodes of Heavy Haze Pollution in Beijing in Winter 2016/17

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Zheng, Shuwen; Wei, Wei; Wu, Bingui; Zhang, Hongsheng; Cai, Xuhui; Song, Yu

    2018-02-01

    We analyzed the structure and evolution of turbulent transfer and the wind profile in the atmospheric boundary layer in relation to aerosol concentrations during an episode of heavy haze pollution from 6 December 2016 to 9 January 2017. The turbulence data were recorded at Peking University's atmospheric science and environment observation station. The results showed a negative correlation between the wind speed and the PM2.5 concentration. The turbulence kinetic energy was large and showed obvious diurnal variations during unpolluted (clean) weather, but was small during episodes of heavy haze pollution. Under both clean and heavy haze conditions, the relation between the non-dimensional wind components and the stability parameter z/ L followed a 1/3 power law, but the normalized standard deviations of the wind speed were smaller during heavy pollution events than during clean periods under near-neutral conditions. Under unstable conditions, the normalized standard deviation of the potential temperature σ θ /| θ *| was related to z/ L, roughly following a -1/3 power law, and the ratio during pollution days was greater than that during clean days. The three-dimensional turbulence energy spectra satisfied a -2/3 power exponent rate in the high-frequency band. In the low-frequency band, the wind velocity spectrum curve was related to the stability parameters under clear conditions, but was not related to atmospheric stratification under polluted conditions. In the dissipation stage of the heavy pollution episode, the horizontal wind speed first started to increase at high altitudes and then gradually decreased at lower altitudes. The strong upward motion during this stage was an important dynamic factor in the dissipation of the heavy haze.

  14. SWIFT-BAT HARD X-RAY SKY MONITORING UNVEILS THE ORBITAL PERIOD OF THE HMXB IGR J18219–1347

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Parola, V.; Cusumano, G.; Segreto, A.

    2013-09-20

    IGR J18219–1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the Burst Alert Telescope (BAT) survey data up to 2012 March and the X-Ray Telescope (XRT) data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ∼13 standard deviations in the 88 month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of Pmore » {sub 0} = 72.44 ± 0.3 days. The significance of this modulation is about seven standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P {sub 0} shows a sharp peak covering ∼30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light-curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219–1347 binary system hosts a Be star. The broadband XRT+BAT spectrum is well modeled with a flat absorbed power law with a high-energy exponential cutoff at ∼11 keV.« less

  15. Extensive validation of CM SAF surface radiation products over Europe.

    PubMed

    Urraca, Ruben; Gracia-Amillo, Ana M; Koubli, Elena; Huld, Thomas; Trentmann, Jörg; Riihelä, Aku; Lindfors, Anders V; Palmer, Diane; Gottschalg, Ralph; Antonanzas-Torres, Fernando

    2017-09-15

    This work presents a validation of three satellite-based radiation products over an extensive network of 313 pyranometers across Europe, from 2005 to 2015. The products used have been developed by the Satellite Application Facility on Climate Monitoring (CM SAF) and are one geostationary climate dataset (SARAH-JRC), one polar-orbiting climate dataset (CLARA-A2) and one geostationary operational product. Further, the ERA-Interim reanalysis is also included in the comparison. The main objective is to determine the quality level of the daily means of CM SAF datasets, identifying their limitations, as well as analyzing the different factors that can interfere in the adequate validation of the products. The quality of the pyranometer was the most critical source of uncertainty identified. In this respect, the use of records from Second Class pyranometers and silicon-based photodiodes increased the absolute error and the bias, as well as the dispersion of both metrics, preventing an adequate validation of the daily means. The best spatial estimates for the three datasets were obtained in Central Europe with a Mean Absolute Deviation (MAD) within 8-13 W/m 2 , whereas the MAD always increased at high-latitudes, snow-covered surfaces, high mountain ranges and coastal areas. Overall, the SARAH-JRC's accuracy was demonstrated over a dense network of stations making it the most consistent dataset for climate monitoring applications. The operational dataset was comparable to SARAH-JRC in Central Europe, but lacked of the temporal stability of climate datasets, while CLARA-A2 did not achieve the same level of accuracy despite predictions obtained showed high uniformity with a small negative bias. The ERA-Interim reanalysis shows the by-far largest deviations from the surface reference measurements.

  16. Variation in predicting pantograph-catenary interaction contact forces, numerical simulations and field measurements

    NASA Astrophysics Data System (ADS)

    Nåvik, Petter; Rønnquist, Anders; Stichel, Sebastian

    2017-09-01

    The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph-catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.

  17. Characterization of 32 microsatellite loci for the Pacific red snapper, Lutjanus peru, through next generation sequencing.

    PubMed

    Paz-García, David A; Munguía-Vega, Adrián; Plomozo-Lugo, Tomas; Weaver, Amy Hudson

    2017-04-01

    We developed a set of hypervariable microsatellite markers for the Pacific red snapper (Lutjanus peru), an economically important marine fish for small-scale fisheries in the west coast of Mexico. We performed shotgun genome sequencing with the 454 XL titanium chemistry and used bioinformatic tools to search for perfect microsatellite loci. We selected 66 primer pairs that were synthesized and genotyped in an ABI PRISM 3730XL DNA sequencer in 32 individuals from the Gulf of California. We estimated levels of genetic diversity, deviations from linkage and Hardy-Weinberg equilibrium, estimated the frequency of null alleles and the probability of individual identity for the new markers. We reanalyzed 16 loci in 16 individuals to estimate genotyping error rates. Eighteen loci failed to amplify, 16 loci were discarded due to unspecific amplifications and 32 loci (14 tetranucleotide and 18 dinucleotide) were successfully scored. The average number of alleles per locus was 21 (±6.87, SD) and ranged from 8 to 34. The average observed and expected heterozygosities were 0.787 (±0.144 SD, range 0.250-0.935) and 0.909 (±0.122 SD, range 0.381-0.965), respectively. No significant linkage was detected. Eight loci showed deviations from Hardy-Weinberg equilibrium, and from these, four loci showed moderate null allele frequencies (0.104-0.220). The probability of individual identity for the new loci was 1.46 -62 . Genotyping error rates averaged 9.58%. The new markers will be useful to investigate patterns of larval dispersal, metapopulation dynamics, fine-scale genetic structure and diversity aimed to inform the implementation of spatially explicit fisheries management strategies in the Gulf of California.

  18. Single-Station Sigma for the Iranian Strong Motion Stations

    NASA Astrophysics Data System (ADS)

    Zafarani, H.; Soghrat, M. R.

    2017-11-01

    In development of ground motion prediction equations (GMPEs), the residuals are assumed to have a log-normal distribution with a zero mean and a standard deviation, designated as sigma. Sigma has significant effect on evaluation of seismic hazard for designing important infrastructures such as nuclear power plants and dams. Both aleatory and epistemic uncertainties are involved in the sigma parameter. However, ground-motion observations over long time periods are not available at specific sites and the GMPEs have been derived using observed data from multiple sites for a small number of well-recorded earthquakes. Therefore, sigma is dominantly related to the statistics of the spatial variability of ground motion instead of temporal variability at a single point (ergodic assumption). The main purpose of this study is to reduce the variability of the residuals so as to handle it as epistemic uncertainty. In this regard, it is tried to partially apply the non-ergodic assumption by removing repeatable site effects from total variability of six GMPEs driven from the local, Europe-Middle East and worldwide data. For this purpose, we used 1837 acceleration time histories from 374 shallow earthquakes with moment magnitudes ranging from M w 4.0 to 7.3 recorded at 370 stations with at least two recordings per station. According to estimated single-station sigma for the Iranian strong motion stations, the ratio of event-corrected single-station standard deviation ( Φ ss) to within-event standard deviation ( Φ) is about 0.75. In other words, removing the ergodic assumption on site response resulted in 25% reduction of the within-event standard deviation that reduced the total standard deviation by about 15%.

  19. Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.

    PubMed

    Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F

    2013-04-01

    This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P < .05), except for PathFiles at the 0-mm level. ScoutRaCe instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P < .05). Findings suggest that rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring.

    PubMed

    Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes

    2017-09-01

    The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min -1 . Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from  -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean : R 2   =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

  1. Validation of 10 years of SAO OMI Ozone Profiles with Ozonesonde and MLS Observations

    NASA Astrophysics Data System (ADS)

    Huang, G.; Liu, X.; Chance, K.; Bhartia, P. K.

    2015-12-01

    To evaluate the accuracy and long-term stability of the SAO OMI ozone profile product, we validate ~10 years of ozone profile product (Oct. 2004-Dec. 2014) against collocated ozonesonde and MLS data. Ozone profiles as well stratospheric, tropospheric, lower tropospheric ozone columns are compared with ozonesonde data for different latitude bands, and time periods (e.g., 2004-2008/2009-2014 for without/with row anomaly. The mean biases and their standard deviations are also assessed as a function of time to evaluate the long-term stability and bias trends. In the mid-latitude and tropical regions, OMI generally shows good agreement with ozonesonde observations. The mean ozone profile biases are generally within 6% with up to 30% standard deviations. The biases of stratospheric ozone columns (SOC) and tropospheric ozone columns (TOC) are -0.3%-2.2% and -0.2%-3%, while standard deviations are 3.9%-5.8% and 14.4%-16.0%, respectively. However, the retrievals during 2009-2014 show larger standard deviations and larger temporal variations; the standard deviations increase by ~5% in the troposphere and ~2% in the stratosphere. Retrieval biases at individual levels in the stratosphere and upper troposphere show statistically significant trends and different trends for 2004-2008 and 2009-2014 periods. The trends in integrated ozone partial columns are less significant due to cancellation from various layers, except for significant trend in tropical SOC. These results suggest the need to perform time dependent radiometric calibration to maintain the long-term stability of this product. Similarly, we are comparing the OMI stratospheric ozone profiles and SOC with collocated MLS data, and the results will be reported.

  2. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring

    NASA Astrophysics Data System (ADS)

    Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes

    2017-09-01

    The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min-1. Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from  -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2  =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

  3. Accuracy of Digitally Fabricated Wax Denture Bases and Conventional Completed Complete Dentures.

    PubMed

    Stawarczyk, Bogna; Lümkemann, Nina; Eichberger, Marlis; Wimmer, Timea

    2017-12-19

    The purpose of this investigation was to analyze the accuracy of digitally fabricated wax trial dentures and conventionally finalized complete dentures in comparison to a surface tessellation language (STL)-dataset. A generated data set for the denture bases and the tooth sockets was used, converted into STL-format, and saved as reference. Five mandibular and 5 maxillary denture bases were milled from wax blanks and denture teeth were waxed into their tooth sockets. Each complete denture was checked on fit, waxed onto the dental cast, and digitized using an optical laboratory scanning device. The complete dentures were completed conventionally using the injection method, finished, and scanned. The resulting STL-datasets were exported into the three-dimensional (3D) software GOM Inspect. Each of the 5 mandibular and 5 maxillary complete dentures was aligned with the STL- and the wax trial denture dataset. Alignment was performed based on a best-fit algorithm. A three-dimensional analysis of the spatial divergences in x -, y - and z -axes was performed by the 3D software and visualized in a color-coded illustration. The mean positive and negative deviations between the datasets were calculated automatically. In a direct comparison between maxillary wax trial dentures and complete dentures, complete dentures showed higher deviations from the STL-dataset than the wax trial dentures. The deviations occurred in the area of the teeth as well as in the distal area of the denture bases. In contrast, the highest deviations in both the mandibular wax trial dentures and the mandibular complete dentures were observed in the distal area. The complete dentures showed higher deviations on the occlusal surfaces of the teeth compared to the wax dentures. Computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated wax dentures exhibited fewer deviations from the STL-reference than the complete dentures. The deviations were significantly greater in the vicinity of the denture teeth area and the bases. The conventional transfer of CAD/CAM-fabricated wax dentures into acrylic resin leads to the highest deviations from the STL-reference.

  4. Method of surface error visualization using laser 3D projection technology

    NASA Astrophysics Data System (ADS)

    Guo, Lili; Li, Lijuan; Lin, Xuezhu

    2017-10-01

    In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.

  5. Human influences on streamflow drought characteristics in England and Wales

    NASA Astrophysics Data System (ADS)

    Tijdeman, Erik; Hannaford, Jamie; Stahl, Kerstin

    2018-02-01

    Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (Factors Affecting Runoff) of the UK National River Flow Archive (NRFA). A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1) the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils), (2) the correlation between streamflow and precipitation and (3) the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for some of the catchments affected by groundwater abstractions and a decrease in streamflow drought occurrence for some of the catchments with either reservoirs or groundwater abstractions. In conclusion, the proposed screening approaches were sometimes successful in identifying streamflow records with deviating drought characteristics that are likely related to different human influences. However, a quantitative attribution of the impact of human influences on streamflow drought characteristics requires more detailed case-by-case information about the type and degree of all different human influences. Given that, in many countries, such information is often not readily accessible, the approaches adopted here could provide useful in targeting future efforts. In England and Wales specifically, the catchments with deviating streamflow drought characteristics identified in this study could serve as the starting point of detailed case study research.

  6. Aqueous solubility of diclofenac diethylamine in the presence of pharmaceutical additives: a comparative study with diclofenac sodium.

    PubMed

    Khalil, E; Najjar, S; Sallam, A

    2000-04-01

    Aqueous solubility of diclofenac diethylamine (DDEA), a nonsteroidal anti-inflammatory drug currently formulated as a topical emulgel, was studied in the presence of pharmaceutical additives and compared with diclofenac sodium (DS). Electrolytes at low concentrations exhibited a salting-in effect on DDEA with peak solubility that was attributed to the association of DDEA into micelles, followed by a salting-out effect at higher concentrations, by which structure formation by DDEA molecules increased and precipitation occurred. For DS, which is not capable of forming micelles, the salting-out effect was dominant due to the common ion effect. Cosolvents displayed significant enhancement in solubility of both salts except glycerol, which showed a slight increase in solubility of DDEA and a decrease in solubility of DS due to transformation into the less soluble hydrate form. Ethanol and polyethylene glycol (PEG) 400 cosolvent systems at all concentrations showed positive deviations from the log-linear solubility equation. In the case of propylene glycol (PG) cosolvent systems, negative deviations were observed at low volume fractions of cosolvent, while positive deviations were observed at high volume fractions of cosolvent for DS and DDEA. The parent drug, being less ionizable and highly nonpolar, showed negative deviations up to 90% PG content. Thus, the positive deviations for DS and DDEA could be attributed to the more ionizable carboxylic group and its higher ability for hydrogen bonding at higher fractions of cosolvent. Polyvinylpyrrolidone (PVP) and PEG4000 or PEG6000 enhanced the solubility of DS and DDEA, with PVP exerting higher solubilizing efficiency and DS showing better solubility than DDEA. Solubilities of DS in Tween 80 (T80) and Pluronic F-127 (PF127) aqueous solutions were almost similar, while the solubility of DDEA in the presence of T80 was higher than the solubility in the presence of PF127. DS appeared to be located more in the polyoxyethylene mantle of the micelles, while DDEA was located more in the core of the micelles.

  7. Cone-Beam Computed Tomography Assessment of Lower Facial Asymmetry in Unilateral Cleft Lip and Palate and Non-Cleft Patients with Class III Skeletal Relationship.

    PubMed

    Lin, Yifan; Chen, Gui; Fu, Zhen; Ma, Lian; Li, Weiran

    2015-01-01

    To evaluate, using cone-beam computed tomography (CBCT), both the condylar-fossa relationships and the mandibular and condylar asymmetries between unilateral cleft lip and palate (UCLP) patients and non-cleft patients with class III skeletal relationship, and to investigate the factors of asymmetry contributing to chin deviation. The UCLP and non-cleft groups consisted of 30 and 40 subjects, respectively, in mixed dentition with class III skeletal relationships. Condylar-fossa relationships and the dimensional and positional asymmetries of the condyles and mandibles were examined using CBCT. Intra-group differences were compared between two sides in both groups using a paired t-test. Furthermore, correlations between each measurement and chin deviation were assessed. It was observed that 90% of UCLP and 67.5% of non-cleft subjects had both condyles centered, and no significant asymmetry was found. The axial angle and the condylar center distances to the midsagittal plane were significantly greater on the cleft side than on the non-cleft side (P=0.001 and P=0.028, respectively) and were positively correlated with chin deviation in the UCLP group. Except for a larger gonial angle on the cleft side, the two groups presented with consistent asymmetries showing shorter mandibular bodies and total mandibular lengths on the cleft (deviated) side. The average chin deviation was 1.63 mm to the cleft side, and the average absolute chin deviation was significantly greater in the UCLP group than in the non-cleft group (P=0.037). Compared with non-cleft subjects with similar class III skeletal relationships, the subjects with UCLP showed more severe lower facial asymmetry. The subjects with UCLP presented with more asymmetrical positions and rotations of the condyles on axial slices, which were positively correlated with chin deviation.

  8. Deviations of the visual upright in three dimensions in disorders of the brainstem: a clinical exploration.

    PubMed

    Frisén, Lars

    2010-12-01

    Deviations of the subjective visual vertical in the roll or fronto-parallel plane occur commonly in disorders of the brainstem and have been extensively explored. In contrast, little is known about deviations in other directions. The present retrospective study focused on deviations in the pitch (sagittal) direction in 176 patients with a wide variety of disorders. The test task was to set a self-illuminated rod in the apparent upright position, in total darkness. Abnormal results (outside ± 4°) were recorded in 58% of the subjects. Negative (top backward) deviations were the most common, particularly with mass lesions in the pineal region, obstructive hydrocephalus, cerebellar lesions and crowding at the craniocervical junction. Positive and negative deviations were about equally common with focal intra-axial lesions. Negative deviations appeared related to dorsal locations of lesions and vice versa. Normal pressure hydrocephalus, Parkinson's disease and progressive supranuclear palsy were associated with smaller deviations, without a clear directional preponderance, and a larger individual variability. Most subjects lacked overt clinical corollaries. The most common ocular signs were aqueduct syndromes (n = 17) and ocular tilt reactions (n = 12), which were associated with deviations in 47 and 92% of instances, respectively. Subjective corollaries of deviation were never reported, not even by those subjects who showed a dramatic improvement upon resolution of the underlying condition. Deviations were also assessed in roll in a subgroup of 40 patients with focal lesions. Thirty subjects returned abnormal results: 13% in roll, 47% in pitch and 40% in pitch and roll. The direction of roll deviation appeared primarily related to laterality, with clockwise deviations with right-sided lesions and vice versa. All subjects with ocular tilt reactions had combined pitch and roll deviations, implying a common neural substrate. Correlation analyses, geometrical modelling and experimental self-observations indicated that deviations in pitch were attributable to cyclotorsional asymmetries between the eyes. The frequent co-existence of abnormal pitch and roll results implies that the true axis of deviation in focal brainstem disorders commonly falls outside traditional reference planes. The term 'visual upright in three dimensions' is suggested to identify unrestricted measurements, preserving the established term 'visual vertical' for measurements confined to the roll plane. Assessment of the visual upright in three dimensions provides a new, quantitative angle on brainstem disorders. The test appears useful for identifying a ubiquitous yet clinically silent feature of brainstem disease and also for monitoring the evolution of underlying conditions. More detailed explorations appear well motivated.

  9. A Guide to Computed Tomography System Specifications

    DTIC Science & Technology

    1990-08-01

    particularly where anomalies are not known or expected, where nonimaging measurements of deviations from a norm defy experience or expectation, or...point. 2.9 Archival Requirements Archival requirements usually involve hardcopy, tape, and/or optical disk. These dictate a small subsystem choice, but...some kind of scintillating X-ray crystal, e.g., cadmium tungstate or bismuth germanate that is optically coupled to a photoconversion device like a

  10. Portable-Beacon Landing System for Helicopters

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Clary, George R.; Chisholm, John P.; Macdonald, Stanley L.

    1987-01-01

    Prototype beacon landing system (BLS) allows helicopters to make precise landings in all weather. BLS easily added to existing helicopter avionic equipment and readily deployed at remote sites. Small and light, system employs X-band radar and digital processing. Variety of beams pulsed sequentially by ground station after initial interrogation by weather radar of approaching helicopter. Airborne microprocessor processes pulses to determine glide slope, course deviation, and range.

  11. Lexis, My Little Fairy Princess: Literature Review and Case Report on Non-Organic Failure To Thrive (NOFTT).

    ERIC Educational Resources Information Center

    Racicot, Lina C.

    This paper explores the issues and possible etiologies associated with Non-Organic Failure To Thrive (NOFTT), a syndrome in which a child's weight gain deviates from an established pattern to become dramatically less than norms for age and sex. The case study of a 4-year-old named Lexis complements the literature review. Lexis remained small and…

  12. SU-F-T-408: On the Determination of Equivalent Squares for Rectangular Small MV Photon Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, OA; Wegener, S; Exner, F

    Purpose: It is common practice to tabulate dosimetric data like output factors, scatter factors and detector signal correction factors for a set of square fields. In order to get the data for an arbitrary field, it is mapped to an equivalent square, having the same scatter as the field of interest. For rectangular fields both, tabulated data and empiric formula exist. We tested the applicability of such rules for very small fields. Methods: Using the Monte-Carlo method (EGSnrc-doseRZ), the dose to a point in 10cm depth in water was calculated for cylindrical impinging fluence distributions. Radii were from 0.5mm tomore » 11.5mm with 1mm thickness of the rings. Different photon energies were investigated. With these data a matrix was constructed assigning the amount of dose to the field center to each matrix element. By summing up the elements belonging to a certain field, the dose for an arbitrary point in 10cm depth could be determined. This was done for rectangles up to 21mm side length. Comparing the dose to square field results, equivalent squares could be assigned. The results were compared to using the geometrical mean and the 4Xperimeter/area rule. Results: For side length differences less than 2mm, the difference between all methods was in general less than 0.2mm. For more elongated fields, relevant differences of more than 1mm and up to 3mm for the fields investigated occurred. The mean square side length calculated from both empiric formulas fitted much better, deviating hardly more than 1mm and for the very elongated fields only. Conclusion: For small rectangular photon fields, deviating only moderately from square both investigated empiric methods are sufficiently accurate. As the deviations often differ regarding their sign, using the mean improves the accuracy and the useable elongation range. For ratios larger than 2, Monte-Carlo generated data are recommended. SW is funded by Deutsche Forschungsgemeinschaft (SA481/10-1)« less

  13. Data assimilation in the low noise regime

    NASA Astrophysics Data System (ADS)

    Weare, J.; Vanden-Eijnden, E.

    2012-12-01

    On-line data assimilation techniques such as ensemble Kalman filters and particle filters tend to lose accuracy dramatically when presented with an unlikely observation. Such observation may be caused by an unusually large measurement error or reflect a rare fluctuation in the dynamics of the system. Over a long enough span of time it becomes likely that one or several of these events will occur. In some cases they are signatures of the most interesting features of the underlying system and their prediction becomes the primary focus of the data assimilation procedure. The Kuroshio or Black Current that runs along the eastern coast of Japan is an example of just such a system. It undergoes infrequent but dramatic changes of state between a small meander during which the current remains close to the coast of Japan, and a large meander during which the current bulges away from the coast. Because of the important role that the Kuroshio plays in distributing heat and salinity in the surrounding region, prediction of these transitions is of acute interest. { Here we focus on a regime in which both the stochastic forcing on the system and the observational noise are small. In this setting large deviation theory can be used to understand why standard filtering methods fail and guide the design of the more effective data assimilation techniques. Motivated by our large deviations analysis we propose several data assimilation strategies capable of efficiently handling rare events such as the transitions of the Kuroshio. These techniques are tested on a model of the Kuroshio and shown to perform much better than standard filtering methods.Here the sequence of observations (circles) are taken directly from one of our Kuroshio model's transition events from the small meander to the large meander. We tested two new algorithms (Algorithms 3 and 4 in the legend) motivated by our large deviations analysis as well as a standard particle filter and an ensemble Kalman filter. The parameters of each algorithm are chosen so that their costs are comparable. The particle filter and an ensemble Kalman filter fail to accurately track the transition. Algorithms 3 and 4 maintain accuracy (and smaller scale resolution) throughout the transition.

  14. Atomic-scale inversion of spin polarization at an organic-antiferromagnetic interface

    NASA Astrophysics Data System (ADS)

    Caffrey, Nuala M.; Ferriani, Paolo; Marocchi, Simone; Heinze, Stefan

    2013-10-01

    Using first-principles calculations, we show that the magnetic properties of a two-dimensional antiferromagnetic transition-metal surface are modified on the atomic scale by the adsorption of small organic molecules. We consider benzene (C6H6), cyclooctatetraene (C8H8), and a small transition-metal-benzene complex (BzV) adsorbed on a single atomic layer of Mn deposited on the W(110) surface—a surface which exhibits a nearly antiferromagnetic alignment of the magnetic moments in adjacent Mn rows. Due to the spin dependent hybridization of the molecular pz orbitals with the d states of the Mn monolayer, there is a significant reduction of the magnetic moments in the Mn film. Furthermore, the spin polarization at this organic-antiferromagnetic interface is found to be modulated on the atomic scale, both enhanced and inverted, as a result of the molecular adsorption. We show that this effect can be resolved by spin-polarized scanning tunneling microscopy (SP-STM). Our simulated SP-STM images display a spatially dependent spin resolved vacuum charge density above an adsorbed molecule—i.e., different regions above the molecule sustain different signs of spin polarization. While states with s and p symmetry dominate the vacuum charge density in the vicinity of the Fermi energy for the clean magnetic surface, we demonstrate that after a molecule is adsorbed those d states, which are normally suppressed due to their symmetry, can play a crucial role in the vacuum due to their interaction with the molecular orbitals. We also model the effect of small deviations from perfect antiferromagnetic ordering, induced by the slight canting of magnetic moments due to the spin spiral ground state of Mn/W(110).

  15. What Children Recall about a Repeated Event When One Instance Is Different from the Others

    ERIC Educational Resources Information Center

    Connolly, Deborah A.; Gordon, Heidi M.; Woiwod, Dayna M.; Price, Heather L.

    2016-01-01

    This research examined whether a memorable and unexpected change (deviation details) presented during 1 instance of a repeated event facilitated children's memory for that instance and whether a repeated event facilitated children's memory for deviation details. In Experiments 1 and 2, 8-year-olds (N = 167) watched 1 or 4 live magic shows.…

  16. On the Linear Relation between the Mean and the Standard Deviation of a Response Time Distribution

    ERIC Educational Resources Information Center

    Wagenmakers, Eric-Jan; Brown, Scott

    2007-01-01

    Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different…

  17. A note on conservative transport in anisotropic, heterogeneous porous media in the presence of small-amplitude transients

    USGS Publications Warehouse

    Naff, R.L.

    1998-01-01

    The late-time macrodispersion coefficients are obtained for the case of flow in the presence of a small-scale deterministic transient in a three-dimensional anisotropic, heterogeneous medium. The transient is assumed to affect only the velocity component transverse to the mean flow direction and to take the form of a periodic function. For the case of a highly stratified medium, these late-time macrodispersion coefficients behave largely as the standard coefficients used in the transport equation. Only in the event that the medium is isotropic is it probable that significant deviations from the standard coefficients would occur.

  18. An investigation of the motion of small particles as related to the formulation of zero gravity experiments. [experimental design using laser doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Sastry, V. S.

    1980-01-01

    The nature of Brownian motion and historical theoretical investigations of the phenomemon are reviewed. The feasibility of using a laser anemometer to perform small particle experiments in an orbiting space laboratory was investigated using latex particles suspended in water in a plastic container. The optical equipment and the particle Doppler analysis processor are described. The values of the standard deviation obtained for the latex particle motion experiment were significantly large compared to corresponding velocity, therefore, their accuracy was suspect and no attempt was made to draw meaningful conclusions from the results.

  19. Interpretation of small-angle diffraction experiments on opal-like photonic crystals

    NASA Astrophysics Data System (ADS)

    Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.

    2011-08-01

    Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.

  20. Identification and control of structures in space

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Quinn, R. D.; Norris, M. A.

    1984-01-01

    The derivation of the equations of motion for the Spacecraft Control Laboratory Experiment (SCOLE) is reported and the equations of motion of a similar structure orbiting the earth are also derived. The structure is assumed to undergo large rigid-body maneuvers and small elastic deformations. A perturbation approach is proposed whereby the quantities defining the rigid-body maneuver are assumed to be relatively large, with the elastic deformations and deviations from the rigid-body maneuver being relatively small. The perturbation equations have the form of linear equations with time-dependent coefficients. An active control technique can then be formulated to permit maneuvering of the spacecraft and simultaneously suppressing the elastic vibration.

  1. Revisiting the time until fixation of a neutral mutant in a finite population - A coalescent theory approach.

    PubMed

    Greenbaum, Gili

    2015-09-07

    Evaluation of the time scale of the fixation of neutral mutations is crucial to the theoretical understanding of the role of neutral mutations in evolution. Diffusion approximations of the Wright-Fisher model are most often used to derive analytic formulations of genetic drift, as well as for the time scales of the fixation of neutral mutations. These approximations require a set of assumptions, most notably that genetic drift is a stochastic process in a continuous allele-frequency space, an assumption appropriate for large populations. Here equivalent approximations are derived using a coalescent theory approach which relies on a different set of assumptions than the diffusion approach, and adopts a discrete allele-frequency space. Solutions for the mean and variance of the time to fixation of a neutral mutation derived from the two approaches converge for large populations but slightly differ for small populations. A Markov chain analysis of the Wright-Fisher model for small populations is used to evaluate the solutions obtained, showing that both the mean and the variance are better approximated by the coalescent approach. The coalescence approximation represents a tighter upper-bound for the mean time to fixation than the diffusion approximation, while the diffusion approximation and coalescence approximation form an upper and lower bound, respectively, for the variance. The converging solutions and the small deviations of the two approaches strongly validate the use of diffusion approximations, but suggest that coalescent theory can provide more accurate approximations for small populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The association of antipsychotic medication and lithium with brain measures in patients with bipolar disorder.

    PubMed

    Abramovic, Lucija; Boks, Marco P M; Vreeker, Annabel; Bouter, Diandra C; Kruiper, Caitlyn; Verkooijen, Sanne; van Bergen, Annet H; Ophoff, Roel A; Kahn, René S; van Haren, Neeltje E M

    2016-11-01

    There is evidence that brain structure is abnormal in patients with bipolar disorder. Lithium intake appears to ׳normalise׳ global and local brain volumes, but effects of antipsychotic medication on brain volume or cortical thickness are less clear. Here, we aim to disentangle disease-specific brain deviations from those induced by antipsychotic medication and lithium intake using a large homogeneous sample of patients with bipolar disorder type I. Magnetic resonance imaging brain scans were obtained from 266 patients and 171 control subjects. Subcortical volumes and global and focal cortical measures (volume, thickness, and surface area) were compared between patients and controls. In patients, the association between lithium and antipsychotic medication intake and global, subcortical and cortical measures was investigated. Patients showed significantly larger lateral and third ventricles, smaller total brain, caudate nucleus, and pallidum volumes and thinner cortex in some small clusters in frontal, parietal and cingulate regions as compared with controls. Lithium-free patients had significantly smaller total brain, thalamus, putamen, pallidum, hippocampus and accumbens volumes compared to patients on lithium. In patients, use of antipsychotic medication was related to larger third ventricle and smaller hippocampus and supramarginal cortex volume. Patients with bipolar disorder show abnormalities in total brain, subcortical, and ventricle volume, particularly in the nucleus caudate and pallidum. Abnormalities in cortical thickness were scattered and clusters were relatively small. Lithium-free patients showed more pronounced abnormalities as compared with those on lithium. The associations between antipsychotic medication and brain volume are subtle and less pronounced than those of lithium. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  3. Conflict resolution maneuvers during near miss encounters with cockpit traffic displays

    NASA Technical Reports Server (NTRS)

    Palmer, E.

    1983-01-01

    The benefits and liabilities associated with pilots' use of a cockpit traffic display to assess the threat posed by air traffic and to make small maneuvers to avoid situations which would result in collision avoidance advisories are experimentally studied. The crew's task was to fly a simulated wide-body aircraft along a straight course at constant altitude while intruder aircraft appeared on a variety of converging trajectories. The main experimental variables were the amount and quality of the information displayed on the intruder aircraft's estimated future position. Pilots were to maintain a horizontal separation of at least 1.5 nautical miles or a vertical separation of 500 ft, so that collision avoidance advisories would not be triggered. The results show that pilots could usually maneuver to provide the specified separation but often made course deviations greater than 1.5 nm or 500 ft.

  4. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    NASA Astrophysics Data System (ADS)

    Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.

    1989-06-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].

  5. Large-scale structure perturbation theory without losing stream crossing

    NASA Astrophysics Data System (ADS)

    McDonald, Patrick; Vlah, Zvonimir

    2018-01-01

    We suggest an approach to perturbative calculations of large-scale clustering in the Universe that includes from the start the stream crossing (multiple velocities for mass elements at a single position) that is lost in traditional calculations. Starting from a functional integral over displacement, the perturbative series expansion is in deviations from (truncated) Zel'dovich evolution, with terms that can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas for displacement and density power spectra numerically in 1D, finding dramatic improvement in agreement with N-body simulations compared to the Zel'dovich power spectrum (which is exact in 1D up to stream crossing). Beyond 1D, our approach could represent an improvement over previous expansions even aside from the inclusion of stream crossing, but we have not investigated this numerically. In the process we show how to achieve effective-theory-like regulation of small-scale fluctuations without free parameters.

  6. Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling, and Riemannian thermodynamic geometry.

    PubMed

    Mausbach, Peter; Köster, Andreas; Vrabec, Jadran

    2018-05-01

    Aspects of isomorph theory, Rosenfeld-Tarazona temperature scaling, and thermodynamic geometry are comparatively discussed on the basis of the Lennard-Jones potential. The first two approaches approximate the high-density fluid state well when the repulsive interparticle interactions become dominant, which is typically the case close to the freezing line. However, previous studies of Rosenfeld-Tarazona scaling for the isochoric heat capacity and its relation to isomorph theory reveal deviations for the temperature dependence. It turns out that a definition of a state region in which repulsive interactions dominate is required for achieving consistent results. The Riemannian thermodynamic scalar curvature R allows for such a classification, indicating predominantly repulsive interactions by R>0. An analysis of the isomorphic character of the freezing line and the validity of Rosenfeld-Tarazona temperature scaling show that these approaches are consistent only in a small state region.

  7. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    DOE PAGES

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...

    2018-03-01

    Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less

  8. N-(Diphenyl­carbamo­yl)-N,N′,N′,N′′,N′′-penta­methyl­guanidinium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis

    2013-01-01

    In the title salt, C19H25N4O+·C24H20B−, the C=N and C—N bond lengths in the CN3 unit are 1.3327 (8)/1.3364 (9) and 1.3802 (9) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 118.77 (6), 120.29 (6) and 120.81 (6)°, showing only a small deviation of the CN3 plane from an ideal trigonal-planar geometry. The bonds between the N atoms and the terminal methyl C atoms all have values close to a typical single bond [1.4636 (9)–1.4772 (9) Å]. The crystal packing is caused by electrostatic inter­actions between cations and anions. PMID:23476477

  9. Connectedness percolation of hard deformed rods

    NASA Astrophysics Data System (ADS)

    Drwenski, Tara; Dussi, Simone; Dijkstra, Marjolein; van Roij, René; van der Schoot, Paul

    2017-12-01

    Nanofiller particles, such as carbon nanotubes or metal wires, are used in functional polymer composites to make them conduct electricity. They are often not perfectly straight cylinders but may be tortuous or exhibit kinks. Therefore we investigate the effect of shape deformations of the rod-like nanofillers on the geometric percolation threshold of the dispersion. We do this by using connectedness percolation theory within a Parsons-Lee type of approximation, in combination with Monte Carlo integration for the average overlap volume in the isotropic fluid phase. We find that a deviation from a perfect rod-like shape has very little effect on the percolation threshold, unless the particles are strongly deformed. This demonstrates that idealized rod models are useful even for nanofillers that superficially seem imperfect. In addition, we show that for small or moderate rod deformations, the universal scaling of the percolation threshold is only weakly affected by the precise particle shape.

  10. Electroosmotic flow analysis of a branched U-turn nanofluidic device.

    PubMed

    Parikesit, Gea O F; Markesteijn, Anton P; Kutchoukov, Vladimir G; Piciu, Oana; Bossche, Andre; Westerweel, Jerry; Garini, Yuval; Young, Ian T

    2005-10-01

    In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.

  11. Engineering integrated photonics for heralded quantum gates

    NASA Astrophysics Data System (ADS)

    Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.

    2016-06-01

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  12. [Segmental wall movement of the left ventricle in healthy persons and myocardial infarct patients studied by a catheter-less nuclear medical method (camera-cinematography of the heart)].

    PubMed

    Geffers, H; Sigel, H; Bitter, F; Kampmann, H; Stauch, M; Adam, W E

    1976-08-01

    Camera-Kinematography is a nearly noninvasive method to investigate regional motion of the myocard, and allows evaluation of the function of the heart. About 20 min after injection of 15-20 mCi of 99mTC-Human-Serum-Albumin, when the tracer is distributed homogenously within the bloodpool, data acquisition starts. Myocardial wall motion is represented in an appropriate quasi three-dimensional form. In this representation scars can be revealed as "silent" (akinetic) regions, aneurysms by asynchronic motion. Time activity curves for arbitrarily chosen regions can be calculated and give an equivalent for regional volume changes. 16 patients with an old infarction have been investigated. In fourteen cases the location and extent of regions with abnormal motion could be evaluated. Only two cases of a small posterior wall infarction did not show deviations from normal contraction pattern.

  13. File Usage Analysis and Resource Usage Prediction: a Measurement-Based Study. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.-S.

    1987-01-01

    A probabilistic scheme was developed to predict process resource usage in UNIX. Given the identity of the program being run, the scheme predicts CPU time, file I/O, and memory requirements of a process at the beginning of its life. The scheme uses a state-transition model of the program's resource usage in its past executions for prediction. The states of the model are the resource regions obtained from an off-line cluster analysis of processes run on the system. The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the predicted values correlate well with the actual. The coefficient of correlation between the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly small. Some 82% of errors in CPU time prediction are less than 0.5 standard deviations of process CPU time.

  14. Relationship between fluid bed aerosol generator operation and the aerosol produced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriationmore » constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.« less

  15. Predictability of process resource usage - A measurement-based study on UNIX

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.; Iyer, Ravishankar K.

    1989-01-01

    A probabilistic scheme is developed to predict process resource usage in UNIX. Given the identity of the program being run, the scheme predicts CPU time, file I/O, and memory requirements of a process at the beginning of its life. The scheme uses a state-transition model of the program's resource usage in its past executions for prediction. The states of the model are the resource regions obtained from an off-line cluster analysis of processes run on the system. The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the predicted values correlate well with the actual. The correlation coefficient betweeen the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly small. Some 82 percent of errors in CPU time prediction are less than 0.5 standard deviations of process CPU time.

  16. Evidence for Coincident Fusion Products Using Silicon Surface-barrier Detectors

    NASA Astrophysics Data System (ADS)

    Jones, Steven; Scott, Mark; Keeney, Frank

    2002-10-01

    We report experimental results showing coincident proton and triton production from the reaction: d + d --> t (1.01 MeV) + p (3.02 MeV). Partially-deuterided thin titanium foils were positioned between two silicon surface-barrier detectors which were mounted in a small cylindrical vacuum chamber which also served as a Faraday cage. We performed Monte Carlo studies using the SRIM code to determine the expected energies of arriving particles after they exit the host foil. The dual-coincidence requirement reduces background to very low levels so that low yields from very thin TiD foils can be readily detected. In one sequence of experiments, we observed 74 foreground coincidences in the regions of interest compared with 24 background counts; the statistical significance is approximately ten standard deviations. A striking advance is that the repeatability from the dual-coincidence experiments is currently greater than 70%.

  17. Predictability of process resource usage: A measurement-based study of UNIX

    NASA Technical Reports Server (NTRS)

    Devarakonda, Murthy V.; Iyer, Ravishankar K.

    1987-01-01

    A probabilistic scheme is developed to predict process resource usage in UNIX. Given the identity of the program being run, the scheme predicts CPU time, file I/O, and memory requirements of a process at the beginning of its life. The scheme uses a state-transition model of the program's resource usage in its past executions for prediction. The states of the model are the resource regions obtained from an off-line cluster analysis of processes run on the system. The proposed method is shown to work on data collected from a VAX 11/780 running 4.3 BSD UNIX. The results show that the predicted values correlate well with the actual. The correlation coefficient between the predicted and actual values of CPU time is 0.84. Errors in prediction are mostly small. Some 82% of errors in CPU time prediction are less than 0.5 standard deviations of process CPU time.

  18. Baryogenesis in nonminimally coupled f (R ) theories

    NASA Astrophysics Data System (ADS)

    Ramos, M. P. L. P.; Páramos, J.

    2017-11-01

    We generalize the mechanism for gravitational baryogensis in the context of f (R ) theories of gravity, including a nonminimal coupling between curvature and matter. In these models, the baryon asymmetry is generated through an effective coupling between the Ricci scalar curvature and the net baryon current that dynamically breaks Charge conjugation, parity and time reversal (C P T ) invariance. We study the combinations of characteristic mass scales and exponents for both nontrivial functions present in the modified action functional and establish the allowed region for these parameters: we find that very small deviations from general relativity are consistent with the observed baryon asymmetry and lead to temperatures compatible with the subsequent formation of the primordial abundances of light elements. In particular, we show the viability of a power-law nonminimal coupling function f2(R )˜Rn with 0

  19. Engineering integrated photonics for heralded quantum gates

    PubMed Central

    Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.

    2016-01-01

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process. PMID:27282928

  20. Engineering integrated photonics for heralded quantum gates.

    PubMed

    Meany, Thomas; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Delanty, Michael; Steel, M J; Gilchrist, Alexei; Marshall, Graham D; White, Andrew G; Withford, Michael J

    2016-06-10

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

Top