Barrott, Jared J.; Hughes, Philip F.; Osada, Takuya; Yang, Xiao-Yi; Hartman, Zachary C.; Loiselle, David R.; Spector, Neil L.; Neckers, Len; Rajaram, Narasimhan; Hu, Fangyao; Ramanujam, Nimmi; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Lyerly, H. Kim; Haystead, Timothy A.
2013-01-01
Summary Hsp90 inhibitors have demonstrated unusual selectivity for tumor cells despite its ubiquitous expression. This phenomenon has remained unexplained but could be influenced by ectopically expressed Hsp90 in tumors. We have synthesized novel Hsp90 inhibitors that can carry optical or radioiodinated probes via a PEG tether. We show that these tethered inhibitors selectively recognize cells expressing ectopic Hsp90 and become internalized. The internalization process is blocked by Hsp90 antibodies, suggesting that active cycling of the protein is occurring at the plasma membrane. In mice, we show exquisite accumulation of the fluor-tethered versions within breast tumors at very sensitive levels. Cell-based assays with the radiolabeled version showed picomolar detection in cells that express ectopic Hsp90. Our findings show that fluor-tethered or radiolabeled inhibitors targeting ectopic Hsp90 can be used to detect breast cancer malignancies through non-invasive imaging. PMID:24035283
Xu, Xuewen; Ectors, Fabien; Davis, Erica E.; Pirottin, Dimitri; Cheng, Huijun; Farnir, Frédéric; Hadfield, Tracy; Cockett, Noelle; Charlier, Carole; Georges, Michel; Takeda, Haruko
2015-01-01
The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous + Mat /CLPG Pat animals receiving the CLPG mutation from their father express the phenotype. + Mat /CLPG Pat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep. PMID:26474044
Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN
Rebocho, Alexandra B.
2016-01-01
Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356
Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank
2010-12-01
The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
E2F1-mediated human POMC expression in ectopic Cushing's syndrome.
Araki, Takako; Liu, Ning-Ai; Tone, Yukiko; Cuevas-Ramos, Daniel; Heltsley, Roy; Tone, Masahide; Melmed, Shlomo
2016-11-01
Cushing's syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing's syndrome). Hypercortisolemic features of ectopic Cushing's syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing's syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC We identify an E2F1 cluster binding to the proximal hPOMC promoter region (-42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing's cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing's syndrome. © 2016 Society for Endocrinology.
Uberti-Manassero, Nora G; Coscueta, Ezequiel R; Gonzalez, Daniel H
2016-11-01
Plants that express a fusion of the Arabidopsis thaliana class I TCP transcription factor TCP16 to the EAR repressor domain develop several phenotypic alterations, including rounder leaves, short petioles and pedicels, and delayed elongation of sepals, petals and anthers. In addition, these plants develop lobed cotyledons and ectopic meristems. Ectopic meristems are formed on the adaxial side of cotyledon petioles and arise from a cleft that is formed at this site. Analysis of the expression of reporter genes indicated that meristem genes are reactivated at the site of emergence of ectopic meristems, located near the bifurcation of cotyledon veins. The plants also show increased transcript levels of the boundary-specific CUP-SHAPED COTYLEDON (CUC) genes. The results suggest that TCP16 is able to modulate the induction of meristematic programs and the differentiation state of plant cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R
2005-02-16
Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.
Bush, Jeffrey O.; Lan, Yu; Jiang, Rulang
2004-01-01
Cleft lip and palate (CL/P) is a common disfiguring birth defect with complex, poorly understood etiology. Mice carrying a spontaneous mutation, Dancer (Dc), exhibit CL/P in homozygotes and show significantly increased susceptibility to CL/P in heterozygotes [Deol, M. S. & Lane, P. W. (1966) J. Embryol. Exp. Morphol. 16, 543–558 and Trasler, D. G., Kemp, D. & Trasler, T. A. (1984) Teratology 29, 101–104], providing an animal model for understanding the molecular pathogenesis of CL/P. We genetically mapped Dc to within a 1-cM region near the centromere of chromosome 19. In situ hybridization analysis showed that one positional candidate gene, Tbx10, is ectopically expressed in Dc mutant embryos. Positional cloning of the Dc locus revealed an insertion of a 3.3-kb sequence containing the 5′ region of the p23 gene into the first intron of Tbx10, which causes ectopic expression of a p23-Tbx10 chimeric transcript encoding a protein product identical to a normal variant of the Tbx10 protein. Furthermore, we show that ectopic expression of Tbx10 in transgenic mice recapitulates the Dc mutant phenotype, indicating that CL/Pin Dc mutant mice results from the p23 insertion-induced ectopic Tbx10 expression. These results identify gain of function of a T-box transcription factor gene as a mechanism underlying CL/P pathogenesis. PMID:15118109
Lou, Yan-hui; Guo, Xin-hua; Jiang, Hua; Xia, Yu-fang
2010-04-01
To explore the roles of matrix metalloproteinase-1(MMP-1) and tissue inhibitor of metalloproteinase-1(TIMP-1) in the pathogenesis of endometriosis and the effects of estrogen and progestin on their expression. Immunohistochemistry and RT-PCR were employed to detect the expression of MMP-1 and TIMP-1 in the ectopic tissues of 35 patients with endometriosis, 22 eutopic endometrium tissues from women with endometriosis and 28 normal controls. Fifty-nine nude mice were injected with human late secretory endometrial chippings and randomized into estrogen group, progestin group, estrogen-progestin group and control group with corresponding treatments. The implantation rates and graft morphology were observed and MMP-1 and TIMP-1 expressions in the grafts detected by immunohistochemistry. Typical endometrial glands and stroma were observed in all the groups with comparable implantation rates. The administration of progestin was associated with multiple peritoneal implantation sites and significantly larger implants. The transplanted endometria showed proliferative or secretory changes with estrogen or progestin administration. MMP-1 expression significantly increased and TIMP-1 expression decreased with increased MMP-1/TIMP-1 ratio in human and nude mouse ectopic endometria in comparison with those in normal endometria (P<0.05, P<0.01). MMP-1 expression was higher in estrogen and estrogen-progestin groups than in the control group, and was lower in the 3 sexual hormone-treated groups than in the control group. MMP-1 mRNA expression in the eutopic endometrium was significantly higher than that in the normal endometria. Progestrin can not inhibit MMP-1 expression or the effect of estrogen on ectopic endometrium known as progestin resistance. The high expression of MMP-1 and low expression of TIMP-1 in endometriotic tissues confer strong invasiveness of ectopic endometrial tissue, especially in eutopic endometrial tissue, and may play an important role in the pathogenesis of endometriosis.
Induction of Pancreatic Differentiation by Signals from Blood Vessels
NASA Astrophysics Data System (ADS)
Lammert, Eckhard; Cleaver, Ondine; Melton, Douglas
2001-10-01
Blood vessels supply developing organs with metabolic sustenance. Here, we demonstrate a role for blood vessels as a source of developmental signals during pancreatic organogenesis. In vitro experiments with embryonic mouse tissues demonstrate that blood vessel endothelium induces insulin expression in isolated endoderm. Removal of the dorsal aorta in Xenopus laevis embryos results in the failure of insulin expression in vivo. Furthermore, using transgenic mice, we show that ectopic vascularization in the posterior foregut leads to ectopic insulin expression and islet hyperplasia. These results indicate that vessels not only provide metabolic sustenance, but also provide inductive signals for organ development.
Ren, Shifan; Zhou, Yefang; Fang, Xiaoling; She, Xiaoling; Wu, Yilin; Wu, Xianqing
2016-05-24
To investigate the role of phosphatase of regenerating liver-3 (PRL-3) in the 17β-estradiol (E2)- and interleukin 6 (IL-6)-induced migration of endometrial stromal cells (ESCs) from ectopic endometrium. Ectopic endometrial tissues were collected from patients with endometriosis, and PRL-3 expression in ectopic and eutopic endometrium was examined by immunohistochemistry. Endometrial stromal cells isolated from ectopic endometrium were treated with E2, progesterone (P), IL-6, or sodium orthovanadate (Sov) to inhibit PRL-3. Total RNA and protein were extracted from ESCs after treatment for quantitative real-time polymerase chain reaction and Western blot analyses. Cell migration was assessed using a scratch wound assay. Phosphatase of regenerating liver 3 protein was highly expressed in the endometrial glandular cells (EGCs) and ESCs in ectopic endometrium, whereas its weak expression was observed only in EGCs in eutopic endometrium. Both E2 and IL-6 treatment significantly increased PRL-3 messenger RNA and protein expression, and P treatment significantly inhibited PRL-3 expression. However, E2-induced PRL-3 expression in ESCs from ectopic endometrium was significantly blocked by IL-6 antibody. Moreover, E2- and IL-6-enhanced cell migration was completely abrogated by Sov treatment. Furthermore, Sov treatment could significantly promote PTEN expression but inhibit E2- and IL-6-induced p-AKT activation. Phosphatase of regenerating liver 3 plays a key role in the E2- and IL-6-induced migration of ESCs from ectopic endometrium, a process that is involved in the PTEN-AKT signaling pathway. © The Author(s) 2016.
Ostrowski, Stephen M; Wright, Margaret C; Bolock, Alexa M; Geng, Xuehui; Maricich, Stephen M
2015-07-15
Merkel cells are mechanosensitive skin cells whose production requires the basic helix-loop-helix transcription factor Atoh1. We induced ectopic Atoh1 expression in the skin of transgenic mice to determine whether Atoh1 was sufficient to create additional Merkel cells. In embryos, ectopic Atoh1 expression drove ectopic expression of the Merkel cell marker keratin 8 (K8) throughout the epidermis. Epidermal Atoh1 induction in adolescent mice similarly drove widespread K8 expression in glabrous skin of the paws, but in the whisker pads and body skin ectopic K8+ cells were confined to hair follicles and absent from interfollicular regions. Ectopic K8+ cells acquired several characteristics of mature Merkel cells in a time frame similar to that seen during postnatal development of normal Merkel cells. Although ectopic K8+ cell numbers decreased over time, small numbers of these cells remained in deep regions of body skin hair follicles at 3 months post-induction. In adult mice, greater numbers of ectopic K8+ cells were created by Atoh1 induction during anagen versus telogen and following disruption of Notch signaling by conditional deletion of Rbpj in the epidermis. Our data demonstrate that Atoh1 expression is sufficient to produce new Merkel cells in the epidermis, that epidermal cell competency to respond to Atoh1 varies by skin location, developmental age and hair cycle stage, and that the Notch pathway plays a key role in limiting epidermal cell competency to respond to Atoh1 expression. © 2015. Published by The Company of Biologists Ltd.
Yilmaz, Atilgan; Engeler, Rachel; Constantinescu, Simona; Kokkaliaris, Konstantinos D; Dimitrakopoulos, Christos; Schroeder, Timm; Beerenwinkel, Niko; Paro, Renato
2015-11-01
In contrast to urodele amphibians and teleost fish, mammals lack the regenerative responses to replace large body parts. Amphibian and fish regeneration uses dedifferentiation, i.e., reversal of differentiated state, as a means to produce progenitor cells to eventually replace damaged tissues. Therefore, induced activation of dedifferentiation responses in mammalian tissues holds an immense promise for regenerative medicine. Here we demonstrate that ectopic expression of Msx2 in cultured mouse myotubes recapitulates several aspects of amphibian muscle dedifferentiation. We found that MSX2, but not MSX1, leads to cellularization of myotubes and downregulates the expression of myotube markers, such as MHC, MRF4 and myogenin. RNA sequencing of myotubes ectopically expressing Msx2 showed downregulation of over 500 myotube-enriched transcripts and upregulation of over 300 myoblast-enriched transcripts. MSX2 selectively downregulated expression of Ptgs2 and Ptger4, two members of the prostaglandin pathway with important roles in myoblast fusion during muscle differentiation. Ectopic expression of Msx2, as well as Msx1, induced partial cell cycle re-entry of myotubes by upregulating CyclinD1 expression but failed to initiate S-phase. Finally, MSX2-induced dedifferentiation in mouse myotubes could be recapitulated by a pharmacological treatment with trichostatin A (TSA), bone morphogenetic protein 4 (BMP4) and fibroblast growth factor 1 (FGF1). Together, these observations indicate that MSX2 is a major driver of dedifferentiation in mammalian muscle cells. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Hu, Yang; Li, Yajuan; Hou, Fengjuan; Wan, Dongyan; Cheng, Yuan; Han, Yongtao; Gao, Yurong; Liu, Jie; Guo, Ye; Xiao, Shunyuan; Wang, Yuejin; Wen, Ying-Qiang
2018-02-01
Powdery mildew is the most economically important disease of cultivated grapevines worldwide. Here, we report that the Arabidopsis broad-spectrum disease resistance gene RPW8.2 could improve resistance to powdery mildew in Vitis vinifera cv. Thompson Seedless. The RPW8.2-YFP fusion gene was stably expressed in grapevines from either the constitutive 35S promoter or the native promoter (NP) of RPW8.2. The grapevine shoots and plantlets transgenic for 35S::RPW8.2-YFP showed reduced rooting and reduced growth at later development stages in the absence of any pathogens. Infection tests with an adapted grapevine powdery mildew isolate En NAFU1 showed that hyphal growth and sporulation were significantly restricted in transgenic grapevines expressing either of the two constructs. The resistance appeared to be attributable to the ectopic expression of RPW8.2, and associated with the enhanced encasement of the haustorial complex (EHC) and onsite accumulation of H 2 O 2 . In addition, the RPW8.2-YFP fusion protein showed focal accumulation around the fungal penetration sites. Transcriptome analysis revealed that ectopic expression of RPW8.2 in grapevines not only significantly enhanced salicylic acid-dependent defense signaling, but also altered expression of other phytohormone-associated genes. Taken together, our results indicate that RPW8.2 could be utilized as a transgene for improving resistance against powdery mildew in grapevines. Copyright © 2017 Elsevier B.V. All rights reserved.
Ma, Zhan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Wang, Yingzhi; Yang, Cuixia; Wang, Wenjuan; Du, Yan; Zhou, Muqing; Gao, Feng
2010-08-01
F1Fo-ATP synthase was originally thought to exclusively locate in the inner membrane of the mitochondria. However, recent studies prove the existence of ectopic F1Fo-ATP synthase on the outside of the cell membrane. Ectopic ATP synthase was proposed as a marker for tumor target therapy. Nevertheless, the protein transport mechanism of the ectopic ATP synthase is still unclear. The specificity of the ectopic ATP synthase, with regard to tumors, is questioned because of its widespread expression. In the current study, we constructed green fluorescent protein-ATP5B fusion protein and introduced it into HepG2 cells to study the localization of the ATP synthase. The expression of ATP5B was analyzed in six cell lines with different 'malignancies'. These cells were cultured in both normal and tumor-like acidic and hypoxic conditions. The results suggested that the ectopic expression of ATP synthase is a consequence of translocation from the mitochondria. The expression and catalytic activity of ectopic ATP synthase were similar on the surface of malignant cells as on the surface of less malignant cells. Interestingly, the expression of ectopic ATP synthase was not up-regulated in tumor-like acidic and hypoxic microenvironments. However, the catalytic activity of ectopic ATP synthase was up-regulated in tumor-like microenvironments. Therefore, the specificity of ectopic ATP synthase for tumor target therapy relies on the high level of catalytic activity that is observed in acidic and hypoxic microenvironments in tumor tissues.
Jeknić, Zoran; Jeknić, Stevan; Jevremović, Slađana; Subotić, Angelina; Chen, Tony H H
2014-08-01
Genetic modulation of the carotenogenesis in I. germanica 'Fire Bride' by ectopic expression of a crtB gene causes several flower parts to develop novel orange and pink colors. Flower color in tall bearded irises (Iris germanica L.) is determined by two distinct biochemical pathways; the carotenoid pathway, which imparts yellow, orange and pink hues and the anthocyanin pathway, which produces blue, violet and maroon flowers. Red-flowered I. germanica do not exist in nature and conventional breeding methods have thus far failed to produce them. With a goal of developing iris cultivars with red flowers, we transformed a pink iris I. germanica, 'Fire Bride', with a bacterial phytoene synthase gene (crtB) from Pantoea agglomerans under the control of the promoter region of a gene for capsanthin-capsorubin synthase from Lilium lancifolium (Llccs). This approach aimed to increase the flux of metabolites into the carotenoid biosynthetic pathway and lead to elevated levels of lycopene and darker pink or red flowers. Iris callus tissue ectopically expressing the crtB gene exhibited a color change from yellow to pink-orange and red, due to accumulation of lycopene. Transgenic iris plants, regenerated from the crtB-transgenic calli, showed prominent color changes in the ovaries (green to orange), flower stalk (green to orange), and anthers (white to pink), while the standards and falls showed no significant differences in color when compared to control plants. HPLC and UHPLC analysis confirmed that the color changes were primarily due to the accumulation of lycopene. In this study, we showed that ectopic expression of a crtB can be used to successfully alter the color of certain flower parts in I. germanica 'Fire Bride' and produce new flower traits.
MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway
Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A.; Pfeffer, Lawrence M.
2017-01-01
Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro, and inhibited GBM tumorigenesis in vivo. Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro, and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway. PMID:29348882
MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.
Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M
2017-12-22
Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.
The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.
de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X
1996-01-01
Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of pharmacological investigations and even manipulations of this peculiar ACTH hypersecretory syndrome. PMID:8636444
The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome.
de Keyzer, Y; Lenne, F; Auzan, C; Jégou, S; René, P; Vaudry, H; Kuhn, J M; Luton, J P; Clauser, E; Bertagna, X
1996-03-01
Ectopic ACTH secretion occurs in highly differentiated and rather indolent tumors like bronchial carcinoids or, in contrast, in various types of aggressive and poorly differentiated neuroendocrine tumors. We explored this phenomenon using the recently cloned human pituitary V3 vasopressin receptor as an alternate molecular marker of the corticotroph phenotype. Expression of V3 receptor, corticotrophin releasing hormone (CRH) receptor, and proopiomelanocortin (POMC) genes was examined in tumors of pituitary and nonpituitary origin. A comparative RT-PCR approach revealed signals for both V3 receptor and CHR receptor mRNAs in 17 of 18 ACTH-secreting pituitary adenomas, and 6 of 6 normal pituitaries; in six growth hormone- or prolactin-secreting adenomas, a very faint V3 receptor signal was observed in three cases, and CRH receptor signal was undetected in all. Six of eight bronchial carcinoids responsible for the ectopic ACTH syndrome had both POMC and V3 receptor signals as high as those in ACTH-secreting pituitary adenomas; in contrast, no POMC signal and only a very faint V3 receptor signal were detected in six of eight nonsecreting bronchial carcinoids. Northern blot analysis showed V3 receptor mRNA of identical size in ACTH-secreting bronchial carcinoids and pituitary tumors. Other types of nonpituitary tumors responsible for ectopic ACTH syndrome presented much lower levels of both POMC and V3 receptor gene expression than those found in ACTH-secreting bronchial carcinoids. In contrast with the V3 receptor, CRH receptor mRNA was detected in the majority of neuroendocrine tumors irrespective of their POMC status. These results show that expression of the V3 receptor gene participates in the corticotroph phenotype. Its striking association with ACTH-secreting bronchial carcinoids defines a subset of nonpituitary tumors in which ectopic POMC gene expression is but one aspect of a wider process of corticotroph cell differentiation, and opens new possibilities of pharmacological investigations and even manipulations of this peculiar ACTH hypersecretory syndrome.
Interleukin-4 induces expression of eotaxin in endometriotic stromal cells.
Ouyang, Zhuo; Osuga, Yutaka; Hirota, Yasushi; Hirata, Tetsuya; Yoshino, Osamu; Koga, Kaori; Yano, Tetsu; Taketani, Yuji
2010-06-01
To study the relationship between eotaxin and interleukin-4 (IL-4) in the pathophysiology of endometriosis. Comparative and laboratory study. University teaching hospital reproductive endocrinology and infertility practice. Ectopic endometrial tissues were collected from women with endometriosis. Ectopic endometrial stromal cells (ESCs) were isolated and cultured with IL-4. Ectopic endometriotic tissues were immunostained for eotaxin and IL-4. Gene expression of eotaxin was determined by standard and real-time reverse-transcriptase polymerase chain reaction. Secretion of eotaxin from ESC was measured using specific ELISA. The immunostained sections were examined. Interleukin-4 (IL-4) increased mRNA expression and protein secretion of eotaxin from ESC in a dose-dependent manner. Immunohistochemical analysis showed that eotaxin-positive cells colocalized with IL-4-positive cells and accumulated around the blood vessels in the stroma of endometriotic tissue. IL-4 induces eotaxin in ESCs, which might promote angiogenesis and the subsequent development of endometriosis. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone.
Martínez, R; Estrada, M P; Berlanga, J; Guillén, I; Hernández, O; Cabrera, E; Pimentel, R; Morales, R; Herrera, F; Morales, A; Piña, J C; Abad, Z; Sánchez, V; Melamed, P; Lleonart, R; de la Fuente, J
1996-03-01
The generation of transgenic fish with the transfer of growth hormone (GH) genes has opened new possibilities for the manipulation of growth in economically important fish species. The tilapia growth hormone (tiGH) cDNA was linked to the human cytomegalovirus (CMV) enhancer-promoter and used to generate transgenic tilapia by microinjection into one-cell embryos. Five transgenic tilapia were obtained from 40 injected embryos. A transgenic animal containing one copy of the transgene per cell was selected to establish a transgenic line. The transgene was stably transmitted to F1 and F2 generations in a Mendelian fashion. Ectopic, low-level expression of tiGH was detected in gonad and muscle cells of F1 transgenic tilapia by immunohystochemical analysis of tissue sections. Nine-month-old transgenic F1 progeny were 82% larger than nontransgenic fish at p = .001. These results showed that low-level ectopic expression of tiGH resulted in a growth acceleration in transgenic tilapia. Tilapia GH gene transfer is an alternative for growth acceleration in tilapia.
Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis
Audebert, Stéphane; Helmbacher, Françoise; Dono, Rosanna; Maina, Flavio
2015-01-01
The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring in its endogenous domain of activity. PMID:26393505
Yang, Zhen-Guo; Awan, Faryal Mehwish; Du, William W; Zeng, Yan; Lyu, Juanjuan; Wu, De; Gupta, Shaan; Yang, Weining; Yang, Burton B
2017-09-06
Delayed or impaired wound healing is a major health issue worldwide, especially in patients with diabetes and atherosclerosis. Here we show that expression of the circular RNA circ-Amotl1 accelerated healing process in a mouse excisional wound model. Further studies showed that ectopic circ-Amotl1 increased protein levels of Stat3 and Dnmt3a. The increased Dnmt3a then methylated the promoter of microRNA miR-17, decreasing miR-17-5p levels but increasing fibronectin expression. We found that Stat3, similar to Dnmt3a and fibronectin, was a target of miR-17-5p. Decreased miR-17-5p levels would increase expression of fibronectin, Dnmt3a, and Stat3. All of these led to increased cell adhesion, migration, proliferation, survival, and wound repair. Furthermore, we found that circ-Amotl1 not only increased Stat3 expression but also facilitated Stat3 nuclear translocation. Thus, the ectopic expressed circ-Amotl1 and Stat3 were mainly translocated to nucleus. In the presence of circ-Amotl1, Stat3 interacted with Dnmt3a promoter with increased affinity, facilitating Dnmt3a transcription. Ectopic application of circ-Amotl1 accelerating wound repair may shed light on skin wound healing clinically. Copyright © 2017. Published by Elsevier Inc.
A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues
Anderson, Matthew Z.; Porman, Allison M.; Wang, Na; Mancera, Eugenio; Bennett, Richard J.
2016-01-01
Heritable epigenetic changes underlie the ability of cells to differentiate into distinct cell types. Here, we demonstrate that the fungal pathogen Candida tropicalis exhibits multipotency, undergoing stochastic and reversible switching between three cellular states. The three cell states exhibit unique cellular morphologies, growth rates, and global gene expression profiles. Genetic analysis identified six transcription factors that play key roles in regulating cell differentiation. In particular, we show that forced expression of Wor1 or Efg1 transcription factors can be used to manipulate transitions between all three cell states. A model for tristability is proposed in which Wor1 and Efg1 are self-activating but mutually antagonistic transcription factors, thereby forming a symmetrical self-activating toggle switch. We explicitly test this model and show that ectopic expression of WOR1 can induce white-to-hybrid-to-opaque switching, whereas ectopic expression of EFG1 drives switching in the opposite direction, from opaque-to-hybrid-to-white cell states. We also address the stability of induced cell states and demonstrate that stable differentiation events require ectopic gene expression in combination with chromatin-based cues. These studies therefore experimentally test a model of multistate stability and demonstrate that transcriptional circuits act synergistically with chromatin-based changes to drive cell state transitions. We also establish close mechanistic parallels between phenotypic switching in unicellular fungi and cell fate decisions during stem cell reprogramming. PMID:27711197
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srisuttee, Ratakorn; Koh, Sang Seok; Department of Functional Genomics, University of Science and Technology, Daejeon 305-333
Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stablymore » expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.« less
Ectopical expression of FABP4 gene can induce bovine muscle-derived stem cells adipogenesis.
Zhang, Le; Zhao, Yanfang; Ning, Yue; Wang, Hongbao; Zan, Linsen
2017-01-08
Fatty acid binding protein 4 (FABP4) plays a key role in Fatty acid catabolism in mammals. Findings from our previous studies have indicated that FABP4 neither affect the differentiation of bovine preadipocytes nor does it change the expression of upstream genes. To investigate whether ectopically expressed FABP4 can induces Muscle-Derived Stem Cells (MDSCs) lipid synthesis and understand the regulatory mechanism behind it. In this study, adenoviruses infection is achieved to ectopically expressed FABP4 in bovine MDSCs, RNA-seq analyses at the very early stages of induction were performed to reveal gene expression level changes during MDSCs transdifferentiation. Results showed FABP4 can induce bovine Muscle-Derived Stem Cells transdifferentiation into adipocyte-like cells, 23 genes' expression levels changed after 24 h inducing although there is no significant change in cell phenotypes. Along with induction time, more differently expressed genes (256 genes changes after 48 h induction) were screened out. These genes should be at the downstream of signal pathways and be regulated by the 23 genes identified before. Our findings may provide a unique new model for studying the molecular control of cattle cross-talk between adipose and skeletal muscle. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The Lin28/Let-7 System in Early Human Embryonic Tissue and Ectopic Pregnancy
Steffani, Liliana; Martínez, Sebastián; Monterde, Mercedes; Ferri, Blanca; Núñez, Maria Jose; AinhoaRomero-Espinós; Zamora, Omar; Gurrea, Marta; Sangiao-Alvarellos, Susana; Vega, Olivia; Simón, Carlos; Pellicer, Antonio; Tena-Sempere, Manuel
2014-01-01
Our objective was to determine the expression of the elements of the Lin28/Let-7 system, and related microRNAs (miRNAs), in early stages of human placentation and ectopic pregnancy, as a means to assess the potential role of this molecular hub in the pathogenesis of ectopic gestation. Seventeen patients suffering from tubal ectopic pregnancy (cases) and forty-three women with normal on-going gestation that desired voluntary termination of pregnancy (VTOP; controls) were recruited for the study. Embryonic tissues were subjected to RNA extraction and quantitative PCR analyses for LIN28B, Let-7a, miR-132, miR-145 and mir-323-3p were performed. Our results demonstrate that the expression of LIN28B mRNA was barely detectable in embryonic tissue from early stages of gestation and sharply increased thereafter to plateau between gestational weeks 7–9. In contrast, expression levels of Let-7, mir-132 and mir-145 were high in embryonic tissue from early gestations (≤6-weeks) and abruptly declined thereafter, especially for Let-7. Opposite trends were detected for mir-323-3p. Embryonic expression of LIN28B mRNA was higher in early stages (≤6-weeks) of ectopic pregnancy than in normal gestation. In contrast, Let-7a expression was significantly lower in early ectopic pregnancies, while miR-132 and miR-145 levels were not altered. Expression of mir-323-3p was also suppressed in ectopic embryonic tissue. We are the first to document reciprocal changes in the expression profiles of the gene encoding the RNA-binding protein, LIN28B, and the related miRNAs, Let-7a, mir-132 and mir-145, in early stages of human placentation. This finding suggests the potential involvement of LIN28B/Let-7 (de)regulated pathways in the pathophysiology of ectopic pregnancy in humans. PMID:24498170
Mazzuco, Tania L; Chabre, Olivier; Sturm, Nathalie; Feige, Jean-Jacques; Thomas, Michaël
2006-02-01
Aberrant expression of ectopic G protein-coupled receptors (GPCRs) in adrenal cortex tissue has been observed in several cases of ACTH-independent macronodular adrenal hyperplasias and adenomas associated with Cushing's syndrome. Although there is clear clinical evidence for the implication of these ectopic receptors in abnormal regulation of cortisol production, whether this aberrant GPCR expression is the cause or the consequence of the development of an adrenal hyperplasia is still an open question. To answer it, we genetically engineered primary bovine adrenocortical cells to have them express the gastric inhibitory polypeptide receptor. After transplantation of these modified cells under the renal capsule of adrenalectomized immunodeficient mice, tissues formed had their functional and histological characteristics analyzed. We observed the formation of an enlarged and hyperproliferative adenomatous adrenocortical tissue that secreted cortisol in a gastric inhibitory polypeptide-dependent manner and induced a mild Cushing's syndrome with hyperglycemia. Moreover, we show that tumor development was ACTH independent. Thus, a single genetic event, inappropriate expression of a nonmutated GPCR gene, is sufficient to initiate the complete phenotypic alterations that ultimately lead to the formation of a benign adrenocortical tumor.
Santulli, Pietro; Borghese, Bruno; Noël, Jean-Christophe; Fayt, Isabelle; Anaf, Vincent; de Ziegler, Dominique; Batteux, Frederic; Vaiman, Daniel; Chapron, Charles
2014-03-01
Endometriosis is a common gynecologic condition characterized by an important inflammatory process mediated by the prostaglandin pathway. Oral contraceptives are the treatment of choice for symptomatic endometriotic women. However the effects of oral contraceptives use and prostaglandin pathway in endometriotic women are actually still unknown. To investigate the expression of prostaglandin pathway key genes in endometriotic tissue, affected or not by hormonal therapy, as compared with healthy endometrial tissue. This was a comparative laboratory study. This study was conducted in a tertiary-care university hospital. Seventy-six women, with (n = 46) and without (n = 30) histologically proven endometriosis. Prostaglandin-endoperoxidase synthase (PTGS)1, PTGS2, prostaglandin E receptor (PTGER)1, PTGER2, PTGER3, and PTGER4 mRNA levels in endometrium of disease-free women and in eutopic and ectopic endometrium of endometriosis-affected women. PTGS2 expression was further investigated by immunohistochemistry, using specific monoclonal antibodies. PTGS2 expression was analyzed at mRNA and protein levels and correlated with taking hormonal treatment. PTGS2 expression was significantly increased in eutopic and ectopic endometrium as compared with healthy tissue (induction of 9.6- and 6.3-fold, respectively; P = .001). PTGS2 immunoreactivity increased gradually from normal endometrium to eutopic and ectopic endometrium (h-score of 96.7 ± 55.0, 128.3 ± 66.1, and 226.7 ± 62.6, respectively, P < .001). PTGER2, PTGER3, and PTGER4 expression increased significantly and gradually from normal to eutopic and ectopic endometrium, whereas PTGER1 remained unchanged. Patients under hormonal treatment had a higher PTGS2 expression at transcriptional and protein levels as compared with those without treatment (P = .002 and P = .025, respectively). Prostaglandin pathway is strongly deregulated in eutopic and ectopic endometrium of women suffering from endometriosis for the benefit of an increased PTGS2 expression. We show for the first time that hormonal treatment appears to enhance even more PTGS2 expression. These results contribute to explain why medical treatment could fail to control endometriosis progression.
Distal-less induces elemental color patterns in Junonia butterfly wings.
Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Iwasaki, Mayo; Taira, Wataru; Adhikari, Kiran; Gurung, Raj; Otaki, Joji M
2016-01-01
The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Jianghong, E-mail: jianghonghou@163.com; Xue, Xiaolin; Li, Junnong
2016-01-22
Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosismore » patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.« less
Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies.
Monteiro, Antónia; Chen, Bin; Ramos, Diane M; Oliver, Jeffrey C; Tong, Xiaoling; Guo, Min; Wang, Wen-Kai; Fazzino, Lisa; Kamal, Firdous
2013-07-01
Butterfly eyespots represent novel complex traits that display substantial diversity in number and size within and across species. Correlative gene expression studies have implicated a large suite of transcription factors, including Distal-less (Dll), Engrailed (En), and Spalt (Sal), in eyespot development in butterflies, but direct evidence testing the function of any of these proteins is still missing. Here we show that the characteristic two-eyespot pattern of wildtype Bicyclus anynana forewings is correlated with dynamic progression of Dll, En, and Sal expression in larval wings from four spots to two spots, whereas no such decline in gene expression ensues in a four-eyespot mutant. We then conduct transgenic experiments testing whether over-expression of any of these genes in a wild-type genetic background is sufficient to induce eyespot differentiation in these pre-patterned wing compartments. We also produce a Dll-RNAi transgenic line to test how Dll down-regulation affects eyespot development. Finally we test how ectopic expression of these genes during the pupal stages of development alters adults color patters. We show that over-expressing Dll in larvae is sufficient to induce the differentiation of additional eyespots and increase the size of eyespots, whereas down-regulating Dll leads to a decrease in eyespot size. Furthermore, ectopic expression of Dll in the early pupal wing led to the appearance of ectopic patches of black scales. We conclude that Dll is a positive regulator of focal differentiation and eyespot signaling and that this gene is also a possible selector gene for scale melanization in butterflies. Copyright © 2013 Wiley Periodicals, Inc.
Zhang, Kairui; Asai, Shuji; Hast, Michael W.; Liu, Min; Usami, Yu; Iwamoto, Masahiro; Soslowsky, Louis J.; Enomoto-Iwamoto, Motomi
2016-01-01
Ectopic tendon mineralization can develop following tendon rupture or trauma surgery. The pathogenesis of ectopic tendon mineralization and its clinical impact have not been fully elucidated yet. In this study, we utilized a mouse Achilles tendon injury model to determine whether ectopic tendon mineralization alters the biomechanical properties of the tendon and whether BMP signaling is involved in this condition. A complete transverse incision was made at the midpoint of the right Achilles tendon in 8-week-old CD1 mice and the gap was left open. Ectopic cartilaginous mass formation was found in the injured tendon by 4 weeks post-surgery and ectopic mineralization was detected at 8–10 weeks post-surgery. Ectopic mineralization grew over time and volume of the mineralized materials of 25-weeks samples was about 2.5 fold bigger than that of 10-weeks samples, indicating that injury-induced ectopic tendon mineralization is progressive. In vitro mechanical testing showed that max force, max stress and mid-substance modulus in the 25-weeks samples were significantly lower than the 10-weeks samples. We observed substantial increases in expression of bone morphogenetic protein family genes in injured tendons 1 week post-surgery. Immunohistochemical analysis showed that phosphorylation of both Smad1 and Smad3 were highly increased in injured tendons as early as 1 week post-injury and remained high in ectopic chondrogenic lesions 4 weeks post-injury. Treatment with the BMP receptor kinase inhibitor (LDN193189) significantly inhibited injury-induced tendon mineralization. These findings indicate that injury-induced ectopic tendon mineralization is progressive, involves BMP signaling and associated with deterioration of tendon biomechanical properties. PMID:26825318
Younger, Susan; Huang, Yaling; Lee, Tzumin
2012-01-01
Neural stem cells (NSCs) are able to self-renew while giving rise to neurons and glia that comprise a functional nervous system. However, how NSC self-renewal is maintained is not well understood. Using the Drosophila larval NSCs called neuroblasts (NBs) as a model, we demonstrate that the Hairy and Enhancer-of-Split (Hes) family protein Deadpan (Dpn) plays important roles in NB self-renewal and specification. The loss of Dpn leads to the premature loss of NBs and truncated NB lineages, a process likely mediated by the homeobox protein Prospero (Pros). Conversely, ectopic/over-expression of Dpn promotes ectopic self-renewing divisions and maintains NB self-renewal into adulthood. In type II NBs, which generate transit amplifying intermediate neural progenitors (INPs) like mammalian NSCs, the loss of Dpn results in ectopic expression of type I NB markers Asense (Ase) and Pros before these type II NBs are lost at early larval stages. Our results also show that knockdown of Notch leads to ectopic Ase expression in type II NBs and the premature loss of type II NBs. Significantly, dpn expression is unchanged in these transformed NBs. Furthermore, the loss of Dpn does not inhibit the over-proliferation of type II NBs and immature INPs caused by over-expression of activated Notch. Our data suggest that Dpn plays important roles in maintaining NB self-renewal and specification of type II NBs in larval brains and that Dpn and Notch function independently in regulating type II NB proliferation and specification. PMID:23056424
Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant.
Tsuchimoto, S; van der Krol, A R; Chua, N H
1993-01-01
We cloned a MADS-box gene, pMADS3, from Petunia hybrida, which shows high sequence homology to the Arabidopsis AGAMOUS and Antirrhinum PLENA. pMADS3 is expressed exclusively in stamens and carpels of wild-type petunia plants. In the petunia mutant blind, which shows homeotic conversions of corolla limbs into antheroid structures with pollen grains and small parts of sepals into carpelloid tissue, pMADS3 is expressed in all floral organs as well as in leaves. Ectopic expression of pMADS3 in transgenic petunia leads to phenocopies of the blind mutant, i.e., the formation of antheroid structures on limbs and carpelloid tissue on sepals. Transgenic tobacco plants that overexpress pMADS3 exhibit an even more severe phenotype, with the sepals forming a carpel-like structure encasing the interior floral organs. Our results identify BLIND as a negative regulator of pMADS3, which specifies stamens and carpels during petunia flower development. PMID:8104573
Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A
1998-05-01
During early stages of chick limb development, the homeobox-containing gene Msx-2 is expressed in the mesoderm at the anterior margin of the limb bud and in a discrete group of mesodermal cells at the midproximal posterior margin. These domains of Msx-2 expression roughly demarcate the anterior and posterior boundaries of the progress zone, the highly proliferating posterior mesodermal cells underneath the apical ectodermal ridge (AER) that give rise to the skeletal elements of the limb and associated structures. Later in development as the AER loses its activity, Msx-2 expression expands into the distal mesoderm and subsequently into the interdigital mesenchyme which demarcates the developing digits. The domains of Msx-2 expression exhibit considerably less proliferation than the cells of the progress zone and also encompass several regions of programmed cell death including the anterior and posterior necrotic zones and interdigital mesenchyme. We have thus suggested that Msx-2 may be in a regulatory network that delimits the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed. In the present study we show that ectopic expression of Msx-2 via a retroviral expression vector in the posterior mesoderm of the progress zone from the time of initial formation of the limb bud severely impairs limb morphogenesis. Msx-2-infected limbs are typically very narrow along the anteroposterior axis, are occasionally truncated, and exhibit alterations in the pattern of formation of skeletal elements, indicating that as a consequence of ectopic Msx-2 expression the morphogenesis of large portions of the posterior mesoderm has been suppressed. We further show that Msx-2 impairs limb morphogenesis by reducing cell proliferation and promoting apoptosis in the regions of the posterior mesoderm in which it is ectopically expressed. The domains of ectopic Msx-2 expression in the posterior mesoderm also exhibit ectopic expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.
Siemens, Helge; Jackstadt, Rene; Kaller, Markus; Hermeking, Heiko
2013-01-01
The c-Kit receptor tyrosine kinase is commonly over-expressed in different types of cancer. p53 activation is known to result in the down-regulation of c-Kit. However, the underlying mechanism has remained unknown. Here, we show that the p53-induced miR-34 microRNA family mediates repression of c-Kit by p53 via a conserved seed-matching sequence in the c-Kit 3'-UTR. Ectopic miR-34a resulted in a decrease in Erk signaling and transformation, which was dependent on the down-regulation of c-Kit expression. Furthermore, ectopic expression of c-Kit conferred resistance of colorectal cancer (CRC) cells to treatment with 5-fluorouracil (5-FU), whereas ectopic miR-34a sensitized the cells to 5-FU. After stimulation with c-Kit ligand/stem cell factor (SCF) Colo320 CRC cells displayed increased migration/invasion, whereas ectopic miR-34a inhibited SCF-induced migration/invasion. Activation of a conditional c-Kit allele induced several stemness markers in DLD-1 CRC cells. In primary CRC samples elevated c-Kit expression also showed a positive correlation with markers of stemness, such as Lgr5, CD44, OLFM4, BMI-1 and β-catenin. On the contrary, activation of a conditional miR-34a allele in DLD-1 cells diminished the expression of c-Kit and several stemness markers (CD44, Lgr5 and BMI-1) and suppressed sphere formation. MiR-34a also suppressed enhanced sphere-formation after exposure to SCF. Taken together, our data establish c-Kit as a new direct target of miR-34 and demonstrate that this regulation interferes with several c-Kit-mediated effects on cancer cells. Therefore, this regulation may be potentially relevant for future diagnostic and therapeutic approaches. PMID:24009080
He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang
2016-08-01
Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.
Itoh, Jun-Ichi; Hibara, Ken-Ichiro; Sato, Yutaka; Nagato, Yasuo
2008-01-01
Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner. PMID:18567825
Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed
2009-08-07
We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.
Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells.
Kobayashi, Masakatsu; Taniura, Hideo; Yoshikawa, Kazuaki
2002-11-01
Necdin is expressed predominantly in postmitotic neurons, and ectopic expression of this protein strongly suppresses cell growth. Necdin has been implicated in the pathogenesis of Prader-Willi syndrome, a human neurodevelopmental disorder associated with genomic imprinting. Here we demonstrate that ectopic expression of necdin induces a neuronal phenotype in neuroblastoma cells. Necdin was undetectable in mouse neuroblastoma N1E-115 cells under undifferentiated and differentiated conditions. N1E-115 cells transfected with necdin cDNA showed morphological differentiation such as neurite outgrowth and expression of the synaptic marker proteins synaptotagmin and synaptophysin. In addition, Western blot analysis of the retinoblastoma protein (Rb) family members Rb, p130, and p107 revealed that necdin cDNA transfectants contained an increased level of p130 and a reduced level of p107, a pattern seen in differentiated G(0) cells. The transcription factors E2F1 and E2F4 physically interacted with necdin via their carboxyl-terminal transactivation domains, but only E2F1 abrogated necdin-induced growth arrest and neurite outgrowth of neuroblastoma cells. Overexpression of E2F1 in differentiated N1E-115 cells induced apoptosis, which was antagonized by co-expression of necdin. These results suggest that necdin promotes the differentiation and survival of neurons through its antagonistic interactions with E2F1.
Planar cell polarity controls directional Notch signaling in the Drosophila leg
Capilla, Amalia; Johnson, Ruth; Daniels, Maki; Benavente, María; Bray, Sarah J.; Galindo, Máximo Ibo
2012-01-01
The generation of functional structures during development requires tight spatial regulation of signaling pathways. Thus, in Drosophila legs, in which Notch pathway activity is required to specify joints, only cells distal to ligand-producing cells are capable of responding. Here, we show that the asymmetric distribution of planar cell polarity (PCP) proteins correlates with this spatial restriction of Notch activation. Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at the interface with ligand-expressing cells in the non-responding cells. Elimination of PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations that compromise a direct interaction between Dishevelled and Notch reduce the efficacy of repression. Likewise, increased Rab5 levels or dominant-negative Deltex can suppress the ectopic joints. Together, these results suggest that PCP coordinates the spatial activity of the Notch pathway by regulating endocytic trafficking of the receptor. PMID:22736244
Horne, A W; Duncan, W C; King, A E; Burgess, S; Lourenco, P C; Cornes, P; Ghazal, P; Williams, A R; Udby, L; Critchley, H O D
2009-05-01
Ectopic pregnancy (EP) remains a considerable cause of morbidity and occasional mortality. Currently, there is no reliable test to differentiate ectopic from intrauterine gestation. We have previously used array technology to demonstrate that differences in gene expression in decidualized endometrium from women with ectopic and intrauterine gestations could be used to identify candidate diagnostic biomarkers for EP. The aim of this study was to further investigate the decidual gene with the highest fold increase in EP, cysteine-rich secretory protein-3 (CRISP-3). Decidualized endometrium from gestation-matched women undergoing surgical termination of pregnancy (n = 8), evacuation of uterus for miscarriage (n = 6) and surgery for EP (n = 11) was subjected to quantitative RT-PCR, morphological assessment, immunohistochemistry and western blot analysis. Sera were analysed for progesterone and human chorionic gonadotrophin (hCG) levels. Immortalized endometrial epithelial cells were cultured with physiological concentrations of hCG. CRISP-3 mRNA and protein expression were greater in endometrium from ectopic when compared with intrauterine pregnancies (P < 0.05). CRISP-3 protein was localized to epithelium and granulocytes of endometrium. CRISP-3 serum concentrations were not different in women with ectopic compared with intrauterine pregnancies. CRISP-3 expression in endometrium was not related to the degree of decidualization or to serum progesterone levels. Endometrial CRISP-3 expression was inversely proportional to serum hCG concentrations (P < 0.001). Stimulation of endometrial epithelial cells with hCG in vitro caused a reduction in CRISP-3 expression (P < 0.01). The measurement of CRISP-3 in endometrium could provide an additional tool in the diagnosis of failing early pregnancy of unknown location. The absence of a local reduction in expression of CRISP-3 in decidualized endometrium of women with EP may be due to reduced exposure to hCG due to the ectopic location of the trophoblast.
Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon
2014-11-01
Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. © 2014 American Society of Plant Biologists. All rights reserved.
Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon
2014-01-01
Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351
Aurrekoetxea, Maitane; Irastorza, Igor; García-Gallastegui, Patricia; Jiménez-Rojo, Lucia; Nakamura, Takashi; Yamada, Yoshihiko; Ibarretxe, Gaskon; Unda, Fernando J.
2016-01-01
Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity. Results: Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4), Fibroblast growth factor10 (Fgf10), Muscle segment homeobox 1 (Msx-1), Bone Morphogenetic protein 4 (Bmp4), and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1) were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b) and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. Conclusions: We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp, and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts. PMID:27066482
Brca1 regulates in vitro differentiation of mammary epithelial cells.
Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus
2002-07-18
Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.
Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan
2016-01-01
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577
Zuo, Zhibin; Ma, Long; Gong, Zuode; Xue, Lande; Wang, Qibao
2018-05-26
Long non-coding RNAs (lncRNAs) have gained a lot of attention because they participate in several human disorders, including tumors. This study determined the role of LncRNA CASC15 (cancer susceptibility candidate 15) in the development of tongue squamous cell carcinoma (TSCC). Here, we identified that CASC15 expression was upregulated in TSCC samples and cell lines. We showed that overexpression of CASC15 promoted cell proliferation, cycle, and migration in TSCC. In addition, we revealed that miR-33a-5p expression was downregulated in TSCC tissues and cell lines. Moreover, we showed that the expression of CASC15 was negatively related with miR-33a-5p expression in TSCC tissues. Ectopic expression of miR-33a-5p suppressed cell proliferation, cycle, and migration in TSCC. Elevated expression of CASC15 suppressed miR-33a-5p expression and promoted ZEB1 expression in SCC4 cell. Ectopic expression of CASC15 promoted TSCC cell proliferation, cycle, and migration through targeting miR-33a-5p. These results suggested that lncRNA CASC15 and miR-33a-5p might be exploited as new markers of TSCC and were potential treatment targets for TSCC patients.
Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin
2013-01-01
Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229
Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin
2013-01-01
Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.
Drosophila bunched integrates opposing DPP and EGF signals to set the operculum boundary.
Dobens, L L; Peterson, J S; Treisman, J; Raftery, L A
2000-02-01
The Drosophila BMP homolog DPP can function as a morphogen, inducing multiple cell fates across a developmental field. However, it is unknown how graded levels of extracellular DPP are interpreted to organize a sharp boundary between different fates. Here we show that opposing DPP and EGF signals set the boundary for an ovarian follicle cell fate. First, DPP regulates gene expression in the follicle cells that will create the operculum of the eggshell. DPP induces expression of the enhancer trap reporter A359 and represses expression of bunched, which encodes a protein similar to the mammalian transcription factor TSC-22. Second, DPP signaling indirectly regulates A359 expression in these cells by downregulating expression of bunched. Reduced bunched function restores A359 expression in cells that lack the Smad protein MAD; ectopic expression of BUNCHED suppresses A359 expression in this region. Importantly, reduction of bunched function leads to an expansion of the operculum and loss of the collar at its boundary. Third, EGF signaling upregulates expression of bunched. We previously demonstrated that the bunched expression pattern requires the EGF receptor ligand GURKEN. Here we show that activated EGF receptor is sufficient to induce ectopic bunched expression. Thus, the balance of DPP and EGF signals sets the boundary of bunched expression. We propose that the juxtaposition of cells with high and low BUNCHED activity organizes a sharp boundary for the operculum fate.
Song, Sang-Kee; Kwak, Su-Hwan; Chang, Soo Chul; Schiefelbein, John; Lee, Myeong Min
2015-11-06
In multicellular organisms, cell fates are specified through differential regulation of transcription. Epidermal cell fates in the Arabidopsis thaliana root are precisely specified by several transcription factors, with the GLABRA2 (GL2) homeodomain protein acting at the farthest downstream in this process. To better understand the regulation of GL2 expression, we ectopically expressed WEREWOLF (WER) and ENHANCER OF GLABRA3 (EGL3) in various tissues and examined GL2 expression. Here we show that WER expressed ubiquitously in the root induced GL2 expression only in the root epidermis, whereas co-expression of WER and EGL3 induced GL2 expression in the corresponding tissues. We also found that GL3 accumulated in the nucleus at the early meristematic region and EGL3 accumulated later in the nucleus of epidermal cells. We further found that ectopic expression of WER and EGL3 in ground tissues inhibited GL2 expression in the epidermis. Our results suggest that the co-expression of WER and EGL3 is sufficient for driving GL2 and CPC expression. Copyright © 2015 Elsevier Inc. All rights reserved.
Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA
Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice
2007-01-01
Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273
Targeting MYCN-Driven Transcription By BET-Bromodomain Inhibition.
Henssen, Anton; Althoff, Kristina; Odersky, Andrea; Beckers, Anneleen; Koche, Richard; Speleman, Frank; Schäfers, Simon; Bell, Emma; Nortmeyer, Maike; Westermann, Frank; De Preter, Katleen; Florin, Alexandra; Heukamp, Lukas; Spruessel, Annika; Astrahanseff, Kathy; Lindner, Sven; Sadowski, Natalie; Schramm, Alexander; Astorgues-Xerri, Lucile; Riveiro, Maria E; Eggert, Angelika; Cvitkovic, Esteban; Schulte, Johannes H
2016-05-15
Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma. To study the effects of BET inhibition in the context of high MYCN levels, MYCN was ectopically expressed in human and murine cells. The effect of OTX015 on BRD4-regulated transcriptional pause release was analyzed using BRD4 and H3K27Ac chromatin immunoprecipitation coupled with DNA sequencing (ChIP-Seq) and gene expression analysis in neuroblastoma cells treated with OTX015 compared with vehicle control. OTX015 showed therapeutic efficacy against preclinical MYCN-driven neuroblastoma models. Similar to previously described BET inhibitors, concurrent MYCN repression was observed in OTX015-treated samples. Ectopic MYCN expression, however, did not abrogate effects of OTX015, indicating that MYCN repression is not the only target of BET proteins in neuroblastoma. When MYCN was ectopically expressed, BET inhibition still disrupted MYCN target gene transcription without affecting MYCN expression. We found that BRD4 binds to super-enhancers and MYCN target genes, and that OTX015 specifically disrupts BRD4 binding and transcription of these genes. We show that OTX015 is effective against mouse and human MYCN-driven tumor models and that BRD4 not only targets MYCN, but specifically occupies MYCN target gene enhancers as well as other genes associated with super-enhancers. Clin Cancer Res; 22(10); 2470-81. ©2015 AACR. ©2015 American Association for Cancer Research.
Jordan, K C; Clegg, N J; Blasi, J A; Morimoto, A M; Sen, J; Stein, D; McNeill, H; Deng, W M; Tworoger, M; Ruohola-Baker, H
2000-04-01
Recent studies in vertebrates and Drosophila melanogaster have revealed that Fringe-mediated activation of the Notch pathway has a role in patterning cell layers during organogenesis. In these processes, a homeobox-containing transcription factor is responsible for spatially regulating fringe (fng) expression and thus directing activation of the Notch pathway along the fng expression border. Here we show that this may be a general mechanism for patterning epithelial cell layers. At three stages in Drosophila oogenesis, mirror (mirr) and fng have complementary expression patterns in the follicle-cell epithelial layer, and at all three stages loss of mirr enlarges, and ectopic expression of mirr restricts, fng expression, with consequences for follicle-cell patterning. These morphological changes are similar to those caused by Notch mutations. Ectopic expression of mirr in the posterior follicle cells induces a stripe of rhomboid (rho) expression and represses pipe (pip), a gene with a role in the establishment of the dorsal-ventral axis, at a distance. Ectopic Notch activation has a similar long-range effect on pip. Our results suggest that Mirror and Notch induce secretion of diffusible morphogens and we have identified TGF-beta (encoded by dpp) as such a molecule in germarium. We also found that mirr expression in dorsal follicle cells is induced by the EGF-receptor (EGFR) pathway and that mirr then represses pip expression in all but the ventral follicle cells, connecting EGFR activation in the dorsal follicle cells to repression of pip in the dorsal and lateral follicle cells. Our results suggest that the differentiation of ventral follicle cells is not a direct consequence of germline signalling, but depends on long-range signals from dorsal follicle cells, and provide a link between early and late events in Drosophila embryonic dorsal-ventral axis formation.
ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells.
Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H; Morton, Derrick J; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep
2016-09-09
Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Eun Joo; Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr
2011-01-21
Research highlights: {yields} We established TrkA-inducible U2OS cells stably expressing GFP-H2AX proteins. {yields} GFP-H2AX was colocalized with TrkA in the cytoplasm. {yields} {gamma}H2AX production was significantly increased upon activation of TrkA and suppressed by TrkA inhibitor or JNK inhibitor. {yields} Ectopic expression of H2AX promoted TrkA-mediated cell death through the modulation of TrkA tyrosine-490 phosphorylation and JNK activity upon DNA damage. -- Abstract: We previously reported that TrkA overexpression causes accumulation of {gamma}H2AX proteins in the cytoplasm, subsequently leading to massive cell death in U2OS cells. To further investigate how cytoplasmic H2AX is associated with TrkA-induced cell death, we establishedmore » TrkA-inducible cells stably expressing GFP-tagged H2AX. We found that TrkA co-localizes with ectopically expressed GFP-H2AX proteins in the cytoplasm, especially at the juxta-nuclear membranes, which supports our previous results about a functional connection between TrkA and {gamma}H2AX in TrkA-induced cell death. {gamma}H2AX production from GFP-H2AX proteins was significantly increased when TrkA was overexpressed. Moreover, ectopic expression of H2AX activated TrkA-mediated signal pathways via up-regulation of TrkA tyrosine-490 phosphorylation. In addition, suppression of TrkA tyrosine-490 phosphorylation under a certain condition was removed by ectopic expression of H2AX, indicating a functional role of H2AX in the maintenance of TrkA activity. Indeed, TrkA-induced cell death was highly elevated by ectopic H2AX expression, and it was further accelerated by DNA damage via JNK activation. These all results suggest that cytoplasmic H2AX could play an important role in TrkA-mediated cell death by modulating TrkA upon DNA damage.« less
Kang, Jongkyun; Yeom, Eunbyul; Lim, Janghoo; Choi, Kwang-Wook
2014-01-01
The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.
Tazarotene-Induced Gene 1 Interacts with DNAJC8 and Regulates Glycolysis in Cervical Cancer Cells.
Wang, Chun-Hua; Shyu, Rong-Yaun; Wu, Chang-Chieh; Chen, Mao-Liang; Lee, Ming-Cheng; Lin, Yi-Yin; Wang, Lu-Kai; Jiang, Shun-Yuan; Tsai, Fu-Ming
2018-06-14
The tazarotene-induced gene 1 (TIG1) protein is a retinoidinducible growth regulator and is considered a tumor suppressor. Here, we show that DnaJ heat shock protein family member C8 (DNAJC8) is a TIG1 target that regulates glycolysis. Ectopic DNAJC8 expression induced the translocation of pyruvate kinase M2 (PKM2) into the nucleus, subsequently inducing glucose transporter 1 (GLUT1) expression to promote glucose uptake. Silencing either DNAJC8 or PKM2 alleviated the upregulation of GLUT1 expression and glucose uptake induced by ectopic DNAJC8 expression. TIG1 interacted with DNAJC8 in the cytosol, and this interaction completely blocked DNAJC8-mediated PKM2 translocation and inhibited glucose uptake. Furthermore, increased glycose uptake was observed in cells in which TIG1 was silenced. In conclusion, TIG1 acts as a pivotal repressor of DNAJC8 to enhance glucose uptake by partially regulating PKM2 translocation.
Elevated catalase expression in a fungal pathogen is a double-edged sword of iron
Belmonte, Rodrigo; Budge, Susan; Lopez Garcia, Angela; Lee, Keunsook K.; Bebes, Attila; Quinn, Janet
2017-01-01
Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host. PMID:28542620
Elevated catalase expression in a fungal pathogen is a double-edged sword of iron.
Pradhan, Arnab; Herrero-de-Dios, Carmen; Belmonte, Rodrigo; Budge, Susan; Lopez Garcia, Angela; Kolmogorova, Aljona; Lee, Keunsook K; Martin, Brennan D; Ribeiro, Antonio; Bebes, Attila; Yuecel, Raif; Gow, Neil A R; Munro, Carol A; MacCallum, Donna M; Quinn, Janet; Brown, Alistair J P
2017-05-01
Most fungal pathogens of humans display robust protective oxidative stress responses that contribute to their pathogenicity. The induction of enzymes that detoxify reactive oxygen species (ROS) is an essential component of these responses. We showed previously that ectopic expression of the heme-containing catalase enzyme in Candida albicans enhances resistance to oxidative stress, combinatorial oxidative plus cationic stress, and phagocytic killing. Clearly ectopic catalase expression confers fitness advantages in the presence of stress, and therefore in this study we tested whether it enhances fitness in the absence of stress. We addressed this using a set of congenic barcoded C. albicans strains that include doxycycline-conditional tetON-CAT1 expressors. We show that high basal catalase levels, rather than CAT1 induction following stress imposition, reduce ROS accumulation and cell death, thereby promoting resistance to acute peroxide or combinatorial stress. This conclusion is reinforced by our analyses of phenotypically diverse clinical isolates and the impact of stochastic variation in catalase expression upon stress resistance in genetically homogeneous C. albicans populations. Accordingly, cat1Δ cells are more sensitive to neutrophil killing. However, we find that catalase inactivation does not attenuate C. albicans virulence in mouse or invertebrate models of systemic candidiasis. Furthermore, our direct comparisons of fitness in vitro using isogenic barcoded CAT1, cat1Δ and tetON-CAT1 strains show that, while ectopic catalase expression confers a fitness advantage during peroxide stress, it confers a fitness defect in the absence of stress. This fitness defect is suppressed by iron supplementation. Also high basal catalase levels induce key iron assimilatory functions (CFL5, FET3, FRP1, FTR1). We conclude that while high basal catalase levels enhance peroxide stress resistance, they place pressure on iron homeostasis through an elevated cellular demand for iron, thereby reducing the fitness of C. albicans in iron-limiting tissues within the host.
Yamada, Mayumi; Seto, Yusuke; Taya, Shinichiro; Owa, Tomoo; Inoue, Yukiko U; Inoue, Takayoshi; Kawaguchi, Yoshiya; Nabeshima, Yo-Ichi; Hoshino, Mikio
2014-04-02
In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.
2012-01-01
Background Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. Results We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. Conclusion We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species. PMID:22780875
Kumar, Gautam; Kushwaha, Hemant Ritturaj; Panjabi-Sabharwal, Vaishali; Kumari, Sumita; Joshi, Rohit; Karan, Ratna; Mittal, Shweta; Pareek, Sneh L Singla; Pareek, Ashwani
2012-07-10
Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species.
Chiappetta, A.; Fambrini, M.; Petrarulo, M.; Rapparini, F.; Michelotti, V.; Bruno, L.; Greco, M.; Baraldi, R.; Salvini, M.; Pugliesi, C.; Bitonti, M. B.
2009-01-01
Background and Aims The clone EMB-2 of the interspecific hybrid Helianthus annuus × H. tuberosus provides an interesting system to study molecular and physiological aspects of somatic embryogenesis. Namely, in addition to non-epiphyllous (NEP) leaves that expand normally, EMB-2 produces epiphyllous (EP) leaves bearing embryos on the adaxial surface. This clone was used to investigate if the ectopic expression of H. annuus LEAFY COTYLEDON1-LIKE (Ha-L1L) gene and auxin activity are correlated with the establishment of embryogenic competence. Methods Ha-L1L expression was evaluated by semi-quantitative RT-PCR and in situ hybridization. The endogenous level and spatial distribution of free indole-3-acetic acid (IAA) were estimated by a capillary gas chromatography–mass spectrometry–selected ion monitoring method and an immuno-cytochemical approach. Key Results Ectopic expression of Ha-L1L was detected in specific cell domains of the adaxial epidermis of EP leaves prior to the development of ectopic embryos. Ha-L1L was expressed rapidly when NEP leaves were induced to regenerate somatic embryos by in vitro culture. Differences in auxin distribution pattern rather than in absolute level were observed between EP and A-2 leaves. More precisely, a strong IAA immuno-signal was detected in single cells or in small groups of cells along the epidermis of EP leaves and accompanied the early stages of embryo development. Changes in auxin level and distribution were observed in NEP leaves induced to regenerate by in vitro culture. Exogenous auxin treatments lightly influenced Ha-L1L transcript levels in spite of an enhancement of the regeneration frequency. Conclusions In EP leaves, Ha-L1L activity marks the putative founder cells of ectopic embryos. Although the ectopic expression of Ha-L1L seems to be not directly mediated by auxin levels per se, it was demonstrated that localized Ha-L1L expression and IAA accumulation in leaf epidermis domains represent early events of somatic embryogenesis displayed by the epiphyllous EMB-2 clone. PMID:19151043
Regulatory role of AINTEGUMENTA in organ initiation and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krizek, Beth Allyn; Lebioda, Lukasz
2005-03-01
Although several members of the plant-specific AP2/ERF family of transcription factors are important developmental regulators, many genes in this large protein family remain uncharacterized. Here, we present a phylogenetic analysis of the18 genes that make up the AP2 subgroup of this family. We report expression analyses of seven Arabidopsis genes most closely related to the floral development gene AINTEGUMENTA and show that all AINTEGUMENTA-like (AIL) genes are transcribed in multiple tissues during development. They are expressed primarily in young actively dividing tissues of a plant and not in mature leaves or stems. The spatial distribution of AIL5, AIL6, and AIL7more » mRNA in inflorescences was characterized by in situ hybridization. Each of these genes is expressed in a spatially and temporally distinct pattern within inflorescence meristems and flowers. Ectopic expression of AIL5 resulted in a larger floral organ phenotype, similar to that resulting from ectopic expression of ANT. Our results are consistent with AIL genes having roles in specification of meristematic or division-competent states.« less
Mizoshita, Tsutomu; Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Katano, Takahito; Nishiwaki, Hirotaka; Ebi, Masahide; Mori, Yoshinori; Kubota, Eiji; Kataoka, Hiromi; Kamiya, Takeshi; Joh, Takashi
2014-01-01
Background. Adalimumab (ADA) is effective for patients with Crohn's disease (CD). However, there have been few reports on ADA therapy with respect to its relationship with pathologic findings and drug efficacy in biologically naïve CD cases. Methods. Fifteen patients with active biologically naïve CD were treated with ADA. We examined them clinically and pathologically with ectopic MUC5AC expression in the lesions before and after 12 and 52 weeks of ADA therapy, retrospectively. Results. Both mean CD activity index scores and serum C-reactive protein values were significantly lower after ADA therapy (P < 0.001). In the MUC5AC negative group, all cases exhibited clinical remission (CR) and endoscopic improvement at 52 weeks. In MUC5AC positive groups, loss of MUC5AC expression was detected in cases having CR and endoscopic improvement at 52 weeks, while remnant ectopic MUC5AC expression was observed in those exhibiting no endoscopic improvement and flare up after 52 weeks. Conclusions. ADA leads to CR and endoscopic improvement in biologically naïve CD cases. In addition, ectopic MUC5AC expression may be a predictive marker of flare up and endoscopic improvement in the intestines of CD patients. PMID:24829572
Barlow, A J; Francis-West, P H
1997-01-01
The facial primordia initially consist of buds of undifferentiated mesenchyme, which give rise to a variety of tissues including cartilage, muscle and nerve. These must be arranged in a precise spatial order for correct function. The signals that control facial outgrowth and patterning are largely unknown. The bone morphogenetic proteins Bmp-2 and Bmp-4 are expressed in discrete regions at the distal tips of the early facial primordia suggesting possible roles for BMP-2 and BMP-4 during chick facial development. We show that expression of Bmp-4 and Bmp-2 is correlated with the expression of Msx-1 and Msx-2 and that ectopic application of BMP-2 and BMP-4 can activate Msx-1 and Msx-2 gene expression in the developing facial primordia. We correlate this activation of gene expression with changes in skeletal development. For example, activation of Msx-1 gene expression across the distal tip of the mandibular primordium is associated with an extension of Fgf-4 expression in the epithelium and bifurcation of Meckel's cartilage. In the maxillary primordium, extension of the normal domain of Msx-1 gene expression is correlated with extended epithelial expression of shh and bifurcation of the palatine bone. We also show that application of BMP-2 can increase cell proliferation of the mandibular primordia. Our data suggest that BMP-2 and BMP-4 are part of a signalling cascade that controls outgrowth and patterning of the facial primordia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.
Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional programmore » encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation.« less
Treatment-related neuroendocrine prostate cancer resulting in Cushing's syndrome.
Ramalingam, Sundhar; Eisenberg, Adva; Foo, Wen Chi; Freedman, Jennifer; Armstrong, Andrew J; Moss, Larry G; Harrison, Michael R
2016-12-01
Here we present, to the best of our knowledge, the first case of a paraneoplastic Cushing's syndrome (hypercortisolism) resulting from treatment-related neuroendocrine prostate cancer - a highly aggressive and difficult disease to treat. A 51-year-old man was started on androgen deprivation therapy after presenting with metastatic prostate cancer, characterized by diffuse osseous metastasis. Shortly thereafter, he developed progressive disease with biopsy proven neuroendocrine prostate cancer as well as symptoms of increased skin pigmentation, hypokalemia, hypertension, hyperglycemia and profound weakness, consistent with ectopic Cushing's syndrome. Molecular analysis of the patient's tumor through RNA sequencing showed high expression of several genes including CHGA, ASCL1, CALCA, HES6, PCSK1, CALCB and INSM1 confirming his neuroendocrine phenotype; elevated POMC expression was found, supporting the diagnosis of ectopic Cushing's syndrome. © 2016 The Japanese Urological Association.
Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J
1998-11-09
Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.
The tripartite leader sequence is required for ectopic expression of HAdV-B and HAdV-E E3 CR1 genes.
Bair, Camden R; Kotha Lakshmi Narayan, Poornima; Kajon, Adriana E
2017-05-01
The unique repertoire of genes that characterizes the early region 3 (E3) of the different species of human adenovirus (HAdV) likely contributes to their distinct pathogenic traits. The function of many E3 CR1 proteins remains unknown possibly due to unidentified intrinsic properties that make them difficult to express ectopically. This study shows that the species HAdV-B- and HAdV-E-specific E3 CR1 genes can be expressed from vectors carrying the HAdV tripartite leader (TPL) sequence but not from traditional mammalian expression vectors. Insertion of the TPL sequence upstream of the HAdV-B and HAdV-E E3 CR1 open reading frames was sufficient to rescue protein expression from pCI-neo constructs in transfected 293T cells. The detection of higher levels of HAdV-B and HAdV-E E3 CR1 transcripts suggests that the TPL sequence may enhance gene expression at both the transcriptional and translational levels. Our findings will facilitate the characterization of additional AdV E3 proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H.; Morton, Derrick J.
Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, wemore » examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. - Highlights: • ID4 expression induces AR expression in PC3 cells, which generally lack AR. • ID4 expression increased apoptosis and decreased cell proliferation and invasion. • Overexpression of ID4 reduces tumor growth of subcutaneous xenografts in vivo. • ID4 induces p21 and FKBP51 expression- co-factors of AR tumor suppressor activity.« less
Marcellin, L; Santulli, P; Chouzenoux, S; Cerles, O; Nicco, C; Dousset, B; Pallardy, M; Kerdine-Römer, S; Just, P A; Chapron, C; Batteux, F
2017-09-01
The redox-sensitive nuclear factor erythroid-derived 2-like 2 (NRF2) controls endogenous antioxidant enzymes' transcription and protects against oxidative damage which is triggered by inflammation and known to favor progression of endometriosis. Glutamate Cysteine Ligase (GCL), a target gene of NRF2, is the first enzyme in the synthesis cascade of glutathione, an important endogenous antioxidant. Sixty-one patients, with thorough surgical examination of the abdominopelvic cavity, were recruited for the study: 31 with histologically-proven endometriosis and 30 disease-free women taken as controls. Expressions of NRF2 and GCL were investigated by quantitative RT-PCR and immunohistochemistry in eutopic and ectopic endometria from endometriosis-affected women and in endometrium of disease-free women. Ex vivo stromal and epithelial cells were extracted and purified from endometrial and endometriotic biopsies to explore expression of NRF2 and GCL in both stromal and epithelial compartments by western blot. Finally, in order to strengthen the role of NRF2 in endometriosis pathogenesis, we evaluated the drop of NRF2 expression in a mouse model of endometriosis using NRF2 knockout (NRF2 -/- ) mice. The mRNA levels of NRF2 and GCL were significantly lower in ectopic endometria of endometriosis-affected women compared to eutopic endometria of disease-free women. The immunohistochemical analysis confirmed the decreased expression of both NRF2 and GCL in ectopic endometriotic tissues compared to eutopic endometria of endometriosis-affected and disease-free women. Immunoblotting revealed a significant decreased of NRF2 and GCL expression in epithelial and stroma cells from ectopic lesions of endometriosis-affected women compared to eutopic endometria from controls. Using a murine model of endometriosis, NRF2 -/- implants were more fibrotic compared to wild-type with an increased weight and volume. These findings indicate that expression of the transcription factor NRF2 and its effector GCL are both profoundly deregulated in endometriotic lesions towards increased growth and fibrogenetic processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Compartmentalization of the somite and myogenesis in chick embryos are influenced by wnt expression.
Wagner, J; Schmidt, C; Nikowits, W; Christ, B
2000-12-01
Muscles of the body and bones of the axial skeleton derive from specialized regions of somites. Somite development is influenced by adjacent structures. In particular, the dorsal neural tube and the overlying ectoderm have been shown to be necessary for the induction of myogenic precursor cells in the dermomyotome. Members of the Wnt family of signaling molecules, which are expressed in the dorsal neural tube and the ectoderm, are postulated to be responsible for this process. It is shown here that ectopically implanted Wnt-1-, -3a-, and -4-expressing cells alter the process of somite compartmentalization in vivo. An enlarged dorsal compartment results from the implantation of Wnt-expressing cells ventrally between the neural tube/notochord and epithelial somites, at the expense of the ventral compartment, the sclerotome. Thus, ectopic Wnt expression is able to override the influence of ventralizing signals arising from notochord and floor plate. This shift of the border between the two compartments was identified by an increase in the domain of Pax-3 expression and a complete loss of Pax-1 expression in somites close to the ectopic Wnt signal. The expanded expression of MyoD and desmin provides evidence that it is the myotome which increases as a result of Wnt signaling. Paraxis expression is also drastically amplified after implantation of Wnt-expressing cells indicating that Wnts are involved in the formation and maintenance of somite epithelium and suggesting that Paraxis is activated through Wnt signaling pathways. Taken together these results suggest that ectopic Wnts disturb the normal balance of signaling molecules within the somite, resulting in an enhanced recruitment of somitic cells into the myogenic lineage. Copyright 2000 Academic Press.
Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.
2014-01-01
Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944
Shan, Jixiu; Örd, Daima; Örd, Tõnis; Kilberg, Michael S.
2009-01-01
Protein limitation in vivo or amino acid deprivation of cells in culture causes a signal transduction cascade consisting of activation of the kinase GCN2 (general control nonderepressible 2), phosphorylation of eukaryotic initiation factor 2, and increased synthesis of activating transcription factor (ATF) 4 by a translational control mechanism. In a self-limiting transcriptional program, ATF4 transiently activates a wide range of downstream target genes involved in transport, cellular metabolism, and other cell functions. Simultaneous activation of other signal transduction pathways by amino acid deprivation led to the question of whether or not the increased abundance of ATF4 alone was sufficient to trigger the transcriptional control mechanisms. Using 293 cells that ectopically express ATF4 in a tetracycline-inducible manner showed that ATF4 target genes were activated in the absence of amino acid deprivation. Ectopic expression of ATF4 alone resulted in effective recruitment of the general transcription machinery, but some reduction in histone modification was observed. These data document that ATF4 alone is sufficient to trigger the amino acid-responsive transcriptional control program. However, the absolute amount of ectopic ATF4 required to achieve the same degree of transcriptional activation observed after amino acid limitation was greater, suggesting that other factors may serve to enhance ATF4 function. PMID:19509279
Vogl, Thomas; Gebbie, Leigh; Palfreyman, Robin W; Speight, Robert
2018-03-15
Pichia pastoris (syn. Komagataella phaffii ) is one of the most common eukaryotic expression systems for heterologous protein production. Expression cassettes are typically integrated in the genome to obtain stable expression strains. In contrast to Saccharomyces cerevisiae , where short overhangs are sufficient to target highly specific integration, long overhangs are more efficient in P. pastoris and ectopic integration of foreign DNA can occur. Here, we aimed to elucidate the influence of ectopic integration by high-throughput screening of >700 transformants and whole-genome sequencing of 27 transformants. Different vector designs and linearization approaches were used to mimic the most common integration events targeted in P. pastoris Fluorescence of an enhanced green fluorescent protein (eGFP) reporter protein was highly uniform among transformants when the expression cassettes were correctly integrated in the targeted locus. Surprisingly, most nonspecifically integrated transformants showed highly uniform expression that was comparable to specific integration, suggesting that nonspecific integration does not necessarily influence expression. However, a few clones (<10%) harboring ectopically integrated cassettes showed a greater variation spanning a 25-fold range, surpassing specifically integrated reference strains up to 6-fold. High-expression strains showed a correlation between increased gene copy numbers and high reporter protein fluorescence levels. Our results suggest that for comparing expression levels between strains, the integration locus can be neglected as long as a sufficient numbers of transformed strains are compared. For expression optimization of highly expressible proteins, increasing copy number appears to be the dominant positive influence rather than the integration locus, genomic rearrangements, deletions, or single-nucleotide polymorphisms (SNPs). IMPORTANCE Yeasts are commonly used as biotechnological production hosts for proteins and metabolites. In the yeast Saccharomyces cerevisiae , expression cassettes carrying foreign genes integrate highly specifically at the targeted sites in the genome. In contrast, cassettes often integrate at random genomic positions in nonconventional yeasts, such as Pichia pastoris (syn. Komagataella phaffii ). Hence, cells from the same transformation event often behave differently, with significant clonal variation necessitating the screening of large numbers of strains. The importance of this study is that we systematically investigated the influence of integration events in more than 700 strains. Our findings provide novel insight into clonal variation in P. pastoris and, thus, how to avoid pitfalls and obtain reliable results. The underlying mechanisms may also play a role in other yeasts and hence could be generally relevant for recombinant yeast protein production strains. Copyright © 2018 American Society for Microbiology.
Goteri, Gaia; Ciavattini, Andrea; Lucarini, Guendalina; Montik, Nina; Filosa, Alessandra; Stramazzotti, Daniela; Biagini, Graziella; Tranquilli, Andrea Luigi
2006-09-01
To evaluate Cdc42 expression in eutopic and ectopic endometrial tissue in patients with adenomyosis and ovarian endometriotic cysts compared with patients without endometriosis. Experimental retrospective study. University hospital. Twenty-four patients with adenomyosis, 19 with ovarian endometriomata, and 9 with fibroids or benign ovarian cysts. Hysterectomy and bilateral oophorectomy. Immunostaining for Cdc42 of eutopic and ectopic endometrial tissues. In eutopic endometrium of patients with adenomyosis and with fibroids or benign ovarian cysts, the intensity of Cdc42 immunostaining was weaker, especially in the specialized stromal cells, compared with cases with ovarian endometriosis (chi(2) test, P=.003). Expression of Cdc42 in eutopic endometrium showed a trend to be higher in the secretory than in the proliferative phase and in patients with ovarian endometriotic cysts compared with patients with adenomyosis (unpaired t test, P=.005), especially in the proliferative phase. An abnormally high expression of Cdc42 in eutopic endometrium in the secretory phase may contribute to the development of ovarian endometriosis, but it does not seem to be involved in the pathogenesis of adenomyosis.
Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells.
Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y
2009-12-15
Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian cancer cells express fVII transcripts under normoxia and that this transcription is inducible under hypoxia. These findings led us to hypothesise that ovarian cancer cells are intrinsically associated with TF-fVIIa coagulation activity, which could result in thrombosis. In this study, we examined whether ectopically expressed fVII could cause thrombosis by means of immunohistochemistry, RT-PCR, western blotting and flow cytometry. Ectopic fVII expression occurs frequently in ovarian cancers, particularly in clear cell carcinoma. We further showed that ovarian cancer cells express TF-fVIIa on the cell surface under normoxia and that this procoagulant activity is enhanced by hypoxic stimuli. Moreover, we showed that ovarian cancer cells secrete microparticles (MPs) with TF-fVIIa activity. Production of this procoagulant secretion is enhanced under hypoxia. These results raise the possibility that cancer cell-derived TF-fVIIa could cause thrombotic events in ovarian cancer patients.
Yan, Y L; Jowett, T; Postlethwait, J H
1998-12-01
To investigate pattern formation in the vertebrate hindbrain, we isolated a full length hoxb2 cDNA clone from zebrafish. In a gene phylogeny, zebrafish hoxb2 clusters with human HOXB2, and it maps on linkage group 3 along with several other loci whose orthologues are syntenic with human HOXB2. In the hindbrain, hoxb2 is expressed at high levels in rhombomere 3 (r3), lower levels in r4, still lower in r5, and at undetectable levels in r6. In r7, r8, and the rostral spinal cord, hoxb2 is expressed at a lower level than in r5. Lateral cells appearing to emanate from r4 express both hoxb2 and dlx2, suggesting that they are neural crest. Overexpression of hoxb2 by mRNA injections into early cleavage stage embryos resulted in abnormal morphogenesis of the midbrain and rostral hindbrain, abnormal patterning in r4, fusion of cartilage elements arising from pharyngeal arches 1 and 2, and ectopic expression of krx20 and valentino (but not pax2, rtk1, or hoxb1) in the rostral hindbrain, midbrain, and, surprisingly, the eye. Treatments with retinoic acid produced a phenotype similar to that of ectopic hoxb2 expression, including ectopic krx20 (but not valentino) expression in the eye, and fusion of cartilages from pharyngeal arches 1 and 2. The results suggest that hoxb2 plays an important role in the patterning of hindbrain and pharyngeal arches in the zebrafish.
Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis
Bombardieri, Michele; Greenhill, Claire J.; McLeod, Louise; Nerviani, Alessandra; Rocher-Ros, Vidalba; Cardus, Anna; Williams, Anwen S.; Pitzalis, Costantino; Jenkins, Brendan J.
2015-01-01
Ectopic lymphoid-like structures (ELSs) reminiscent of secondary lymphoid organs often develop at sites of chronic inflammation where they contribute to immune-mediated pathology. Through evaluation of synovial tissues from rheumatoid arthritis (RA) patients, we now show that low interleukin-27 (IL-27) expression corresponds with an increased incidence of ELS and gene signatures associated with their development and activity. The presence of synovial ELS was also noted in mice deficient in the IL-27 receptor (IL-27R) after the onset of inflammatory arthritis. Here, pathology was associated with increased synovial expression of pro-inflammatory cytokines, homeostatic chemokines, and transcriptional regulators linked with lymphoid neogenesis. In both clinical and experimental RA, synovial ELS coincided with the heightened local expression of cytokines and transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, and included podoplanin-expressing T cells within lymphoid aggregates. IL-27 inhibited the differentiation of podoplanin-expressing Th17 cells, and an increased number of these cells were observed in IL-27R–deficient mice with inflammatory arthritis. Thus, IL-27 appears to negatively regulate ELS development in RA through control of effector T cells. These studies open new opportunities for patient stratification and treatment. PMID:26417004
Millane, R Cathriona; Kanska, Justyna; Duffy, David J; Seoighe, Cathal; Cunningham, Stephen; Plickert, Günter; Frank, Uri
2011-06-01
The evolutionary origin of stem cell pluripotency is an unresolved question. In mammals, pluripotency is limited to early embryos and is induced and maintained by a small number of key transcription factors, of which the POU domain protein Oct4 is considered central. Clonal invertebrates, by contrast, possess pluripotent stem cells throughout their life, but the molecular mechanisms that control their pluripotency are poorly defined. To address this problem, we analyzed the expression pattern and function of Polynem (Pln), a POU domain gene from the marine cnidarian Hydractinia echinata. We show that Pln is expressed in the embryo and adult stem cells of the animal and that ectopic expression in epithelial cells induces stem cell neoplasms and loss of epithelial tissue. Neoplasm cells downregulated the transgene but expressed the endogenous Pln gene and also Nanos, Vasa, Piwi and Myc, which are all known cnidarian stem cell markers. Retinoic acid treatment caused downregulation of Pln and the differentiation of neoplasm cells to neurosensory and epithelial cells. Pln downregulation by RNAi led to differentiation. Collectively, our results suggest an ancient role of POU proteins as key regulators of animal stem cells.
Maconochie, M K; Nonchev, S; Studer, M; Chan, S K; Pöpperl, H; Sham, M H; Mann, R S; Krumlauf, R
1997-07-15
Correct regulation of the segment-restricted patterns of Hox gene expression is essential for proper patterning of the vertebrate hindbrain. We have examined the molecular basis of restricted expression of Hoxb2 in rhombomere 4 (r4), by using deletion analysis in transgenic mice to identify an r4 enhancer from the mouse gene. A bipartite Hox/Pbx binding motif is located within this enhancer, and in vitro DNA binding experiments showed that the vertebrate labial-related protein Hoxb1 will cooperatively bind to this site in a Pbx/Exd-dependent manner. The Hoxb2 r4 enhancer can be transactivated in vivo by the ectopic expression of Hoxb1, Hoxa1, and Drosophila labial in transgenic mice. In contrast, ectopic Hoxb2 and Hoxb4 are unable to induce expression, indicating that in vivo this enhancer preferentially responds to labial family members. Mutational analysis demonstrated that the bipartite Hox/Pbx motif is required for r4 enhancer activity and the responses to retinoids and ectopic Hox expression. Furthermore, three copies of the Hoxb2 motif are sufficient to mediate r4 expression in transgenic mouse embryos and a labial pattern in Drosophila embryos. This reporter expression in Drosophila embryos is dependent upon endogenous labial and exd, suggesting that the ability of this Hox/Pbx site to interact with labial-related proteins has been evolutionarily conserved. The endogenous Hoxb2 gene is no longer upregulated in r4 in Hoxb1 homozygous mutant embryos. On the basis of these experiments we conclude that the r4-restricted domain of Hoxb2 in the hindbrain is the result of a direct cross-regulatory interaction by Hoxb1 involving vertebrate Pbx proteins as cofactors. This suggests that part of the functional role of Hoxb1 in maintaining r4 identity may be mediated by the Hoxb2 gene.
The role of Sox6 in zebrafish muscle fiber type specification.
Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W
2015-01-01
The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog.
Increased expression of resistin in ectopic endometrial tissue of women with endometriosis.
Oh, Yoon Kyung; Ha, Young Ran; Yi, Kyong Wook; Park, Hyun Tae; Shin, Jung-Ho; Kim, Tak; Hur, Jun-Young
2017-11-01
Inflammation is a key process in the establishment and progression of endometriosis. Resistin, an adipocytokine, has biological properties linked to immunologic functions, but its role in endometriosis is unclear. Resistin gene expression was examined in eutopic and ectopic endometrial tissues from women with (n=25) or without (n=25) endometriosis. Resistin mRNA and protein levels were determined in endometrial tissue using quantitative real-time reverse transcription PCR and Western blotting, following adipokine profiling arrays. Resistin protein was detected in human endometrial tissues using an adipokine array test. Resistin mRNA and protein levels were significantly higher in ectopic endometrial tissue of patients with endometriosis than in normal eutopic endometrial tissue. Our results indicate that resistin is differentially expressed in endometrial tissues from women with endometriosis and imply a role for resistin in endometriosis-associated pelvic inflammation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Decoy receptor 3 promotes cell adhesion and enhances endometriosis development.
Tsai, Hsiao-Wen; Huang, Ming-Ting; Wang, Peng-Hui; Huang, Ben-Shian; Chen, Yi-Jen; Hsieh, Shie-Liang
2018-02-01
Endometriosis is a multifactorial inflammatory disease with persistent activation of the nuclear factor-κB (NF-κB) signalling pathway. Aberrant adhesion of endometrium is the essential step in the progression of endometriosis, but the molecular mechanism of ectopic growth of endometrium is still unclear. Decoy receptor 3 (DcR3)/TNFRSF6B, a pleiotropic immunomodulator regulated by oestrogen, is able to activate focal adhesion kinase to promote cell adhesion. We found that DcR3 is upregulated in human ectopic endometrial cells via activation of the Akt-NF-κB signalling pathway, and its expression level correlates positively with that of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and homing cell adhesion molecule (HCAM; CD44). In a multivariate regression model, DcR3 expression level was the most significant parameter associated with endometriosis severity. Knockdown of DcR3 not only downregulated the expression of ICAM-1 and HCAM, but also reduced cell adhesion and migration. In vivo investigation further showed that DcR3 promoted the growth and spread of endometrium, whereas knockdown of DcR3 by lentivirus-delivered short hairpin RNA inhibited ectopic adhesion of endometrium and abrogated endometriosis progression. These observations are in support of DcR3 playing a critical role in the pathogenesis of endometriosis, and the inhibition of DcR3 expression being a promising approach for the treatment of endometriosis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Expression and regulation of estrogen-converting enzymes in ectopic human endometrial tissue.
Fechner, Sabine; Husen, Bettina; Thole, Hubert; Schmidt, Markus; Gashaw, Isabella; Kimmig, Rainer; Winterhager, Elke; Grümmer, Ruth
2007-10-01
To investigate the regulation of estrogen-converting enzymes in human ectopic endometrial tissue. Animal study. Academic medical center. Sixty female nude mice with implanted human endometrial tissue. Twenty-two premenopausal women undergoing endometrial biopsy or hysterectomy. Human endometrial tissue was implanted into the peritoneal cavity of nude mice, and the effect of therapeutic drugs on transcription of steroid receptors and estrogen-converting enzymes was analyzed. Transcript levels of steroid hormone receptors, 17beta-hydroxysteroid dehydrogenase type 1 and 2, aromatase, and steroid sulfatase as well as proliferation rate were analyzed in the human ectopic endometrial tissue. Steroid receptors and estrogen-converting enzymes were expressed in the ectopic human endometrial fragments. Application of medroxyprogesterone acetate, dydrogesterone, danazol, and the aromatase inhibitor finrozole significantly inhibited aromatase transcription. In addition, danazol caused a significant decrease in transcription of steroid sulfatase, and finrozole, of 17beta-hydroxysteroid dehydrogenase type 1 in parallel to a decrease in proliferation rate in the ectopic human endometrial tissue. Pharmacological regulation of transcription of estrogen-converting enzymes in human endometrium cultured in nude mice may help to develop new therapeutic concepts based on local regulation of estrogen metabolism in endometriosis.
Vercruyssen, Liesbeth; Gonzalez, Nathalie; Werner, Tomáš; Schmülling, Thomas; Inzé, Dirk
2011-01-01
Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level. PMID:21205622
High Expression of High-Mobility Group Box 1 in Menstrual Blood: Implications for Endometriosis.
Shimizu, Keiko; Kamada, Yasuhiko; Sakamoto, Ai; Matsuda, Miwa; Nakatsuka, Mikiya; Hiramatsu, Yuji
2017-11-01
Endometriosis is a benign gynecologic disease characterized by the presence of ectopic endometrium and associated with inflammation and immune abnormalities. However, the molecular basis for endometriosis is not well understood. To address this issue, the present study examined the expression of high-mobility group box (HMGB) 1 in menstrual blood to investigate its role in the ectopic growth of human endometriotic stromal cells (ESCs). A total of 139 patients were enrolled in this study; 84 had endometriosis and 55 were nonendometriotic gynecological patients (control). The HMGB1 levels in various fluids were measured by enzyme-linked immunosorbent assay. Expression of receptor for advanced glycation end products (RAGE) in eutopic and ectopic endometrium was assessed by immunohistochemistry, and RAGE and vascular endothelial growth factor ( VEGF) messenger RNA expression in HMGB1- and lipopolysaccharide (LPS)-treated ESCs was evaluated by real-time polymerase chain reaction. The HMGB1 concentration was higher in menstrual blood than in serum or peritoneal fluid ( P < .001 for both). RAGE was expressed in both normal and ectopic endometrium. Administration of 1000 ng/mL HMGB1 or coadministration of 100 ng/mL HMGB1 and 100 ng/mL LPS induced VEGF production in ESCs relative to the control ( P < .05). These results suggest that menstrual fluid has naturally high levels of HMGB1 and may promote endometriosis following retrograde menstruation when complexed with other factors such as LPS by inducing inflammation and angiogenesis.
Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A
2014-08-01
Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.
USDA-ARS?s Scientific Manuscript database
Chronic low-grade inflammation is associated with obesity and diabetes. However, what causes and mediates chronic inflammation in metabolic disorders is not well understood. Tolllike receptor 4 (TLR4) mediates both infection-induced and sterile inflammation by recognizing pathogen-associated molecul...
Davila, Monica; Jhala, Darshana; Ghosh, Debashis; Grizzle, William E; Chakrabarti, Ratna
2007-06-08
LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors. Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis. Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.
Tong, Anli; Xia, Weibo; Qi, Fang; Jin, Zimeng; Yang, Di; Zhang, Zhuhua; Li, Fang; Xing, Xiaoping; Lian, Xiaolan
2013-09-01
Ectopic thyrotropin (TSH)-secreting tumors are extremely rare. To our knowledge, only three cases have previously been reported so far, but the tumors were not studied ultrastructurally and in vitro. We present a case that was extensively examined to gain deeper insights in terms of the histopathological features and hormonal secretion profile of the tumor. A 49-year-old female complained of nasal obstruction for 15 years and thyrotoxicosis for one and a half years. Except for a high basal TSH with concomitantly elevated free tri-iodothyronine (FT3) and free thyroxine (FT4) levels, her pituitary hormone profile yielded normal results. Magnetic resonance imaging revealed a 2 cm × 2 cm mass in the nasopharynx, which showed an increased tracer uptake on octreotide scintigraphy. Preoperative treatment with octreotide effectively reduced serum TSH, FT3, and FT4 to normal levels. The mass was endoscopically removed via an endonasal approach. Immunophenotyping and hormone determination of cultured cells confirmed that the mass was a plurihormonal TSH-/growth hormone (GH)-/prolactin (PRL)-producing adenoma. Co-expression of TSH and GH was found in most cells. Electron microscopy showed that the adenoma was formed by a single cell type, with secretory granules of small size. In vitro studies demonstrated that octreotide reduced both TSH and GH secretion. We report an ectopic TSH-secreting tumor, which had plurihormonal secretion in vitro, including TSH, GH, and PRL. Histologically, it mimicked a TSH-secreting pituitary adenoma. Octreotide was useful in the diagnosis and treatment of this ectopic TSH-secreting tumor. Ectopic TSH-secreting tumors are extremely rare. In terms of hormone secretion profile, histological characteristics, and response to octreotide, they are similar to pituitary TSH-secreting adenomas, suggesting that they are of identical cell origin.
Proestling, Katharina; Birner, Peter; Gamperl, Susanne; Nirtl, Nadine; Marton, Erika; Yerlikaya, Gülen; Wenzl, Rene; Streubel, Berthold; Husslein, Heinrich
2015-07-22
Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose polarity and cell-to-cell contacts and acquire the migratory and invasive abilities of mesenchymal cells. These abilities are thought to be prerequisites for the establishment of endometriotic lesions. A hallmark of EMT is the functional loss of E-cadherin (CDH1) expression in epithelial cells. TWIST1, a transcription factor that represses E-cadherin transcription, is among the EMT inducers. SNAIL, a zinc-finger transcription factor, and its close relative SLUG have similar properties to TWIST1 and are thus also EMT inducers. MYC, which is upregulated by estrogens in the uterus by an estrogen response cis-acting element (ERE) in its promoter, is associated with proliferation in endometriosis. The role of EMT and proliferation in the pathogenesis of endometriosis was evaluated by analyzing TWIST1, CDH1 and MYC expression. CDH1, TWIST1, SNAIL and SLUG mRNA expression was analyzed by qRT-PCR from 47 controls and 74 patients with endometriosis. Approximately 42 ectopic and 62 eutopic endometrial tissues, of which 30 were matched samples, were collected during the same surgical procedure. We evaluated TWIST1 and MYC protein expression by immunohistochemistry (IHC) in the epithelial and stromal tissue of 69 eutopic and 90 ectopic endometrium samples, of which 49 matched samples were analyzed from the same patient. Concordant expression of TWIST1/SNAIL/SLUG and CDH1 but also of TWIST1 and MYC was analyzed. We found that TWIST1, SNAIL and SLUG are overexpressed (p < 0.001, p = 0.016 and p < 0.001) in endometriosis, while CDH1 expression was concordantly reduced in these samples (p < 0.001). Similar to TWIST1, the epithelial expression of MYC was also significantly enhanced in ectopic endometrium compared to eutopic tissues (p = 0.008). We found exclusive expression of either TWIST1 or MYC in the same samples (p = 0.003). Epithelial TWIST1 is overexpressed in endometriosis and may contribute to the formation of endometriotic lesions by inducing epithelial to mesenchymal transition, as CDH1 was reduced in ectopic lesions. We found exclusive expression of either TWIST1 or MYC in the same samples, indicating that EMT and proliferation contribute independently of each other to the formation of endometriotic lesions.
Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana.
Abraham-Juárez, María Jazmín; Martínez-Hernández, Aída; Leyva-González, Marco Antonio; Herrera-Estrella, Luis; Simpson, June
2010-09-01
Bulbil formation in Agave tequilana was analysed with the objective of understanding this phenomenon at the molecular and cellular levels. Bulbils formed 14-45 d after induction and were associated with rearrangements in tissue structure and accelerated cell multiplication. Changes at the cellular level during bulbil development were documented by histological analysis. In addition, several cDNA libraries produced from different stages of bulbil development were generated and partially sequenced. Sequence analysis led to the identification of candidate genes potentially involved in the initiation and development of bulbils in Agave, including two putative class I KNOX genes. Real-time reverse transcription-PCR and in situ hybridization revealed that expression of the putative Agave KNOXI genes occurs at bulbil initiation and specifically in tissue where meristems will develop. Functional analysis of Agave KNOXI genes in Arabidopsis thaliana showed the characteristic lobed phenotype of KNOXI ectopic expression in leaves, although a slightly different phenotype was observed for each of the two Agave genes. An Arabidopsis KNOXI (knat1) mutant line (CS30) was successfully complemented with one of the Agave KNOX genes and partially complemented by the other. Analysis of the expression of the endogenous Arabidopsis genes KNAT1, KNAT6, and AS1 in the transformed lines ectopically expressing or complemented by the Agave KNOX genes again showed different regulatory patterns for each Agave gene. These results show that Agave KNOX genes are functionally similar to class I KNOX genes and suggest that spatial and temporal control of their expression is essential during bulbil formation in A. tequilana.
Chaudhary, S; Madhukrishna, B; Adhya, A K; Keshari, S; Mishra, S K
2016-04-18
Caspase 7 (CASP7) expression has important function during cell cycle progression and cell growth in certain cancer cells and is also involved in the development and differentiation of dental tissues. However, the function of CASP7 in breast cancer cells is unclear. The aim of this study was to analyze the expression of CASP7 in breast carcinoma patients and determine the role of CASP7 in regulating tumorigenicity in breast cancer cells. In this study, we show that the CASP7 expression is high in breast carcinoma tissues compared with normal counterpart. The ectopic expression of CASP7 is significantly associated with ERα expression status and persistently elevated in different stages of the breast tumor grades. High level of CASP7 expression showed better prognosis in breast cancer patients with systemic endocrine therapy as observed from Kaplan-Meier analysis. S3 and S4, estrogen responsive element (ERE) in the CASP7 promoter, is important for estrogen-ERα-mediated CASP7 overexpression. Increased recruitment of p300, acetylated H3 and pol II in the ERE region of CASP7 promoter is observed after hormone stimulation. Ectopic expression of CASP7 in breast cancer cells results in cell growth and proliferation inhibition via p21(Cip) reduction, whereas small interfering RNA (siRNA) mediated reduction of CASP7 rescued p21(Cip) levels. We also show that pro- and active forms of CASP7 is located in the nucleus apart from cytoplasmic region of breast cancer cells. The proliferation and growth of breast cancer cells is significantly reduced by broad-spectrum peptide inhibitors and siRNA of CASP7. Taken together, our findings show that CASP7 is aberrantly expressed in breast cancer and contributes to cell growth and proliferation by downregulating p21(Cip) protein, suggesting that targeting CASP7-positive breast cancer could be one of the potential therapeutic strategies.
McDonald, Laura; Ferrari, Nicola; Terry, Anne; Bell, Margaret; Mohammed, Zahra M.; Orange, Clare; Jenkins, Alma; Muller, William J.; Gusterson, Barry A.; Neil, James C.; Edwards, Joanne; Morris, Joanna S.; Cameron, Ewan R.; Blyth, Karen
2014-01-01
RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell lines and its role in primary breast cancer has not been resolved. Using a human tumour tissue microarray, we show that high RUNX2 expression is significantly associated with oestrogen receptor (ER)/progesterone receptor (PR)/HER2-negative breast cancers and that patients with high RUNX2 expression have a poorer survival rate than those with negative or low expression. We confirm RUNX2 as a gene that has a potentially important functional role in triple-negative breast cancer. To investigate the role of this gene in breast cancer, we made a transgenic model in which Runx2 is specifically expressed in murine mammary epithelium under the control of the mouse mammary tumour virus (MMTV) promoter. We show that ectopic Runx2 perturbs normal development in pubertal and lactating animals, delaying ductal elongation and inhibiting lobular alveolar differentiation. We also show that the Runx2 transgene elicits age-related, pre-neoplastic changes in the mammary epithelium of older transgenic animals, suggesting that elevated RUNX2 expression renders such tissue more susceptible to oncogenic changes and providing further evidence that this gene might have an important, context-dependent role in breast cancer. PMID:24626992
Circular RNA HIPK3 promotes gallbladder cancer cell growth by sponging microRNA-124.
Kai, Ding; Yannian, Liao; Yitian, Chen; Dinghao, Gong; Xin, Zhao; Wu, Ji
2018-06-18
Recent studies have implied that circHIPK3, an abundant circular RNA (circRNA), participates in tumorigenesis and cancer progression. Its expression and potential functions in human gallbladder cancer were examined in this study. We show that circHIPK3 is upregulated in human gallbladder cancer cells. But its level is low in gallbladder epithelial cells. circHIPK3 silencing by targeted siRNA potently inhibited survival and proliferation of established and primary human gallbladder cancer cells, while inducing cell apoptosis. Conversely, ectopic over-expression of circHIPK3 can further promote cancer cell proliferation. In gallbladder cancer cells, circHIPK3 sponged the tumor-suppressive microRNA-124 (miR-124) to sequester and inhibit its activity, thereby leading to increased expression of miR-124 targets, including ROCK1 (rho-associated protein kinase 1) and CDK6 (rho-associated protein kinase). Ectopic over-expression of miR-124 b y a lentiviral vector mimicked and abolished actions by circHIPK3 siRNA in gallbladder cancer cells. At last, we show that circHIPK3 is upregulated in human gallbladder cancer tissues, which is correlated with miR-124 downregulation and ROCK1-CDK6 upregulation. Together, we conclude that circHIPK3 promotes gallbladder cancer cell growth possibly by sponging miR-124. The over-expressed circHIPK3 could be a novel therapeutic target and diagnosis marker of human gallbladder cancer. Copyright © 2018. Published by Elsevier Inc.
Huang, Ying; Zhang, Qiong; Song, Ning-Ning; Zhang, Lei; Sun, Yu-Ling; Hu, Ling; Chen, Jia-Ying; Zhu, Weidong; Li, Jue; Ding, Yu-Qiang
2016-01-15
The cerebellum is responsible for coordinating motor functions and has a unique laminated architecture. Purkinje cells are inhibitory neurons and represent the only output from the cerebellar cortex. Tyrosine hydroxylase (TH) is the key enzyme for the synthesis of catecholamines, including dopamine and noradrenaline, and it is normally not expressed in cerebellar neurons. We report here that the low-density lipoprotein receptors (Lrp) 5 and 6, Wnt co-receptors, are required for the development of the cerebellum and for suppressing ectopic TH expression in Purkinje cells. Simultaneous inactivation of Lrp 5 and 6 by Nestin-Cre results in defective lamination and foliation of the cerebellum during postnatal development. Surprisingly, TH is ectopically expressed by Purkinje cells, although they still keep its other neurochemical characteristics. These phenotypes are also observed in the cerebellum of GFAP-Cre;β-catenin(flox/flox) mice, and AAV2-Cre-mediated gene deletion leads to ectopic TH expression in Purkinje cells of β-catenin(flox/flox) mice as well. Our results revealed a new role of the canonical Lrp5/6-β-catenin pathway in regulating the morphogenesis of the cerebellum during postnatal development.
Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H.; Pirvola, Ulla
2011-01-01
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27Kip1 and p21Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells. PMID:22073316
Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H; Pirvola, Ulla
2011-01-01
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.
NASA Technical Reports Server (NTRS)
Nolo, R.; Abbott, L. A.; Bellen, H. J.
2000-01-01
The senseless (sens) gene is required for proper development of most cell types of the embryonic and adult peripheral nervous system (PNS) of Drosophila. Sens is a nuclear protein with four Zn fingers that is expressed and required in the sensory organ precursors (SOP) for proper proneural gene expression. Ectopic expression of Sens in many ectodermal cells causes induction of PNS external sensory organ formation and is able to recreate an ectopic proneural field. Hence, sens is both necessary and sufficient for PNS development. Our data indicate that proneural genes activate sens expression. Sens is then in turn required to further activate and maintain proneural gene expression. This feedback mechanism is essential for selective enhancement and maintenance of proneural gene expression in the SOPs.
Singh, Akanksha; Khurana, Paramjit
2017-09-28
Somatic embryogenesis receptor kinases (SERKs) belong to a small gene family of receptor-like kinases involved in signal transduction. A total of 54 genes were shortlisted from the wheat genome survey sequence of which 5 were classified as SERKs and 49 were identified as SERK-like (SERLs). Tissue- specific expression of TaSERKs at major developmental stages of wheat corroborates their indispensable role during somatic and zygotic embryogenesis. TaSERK transcripts show inherent differences in their hormonal sensitivities, i.e. TaSERK2 and TaSERK3 elicits auxin- specific responses while TaSERK1, 4 and 5 were more specific towards BR-mediated regulation. The ectopic expression of TaSERK1, 2, 3, 4 and 5 in Arabidopsis led to enhanced plant height, larger silique size and increased seed yield. Zygotic embryogenesis specific genes showed a differential pattern in TaSERK Arabidopsis transgenics specifically in the silique tissues. Elongated hypocotyls and enhanced root growth were observed in the overexpression transgenic lines of all five TaSERKs. The inhibitory action of auxin and brassinosteroid in all the TaSERK transgenic lines indicates their role in regulating root development. The results obtained imply redundant functions of TaSERKs in maintaining plant growth and development.
Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma
Stringer, Brett W.; Bunt, Jens; Day, Bryan W.; Barry, Guy; Jamieson, Paul R.; Ensbey, Kathleen S.; Bruce, Zara C.; Goasdoué, Kate; Vidal, Hélène; Charmsaz, Sara; Smith, Fiona M.; Cooper, Leanne T.; Piper, Michael
2016-01-01
Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects. PMID:27083054
Bechtold, Till E.; Saunders, Cheri; Decker, Rebekah S.; Um, Hyo-Bin; Cottingham, Naiga; Salhab, Imad; Kurio, Naito; Billings, Paul C.; Pacifici, Maurizio; Nah, Hyun-Duck; Koyama, Eiki
2016-01-01
The temporomandibular joint (TMJ) is a diarthrodial joint that relies on lubricants for frictionless movement and long-term function. It remains unclear what temporal and causal relationships may exist between compromised lubrication and onset and progression of TMJ disease. Here we report that Proteoglycan 4 (Prg4)-null TMJs exhibit irreversible osteoarthritis-like changes over time and are linked to formation of ectopic mineralized tissues and osteophytes in articular disc, mandibular condyle and glenoid fossa. In the presumptive layer of mutant glenoid fossa’s articulating surface, numerous chondrogenic cells and/or chondrocytes emerged ectopically within the type I collagen-expressing cell population, underwent endochondral bone formation accompanied by enhanced Ihh expression, became entrapped into temporal bone mineralized matrix, and thereby elicited excessive chondroid bone formation. As the osteophytes grew, the roof of the glenoid fossa/eminence became significantly thicker and flatter, resulting in loss of its characteristic concave shape for accommodation of condyle and disc. Concurrently, the condyles became flatter and larger and exhibited ectopic bone along their neck, likely supporting the enlarged condylar heads. Articular discs lost their concave configuration, and ectopic cartilage developed and articulated with osteophytes. In glenoid fossa cells in culture, hedgehog signaling stimulated chondrocyte maturation and mineralization including alkaline phosphatase, while treatment with hedgehog inhibitor HhAntag prevented such maturation process. In sum, our data indicate that Prg4 is needed for TMJ integrity and long-term postnatal function. In its absence, progenitor cells near presumptive articular layer and disc undergo ectopic chondrogenesis and generate ectopic cartilage, possibly driven by aberrant activation of Hh signaling. The data suggest also that the Prg4-null mice represent a useful model to study TMJ osteoarthritis-like degeneration and clarify its pathogenesis. PMID:26945615
Romaniuk, Maria Albertina; Frasch, Alberto Carlos; Cassola, Alejandro
2018-06-01
Trypanosomes, protozoan parasites of medical importance, essentially rely on post-transcriptional mechanisms to regulate gene expression in insect vectors and vertebrate hosts. RNA binding proteins (RBPs) that associate to the 3'-UTR of mature mRNAs are thought to orchestrate master developmental programs for these processes to happen. Yet, the molecular mechanisms by which differentiation occurs remain largely unexplored in these human pathogens. Here, we show that ectopic inducible expression of the RBP TcUBP1 promotes the beginning of the differentiation process from non-infective epimastigotes to infective metacyclic trypomastigotes in Trypanosoma cruzi. In early-log epimastigotes TcUBP1 promoted a drop-like phenotype, which is characterized by the presence of metacyclogenesis hallmarks, namely repositioning of the kinetoplast, the expression of an infective-stage virulence factor such as trans-sialidase, increased resistance to lysis by human complement and growth arrest. Furthermore, TcUBP1-ectopic expression in non-infective late-log epimastigotes promoted full development into metacyclic trypomastigotes. TcUBP1-derived metacyclic trypomastigotes were infective in cultured cells, and developed normally into amastigotes in the cytoplasm. By artificial in vivo tethering of TcUBP1 to the 3' untranslated region of a reporter mRNA we were able to determine that translation of the reporter was reduced by 8-fold, while its mRNA abundance was not significantly compromised. Inducible ectopic expression of TcUBP1 confirmed its role as a translational repressor, revealing significant reduction in the translation rate of multiple proteins, a reduction of polysomes, and promoting the formation of mRNA granules. Expression of TcUBP1 truncated forms revealed the requirement of both N and C-terminal glutamine-rich low complexity sequences for the development of the drop-like phenotype in early-log epimastigotes. We propose that a rise in TcUBP1 levels, in synchrony with nutritional deficiency, can promote the differentiation of T. cruzi epimastigotes into infective metacyclic trypomastigotes.
Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F
2013-01-01
Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies.
Jing, Danlong; Xia, Yan; Chen, Faju; Wang, Zhi; Zhang, Shougong; Wang, Junhui
2015-02-01
PISTILLATA (PI) plays crucial roles in Arabidopsis flower development by specifying petal and stamen identities. To investigate the molecular mechanisms underlying organ development of woody angiosperm in Catalpa, we isolated and identified a PI homologue, referred to as CabuPI (C. bungei PISTILLATA), from two genetically cognate C. bungei (Bignoniaceae) bearing single and double flowers. Sequence and phylogenetic analyses revealed that the gene is closest related to the eudicot PI homologues. Moreover, a highly conserved PI-motif is found in the C-terminal regions of CabuPI. Semi-quantitative and quantitative real time PCR analyses showed that the expression of CabuPI was restricted to petals and stamens. However, CabuPI expression in the petals and stamens persisted throughout all floral development stages, but the expression levels were different. In 35S::CabuPI transgenic homozygous pi-1 mutant Arabidopsis, the second and the third whorl floral organs produced normal petals and a different number of stamens, respectively. Furthermore, ectopic expression of the CabuPI in transgenic wild-type or heterozygote pi-1 mutant Arabidopsis caused the first whorl sepal partially converted into a petal-like structure. These results clearly reveal the functional conservation of PI homologues between C. bungei and Arabidopsis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Inflammatory and age-related pathologies in mice with ectopic expression of human PARP-1.
Mangerich, Aswin; Herbach, Nadja; Hanf, Benjamin; Fischbach, Arthur; Popp, Oliver; Moreno-Villanueva, María; Bruns, Oliver T; Bürkle, Alexander
2010-06-01
Poly(ADP-ribose) polymerase-1 (PARP-1) is a sensor for DNA strand breaks and some unusual DNA structures and catalyzes poly(ADP-ribosyl)ation of nuclear proteins with NAD(+) serving as substrate. PARP-1 is involved in the regulation of genomic integrity, transcription, inflammation, and cell death. Due to its versatile role, PARP-1 is discussed both as a longevity factor and as an aging-promoting factor. Recently, we generated a mouse model with ectopic integration of full-length hPARP-1 [Mangerich, A., Scherthan, H., Diefenbach, J., Kloz, U., van der Hoeven, F., Beneke, S. and Bürkle, A., 2009. A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Res. 18, 261-279]. Here, we show that hPARP-1 mice exhibit impaired survival rates accompanied by reduced hair growth and premature development of several inflammation and age-associated pathologies, such as adiposity, kyphosis, nephropathy, dermatitis, pneumonitis, cardiomyopathy, hepatitis, and anemia. Moreover, mutant male mice showed impaired glucose tolerance, yet without developing manifest diabetes. Overall tumor burden was comparable in wild-type and hPARP-1 mice, but tumor spectrum was shifted in mutant mice, showing lower incidence of sarcomas, but increased incidence of carcinomas. Furthermore, DNA repair was delayed in splenocytes of hPARP-1 mice, and gene expression of pro-inflammatory cytokines was dysregulated. Our results suggest that in hPARP-1 mice impaired DNA repair, accompanied by a continuous low-level increase in pro-inflammatory stimuli, causes development of chronic diseases leading to impaired survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
The homeodomain transcription factor Cdx1 does not behave as an oncogene in normal mouse intestine.
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium.
Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A
2017-11-01
The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.
Apschner, Alexander; Huitema, Leonie F A; Ponsioen, Bas; Peterson-Maduro, Josi; Schulte-Merker, Stefan
2014-07-01
In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf), which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1), a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI) is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE) have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues - most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin). Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord mineralization phenotype. This indicates that enpp1 can exert its function in tissues that are remote from its site of expression. © 2014. Published by The Company of Biologists Ltd.
Theodore, Shaniece C.; Davis, Melissa; Zhao, Fu; Wang, Honghe; Chen, Dongquan; Rhim, Johng; Dean-Colomb, Windy; Turner, Timothy; Ji, Weidong; Zeng, Guohua; Grizzle, William; Yates, Clayton
2014-01-01
miRNA expression in African American compared to Caucasian PCa patients has not been widely explored. Herein, we probed the miRNA expression profile of novel AA and CA derived prostate cancer cell lines. We found a unique miRNA signature associated with AA cell lines, independent of tumor status. Evaluation of the most differentially expressed miRNAs showed that miR-132, miR-367b, miR-410, and miR-152 were decreased in more aggressive cells, and this was reversed after treatment of the cells with 5-aza-2′-deoxycytidine. Sequencing of the miR-152 promoter confirmed that it was highly methylated. Ectopic expression of miR-152 resulted in decreased growth, migration, and invasion. Informatics analysis of a large patient cohort showed that decreased miR-152 expression correlated with increased metastasis and a decrease in biochemical recurrence free survival. Analysis of 39 prostate cancer tissues with matched controls (20 AA and 19 CA), showed that 50% of AA patients had statistically significant lower miR-152 expression compared to only 35% of CA patients. Ectopic expression of miR-152 in LNCaP, PC-3, and MDA-PCa-2b cells down-regulated DNA (cytosine-5)-methyltransferase 1 (DNMT1) through direct binding in the DNMT1 3'UTR. There appeared to be a reciprocal regulatory relationship of miR-152/DNMT1 expression, as cells treated with siRNA DNMT1 caused miR-152 to be re-expressed in all cell lines. In summary, these results demonstrate that epigenetic regulation of miR-152/DNMT1 may play an important role in multiple events that contribute to the aggressiveness of PCa tumors, with an emphasis on AA PCa patients. PMID:25004396
Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning
2018-04-01
The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.
Regulation of early Xenopus development by ErbB signaling
Nie, Shuyi; Chang, Chenbei
2008-01-01
ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939
Duruksu, Gokhan; Karaoz, Erdal
2018-01-01
Objective Tyrosine hydroxylase (TH) is a rate-limiting enzyme in dopamine synthesis, making the enhancement of its activity a target for ensuring sufficient dopamine levels. Rat bone marrow mesenchymal stem cells (rBM-MSCs) are known to synthesize TH after differentiating into neuronal cells through chemical induction, but the effect of its ectopic expression on these cells has not yet been determined. This study investigated the effects of ectopic recombinant TH expression on the stemness characteristics of rBM-MSCs. Methods After cloning, a cell line with stable TH expression was maintained, and the proliferation, the gene expression profile, and differentiation potential of rBM-MSCs were analyzed. Analysis of the cells showed an increment in the proliferation rate that could be reversed by the neutralization of TH. Results The constitutive expression of TH in rBM-MSCs was successfully implemented, without significantly affecting their osteogenic and adipogenic differentiation potential. TH expression improved the expression of other neuronal markers, such as glial fibrillary acidic protein, β-tubulin, nestin, and c-Fos, confirming the neurogenic differentiation capacity of the stem cells. The expression of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) significantly increased after the chemical induction of neurogenic differentiation. Conclusion In this study, the expression of recombinant TH improved the neuroprotective effect of MSCs by upregulating the expression of BDNF and CNTF. Although the neuronal markers were upregulated, the expression of recombinant TH alone in rBM-MSCs was not sufficient for MSCs to differentiate into neurogenic cell lines. PMID:29656620
Seccareccia, E; Pinard, M; Wang, N; Li, S; Burnier, J; Dankort, D; Brodt, P
2014-08-18
The factors that determine the ability of metastatic tumor cells to expand and grow in specific secondary site(s) are not yet fully understood. Matrix metalloproteinases (MMP) were identified as potential regulators of the site-specificity of metastasis. We found that lung carcinoma cells ectopically expressing high levels of the receptor for the type I insulin like growth factor receptor (M27(R) cells) had a significant reduction in MMP-3 expression levels and this coincided with reduced metastasis to the lung. We used these cells to further investigate signaling pathways regulating MMP-3 expression and the role that MMP-3 plays in lung metastasis. We show that ectopic IκB kinase ɛ (IKKɛ) expression in these cells partly restored MMP-3 expression levels and also sensitized MMP-3 transcription to induction by phorbol 12-myristate 13-acetate (PMA). This increase in MMP-3 production was due to increased activation of several signal transduction mediators, including protein kinase C alpha, ERK2, Akt and the transcription factor p65. Furthermore, reconstitution of MMP-3 expression in M27(R) cells restored their ability to colonize the lung whereas silencing of MMP-3 in M27 cells reduced metastases. Collectively, our results implicate IKKɛ as a central regulator of PMA-induced cell signaling and MMP-3 expression and identify MMP-3 as an enabler of tumor cell expansion in the lung.Oncogenesis (2014) 3, e116; doi:10.1038/oncsis.2014.28; published online 18 August 2014.
Sun, Yi; Fu, Amina; Xu, Wu; Chao, Jyh-Rong; Moshiach, Simon; Morris, Stephan W
2015-12-01
Myeloid leukemia factor 1 (MLF1) was involved in t(3;5) chromosomal rearrangement and aberrantly expressed in myelodysplastic syndromes/acute myeloid leukemia patients. Ex vivo experiments showed that the lymphocytes from the Mlf1-deficient mice were more resistant to apoptotic stimulations than the wild-type cells. Furthermore, the ectopically expressed MLF1 induced apoptosis in the cell models. These findings revealed that MLF1 was required for the cells to respond to the apoptotic stimulations. Ex vivo experiments also demonstrated that cytokine withdrawal significantly up-regulated Mlf1's expression and promoted its association with B cell lymphoma-extra large (Bcl-XL) in the lymphocytes, at the same time reduced the association of Bax with Bcl-XL The same effects were also observed in the cells that over-expressed MLF1. However, these effects were observed in Mlf1 null lymphocytes as well as the cells over-expressing Bcl-XL. In addition, MLF1's proapoptosis could be completely prevented by co-expression of Bcl-XL and significantly attenuated in Bax/Bak double null cells. These data, taken together, strongly suggested that in response to the stresses, up-regulated Mlf1 promoted its association with Bcl-XL and reduced the available Bcl-XL for associating with Bax, which resulted in releasing Bax from the Bcl-XL and apoptosis in turn. Lastly, we showed that MLF1 was negatively regulated by 14-3-3 and revealed that 14-3-3 bound to MLF1 and physically blocked MLF1's Bcl-2 homology domain 3 (BH3) as well as Bcl-XL from associating with MLF1. Our findings suggested that ectopically expressed MLF1 could be responsible for the pathological apoptosis in early myelodysplastic syndrome (MDS) patients.
Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus.
Li, Guang; Liu, Xian; Xing, Chaofan; Zhang, Huayang; Shimeld, Sebastian M; Wang, Yiquan
2017-04-04
Many bilaterally symmetrical animals develop genetically programmed left-right asymmetries. In vertebrates, this process is under the control of Nodal signaling, which is restricted to the left side by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest diverging chordate lineage, has profound left-right asymmetry as a larva. We show that Cerberus , Nodal , Lefty , and their target transcription factor Pitx are sequentially activated in amphioxus embryos. We then address their function by transcription activator-like effector nucleases (TALEN)-based knockout and heat-shock promoter (HSP)-driven overexpression. Knockout of Cerberus leads to ectopic right-sided expression of Nodal , Lefty , and Pitx , whereas overexpression of Cerberus represses their left-sided expression. Overexpression of Nodal in turn represses Cerberus and activates Lefty and Pitx ectopically on the right side. We also show Lefty represses Nodal , whereas Pitx activates Nodal These data combine in a model in which Cerberus determines whether the left-sided gene expression cassette is activated or repressed. These regulatory steps are essential for normal left-right asymmetry to develop, as when they are disrupted embryos may instead form two phenotypic left sides or two phenotypic right sides. Our study shows the regulatory cassette controlling left-right asymmetry was in place in the ancestor of amphioxus and vertebrates. This includes the Nodal inhibitors Cerberus and Lefty, both of which operate in feedback loops with Nodal and combine to establish asymmetric Pitx expression. Cerberus and Lefty are missing from most invertebrate lineages, marking this mechanism as an innovation in the lineage leading to modern chordates.
Nagel, Stefan; Ehrentraut, Stefan; Tomasch, Jürgen; Quentmeier, Hilmar; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.
2013-01-01
Homeobox genes encode transcription factors ubiquitously involved in basic developmental processes, deregulation of which promotes cell transformation in multiple cancers including hematopoietic malignancies. In particular, NKL-family homeobox genes TLX1, TLX3 and NKX2-5 are ectopically activated by chromosomal rearrangements in T-cell neoplasias. Here, using transcriptional microarray profiling and RQ-PCR we identified ectopic expression of NKL-family member NKX2-1, in a diffuse large B-cell lymphoma (DLBCL) cell line SU-DHL-5. Moreover, in silico analysis demonstrated NKX2-1 overexpression in 5% of examined DLBCL patient samples. NKX2-1 is physiologically expressed in lung and thyroid tissues where it regulates differentiation. Chromosomal and genomic analyses excluded rearrangements at the NKX2-1 locus in SU-DHL-5, implying alternative activation. Comparative expression profiling implicated several candidate genes in NKX2-1 regulation, variously encoding transcription factors, chromatin modifiers and signaling components. Accordingly, siRNA-mediated knockdown and overexpression studies confirmed involvement of transcription factor HEY1, histone methyltransferase MLL and ubiquitinated histone H2B in NKX2-1 deregulation. Chromosomal aberrations targeting MLL at 11q23 and the histone gene cluster HIST1 at 6p22 which we observed in SU-DHL-5 may, therefore, represent fundamental mutations mediating an aberrant chromatin structure at NKX2-1. Taken together, we identified ectopic expression of NKX2-1 in DLBCL cells, representing the central player in an oncogenic regulative network compromising B-cell differentiation. Thus, our data extend the paradigm of NKL homeobox gene deregulation in lymphoid malignancies. PMID:23637834
Regulation of Compound Leaf Development by PHANTASTICA in Medicago truncatula1[C][W][OPEN
Ge, Liangfa; Peng, Jianling; Berbel, Ana; Madueño, Francisco; Chen, Rujin
2014-01-01
Plant leaves, simple or compound, initiate as peg-like structures from the peripheral zone of the shoot apical meristem, which requires class I KNOTTED-LIKE HOMEOBOXI (KNOXI) transcription factors to maintain its activity. The MYB domain protein encoded by the ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) gene, together with other factors, excludes KNOXI gene expression from incipient leaf primordia to initiate leaves and specify leaf adaxial identity. However, the regulatory relationship between ARP and KNOXI is more complex in compound-leafed species. Here, we investigated the role of ARP and KNOXI genes in compound leaf development in Medicago truncatula. We show that the M. truncatula phantastica mutant exhibited severe compound leaf defects, including curling and deep serration of leaf margins, shortened petioles, increased rachises, petioles acquiring motor organ characteristics, and ectopic development of petiolules. On the other hand, the M. truncatula brevipedicellus mutant did not exhibit visible compound leaf defects. Our analyses show that the altered petiole development requires ectopic expression of ELONGATED PETIOLULE1, which encodes a lateral organ boundary domain protein, and that the distal margin serration requires the auxin efflux protein M. truncatula PIN-FORMED10 in the M. truncatula phantastica mutant. PMID:24218492
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov
Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional programmore » encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.« less
Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL.
Schuelein, Ralf; Spencer, Hugh; Dagley, Laura F; Li, Peng Fei; Luo, Lin; Stow, Jennifer L; Abraham, Gilu; Naderer, Thomas; Gomez-Valero, Laura; Buchrieser, Carmen; Sugimoto, Chihiro; Yamagishi, Junya; Webb, Andrew I; Pasricha, Shivani; Hartland, Elizabeth L
2018-04-24
The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localize to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localizes to the nucleus where they subvert host cell transcriptional responses to infection. Here we identified Lpg2519 (Lpp2587/Lpw27461), as a new nuclear-localized effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localization by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, SUPT5H/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex (DSIF complex) that regulates RNA polymerase II (Pol II) dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central KOW motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression. This article is protected by copyright. All rights reserved.
Jiang, Xiu Xiu; Fei, Xiang Wei; Zhao, Li; Ye, Xiao Lei; Xin, Liao Bin; Qu, Yang; Xu, Kai Hong; Wu, Rui Jin; Lin, Jun
2015-01-01
Aquaporin 5 (AQP5) participates in the migration of endometrial cells. Elucidation of the molecular mechanisms associated with AQP5-mediated, migration of endometrial cells may contribute to a better understanding of endometriosis. Our objectives included identifying the estrogen-response element (ERE) in the promoter region of the AQP5 gene, and, investigating the effects of AQP5 on ectopic implantation of endometrial cells. Luciferase reporter assays and electrophoretic mobility shift assay (EMSA) identified the ERE-like motif in the promoter region of the AQP5 gene. After blocking and up-regulating estradiol (E2) levels, we analysed the expression of AQP5 in endometrial stromal (ES) cells. After blocking E2 /or phosphatidylinositol 3 kinase(PI3K), we analysed the role of AQP5 in signaling pathways. We constructed an AQP5, shRNA, lentiviral vector to knock out the AQP5 gene in ES cells. After knock-out of the AQP5 gene, we studied the role of AQP5 in cell invasion, proliferation, and the formation of ectopic endometrial implants in female mice. We identified an estrogen-response element in the promoter region of the AQP5 gene. Estradiol (E2) increased AQP5 expression in a dose-dependent fashion, that was blocked by ICI182,780(an estrogen receptor inhibitor). E2 activated PI3K /protein kinase B(AKT) pathway (PI3K/AKT), that, in turn, increased AQP5 expression. LY294002(PI3K inhibitor) attenuated estrogen-enhanced, AQP5 expression. Knock-out of the AQP5 gene with AQP5 shRNA lentiviral vector significantly inhibited E2-enhanced invasion, proliferation of ES cells and formation of ectopic implants. Estrogen induces AQP5 expression by activating ERE in the promoter region of the AQP5gene, activates the PI3K/AKT pathway, and, promotes endometrial cell invasion and proliferation. These results provide new insights into some of the mechanisms that may underpin the development of deposits of ectopic endometrium. PMID:26679484
Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC
Khammanivong, Ali; Sorenson, Brent S.; Ross, Karen F.; Dickerson, Erin B.; Hasina, Rifat; Lingen, Mark W.; Herzberg, Mark C.
2016-01-01
Calprotectin (S100A8/A9), a heterodimeric protein complex of calcium-binding proteins S100A8 and S100A9, plays key roles in cell cycle regulation and inflammation, with potential functions in squamous cell differentiation. While upregulated in many cancers, S100A8/A9 is downregulated in squamous cell carcinomas of the cervix, esophagus, and the head and neck (HNSCC). We previously reported that ectopic S100A8/A9 expression inhibits cell cycle progression in carcinoma cells. Here, we show that declining expression of S100A8/A9 in patients with HNSCC is associated with increased DNA methylation, less differentiated tumors, and reduced overall survival. Upon ectopic over-expression of S100A8/A9, the cancer phenotype of S100A8/A9-negative carcinoma cells was suppressed in vitro and tumor growth in vivo was significantly decreased. MMP1, INHBA, FST, LAMC2, CCL3, SULF1, and SLC16A1 were significantly upregulated in HNSCC but were downregulated by S100A8/A9 expression. Our findings strongly suggest that downregulation of S100A8/A9 through epigenetic mechanisms may contribute to increased proliferation, malignant transformation, and disease progression in HNSCC. PMID:26883112
Involvement of calprotectin (S100A8/A9) in molecular pathways associated with HNSCC.
Khammanivong, Ali; Sorenson, Brent S; Ross, Karen F; Dickerson, Erin B; Hasina, Rifat; Lingen, Mark W; Herzberg, Mark C
2016-03-22
Calprotectin (S100A8/A9), a heterodimeric protein complex of calcium-binding proteins S100A8 and S100A9, plays key roles in cell cycle regulation and inflammation, with potential functions in squamous cell differentiation. While upregulated in many cancers, S100A8/A9 is downregulated in squamous cell carcinomas of the cervix, esophagus, and the head and neck (HNSCC). We previously reported that ectopic S100A8/A9 expression inhibits cell cycle progression in carcinoma cells. Here, we show that declining expression of S100A8/A9 in patients with HNSCC is associated with increased DNA methylation, less differentiated tumors, and reduced overall survival. Upon ectopic over-expression of S100A8/A9, the cancer phenotype of S100A8/A9-negative carcinoma cells was suppressed in vitro and tumor growth in vivo was significantly decreased. MMP1, INHBA, FST, LAMC2, CCL3, SULF1, and SLC16A1 were significantly upregulated in HNSCC but were downregulated by S100A8/A9 expression. Our findings strongly suggest that downregulation of S100A8/A9 through epigenetic mechanisms may contribute to increased proliferation, malignant transformation, and disease progression in HNSCC.
Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.
Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana
2006-06-02
The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1
Jayewickreme, Chenura D.; Shivdasani, Ramesh A.
2015-01-01
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1−/− embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1+ intestinal mesenchyme and reduced in Barx1−/− stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. PMID:26057579
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.
Jayewickreme, Chenura D; Shivdasani, Ramesh A
2015-09-01
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.
The Homeodomain Transcription Factor Cdx1 Does Not Behave as an Oncogene in Normal Mouse Intestine1
Crissey, Mary Ann S; Guo, Rong-Jun; Fogt, Franz; Li, Hong; Katz, Jonathan P; Silberg, Debra G; Suh, Eun Ran; Lynch, John P
2008-01-01
The Caudal-related homeobox genes Cdx1 and Cdx2 are intestine-specific transcription factors that regulate differentiation of intestinal cell types. Previously, we have shown Cdx1 to be antiproliferative and to promote cell differentiation. However, other studies have suggested that Cdx1 may be an oncogene. To test for oncogenic behavior, we used the murine villin promoter to ectopically express Cdx1 in the small intestinal villi and colonic surface epithelium. No changes in intestinal architecture, cell differentiation, or lineage selection were observed with expression of the transgene. Classic oncogenes enhance proliferation and induce tumors when ectopically expressed. However, the Cdx1 transgene neither altered intestinal proliferation nor induced spontaneous intestinal tumors. In a murine model for colitis-associated cancer, the Cdx1 transgene decreased, rather than increased, the number of adenomas that developed. In the polyps, the expression of the endogenous and the transgenic Cdx1 proteins was largely absent, whereas endogenous Villin expression was retained. This suggests that transgene silencing was specific and not due to a general Villin inactivation. In conclusion, neither the ectopic expression of Cdx1 was associated with changes in intestinal cell proliferation or differentiation nor was there increased intestinal cancer susceptibility. Our results therefore suggest that Cdx1 is not an oncogene in normal intestinal epithelium. PMID:18231635
Fukushige, Tetsunari; Goszczynski, Barbara; Tian, Helen; McGhee, James D
2003-10-01
We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located approximately 5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intestinal development. This article explores whether elt-4 also has a role in intestinal development. Reporter fusions to the elt-4 promoter or reporter insertions into the elt-4 coding regions show that elt-4 is indeed expressed in the intestine, beginning at the 1.5-fold stage of embryogenesis and continuing into adulthood. elt-4 reporter fusions are also expressed in nine cells of the posterior pharynx. Ectopic expression of elt-4 cDNA within the embryo does not cause detectable ectopic expression of biochemical markers of gut differentiation; furthermore, ectopic elt-4 expression neither inhibits nor enhances the ectopic marker expression caused by ectopic elt-2 expression. A deletion allele of elt-4 was isolated but no obvious phenotype could be detected, either in the gut or elsewhere; brood sizes, hatching efficiencies, and growth rates were indistinguishable from wild type. We found no evidence that elt-4 provided backup functions for elt-2. We used microarray analysis to search for genes that might be differentially expressed between L1 larvae of the elt-4 deletion strain and wild-type worms. Paired hybridizations were repeated seven times, allowing us to conclude, with some confidence, that no candidate target transcript could be identified as significantly up- or downregulated by loss of elt-4 function. In vitro binding experiments could not detect specific binding of ELT-4 protein to candidate binding sites (double-stranded oligonucleotides containing single or multiple WGATAR sequences); ELT-4 protein neither enhanced nor inhibited the strong sequence-specific binding of the ELT-2 protein. Whereas ELT-2 protein is a strong transcriptional activator in yeast, ELT-4 protein has no such activity under similar conditions, nor does it influence the transcriptional activity of coexpressed ELT-2 protein. Although an elt-2 homolog was easily identified in the genomic sequence of the related nematode C. briggsae, no elt-4 homolog could be identified. Analysis of the changes in silent third codon positions within the DNA-binding domains indicates that elt-4 arose as a duplication of elt-2, some 25-55 MYA. Thus, elt-4 has survived far longer than the average duplicated gene in C. elegans, even though no obvious biological function could be detected. elt-4 provides an interesting example of a tandemly duplicated gene that may originally have been the same size as elt-2 but has gradually been whittled down to its present size of little more than a zinc finger. Although elt-4 must confer (or must have conferred) some selective advantage to C. elegans, we suggest that its ultimate evolutionary fate will be disappearance from the C. elegans genome.
Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping
2017-01-01
WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52 , from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea , compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea . In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.
Wang, Lin; Li, Qing-Tian; Lei, Qiong; Feng, Chao; Zheng, Xiaodong; Zhou, Fangfang; Li, Lingzi; Liu, Xuan; Wang, Zhi; Kong, Jin
2017-12-19
Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm 2 in transgenic fruits was less than wild type. Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.
Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata
2012-09-24
In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (P<0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered. Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expressional profiles in endometriotic tissue.
McGarvey, Terry; Wang, Huiyi; Lal, Priti; Puthiyaveettil, Raghunath; Tomaszewski, John; Sepulveda, Jorge; Labelle, Ed; Weiss, Jayne S.; Nickerson, Michael L.; Kruth, Howard S.; Brandt, Wolfgang; Wessjohann, Ludger A.; Malkowicz, S. Bruce
2011-01-01
Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression. PMID:21740188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Ryan L.; Weber, Thomas J.
2012-05-04
In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediatedmore » toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.« less
Wu, Bo; Zhou, Yang; Wang, Yu; Yang, Xiang-Min; Liu, Zhen-Yu; Li, Jiang-Hua; Feng, Fei; Chen, Zhi-Nan; Jiang, Jian-Li
2016-01-01
Hepatocellular carcinoma (HCC) is currently the third most common cause of cancer-related death in the Asia-Pacific region. Our previous work showed that knockdown of CD98 significantly inhibits malignant HCC cell phenotypes in vitro and in vivo. The level of CD98 in the membrane is tightly regulated to mediate complex processes associated with cell–cell communication and intracellular signaling. In addition, the intracellular domain of CD98 (CD98-ICD) seems to be of vital importance for recycling CD98 to the membrane after it is endocytosed. The intracellular and transmembrane domains of CD98 associate with β-integrins (primarily β1 but also β3), and this association is essential for CD98 mediation of integrin-like signaling and complements dominant suppression of β1-integrin. We speculated that isolated CD98-ICD would similarly suppress β1-integrin activation and inhibit the malignant behaviors of cancer cells. In particular, the exact role of CD98-ICD has not been studied independently in HCC. In this study, we found that ectopic expression of CD98-ICD inhibited the malignant phenotypes of HCC cells, and the mechanism possibly involves β1-integrin suppression. Moreover, the expression levels of CD98, β1-integrin-A (the activated form of β1-integrin) and Ki-67 were significantly increased in HCC tissues relative to those of normal liver tissues. Therefore, our preliminary study indicates that ectopic CD98-ICD has an inhibitory role in the malignant development of HCC, and shows that CD98-ICD acts as a dominant negative mutant of CD98 that attenuates β1-integrin activation. CD98-ICD may emerge as a promising candidate for antitumor treatment. PMID:27834933
Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa.
Phillips, M Joseph; Otteson, Deborah C; Sherry, David M
2010-06-01
The Pde6b(rd10) (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6b(rd10) (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well-known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. (c) 2010 Wiley-Liss, Inc.
Progression of Neuronal and Synaptic Remodeling in the rd10 Mouse Model of Retinitis Pigmentosa
Phillips, M. Joseph; Otteson, Deborah C.; Sherry, David M.
2010-01-01
The Pde6brd10 (rd10) mouse has a moderate rate of photoreceptor degeneration and serves as a valuable model for human autosomal recessive retinitis pigmentosa (RP). We evaluated the progression of neuronal remodeling of second- and third-order retinal cells and their synaptic terminals in retinas from Pde6brd10 (rd10) mice at varying stages of degeneration ranging from postnatal day 30 (P30) to postnatal month 9.5 (PNM9.5) using immunolabeling for well known cell- and synapse-specific markers. Following photoreceptor loss, changes occurred progressively from outer to inner retina. Horizontal cells and rod and cone bipolar cells underwent morphological remodeling that included loss of dendrites, cell body migration, and the sprouting of ectopic processes. Gliosis, characterized by translocation of Müller cell bodies to the outer retina and thickening of their processes, was evident by P30 and became more pronounced as degeneration progressed. Following rod degeneration, continued expression of VGluT1 in the outer retina was associated with survival and expression of synaptic proteins by nearby second-order neurons. Rod bipolar cell terminals showed a progressive reduction in size and ectopic bipolar cell processes extended into the inner nuclear layer and ganglion cell layer by PNM3.5. Putative ectopic conventional synapses, likely arising from amacrine cells, were present in the inner nuclear layer by PNM9.5. Despite these changes, the laminar organization of bipolar and amacrine cells and the ON-OFF organization in the inner plexiform layer was largely preserved. Surviving cone and bipolar cell terminals continued to express the appropriate cell-specific presynaptic proteins needed for synaptic function up to PNM9.5. PMID:20394059
Youm, Yun-Hee; Yang, Hyunwon; Amin, Raj; Smith, Steven R.; Leff, Todd; Dixit, Vishwa Deep
2010-01-01
Age-related thymic involution is characterized by reduction in T cell production together with ectopic adipocyte development within the hematopoietic and thymic niches. PPARγ is required for adipocyte development, glucose homeostasis and is a target for several insulin-sensitizing drugs. Our prior studies showed that age-related elevation of PPARγ expression in thymic stromal cells is associated with thymic involution. Here, using clinically relevant pharmacological and genetic manipulations in mouse models, we provide evidence that activation of PPARγ leads to reduction in thymopoiesis. Treatment of aged mice with anti-hyperglycemic PPARγ-ligand class of Thiazolidinedione drug, Rosiglitazone caused robust thymic expression of classical pro-adipogenic transcripts. Rosiglitazone reduced thymic cellularity, lowered the naïve T cell number and T cell receptor excision circles (TRECs) indicative of compromised thymopoiesis. To directly investigate whether PPARγ activation induces thymic involution, we created transgenic mice with constitutive-active PPARγ (CA-PPARg) fusion protein in cells of adipogenic lineage. Importantly, CA-PPARγ transgene was expressed in thymus and in Fibroblast Specific Protein-1/S100A4 (FSP1+) cells, a marker of secondary mesenchymal cells. The CAPPARγ fusion protein mimicked the liganded PPARγ receptor and the transgenic mice displayed increased ectopic thymic adipogenesis and reduced thymopoiesis. Furthermore, the reduction in thymopoiesis in CA-PPARγ mice was associated with higher bone marrow adiposity and lower hematopoietic stem cell progenitor pool. Consistent with lower thymic output, CAPPARγ transgenic mice had restricted T cell receptor (TCR) repertoire diversity. Collectively, our data suggest that activation of PPARγ accelerates thymic aging and thymus-specific PPARγ antagonist may forestall age-related decline in T cell diversity. PMID:20374200
Epinephrine-Induced and Antiapoptotic Signaling in Prostate Cancer
2009-05-01
Phosphorylation of ectopically expressed HA-BAD mirrors endogenous BAD phosphorylation, thus analysis of HA-BAD allows adequately interpret modifications...subjected to emotional stress (Fig.2 A). However, more extensive analysis of CREB phosphorylation in C42Luc xenografts showed that in some cases...data indicate that assignment of tumor samples for analysis of signaling pathways should be done based on blood epinephrine measurements. Given
Wnt Signaling Specifies Anteroposterior Progenitor Zone Identity in the Drosophila Visual Center.
Suzuki, Takumi; Trush, Olena; Yasugi, Tetsuo; Takayama, Rie; Sato, Makoto
2016-06-15
During brain development, various types of neuronal populations are produced from different progenitor pools to produce neuronal diversity that is sufficient to establish functional neuronal circuits. However, the molecular mechanisms that specify the identity of each progenitor pool remain obscure. Here, we show that Wnt signaling is essential for the specification of the identity of posterior progenitor pools in the Drosophila visual center. In the medulla, the largest component of the visual center, different types of neurons are produced from two progenitor pools: the outer proliferation center (OPC) and glial precursor cells (GPCs; also known as tips of the OPC). We found that OPC-type neurons are produced from the GPCs at the expense of GPC-type neurons when Wnt signaling is suppressed in the GPCs. In contrast, GPC-type neurons are ectopically induced when Wnt signaling is ectopically activated in the OPC. These results suggest that Wnt signaling is necessary and sufficient for the specification of the progenitor pool identity. We also found that Homothorax (Hth), which is temporally expressed in the OPC, is ectopically induced in the GPCs by suppression of Wnt signaling and that ectopic induction of Hth phenocopies the suppression of Wnt signaling in the GPCs. Thus, Wnt signaling is involved in regionalization of the fly visual center through the specification of the progenitor pool located posterior to the medulla by suppressing Hth expression. Brain consists of considerably diverse neurons of different origins. In mammalian brain, excitatory and inhibitory neurons derive from the dorsal and ventral telencephalon, respectively. Multiple progenitor pools also contribute to the neuronal diversity in fly brain. However, it has been unclear how differences between these progenitor pools are established. Here, we show that Wnt signaling, an evolutionarily conserved signaling, is involved in the process that establishes the differences between these progenitor pools. Because β-catenin signaling, which is under the control of Wnt ligands, specifies progenitor pool identity in the developing mammalian thalamus, Wnt signaling-mediated specification of progenitor pool identity may be conserved in insect and mammalian brains. Copyright © 2016 the authors 0270-6474/16/366503-11$15.00/0.
Role of FGF and noggin in neural crest induction.
Mayor, R; Guerrero, N; Martínez, C
1997-09-01
A study of the molecules noggin and fibroblast growth factor (FGF) and its receptor in the induction of the prospective neural crest in Xenopus laevis embryos has been carried out, using the expression of the gene Xslu as a marker for the neural crest. We show that when a truncated FGF receptor (XFD) was expressed ectopically in order to block FGF signaling Xslu expression was inhibited. The effect of XFD on Xslu was specific and could be reversed by the coinjection of the wild-type FGF receptor (FGFR). Inhibition of Xslu expression by XFD is not a consequence of neural plate inhibition, as was shown by analyzing Xsox-2 expression. When ectoderm expressing XFD was transplanted into the prospective neural fold region of embryos Xslu induction was inhibited. The neural crest can also be induced by an interaction between neural plate and epidermis. As this induction is suppressed by the presence of XFD in the neural plate and not in the epidermis, it suggests that the neural crest is induced by FGF from the epidermis. However, treatment of neural plate with FGF was not able to induce Xslug expression, showing that in addition to FGF other non-FGF factors are also required. Previously we have suggested that the ectopic ventral expression of Xslu produced by overexpression of noggin mRNA resulted from an interaction of noggin with a ventral signal. Overexpression of XFD inhibits this effect, suggesting that FGF could be one component involved in this ventral signaling. Overexpression of FGFR produced a remarkable increase in the expression of Xslu in the posterior neural folds and around the blastopore. Injections in different blastomeres of the embryo suggest that the target cells of this effect are the ventral cells. Finally, we proposed a model in which the induction of the neural crests at the border of the neural plate requires functional FGF signaling, which possibly interacts with a neural inducer such as noggin.
Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus
2012-01-01
The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR(-/-) mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies.We show reduced NDRG2 mRNA in livers of FXR(-/-) mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options.
Bobryshev, Yuri V; Killingsworth, Murray C; Lord, Reginald S A
2008-08-01
The mechanisms of ectopic bone formation in arteries are poorly understood. Osteoblasts might originate either from stem cells that penetrate atherosclerotic plaques from the blood stream or from pluripotent mesenchymal cells that have remained in the arterial wall from embryonic stages of the development. We have examined the frequency of the expression and spatial distribution of osteoblast-specific factor-2/core binding factor-1 (Osf2/Cbfa1) in carotid and coronary arteries. Cbfa1-expressing cells were rarely observed but were found in all tissue specimens in the deep portions of atherosclerotic plaques under the necrotic cores. The deep portions of atherosclerotic plaques under the necrotic cores were characterized by the lack of capillaries of neovascularization. In contrast, plaque shoulders, which were enriched by plexuses of neovascularization, lacked Cbfa1-expressing cells. No bone formation was found in any of the 21 carotid plaques examined and ectopic bone was observed in only two of 12 coronary plaques. We speculate that the sparse invasion of sprouts of neovascularization into areas underlying the necrotic cores, where Cbfa1-expressing cells reside, might explain the rarity of events of ectopic bone formation in the arterial wall. This study has also revealed that Cbfa1-expressing cells contain alpha-smooth muscle actin and myofilaments, indicating their relationship with arterial smooth muscle cells.
Zhang, Chun; Yuan, Xiying; Zhang, Yi
2016-01-01
The aim of this study was to examine the expression of G protein-coupled estrogen receptor (GPER) and Gankyrin in ovarian endometriosis, analyze their clinicopathological significance, and investigate their correlation. Quantitative real-time polymerase chain reaction and Western blot were performed to testify mRNA and protein expression of GPER and Gankyrin in ovarian endometriosis. Immunohistochemical staining (streptavidin-peroxidase method) was conducted to determine the expression and distribution of GPER and Gankyrin protein in matched ectopic and eutopic endometrium of endometriosis and normal endometrium. We also investigated their associations with rASRM stages and the correlation between the two proteins. GPER and Gankyrin were found overexpressed in ectopic endometrium of endometriosis compared with either its eutopic counterpart or endometrium from normal patients. The immunohistochemical analysis also revealed that higher expression was observed in eutopic endometrium with or without endometriosis during proliferative phase in comparison to secretory phase. These two proteins were positively correlated with the stages of endometriosis. Moreover, a significant positive correlation was found between GPER and Gankyrin both in ectopic and eutopic endometrium of the ovarian endometriosis. GPER and Gankyrin might be implicated in the hormonal regulation of endometriosis and be associated with the severity of endometriosis. In addition, GPER and Gankyrin were found to be positively correlated, which could possibly serve as novel therapeutic targets for this disease.
Srinivasan, C; Liu, Zongrang; Scorza, Ralph
2011-04-01
Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.
Zhang, Xiaohui; Zhao, Fangbo; Zhang, Shujun; Song, Yichun
2017-04-01
Ubiquitination of proteins meant for elimination is a primary method of eukaryotic cellular protein degradation. The ubiquitin carrier protein E2-EPF is a key degradation enzyme that is highly expressed in many tumors. However, its expression and prognostic significance in brain glioma are still unclear. The aim of this study was to reveal how the level of E2-EPF relates to prognosis in brain glioma. Thirty low-grade and 30 high-grade brain glioma samples were divided into two tissue microarrays each. Levels of E2-EPF protein were examined by immunohistochemistry and immunofluorescence. Quantitative real-time polymerase chain reaction was used to analyze the level of E2-EPF in 60 glioma and 3 normal brain tissue samples. The relationship between E2-EPF levels and prognosis was analyzed by Kaplan-Meier survival curves. E2-EPF levels were low in normal brain tissue samples but high in glioma nuclei. E2-EPF levels gradually increased as glioma grade increased (p < 0.05). Ectopic E2-EPF levels in high-grade glioma were significantly higher than in low-grade glioma (p < 0.01). The 5-year survival rate of glioma patients with high E2-EPF levels was shorter than in patients with low expression (p < 0.05). Furthermore, the 5-year survival rate of patients with ectopic E2-EPF was significantly shorter than patients with only nuclear E2-EPF (p < 0.01). These results suggest that higher E2-EPF levels, especially ectopic, are associated with higher grade glioma and shorter survival. E2-EPF levels may play a key role in predicting the prognosis for patients with brain glioma.
De Bari, Cosimo; Dell'Accio, Francesco; Luyten, Frank P
2004-01-01
We previously reported the identification in a nude mouse assay of molecular markers predictive of the capacity of articular cartilage-derived cells (ACDCs) to form ectopic stable cartilage that is resistant to vascular invasion and endochondral ossification. In the present study, we investigated whether in vitro-differentiated mesenchymal stem cells (MSCs) from the synovial membrane (SM) express the stable-chondrocyte markers and form ectopic stable cartilage in vivo. Chondrogenesis was induced in micromass culture with the addition of transforming growth factor beta1 (TGFbeta1). After acquisition of the cartilage phenotype, micromasses were implanted subcutaneously into nude mice. Alternatively, cells were released enzymatically and either replated in monolayer or injected intramuscularly into nude mice. Marker analysis was performed by quantitative reverse transcription-polymerase chain reaction. Cell death was detected with TUNEL assay. Cartilage-like micromasses and released cells expressed the stable-chondrocyte markers at levels comparable with those expressed by stable ACDCs. The released cells lost chondrocyte marker expression by 24 hours in monolayer and failed to form cartilage when injected intramuscularly into nude mice. Instead, myogenic differentiation was detected. When intact TGFbeta1-treated micromasses were implanted subcutaneously, they partially lost their cartilage phenotype and underwent cell death and neoangiogenesis within 1 week. At later time points (15-40 days), we retrieved neither cartilage nor bone, and human cells were not detectable. The chondrocyte-like phenotype of human SM MSCs, induced in vitro under specific conditions, appears to be unstable and is not sufficient to obtain ectopic formation of stable cartilage in vivo. Studies in animal models of joint surface defect repair are necessary to evaluate the stability of the SM MSC chondrocyte-like phenotype within the joint environment.
Steroid signaling in mature follicles is important for Drosophila ovulation
Knapp, Elizabeth
2017-01-01
Although ecdysteroid signaling regulates multiple steps in oogenesis, it is not known whether it regulates Drosophila ovulation, a process involving a matrix metalloproteinase-dependent follicle rupture. In this study, we demonstrated that ecdysteroid signaling is operating in mature follicle cells to control ovulation. Moreover, knocking down shade (shd), encoding the monooxygenase that converts ecdysone (E) to the more active 20-hydroxyecdysone (20E), specifically in mature follicle cells, blocked follicle rupture, which was rescued by ectopic expression of shd or exogenous 20E. In addition, disruption of the Ecdysone receptor (EcR) in mature follicle cells mimicked shd-knockdown defects, which were reversed by ectopic expression of EcR.B2 but not by EcR.A or EcR.B1 isoforms. Furthermore, we showed that ecdysteroid signaling is essential for the proper activation of matrix metalloproteinase 2 (Mmp2) for follicle rupture. Our data strongly suggest that 20E produced in follicle cells before ovulation activates EcR.B2 to prime mature follicles to be responsive to neuronal ovulatory stimuli, thus providing mechanistic insights into steroid signaling in Drosophila ovulation. PMID:28069934
Quattrone, Federica; Sanchez, Ana Maria; Pannese, Maria; Hemmerle, Teresa; Viganò, Paola; Candiani, Massimo; Petraglia, Felice; Neri, Dario; Panina-Bordignon, Paola
2015-09-01
Endometriosis is caused by the displacement of endometrium outside the uterus contributing heavily to infertility and debilitating pelvic pain. Ectopic adhesion and growth are believed to occur under the influence of a favorable hormonal environment and immunological factors. The objective of this study is to analyze the effect of a targeted therapy with an antibody-based pharmacodelivery of interleukin 4 (F8-IL4) in a mouse model of experimentally induced endometriosis. Endometriosis-like lesions were induced in Balb/c mice. The animals were treated intravenously with F8-IL4 or with untargeted IL4 (KSF-IL4). Twelve days after disease induction, the lesions were isolated. A significant reduction in the number of total lesions/mouse and in the total volume of lesions/mouse was observed in mice treated with F8-IL4 compared to controls (P = .029 and P = .006, respectively), while no difference was found between KSF-IL4-treated mice and their controls. Gene expression was evaluated by quantitative real-time polymerase chain reaction. Expression of genes involved in cell adhesion, extracellular matrix invasion, and neovascularization was significantly downregulated in F8-IL4-treated mice compared to their controls (integrin β1: P = .02; metalloproteinase [MMP] 3: P = .02; MMP9: P = .04; vascular endothelial growth factor: P = .04). Gene expression of inflammatory cytokines (tumor necrosis factor α, IL1β, IL1α, and IL6) did not vary in the ectopic lesions isolated from F8-IL4-treated mice compared to their controls. Immunohistochemistry demonstrated a significantly reduced expression of E-cadherin and β-catenin in the lesions of mice treated with F8-IL4. Our results show that the antibody-mediated targeted delivery of IL4 inhibits the development of endometriosis in a syngeneic mouse model by likely impairing adhesion, invasion, and vascularization of the ectopic endometrium. © The Author(s) 2015.
A novel fluorescent sensor for measurement of CFTR function by flow cytometry.
Vijftigschild, Lodewijk A W; van der Ent, Cornelis K; Beekman, Jeffrey M
2013-06-01
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis. CFTR-dependent iodide transport measured by fluorescent quenching of ectopically expressed halide-sensitive yellow fluorescent protein (YFP) is widely being used to study CFTR function by microscopy or plate readers. Since YFP fluorescence in these systems is dependent on YFP expression levels and iodide concentration, differences in sensor expression level between experimental units are normalized at the start of each experiment. To allow accurate measurement of CFTR function by flow cytometry, we reasoned that co-expression of an iodide insensitive fluorescent protein would allow for normalization of sensor expression levels and more accurate quantification of CFTR function. Our data indicated that dsRed and mKate fluorescence are iodide insensitive, and we determined an optimal format for co-expression of these fluorescent proteins with halide-sensitive YFP. We showed using microscopy that ratiometric measurement (YFP/mKate) corrects for differences in sensor expression levels. Ratiometric measurements were essential to accurately measure CFTR function by flow cytometry that we here describe for the first time. Mixing of wild type or mutant CFTR expressing cells indicated that addition of approximately 10% of wild type CFTR expressing cells could be distinguished by ratiometric YFP quenching. Flow cytometric ratiometric YFP quenching also allowed us to study CFTR mutants associated with differential residual function upon ectopic expression. Compared with conventional plate-bound CFTR function assays, the flow cytometric approach described here can be used to study CFTR function in suspension cells. It may be further adapted to study CFTR function in heterologous cell populations using cell surface markers and selection of cells that display high CFTR function by cell sorting. Copyright © 2013 International Society for Advancement of Cytometry.
Gorgels, Theo G M F; Waarsing, Jan H; Herfs, Marjolein; Versteeg, Daniëlle; Schoensiegel, Frank; Sato, Toshiro; Schlingemann, Reinier O; Ivandic, Boris; Vermeer, Cees; Schurgers, Leon J; Bergen, Arthur A B
2011-11-01
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder in which calcification of connective tissue leads to pathology in skin, eye and blood vessels. PXE is caused by mutations in ABCC6. High expression of this transporter in the basolateral hepatocyte membrane suggests that it secretes an as-yet elusive factor into the circulation which prevents ectopic calcification. Utilizing our Abcc6 (-/-) mouse model for PXE, we tested the hypothesis that this factor is vitamin K (precursor) (Borst et al. 2008, Cell Cycle). For 3 months, Abcc6 (-/-) and wild-type mice were put on diets containing either the minimum dose of vitamin K required for normal blood coagulation or a dose that was 100 times higher. Vitamin K was supplied as menaquinone-7 (MK-7). Ectopic calcification was monitored in vivo by monthly micro-CT scans of the snout, as the PXE mouse model develops a characteristic connective tissue mineralization at the base of the whiskers. In addition, calcification of kidney arteries was measured by histology. Results show that supplemental MK-7 had no effect on ectopic calcification in Abcc6 ( -/- ) mice. MK-7 supplementation increased vitamin K levels (in skin, heart and brain) in wild-type and in Abcc6 (-/-) mice. Vitamin K tissue levels did not depend on Abcc6 genotype. In conclusion, dietary MK-7 supplementation increased vitamin K tissue levels in the PXE mouse model but failed to counteract ectopic calcification. Hence, we obtained no support for the hypothesis that Abcc6 transports vitamin K and that PXE can be cured by increasing tissue levels of vitamin K.
Ectopic Cushing's syndrome secondary to olfactory neuroblastoma.
Yu, Kenny; Roncaroli, Federico; Kearney, Tara; Ewins, David; Beeharry, Deepa; Naylor, Thomas; Ray, David; Bhalla, Rajiv; Gnanalingham, Kanna
2018-05-01
We present the case of a patient with Cushing's syndrome secondary to ectopic ACTH secretion. A MR of the head showed a left-sided nasal mass extending down from the cribriform plate. The patient underwent endoscopic resection with nearly complete removal of the mass. Histological examination showed an ACTH-secreting olfactory neuroblastoma (ONB). The patient's cortisol levels returned to normal range after surgery and have remained normal for over a year. ONB is a rare cause for ectopic ACTH secretion. This case highlights the diagnostic and management difficulties in patients with ectopic ACTH secretion, and provides a brief review of ONB.
The R2R3MYB VvMYBPA1 from grape reprograms the phenylpropanoid pathway in tobacco flowers.
Passeri, Valentina; Martens, Stefan; Carvalho, Elisabete; Bianchet, Chantal; Damiani, Francesco; Paolocci, Francesco
2017-08-01
This work shows that, in tobacco, the ectopic expression of VvMYBPA1 , a grape regulator of proanthocyanidin biosynthesis, up- or down-regulates different branches of the phenylproanoid pathway, in a structure-specific fashion. Proanthocyanidins are flavonoids of paramount importance for animal and human diet. Research interest increasingly tilts towards generating crops enriched with these health-promoting compounds. Flavonoids synthesis is regulated by the MBW transcriptional complex, made of R2R3MYB, bHLH and WD40 proteins, with the MYB components liable for channeling the complex towards specific branches of the pathway. Hence, using tobacco as a model, here, we tested if the ectopic expression of the proanthocyanidin regulator VvMYBPA1 from grape induces the biosynthesis of these compounds in not-naturally committed cells. Here, we show, via targeted transcriptomic and metabolic analyses of primary transgenic lines and their progeny, that VvMYBPA1 alters the phenylpropanoid pathway in tobacco floral organs, in a structure-specific fashion. We also report that a modest VvMYBPA1 expression is sufficient to induce the expression of both proanthocyanidin-specific and early genes of the phenylpropanoid pathway. Consequently, proanthocyanidins and chlorogenic acids are induced or de novo synthetised in floral limbs, tubes and stamens. Other phenylpropanoid branches are conversely induced or depleted according to the floral structure. Our study documents a novel and distinct function of VvMYBPA1 with respect to other MYBs regulating proanthocyanidins. Present findings may have major implications in designing strategies for enriching crops with health-promoting compounds.
Gauthier, Philippe; Yu, Zongdong; Tran, Quynh T.; Bhatti, Fazal-Ur-Rehman; Zhu, Xiaofei
2016-01-01
Regeneration of periodontal tissues, particularly cementum, is key to regaining periodontal attachment and health. Human periodontal ligament stem cells (hPDLSCs) have been shown to be a good cell source to regenerate periodontal tissues. However, their subpopulations and the differentiation induction in relation to cementogenic lineages is unclear. Thus, we aim to examine the expression of cementum-associated genes in PDLSC subpopulations and determine the effect of broadly used osteogenic stimulus or vitamin C (VC) on the expression of cementogenic and osteogenic genes in PDLSCs. Our real-time quantitative polymerase chain reaction (qPCR) analysis showed that cementogenic marker cementum attachment protein (CAP) expressed only slightly higher in STRO-1+/CD146+, STRO-1−/CD146+ and STRO-1−/CD146− subpopulations than in the original cell pool, while cementum protein 1 (CEMP1) expression in these subpopulations was not different from the original pool. Notably, under the stimulation with osteogenic differentiation medium, CAP and CEMP1 were down-regulated while osteogenic markers bone sialoprotein (BSP) and osteocalcin (OCN) were upregulated. Both CAP and CEMP1 were upregulated by VC treatment. Transplantation of VC-treated PDLSCs into immunocompromised mice resulted in forming significantly more ectopic cementum- and bone-like mineral tissues in vivo. Immunohistochemical analysis of the ectopic growth showed that CAP and CEMP1 were mainly expressed in the mineral tissue and in some cells of the fibrous tissues. We conclude that osteogenic stimulation is not inductive but appears to be inhibitory of cementogenic pathways, whereas VC induces cementogenic lineage commitment by PDLSCs and may be a useful stimulus for cementogenesis in periodontal regeneration. PMID:27757536
Gauthier, Philippe; Yu, Zongdong; Tran, Quynh T; Bhatti, Fazal-Ur-Rehman; Zhu, Xiaofei; Huang, George T-J
2017-04-01
Regeneration of periodontal tissues, particularly cementum, is key to regaining periodontal attachment and health. Human periodontal ligament stem cells (hPDLSCs) have been shown to be a good cell source to regenerate periodontal tissues. However, their subpopulations and the differentiation induction in relation to cementogenic lineages is unclear. Thus, we aim to examine the expression of cementum-associated genes in PDLSC subpopulations and determine the effect of broadly used osteogenic stimulus or vitamin C (VC) on the expression of cementogenic and osteogenic genes in PDLSCs. Our real-time quantitative polymerase chain reaction (qPCR) analysis showed that cementogenic marker cementum attachment protein (CAP) expressed only slightly higher in STRO-1 + /CD146 + , STRO-1 - /CD146 + and STRO-1 - /CD146 - subpopulations than in the original cell pool, while cementum protein 1 (CEMP1) expression in these subpopulations was not different from the original pool. Notably, under the stimulation with osteogenic differentiation medium, CAP and CEMP1 were downregulated while osteogenic markers bone sialoprotein (BSP) and osteocalcin (OCN) were upregulated. Both CAP and CEMP1 were upregulated by VC treatment. Transplantation of VC-treated PDLSCs into immunocompromised mice resulted in forming significantly more ectopic cementum- and bone-like mineral tissues in vivo. Immunohistochemical analysis of the ectopic growth showed that CAP and CEMP1 were mainly expressed in the mineral tissue and in some cells of the fibrous tissues. We conclude that osteogenic stimulation is not inductive but appears to be inhibitory of cementogenic pathways, whereas VC induces cementogenic lineage commitment by PDLSCs and may be a useful stimulus for cementogenesis in periodontal regeneration.
miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-{beta}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Libing, E-mail: lb.song1@gmail.com; Huang, Quan; Chen, Kun
2010-11-05
Research highlights: {yields} miR-218 is markedly downregulated in glioma cell lines and in primary glioma tissues. {yields} Upregulation of miR-218 dramatically reduces the invasive ability of glioma cells. {yields} Ectopic expression of miR-218 inactivates IKK-{beta}/NF-{kappa}B signaling pathway. {yields} miR-218 directly targets the 3'-untranslated region (3'-UTR) of IKK-{beta}. -- Abstract: Aberrant activation of nuclear factor-kappa B (NF-{kappa}B) pathway has been proven to play important roles in the development and progression of cancers. Activation of NF-{kappa}B via the classical pathway is modulated by I{kappa}Bs kinase (IKK-{beta}). However, the mechanism underlying the epigenetic regulation of IKK-{beta}/NF-{kappa}B pathway remains largely unknown. In this study,more » we found that the expression level of miR-218 was markedly downregulated in glioma cell lines and in human primary glioma tissues. Upregulation of miR-218 dramatically reduced the migratory speed and invasive ability of glioma cells. Furthermore, we showed that ectopically expressing miR-218 in glioma cells resulted in downregulation of matrix metalloproteinase-9 (MMP-9) and reduction in NF-{kappa}B transactivity at a transcriptional level, but inhibition of miR-218 enhanced the expression of MMP-9 and transcriptional activity of NF-{kappa}B. Moreover, we showed that miR-218 inactivated the NF-{kappa}B pathway through downregulating IKK-{beta} expression by directly targeting the 3'-untranslated region (3'-UTR) of IKK-{beta}. Taken together, our results suggest that miR-218 plays an important role in preventing the invasiveness of glioma cells, and our results present a novel mechanism of miRNA-mediated direct suppression of IKK-{beta}/NF-{kappa}B pathway in gliomas.« less
A novel E2 box-GATA element modulates Cdc6 transcription during human cells polyploidization
Vilaboa, Nuria; Bermejo, Rodrigo; Martinez, Pilar; Bornstein, Rafael; Calés, Carmela
2004-01-01
Cdc6 is a key regulator of the strict alternation of S and M phases during the mitotic cell cycle. In mammalian and plant cells that physiologically become polyploid, cdc6 is transcriptionally and post-translationally regulated. We have recently reported that Cdc6 levels are maintained in megakaryoblastic HEL cells, but severely downregulated by ectopic expression of transcriptional repressor Drosophila melanogaster escargot. Here, we show that cdc6 promoter activity is upregulated during megakaryocytic differentiation of HEL endoreplicating cells, and that Escargot interferes with such activation. Transactivation experiments showed that a 1.7 kb region located at 2800 upstream cdc6 transcription initiation site behaved as a potent enhancer in endoreplicating cells only. This activity was mainly dependent on a novel cis-regulatory element composed by an E2 box overlapping a GATA motif. Ectopic Escargot could bind this regulatory element in vitro and endogenous GATA-1 and E2A formed specific complexes in megakaryoblastic cells as well as in primary megakaryocytes. Chromatin Immunoprecipitation analysis revealed that both transcription factors were occupying the E2 box/GATA site in vivo. Altogether, these data suggest that cdc6 expression could be actively maintained during megakaryocytic differentiation through transcriptional mechanisms involving specific cis- and trans-regulatory elements. PMID:15590906
Wang, Xiuli; Cui, Fuai; Madhu, Vedavathi; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun
2011-02-01
A novel strategy to enhance bone repair is to combine angiogenic factors and osteogenic factors. We combined vascular endothelial growth factor (VEGF) and LIM mineralization protein-1 (LMP-1) by using an internal ribosome entry site to link the genes within a single plasmid. We then evaluated the effects on osteoblastic differentiation in vitro and ectopic bone formation in vivo with a subcutaneously placed PLAGA scaffold loaded with a cloned mouse osteoprogenitor cell line, D1, transfected with plasmids containing VEGF and LMP-1 genes. The cells expressing both genes elevated mRNA expression of RunX2 and β-catenin and alkaline phosphatase activity compared to cells from other groups. In vivo, X-ray and micro-CT analysis of the retrieved implants revealed more ectopic bone formation at 2 and 3 weeks but not at 4 weeks compared to other groups. The results indicate that the combination of the therapeutic growth factors potentiates cell differentiation and may promote osteogenesis.
Meenhuis, Annemarie; van Veelen, Peter A.; de Looper, Hans; van Boxtel, Nicole; van den Berge, Iris J.; Sun, Su M.; Taskesen, Erdogan; Stern, Patrick; de Ru, Arnoud H.; van Adrichem, Arjan J.; Demmers, Jeroen; Jongen-Lavrencic, Mojca; Löwenberg, Bob; Touw, Ivo P.; Sharp, Phillip A.
2011-01-01
MicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here, we show that ectopic expression of miR-17, -20,-93 and -106, all AAAGUGC seed-containing miRNAs, increases proliferation, colony outgrowth and replating capacity of myeloid progenitors and results in enhanced P-ERK levels. We found that these miRNAs are endogenously and abundantly expressed in myeloid progenitors and down-regulated in mature neutrophils. Quantitative proteomics identified sequestosome 1 (SQSTM1), an ubiquitin-binding protein and regulator of autophagy-mediated protein degradation, as a major target for these miRNAs in myeloid progenitors. In addition, we found increased expression of Sqstm1 transcripts during CSF3-induced neutrophil differentiation of 32D-CSF3R cells and an inverse correlation of SQSTM1 protein levels and miR-106 expression in AML samples. ShRNA-mediated silencing of Sqstm1 phenocopied the effects of ectopic miR-17/20/93/106 expression in hematopoietic progenitors in vitro and in mice. Further, SQSTM1 binds to the ligand-activated colony-stimulating factor 3 receptor (CSF3R) mainly in the late endosomal compartment, but not in LC3 positive autophagosomes. SQSTM1 regulates CSF3R stability and ligand-induced mitogen-activated protein kinase signaling. We demonstrate that AAAGUGC seed-containing miRNAs promote cell expansion, replating capacity and signaling in hematopoietic cells by interference with SQSTM1-regulated pathways. PMID:21628417
Ampomah-Dwamena, Charles; Morris, Bret A.; Sutherland, Paul; Veit, Bruce; Yao, Jia-Long
2002-01-01
We have characterized the tomato (Lycopersicon esculentum Mill.) MADS box gene TM29 that shared a high amino acid sequence homology to the Arabidopsis SEP1, 2, and 3 (SEPALLATA1, 2, and 3) genes. TM29 showed similar expression profiles to SEP1, with accumulation of mRNA in the primordia of all four whorls of floral organs. In addition, TM29 mRNA was detected in inflorescence and vegetative meristems. To understand TM29 function, we produced transgenic tomato plants in which TM29 expression was down-regulated by either cosuppression or antisense techniques. These transgenic plants produced aberrant flowers with morphogenetic alterations in the organs of the inner three whorls. Petals and stamens were green rather than yellow, suggesting a partial conversion to a sepalloid identity. Stamens and ovaries were infertile, with the later developing into parthenocarpic fruit. Ectopic shoots with partially developed leaves and secondary flowers emerged from the fruit. These shoots resembled the primary transgenic flowers and continued to produce parthenocarpic fruit and additional ectopic shoots. Based on the temporal and spatial expression pattern and transgenic phenotypes, we propose that TM29 functions in floral organ development, fruit development, and maintenance of floral meristem identity in tomato. PMID:12376628
Liu, Zhixiong; Zhang, Dandan; Liu, Di; Li, Fenglan; Lu, Hai
2013-02-01
KEY MESSAGE : Two transcript isoforms of AGAMOUS homologs, from single and double flower Prunus lannesiana, respectively, showed different functions. The Arabidopsis floral homeotic C function gene AGAMOUS (AG) confers stamen and carpel identity. Loss of AG function results in homeotic conversions of stamens into petals and formation of double flowers. In order to present a molecular dissection of a double-flower cultivar in Prunus lannesiana (Rosaceae), we isolated and identified a single-copy gene, AG homolog from two genetically cognate P. lannesiana bearing single and double flowers, respectively. Sequence analysis revealed that the AG homolog, prseag-1, from double flowers showed a 170-bp exon skipping as compared to PrseAG (Prunus serrulata AGAMOUS) from the single flowers. Genomic DNA sequence revealed that abnormal splicing resulted in mutant prseag-1 protein with the C-terminal AG motifs I and II deletions. In addition, protein sequence alignment and phylogenetic analyses revealed that the PrseAG was grouped into the euAG lineage. A semi-quantitative PCR analysis showed that the expression of PrseAG was restricted to reproductive organs of stamens and carpels in single flowers of P. lannesiana 'speciosa', while the prseag-1 mRNA was highly transcribed throughout the petals, stamens, and carpels in double flowers from 'Albo-rosea'. The transgenic Arabidopsis containing 35S::PrseAG displayed extremely early flowering, bigger stamens and carpels and homeotic conversion of petals into staminoid organs, but ectopic expression of prseag-1 could not mimic the phenotypic ectopic expression of PrseAG in Arabidopsis. In general, this study provides evidences to show that double flower 'Albo-rosea' is a putative C functional ag mutant in P. lannesiana.
Spi-C has opposing effects to PU.1 on gene expression in progenitor B cells.
Schweitzer, Brock L; Huang, Kelly J; Kamath, Meghana B; Emelyanov, Alexander V; Birshtein, Barbara K; DeKoter, Rodney P
2006-08-15
The Ets transcription factor Spi-C, expressed in B cells and macrophages, is closely related to PU.1 and has the ability to recognize the same DNA consensus sequence. However, the function of Spi-C has yet to be determined. The purpose of this study is to further examine Spi-C activity in B cell development. First, using retroviral vectors to infect PU.1(-/-) fetal liver progenitors, Spi-C was found to be inefficient at inducing cytokine-dependent proliferation and differentiation of progenitor B (pro-B) cells or macrophages relative to PU.1 or Spi-B. Next, Spi-C was ectopically expressed in fetal liver-derived, IL-7-dependent pro-B cell lines. Wild-type (WT) pro-B cells ectopically expressing Spi-C (WT-Spi-C) have several phenotypic characteristics of pre-B cells such as increased CD25 and decreased c-Kit surface expression. In addition, WT-Spi-C pro-B cells express increased levels of IgH sterile transcripts and reduced levels of expression and transcription of the FcgammaRIIb gene. Gel-shift analysis suggests that Spi-C, ectopically expressed in pro-B cells, can bind PU.1 consensus sites in the IgH intronic enhancer and FcgammaRIIb promoter. Transient transfection analysis demonstrated that PU.1 functions to repress the IgH intronic enhancer and activate the FcgammaRIIb promoter, while Spi-C opposes these activities. WT-Spi-C pro-B cells have reduced levels of dimethylation on lysine 9 of histone H3 within the IgH 3' regulatory region, indicating that Spi-C can contribute to removal of repressive features in the IgH locus. Overall, these studies suggest that Spi-C may promote B cell differentiation by modulating the activity of PU.1-dependent genes.
Expression of GRIM-19 in adenomyosis and its possible role in pathogenesis.
Wang, Jing; Deng, Xiaohui; Yang, Yang; Yang, Xingsheng; Kong, Beihua; Chao, Lan
2016-04-01
To study the expression of the gene associated with retinoid-interferon (IFN)-induced mortality 19 (GRIM-19) in the endometrial tissue of patients with adenomyosis and to describe the possible pathogenic mechanisms of this phenomenon. Experimental study using human samples and cell lines. University-affiliated hospital. Ectopic and eutopic endometrial tissues were obtained from 30 patients with adenomyosis, whereas normal endometrial specimens were obtained from 10 control patients without adenomyosis. Patients with rapid pathology report-confirmed adenomyosis were recruited, and eutopic and ectopic endometrial tissue samples were collected from patients who had undergone hysterectomies by either the transabdominal or laparoscopic method at Qilu Hospital. Normal endometrial tissue was collected from a group of control patients without adenomyosis. Immunohistochemistry (IHC) was performed to evaluate the expression of GRIM-19, phospho-signal transducer and activator of transcription 3 (Y705) (Y705) (pSTAT3(Y705)), and vascular endothelial growth factor (VEGF) in endometrial tissue samples. The protein levels of GRIM-19, pSTAT3(Y705), STAT3, and VEGF were detected by Western blot. Apoptosis in endometrial specimens was assayed by TUNEL. Immunohistochemistry with an antibody directed against CD34 was performed to detect new blood vessels in the endometrial tissue. GRIM-19 small interfering RNA and a recombinant plasmid carrying GRIM-19 were constructed to evaluate the effects of GRIM-19 on the downstream factors pSTAT3(Y705), STAT3, and VEGF in Ishikawa cells. The expression of GRIM-19 was down-regulated in the eutopic endometria of patients with adenomyosis compared with the endometria of patients in the control group, and it was further reduced in the endometrial glandular epithelial cells of adenomyotic lesions. Apoptosis was reduced in the eutopic endometrium compared with the control group, and it was significantly reduced in ectopic endometrial tissues. In addition, the ectopic and eutopic endometria of patients with adenomyosis displayed a much higher microvessel density. In the eutopic and ectopic endometria of patients with adenomyosis, the expression levels of pSTAT3(Y705) and VEGF were significantly higher than in the controls. Furthermore, down-regulation of GRIM-19 in Ishikawa cells significantly promoted the activation of both pSTAT3(Y705) and its dependent gene VEGF. Aberrant expression of GRIM-19 may be associated with adenomyosis through the regulation of apoptosis and angiogenesis. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Evolutionary conservation of vertebrate notochord genes in the ascidian Ciona intestinalis.
Kugler, Jamie E; Passamaneck, Yale J; Feldman, Taya G; Beh, Jeni; Regnier, Todd W; Di Gregorio, Anna
2008-11-01
To reconstruct a minimum complement of notochord genes evolutionarily conserved across chordates, we scanned the Ciona intestinalis genome using the sequences of 182 genes reported to be expressed in the notochord of different vertebrates and identified 139 candidate notochord genes. For 66 of these Ciona genes expression data were already available, hence we analyzed the expression of the remaining 73 genes and found notochord expression for 20. The predicted products of the newly identified notochord genes range from the transcription factors Ci-XBPa and Ci-miER1 to extracellular matrix proteins. We examined the expression of the newly identified notochord genes in embryos ectopically expressing Ciona Brachyury (Ci-Bra) and in embryos expressing a repressor form of this transcription factor in the notochord, and we found that while a subset of the genes examined are clearly responsive to Ci-Bra, other genes are not affected by alterations in its levels. We provide a first description of notochord genes that are not evidently influenced by the ectopic expression of Ci-Bra and we propose alternative regulatory mechanisms that might control their transcription. Copyright 2008 Wiley-Liss, Inc.
Broeren, Mathijs G A; Di Ceglie, Irene; Bennink, Miranda B; van Lent, Peter L E M; van den Berg, Wim B; Koenders, Marije I; Blaney Davidson, Esmeralda N; van der Kraan, Peter M; van de Loo, Fons A J
2018-01-01
Tumor necrosis factor-inducible gene 6 (TSG-6) has anti-inflammatory and chondroprotective effects in mouse models of inflammatory arthritis. Because cartilage damage and inflammation are also observed in osteoarthritis (OA), we determined the effect of viral overexpression of TSG-6 in experimental osteoarthritis. Bone marrow-derived cells were differentiated to multinucleated osteoclasts in the presence of recombinant TSG-6 or after transduction with a lentiviral TSG-6 expression vector. Multi-nucleated osteoclasts were analyzed after tartrate resistant acid phosphatase staining and resorption activity was determined on dentin slices. Collagenase-induced osteoarthritis (CIOA) was induced in C57BL/6 mice after intra-articular injection of an adenoviral TSG-6 or control luciferase expression vector. Inflammation-related protease activity was measured using bioluminescent Prosense probes. After a second adenovirus injection, cartilage damage was assessed in histological sections stained with Safranin-O. Ectopic bone formation was scored in X-ray images of the affected knees. TSG-6 did not inhibit the formation of multi-nucleated osteoclasts, but caused a significant reduction in the resorption activity on dentin slices. Adenoviral TSG-6 gene therapy in CIOA could not reduce the cartilage damage compared to the luciferase control virus and no significant difference in inflammation-related protease activity was noted between the TSG-6 and control treated group. Instead, X-ray analysis and histological analysis revealed the presence of ectopic bone formation in the TSG-6 treated group. Gene therapy based on the expression of TSG-6 could not provide cartilage protection in experimental osteoarthritis, but instead resulted in increased ectopic bone formation.
Analysis of Expression Pattern and Genetic Deletion of Netrin5 in the Developing Mouse
Garrett, Andrew M.; Jucius, Thomas J.; Sigaud, Liam P. R.; Tang, Fu-Lei; Xiong, Wen-Cheng; Ackerman, Susan L.; Burgess, Robert W.
2016-01-01
Boundary cap cells (BCC) are a transient, neural-crest-derived population found at the motor exit point (MEP) and dorsal root entry zone (DREZ) of the embryonic spinal cord. These cells contribute to the central/peripheral nervous system (CNS/PNS) boundary, and in their absence neurons and glia from the CNS migrate into the PNS. We found Netrin5 (Ntn5), a previously unstudied member of the netrin gene family, to be robustly expressed in BCC. We generated Ntn5 knockout mice and examined neurodevelopmental and BCC-related phenotypes. No abnormalities in cranial nerve guidance, dorsal root organization, or sensory projections were found. However, Ntn5 mutant embryos did have ectopic motor neurons (MNs) that migrated out of the ventral horn and into the motor roots. Previous studies have implicated semaphorin6A (Sema6A) in BCC signaling to plexinA2 (PlxnA2)/neuropilin2 (Nrp2) in MNs in restricting MN cell bodies to the ventral horn, particularly in the caudal spinal cord. In Ntn5 mutants, ectopic MNs are likely to be a different population, as more ectopias were found rostrally. Furthermore, ectopic MNs in Ntn5 mutants were not immunoreactive for NRP2. The netrin receptor deleted in colorectal cancer (DCC) is a potential receptor for NTN5 in MNs, as similar ectopic neurons were found in Dcc mutant mice, but not in mice deficient for other netrin receptors. Thus, Ntn5 is a novel netrin family member that is expressed in BCC, functioning to prevent MN migration out of the CNS. PMID:26858598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klebig, M.L.; Woychik, R.P.; Wilkinson, J.E.
1994-09-01
The lethal yellow (A{sup y/-}) and viable yellow (A{sup vy/-}) mouse agouti mutants have a predominantly yellow pelage and display a complex syndrome that includes obesity, hyperinsulinemia, and insulin resistance, hallmark features of obesity-associated noninsulin-dependent diabetes mellitus (NIDDM) in humans. A new dominant agouti allele, A{sup iapy}, has recently been identified; like the A{sup vy} allele, it is homozygous viable and confers obesity and yellow fur in heterozygotes. The agouti gene was cloned and characterized at the molecular level. The gene is expressed in the skin during hair growth and is predicted to encode a 131 amino acid protein, thatmore » is likely to be a secreted factor. In both Ay/- and A{sup iapy}/- mice, the obesity and other dominant pleiotropic effects are associated with an ectopic expression of agouti in many tissues where the gene product is normally not produced. In Ay, a 170-kb deletion has occurred that causes an upstream promoter to drive the ectopic expression of the wild-type agouti coding exons. In A{sup iapy}, the coding region of the gene is expressed from a cryptic promoter within the LTR of an intracisternal A-particle (IAP), which has integrated within the region just upstream of the first agouti coding exon. Transgenic mice ubiquitously expressing the cloned agouti gene under the influence of the beta-actin and phosphoglycerate kinase promoters display obesity, hyperinsulinemia, and yellow coat color. This demonstrates unequivocally that ectopic expression of agouti is responsible for the yellow obese syndrome.« less
Zhang, Bing; Zhou, Wen-Jie; Gu, Chun-Jie; Wu, Ke; Yang, Hui-Li; Mei, Jie; Yu, Jia-Jun; Hou, Xiao-Fan; Sun, Jian-Song; Xu, Feng-Yuan; Li, Da-Jin; Jin, Li-Ping; Li, Ming-Qing
2018-05-14
Endometriosis (EMS) is an estrogen-dependent gynecological disease with a low autophagy level of ectopic endometrial stromal cells (eESCs). Impaired NK cell cytotoxic activity is involved in the clearance obstruction of the ectopic endometrial tissue in the abdominopelvic cavity. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides, which have profound biological functions, such as anti-cancer activities. However, the role and mechanism of ginsenosides and metabolites in endometriosis are completely unknown. Here, we found that the compounds PPD, PPT, ginsenoside-Rg3 (G-Rg3), ginsenoside-Rh2 (G-Rh2), and esculentoside A (EsA) led to significant decreases in the viability of eESCs, particularly PPD (IC50 = 30.64 µM). In vitro and in vivo experiments showed that PPD promoted the expression of progesterone receptor (PR) and downregulated the expression of estrogen receptor α (ERα) in eESCs. Treatment with PPD obviously induced the autophagy of eESCs and reversed the inhibitory effect of estrogen on eESC autophagy. In addition, eESCs pretreated with PPD enhanced the cytotoxic activity of NK cells in response to eESCs. PPD decreased the numbers and suppressed the growth of ectopic lesions in a mouse EMS model. These results suggest that PPD plays a role in anti-EMS activation, possibly by restricting estrogen-mediated autophagy regulation and enhancing the cytotoxicity of NK cells. This result provides a scientific basis for potential therapeutic strategies to treat EMS by PPD or further structural modification.
Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; de Wit, Elzo; Bouwman, Britta A M; Erpelinck, Claudia; van der Velden, Vincent H J; Havermans, Marije; Avellino, Roberto; van Lom, Kirsten; Rombouts, Elwin J; van Duin, Mark; Döhner, Konstanze; Beverloo, H Berna; Bradner, James E; Döhner, Hartmut; Löwenberg, Bob; Valk, Peter J M; Bindels, Eric M J; de Laat, Wouter; Delwel, Ruud
2014-04-10
Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome. Copyright © 2014 Elsevier Inc. All rights reserved.
PRDM1 expression on the epithelial component but not on ectopic lymphoid tissues of Warthin tumour.
Wang, Y; Zhou, J; Zhang, Y; Wang, L; Liu, Y; Fan, L; Zhu, J; Xu, X; Huang, G; Li, X; Xun, W
2015-05-01
To determine the role of PRDM1, a key molecule for modulating the immune cells, in Warthin tumour (WT) pathogenesis. Forty paraffin-embedded parotid tissues of patients (mean age: 62.08 ± 11.90) with WT were retrieved from the pathology archives of Qindu Hospital from January 2012 to December 2012. The PRDM1 expression was investigated in a cohort of WT by immunohistochemistry. PRDM1 was expressed only on the epithelial component but not on ectopic lymphoid tissue of the tumour. Statistically, PRDM1 expression rates between WT glandular epithelial cells (40/40 cases) and the tumour-adjacent tissues (0/9 cases), and WT germinal centres (0/34 cases) and tonsil tissues (10/10 cases) were significantly different (P < 0.001), respectively. The PRDM1 expression appeared to play an essential role in WT pathogenesis. A better understanding of it might give options for revealing possible novel management strategies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.
Tapia, Olga; Gerace, Larry
2016-01-01
We describe straightforward methodology for structure-function mapping of nuclear lamina proteins in myoblast differentiation, using populations of C2C12 myoblasts in which the endogenous lamina components are replaced with ectopically expressed mutant versions of the proteins. The procedure involves bulk isolation of C2C12 cell populations expressing the ectopic proteins by lentiviral transduction, followed by depletion of the endogenous proteins using siRNA, and incubation of cells under myoblast differentiation conditions. Similar methodology may be applied to mouse embryo fibroblasts or to other cell types as well, for the identification and characterization of sequences of lamina proteins involved in functions that can be measured biochemically or cytologically.
Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes.
Dahan, Tehila; Ziv, Oren; Horwitz, Elad; Zemmour, Hai; Lavi, Judith; Swisa, Avital; Leibowitz, Gil; Ashcroft, Frances M; In't Veld, Peter; Glaser, Benjamin; Dor, Yuval
2017-02-01
β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin + cells, gastrin expression in humans with T2D occurs in both insulin + and somatostatin + cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes. © 2017 by the American Diabetes Association.
Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes
Dahan, Tehila; Ziv, Oren; Horwitz, Elad; Zemmour, Hai; Lavi, Judith; Swisa, Avital; Leibowitz, Gil; Ashcroft, Frances M.; In’t Veld, Peter
2017-01-01
β-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of β-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin+ cells, gastrin expression in humans with T2D occurs in both insulin+ and somatostatin+ cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated β-cells after exposure to severe hyperglycemia. Gastrin expression in adult β-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of β-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human β-cell reprogramming in diabetes. PMID:27864307
Cidade, Luciana C; de Oliveira, Tahise M; Mendes, Amanda F S; Macedo, Amanda F; Floh, Eny I S; Gesteira, Abelmon S; Soares-Filho, Walter S; Costa, Marcio G C
2012-12-01
Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.
Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter
2006-09-01
The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p < 0.05). Bone formation decreased with the increasing length of the implantation period. Osteocalcin expression verified the osteoblastic character of the cell-seeded constructs after implantation time. No bone formation and no osteocalcin expression were found in the control groups. Cell-seeded constructs either with PHB embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.
Hunter, Michael P; Prince, Victoria E
2002-07-15
The pharyngeal arches are one of the defining features of the vertebrates, with the first arch forming the mandibles of the jaw and the second forming jaw support structures. The cartilaginous elements of each arch are formed from separate migratory neural crest cell streams, which derive from the dorsal aspect of the neural tube. The second and more posterior crest streams are characterized by specific Hox gene expression. The zebrafish has a larger overall number of Hox genes than the tetrapod vertebrates, as the result of a duplication event in its lineage. However, in both zebrafish and mouse, there are just two members of Hox paralogue group 2 (PG2): Hoxa2 and Hoxb2. Here, we show that morpholino-mediated "knock-down" of both zebrafish Hox PG2 genes results in major defects in second pharyngeal arch cartilages, involving replacement of ventral elements with a mirror-image duplication of first arch structures, and accompanying changes to pharyngeal musculature. In the mouse, null mutants of Hoxa2 have revealed that this single Hox gene is required for normal second arch patterning. By contrast, loss-of-function of either zebrafish Hox PG2 gene individually has no phenotypic consequence, showing that these two genes function redundantly to confer proper pattern to the second pharyngeal arch. We have also used hoxb1a mis-expression to induce localized ectopic expression of zebrafish Hox PG2 genes in the first arch; using this strategy, we find that ectopic expression of either Hox PG2 gene can confer second arch identity onto first arch structures, suggesting that the zebrafish Hox PG2 genes act as "selector genes." 2002 Elsevier Science (USA).
The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome.
Satou, Yorifumi; Miyazato, Paola; Ishihara, Ko; Yaguchi, Hiroko; Melamed, Anat; Miura, Michi; Fukuda, Asami; Nosaka, Kisato; Watanabe, Takehisa; Rowan, Aileen G; Nakao, Mitsuyoshi; Bangham, Charles R M
2016-03-15
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes malignant and inflammatory diseases in ∼10% of infected people. A typical host has between 10(4) and 10(5) clones of HTLV-1-infected T lymphocytes, each clone distinguished by the genomic integration site of the single-copy HTLV-1 provirus. The HTLV-1 bZIP (HBZ) factor gene is constitutively expressed from the minus strand of the provirus, whereas plus-strand expression, required for viral propagation to uninfected cells, is suppressed or intermittent in vivo, allowing escape from host immune surveillance. It remains unknown what regulates this pattern of proviral transcription and latency. Here, we show that CTCF, a key regulator of chromatin structure and function, binds to the provirus at a sharp border in epigenetic modifications in the pX region of the HTLV-1 provirus in T cells naturally infected with HTLV-1. CTCF is a zinc-finger protein that binds to an insulator region in genomic DNA and plays a fundamental role in controlling higher order chromatin structure and gene expression in vertebrate cells. We show that CTCF bound to HTLV-1 acts as an enhancer blocker, regulates HTLV-1 mRNA splicing, and forms long-distance interactions with flanking host chromatin. CTCF-binding sites (CTCF-BSs) have been propagated throughout the genome by transposons in certain primate lineages, but CTCF binding has not previously been described in present-day exogenous retroviruses. The presence of an ectopic CTCF-BS introduced by the retrovirus in tens of thousands of genomic locations has the potential to cause widespread abnormalities in host cell chromatin structure and gene expression.
Sundström, Jens; Engström, Peter
2002-07-01
The Norway spruce MADS-box genes DAL11, DAL12 and DAL13 are phylogenetically related to the angiosperm B-function MADS-box genes: genes that act together with A-function genes in specifying petal identity and with C-function genes in specifying stamen identity to floral organs. In this report we present evidence to suggest that the B-gene function in the specification of identity of the pollen-bearing organs has been conserved between conifers and angiosperms. Expression of DAL11 or DAL12 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expression of the endogenous B-genes. In similar experiments, flowers of Arabidopsis plants expressing DAL13 showed a different homeotic change in that they formed ectopic anthers in whorls one, two or four. We also demonstrate the capacity of the spruce gene products to form homodimers, and that DAL11 and DAL13 may form heterodimers with each other and with the Arabidopsis B-protein AP3, but not with PI, the second B-gene product in Arabidopsis. In situ hybridization experiments show that the conifer B-like genes are expressed specifically in developing pollen cones, but differ in both temporal and spatial distribution patterns. These results suggest that the B-function in conifers is dual and is separated into a meristem identity and an organ identity function, the latter function possibly being independent of an interaction with the C-function. Thus, even though an ancestral B-function may have acted in combination with C to specify micro- and megasporangia, the B-function has evolved differently in conifers and angiosperms.
The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus.
Soukup, Vladimir; Kozmik, Zbynek
2018-02-01
Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus. Copyright © 2017 Elsevier Inc. All rights reserved.
New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian.
Kanska, Justyna; Frank, Uri
2013-07-15
Nanos is a pan-metazoan germline marker, important for germ cell development and maintenance. In flies, Nanos also acts in posterior and neural development, but these functions have not been demonstrated experimentally in other animals. Using the cnidarian Hydractinia we have uncovered novel roles for Nanos in neural cell fate determination. Ectopic expression of Nanos2 increased the numbers of embryonic stinging cell progenitors, but decreased the numbers of neurons. Downregulation of Nanos2 had the opposite effect. Furthermore, Nanos2 blocked maturation of committed, post-mitotic nematoblasts. Hence, Nanos2 acts as a switch between two differentiation pathways, increasing the numbers of nematoblasts at the expense of neuroblasts, but preventing nematocyte maturation. Nanos2 ectopic expression also caused patterning defects, but these were not associated with deregulation of Wnt signaling, showing that the basic anterior-posterior polarity remained intact, and suggesting that numerical imbalance between nematocytes and neurons might have caused these defects, affecting axial patterning only indirectly. We propose that the functions of Nanos in germ cells and in neural development are evolutionarily conserved, but its role in posterior patterning is an insect or arthropod innovation.
Galardi, Silvia; Mercatelli, Neri; Giorda, Ezio; Massalini, Simone; Frajese, Giovanni Vanni; Ciafrè, Silvia Anna; Farace, Maria Giulia
2007-08-10
MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional level and are deeply involved in the pathogenesis of several types of cancers. Here we show that miR-221 and miR-222, encoded in tandem on chromosome X, are overexpressed in the PC3 cellular model of aggressive prostate carcinoma, as compared with LNCaP and 22Rv1 cell line models of slowly growing carcinomas. In all cell lines tested, we show an inverse relationship between the expression of miR-221 and miR-222 and the cell cycle inhibitor p27(Kip1). We recognize two target sites for the microRNAs in the 3' untranslated region of p27 mRNA, and we show that miR-221/222 ectopic overexpression directly results in p27 down-regulation in LNCaP cells. In those cells, we demonstrate that the ectopic overexpression of miR-221/222 strongly affects their growth potential by inducing a G(1) to S shift in the cell cycle and is sufficient to induce a powerful enhancement of their colony-forming potential in soft agar. Consistently, miR-221 and miR-222 knock-down through antisense LNA oligonucleotides increases p27(Kip1) in PC3 cells and strongly reduces their clonogenicity in vitro. Our results suggest that miR-221/222 can be regarded as a new family of oncogenes, directly targeting the tumor suppressor p27(Kip1), and that their overexpression might be one of the factors contributing to the oncogenesis and progression of prostate carcinoma through p27(Kip1) down-regulation.
Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing
2007-02-01
Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.
Lovisetto, Alessandro; Baldan, Barbara; Pavanello, Anna; Casadoro, Giorgio
2015-07-16
The involvement of MADS-box genes of the AGAMOUS lineage in the formation of both flowers and fruits has been studied in detail in Angiosperms. AGAMOUS genes are expressed also in the reproductive structures of Gymnosperms, yet the demonstration of their role has been problematic because Gymnosperms are woody plants difficult to manipulate for physiological and genetic studies. Recently, it was shown that in the gymnosperm Ginkgo biloba an AGAMOUS gene was expressed throughout development and ripening of the fleshy fruit-like structures produced by this species around its seeds. Such fleshy structures are evolutionarily very important because they favor the dispersal of seeds through endozoochory. In this work a characterization of the Ginkgo gene was carried out by over-expressing it in tomato. In tomato plants ectopically expressing the Ginkgo AGAMOUS gene a macroscopic anomaly was observed only in the flower sepals. While the wild type sepals had a leaf-like appearance, the transgenic ones appeared connately adjoined at their proximal extremity and, concomitant with the development and ripening of the fruit, they became thicker and acquired a yellowish-orange color, thus indicating that they had undergone a homeotic transformation into carpel-like structures. Molecular analyses of several genes associated with either the control of ripening or the ripening syndrome in tomato fruits confirmed that the transgenic sepals behaved like ectopic fruits that could undergo some ripening, although the red color typical of the ripe tomato fruit was never achieved. The ectopic expression of the Ginkgo AGAMOUS gene in tomato caused the homeotic transformation of the transgenic sepals into carpel-like structures, and this showed that the gymnosperm gene has a genuine C function. In parallel with the ripening of fruits the related transgenic sepals became fleshy fruit-like structures that also underwent some ripening and such a result indicates that this C function gene might be involved, together with other gens, also in the development of the Ginkgo fruit-like structures. It seems thus strengthened the hypothesis that AGAMOUS MADS-box genes were recruited already in Gymnosperms for the development of the fleshy fruit habit which is evolutionarily so important for the dispersal of seeds.
Köllmer, Ireen; Werner, Tomáš; Schmülling, Thomas
2011-08-15
The plant hormone cytokinin rapidly alters the steady state transcript levels of a number of transcription factor genes suggesting that these might have a function in mediating cytokinin effects. Here we report the analysis of Arabidopsis thaliana plants with an altered expression level of four different cytokinin-regulated transcription factor genes. These include GATA22 (also known as CGA1/GNL), two genes coding for members of the homeodomain zip (HD zip) class II transcription factor family (HAT4, HAT22), and bHLH64. Ectopic expression of the GATA22 gene induced the development of chloroplasts in root tissue where it is normally suppressed and led to the formation of shorter and less branched roots. Overexpression of HAT22 lowered the seedlings chlorophyll content and caused an earlier onset of leaf senescence. Enhanced expression of the HAT4 gene led to severe defects in inflorescence stem development and to a decrease in root growth and branching, while hat4 insertional mutants developed a larger root system. 35S:bHLH64 transgenic plants showed a pleiotropic phenotype, consisting of larger rosettes, reduced chlorophyll content and an elongated and thickened hypocotyl. Flower development was strongly disturbed leading to sterile plants. The results are consistent with specific functions of these transcription factor genes in regulating part of the cytokinin activities and suggest their action as convergence point with other signalling pathways, particularly those of gibberellin and light. Copyright © 2011 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Shao, G.; Piao, C.; Hei, T.
Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate
Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira
2016-10-13
PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.
Zhou, Xiangjun; Fei, Zhangjun; Thannhauser, Theodore W; Li, Li
2011-11-23
Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.
2011-01-01
Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant. PMID:22112144
The peripheral nervous system supports blood cell homing and survival in the Drosophila larva
Makhijani, Kalpana; Alexander, Brandy; Tanaka, Tsubasa; Rulifson, Eric; Brückner, Katja
2011-01-01
Interactions of hematopoietic cells with their microenvironment control blood cell colonization, homing and hematopoiesis. Here, we introduce larval hematopoiesis as the first Drosophila model for hematopoietic colonization and the role of the peripheral nervous system (PNS) as a microenvironment in hematopoiesis. The Drosophila larval hematopoietic system is founded by differentiated hemocytes of the embryo, which colonize segmentally repeated epidermal-muscular pockets and proliferate in these locations. Importantly, we show that these resident hemocytes tightly colocalize with peripheral neurons and we demonstrate that larval hemocytes depend on the PNS as an attractive and trophic microenvironment. atonal (ato) mutant or genetically ablated larvae, which are deficient for subsets of peripheral neurons, show a progressive apoptotic decline in hemocytes and an incomplete resident hemocyte pattern, whereas supernumerary peripheral neurons induced by ectopic expression of the proneural gene scute (sc) misdirect hemocytes to these ectopic locations. This PNS-hematopoietic connection in Drosophila parallels the emerging role of the PNS in hematopoiesis and immune functions in vertebrates, and provides the basis for the systematic genetic dissection of the PNS-hematopoietic axis in the future. PMID:22071105
Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre
2014-12-01
Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis.
Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Kristiansson, Helena; Duke, Cindy M. P.; Choe, Gina; Flannery, Clare; Kallen, Caleb B.
2014-01-01
Background: Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3′-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. Objective: The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Methods: Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. Results: We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Conclusions: Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis. PMID:25140393
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Qishan; Bag, Jnanankur
2006-02-17
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including {alpha}-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of themore » MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis.« less
Miao, Weimin; XuFeng, Richard; Park, Moo-Rim; Gu, Haihui; Hu, Linping; Kang, Jin Wook; Ma, Shihui; Liang, Paulina H; Li, Yanxin; Cheng, Haizi; Yu, Hui; Epperly, Michael; Greenberger, Joel; Cheng, Tao
2013-01-01
High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo. PMID:23295952
Jeon, Yeong Ha; Park, Yong Hwan; Lee, Jea Hwang; Hong, Jeong-Ho; Kim, Ick Young
2014-07-01
Selenoprotein W (SelW) is expressed in various tissues, particularly in skeletal muscle. We have previously reported that SelW is up-regulated during C2C12 skeletal muscle differentiation and inhibits binding of 14-3-3 to its target proteins. 14-3-3 reduces myogenic differentiation by inhibiting nuclear translocation of transcriptional co-activator with PDZ-binding motif (TAZ). Phosphorylation of TAZ at Ser89 is required for binding to 14-3-3, leading to cytoplasmic retention of TAZ and a delay in myogenic differentiation. Here, we show that myogenic differentiation was delayed in SelW-knockdown C2C12 cells. Down-regulation of SelW also increased TAZ binding to 14-3-3, which eventually resulted in decreasing translocation of TAZ to the nucleus. However, phosphorylation of TAZ at Ser89 was not affected. Although phosphorylation of TAZ at Ser89 was sustained by the phosphatase inhibitor okadaic acid, nuclear translocation of TAZ was increased by ectopic expression of SelW. This result was due to decreased binding of TAZ to 14-3-3. We also found that the interaction between TAZ and MyoD was increased by ectopic expression of SelW. Taken together, these findings strongly demonstrate that SelW enhances C2C12 cell differentiation by inhibiting TAZ binding to 14-3-3. Copyright © 2014 Elsevier B.V. All rights reserved.
Humby, Frances; Bombardieri, Michele; Manzo, Antonio; Kelly, Stephen; Blades, Mark C; Kirkham, Bruce; Spencer, Jo; Pitzalis, Costantino
2009-01-13
Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium. Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Igamma-Cmu circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were closely associated with circulating human IgG ACPA in mouse sera. Finally, the survival and proliferation of functional B cell niches was associated with persistent overexpression of genes regulating ectopic lymphoneogenesis. Our demonstration that FDC+ follicular units invariably express AID and are surrounded by ACPA-producing plasma cells provides strong evidence that ectopic lymphoid structures in the RA synovium are functional and support autoantibody production. This concept is further confirmed by evidence of sustained AID expression, B cell proliferation, ongoing CSR, and production of human IgG ACPA from GC+ synovial tissue transplanted into SCID mice, independently of new B cell influx from the systemic circulation. These data identify AID as a potential therapeutic target in RA and suggest that survival of functional synovial B cell niches may profoundly influence chronic inflammation, autoimmunity, and response to B cell-depleting therapies.
FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension
Eash, John; Olsen, Aaron; Breur, Gert; Gerrard, Dave; Hannon, Kevin
2007-01-01
Background Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs) and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. Methods We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. Results We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. Conclusion These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight. PMID:17425786
Development of functional ectopic compound eyes in scarabaeid beetles by knockdown of orthodenticle.
Zattara, Eduardo E; Macagno, Anna L M; Busey, Hannah A; Moczek, Armin P
2017-11-07
Complex traits like limbs, brains, or eyes form through coordinated integration of diverse cell fates across developmental space and time, yet understanding how complexity and integration emerge from uniform, undifferentiated precursor tissues remains limited. Here, we use ectopic eye formation as a paradigm to investigate the emergence and integration of novel complex structures following massive ontogenetic perturbation. We show that down-regulation via RNAi of a single head patterning gene- orthodenticle -induces ectopic structures externally resembling compound eyes at the middorsal adult head of both basal and derived scarabaeid beetle species (Onthophagini and Oniticellini). Scanning electron microscopy documents ommatidial organization of these induced structures, while immunohistochemistry reveals the presence of rudimentary ommatidial lenses, crystalline cones, and associated neural-like tissue within them. Further, RNA-sequencing experiments show that after orthodenticle down-regulation, the transcriptional signature of the middorsal head-the location of ectopic eye induction-converges onto that of regular compound eyes, including up-regulation of several retina-specific genes. Finally, a light-aversion behavioral assay to assess functionality reveals that ectopic compound eyes can rescue the ability to respond to visual stimuli when wild-type eyes are surgically removed. Combined, our results show that knockdown of a single gene is sufficient for the middorsal head to acquire the competence to ectopically generate a functional compound eye-like structure. These findings highlight the buffering capacity of developmental systems, allowing massive genetic perturbations to be channeled toward orderly and functional developmental outcomes, and render ectopic eye formation a widely accessible paradigm to study the evolution of complex systems. Published under the PNAS license.
Daniele, Giulia; Simonetti, Giorgia; Fusilli, Caterina; Iacobucci, Ilaria; Lonoce, Angelo; Palazzo, Antonio; Lomiento, Mariana; Mammoli, Fabiana; Marsano, Renè Massimiliano; Marasco, Elena; Mantovani, Vilma; Quentmeier, Hilmar; Drexler, Hans G; Ding, Jie; Palumbo, Orazio; Carella, Massimo; Nadarajah, Niroshan; Perricone, Margherita; Ottaviani, Emanuela; Baldazzi, Carmen; Testoni, Nicoletta; Papayannidis, Cristina; Ferrari, Sergio; Mazza, Tommaso; Martinelli, Giovanni; Storlazzi, Clelia Tiziana
2017-01-01
We here describe a leukemogenic role of the homeobox gene UNCX, activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX-positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1, was revealed. Similar results were obtained in UNCX-transduced CD34+ cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1. We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX, associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML. PMID:28411256
Daniele, Giulia; Simonetti, Giorgia; Fusilli, Caterina; Iacobucci, Ilaria; Lonoce, Angelo; Palazzo, Antonio; Lomiento, Mariana; Mammoli, Fabiana; Marsano, Renè Massimiliano; Marasco, Elena; Mantovani, Vilma; Quentmeier, Hilmar; Drexler, Hans G; Ding, Jie; Palumbo, Orazio; Carella, Massimo; Nadarajah, Niroshan; Perricone, Margherita; Ottaviani, Emanuela; Baldazzi, Carmen; Testoni, Nicoletta; Papayannidis, Cristina; Ferrari, Sergio; Mazza, Tommaso; Martinelli, Giovanni; Storlazzi, Clelia Tiziana
2017-07-01
We here describe a leukemogenic role of the homeobox gene UNCX , activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX -positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1 , was revealed. Similar results were obtained in UNCX -transduced CD34 + cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1 We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX , associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML. Copyright© 2017 Ferrata Storti Foundation.
Ii, Hisataka; Warraich, Sumeeta; Tenn, Neil; Quinonez, Diana; Holdsworth, David W; Hammond, James R; Dixon, S Jeffrey; Séguin, Cheryle A
2016-09-01
Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Spontaneous endometriosis in a mandrill (Mandrillus sphinx).
Nakamura, S; Ochiai, K; Ochi, A; Ito, M; Kamiya, T; Yamamoto, H
2012-01-01
A 25-year-old female mandrill (Mandrillus sphinx) died after exhibiting weakness and recumbency with serosanguineous ascites. Gross findings included haemoperitoneum and multifocal to diffuse serosal thickening with petechiae and ecchymoses throughout the peritoneum. The uterus was covered entirely with large blood clots and was adherent to the ovaries and pelvic wall. Microscopical and immunohistochemical examination revealed extra- and intra-uterine growth of ectopic endometrial tissue with marked fibrosis. The ectopic endometrial tissues predominantly consisted of stromal cells expressing CD10 and progesterone receptor and variably-sized glands lined by the epithelium with occasional slight expression of oestrogen receptor α. A diagnosis of endometriosis was made. This is the first report of naturally occurring endometriosis in a mandrill. Copyright © 2012 Elsevier Ltd. All rights reserved.
Artmann, L; Larsen, H J; Sørensen, H B; Christensen, I J; Kjaer, I
2010-06-01
To analyze the interrelationship between incisor width, deviations in the dentition and available space in the dental arch in palatally and labially located maxillary ectopic canine cases. Size: On dental casts from 69 patients (mean age 13 years 6 months) the mesiodistal widths of each premolar, canine and incisor were measured and compared with normal standards. Dental deviations: Based on panoramic radiographs from the same patients the dentitions were grouped accordingly: Group I: normal morphology; Group IIa: deviations in the dentition within the maxillary incisors only; Group IIb: deviations in the dentition in general. Descriptive statistics for the tooth sizes and dental deviations were presented by the mean and 95% confidence limits for the mean and the p-value for the T-statistic. Space: Space was expresses by subtracting the total tooth sizes of incisors, canines and premolars from the length of the arch segments. Size of lateral maxillary incisor: The widths of the lateral incisors were significantly different in groups I, IIa and IIb (p=0.016) and in cases with labially located ectopic canines on average 0.65 (95% CI:0.25-1.05, p=0.0019) broader than lateral incisors in cases with palatally located ectopic canines. Space: Least available space was observed in cases with labially located canines. The linear model did show a difference between palatally and labially located ectopic canines (p=0.03). Space related to deviations in the dentition: When space in the dental arch was related to dental deviations (groups I, IIa and IIb), the cases in group IIb with palatally located canines had significantly more space compared with I and IIa. Two subgroups of palatally located ectopic maxillary canine cases based on registration of space, incisor width and deviations in the morphology of the dentition were identified.
Growth inhibition mediated by PSP94 or CRISP-3 is prostate cancer cell line specific.
Pathak, Bhakti R; Breed, Ananya A; Nakhawa, Vaishali H; Jagtap, Dhanashree D; Mahale, Smita D
2010-09-01
The prostate secretory protein of 94 amino acids (PSP94) has been shown to interact with cysteine-rich secretory protein 3 (CRISP-3) in human seminal plasma. Interestingly, PSP94 expression is reduced or lost in the majority of the prostate tumours, whereas CRISP-3 expression is upregulated in prostate cancer compared with normal prostate tissue. To obtain a better understanding of the individual roles these proteins have in prostate tumourigenesis and the functional relevance of their interaction, we ectopically expressed either PSP94 or CRISP-3 alone or PSP94 along with CRISP-3 in three prostate cell lines (PC3, WPE1-NB26 and LNCaP) and performed growth inhibition assays. Reverse transcription-polymerase chain reaction and Western blot analysis were used to screen prostate cell lines for PSP94 and CRISP-3 expression. Mammalian expression constructs for human PSP94 and CRISP-3 were also generated and the expression, localization and secretion of recombinant protein were assayed by transfection followed by Western blot analysis and immunofluorescence assay. The effect that ectopic expression of PSP94 or CRISP-3 had on cell growth was studied by clonogenic survival assay following transfection. To evaluate the effects of co-expression of the two proteins, stable clones of PC3 that expressed PSP94 were generated. They were subsequently transfected with a CRISP-3 expression construct and subjected to clonogenic survival assay. Our results showed that PSP94 and CRISP-3 could each induce growth inhibition in a cell line specific manner. Although the growth of CRISP-3-positive cell lines was inhibited by PSP94, growth inhibition mediated by CRISP-3 was not affected by the presence or absence of PSP94. This suggests that CRISP-3 may participate in PSP94-independent activities during prostate tumourigenesis.
Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.
Fryer, J P; Oetting, W S; Brott, M J; King, R A
2001-11-01
We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.
Inferior ectopic pupil and typical ocular coloboma in RCS rats.
Tsuji, Naho; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro
2011-08-01
Ocular coloboma is sometimes accompanied by corectopia in humans and therefore ectopic pupil may indicate ocular coloboma in experimental animals. The RCS strain of rats has a low incidence of microphthalmia. We found that inferior ectopic pupil is associated exclusively with small-sized eyes in this strain. The objective of the current study was to evaluate whether inferior ectopic pupil is associated with iridal coloboma and other types of ocular coloboma in RCS rats. Both eyes of RCS rats were examined clinically, and those with inferior ectopic pupils underwent morphologic and morphometric examinations. In a prenatal study, coronal serial sections of eyeballs from fetuses at gestational day 16.5 were examined by using light microscopy. Ectopic pupils in RCS rats were found exclusively in an inferior position, where the iris was shortened. Fundic examination revealed severe chorioretinal coloboma in all cases of inferior ectopic pupil. The morphologic characteristics closely resembled those of chorioretinal coloboma in humans. Histopathologic examination of primordia showed incomplete closure of the optic fissure in 4 eyeballs of RCS fetuses. Neither F(1) rats nor N(2) (progeny of RCS × BN matings) displayed any ocular anomalies, including ectopic pupils. The RCS strain is a suitable model for human ocular coloboma, and inferior ectopic pupil appears to be a strong indicator of ocular coloboma.
Inferior Ectopic Pupil and Typical Ocular Coloboma in RCS Rats
Tsuji, Naho; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro
2011-01-01
Ocular coloboma is sometimes accompanied by corectopia in humans and therefore ectopic pupil may indicate ocular coloboma in experimental animals. The RCS strain of rats has a low incidence of microphthalmia. We found that inferior ectopic pupil is associated exclusively with small-sized eyes in this strain. The objective of the current study was to evaluate whether inferior ectopic pupil is associated with iridal coloboma and other types of ocular coloboma in RCS rats. Both eyes of RCS rats were examined clinically, and those with inferior ectopic pupils underwent morphologic and morphometric examinations. In a prenatal study, coronal serial sections of eyeballs from fetuses at gestational day 16.5 were examined by using light microscopy. Ectopic pupils in RCS rats were found exclusively in an inferior position, where the iris was shortened. Fundic examination revealed severe chorioretinal coloboma in all cases of inferior ectopic pupil. The morphologic characteristics closely resembled those of chorioretinal coloboma in humans. Histopathologic examination of primordia showed incomplete closure of the optic fissure in 4 eyeballs of RCS fetuses. Neither F1 rats nor N2 (progeny of RCS × BN matings) displayed any ocular anomalies, including ectopic pupils. The RCS strain is a suitable model for human ocular coloboma, and inferior ectopic pupil appears to be a strong indicator of ocular coloboma. PMID:22330254
Kim, Sung-Hee; Yoon, Yeo Cho; Lee, Ae Sin; Kang, NaNa; Koo, JaeHyung; Rhyu, Mee-Ra; Park, Jae-Ho
2015-05-01
ORs are ectopically expressed in non-chemosensory tissues including muscle, kidney, and keratinocytes; however, their physiological roles are largely unknown. We found that human olfactory receptor 10J5 (OR10J5) is expressed in the human aorta, coronary artery, and umbilical vein endothelial cells (HUVEC). Lyral induces Ca(2+) and phosphorylation of AKT in HUVEC. A knockdown study showed the inhibition of the lyral-induced Ca(2+) and the phosphorylation AKT and implied that these processes are mediated by OR10J5. In addition, lyral enhanced migration of HUVEC, which were also inhibited by RNAi in a migration assay. In addition, matrigel plug assay showed that lyral enhanced angiogenesis in vivo. Together these data demonstrate the physiological role of OR10J5 in angiogenesis and represent roles of ORs in HUVEC cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Feichtinger, Julia; Larcombe, Lee; McFarlane, Ramsay J
2014-05-15
Evidence is starting to emerge indicating that tumorigenesis in metazoans involves a soma-to-germline transition, which may contribute to the acquisition of neoplastic characteristics. Here, we have meta-analyzed gene expression profiles of the human orthologs of Drosophila melanogaster germline genes that are ectopically expressed in l(3)mbt brain tumors using gene expression datasets derived from a large cohort of human tumors. We find these germline genes, some of which drive oncogenesis in D. melanogaster, are similarly ectopically activated in a wide range of human cancers. Some of these genes normally have expression restricted to the germline, making them of particular clinical interest. Importantly, these analyses provide additional support to the emerging model that proposes a soma-to-germline transition is a general hallmark of a wide range of human tumors. This has implications for our understanding of human oncogenesis and the development of new therapeutic and biomarker targets with clinical potential. © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.
Endometrial Expression of Steroidogenic Factor 1 Promotes Cystic Glandular Morphogenesis
Vasquez, Yasmin M.; Wu, San-Pin; Anderson, Matthew L.; Hawkins, Shannon M.; Creighton, Chad J.; Ray, Madhumita; Tsai, Sophia Y.; Tsai, Ming-Jer; Lydon, John P.
2016-01-01
Epigenetic silencing of steroidogenic factor 1 (SF1) is lost in endometriosis, potentially contributing to de novo local steroidogenesis favoring inflammation and growth of ectopic endometrial tissue. In this study, we examine the impact of SF1 expression in the eutopic uterus by a novel mouse model that conditionally expresses SF1 in endometrium. In vivo SF1 expression promoted the development of enlarged endometrial glands and attenuated estrogen and progesterone responsiveness. Endometriosis induction by autotransplantation of uterine tissue to the mesenteric membrane resulted in the increase in size of ectopic lesions from SF1-expressing mice. By integrating the SF1-dependent transcriptome with the whole genome binding profile of SF1, we identified uterine-specific SF1-regulated genes involved in Wingless and Progesterone receptor-Hedgehog-Chicken ovalbumin upstream promoter transcription factor II signaling for gland development and epithelium-stroma interaction, respectively. The present results indicate that SF1 directly contributes to the abnormal uterine gland morphogenesis, an inhibition of steroid hormone signaling and activation of an immune response, in addition to previously postulated estrogen production. PMID:27018534
Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans.
Xiang, Qijun; Judelson, Howard S
2014-01-01
Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.
Myb Transcription Factors and Light Regulate Sporulation in the Oomycete Phytophthora infestans
Xiang, Qijun; Judelson, Howard S.
2014-01-01
Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision. PMID:24704821
Ma, Rendi; Yuan, Hali; An, Jing; Hao, Xiaoyun; Li, Hongbin
2018-01-01
GDSL lipase (GLIP) plays a pivotal role in plant cell growth as a multifunctional hydrolytic enzyme. Herein, a cotton (Gossypium hirsutum L. cv Xuzhou 142) GDSL lipase gene (GhGLIP) was obtained from developing ovules and fibers. The GhGLIP cDNA contained an open reading frame (ORF) of 1,143 base pairs (bp) and encodes a putative polypeptide of 380 amino acid residues. Sequence alignment indicated that GhGLIP includes four enzyme catalytic amino acid residue sites of Ser (S), Gly (G), Asn (N) and His (H), located in four conserved blocks. Phylogenetic tree analysis showed that GhGLIP belongs to the typical class IV lipase family with potential functions in plant secondary metabolism. Subcellular distribution analysis demonstrated that GhGLIP localized to the nucleus, cytoplasm and plasma membrane. GhGLIP was expressed predominantly at 5-15 day post anthesis (dpa) in developing ovules and elongating fibers, measured as mRNA levels and enzyme activity. Ectopic overexpression of GhGLIP in Arabidopsis plants resulted in enhanced seed development, including length and fresh weight. Meanwhile, there was increased soluble sugar and protein storage in transgenic Arabidopsis plants, coupled with the promotion of lipase activity. Moreover, the expression of cotton GhGLIP is induced by ethylene (ETH) treatment in vitro. A 1,954-bp GhGLIP promoter was isolated and expressed high activity in driving green fluorescence protein (GFP) expression in tobacco leaves. Cis-acting element analysis of the GhGLIP promoter (pGhGLIP) indicated the presence of an ethylene-responsive element (ERE), and transgenic tobacco leaves with ectopic expression of pGhGLIP::GFP-GUS showed increased GUS activity after ETH treatment. In summary, these results suggest that GhGLIP is a functional enzyme involved in ovule and fiber development and performs significant roles in seed development.
An, Jing; Hao, Xiaoyun
2018-01-01
GDSL lipase (GLIP) plays a pivotal role in plant cell growth as a multifunctional hydrolytic enzyme. Herein, a cotton (Gossypium hirsutum L. cv Xuzhou 142) GDSL lipase gene (GhGLIP) was obtained from developing ovules and fibers. The GhGLIP cDNA contained an open reading frame (ORF) of 1,143 base pairs (bp) and encodes a putative polypeptide of 380 amino acid residues. Sequence alignment indicated that GhGLIP includes four enzyme catalytic amino acid residue sites of Ser (S), Gly (G), Asn (N) and His (H), located in four conserved blocks. Phylogenetic tree analysis showed that GhGLIP belongs to the typical class IV lipase family with potential functions in plant secondary metabolism. Subcellular distribution analysis demonstrated that GhGLIP localized to the nucleus, cytoplasm and plasma membrane. GhGLIP was expressed predominantly at 5–15 day post anthesis (dpa) in developing ovules and elongating fibers, measured as mRNA levels and enzyme activity. Ectopic overexpression of GhGLIP in Arabidopsis plants resulted in enhanced seed development, including length and fresh weight. Meanwhile, there was increased soluble sugar and protein storage in transgenic Arabidopsis plants, coupled with the promotion of lipase activity. Moreover, the expression of cotton GhGLIP is induced by ethylene (ETH) treatment in vitro. A 1,954-bp GhGLIP promoter was isolated and expressed high activity in driving green fluorescence protein (GFP) expression in tobacco leaves. Cis-acting element analysis of the GhGLIP promoter (pGhGLIP) indicated the presence of an ethylene-responsive element (ERE), and transgenic tobacco leaves with ectopic expression of pGhGLIP::GFP-GUS showed increased GUS activity after ETH treatment. In summary, these results suggest that GhGLIP is a functional enzyme involved in ovule and fiber development and performs significant roles in seed development. PMID:29621331
P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta
2005-06-01
36, 2001. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL. TGFbeta enhances epithelial cell survival via Akt - dependent regulation of FKHRLI. Mol Biol... Akt mediates cell-cycle progression by phosphorylation of p27Kip’ at threonine 157 and modulation of its cellular localization. Nat Med 8:1145-1152...stress fibers. Ectopic- expression and siRNA experiments show that Smad3 and Smad4 mediate up-regulation of tropomyosins and stress fiber formation
Akie, Thomas E; Liu, Lijun; Nam, Minwoo; Lei, Shi; Cooper, Marcus P
2015-01-01
OXPHOS is believed to play an important role in non-alcoholic fatty liver disease (NAFLD), however, precise mechanisms whereby OXPHOS influences lipid homeostasis are incompletely understood. We previously reported that ectopic expression of LRPPRC, a protein that increases cristae density and OXPHOS, promoted fatty acid oxidation in cultured primary hepatocytes. To determine the biological significance of that observation and define underlying mechanisms, we have ectopically expressed LRPPRC in mouse liver in the setting of NAFLD. Interestingly, ectopic expression of LRPPRC in mouse liver completely interdicted NAFLD, including inflammation. Consistent with mitigation of NAFLD, two markers of hepatic insulin resistance--ROS and PKCε activity--were both modestly reduced. As reported by others, improvement of NAFLD was associated with improved whole-body insulin sensitivity. Regarding hepatic lipid homeostasis, the ratio of NAD+ to NADH was dramatically increased in mouse liver replete with LRPPRC. Pharmacological activators and inhibitors of the cellular respiration respectively increased and decreased the [NAD+]/[NADH] ratio, indicating respiration-mediated control of the [NAD+]/[NADH] ratio. Supporting a prominent role for NAD+, increasing the concentration of NAD+ stimulated complete oxidation of fatty acids. Importantly, NAD+ rescued impaired fatty acid oxidation in hepatocytes deficient for either OXPHOS or SIRT3. These data are consistent with a model whereby augmented hepatic OXPHOS increases NAD+, which in turn promotes complete oxidation of fatty acids and protects against NAFLD.
Castanotto, Daniela; Sakurai, Kumi; Lingeman, Robert; Li, Haitang; Shively, Louise; Aagaard, Lars; Soifer, Harris; Gatignol, Anne; Riggs, Arthur; Rossi, John J.
2007-01-01
Despite the great potential of RNAi, ectopic expression of shRNA or siRNAs holds the inherent risk of competition for critical RNAi components, thus altering the regulatory functions of some cellular microRNAs. In addition, specific siRNA sequences can potentially hinder incorporation of other siRNAs when used in a combinatorial approach. We show that both synthetic siRNAs and expressed shRNAs compete against each other and with the endogenous microRNAs for transport and for incorporation into the RNA induced silencing complex (RISC). The same siRNA sequences do not display competition when expressed from a microRNA backbone. We also show that TAR RNA binding protein (TRBP) is one of the sensors for selection and incorporation of the guide sequence of interfering RNAs. These findings reveal that combinatorial siRNA approaches can be problematic and have important implications for the methodology of expression and use of therapeutic interfering RNAs. PMID:17660190
Uchida, Okiko; Nakano, Hiroyuki; Koga, Makoto; Ohshima, Yasumi
2003-04-01
Chemotaxis to water-soluble chemicals such as NaCl is an important behavior of C. elegans when seeking food. ASE chemosensory neurons have a major role in this behavior. We show that che-1, defined by chemotaxis defects, encodes a zinc-finger protein similar to the GLASS transcription factor required for photoreceptor cell differentiation in Drosophila, and that che-1 is essential for specification and function of ASE neurons. Expression of a che-1::gfp fusion construct was predominant in ASE. In che-1 mutants, expression of genes characterizing ASE such as seven-transmembrane receptors, guanylate cyclases and a cyclic-nucleotide gated channel is lost. Ectopic expression of che-1 cDNA induced expression of ASE-specific marker genes, a dye-filling defect in neurons other than ASE and dauer formation.
Zhang, Xinyu; Ma, Caihong; Wu, Zhangxin; Tao, Liyuan; Li, Rong; Liu, Ping; Qiao, Jie
2017-01-01
To evaluate the risk of ectopic pregnancy of embryo transfer. A retrospective cohort study on the incidence of ectopic pregnancy in fresh and frozen-thawed embryo transfer cycles from January 1 st , 2010, to January 1 st , 2015. Infertile women undergoing frozen-thawed transfer cycles or fresh transfer cycles. In-vitro fertilization, fresh embryo transfer, frozen-thawed embryo transfer, ectopic pregnancy. Ectopic pregnancy rate and clinical pregnancy rate. A total of 69 756 in vitro fertilization-embryo transfer cycles from 2010 to 2015 were analyzed, including 45 960 (65.9%) fresh and 23 796 (34.1%) frozen-thawed embryo transfer cycles. The clinical pregnancy rate per embryo transfer was slightly lower in fresh embryo transfer cycles compared with frozen-thawed embryo transfer cycles (40.8% vs 43.1%, P < .001). Frozen-thawed embryo transfer is associated with a lower incidence of ectopic pregnancy per clinical pregnancy, compared with fresh embryo transfers (odds ratio = 0.31; 95% confidence interval = 0.24-0.39). Female age and body mass index have no influence on ectopic pregnancy. In the frozen-thawed embryo transfer cycles, blastocyst transfer shows a significantly lower incidence of ectopic pregnancy (0.8% vs 1.8%, P = .002) in comparison with day 3 cleavage embryo transfer. The risk of ectopic pregnancy is lower in frozen-thawed embryo transfer cycles than fresh embryo transfer cycles, and blastocyst transfer could further decrease the ectopic pregnancy rate in frozen-thawed embryo transfer cycles.
Zhang, Gui-Zhi; Jin, Shang-Hui; Li, Pan; Jiang, Xiao-Yi; Li, Yan-Jie; Hou, Bing-Kai
2017-12-01
Ectopic expression of auxin glycosyltransferase UGT84A2 in Arabidopsis can delay flowering through increased indole-3-butyric acid and suppressed transcription of ARF6, ARF8 and flowering-related genes FT, SOC1, AP1 and LFY. Auxins are critical regulators for plant growth and developmental processes. Auxin homeostasis is thus an important issue for plant biology. Here, we identified an indole-3-butyric acid (IBA)-specific glycosyltransferase, UGT84A2, and characterized its role in Arabidopsis flowering development. UGT84A2 could catalyze the glycosylation of IBA, but not indole-3-acetic acid (IAA). UGT84A2 transcription expression was clearly induced by IBA. When ectopically expressing in Arabidopsis, UGT84A2 caused obvious delay in flowering. Correspondingly, the increase of IBA level, the down-regulation of AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, and the down-regulation of flowering-related genes such as FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1), APETALA1 (AP1), and LEAFY(LFY) were observed in transgenic plants. When exogenously applying IBA to wild-type plants, the late flowering phenotype, the down-regulation of ARF6, ARF8 and flowering-related genes recurred. We examined the arf6arf8 double mutants and found that the expression of flowering-related genes was also substantially decreased in these mutants. Together, our results suggest that glycosyltransferase UGT84A2 may be involved in flowering regulation through indole-3-butyric acid-mediated transcriptional repression of ARF6, ARF8 and downstream flowering pathway genes.
Portelli, M; Pollacco, J; Sacco, K; Schembri-Wismayer, P; Calleja-Agius, J
2011-12-01
Endometriosis occurs when ectopic cells from the endometrium implant within the peritoneum. It is considered as a disease of multifactorial aetiology and affects 7-10% of women of reproductive age worldwide. In endometriosis, the immune system is thought to be dysfunctional and various studies have shown cytokine imbalance. Commonly upregulated cytokines include Tumour necrosis factor-alpha, interferon gamma and interleukin-10. Through analysis of the molecular makeup of the peritoneal fluid, a change is shown to occur, conferring resistance from macrophages and lymphocytes to endometrial cells. This is possibly due to a reduced Inter-cellular adhesion molecule-1 synthesis. Survival of ectopic endometrial cells also arises through the expression of human leukocyte antigens. Apart from the survival of ectopic/eutopic cells in endometriosis, there is marked cellular proliferation, which has also been attributed to a change in the expression of proteins such as Bcl-2-Associated X protein, B-cell lymphoma-2 protein, transforming growth factor-beta and the enzyme aromatase. Danazol and aromatase inhibitors modulate the immune system, thus allowing partial restoration of cytokine levels. Pharmacogenomics may be the way forward in developing novel treatment modalities for endometriosis.
Honda, Kotaro; Tomooka, Yasuhiro
2016-10-01
An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.
Supradiaphragmatic ectopic liver: delayed traumatic hepatic hernia mimics pulmonary tumor.
Huang, C-S; Hsu, W-H; Hsia, C-Y
2007-06-01
We present a rare case of a 63-year-old woman, the oldest one in the literature, with supradiaphragmatic ectopic liver that mimics a pulmonary nodule. The chest roentgenogram and chest computer tomography showed a lobulated tumor nearby the diaphragm. Pathological examination of the resected tumor disclosed only remarkable fatty liver change. Ectopic liver should be kept in mind to differentiate for the pulmonary tumor nearby the diaphragm.
The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.
Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I
2016-02-15
Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Valente, Anthony J.; Yoshida, Tadashi; Izadpanah, Reza; Delafontaine, Patrice; Siebenlist, Ulrich; Chandrasekar, Bysani
2013-01-01
We investigated the role of TRAF3 interacting protein 2 (TRAF3IP2), a redox-sensitive adapter protein and an upstream regulator of IKK and JNK in interleukin (IL)-18 induced smooth muscle cell migration, and the mechanism of its inhibition by simvastatin. The pleiotropic cytokine IL-18 induced human coronary artery SMC migration through the induction of TRAF3IP2. IL-18 induced Nox1-dependent ROS generation, TRAF3IP2 expression, and IKK/NF-κB and JNK/AP-1 activation. IL-18 induced its own expression and that of its receptor subunit IL-18Rα. Using co-IP/IB and GST pull-down assays, we show for the first time that the subunits of the IL-18R heterodimer physically associate with Nox1 under basal conditions, and IL-18 appears to enhance their binding. Importantly, the HMG-coA reductase inhibitor simvastatin attenuated IL-18-induced TRAF3IP2 induction. These inhibitory effects were reversed by mevalonate and geranylgeranylpyrophosphate (GGPP), but not by farnesylpyrophosphate (FPP). Interestingly, simvastatin, GGPP, FPP, or Rac1 inhibition did not modulate ectopically expressed TRAF3IP2. The promigratory effects of IL-18 are mediated through TRAF3IP2 in a redox-sensitive manner, and this may involve IL-18R/Nox1 physical association. Further, Simvastatin inhibits inducible, but not ectopically-expressed TRAF3IP2. Targeting TRAF3IP2 may blunt progression of hyperplastic vascular diseases in vivo. PMID:23541442
Peng, F; Jiang, J; Yu, Y; Tian, R; Guo, X; Li, X; Shen, M; Xu, M; Zhu, F; Shi, C; Hu, J; Wang, M; Qin, R
2013-01-01
Background: The multidrug resistance and distant metastasis of cholangiocarcinoma result in high postoperative recurrence and low long-term survival rates. It has been demonstrated that the ectopic expression of miR-200 suppresses the multidrug resistance and metastasis of cancer. However, the expression and function of miR-200 in cholangiocarcinoma has not yet been described. Methods: In this study, we identified dysregulated microRNAs (miRNAs, miR) in cholangiocarcinoma tissue by microarray analysis, and subsequent real-time PCR and northern blot analyses validated the expression of candidate miR. We performed functional analyses and investigated the relationship between miR-200b/c expression and the properties of cholangiocarcinoma cells. A dual luciferase assay was applied to examine the effect of miRNAs on the 3′-UTR of target genes, and we demonstrated the function of the target gene by siRNA transfection identifying the downstream pathway via western blotting. Results: We found significantly downregulated expression of four miR-200 family members (miR-200a/b/c/429) and then confirmed that ectopic miR-200b/200c inhibits the migration and invasion of cholangiocarcinoma cells both in vitro and in vivo. We found that miR-200b/c influenced the tumourigenesis of cholangiocarcinoma cells including their tumour-initiating capacity, sphere formation, and drug resistance. We further found that miR-200b/c regulated migration and invasion capacities by directly targeting rho-kinase 2 and regulated tumorigenic properties by directly targeting SUZ12 (a subunit of a polycomb repressor complex). Conclusion: Our study shows that miR-200b/c has a critical role in the regulation of the tumorigenic and metastatic capacity of cholangiocarcinoma and reveals the probable underlying mechanisms. PMID:24169343
Chi, Hsiang-Cheng; Chen, Shen-Liang; Cheng, Yi-Hung; Lin, Tzu-Kang; Tsai, Chung-Ying; Tsai, Ming-Ming; Lin, Yang-Hsiang; Huang, Ya-Hui; Lin, Kwang-Huei
2016-01-01
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and systemic chemotherapy is the major treatment strategy for late-stage HCC patients. Poor prognosis following chemotherapy is the general outcome owing to recurrent resistance. Recent studies have suggested that in addition to cytotoxic effects on tumor cells, chemotherapy can induce an alternative cascade that supports tumor growth and metastasis. In the present investigation, we showed that thyroid hormone (TH), a potent hormone-mediating cellular differentiation and metabolism, acts as an antiapoptosis factor upon challenge of thyroid hormone receptor (TR)-expressing HCC cells with cancer therapy drugs, including cisplatin, doxorubicin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TH/TR signaling promoted chemotherapy resistance through negatively regulating the pro-apoptotic protein, Bim, resulting in doxorubicin-induced metastasis of chemotherapy-resistant HCC cells. Ectopic expression of Bim in hepatoma cells challenged with chemotherapeutic drugs abolished TH/TR-triggered apoptosis resistance and metastasis. Furthermore, Bim expression was directly transactivated by Forkhead box protein O1 (FoxO1), which was negatively regulated by TH/TR. TH/TR suppressed FoxO1 activity through both transcriptional downregulation and nuclear exclusion of FoxO1 triggered by Akt-mediated phosphorylation. Ectopic expression of the constitutively active FoxO1 mutant, FoxO1-AAA, but not FoxO1-wt, diminished the suppressive effect of TH/TR on Bim. Our findings collectively suggest that expression of Bim is mediated by FoxO1 and indirectly downregulated by TH/TR, leading to chemotherapy resistance and doxorubicin-promoted metastasis of hepatoma cells. PMID:27490929
Wang, Yanqiang; Luo, Chenglong; Liu, Ranran; Qu, Hao; Shu, Dingming; Wen, Jie; Crooijmans, Richard P. M. A.; Zhao, Yiqiang; Hu, Xiaoxiang; Li, Ning
2016-01-01
Muffs and beard (Mb) is a phenotype in chickens where groups of elongated feathers gather from both sides of the face (muffs) and below the beak (beard). It is an autosomal, incomplete dominant phenotype encoded by the Muffs and beard (Mb) locus. Here we use genome-wide association (GWA) analysis, linkage analysis, Identity-by-Descent (IBD) mapping, array-CGH, genome re-sequencing and expression analysis to show that the Mb allele causing the Mb phenotype is a derived allele where a complex structural variation (SV) on GGA27 leads to an altered expression of the gene HOXB8. This Mb allele was shown to be completely associated with the Mb phenotype in nine other independent Mb chicken breeds. The Mb allele differs from the wild-type mb allele by three duplications, one in tandem and two that are translocated to that of the tandem repeat around 1.70 Mb on GGA27. The duplications contain total seven annotated genes and their expression was tested during distinct stages of Mb morphogenesis. A continuous high ectopic expression of HOXB8 was found in the facial skin of Mb chickens, strongly suggesting that HOXB8 directs this regional feather-development. In conclusion, our results provide an interesting example of how genomic structural rearrangements alter the regulation of genes leading to novel phenotypes. Further, it again illustrates the value of utilizing derived phenotypes in domestic animals to dissect the genetic basis of developmental traits, herein providing novel insights into the likely role of HOXB8 in feather development and differentiation. PMID:27253709
GLI1-mediated regulation of side population is responsible for drug resistance in gastric cancer
Yu, Beiqin; Gu, Dongsheng; Zhang, Xiaoli; Li, Jianfang; Liu, Bingya; Xie, Jingwu
2017-01-01
Gastric cancer is the third leading cause of cancer-related mortality worldwide. Chemotherapy is frequently used for gastric cancer treatment. Most patients with advanced gastric cancer eventually succumb to the disease despite some patients responded initially to chemotherapy. Thus, identifying molecular mechanisms responsible for cancer relapse following chemotherapy will help design new ways to treat gastric cancer. In this study, we revealed that the residual cancer cells following treatment with chemotherapeutic reagent cisplatin have elevated expression of hedgehog target genes GLI1, GLI2 and PTCH1, suggestive of hedgehog signaling activation. We showed that GLI1 knockdown sensitized gastric cancer cells to CDDP whereas ectopic GLI1 expression decreased the sensitivity. Further analyses indicate elevated GLI1 expression is associated with an increase in tumor sphere formation, side population and cell surface markers for putative cancer stem cells. We have evidence to support that GLI1 is critical for maintenance of putative cancer stem cells through direct regulation of ABCG2. In fact, GLI1 protein was shown to be associated with the promoter fragment of ABCG2 through a Gli-binding consensus site in gastric cancer cells. Disruption of ABCG2 function, through ectopic expression of an ABCG2 dominant negative construct or a specific ABCG2 inhibitor, increased drug sensitivity of cancer cells both in culture and in mice. The relevance of our studies to gastric cancer patient care is reflected by our discovery that high ABCG2 expression was associated with poor survival in the gastric cancer patients who underwent chemotherapy. Taken together, we have identified a molecular mechanism by which gastric cancer cells gain chemotherapy resistance. PMID:28404967
Ye, Xia; Fu, Mengmeng; Liu, Yu; An, Dongliang; Zheng, Xianbo; Tan, Bin; Li, Jidong; Cheng, Jun; Wang, Wei; Feng, Jiancan
2018-05-04
Ethylene plays an important role in the grape rachis, where its production can be 10 times higher than in the berry. VvACS1 is the only rachis-specific ACC synthase (ACS) gene, and its expression is coincident with ethylene production in the rachis of Vitis vinifera 'Thompson seedless'. VvACS1 was cloned and ectopically expressed in tomato (Solanum lycopersicum 'Moneymaker'). Lateral buds were increased in two- or four-week-old 35s∷VvACS1 transgenic tomato plants after transplanting. Compared with wild-type (WT) plants, the transgenic tomato plants showed higher expression of the VvACS1 gene in the flowers, leaves, rachis, and fruits. There was no obvious difference of ACS activity in the fruit of tomato, and only increased ACS activity in the rachis of tomato. Ethylene production was decreased in flowers, leaves, and fruits (seven weeks after full bloom), while the relative expression of endogenous tomato ACS1 and ACS6 genes was not down-regulated by the ectopic expression of VvACS1. These results imply that post-transcriptional or post-translational regulation of ACS may occur, resulting in lower ethylene production in the transgenic tomato plants. Moreover, expression of VvACS1 in tomato resulted in decreased auxin and increased zeatin contents in the lateral buds, as well as reduced or delayed formation of adventitious roots in lateral bud cuttings. RNA-Seq and qRT-PCR analyses of rooted lateral bud cuttings indicated that the relative expression levels of the genes for zeatin O-glucosyltransferase-like, auxin repressed/dormancy-associated protein, and ERF transcription factors were higher in transgenic tomatoes than in WT, suggesting that ethylene may regulate auxin transport and distribution in shoots and that adventitious root formation employs coordination between auxin and ethylene. Copyright © 2018 Elsevier GmbH. All rights reserved.
Takeda, M; Saito, Y; Sekine, R; Onitsuka, I; Maeda, R; Maéno, M
2000-06-01
We demonstrated previously that Xmsx-1 is involved in mesoderm patterning along the dorso-ventral axis, under the regulation of BMP-4 signaling. When Xmsx-1 RNA was injected into the dorsal blastomeres, a mass of muscle tissue formed instead of notochord. This activity was similar to that of Xwnt-8 reported previously. In this study, we investigated whether the activity of Xmsx-1 is related to the ventralizing signal and myogenesis promoting factor, Xwnt-8. Whole-mount in situ hybridization showed that Xmsx-1, Xwnt-8, and XmyoD were expressed in overlapping areas, including the ventro-lateral marginal zone at mid-gastrula stage. The expression of XmyoD was induced by the ectopic expression of either Xmsx-1 or Xwnt-8 in dorsal blastomeres, and Xwnt-8 was induced by the ectopic expression of Xmsx-1. On the other hand, the expression of Xmsx-1 was not affected by the loading of pCSKA-Xwnt-8 or dominant-negative Xwnt-8 (DN-Xwnt-8) RNA. In addition, Xmsx-1 RNA did not abrogate the formation of notochord if coinjected with DN-Xwnt-8 RNA. These results suggest that Xmsx-1 functions upstream of the Xwnt-8 signal. Furthermore, the antagonistic function of Xmsx-1 to the expression of organizer genes, such as Xlim-1 and goosecoid, was shown by in situ hybridization analysis and luciferase reporter assay using the goosecoid promoter construct. Finally if Xmsx-1/VP-16 fusion RNA, which was expected to function as a dominant-negative Xmsx-1, was injected into ventral blastomeres, a partial secondary axis formed in a significant number of embryos. In such embryos, the activity of luciferase, under the control of goosecoid promoter sequence, was significantly elevated at gastrula stage. These results led us to conclude that Xmsx-1 plays a central role in establishing dorso-ventral axis in gastrulating embryo, by suppressing the expression of organizer genes.
Elwell, Jennifer A.; Lovato, TyAnna L.; Adams, Melanie M.; Baca, Erica M.; Lee, Thai; Cripps, Richard M.
2015-01-01
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arise through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist expression in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. PMID:25704510
Çeliker, Metin; Beyazal Çeliker, Fatma; Turan, Arzu; Beyazal, Mehmet; Beyazal Polat, Hatice
2015-01-01
Ectopic thyroid can be encountered anywhere between the base of tongue and pretracheal region. The most common form is euthyroid neck mass. Herein, we aimed to present the findings of a female case with ectopic thyroid tissue localized in the left submandibular region. A 44-year-old female patient, who underwent bilateral subtotal thyroidectomy four years ago with the diagnosis of multinodular goiter, was admitted to our hospital due to a mass localized in the left submandibular area that gradually increased in the last six months. Neck ultrasonography, contrast-enhanced computed tomography, and scintigraphic examination were performed on the patient. On thyroid scintigraphy with Tc-99m pertechnetate, thyroid tissue activity uptake showing massive radioactivity was observed in the normal localization of the thyroid gland and in the submandibular localization. The focus in the submandibular region was excised. Pathological examination of the specimen showed normal thyroid follicle cells with no signs of malignancy. The submandibular mass is a rarely encountered lateral ectopic thyroid tissue. Accordingly, ectopic thyroid tissue should also be considered in the differential diagnosis of masses in the submandibular region. PMID:26634164
Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.
Kupiec, M; Steinlauf, R
1997-06-09
Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.
Gene Therapy for Diabetes Mellitus in Rats by Hepatic Expression of Insulin
NASA Astrophysics Data System (ADS)
Kolodka, Tadeusz M.; Finegold, Milton; Moss, Larry; Woo, Savio L. C.
1995-04-01
Type 1 diabetes mellitus is caused by severe insulin deficiency secondary to the autoimmune destruction of pancreatic β cells. Patients need to be controlled by periodic insulin injections to prevent the development of ketoacidosis, which can be fatal. Sustained, low-level expression of the rat insulin 1 gene from the liver of severely diabetic rats was achieved by in vivo administration of a recombinant retroviral vector. Ketoacidosis was prevented and the treated animals exhibited normoglycemia during a 24-hr fast, with no evidence of hypoglycemia. Histopathological examination of the liver in the treated animals showed no apparent abnormalities. Thus, the liver is an excellent target organ for ectopic expression of the insulin gene as a potential treatment modality for type 1 diabetes mellitus by gene therapy.
Auffenberg, Eva; Jurik, Angela; Mattusch, Corinna; Stoffel, Rainer; Genewsky, Andreas; Namendorf, Christian; Schmid, Roland M.; Rammes, Gerhard; Biel, Martin; Uhr, Manfred; Moosmang, Sven; Michalakis, Stylianos; Wotjak, Carsten T.; Thoeringer, Christoph K.
2016-01-01
Manipulating the function of neurons and circuits that translate electrical and chemical signals into behavior represents a major challenges in neuroscience. In addition to optogenetic methods using light-activatable channels, pharmacogenetic methods with ligand induced modulation of cell signaling and excitability have been developed. However, they are largely based on ectopic expression of exogenous or chimera proteins. Now, we describe the remote and reversible expression of a Kir2.1 type potassium channel using the chemogenetic technique of small molecule induced protein stabilization. Based on shield1-mediated shedding of a destabilizing domain fused to a protein of interest and inhibition of protein degradation, this principle has been adopted for biomedicine, but not in neuroscience so far. Here, we apply this chemogenetic approach in brain research for the first time in order to control a potassium channel in a remote and reversible manner. We could show that shield1-mediated ectopic Kir2.1 stabilization induces neuronal silencing in vitro and in vivo in the mouse brain. We also validated this novel pharmacogenetic method in different neurobehavioral paradigms.The DD-Kir2.1 may complement the existing portfolio of pharmaco- and optogenetic techniques for specific neuron manipulation, but it may also provide an example for future applications of this principle in neuroscience research. PMID:26757616
Drosophila nemo is an essential gene involved in the regulation of programmed cell death.
Mirkovic, Ivana; Charish, Kristi; Gorski, Sharon M; McKnight, Kristen; Verheyen, Esther M
2002-11-01
Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development. Copyright 2002 Elsevier Science Ireland Ltd.
Expression of Notch pathway genes in mammalian epidermis and modulation by beta-catenin.
Ambler, Carrie A; Watt, Fiona M
2007-06-01
The Notch pathway is required for hair follicle maintenance and is activated through beta-catenin induced transcription of the Notch ligand Jagged1. We show that hair follicles in the resting phase express low levels of Jagged1 and Hes1, and other Notch target genes are undetectable. In growing (anagen) follicles, Jagged1 and Hes1 expression increases, Hes5 and HeyL are expressed in distinct cell layers, and Hey2 is expressed in the dermal papilla. When beta-catenin is activated by means of an inducible transgene, Jagged1, Hes1, Hes5, HeyL, and Hey2 are up-regulated, the sites of expression being the same in beta-catenin induced ectopic follicles as in anagen follicles. beta-Catenin also induces Hey1 in dermal papilla cells. beta-Catenin-induced up-regulation of Jagged1 precedes induction of other Notch target genes. The different sites of expression of Hes and Hey genes suggest input from additional signaling pathways. Copyright 2007 Wiley-Liss, Inc.
Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate
Bain, Virginia E.; Gordon, Julie; O'Neil, John D.; Ramos, Isaias; Richie, Ellen R.
2016-01-01
The thymus and parathyroids develop from third pharyngeal pouch (3rd pp) endoderm. Our previous studies show that Shh null mice have smaller, aparathyroid primordia in which thymus fate specification extends into the pharynx. SHH signaling is active in both dorsal pouch endoderm and neighboring neural crest (NC) mesenchyme. It is unclear which target tissue of SHH signaling is required for the patterning defects in Shh mutants. Here, we used a genetic approach to ectopically activate or delete the SHH signal transducer Smo in either pp endoderm or NC mesenchyme. Although no manipulation recapitulated the Shh null phenotype, manipulation of SHH signaling in either the endoderm or NC mesenchyme had direct and indirect effects on both cell types during fate specification and organogenesis. SHH pathway activation throughout pouch endoderm activated ectopic Tbx1 expression and partially suppressed the thymus-specific transcription factor Foxn1, identifying Tbx1 as a key target of SHH signaling in the 3rd pp. However, ectopic SHH signaling was insufficient to expand the GCM2-positive parathyroid domain, indicating that multiple inputs, some of which might be independent of SHH signaling, are required for parathyroid fate specification. These data support a model in which SHH signaling plays both positive and negative roles in patterning and organogenesis of the thymus and parathyroids. PMID:27633995
Zhou, Shengtao; Yi, Tao; Liu, Rui; Bian, Ce; Qi, Xiaorong; He, Xiang; Wang, Kui; Li, Jingyi; Zhao, Xia; Huang, Canhua; Wei, Yuquan
2012-01-01
Adenomyosis is a common estrogen-dependent disorder of females characterized by a downward extension of the endometrium into the uterine myometrium and neovascularization in ectopic lesions. It accounts for chronic pelvic pain, dysmenorrhea, menorrhagia, and infertility in 8.8–61.5% women worldwide. However, the molecular mechanisms for adenomyosis development remain poorly elucidated. Here, we utilized a two-dimensional polyacrylamide gel electrophoresis/MS-based proteomics analysis to compare and identify differentially expressed proteins in matched ectopic and eutopic endometrium of adenomyosis patients. A total of 93 significantly altered proteins were identified by tandem MS analysis. Further cluster analysis revealed a group of estrogen-responsive proteins as dysregulated in adenomyosis, among which annexin A2, a member of annexin family proteins, was found up-regulated most significantly in the ectopic endometrium of adenomyosis compared with its eutopic counterpart. Overexpression of ANXA2 was validated in ectopic lesions of human adenomyosis and was found to be tightly correlated with markers of epithelial to mesenchymal transition and dysmenorrhea severity of adenomyosis patients. Functional analysis demonstrated that estrogen could remarkably up-regulate ANXA2 and induce epithelial to mesenchymal transition in an in vitro adenomyosis model. Enforced expression of ANXA2 could mediate phenotypic mesenchymal-like cellular changes, with structural and functional alterations in a β-catenin/T-cell factor (Tcf) signaling-associated manner, which could be reversed by inhibition of ANXA2 expression. We also proved that enforced expression of ANXA2 enhanced the proangiogenic capacity of adenomyotic endometrial cells through HIF-1α/VEGF-A pathway. In vivo, we demonstrated that ANXA2 inhibition abrogated endometrial tissue growth, metastasis, and angiogenesis in an adenomyosis nude mice model and significantly alleviated hyperalgesia. Taken together, our data unraveled a dual role for ANXA2 in the pathogenesis of human adenomyosis through conferring endometrial cells both metastatic potential and proangiogenic capacity, which could serve as a potential therapeutic target for the treatment of adenomyosis patients. PMID:22493182
MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2
2010-01-01
Background Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. Results We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. Conclusions MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer. PMID:20409325
Du, William W; Yang, Weining; Chen, Yu; Wu, Zhong-Kai; Foster, Francis Stuart; Yang, Zhenguo; Li, Xiangmin; Yang, Burton B
2017-05-07
Circular RNAs are a subclass of non-coding RNAs detected within mammalian cells. This study was designed to test the roles of a circular RNA circ-Foxo3 in senescence using in vitro and in vivo approaches. Using the approaches of molecular and cellular biology, we show that a circular RNA generated from a member of the forkhead family of transcription factors, Foxo3, namely circ-Foxo3, was highly expressed in heart samples of aged patients and mice, which was correlated with markers of cellular senescence. Doxorubicin-induced cardiomyopathy was aggravated by ectopic expression of circ-Foxo3 but was relieved by silencing endogenous circ-Foxo3. We also found that silencing circ-Foxo3 inhibited senescence of mouse embryonic fibroblasts and that ectopic expression of circ-Foxo3 induced senescence. We found that circ-Foxo3 was mainly distributed in the cytoplasm, where it interacted with the anti-senescent protein ID-1 and the transcription factor E2F1, as well as the anti-stress proteins FAK and HIF1α. We conclude that ID-1, E2F1, FAK, and HIF1α interact with circ-Foxo3 and are retained in the cytoplasm and could no longer exert their anti-senescent and anti-stress roles, resulting in increased cellular senescence. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Msx2 Prevents Stratified Squamous Epithelium Formation in the Enamel Organ.
Nakatomi, M; Ida-Yonemochi, H; Nakatomi, C; Saito, K; Kenmotsu, S; Maas, R L; Ohshima, H
2018-06-01
Tooth enamel is manufactured by the inner enamel epithelium of the multilayered enamel organ. Msx2 loss-of-function mutation in a mouse model causes an abnormal accumulation of epithelial cells in the enamel organ, but the underlying mechanism by which Msx2 regulates amelogenesis is poorly understood. We therefore performed detailed histological and molecular analyses of Msx2 null mice. Msx2 null ameloblasts and stratum intermedium (SI) cells differentiated normally in the early stages of amelogenesis. However, during subsequent developmental stages, the outer enamel epithelium (OEE) became highly proliferative and transformed into a keratinized stratified squamous epithelium that ectopically expressed stratified squamous epithelium markers, including Heat shock protein 25, Loricrin, and Keratin 10. Moreover, expression of hair follicle-specific keratin genes such as Keratin 26 and Keratin 73 was upregulated in the enamel organ of Msx2 mutants. With the accumulation of keratin in the stellate reticulum (SR) region and subsequent odontogenic cyst formation, SI cells gradually lost the ability to differentiate, and the expression of Sox2 and Notch1 was downregulated, leading to ameloblast depolarization. As a consequence, the organization of the Msx2 mutant enamel organ became disturbed and enamel failed to form in the normal location. Instead, there was ectopic mineralization that likely occurred within the SR. In summary, we show that during amelogenesis, Msx2 executes a bipartite function, repressing the transformation of OEE into a keratinized stratified squamous epithelium while simultaneously promoting the development of a properly differentiated enamel organ competent for enamel formation.
Galardi, Silvia; Mercatelli, Neri; Farace, Maria G.; Ciafrè, Silvia A.
2011-01-01
MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription. PMID:21245048
DDM1 represses noncoding RNA expression and RNA-directed DNA methylation in heterochromatin.
Tan, Feng; Lu, Yue; Jiang, Wei; Zhao, Yu; Wu, Tian; Zhang, Ruoyu; Zhou, Dao-Xiu
2018-05-24
Cytosine methylation of DNA, which occurs at CG, CHG, and CHH (H=A, C, or T) sequences in plants, is a hallmark for epigenetic repression of repetitive sequences. The chromatin remodeling factor DECREASE IN DNA METHYLATION1 (DDM1) is essential for DNA methylation, especially at CG and CHG sequences. However, its potential role in RNA-directed DNA methylation (RdDM) and in chromatin function is not completely understood in rice (Oryza sativa). In this work, we used high-throughput approaches to study the function of rice DDM1 (OsDDM1) in RdDM and the expression of non-coding RNA (ncRNA). We show that loss of function of OsDDM1 results in ectopic CHH methylation of transposable elements and repeats. The ectopic CHH methylation was dependent on rice DOMAINS REARRANGED METHYLTRANSFERASE2 (OsDRM2), a DNA methyltransferase involved in RdDM. Mutations in OsDDM1 lead to decreases of histone H3K9me2 and increases in the levels of heterochromatic small RNA (sRNA) and long noncoding RNA (lncRNA). In particular, OsDDM1 was found to be essential to repress transcription of the two repetitive sequences, Centromeric Retrotransposons of Rice1 (CRR1) and the dominant centromeric CentO repeats. These results suggest that OsDDM1 antagonizes RdDM at heterochromatin and represses tissue-specific expression of ncRNA from repetitive sequences in the rice genome. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda
2014-01-01
DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766
USDA-ARS?s Scientific Manuscript database
Transgenic cotton lines that ectopically express a cotton germin-like protein (ABP) were screened for resistance/tolerance factors to the beet armyworm (BAW) Spodoptera exigua (Hubner) via feeding assays. The number of BAW eggs that successfully hatched was not statistically different at 72 h observ...
Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice.
Wolff, G L; Kodell, R L; Moore, S R; Cooney, C A
1998-08-01
'Viable yellow' (Avy/a) mice are larger, obese, hyperinsulinemic, more susceptible to cancer, and, on average, shorter lived than their non-yellow siblings. They are epigenetic mosaics ranging from a yellow phenotype with maximum ectopic agouti overexpression, through a continuum of mottled agouti/yellow phenotypes with partial agouti overexpression, to a pseudoagouti phenotype with minimal ectopic expression. Pseudoagouti Avy/a mice are lean, healthy, and longer lived than their yellow siblings. Here we report that feeding pregnant black a/a dams methyl-supplemented diets alters epigenetic regulation of agouti expression in their offspring, as indicated by increased agouti/black mottling in the direction of the pseudoagouti phenotype. We also present confirmatory evidence that epigenetic phenotypes are maternally heritable. Thus Avy expression, already known to be modulated by imprinting, strain-specific modification, and maternal epigenetic inheritance, is also modulated by maternal diet. These observations suggest, at least in this special case, that maternal dietary supplementation may positively affect health and longevity of the offspring. Therefore, this experimental system should be useful for identifying maternal factors that modulate epigenetic mechanisms, especially DNA methylation, in developing embryos.
The expression and function of epithelial membrane protein 1 in laryngeal carcinoma.
Li, Hong; Zhang, Xiaowen; Jiang, Xuejun; Ji, Xu
2017-01-01
In this study, we compared the expression of epithelial membrane protein 1 (EMP1) on the steady-state mRNA level (by quantitative real-time PCR) and on the protein level (by western immunoblot and immunohistochemistry) in 51 pairs of laryngeal carcinoma tissues and matched cancer-free peritumor tissues, and we analyzed the correlation between EMP1 expression and different clinicopathological factors. Furthermore, we ectopically expressed EMP1 in human laryngeal carcinoma Hep-2 cells and examined the effects on cell viability, apoptosis, colonogenicity, and motility, by MTT assay, flow cytometry, colony formation assay and Transwell migration assay, respectively. EMP1 expression (on both the mRNA and protein levels) was significantly lower in the cancer tissues than in matched peritumor tissues (P<0.05). In laryngeal cancers, the level of EMP1 protein was correlated with histological grade (P<0.05), but not with age, gender, clinical stage, cancer subtype or lymph node metastasis (P>0.05). Functionally, ectopic expression of EMP1 in Hep-2 cells significantly reduced cell viability, colony formation, and migration, but enhanced apoptosis. Therefore, EMP1 is a tumor suppressor in laryngeal carcinoma. Boosting EMP1 expression in laryngeal carcinoma initiates multiple anticancer phenotypes and thus presents a promising therapeutic strategy for laryngeal cancer.
Wang, Luwen; Jiang, Ning; Wang, Lin; Fang, Ou; Leach, Lindsey J; Hu, Xiaohua; Luo, Zewei
2014-01-01
Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision model, which postulates a clash between simultaneous transcriptional processes occurring on opposite DNA strands.
Wang, Luwen; Jiang, Ning; Wang, Lin; Fang, Ou; Leach, Lindsey J.; Hu, Xiaohua; Luo, Zewei
2014-01-01
Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3′-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3′-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision model, which postulates a clash between simultaneous transcriptional processes occurring on opposite DNA strands. PMID:24465217
TGFβ signaling supports survival and metastasis of endometrial cancer cells
Lei, XiuFen; Wang, Long; Yang, Junhua; Sun, Lu-Zhe
2009-01-01
The association of mutation of the transforming growth factor beta (TGFβ) type II receptor (RII) with microsatellite instability revealed a significant molecular mechanism of tumorigenesis and tumor progression in gastrointestinal carcinomas with DNA replication error. However, mutation of RII is rare in other types of carcinomas with microsatellite instability including endometrial adenocarcinoma suggesting that TGFβ receptor signaling may be necessary for tumor progression. To test this hypothesis, we abrogated TGFβ signaling with ectopic expression of a dominant-negative RII (DNRII) in human endometrial carcinoma HEC-1-A cells with microsatellite instability. Our study showed that over-expression of DNRII blocked the TGFβ signaling, inhibited anchorage-dependent and -independent growth, and stimulated apoptosis in vitro. Interestingly, the expression of DNRII expression showed little effect on tumor growth of subcutaneously inoculated cells in vivo. On the other hand, the DNRII cells showed more epithelial features whereas the control cells showed more mesenchymal features suggesting a reversal of autocrine TGFβ-induced epithelial–mesenchymal transition (EMT). Consistent with these findings, DNRII cells were much less migratory and invasive in vitro and metastatic in vivo than the control cells. Therefore, an intact TGFβ signaling pathway appears necessary for the metastatic phenotypes of this carcinoma model. PMID:20622970
Melo, C H; Sousa, F C; Batista, R I P T; Sanchez, D J D; Souza-Fabjan, J M G; Freitas, V J F; Melo, L M; Teixeira, D I A
2015-07-31
The present study aimed to compare laparoscopic (LP) and ultrasound-guided (US) biopsy methods to obtain either liver or splenic tissue samples for ectopic gene expression analysis in transgenic goats. Tissue samples were collected from human granulocyte colony stimulating factor (hG-CSF)-transgenic bucks and submitted to real-time PCR for the endogenous genes (Sp1, Baff, and Gapdh) and the transgene (hG-CSF). Both LP and US biopsy methods were successful in obtaining liver and splenic samples that could be analyzed by PCR (i.e., sufficient sample sizes and RNA yield were obtained). Although the number of attempts made to obtain the tissue samples was similar (P > 0.05), LP procedures took considerably longer than the US method (P = 0.03). Finally, transgene transcripts were not detected in spleen or liver samples. Thus, for the phenotypic characterization of a transgenic goat line, investigation of ectopic gene expression can be made successfully by LP or US biopsy, avoiding the traditional approach of euthanasia.
Two FGFRL-Wnt circuits organize the planarian anteroposterior axis.
Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W
2016-04-11
How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning.
Higareda-Almaraz, Juan Carlos; Ruiz-Moreno, Juan S; Klimentova, Jana; Barbieri, Daniela; Salvador-Gallego, Raquel; Ly, Regina; Valtierra-Gutierrez, Ilse A; Dinsart, Christiane; Rabinovich, Gabriel A; Stulik, Jiri; Rösl, Frank; Rincon-Orozco, Bladimiro
2016-08-24
Galectin-7 (Gal-7) is negatively regulated in cervical cancer, and appears to be a link between the apoptotic response triggered by cancer and the anti-tumoral activity of the immune system. Our understanding of how cervical cancer cells and their molecular networks adapt in response to the expression of Gal-7 remains limited. Meta-analysis of Gal-7 expression was conducted in three cervical cancer cohort studies and TCGA. In silico prediction and bisulfite sequencing were performed to inquire epigenetic alterations. To study the effect of Gal-7 on cervical cancer, we ectopically re-expressed it in the HeLa and SiHa cervical cancer cell lines, and analyzed their transcriptome and SILAC-based proteome. We also examined the tumor and microenvironment host cell transcriptomes after xenotransplantation into immunocompromised mice. Differences between samples were assessed with the Kruskall-Wallis, Dunn's Multiple Comparison and T tests. Kaplan-Meier and log-rank tests were used to determine overall survival. Gal-7 was constantly downregulated in our meta-analysis (p < 0.0001). Tumors with combined high Gal-7 and low galectin-1 expression (p = 0.0001) presented significantly better prognoses (p = 0.005). In silico and bisulfite sequencing assays showed de novo methylation in the Gal-7 promoter and first intron. Cells re-expressing Gal-7 showed a high apoptosis ratio (p < 0.05) and their xenografts displayed strong growth retardation (p < 0.001). Multiple gene modules and transcriptional regulators were modulated in response to Gal-7 reconstitution, both in cervical cancer cells and their microenvironments (FDR < 0.05 %). Most of these genes and modules were associated with tissue morphogenesis, metabolism, transport, chemokine activity, and immune response. These functional modules could exert the same effects in vitro and in vivo, even despite different compositions between HeLa and SiHa samples. Gal-7 re-expression affects the regulation of molecular networks in cervical cancer that are involved in diverse cancer hallmarks, such as metabolism, growth control, invasion and evasion of apoptosis. The effect of Gal-7 extends to the microenvironment, where networks involved in its configuration and in immune surveillance are particularly affected.
Tong, Xiaoping; Peng, Zechun; Zhang, Nianhui; Cetina, Yliana; Huang, Christine S.; Wallner, Martin; Otis, Thomas S.
2015-01-01
The role of GABAA receptor (GABAAR)-mediated tonic inhibition in interneurons remains unclear and may vary among subgroups. Somatostatin (SOM) interneurons in the hilus of the dentate gyrus show negligible expression of nonsynaptic GABAAR subunits and very low tonic inhibition. To determine the effects of ectopic expression of tonic GABAAR subtypes in these neurons, Cre-dependent viral vectors were used to express GFP-tagged GABAAR subunits (α6 and δ) selectively in hilar SOM neurons in SOM-Cre mice. In single-transfected animals, immunohistochemistry demonstrated strong expression of either the α6 or δ subunit; in cotransfected animals, both subunits were consistently expressed in the same neurons. Electrophysiology revealed a robust increase of tonic current, with progressively larger increases following transfection of δ, α6, and α6/δ subunits, respectively, indicating formation of functional receptors in all conditions and likely coassembly of the subunits in the same receptor following cotransfection. An in vitro model of repetitive bursting was used to determine the effects of increased tonic inhibition in hilar SOM interneurons on circuit activity in the dentate gyrus. Upon cotransfection, the frequency of GABAAR-mediated bursting in granule cells was reduced, consistent with a reduction in synchronous firing among hilar SOM interneurons. Moreover, in vivo studies of Fos expression demonstrated reduced activation of α6/δ-cotransfected neurons following acute seizure induction by pentylenetetrazole. The findings demonstrate that increasing tonic inhibition in hilar SOM interneurons can alter dentate gyrus circuit activity during strong stimulation and suggest that tonic inhibition of interneurons could play a role in regulating excessive synchrony within the network. SIGNIFICANCE STATEMENT In contrast to many hippocampal interneurons, somatostatin (SOM) neurons in the hilus of the dentate gyrus have very low levels of nonsynaptic GABAARs and exhibit very little tonic inhibition. In an effort to increase tonic inhibition selectively in these interneurons, we used Cre-dependent viral vectors in SOM-Cre mice to achieve interneuron-specific expression of the nonsynaptic GABAAR subunits (α6 and δ) in vivo. We show, for the first time, that such recombinant GFP-tagged GABAAR subunits are expressed robustly, assemble to form functional receptors, substantially increase tonic inhibition in SOM interneurons, and alter circuit activity within the dentate gyrus. PMID:26658866
Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G
1994-08-02
The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.
Escobar, F A; Pantanowitz, L; Picarsic, J L; Craig, F E; Simons, J P; Viswanathan, P A; Yilmaz, S; Monaco, S E
2018-03-26
Ectopic thymic tissue can arise as an asymptomatic neck mass, which may be detected on imaging studies. The aim of this study was to determine the incidence of ectopic thymic tissue in paediatric FNAs and to the correlate clinical, radiological and cytomorphological findings. FNAs in children with neck and mediastinal lesions performed between January 2012 and July 2016 were reviewed for cases of ectopic thymus. These were then evaluated and correlated with the cytology findings. Of 739 FNAs, 13 (1.8%) cases from 11 patients showed ectopic thymic tissue. The targeted lesions were in the thyroid (n = 7), submandibular region (n = 1), superior mediastinum (n = 1) and paratracheal region (n = 1). The most common indication was for microcalcifications concerning for papillary thyroid carcinoma on ultrasound (n = 6). Imaging findings included fusiform lesions with linear and punctuate bright echoes. The cytology evaluation showed small lymphocytes with discohesive epithelioid cells in most cases, and proteinaceous fluid in the cystic case. There were rare macrophages and Hassall's corpuscles. Flow cytometry and/or immunostains were performed in all cases, supporting thymic origin. Ectopic thymic tissue is rarely present as a neck mass or thyroid nodule on FNA biopsy. The ultrasound imaging findings reveal a well-defined fusiform lesion with punctate bright echoes that could be misinterpreted as papillary thyroid carcinoma. The aspirates show a small lymphoid population, immunophenotypically compatible with thymic T-cells, in addition to scattered epithelial cells. Therefore, knowledge of the typical ultrasonographic and cytopathological features can help make a definitive diagnosis and avoid more invasive procedures in paediatric patients. © 2018 John Wiley & Sons Ltd.
Carrasco-Rando, Marta; Tutor, Antonio S.; Prieto-Sánchez, Silvia; González-Pérez, Esther; Barrios, Natalia; Letizia, Annalisa; Martín, Paloma; Campuzano, Sonsoles; Ruiz-Gómez, Mar
2011-01-01
A central issue of myogenesis is the acquisition of identity by individual muscles. In Drosophila, at the time muscle progenitors are singled out, they already express unique combinations of muscle identity genes. This muscle code results from the integration of positional and temporal signalling inputs. Here we identify, by means of loss-of-function and ectopic expression approaches, the Iroquois Complex homeobox genes araucan and caupolican as novel muscle identity genes that confer lateral transverse muscle identity. The acquisition of this fate requires that Araucan/Caupolican repress other muscle identity genes such as slouch and vestigial. In addition, we show that Caupolican-dependent slouch expression depends on the activation state of the Ras/Mitogen Activated Protein Kinase cascade. This provides a comprehensive insight into the way Iroquois genes integrate in muscle progenitors, signalling inputs that modulate gene expression and protein activity. PMID:21811416
NASA Astrophysics Data System (ADS)
Lubis, H. P.; Aldiansyah, D.; Siregar, H. S.; Rivany, R.; Hariadi, T. S.
2018-03-01
Some factors have an important role in endometriosis pathogenesis; there is an immune cell that plays an important role in endometrial cells that have reflux. Woman with endometriosis experienced the cellular immune disorder. It is suspected that decrease of NK cell in the peritoneal fluid caused by its qualitative defect with CD107a expression as the best marker. The aim of this study was to compare expression of NK Cell activity with CD107a between awoman with endometriosis and non-endometriosis. A case-control study from March until July 2015 in Haji Adam Malik General Hospital. The case group was ectopic endometrial tissue block paraffin and control group was normal endometrial tissue block paraffin. This study included 23 patients in endometriosis group and control group respectively. A majority proportion of CD107a expression in endometriosis group was +1 (16 patients (69.6%)), while the control group was +3 (9 patients (39.1%)). Expression of NK cell activity with CD107a in patients with endometriosis was lower than the control group (p<0.05). It suggested that cellular immune factors may play a role in the pathogenesis of endometriosis.
Argonaute2 and LaminB modulate gene expression by controlling chromatin topology
Nazer, Ezequiel; Dale, Ryan K.; Chinen, Madoka; Radmanesh, Behram
2018-01-01
Drosophila Argonaute2 (AGO2) has been shown to regulate expression of certain loci in an RNA interference (RNAi)-independent manner, but its genome-wide function on chromatin remains unknown. Here, we identified the nuclear scaffolding protein LaminB as a novel interactor of AGO2. When either AGO2 or LaminB are depleted in Kc cells, similar transcription changes are observed genome-wide. In particular, changes in expression occur mainly in active or potentially active chromatin, both inside and outside LaminB-associated domains (LADs). Furthermore, we identified a somatic target of AGO2 transcriptional repression, no hitter (nht), which is immersed in a LAD located within a repressive topologically-associated domain (TAD). Null mutation but not catalytic inactivation of AGO2 leads to ectopic expression of nht and downstream spermatogenesis genes. Depletion of either AGO2 or LaminB results in reduced looping interactions within the nht TAD as well as ectopic inter-TAD interactions, as detected by 4C-seq analysis. Overall, our findings reveal coordination of AGO2 and LaminB function to dictate genome architecture and thereby regulate gene expression. PMID:29529026
Dal Cin, Valeriano; Tieman, Denise M.; Tohge, Takayuki; McQuinn, Ryan; de Vos, Ric C.H.; Osorio, Sonia; Schmelz, Eric A.; Taylor, Mark G.; Smits-Kroon, Miriam T.; Schuurink, Robert C.; Haring, Michel A.; Giovannoni, James; Fernie, Alisdair R.; Klee, Harry J.
2011-01-01
Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and 13C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles. PMID:21750236
Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA).
Torlakovic, Emina Emilia; Gomez, Jose D; Driman, David K; Parfitt, Jeremy R; Wang, Chang; Benerjee, Tama; Snover, Dale C
2008-01-01
The morphologic distinction between various serrated polyps of the colorectum may be challenging. The distinction between sessile serrated adenoma (SSA) and traditional serrated adenoma (TSA) may be difficult using currently available criteria mostly based on cytologic characteristics. We have evaluated 66 serrated polyps including 29 SSA, 18 TSA, and 19 hyperplastic polyps for overall shape of the polyps, architectural features of individual crypts, the presence of eosinophilic cytoplasm, size and distribution of the proliferation and maturation zones, as well as Ki-67 and CK20 expression. The extent of the expression of CK20 and Ki-67 could not distinguish between the 3 types of serrated polyps, but the distribution of their expression was very helpful and differences were statistically significant. The distribution of Ki-67+ cells was the single most helpful distinguishing feature of the serrated polyp type (P<0.0001, chi test). Hyperplastic polyps had regular, symmetric, and increased Ki-67 expression. SSA had irregular, asymmetric, and highly variable expression of Ki-67. TSA had low Ki-67 expression, which was limited to "ectopic crypts" and admixed tubular adenomalike areas. In serrated polyps, ectopic crypt formation (ECF) defined by the presence of ectopic crypts with their bases not seated adjacent to the muscularis mucosae was nearly exclusive to TSA and was found in all cases, while the presence of cytologic atypia and eosinophilia of the cytoplasm were characteristic, but not limited to TSA. No evidence of ECF, but nevertheless abnormal distribution of proliferation zone was characteristic of SSA, whereas HP had neither. The presence of the ECF defines TSA in a more rigorous fashion than previous diagnostic criteria and also explains the biologic basis of exuberant protuberant growth associated with TSA and the lack of such growth in SSA. Recognition of this phenomenon may also help in exploring the genetic and molecular basis for differences between SSA and TSA, because these architectural abnormalities may well be a reflection of abnormalities in genetically programmed mucosal development.
Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.
Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James
2008-04-11
The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.
The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation.
Sham, M H; Vesque, C; Nonchev, S; Marshall, H; Frain, M; Gupta, R D; Whiting, J; Wilkinson, D; Charnay, P; Krumlauf, R
1993-01-29
The zinc finger gene Krox20 and many Hox homeobox genes are expressed in segment-restricted domains in the hindbrain. The restricted expression patterns appear before morphological segmentation, suggesting that these transcription factors may play an early role in the establishment and identity of rhombomeric segments. In this paper, we show that the HoxB2 (Hox2.8) gene is normally upregulated in rhombomeres (r) 3, 4, and 5, and we identify an enhancer region upstream of the gene that imposes r3/r5 expression in transgenic mice. This enhancer contains three Krox20-binding sites required in vitro for complex formation with Krox20 protein and in vivo for rhombomere-restricted expression. In transgenic mice, Krox20 expressed in ectopic domains can transactivate a reporter construct containing the HoxB2 r3/r5 enhancer. These data demonstrate that Krox20 is a part of the upstream transcriptional cascade that directly regulates HoxB2 expression during hindbrain segmentation.
Syringomyelia with intramedullary ectopic choroid plexus: Case report.
Duan, Hongzhou; Zhang, Jiayong; Xu, Feifan; Zhang, Zongqiang; Zhao, Xiaowen
2018-06-01
Intramedullary ectopic choroid plexus is rarely reported, here, we reported a rare case of symptomatic syringomyelia resulted of intramedullary ectopic choroid plexus. The patient was a 30-year-old female who presented with a 2-month history of progressive pain of upper back and bilateral ankle joint and progressive loss of upper-extremity function. MRI examination showed an intramedullary cystic lesion at T2-T4 without enhancement. Operative exploration was indicated. A reddish vascular villus-like lesion was found being located in the left dorsal part of the cyst, which was enblock removed and was confirmed as an ectopic choroid plexus tissue by pathological examination. The patient recovered uneventful and the symptom resolved during follow-up. Although ectopic choroid plexus is extremely rare, it should be taken into acount in the differential diagnosis of pathogenesis in syringomyelia or intramedullary cyst, aggressive surgical exploration should be considered when necessary. Copyright © 2018 Elsevier B.V. All rights reserved.
p38 phosphorylation in medullary microglia mediates ectopic orofacial inflammatory pain in rats.
Kiyomoto, Masaaki; Shinoda, Masamichi; Honda, Kuniya; Nakaya, Yuka; Dezawa, Ko; Katagiri, Ayano; Kamakura, Satoshi; Inoue, Tomio; Iwata, Koichi
2015-08-12
Orofacial inflammatory pain is likely to accompany referred pain in uninflamed orofacial structures. The ectopic pain precludes precise diagnosis and makes treatment problematic, because the underlying mechanism is not well understood. Using the established ectopic orofacial pain model induced by complete Freund's adjuvant (CFA) injection into trapezius muscle, we analyzed the possible role of p38 phosphorylation in activated microglia in ectopic orofacial pain. Mechanical allodynia in the lateral facial skin was induced following trapezius muscle inflammation, which accompanied microglial activation with p38 phosphorylation and hyperexcitability of wide dynamic range (WDR) neurons in the trigeminal spinal subnucleus caudalis (Vc). Intra-cisterna successive administration of a p38 mitogen-activated protein kinase selective inhibitor, SB203580, suppressed microglial activation and its phosphorylation of p38. Moreover, SB203580 administration completely suppressed mechanical allodynia in the lateral facial skin and enhanced WDR neuronal excitability in Vc. Microglial interleukin-1β over-expression in Vc was induced by trapezius muscle inflammation, which was significantly suppressed by SB203580 administration. These findings indicate that microglia, activated via p38 phosphorylation, play a pivotal role in WDR neuronal hyperexcitability, which accounts for the mechanical hypersensitivity in the lateral facial skin associated with trapezius muscle inflammation.
Gao, Liying; Sun, Liang; Cui, Yugui; Hou, Zhen; Gao, Li; Zhou, Jing; Mao, Yundong; Han, Suping; Liu, Jiayin
2010-01-01
Recent studies have shown that the local expression of soluble interleukin (IL) -1 receptor type II (sIL-1 RII) in endometrial tissue of women with endometriosis is decreased, and the depression of IL-1 RII was more significant in infertile women than that in fertile women with endometriosis. In this research, we investigated the remedial effect of sIL-1-RII administration on endometriosis in the nude mouse model. NINETEEN NUDE MODEL MICE WITH ENDOMETRIOSIS WERE RANDOMLY DIVIDED INTO THREE GROUPS: group A was treated by intraperitoneal administration with only sIL-1 RII for two weeks, group B was similarly treated with only IL-1, and group C (control) was administered saline . After 2 weeks, the size of the ectopic endometrial lesions was calculated, and the expression of vascular endothelial growth factor (VEGF) and B-cell lymphoma leukemia-2 (Bcl-2) were detected by immunohistochemistry. The IL-8 and VEGF levels in the peritoneal fluid (PF) and serum were also measured by enzyme-linked immunosorbent assay (ELISA). The mean size of ectopic endometrial lesion did not differ between the three groups (P > 0.05). Compared with the control, the expression of VEGF and Bcl-2 was significantly lower in group A, and higher in group B. In the three groups, the levels of IL-8 in the PF and serum were highest in group A, and lowest in group B. sIL-1 RII may suppresse hyperplasia of ectopic endometriosis, perhaps by reducing the expression of certain cytokines, such as VEGF, IL-8, and Bcl-2, which could provide a new clinical strategy for the treatment of endometriosis.
Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN
Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia
2015-01-01
Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531
Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.
2012-01-01
Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411
Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew
2011-12-01
All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.
Jully, Babu; Vijayalakshmi, Ramshankar; Gopal, Gopisetty; Sabitha, Kesavan; Rajkumar, Thangarajan
2012-11-12
Ewing's sarcoma is a malignancy characterized by a specific 11:22 chromosomal translocation which generates a novel EWS-FLI1 fusion protein functioning as an aberrant transcription factor. In the present study, we have further characterized the junction region of the EWS-FLI1 fusion protein. In-silico model of EWS-FLI1 fusion protein was analysed for ligand binding sites, and a putative region (amino acid (aa) 251-343 of the type 1 fusion protein) in the vicinity of the fusion junction was cloned and expressed using bacterial expression. The recombinant protein was characterized by Circular Dichroism (CD). We then expressed aa 251-280 ectopically in Ewing's sarcoma cell-line and its effect on cell proliferation, tumorigenicity and expression of EWS-FLI1 target genes were analysed. Our modelling analysis indicated that Junction region (aa 251-343) encompasses potential ligand biding sites in the EWS-FLI1 protein and when expressed in bacteria was present as soluble form. Ectopically expressing this region in Ewing's sarcoma cells inhibited tumorigenicity, and EWS-FLI1 target genes indicating a dominant negative biological effect. Junction region can be exploited further as target for drug development in future to specifically target EWS-FLI1 in Ewing's Sarcoma.
Ectopic expression of SUPERMAN suppresses development of petals and stamens.
Yun, Jae-Young; Weigel, Detlef; Lee, Ilha
2002-01-01
The floral regulatory gene SUPERMAN (SUP) encodes a C2H2 type zinc finger protein that is required for maintaining boundaries between floral organs in Arabidopsis. It has been proposed that the main function of SUP is to balance cell proliferation in the third and fourth whorl of developing flowers, thereby maintaining the boundaries between the two whorls. To gain further insight into the function of SUP, we have ectopically expressed SUP using the promoter of APETALA1 (AP1), a gene that is initially expressed throughout floral meristems and later becomes restricted to the first and second whorls. Flowers of AP1::SUP plants have fewer floral organs, consistent with an effect of SUP on cell proliferation. In addition, the AP1::SUP transgene caused the conversion of petals to sepals and suppressed the development of stamens. The expression of the B function homeotic gene APETALA3 (AP3) and its regulator UNUSUAL FLORAL ORGANS (UFO) were delayed and reduced in AP1::SUP flowers. However, SUP does not act merely through UFO, as constitutive expression of UFO did not rescue the defects in petal and stamen development in AP1::SUP flowers. Together, these results suggest that SUP has both indirect and direct effects on the expression of B function homeotic genes.
Shikhagaie, Medya Mara; Björklund, Åsa K; Mjösberg, Jenny; Erjefält, Jonas S; Cornelissen, Anne S; Ros, Xavier Romero; Bal, Suzanne M; Koning, Jasper J; Mebius, Reina E; Mori, Michiko; Bruchard, Melanie; Blom, Bianca; Spits, Hergen
2017-02-14
Here, we characterize a subset of ILC3s that express Neuropilin1 (NRP1) and are present in lymphoid tissues, but not in the peripheral blood or skin. NRP1 + group 3 innate lymphoid cells (ILC3s) display in vitro lymphoid tissue inducer (LTi) activity. In agreement with this, NRP1 + ILC3s are mainly located in proximity to high endothelial venules (HEVs) and express cell surface molecules involved in lymphocyte migration in secondary lymphoid tissues via HEVs. NRP1 was also expressed on mouse fetal LTi cells, indicating that NRP1 is a conserved marker for LTi cells. Human NRP1 + ILC3s are primed cells because they express CD45RO and produce higher amounts of cytokines than NRP1 - cells, which express CD45RA. The NRP1 ligand vascular endothelial growth factor A (VEGF-A) served as a chemotactic factor for NRP1 + ILC3s. NRP1 + ILC3s are present in lung tissues from smokers and patients with chronic obstructive pulmonary disease, suggesting a role in angiogenesis and/or the initiation of ectopic pulmonary lymphoid aggregates. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bakshi, Achala; Moin, Mazahar; Kumar, M. Udaya; Reddy, Aramati Bindu Madhava; Ren, Maozhi; Datla, Raju; Siddiq, E. A.; Kirti, P. B.
2017-02-01
The target of Rapamycin (TOR) present in all eukaryotes is a multifunctional protein, regulating growth, development, protein translation, ribosome biogenesis, nutrient, and energy signaling. In the present study, ectopic expression of TOR gene of Arabidopsis thaliana in a widely cultivated indica rice resulted in enhanced plant growth under water-limiting conditions conferring agronomically important water-use efficiency (WUE) trait. The AtTOR high expression lines of rice exhibited profuse tillering, increased panicle length, increased plant height, high photosynthetic efficiency, chlorophyll content and low Δ13C. Δ13C, which is inversely related to high WUE, was as low as 17‰ in two AtTOR high expression lines. These lines were also insensitive to the ABA-mediated inhibition of seed germination. The significant upregulation of 15 stress-specific genes in high expression lines indicates their contribution to abiotic stress tolerance. The constitutive expression of AtTOR is also associated with significant transcriptional upregulation of putative TOR complex-1 components, OsRaptor and OsLST8. Glucose-mediated transcriptional activation of AtTOR gene enhanced lateral root formation. Taken together, our findings indicate that TOR, in addition to its multiple cellular functions, also plays an important role in response to abiotic stress and potentially enhances WUE and yield related attributes.
Gao, Mingming; Ma, Yongjie; Liu, Dexi
2015-01-01
High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population. PMID:25768847
Gao, Mingming; Ma, Yongjie; Liu, Dexi
2015-01-01
High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.
Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.
Inoue, Kimiko; Kohda, Takashi; Sugimoto, Michihiko; Sado, Takashi; Ogonuki, Narumi; Matoba, Shogo; Shiura, Hirosuke; Ikeda, Rieko; Mochida, Keiji; Fujii, Takashi; Sawai, Ken; Otte, Arie P; Tian, X Cindy; Yang, Xiangzhong; Ishino, Fumitoshi; Abe, Kuniya; Ogura, Atsuo
2010-10-22
Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.
Yan, Da-Wei; Wang, Jing; Yuan, Ting-Ting; Hong, Li-Wei; Gao, Xiang; Lu, Ying-Tang
2013-01-01
Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.
USDA-ARS?s Scientific Manuscript database
Abiotic stresses are a major factor limiting crop growth and productivity. Our previous studies revealed that Arabidopsis thaliana glutaredoxin S17 (AtGRXS17) has conserved functions in plant tolerance to heat and chilling stress in tomato. Here, we report that ectopic expression of AtGRXS17 in toma...
Wu, Qingyu; Shigaki, Toshiro; Williams, Kimberly A; Han, Jeung-Sul; Kim, Chang Kil; Hirschi, Kendal D; Park, Sunghun
2011-01-15
Phytoremediation is a cost-effective and minimally invasive technology to cleanse soils contaminated with heavy metals. However, few plant species are suitable for phytoremediation of metals such as cadmium (Cd). Genetic engineering offers a powerful tool to generate plants that can hyperaccumulate Cd. An Arabidopsis CAX1 mutant (CAXcd), which confers enhanced Cd transport in yeast, was ectopically expressed in petunia to evaluate whether the CAXcd expression would enhance Cd tolerance and accumulation in planta. The CAXcd-expressing petunia plants showed significantly greater Cd tolerance and accumulation than the controls. After being treated with either 50 or 100μM CdCl(2) for 6 weeks, the CAXcd-expressing plants showed more vigorous growth compared with controls, and the transgenic plants accumulated significantly more Cd (up to 2.5-fold) than controls. Moreover, the accumulation of Cd did not affect the development and morphology of the CAXcd-expressing petunia plants until the flowering and ultimately the maturing of seeds. Therefore, petunia has the potential to serve as a model species for developing herbaceous, ornamental plants for phytoremediation. Copyright © 2010 Elsevier GmbH. All rights reserved.
Ectodermal Wnt6 is an early negative regulator of limb chondrogenesis in the chicken embryo
2010-01-01
Background Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. Classical studies have suggested a role of the limb ectoderm as a negative regulator of limb chondrogenesis. Results In this paper, we investigated the molecular nature of the inhibitory influence of the ectoderm on limb chondrogenesis in the avian embryo in vivo. We show that ectoderm ablation in the early limb bud leads to increased and ectopic expression of early chondrogenic marker genes like Sox9 and Collagen II, indicating that the limb ectoderm inhibits limb chondrogenesis at an early stage of the chondrogenic cascade. To investigate the molecular nature of the inhibitory influence of the ectoderm, we ectopically expressed Wnt6, which is presently the only known Wnt expressed throughout the avian limb ectoderm, and found that Wnt6 overexpression leads to reduced expression of the early chondrogenic marker genes Sox9 and Collagen II. Conclusion Our results suggest that the inhibitory influence of the ectoderm on limb chondrogenesis acts on an early stage of chondrogenesis upsteam of Sox9 and Collagen II. We identify Wnt6 as a candidate mediator of ectodermal chondrogenic inhibition in vivo. We propose a model of Wnt-mediated centripetal patterning of the limb by the surface ectoderm. PMID:20334703
Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John
2015-01-01
Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.
Jacobs, Jelle; Atkins, Mardelle; Davie, Kristofer; Imrichova, Hana; Romanelli, Lucia; Christiaens, Valerie; Hulselmans, Gert; Potier, Delphine; Wouters, Jasper; Taskiran, Ibrahim I; Paciello, Giulia; González-Blas, Carmen B; Koldere, Duygu; Aibar, Sara; Halder, Georg; Aerts, Stein
2018-06-04
Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.
Kim, Yong Chan; Song, Seok Bean; Lee, Sang Kyu; Park, Sang Min; Kim, Young Sang
2014-04-01
Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dongjing; Wu, Jilin, E-mail: 6296082@qq.com; Liu, Meizhou
Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulatedmore » miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the carcinogenesis and progression of HCC. • Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC.« less
Ectopic Cushing' syndrome caused by a neuroendocrine carcinoma of the mesentery.
Fasshauer, Mathias; Lincke, Thomas; Witzigmann, Helmut; Kluge, Regine; Tannapfel, Andrea; Moche, Michael; Buchfelder, Michael; Petersenn, Stephan; Kratzsch, Juergen; Paschke, Ralf; Koch, Christian A
2006-04-27
ACTH overproduction within the pituitary gland or ectopically leads to hypercortisolism. Here, we report the first case of Cushing' syndrome caused by an ectopic ACTH-secreting neuroendocrine carcinoma of the mesentery. Moreover, diagnostic procedures and pitfalls associated with ectopic ACTH-secreting tumors are demonstrated and discussed. A 41 year-old man presented with clinical features and biochemical tests suggestive of ectopic Cushing's syndrome. First, subtotal thyroidectomy was performed without remission of hypercortisolism, because an octreotide scan showed increased activity in the left thyroid gland and an ultrasound revealed nodules in both thyroid lobes one of which was autonomous. In addition, the patient had a 3 mm hypoenhancing lesion of the neurohypophysis and a 1 cm large adrenal tumor. Surgical removal of the pituitary lesion within the posterior lobe did not improve hypercortisolism and we continued to treat the patient with metyrapone to block cortisol production. At 18-months follow-up from initial presentation, we detected an ACTH-producing neuroendocrine carcinoma of the mesentery by using a combination of octreotide scan, computed tomography scan, and positron emission tomography. Intraoperatively, use of a gamma probe after administration of radiolabeled (111)In-pentetreotide helped identify the mesenteric neuroendocrine tumor. After removal of this carcinoma, the patient improved clinically. Laboratory testing confirmed remission of hypercortisolism. An octreotide scan 7 months after surgery showed normal results. This case underscores the diagnostic challenge in identifying an ectopic ACTH-producing tumor and the pluripotency of cells, in this case of mesenteric cells that can start producing and secreting ACTH. It thereby helps elucidate the pathogenesis of neuroendocrine tumors. This case also suggests that patients with ectopic Cushing's syndrome and an octreotide scan positive in atypical locations may benefit from explorative radioguided surgery using (111)In-pentetreotide and a gamma probe.
Ectopic Cushing' syndrome caused by a neuroendocrine carcinoma of the mesentery
Fasshauer, Mathias; Lincke, Thomas; Witzigmann, Helmut; Kluge, Regine; Tannapfel, Andrea; Moche, Michael; Buchfelder, Michael; Petersenn, Stephan; Kratzsch, Juergen; Paschke, Ralf; Koch, Christian A
2006-01-01
Background ACTH overproduction within the pituitary gland or ectopically leads to hypercortisolism. Here, we report the first case of Cushing' syndrome caused by an ectopic ACTH-secreting neuroendocrine carcinoma of the mesentery. Moreover, diagnostic procedures and pitfalls associated with ectopic ACTH-secreting tumors are demonstrated and discussed. Case presentation A 41 year-old man presented with clinical features and biochemical tests suggestive of ectopic Cushing's syndrome. First, subtotal thyroidectomy was performed without remission of hypercortisolism, because an octreotide scan showed increased activity in the left thyroid gland and an ultrasound revealed nodules in both thyroid lobes one of which was autonomous. In addition, the patient had a 3 mm hypoenhancing lesion of the neurohypophysis and a 1 cm large adrenal tumor. Surgical removal of the pituitary lesion within the posterior lobe did not improve hypercortisolism and we continued to treat the patient with metyrapone to block cortisol production. At 18-months follow-up from initial presentation, we detected an ACTH-producing neuroendocrine carcinoma of the mesentery by using a combination of octreotide scan, computed tomography scan, and positron emission tomography. Intraoperatively, use of a gamma probe after administration of radiolabeled 111In-pentetreotide helped identify the mesenteric neuroendocrine tumor. After removal of this carcinoma, the patient improved clinically. Laboratory testing confirmed remission of hypercortisolism. An octreotide scan 7 months after surgery showed normal results. Conclusion This case underscores the diagnostic challenge in identifying an ectopic ACTH-producing tumor and the pluripotency of cells, in this case of mesenteric cells that can start producing and secreting ACTH. It thereby helps elucidate the pathogenesis of neuroendocrine tumors. This case also suggests that patients with ectopic Cushing's syndrome and an octreotide scan positive in atypical locations may benefit from explorative radioguided surgery using 111In-pentetreotide and a gamma probe. PMID:16643652
p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase.
Teodoro, Jose G; Parker, Albert E; Zhu, Xiaochun; Green, Michael R
2006-08-18
Recent evidence suggests that antiangiogenic therapy is sensitive to p53 status in tumors, implicating a role for p53 in the regulation of angiogenesis. Here we show that p53 transcriptionally activates the alpha(II) collagen prolyl-4-hydroxylase [alpha(II)PH] gene, resulting in the extracellular release of antiangiogenic fragments of collagen type 4 and 18. Conditioned media from cells ectopically expressing either p53 or alpha(II)PH selectively inhibited growth of primary human endothelial cells. When expressed intracellularly or exogenously delivered, alpha(II)PH significantly inhibited tumor growth in mice. Our results reveal a genetic and biochemical linkage between the p53 tumor suppressor pathway and the synthesis of antiangiogenic collagen fragments.
Staunstrup, Nicklas Heine; Madsen, Johannes; Primo, Maria Nascimento; Li, Juan; Liu, Ying; Kragh, Peter M.; Li, Rong; Schmidt, Mette; Purup, Stig; Dagnæs-Hansen, Frederik; Svensson, Lars; Petersen, Thomas K.; Callesen, Henrik; Bolund, Lars; Mikkelsen, Jacob Giehm
2012-01-01
Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage-induced inflammation and should be of great potential in studies aiming at the development and refinement of topical therapies for cutaneous inflammation including psoriasis. PMID:22590584
Koutourousiou, Maria; Winstead, Welby I
2017-02-01
Complete surgical resection of an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma is the gold standard of treatment of Cushing disease. Ectopic location of these adenomas is an extremely rare condition that may compromise the diagnosis and surgical success. We present the first case of an ectopic intracavernous ACTH-secreting macroadenoma totally resected with endoscopic endonasal surgery (EES). A 36-year-old woman presented with Cushing syndrome. Increased ACTH, serum cortisol, and free urine cortisol levels were identified; however, pituitary magnetic resonance imaging failed to show a pituitary tumor; instead, a parasellar lesion in the left cavernous sinus (CS) was noticed. Inferior petrosal sinus sampling showed a significant central to peripheral and lateralized left-sided ACTH gradient. The patient underwent EES. No tumor was found in the sella; however, the left CS was widely explored and a tumor was found lateral to the paraclival segment of the carotid artery. There were no complications after EES. Pathology confirmed the diagnosis of an ACTH-secreting adenoma. During the immediate postoperative course, serum cortisol levels decreased lower than 5 μg/dL. Postoperative magnetic resonance imaging showed complete tumor resection. At 20 months follow-up, the patient remained in clinical and biochemical remission of Cushing disease. Only 12 cases of ectopic intracavernous ACTH-secreting adenomas have been reported and all were microadenomas. The presence of an ectopic ACTH-secreting macroadenoma in the CS represents a surgical challenge. EES is the ideal approach for complete resection of ectopic intracavernous adenomas, allowing for a wide exploration of the CS with no surgical complications. Copyright © 2016 Elsevier Inc. All rights reserved.
Zangeneh, Farhad; Young, William F; Lloyd, Ricardo V; Chiang, Myra; Kurczynski, Elizabeth; Zangeneh, Fereydoun
2003-01-01
To report the first recognized case of Cushing's syndrome due to a corticotropin-releasing hormone (CRH)-secreting ganglioneuroblastoma, which was found in an 18-month-old boy with hypertensive encephalopathy. The clinical, biochemical, and immunohistochemical characteristics of this rare syndrome are described, and the relevant literature is reviewed. An 18-month-old boy with a history of recent weight gain was admitted because of sudden onset of right fixed esotropia and left facial palsy after episodes of emesis. Magnetic resonance imaging showed old left frontal lobe and right hypothalamic infarcts. The patient had generalized obesity, decelerated linear growth, hypertrichosis, hypertension (144/103 mm Hg), hypokalemia, and proteinuria. The 24-hour urinary excretion of free cortisol, catecholamines, and metanephrines was increased. The serum cortisol concentration after a 1-mg overnight dexamethasone suppression test (DST) was 53.7 mg/dL (normal, <5). The serum adrenocorticotropic hormone (ACTH) concentration was 7 pg/mL (normal, 10 to 60), and the CRH level was 439 pg/mL (normal, 24 to 40). An overnight high-dose DST (8 mg) failed to suppress serum cortisol; however, both cortisol and ACTH were responsive to ovine CRH stimulation. Despite discordant dynamic endocrine testing and negative somatostatin receptor scintigraphy, computed tomography showed a right 3.6- by 3.0-cm extra-adrenal retroperitoneal mass with central calcification extending 7 cm cephalocaudally. The patient underwent exploratory laparotomy, followed by chemotherapy. Findings on light microscopic and immunohistochemical examination of the retroperitoneal mass were consistent with a ganglioneuroblastoma that expressed CRH, pro-opiomelanocortin, and ACTH. The evaluation of Cushing's syndrome is one of the most complex endocrine challenges. In this case, it was due to ectopic production of CRH by a ganglioneuroblastoma. Because most CRH-producing tumors also secrete ACTH, the ectopic production may represent a paracrine phenomenon in addition to an endocrine phenomenon. The ectopic CRH may also indirectly provoke pituitary ACTH secretion. This dual mechanism may explain the resistance of the tumor to feedback inhibition and a CRH-stimulation response indistinguishable from that observed in pituitary-dependent Cushing's syndrome.
Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John
2015-01-01
Hereditary mixed polyposis syndrome (HMPS) is characterised by the development of mixed morphology colorectal tumours and is caused by a 40 kb duplication that results in aberrant epithelial expression of the mesenchymal Bone Morphogenetic Protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell-fate, that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem-cell properties in Lgr5 negative (non-expressing) progenitor cells that have exited the stem-cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem-cell is not the sole cell-of-origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic pre-malignant lesions with a hitherto unknown pathogenesis and these lesions can be considered the sporadic equivalents of HMPS polyps. PMID:25419707
Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity.
Du, William W; Fang, Ling; Yang, Weining; Wu, Nan; Awan, Faryal Mehwish; Yang, Zhenguo; Yang, Burton B
2017-02-01
Circular RNAs are a class of non-coding RNAs that are receiving extensive attention. Despite reports showing circular RNAs acting as microRNA sponges, the biological functions of circular RNAs remain largely unknown. We show that in patient tumor samples and in a panel of cancer cells, circ-Foxo3 was minimally expressed. Interestingly, during cancer cell apoptosis, the expression of circ-Foxo3 was found to be significantly increased. We found that silencing endogenous circ-Foxo3 enhanced cell viability, whereas ectopic expression of circ-Foxo3 triggered stress-induced apoptosis and inhibited the growth of tumor xenografts. Also, expression of circ-Foxo3 increased Foxo3 protein levels but repressed p53 levels. By binding to both, circ-Foxo3 promoted MDM2-induced p53 ubiquitination and subsequent degradation, resulting in an overall decrease of p53. With low binding affinity to Foxo3 protein, circ-Foxo3 prevented MDM2 from inducing Foxo3 ubiquitination and degradation, resulting in increased levels of Foxo3 protein. As a result, cell apoptosis was induced by upregulation of the Foxo3 downstream target PUMA.
Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors.
Bar-Nur, Ori; Gerli, Mattia F M; Di Stefano, Bruno; Almada, Albert E; Galvin, Amy; Coffey, Amy; Huebner, Aaron J; Feige, Peter; Verheul, Cassandra; Cheung, Priscilla; Payzin-Dogru, Duygu; Paisant, Sylvain; Anselmo, Anthony; Sadreyev, Ruslan I; Ott, Harald C; Tajbakhsh, Shahragim; Rudnicki, Michael A; Wagers, Amy J; Hochedlinger, Konrad
2018-05-08
Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7 + cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Wada, Fumitaka; Ogawa, Atsuko; Hanai, Yuko; Nakamura, Akio; Maki, Masatoshi; Hitomi, Kiyotaka
2004-11-01
Transglutaminase (TGase) is an enzyme that modifies proteins by crosslinking or polyamination. Physarum polycephalum, an acellular slime mold, is the evolutionally lowest organism that has a mammalian-type transglutaminase. We have cloned a cDNA for Physarum polycephalum TGase (PpTGB), homologous to a previously identified TGase (PpTGA), whose sequence is similar to that of mammalian TGases. PpTGB encodes a primary sequence identical to that of PpTGA except for 11 amino acid residues at the N-terminus. Reverse transcription-PCR and Western blotting analyses showed that both PpTGA and PpTGB are expressed in microplasmodia and macroplasmodia during their life cycle, except for in sporangia. For biochemical characterization, we carried out the ectopical expressions of PpTGA and PpTGB in Dictyostelium discoideum. Subcellular fractionation of these Dictyostelium cells showed that the expressed PpTGA, but not PpTGB, localizes to the membrane fraction. Furthermore, in Physarum, subcellular fractionation and immunostaining indicated specific localization at the plasma membrane in macroplasmodia, while the localization was entirely cytoplasmic in microplasmodia.
Widespread expression of prostate apoptosis response-4 in nasopharyngeal carcinoma.
Lee, Jeng-Woei; Hsiao, Wei-Ting; Lee, Kuei-Fang; Sheu, Lai-Fa; Hsu, Hsue-Yin; Hsu, Lee-Ping; Su, Borcherng; Lee, Moon-Sing; Hsu, Yih-Chih; Chang, Chung-Hsing
2010-07-01
Prostate apoptosis response-4 (Par-4) augments apoptosis in various tumors, either during apoptotic insult or by ectopic overexpression. However, investigation of Par-4 expression in nasopharyngeal carcinoma (NPC) is lacking. Specimens from patients with NPC, hypopharyngeal carcinoma (HPC), or oral cavity cancer were examined for Par-4 expression using immunohistochemistry. NPC cell proliferation and apoptosis were analyzed using immunohistochemical staining for Ki67, B-cell lymphoma 2 (Bcl-2), and in situ terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick end-labeling (TUNEL) assay, respectively. Par-4 was ubiquitously expressed in NPC biopsies (96.2%, 25/26) and was significantly higher than in HPC (47.6%, 50/105, p < .0001) and oral cavity cancers (38.7%, 12/31, p < .0001). Remarkably, apoptosis of NPC cells was absent and Par-4 expression was associated with obvious expression of Bcl-2 and Ki67 in all patients tested with NPC. Immunohistochemistry results showed widespread expression of Par-4 in NPC and revealed sustainable proliferation of NPC cells regardless of Par-4 expression. .(c) 2009 Wiley Periodicals, Inc.
Broholm, Suvi K.; Tähtiharju, Sari
2016-01-01
The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. PMID:27382139
Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction
Fujii, Hodaka
2007-01-01
Binding of IL-2 to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2R-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. However, Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling. PMID:17266928
AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression.
Fernández-Nohales, P; Domenech, M J; Martínez de Alba, A E; Micol, J L; Ponce, M R; Madueño, F
2014-11-01
The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants have extended vegetative and inflorescence phases, producing many coflorescences. TFL1 is expressed in the shoot meristems, never in the flowers. In the inflorescence apex, TFL1 keeps the floral genes LEAFY (LFY) and APETALA1 (AP1) restricted to the flower, while LFY and AP1 restrict TFL1 to the inflorescence meristem. In spite of the central role of TFL1 in inflorescence architecture, regulation of its expression is poorly understood. This study aims to expand the understanding of inflorescence development by identifying and studying novel TFL1 regulators. Mutagenesis of an Arabidopsis thaliana line carrying a TFL1::GUS (β-glucuronidase) reporter construct was used to isolate a mutant with altered TFL1 expression. The mutated gene was identified by positional cloning. Expression of TFL1 and TFL1::GUS was analysed by real-time PCR and histochemical GUS detection. Double-mutant analysis was used to assess the contribution of TFL1 to the inflorescence mutant phenotype. A mutant with both an increased number of coflorescences and high and ectopic TFL1 expression was isolated. Cloning of the mutated gene showed that both phenotypes were caused by a mutation in the ARGONAUTE1 (AGO1) gene, which encodes a key component of the RNA silencing machinery. Analysis of another ago1 allele indicated that the proliferation of coflorescences and ectopic TFL1 expression phenotypes are not allele specific. The increased number of coflorescences is suppressed in ago1 tfl1 double mutants. The results identify AGO1 as a repressor of TFL1 expression. Moreover, they reveal a novel role for AGO1 in inflorescence development, controlling the production of coflorescences. AGO1 seems to play this role through regulating TFL1 expression. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Xiong, Qi; Chai, Jin; Deng, Changyan; Jiang, Siwen; Liu, Yang; Huang, Tao; Suo, Xiaojun; Zhang, Nian; Li, Xiaofeng; Yang, Qianping; Chen, Mingxin; Zheng, Rong
2012-12-01
Skeletal muscle and kidney-enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P3) to PI(3,4)P2 and negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, two new single nucleotide polymorphisms (SNPs) in porcine SKIP introns 1 and 6 were detected. The C1092T locus in intron 1 showed significant associations with some meat traits, whereas the A17G locus in intron 6 showed significant associations with some carcass traits. Expression analysis showed that porcine SKIP is upregulated at d 65 of gestation and Meishan fetuses have higher and prolonged expression of SKIP compared to Large White at d 100 of gestation. Ectopic expression of porcine SKIP decreased insulin-induced cell proliferation and promoted serum starvation-induced cell cycle arrest in G0/G1 phase in C2C12. Our results suggest that SKIP plays a negative regulatory role in skeletal muscle development partly by preventing cell proliferation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Scarpellini, Fabio; Marconi, Daniela; Rossi, Gabriele; Simmilion, Cedric; Mueller, Michael D.; Barnea, Eytan R.
2017-01-01
Endometriosis is a chronic inflammatory condition characterised by the growth of endometrial epithelial and stromal cells outside the uterine cavity. In addition to Sampson’s theory of retrograde menstruation, endometriosis pathogenesis is facilitated by a privileged inflammatory microenvironment, with T regulatory FoxP3+ expressing T cells (Tregs) being a significant factor. PreImplantation Factor (PIF) is a peptide essential for pregnancy recognition and development. An immune modulatory function of the synthetic PIF analog (sPIF) has been successfully confirmed in multiple animal models. We report that PIF is expressed in the epithelial ectopic cells in close proximity to FoxP3+ stromal cells. We provide evidence that PIF interacts with FoxP3+ cells and modulates cell viability, dependent on cell source and presence of inflammatory mediators. Our finding represent a novel PIF-based mechanism in endometriosis that has potential for novel therapeutics. PMID:28902871
Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.
1997-01-01
We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535
Cooper, J A; Simon, M A; Kussick, S J
1996-11-01
Vertebrate Src can be activated by specific mutations to become oncogenic. Analogous mutations in Drosophila Src64 (DSrc) induce abnormal differentiation of photoreceptor cells when expressed ectopically in the developing Drosophila adult eye. We have investigated the roles that the adapter protein, Downstream of receptor kinases (Drk), and the SH2 domain-containing tyrosine phosphatase, Corkscrew (Csw), play in this process. We find that dominant-negative mutations in either the drk or csw genes ameliorate the developmental abnormalities induced by activated DSrc. This suggests that Drk and Csw are required downstream of, or parallel to, DSrc. Csw does not act solely as an upstream activator of DSrc. The results are discussed in relation to potential roles for the vertebrate homologues of Drk and Csw (Grb2 and SHP2, respectively) in the transformation of fibroblasts by vertebrate Src.
Elwell, Jennifer A; Lovato, TyAnna L; Adams, Melanie M; Baca, Erica M; Lee, Thai; Cripps, Richard M
2015-04-15
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arises through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him. Copyright © 2015 Elsevier Inc. All rights reserved.
Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress.
Wang, Lin; Feng, Chao; Zheng, Xiaodong; Guo, Yan; Zhou, Fangfang; Shan, Dongqian; Liu, Xuan; Kong, Jin
2017-10-01
Synthesis of melatonin in mitochondria was reported in animals. However, there is no report on whether plant mitochondria also produce melatonin. Herein, we show that plant mitochondria are a major site for melatonin synthesis. In an in vitro study, isolated apple mitochondria had the capacity to generate melatonin. Subcellular localization analysis documented that an apple SNAT isoform, MzSNAT5, was localized in the mitochondria of both Arabidopsis protoplasts and apple callus cells. The kinetic analysis revealed that the recombinant MzSNAT5 protein exhibited high enzymatic activity to catalyze serotonin to N-acetylserotonin with the K m and V max of 55 μmol/L and 0.909 pmol/min/mg protein at 35°C, respectively; this pathway functioned over a wide range of temperatures from 5 to 75°C. In an in vivo study, MzSNAT5 was drought inducible. The transgenic Arabidopsis ectopically expressing MzSNAT5 elevated the melatonin level and, hence, enhanced drought tolerance. The mechanistic study indicated that the ectopically expressing MzSNAT5 allows plant mitochondria to increase melatonin synthesis. As a potent free radical scavenger, melatonin reduces the oxidative stress caused by the elevated reactive oxygen species which are generated under drought stress in plants. Our findings provide evidence that engineered melatonin-enriched plants exhibit enhanced oxidative tolerance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Arabidopsis LEAFY COTYLEDON1 controls cell fate determination during post-embryonic development
Huang, Mingkun; Hu, Yilong; Liu, Xu; Li, Yuge; Hou, Xingliang
2015-01-01
Arabidopsis LEAFY COTYLEDON1 (LEC1) transcription factor is a master regulator that shapes plant embryo development and post-embryonic seedling establishment. Loss-of-function of LEC1 alters the cotyledon identity, causing the formation of ectopic trichomes, which does not occur in wild-type seedlings, implying that LEC1 might regulate embryonic cell fate determination during post-embryonic development. To test this hypothesis, we compared the expression of trichome development-related genes between the wild-type and the lec1 mutant. We observed that transcripts of GLABROUS1 (GL1), GL2, and GL3, genes encoding the positive regulators in trichome development, were significantly upregulated, while the TRICHOMELESS1 (TCL2), ENHANCER OF TRY AND CPC1 (ETC1), and ETC2 genes, encoding the negative regulators in trichome development, were downregulated in the lec1 mutant. Furthermore, overexpression of LEC1 activated the expressions of TCL2, CAPPICE (CPC), and ETC1, resulting in production of cotyledonary leaves with no or fewer trichomes during vegetative development. In addition, we demonstrated that LEC1 interacts with TCL2 in yeast and in vitro. A genetic experiment showed that loss-of-function of GL2 rescued the ectopic trichome formation in the lec1 mutant. These findings strongly support that LEC1 regulates trichome development, providing direct evidence for the role of LEC1 in cell fate determination during post-embryonic development. PMID:26579186
Yang, Zhong; Liu, Qiang; Mannix, Robert J.; Xu, Xiaoyin; Li, Hongli; Ma, Zhiyuan; Ingber, Donald E.; Allen, Paul D.; Wang, Yaming
2015-01-01
Certain lower organisms achieve organ regeneration by reverting differentiated cells into tissue-specific progenitors that re-enter embryonic programs. During muscle regeneration in the urodele amphibian, post-mitotic multinucleated skeletal myofibers transform into mononucleated proliferating cells upon injury, and a transcription factor-msx1 plays a role in their reprograming. Whether this powerful regeneration strategy can be leveraged in mammals remains unknown, as it has not been demonstrated that the dedifferentiated progenitor cells arising from muscle cells overexpressing Msx1 are lineage-specific and possess the same potent regenerative capability as their amphibian counterparts. Here we show that ectopic expression of Msx1 reprograms post-mitotic, multinucleated, primary mouse myotubes to become proliferating mononuclear cells. These dedifferentiated cells reactivate genes expressed by embryonic muscle progenitor cells and generate only muscle tissue in vivo both in an ectopic location and inside existing muscle. More importantly, distinct from adult muscle satellite cells, these cells appear both to fuse with existing fibers and to regenerate myofibers in a robust and time-dependent manner. Upon transplantation into a degenerating muscle, these dedifferentiated cells generated a large number of myofibers that increased over time and replenished almost half of the cross-sectional area of the muscle in only 12 weeks. Our study demonstrates that mammals can harness a muscle regeneration strategy used by lower organisms when the same molecular pathway is activated. PMID:24916688
V3 vasopressin receptor and corticotropic phenotype in pituitary and nonpituitary tumors.
de Keyzer, Y; René, P; Lenne, F; Auzan, C; Clauser, E; Bertagna, X
1997-01-01
Pituitary corticotropic cells express a specific vasopressin receptor, called V1b or V3, through which vasopressin stimulates corticotropin secretion. We recently cloned a cDNA coding for this receptor and showed that it belongs to the G protein-coupled receptor family. V3 mRNA is readily detected by RT-PCR in normal human pituitaries and corticotropic pituitary adenomas but not in PRL or GH-secreting adenomas, thus demonstrating that, like POMC itself and the CRH receptor, V3 is a marker of the corticotropic phenotype. Nuclease protection experiments suggest that V3 is overexpressed in some corticotropic adenomas, and thus may play a role in tumor development by activating the phospholipase C-signalling pathway. In addition analysis of its expression in nonpituitary neuroendocrine tumors showed a striking association with carcinoids of the lung responsible for the ectopic ACTH syndrome.
Developing a knowledge base to support the annotation of ultrasound images of ectopic pregnancy.
Dhombres, Ferdinand; Maurice, Paul; Friszer, Stéphanie; Guilbaud, Lucie; Lelong, Nathalie; Khoshnood, Babak; Charlet, Jean; Perrot, Nicolas; Jauniaux, Eric; Jurkovic, Davor; Jouannic, Jean-Marie
2017-01-31
Ectopic pregnancy is a frequent early complication of pregnancy associated with significant rates of morbidly and mortality. The positive diagnosis of this condition is established through transvaginal ultrasound scanning. The timing of diagnosis depends on the operator expertise in identifying the signs of ectopic pregnancy, which varies dramatically among medical staff with heterogeneous training. Developing decision support systems in this context is expected to improve the identification of these signs and subsequently improve the quality of care. In this article, we present a new knowledge base for ectopic pregnancy, and we demonstrate its use on the annotation of clinical images. The knowledge base is supported by an application ontology, which provides the taxonomy, the vocabulary and definitions for 24 types and 81 signs of ectopic pregnancy, 484 anatomical structures and 32 technical elements for image acquisition. The knowledge base provides a sign-centric model of the domain, with the relations of signs to ectopic pregnancy types, anatomical structures and the technical elements. The evaluation of the ontology and knowledge base demonstrated a positive feedback from a panel of 17 medical users. Leveraging these semantic resources, we developed an application for the annotation of ultrasound images. Using this application, 6 operators achieved a precision of 0.83 for the identification of signs in 208 ultrasound images corresponding to 35 clinical cases of ectopic pregnancy. We developed a new ectopic pregnancy knowledge base for the annotation of ultrasound images. The use of this knowledge base for the annotation of ultrasound images of ectopic pregnancy showed promising results from the perspective of clinical decision support system development. Other gynecological disorders and fetal anomalies may benefit from our approach.
USDA-ARS?s Scientific Manuscript database
Plums normally begin to flower and fruit three to seven years from seed. To shorten this generation time, early flowering plum genotypes were produced by transforming plum hypocotyls with the poplar (Populus trichocarpa) Flowering Locus T1 (PtFT1) gene. Ectopic expression of 35S::PtFT1 induced ear...
Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June
2016-05-01
Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.
Maternal epigenetics and methyl supplements affect agouti gene expression in A{sup vy}/a mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, G.L.; Kodell, R.L.; Cooney, C.A.
Viable yellow (A{sup vy}/a) mice are larger, obese, hyperinsulinemic, more susceptible to cancer, and, on average, shorter lived than their non-yellow siblings. They are epigenetic mosaics ranging from a yellow phenotype with maximum ectopic agouti overexpression, through a continuum of mottled agouti/yellow phenotypes with partial agouti overexpression, to a pseudoagouti phenotype with minimal ectopic expression. Pseudoagouti A{sup vy}/a mice are lean, healthy, and longer lived than their yellow siblings. Here the authors report that feeding pregnant black a/a dams methyl-supplemented diets alters epigenetic regulation of agouti expression in their offspring, as indicated by increased agouti/black mottling in the direction ofmore » the pseudoagouti phenotype. They also present confirmatory evidence that epigenetic phenotypes are maternally heritable. Thus A{sup vy} expression, already known to be modulated by imprinting, strain-specific modification, and maternal epigenetic inheritance, is also modulated by maternal diet. These observations suggest, at least in this special case, that maternal dietary supplementation may positively affect health and longevity of the offspring. Therefore, this experimental system should be useful for identifying maternal factors that modulate epigenetic mechanisms, especially DNA methylation, in developing embryos.« less
Zhang, Ming-Xue; Zhang, Jie; Zhang, Hong; Tang, Hua
2016-01-01
MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3'UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells.
Jaeger, Emma; Leedham, Simon; Lewis, Annabelle; Segditsas, Stefania; Becker, Martin; Cuadrado, Pedro Rodenas; Davis, Hayley; Kaur, Kulvinder; Heinimann, Karl; Howarth, Kimberley; East, James; Taylor, Jenny; Thomas, Huw; Tomlinson, Ian
2012-05-06
Hereditary mixed polyposis syndrome (HMPS) is characterized by apparent autosomal dominant inheritance of multiple types of colorectal polyp, with colorectal carcinoma occurring in a high proportion of affected individuals. Here, we use genetic mapping, copy-number analysis, exclusion of mutations by high-throughput sequencing, gene expression analysis and functional assays to show that HMPS is caused by a duplication spanning the 3' end of the SCG5 gene and a region upstream of the GREM1 locus. This unusual mutation is associated with increased allele-specific GREM1 expression. Whereas GREM1 is expressed in intestinal subepithelial myofibroblasts in controls, GREM1 is predominantly expressed in the epithelium of the large bowel in individuals with HMPS. The HMPS duplication contains predicted enhancer elements; some of these interact with the GREM1 promoter and can drive gene expression in vitro. Increased GREM1 expression is predicted to cause reduced bone morphogenetic protein (BMP) pathway activity, a mechanism that also underlies tumorigenesis in juvenile polyposis of the large bowel.
Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka
2017-02-15
Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Furukawa, Takahisa
2017-01-01
Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity. PMID:28900001
Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa
2017-09-26
Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.
Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development.
Kiefer, Susan M; Robbins, Lynn; Stumpff, Kelly M; Lin, Congxing; Ma, Liang; Rauchman, Michael
2010-09-01
Development of the metanephric kidney depends on precise control of branching of the ureteric bud. Branching events represent terminal bifurcations that are thought to depend on unique patterns of gene expression in the tip compared with the stalk and are influenced by mesenchymal signals. The metanephric mesenchyme-derived signals that control gene expression at the ureteric bud tip are not well understood. In mouse Sall1 mutants, the ureteric bud grows out and invades the metanephric mesenchyme, but it fails to initiate branching despite tip-specific expression of Ret and Wnt11. The stalk-specific marker Wnt9b and the beta-catenin downstream target Axin2 are ectopically expressed in the mutant ureteric bud tips, suggesting that upregulated canonical Wnt signaling disrupts ureter branching in this mutant. In support of this hypothesis, ureter arrest is rescued by lowering beta-catenin levels in the Sall1 mutant and is phenocopied by ectopic expression of a stabilized beta-catenin in the ureteric bud. Furthermore, transgenic overexpression of Wnt9b in the ureteric bud causes reduced branching in multiple founder lines. These studies indicate that Sall1-dependent signals from the metanephric mesenchyme are required to modulate ureteric bud tip Wnt patterning in order to initiate branching.
Wakabayashi, Shunichi; Soma, Atsumi; Sato, Saeko; Nakatake, Yuhki; Oda, Mayumi; Murakami, Miyako; Sakota, Miki; Chikazawa-Nohtomi, Nana
2016-01-01
Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings. PMID:27802135
Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing's syndrome.
Lecoq, Anne-Lise; Stratakis, Constantine A; Viengchareun, Say; Chaligné, Ronan; Tosca, Lucie; Deméocq, Vianney; Hage, Mirella; Berthon, Annabel; Faucz, Fabio R; Hanna, Patrick; Boyer, Hadrien-Gaël; Servant, Nicolas; Salenave, Sylvie; Tachdjian, Gérard; Adam, Clovis; Benhamo, Vanessa; Clauser, Eric; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc; Bourdeau, Isabelle; Maiter, Dominique; Tabarin, Antoine; Bertherat, Jérôme; Lefebvre, Hervé; de Herder, Wouter; Louiset, Estelle; Lacroix, André; Chanson, Philippe; Bouligand, Jérôme; Kamenický, Peter
2017-09-21
GIP-dependent Cushing's syndrome is caused by ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in cortisol-producing adrenal adenomas or in bilateral macronodular adrenal hyperplasias. Molecular mechanisms leading to ectopic GIPR expression in adrenal tissue are not known. Here we performed molecular analyses on adrenocortical adenomas and bilateral macronodular adrenal hyperplasias obtained from 14 patients with GIP-dependent adrenal Cushing's syndrome and one patient with GIP-dependent aldosteronism. GIPR expression in all adenoma and hyperplasia samples occurred through transcriptional activation of a single allele of the GIPR gene. While no abnormality was detected in proximal GIPR promoter methylation, we identified somatic duplications in chromosome region 19q13.32 containing the GIPR locus in the adrenocortical lesions derived from 3 patients. In 2 adenoma samples, the duplicated 19q13.32 region was rearranged with other chromosome regions, whereas a single tissue sample with hyperplasia had a 19q duplication only. We demonstrated that juxtaposition with cis-acting regulatory sequences such as glucocorticoid response elements in the newly identified genomic environment drives abnormal expression of the translocated GIPR allele in adenoma cells. Altogether, our results provide insight into the molecular pathogenesis of GIP-dependent Cushing's syndrome, occurring through monoallelic transcriptional activation of GIPR driven in some adrenal lesions by structural variations.
Xiao, Yanqing; Chen, Yanli; Ding, Yanpeng; Wu, Jie; Wang, Peng; Yu, Ya; Wei, Xi; Wang, Ye; Zhang, Chaojun; Li, Fuguang; Ge, Xiaoyang
2018-05-01
The WUSCHEL (WUS) gene encodes a plant-specific homeodomain-containing transcriptional regulator, which plays important roles during embryogenesis, as well as in the formation of shoot and flower meristems. Here, we isolated two homologues of Arabidopsis thaliana WUS (AtWUS), GhWUS1a_At and GhWUS1b_At, from upland cotton (Gossypium hirsutum). Domain analysis suggested that the two putative GhWUS proteins contained a highly conserved DNA-binding HOX domain and a WUS-box. Expression profile analysis showed that GhWUSs were predominantly expressed during the embryoid stage. Ectopic expression of GhWUSs in Arabidopsis could induce somatic embryo and shoot formation from seedling root tips. Furthermore, in the absence of exogenous hormone, overexpression of GhWUSs in Arabidopsis could promote shoot regeneration from excised roots, and in the presence of exogenous auxin, excised roots expressing GhWUS could be induced to produce somatic embryo. In addition, expression of the chimeric GhWUS repressor in cotton callus inhibited embryogenic callus formation. Our results show that GhWUS is an important regulator of somatic embryogenesis and shoot regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.
Early Ectopic Recurrence of Craniopharyngioma in the Cerebellopontine Angle.
Mahdi, Mohamad-Motaz Al; Krauss, Joachim K; Nakamura, Makoto; Brandis, Almuth; Hong, Bujung
2018-01-01
Ectopic recurrence of craniopharyngioma in the cerebellopontine angle after surgical resection of a suprasellar craniopharyngioma is rare. Thus, only 5 cases were reported with a delay ranging between 4 and 26 years after removal of the primary tumor. We report a unique case of ectopic recurrence of craniopharyngioma in the cerebellopontine angle, which occurred at only 4 months after surgical resection of the primary tumor. A 24-year-old man underwent resection of a suprasellar craniopharyngioma via a right pterional approach four months earlier. During follow-up, cerebral magnetic resonance imaging (MRI) showed a round homogeneous contrast-enhancing tumor in the right cerebellopontine angle with neither relation to the internal auditory canal nor to the dura mater. After microsurgical resection, histopathological findings revealed ectopic recurrence of craniopharyngioma with similar tumors like the primary tumor. Although infrequent, craniopharyngioma may disseminate via the cerebrospinal fluid during surgical resection and grow in an ectopic place. Early follow-up and MRI scan following resection of a craniopharyngioma is recommended.
Mature orbital teratoma with an ectopic tooth and primary anophthalmos.
Chawla, Bhavna; Chauhan, Kanchan; Kashyap, Seema
2013-02-01
To describe the clinicopathologic features and management of an unusual case of orbital teratoma. A 7-year-old girl presented with a history of an orbital mass since birth. CT scan showed a large mass lesion involving the right orbit, with absence of the eyeball. An ectopic tooth was identified within the tumor. Lid-sparing exenteration surgery was performed. Histopathologic examination of the excised mass showed presence of elements from all three germ layers, consistent with a diagnosis of mature orbital teratoma. Normal ocular structures were not identified on histopathology. At one year follow-up, there was no tumor recurrence. We report an extremely rare and interesting case of a mature orbital teratoma, which was associated with primary anophthalmos and an ectopic tooth.
Ben, Qi-Wen; Jin, Xiao-Long; Liu, Jun; Cai, Xia; Yuan, Fei; Yuan, Yao-Zong
2011-03-01
Overexpression of periostin is present in various malignant tumors and correlates with disease progression. However, its clinicopathological significance in pancreatic cancer is currently not known. Expression of periostin was analyzed by RT-PCR and western blotting in pancreatic cancers and cell lines. Using immunohistochemistry, expression of periostin in pancreatic cancers was evaluated according to factors influencing overall survival with Kaplan-Meier analysis. Ectopic expression of periostin was used to examine the effects of periostin on proliferation and invasiveness of pancreatic cancer cells in vitro. There was no detectable periostin mRNA and protein expression in the 4 pancreatic cell lines. Expression of periostin was found to be up-regulated in pancreatic cancer compared to the adjacent tumor free (TF) tissues by western blotting. The positive ratio of periostin expression in the neoplastic stroma was significantly correlated with the depth of invasion (p=0.007) and lymph node metastasis (p=0.027). Survival analysis showed that stromal or epithelium expression of periostin was associated with poor survival (p=0.035, p=0.022, log-rank test, respectively). In vitro studies showed that periostin was able to promote proliferation and invasiveness of pancreatic cancer cells. These results suggest that periostin may be involved in the progression and invasion of pancreatic cancer.
Human Chorionic Gonadotropin and Breast Cancer
Schüler-Toprak, Susanne; Treeck, Oliver; Ortmann, Olaf
2017-01-01
Breast cancer is well known as a malignancy being strongly influenced by female steroids. Pregnancy is a protective factor against breast cancer. Human chorionic gonadotropin (HCG) is a candidate hormone which could mediate this antitumoral effect of pregnancy. For this review article, all original research articles on the role of HCG in breast cancer were considered, which are listed in PubMed database and were written in English. The role of HCG in breast cancer seems to be a paradox. Placental heterodimeric HCG acts as a protective agent by imprinting a permanent genomic signature of the mammary gland determining a refractory condition to malignant transformation which is characterized by cellular differentiation, apoptosis and growth inhibition. On the other hand, ectopic expression of β-HCG in various cancer entities is associated with poor prognosis due to its tumor-promoting function. Placental HCG and ectopically expressed β-HCG exert opposite effects on breast tumorigenesis. Therefore, mimicking pregnancy by treatment with HCG is suggested as a strategy for breast cancer prevention, whereas targeting β-HCG expressing tumor cells seems to be an option for breast cancer therapy. PMID:28754015
Nuclear Glycolytic Enzyme Enolase of Toxoplasma gondii Functions as a Transcriptional Regulator
Mouveaux, Thomas; Oria, Gabrielle; Werkmeister, Elisabeth; Slomianny, Christian; Fox, Barbara A.; Bzik, David J.; Tomavo, Stanislas
2014-01-01
Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii. PMID:25153525
Two FGFRL-Wnt circuits organize the planarian anteroposterior axis
Scimone, M Lucila; Cote, Lauren E; Rogers, Travis; Reddien, Peter W
2016-01-01
How positional information instructs adult tissue maintenance is poorly understood. Planarians undergo whole-body regeneration and tissue turnover, providing a model for adult positional information studies. Genes encoding secreted and transmembrane components of multiple developmental pathways are predominantly expressed in planarian muscle cells. Several of these genes regulate regional identity, consistent with muscle harboring positional information. Here, single-cell RNA-sequencing of 115 muscle cells from distinct anterior-posterior regions identified 44 regionally expressed genes, including multiple Wnt and ndk/FGF receptor-like (ndl/FGFRL) genes. Two distinct FGFRL-Wnt circuits, involving juxtaposed anterior FGFRL and posterior Wnt expression domains, controlled planarian head and trunk patterning. ndl-3 and wntP-2 inhibition expanded the trunk, forming ectopic mouths and secondary pharynges, which independently extended and ingested food. fz5/8-4 inhibition, like that of ndk and wntA, caused posterior brain expansion and ectopic eye formation. Our results suggest that FGFRL-Wnt circuits operate within a body-wide coordinate system to control adult axial positioning. DOI: http://dx.doi.org/10.7554/eLife.12845.001 PMID:27063937
Dual ectopic thyroid associated with thyroid hemiagenesis.
Nakamura, Shigenori; Masuda, Teruyuki; Ishimori, Masatoshi
2018-01-01
We report a case of a 15-year-old girl with a midline neck mass that was first noted 2 or 3 years previously. She had been treated with levothyroxine (L-T4) for congenital hypothyroidism until 11 years of age. Ultrasonography revealed an atrophic right thyroid (1.0 × 1.6 × 2.6 cm in size) and a mass (2.3 × 1.0 × 3.5 cm in size) in the upper part of the neck. No left lobe of the thyroid was detected. On further evaluation, Tc-99m pertechnetate thyroid scintigraphy and CT showed ectopic thyroid tissue in the lingual region and infrahyoid region. Thus, she was diagnosed as having dual ectopic thyroid and thyroid hemiagenesis. The atrophic right thyroid was thought be non-functional. Treatment with L-T4 was started to reduce the size of the dual ectopic thyroid tissue. This may be the first reported case of dual ectopic thyroid associated with hemiagenesis detected only by ultrasonography. Ultrasonography can confirm the presence or absence of orthotopic thyroid tissue in patients with ectopic thyroid.The cause of congenital hypothyroidism should be examined.Clinical manifestation of ectopic thyroid may appear when the treatment with L-T4 is discontinued.Annual follow-up is needed in all children when their thyroid hormone replacement is stopped.
Marsch-Martinez, Nayelli; Greco, Raffaella; Becker, Jörg D; Dixit, Shital; Bergervoet, Jan H W; Karaba, Aarati; de Folter, Stefan; Pereira, Andy
2006-12-01
The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leaves.
Identification of a Soybean MOTHER OF FT AND TFL1 Homolog Involved in Regulation of Seed Germination
Wang, Xu; Wu, Faqiang; Hu, Ruibo; Fu, Yongfu
2014-01-01
Seed germination is an important event in the life cycle of seed plants, and is controlled by complex and coordinated genetic networks. Many genes involved in the regulation of this process have been identified in different plant species so far. Recent studies in both Arabidopsis and wheat have uncovered a new role of MOTHER OF FT AND TFL1 (MFT) in seed germination. Here, we reported a homolog of MFT in soybean (GmMFT) which strongly expressed in seeds. Detailed expression analysis showed that the mRNA level of GmMFT increased with seed development but declined during seed germination. The transcription of GmMFT also responded to exogenous application of ABA and GA3. Ectopic expression of GmMFT CDS in Arabidopsis moderately inhibited seed germination. All these evidences suggest that GmMFT may be a negative regulator of seed germination. PMID:24932489
Clk post-transcriptional control denoises circadian transcription both temporally and spatially.
Lerner, Immanuel; Bartok, Osnat; Wolfson, Victoria; Menet, Jerome S; Weissbein, Uri; Afik, Shaked; Haimovich, Daniel; Gafni, Chen; Friedman, Nir; Rosbash, Michael; Kadener, Sebastian
2015-05-08
The transcription factor CLOCK (CLK) is essential for the development and maintenance of circadian rhythms in Drosophila. However, little is known about how CLK levels are controlled. Here we show that Clk mRNA is strongly regulated post-transcriptionally through its 3' UTR. Flies expressing Clk transgenes without normal 3' UTR exhibit variable CLK-driven transcription and circadian behaviour as well as ectopic expression of CLK-target genes in the brain. In these flies, the number of the key circadian neurons differs stochastically between individuals and within the two hemispheres of the same brain. Moreover, flies carrying Clk transgenes with deletions in the binding sites for the miRNA bantam have stochastic number of pacemaker neurons, suggesting that this miRNA mediates the deterministic expression of CLK. Overall our results demonstrate a key role of Clk post-transcriptional control in stabilizing circadian transcription, which is essential for proper development and maintenance of circadian rhythms in Drosophila.
Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K
2014-05-01
Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities.
Dscam1-mediated self-avoidance counters netrin-dependent targeting of dendrites in Drosophila.
Matthews, Benjamin J; Grueber, Wesley B
2011-09-13
Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and nonoverlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3-11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter Drosophila sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B-expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counters extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dscam1-mediated self-avoidance counters Netrin-dependent targeting of dendrites in Drosophila
Matthews, Benjamin J.; Grueber, Wesley B.
2011-01-01
SUMMARY Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and non-overlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3–11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counter extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. PMID:21871804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Zhengliang; Deblis, Ryan; Glenn, Honor
2007-11-15
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C{sub 2}C{sub 12} myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5{alpha} and Hic-5{beta}, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results inmore » a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5{alpha} is permissive to differentiation while expression of either Hic-5{beta} or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C{sub 2}C{sub 12} myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.« less
The role of Sema3–Npn-1 signaling during diaphragm innervation and muscle development
Huettl, Rosa-Eva; Hanuschick, Philipp; Amend, Anna-Lena; Alberton, Paolo; Aszodi, Attila; Huber, Andrea B.
2016-01-01
ABSTRACT Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A–Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A–Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm. PMID:27466379
Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation
Aid-Launais, R.; Sagardoy, T.; Siadous, R.; Bareille, R.; Rey, S.; Pechev, S.; Etienne, L.; Kalisky, J.; de Mones, E.; Letourneur, D.; Amedee Vilamitjana, J.
2017-01-01
Previous studies performed using polysaccharide-based matrices supplemented with hydroxyapatite (HA) particles showed their ability to form in subcutaneous and intramuscular sites a mineralized and osteoid tissue. Our objectives are to optimize the HA content in the matrix and to test the combination of HA with strontium (Sr-HA) to increase the matrix bioactivity. First, non-doped Sr-HA powders were combined to the matrix at three different ratios and were implanted subcutaneously for 2 and 4 weeks. Interestingly, matrices showed radiolucent properties before implantation. Quantitative analysis of micro-CT data evidenced a significant increase of mineralized tissue formed ectopically with time of implantation and allowed us to select the best ratio of HA to polysaccharides of 30% (w/w). Then, two Sr-substitution of 8% and 50% were incorporated in the HA powders (8Sr-HA and 50Sr-HA). Both Sr-HA were chemically characterized and dispersed in matrices. In vitro studies performed with human mesenchymal stem cells (MSCs) demonstrated the absence of cytotoxicity of the Sr-doped matrices whatever the amount of incorporated Sr. They also supported osteoblastic differentiation and activated the expression of one late osteoblastic marker involved in the mineralization process i.e. osteopontin. In vivo, subcutaneous implantation of these Sr-doped matrices induced osteoid tissue and blood vessels formation. PMID:28910401
Hanski, C; Hofmeier, M; Schmitt-Gräff, A; Riede, E; Hanski, M L; Borchard, F; Sieber, E; Niedobitek, F; Foss, H D; Stein, H; Riecken, E O
1997-08-01
Mucinous carcinomas of the colorectum have been reported to overexpress the intestinal mucin MUC2. The purpose of this study was to determine whether this alteration is shared by mucinous tumours of the ovary, breast, and pancreas. A total of 40 breast carcinomas (22 of mucinous and 18 of ductal invasive type), 39 ovarian adenocarcinomas (16 mucinous, 23 serous), 47 colorectal carcinomas (25 mucinous and 22 non-mucinous), and 41 pancreatic adenocarcinomas (14 mucinous, 27 non-mucinous) were investigated by immunohistochemistry with the anti-MUC2 monoclonal antibody 4F1 and the expression pattern was ranked. MUC2 mucin is expressed in the normal colonic epithelium; in the normal epithelium of the breast, ovary, and pancreas, it was not detectable by immunohistochemistry or by reverse transcriptase-polymerase chain reaction (RT-PCR). In agreement with previous reports, the colonic mucinous carcinomas differed significantly from the non-mucinous carcinomas by strong MUC2 expression. In all mucinous carcinomas of the ovary, breast, and pancreas, de novo expression of the MUC2 gene was observed, which differentiated mucinous and non-mucinous carcinomas of these tissues (P < 0.001). The overexpression or ectopic expression of the MUC2 gene exhibited by mucinous carcinomas of four organs indicates a common genetic lesion associated with the mucinous tumour phenotype.
ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells
Bohlken, A; Cheung, B B; Bell, J L; Koach, J; Smith, S; Sekyere, E; Thomas, W; Norris, M; Haber, M; Lovejoy, D B; Richardson, D R; Marshall, G M
2009-01-01
Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism. PMID:19127267
Ectopic Expression of BnaC.CP20.1 Results in Premature Tapetal Programmed Cell Death in Arabidopsis.
Song, Liping; Zhou, Zhengfu; Tang, Shan; Zhang, Zhiqiang; Xia, Shengqian; Qin, Maomao; Li, Bao; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Fu, Tingdong; Tu, Jinxing
2016-09-01
Tapetal programmed cell death (PCD) is essential in pollen grain development, and cysteine proteases are ubiquitous enzymes participating in plant PCD. Although the major papain-like cysteine proteases (PLCPs) have been investigated, the exact functions of many PLCPs are still poorly understood in PCD. Here, we identified a PLCP gene, BnaC.CP20.1, which was closely related to XP_013596648.1 from Brassica oleracea. Quantitative real-time PCR analysis revealed that BnaC.CP20.1 expression was down-regulated in male-sterile lines in oilseed rape, suggesting a connection between this gene and male sterility. BnaC.CP20.1 is especially active in the tapetum and microspores in Brassica napus from the uninucleate stage until formation of mature pollen grains during anther development. On expression of BnaC.CP20.1 prior to the tetrad stage, BnA9::BnaC.CP20.1 transgenic lines in Arabidopsis thaliana showed a male-sterile phenotype with shortened siliques containing fewer or no seeds by self-crossing. Scanning electron microscopy indicated that the reticulate exine was defective in aborted microspores. Callose degradation was delayed and microspores were not released from the tetrad in a timely fashion. Additionally, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay indicated that BnaC.CP20.1 ectopic expression led to premature tapetal PCD. Transmission electron microscopy analyses further demonstrated that the pollen abortion was due to the absence of tectum connections to the bacula in the transgenic anthers. These findings suggest that timely expression of BnaC.CP20.1 is necessary for tapetal degeneration and pollen wall formation. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Jokic, Natasa; Gonzalez de Aguilar, Jose-Luis; Dimou, Leda; Lin, Shuo; Fergani, Anissa; Ruegg, Markus A; Schwab, Martin E; Dupuis, Luc; Loeffler, Jean-Philippe
2006-01-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss and muscle wasting. In muscles of ALS patients, Nogo-A—a protein known to inhibit axon regeneration—is ectopically expressed at levels that correlate with the severity of the clinical symptoms. We now show that the genetic ablation of Nogo-A extends survival and reduces muscle denervation in a mouse model of ALS. In turn, overexpression of Nogo-A in wild-type muscle fibres leads to shrinkage of the postsynapse and retraction of the presynaptic motor ending. This suggests that the expression of Nogo-A occurring early in ALS skeletal muscle could cause repulsion and destabilization of the motor nerve terminals, and subsequent dying back of the axons and motor neurons. PMID:17039253
The cell proliferation antigen Ki-67 organises heterochromatin
Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel
2016-01-01
Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251
Rubel, Cory A; Wu, San-Pin; Lin, Lin; Wang, Tianyuan; Lanz, Rainer B; Li, Xilong; Kommagani, Ramakrishna; Franco, Heather L; Camper, Sally A; Tong, Qiang; Jeong, Jae-Wook; Lydon, John P; DeMayo, Francesco J
2016-10-25
Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR) expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage. Published by Elsevier Inc.
Neuman, Sarah D.; Bashirullah, Arash; Kumar, Justin P.
2016-01-01
The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. PMID:27930646
Yamaguchi, Shinji; Aoki, Naoya; Kitajima, Takaaki; Okamura, Yasushi; Homma, Koichi J
2014-10-01
Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor domain (VSD) and the cytoplasmic domain with phosphoinositide-phosphatase activities. It operates as the voltage sensor and directly translates membrane potential into phosphoinositide turnover by coupling VSD to the cytoplasmic domain. VSPs are evolutionarily conserved from marine invertebrate up to humans. Recently, we demonstrated that ectopic expression of the chick ortholog of VSP, Gg-VSP, in a fibroblast cell line caused characteristic cell process outgrowths. Co-expression of chick PTEN suppressed such morphological change, suggesting that VSP regulates cell shape by increasing PI(3,4)P2. However, the in vivo function of Gg-VSP remains unclear. Here, we showed that in chick embryos Gg-VSP is expressed in the stomach, mesonephros, pharyngeal arch, limb bud, somites, floor plate of neural tube, and notochord. In addition, both Gg-VSP transcripts and the protein were found in the cerebellar Purkinje neurons. These findings provide an insight into the physiological functions of VSP.
MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, XueLi, E-mail: zhangxueli.200010@yahoo.com.cn; Zhu, WeiYing; Zhang, JiFa
2010-04-30
MicroRNAs (miRNAs) are non-coding RNAs that regulate the expression of target mRNAs. Altered expression of specific miRNAs in human gastric cancer progression has been reported; however, the role of miR-650 in gastric cancer is poorly understood. In this study, we show that miR-650 is involved in lymphatic and distant metastasis in human gastric cancer, and we find that ectopic expression of miR-650 promotes tumorigenesis and proliferation of gastric cancer cells. A luciferase reporter assay demonstrates that Inhibitor of Growth 4 (ING4) is a direct target of miR-650. Collectively, our study demonstrates that over-expression of miR-650 in gastric cancer may promotemore » proliferation and growth of cancer cells, at least partially through directly targeting ING4. These findings help clarify the molecular mechanisms involved in gastric carcinogenesis and indicate that miR-650 modulation may be a bona fide miRNA-based treatment of gastric cancer.« less
Osteogenesis imperfecta with ectopic mineralizations in dentin and cementum and a COL1A2 mutation.
Kantaputra, Piranit Nik; Sirirungruangsarn, Yuddhasert; Intachai, Worrachet; Ngamphiw, Chumpol; Tongsima, Sissades; Dejkhamron, Prapai
2018-04-10
We report a Thai father (patient 1) and his daughter (patient 2) affected with osteogenesis imperfecta type IV and dentinogenesis imperfecta. Both were heterozygous for the c.1451G>A (p.Gly484Glu) mutation in COL1A2. The father, a Thai boxer, had very mild osteogenesis imperfecta with no history of low-trauma bone fractures. Scanning electron micrography of the primary teeth with DI of the patient 2, and the primary teeth with DI of another OI patient with OI showed newly recognized dental manifestations of teeth with DI. Normal dentin and cementum might have small areas of ectopic mineralizations. Teeth affected with DI have well-organized ectopic mineralizations in dentin and cementum. The "French-fries-appearance" of the crystals at the cemento-dentinal junction and abnormal cementum have never been reported to be associated with dentinogenesis imperfecta, either isolated or osteogenesis imperfecta-associated. Our study shows for the first time that abnormal collagen fibers can lead to ectopic mineralization in dentin and cementum and abnormal cementum can be a part of osteogenesis imperfecta.
Simple ectopic kidney in three dogs.
Choi, Jiyoung; Lee, Heechun; Lee, Youngwon; Choi, Hojung
2012-10-01
Simple ectopic kidney was diagnosed in three dogs by means of radiography and ultrasonography. A 2-year-old castrated male Schnauzer, a 13-year-old female Schnauzer and a 9-year-old male Jindo were referred with vomiting, hematuria and ocular discharge, respectively. In all three dogs, oval-shaped masses with soft tissue density were observed in the mid to caudal abdomen bilaterally or unilaterally, and kidney silhouettes were not identified at the proper anatomic places on abdominal radiographs. Ultrasonography confirmed the masses were malpositioned kidney. The ectopic kidneys had relatively small size, irregular shape and short ureter but showed normal function on excretory urography.
Yang, W; Du, W W; Li, X; Yee, A J; Yang, B B
2016-07-28
It has recently been shown that the upregulation of a pseudogene specific to a protein-coding gene could function as a sponge to bind multiple potential targeting microRNAs (miRNAs), resulting in increased gene expression. Similarly, it was recently demonstrated that circular RNAs can function as sponges for miRNAs, and could upregulate expression of mRNAs containing an identical sequence. Furthermore, some mRNAs are now known to not only translate protein, but also function to sponge miRNA binding, facilitating gene expression. Collectively, these appear to be effective mechanisms to ensure gene expression and protein activity. Here we show that expression of a member of the forkhead family of transcription factors, Foxo3, is regulated by the Foxo3 pseudogene (Foxo3P), and Foxo3 circular RNA, both of which bind to eight miRNAs. We found that the ectopic expression of the Foxo3P, Foxo3 circular RNA and Foxo3 mRNA could all suppress tumor growth and cancer cell proliferation and survival. Our results showed that at least three mechanisms are used to ensure protein translation of Foxo3, which reflects an essential role of Foxo3 and its corresponding non-coding RNAs.
Lee, S H; Oh, S-Y; Do, S I; Lee, H J; Kang, H J; Rho, Y S; Bae, W J; Lim, Y C
2014-11-25
Head and neck squamous cell carcinomas (HNSCCs) display cellular heterogeneity and contain cancer stem cells (CSCs). Sex-determining region Y [SRY]-box (SOX)2 is an important regulator of embryonic stem cell fate and is aberrantly expressed in several types of human tumours. Nonetheless, the role of SOX2 in HNSCC remains unclear. We created cells ectopically expressing SOX2 from previously established HNSCC cells and examined the cell proliferation, self-renewal capacity, and chemoresistance of these cells compared with control cells. In addition, we knocked down SOX2 in primary spheres obtained from HNSCC tumour tissue and assessed the attenuation of stemness-associated traits in these cells in vitro and in vivo. Furthermore, we examined the clinical relevance of SOX2 expression in HNSCC patients. SOX2 is aberrantly expressed in primary tissue of HNSCC patients but not in healthy tissue. SOX2 expression correlated with tumour recurrence and poor prognosis of HNSCC patients. Ectopic expression of SOX2 induced cell proliferation via cyclin B1 expression and stemness-associated features, such as self-renewal and chemoresistance. In addition, a knockdown of SOX2 in HNSCC CSCs attenuated their self-renewal capacity, chemoresistance (through ABCG2 suppression), invasion capacity (via snail downregulation), and in vivo tumorigenicity. These results suggest that SOX2 may have important roles in the 'stemness' and progression of HNSCC. Targeting SOX2-positive tumour cells (CSCs) could be a new therapeutic strategy in HNSCCs.
Bagdonaite, Ieva; Wandall, Hans H.; Litvinov, Ivan V.; Nastasi, Claudia; Becker, Jürgen C.; Dabelsteen, Sally; Geisler, Carsten; Bonefeld, Charlotte M.; Zhang, Qian; Wasik, Mariusz A.; Zhou, Youwen; Sasseville, Denis; Ødum, Niels; Woetmann, Anders
2015-01-01
CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22ΔN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22ΔN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22ΔN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22ΔN and CD22wt in these cells. In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients. PMID:25957418
Bagdonaite, Ieva; Wandall, Hans H; Litvinov, Ivan V; Nastasi, Claudia; Becker, Jürgen C; Dabelsteen, Sally; Geisler, Carsten; Bonefeld, Charlotte M; Zhang, Qian; Wasik, Mariusz A; Zhou, Youwen; Sasseville, Denis; Ødum, Niels; Woetmann, Anders
2015-06-10
CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22âN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22âN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22âN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22âN and CD22wt in these cells.In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients.
Plasma Steroid Metabolome Profiling for Diagnosis and Subtyping Patients with Cushing Syndrome.
Eisenhofer, Graeme; Masjkur, Jimmy; Peitzsch, Mirko; Di Dalmazi, Guido; Bidlingmaier, Martin; Grüber, Matthias; Fazel, Julia; Osswald, Andrea; Beuschlein, Felix; Reincke, Martin
2018-03-01
Diagnosis of Cushing syndrome requires a multistep process that includes verification of hypercortisolism followed by identification of the cause of adrenocortical hyperfunction. This study assessed whether pituitary, ectopic, and adrenal subtypes of Cushing syndrome were characterized by distinct plasma steroid profiles that might assist diagnosis. In this retrospective cross-sectional study, mass spectrometric measurements of a panel of 15 plasma steroids were applied to 222 patient samples tested for Cushing syndrome. Disease was excluded in 138 and confirmed in 51 patients with pituitary Cushing syndrome, 12 with ectopic adrenocorticotropin secretion, and 21 with adrenal disease. Another 277 age- and sex-matched hypertensive and normotensive volunteers were included for comparison. Compared with patients without disease, the largest increases in plasma steroids among patients with Cushing syndrome were observed for 11-deoxycortisol (289%), 21-deoxycortisol (150%), 11-deoxycorticosterone (133%), corticosterone (124%), and cortisol (122%). Patients with ectopic disease showed the most prominent increases, but there was considerable variation for other steroids according to subtype. Patients with adrenal disease had the lowest concentrations of androgens, whereas those with ectopic and pituitary disease showed the lowest concentrations of aldosterone. Plasma 18-oxocortisol was particularly low in ectopic disease. With the use of 10 selected steroids, subjects with and without different Cushing syndrome subtypes could be discriminated nearly as closely as with the use of salivary and urinary free cortisol, dexamethasone-suppressed cortisol, and plasma adrenocorticotropin (9.5% vs 5.8% misclassification). Patients with different subtypes of Cushing syndrome show distinctive plasma steroid profiles that may offer a supplementary single-test alternative for screening purposes. © 2017 American Association for Clinical Chemistry.
Annunziata, Marta; Grande, Cristina; Scarlatti, Francesca; Deltetto, Francesco; Delpiano, Elena; Camanni, Marco; Ghigo, Ezio; Granata, Riccarda
2010-08-01
To determine the effect of the GHRH antagonist JV-1-36 on proliferation and survival of primary ectopic human endometriotic stromal cells (ESCs) and the T HESC cell line. Prospective laboratory study. University hospital. 22 women with endometriosis (aged 34.8+/-5.7 years) undergoing therapeutic laparoscopy. Eutopic (n=10) and ectopic (n=22) endometrial tissues were collected from women who underwent therapeutic laparoscopic surgery for endometriosis (stage III/IV). Expression of GHRH, GHRH receptor (GHRH-R) and GHRH-R splice variant (SV) 1 mRNA was determined by reverse-transcription polymerase chain reaction (RT-PCR). The ESC proliferation was assessed by 5-bromo-2-deoxyuridine incorporation, cell survival by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Trypan blue assay. The T HESC survival was evaluated by MTT, cyclic adenosine monophosphate (cAMP) levels by ELISA, extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation by Western blot, and insulin-like growth factor (IGF)-2 mRNA by real-time PCR. The ESCs and T HESCs, but not normal endometrial tissues, expressed GHRH-R mRNA; SV1 mRNA was determined in normal endometrial tissues, ESCs, and T HESCs; GHRH mRNAwas found in T HESCs; JV-1-36 inhibited ESC proliferation and ESC and T HESC survival. In T HESCs, JV-1-36 reduced cAMP production and ERK1/2 phosphorylation but had no effect on IGF-2 mRNA expression. The GHRH antagonist JV-1-36 inhibits endometriotic cell proliferation and survival, suggesting that GHRH antagonist may represent promising tools for treatment of endometriosis. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P
2018-02-21
Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, J.E.; Maroulakou, I.G.; Anver, M.
Transgenic mice expressing the SV40 large T-antigen (T{sup AG}) under the regultory control of the hormone-responsive rat C3(1) prostatein promoter develop unusual bone and cartilage lesions, as well as ectopic bone and cartilage formation. Two lines of transgenic animals have been propagated in which the expression of the transgene in chondrocytes results in a mild to moderate generalized disorganization of cartilage growth which appears to affect multiple tissues, including the trachea, ear pinna and articular cartilage. The epiphyseal plates are also affected with normal architecture of the zones of proliferation and maturation, but marked elongation of the zone of hypertrophy.more » Immunocytochemistry demonstrates that expression of T{sup AG} is limited to the zone of hypertropny in the epiphyseal plates, suggesting that the chondrocytes become hormone-responsive at this particular stage of differentiation. Normal mineralization and trabecular formation in long bone appears to occur. Ectopic bone and cartilage formation occurs in the foot pads of the fore- and hind- feet over the course of several months. This is preceded by proliferation of sweat gland epithelial cells followed by the appearance of nodules of cartilage and bone. The nodules are closely associated with proliferating epithelium but are not contiguous with bony structures normally found in the feet. The roles of BMP`s, growth factors, oncogenes and hormones in the development of these lesions will be presented. These transgenic animals may provide new insights into hormone-responsiveness of chondrocytes, as well as factors involved in the processes of bone and cartilage differentiation and growth. These transgenic animals may serve as a useful model for human heterotopic bone formation.« less
Incidence of ectopic pregnancy in Benin City, Nigeria.
Oronsaye, A U; Odiase, G I
1981-10-01
A study of 100 consecutive cases of ectopic pregnancy managed over a 21-month period in the University Department of Obstetrics and Gynaecology is reported. The results show that this is a common gynaecological emergency in the community. Although pelvic inflammatory disease appears to be an important aetiological factor, a significant proportion showed no evidence of previous pelvic sepsis. The usual surgical treatment of cases in our unit is, where possible, total salpingectomy rather than salpingo-oophorectomy.
... Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Ectopic Kidney What is an ectopic kidney? An ectopic kidney is a birth defect in ... has an ectopic kidney. 1 What are the kidneys and what do they do? The kidneys are ...
Sabbag, Avi; Sidi, Yechezkel; Kivity, Shaye; Beinart, Roy; Glikson, Michael; Segev, Shlomo; Goldenberg, Ilan; Maor, Elad
2016-03-01
Obesity and overweight are strongly associated with cardiovascular morbidity and mortality. However, there are limited data on the association between excess weight and the risk of ectopic ventricular activity. We investigated the association between body mass index (BMI) and the risk for ectopic ventricular activity (defined as multiple ventricular premature beats (≥3), ventricular bigeminy, nonsustained ventricular tachycardia or sustained ventricular tachycardia) during exercise stress testing among 22,516 apparently healthy men and women who attended periodic health screening examinations between the years 2000 and 2014. All subjects had completed maximal exercise stress testing annually according to the Bruce protocol. Subjects were divided at baseline into three groups: normal weight (BMI ≥ 18.5 kg/m(2) and<25; N = 9,994), overweight (BMI ≥ 25 and < 30; N = 9,613) and obese (BMI ≥ 30; N = 2,906). The mean age of study subjects was 47 ± 10 years and 72% were men. Kaplan-Meier survival analysis showed that the cumulative probability for the development of exercise-induced ectopic ventricular activity arrhythmias was highest among obese subjects, intermediate among overweight subjects and lowest among subjects with normal weight (3.4%, 2.7% and 2.2% respectively; p < 0.001). Multivariate binary logistic regression with repeated measures of 92,619 ESTs, showed that obese subjects were 33% more likely to have ectopic ventricular arrhythmias during exercise compared with subjects with normal weight (p = 0.005), and that each 1 kg/m(2) increase in BMI was associated with a significant 4% (p = 0.002) increased adjusted risk for exercise-induced ventricular arrhythmias. Obesity is independently associated with increased likelihood of ectopic ventricular arrhythmia during exercise. © The European Society of Cardiology 2015.
NASA Astrophysics Data System (ADS)
Bos, Julia; Nehring, Ralph; Cruz, Diane; Austin, Doug; Rosenberg, Susan; Austin, Robert
By using E. coli cells in which the unique origin of replication has been moved to a ectopic chromosome location distant from the native one, we probe how perturbation of gene order near the origin of replication impacts genome stability and survival under genomic attack. We find that when challenged with sub-inhibitory doses of ciprofloxacin, an antibiotic that generates replication fork stalling, cells with the ectopic origin show significant fitness loss. We show that genes functionally relevant to the cipro-induced stress response are largely located near the native origin, even in distantly related species. We show that while cipro induces increased copy number of genes proximal to the origin of replication as a direct consequence of replication fork stalling, gene copy number variation was reduced near the ectopic origin. Altered gene dosage in cells with an ectopic origin resulted in impaired replication fork repair and chromosome instability. We propose that gene distribution in the origin region acts as a fundamental first line of defense when the integrity of the genome is threatened and that genes proximal to the origin of replication serve as a mechanism of genetic innovation and a driving force of genome evolution in the presence of genotoxic antibiotics. Lewis Sigler Institute for Integrative Genomics and the Physics Department at Princeton University.
E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade.
Caldeira, Joana; Figueiredo, Joana; Brás-Pereira, Catarina; Carneiro, Patrícia; Moreira, Ana M; Pinto, Marta T; Relvas, João B; Carneiro, Fátima; Barbosa, Mário; Casares, Fernando; Janody, Florence; Seruca, Raquel
2015-10-15
Epithelial-cadherin (Ecad) deregulation affects cell-cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell-matrix interactions could play an important role during this process. Thus, we focussed on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis; nonetheless, at the invasive front, cells ectopically expressed Laminin A and βPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), β1 and β4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signalling regulators as molecular targets to impair gastric cancer progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade
Caldeira, Joana; Figueiredo, Joana; Brás-Pereira, Catarina; Carneiro, Patrícia; Moreira, Ana M.; Pinto, Marta T.; Relvas, João B.; Carneiro, Fátima; Barbosa, Mário; Casares, Fernando; Janody, Florence; Seruca, Raquel
2015-01-01
Epithelial-cadherin (Ecad) deregulation affects cell–cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell–matrix interactions could play an important role during this process. Thus, we focussed on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis; nonetheless, at the invasive front, cells ectopically expressed Laminin A and βPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), β1 and β4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signalling regulators as molecular targets to impair gastric cancer progression. PMID:26246502
Trouillas, Marina; Prat, Marie; Doucet, Christelle; Ernou, Isabelle; Laplace-Builhé, Corinne; Blancard, Patrick Saint; Holy, Xavier; Lataillade, Jean-Jacques
2013-01-04
This study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair. PGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry. We showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP. We have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair.
Li, Shuqin; Zhou, Jun; Wang, Zhaoxin; Wang, Peishun; Gao, Xitao; Wang, Yan
2018-05-21
Triple-negative breast cancer (TNBC) is considered to be the most aggressive and lethal type of breast cancer. Many studies have suggested that the dysfunction of long noncoding RNAs (lncRNAs) is correlated with breast cancer metastasis and progression. Here, we show that levels of the lncRNA, growth arrest-specific transcript 5 (GAS5), are decreased in TNBC tissues, and this down-regulation of GAS5 is associated with an aggressive tumor phenotype in patients, affecting clinical stage, lymph node metastasis and overall survival. Using an ectopic overexpression system in TNBC cells, we found that up-regulation of GAS5 can significantly attenuate proliferation and enhance apoptosis in TNBC cells. Through bioinformatics analysis and verification with qRT-PCR and luciferase assay, we found that GAS5 can bind to miR-196a-5p and there is a negative relationship between GAS5 and miR-196a-5p expression among TNBC patient samples. Furthermore, we demonstrated that overexpression of GAS5 can partially undermine the tumor promotion effect induced by ectopic expression of miR-196a-5p, including invasion and downstream FOXO1/PI3K/AKT signal pathway activation. In our study, GAS5 functioned as a competing endogenous RNA (ceRNA) antagonizing tumor promotion of miR-196a-5p-expressing TNBC cells. These data suggest that GAS5 can suppress TNBC progression by competitively binding miR-196a-5p, therefore GAS5 may be a prognostic biomarker of TNBC. Copyright © 2018. Published by Elsevier Masson SAS.
2013-01-01
Introduction This study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair. Methods PGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry. Results We showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP. Conclusions We have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair. PMID:23290259
Zhao, Xiangshan; Malhotra, Gautam K.; Band, Hamid; Band, Vimla
2011-01-01
Introduction: Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. Materials and Methods: In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. Results: The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Conclusions: Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers. PMID:22279424
Zhao, Xiangshan; Malhotra, Gautam K; Band, Hamid; Band, Vimla
2011-01-01
Emerging evidence suggests a direct role of cancer stem cells (CSCs) in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs) immortalized with human telomerase reverse transcriptase (hTERT) possess properties of mammary stem / progenitor cells. In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with γ-radiation), share with hTERT, the ability to maintain mammary stem / progenitor cells. The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers.
Terakura, Shinji; Kitakura, Saeko; Ishikawa, Masaki; Ueno, Yoshihisa; Fujita, Tomomichi; Machida, Chiyoko; Wabiko, Hiroetsu; Machida, Yasunori
2006-05-01
The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.
Rotinen, Mirja; Villar, Joaquín; Celay, Jon; Serrano, Irantzu; Notario, Vicente; Encío, Ignacio
2011-01-01
Type 11 Hydroxysteroid (17-beta) dehydrogenase (HSD17B11) catalyzes the conversion of 5α-androstan-3α,17β-diol into androsterone suggesting that it may play an important role in androgen metabolism. We previously described that overexpression of C/EBPα or C/EBPβ induced HSD17B11 expression in HepG2 cells but this process was not mediated by the CCAAT boxes located within its proximal promoter region. Here, we study HSD17B11 transcriptional regulation in prostate cancer (PC) cells. Transfection experiments showed that the region −107/+18 is sufficient for promoter activity in PC cells. Mutagenesis analysis indicated that Sp1 and C/EBP binding sites found in this region are essential for promoter activity. Additional experiments demonstrated that ectopic expression of Sp1 and C/EBPα upregulated HSD17B11 expression only in PC cell lines. Through DAPA and ChIP assays, specific recruitment of Sp1 and C/EBPα to the HSD17B11 promoter was detected. These results show that HSD17B11 transcription in PC cells is regulated by Sp1 and C/EBPα. PMID:21549806
Mohamed, Wasima; Ray, Sibnath; Brazill, Derrick; Baskar, Ramamurthy
2017-01-01
A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA−) did not exhibit tip dominance. A striking phenotype of pkcA− was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA− to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules – CadA and CsaA. pkcA− slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA−. PMID:26183108
Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.
Moon, Hyuk; Ju, Hye-Lim; Chung, Sook In; Cho, Kyung Joo; Eun, Jung Woo; Nam, Suk Woo; Han, Kwang-Hyub; Calvisi, Diego F; Ro, Simon Weonsang
2017-11-01
Transforming growth factor beta (TGF-β) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-β signaling pathway prevents tumor growth. We investigated the effects of TGF-β inhibition on liver tumorigenesis in mice. C57BL/6 mice received hydrodynamic tail-vein injections of transposons encoding HRAS G12V and a short hairpin RNA (shRNA) to down-regulate p53, or those encoding HRAS G12V and MYC, or those encoding HRAS G12V and TAZ S89A , to induce liver tumor formation; mice were also given injections of transposons encoding SMAD7 or shRNA against SMAD2, SMAD3, SMAD4, or SNAI1 (Snail), with or without ectopic expression of Snail. Survival times were compared, and livers were weighted and examined for tumors. Liver tumor tissues were analyzed by quantitative reverse-transcription PCR, RNA sequencing, immunoblots, and immunohistochemistry. We analyzed gene expression levels in human hepatocellular carcinoma samples deposited in The Cancer Genome Atlas. A cell proliferation assay was performed using human liver cancer cell lines (HepG2 and Huh7) stably expressing Snail or shRNA against Snail. TGF-β inhibition via overexpression of SMAD7 (or knockdown of SMAD2, SMAD3, or SMAD4) consistently reduced formation and growth of liver tumors in mice that expressed activated RAS plus shRNA against p53, or in mice that expressed activated RAS and TAZ. TGF-β signaling activated transcription of the Snail gene in liver tumors induced by HRAS G12V and shRNA against p53, and by activated RAS and TAZ. Knockdown of Snail reduced liver tumor formation in both tumor models. Ectopic expression of Snail restored liver tumorigenesis suppressed by disruption of TGF-β signaling. In human hepatocellular carcinoma, Snail expression correlated with TGF-β activation. Ectopic expression of Snail increased cellular proliferation, whereas Snail knockdown led to reduced proliferation in human hepatocellular carcinoma cells. In analyses of transgenic mice, we found TGF-β signaling to be required for formation of liver tumors upon expression of activated RAS and shRNA down-regulating p53, and upon expression of activated RAS and TAZ. Snail is the TGF-β target that is required for hepatic tumorigenesis in these models. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Norton, Will H.; Mangoli, Maryam; Lele, Zsolt; Pogoda, Hans-Martin; Diamond, Brianne; Mercurio, Sara; Russell, Claire; Teraoka, Hiroki; Stickney, Heather L.; Rauch, Gerd-Jörg; Heisenberg, Carl-Philipp; Houart, Corinne; Schilling, Thomas F.; Frohnhoefer, Hans-Georg; Rastegar, Sepand; Neumann, Carl J.; Gardiner, R. Mark; Strähle, Uwe; Geisler, Robert; Rees, Michelle; Talbot, William S.; Wilson, Stephen W.
2009-01-01
Summary In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphé nucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins. PMID:15677724
Norton, Will H; Mangoli, Maryam; Lele, Zsolt; Pogoda, Hans-Martin; Diamond, Brianne; Mercurio, Sara; Russell, Claire; Teraoka, Hiroki; Stickney, Heather L; Rauch, Gerd-Jörg; Heisenberg, Carl-Philipp; Houart, Corinne; Schilling, Thomas F; Frohnhoefer, Hans-Georg; Rastegar, Sepand; Neumann, Carl J; Gardiner, R Mark; Strähle, Uwe; Geisler, Robert; Rees, Michelle; Talbot, William S; Wilson, Stephen W
2005-02-01
In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphenucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins.
Ectopic Six3 expression in the dragon eye goldfish.
Ma, Dong-Mei; Zhu, Hua-Ping; Gui, Jian-Fang
2008-02-01
For goldfish (Carassius auratus), there are many varieties with different eye phenotypes due to artificial selection and adaptive evolution. Dragon eye is a variant eye characterized by a large-size eyeball protruding out of the socket similar to the eye of dragon in Chinese legends. In this study, anatomical structure of the goldfish dragon eye was compared with that of the common eye, and a stretching of the retina was observed in the enlarged dragon eye. Moreover, the homeobox-containing transcription factor Six3 cDNAs were cloned from the two types of goldfish, and the expression patterns were analyzed in both normal eye and dragon eye goldfish. No amino acid sequence differences were observed between the two deduced peptides, and the expression pattern of Six3 protein in dragon eye is quite similar to common eye during embryogenesis, but from 2 days after hatching, ectopic Six3 expression began to occur in the dragon eye, especially in the outer nuclear layer cells. With eye development, more predominant Six3 distribution was detected in the outer nuclear layer cells of dragon eye than that of normal eye, and fewer cell-layers in outer nuclear layer were observed in dragon eye retina than in normal eye retina. The highlight of this study is that higher Six3 expression occurs in dragon eye goldfish than in normal eye goldfish during retinal development of larvae.
Koushika, S P; Lisbin, M J; White, K
1996-12-01
Tissue-specific alternative pre-mRNA splicing is a widely used mechanism for gene regulation and the generation of different protein isoforms, but relatively little is known about the factors and mechanisms that mediate this process. Tissue-specific RNA-binding proteins could mediate alternative pre-mRNA splicing. In Drosophila melanogaster, the RNA-binding protein encoded by the elav (embryonic lethal abnormal visual system) gene is a candidate for such a role. The ELAV protein is expressed exclusively in neurons, and is important for the formation and maintenance of the nervous system. In this study, photoreceptor neurons genetically depleted of ELAV, and elav-null central nervous system neurons, were analyzed immunocytochemically for the expression of neural proteins. In both situations, the lack of ELAV corresponded with a decrease in the immunohistochemical signal of the neural-specific isoform of Neuroglian, which is generated by alternative splicing. Furthermore, when ELAV was expressed ectopically in cells that normally express only the non-neural isoform of Neuroglian, we observed the generation of the neural isoform of Neuroglian. Drosophila ELAV promotes the generation of the neuron-specific isoform of Neuroglian by the regulation of pre-mRNA splicing. The findings reported in this paper demonstrate that ELAV is necessary, and the ectopic expression of ELAV in imaginal disc cells is sufficient, to mediate neuron-specific alternative splicing.
ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator1[OPEN
Kawamura, Ayako; Schäfer, Sabine; Breuer, Christian; Shibata, Michitaro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Matsui, Minami
2017-01-01
Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2. Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis. PMID:28167701
Guo, Danli; Li, Chao; Dong, Rui; Li, Xiaobo; Xiao, Xiangwen; Huang, Xianzhong
2015-06-01
FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine-binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in angiosperms. We isolated an FT-homolog (GhFT1) from Gossypium hirsutum L. cultivar, Xinluzao 33 GhFT1 was predominantly expressed in stamens and sepals, and had a relatively higher expression level during the initiation stage of fiber development. GhFT1 mRNA displayed diurnal oscillations in both long-day and short-day condition, suggesting that the expression of this gene may be under the control of the circadian clock. Subcellular analysis revealed that GhFT1 protein located in the cytoplasm and nucleus. Ectopic expression of GhFT1 in transgenic arabidopsis plants resulted in early flowering compared with wild-type plants. In addition, ectopic expression of GhFT1 in arabidopsis ft-10 mutants partially rescued the extremely late flowering phenotype. Finally, several flowering related genes functioning downstream of AtFT were highly upregulated in the 35S::GhFT1 transgenic arabidopsis plants. In summary, GhFT1 is an FT-homologous gene in cotton that regulates flower transition similar to its orthologs in other plant species and thus it may be a candidate target for promoting early maturation in cotton breeding. © 2014 Institute of Botany, Chinese Academy of Sciences.
Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome
Lecoq, Anne-Lise; Stratakis, Constantine A.; Viengchareun, Say; Chaligné, Ronan; Tosca, Lucie; Hage, Mirella; Berthon, Annabel; Faucz, Fabio R.; Hanna, Patrick; Boyer, Hadrien-Gaël; Servant, Nicolas; Salenave, Sylvie; Tachdjian, Gérard; Adam, Clovis; Benhamo, Vanessa; Clauser, Eric; Guiochon-Mantel, Anne; Young, Jacques; Lombès, Marc; Bourdeau, Isabelle; Maiter, Dominique; Tabarin, Antoine; Bertherat, Jérôme; Lefebvre, Hervé; Louiset, Estelle; Lacroix, André; Bouligand, Jérôme; Kamenický, Peter
2017-01-01
GIP-dependent Cushing’s syndrome is caused by ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in cortisol-producing adrenal adenomas or in bilateral macronodular adrenal hyperplasias. Molecular mechanisms leading to ectopic GIPR expression in adrenal tissue are not known. Here we performed molecular analyses on adrenocortical adenomas and bilateral macronodular adrenal hyperplasias obtained from 14 patients with GIP-dependent adrenal Cushing’s syndrome and one patient with GIP-dependent aldosteronism. GIPR expression in all adenoma and hyperplasia samples occurred through transcriptional activation of a single allele of the GIPR gene. While no abnormality was detected in proximal GIPR promoter methylation, we identified somatic duplications in chromosome region 19q13.32 containing the GIPR locus in the adrenocortical lesions derived from 3 patients. In 2 adenoma samples, the duplicated 19q13.32 region was rearranged with other chromosome regions, whereas a single tissue sample with hyperplasia had a 19q duplication only. We demonstrated that juxtaposition with cis-acting regulatory sequences such as glucocorticoid response elements in the newly identified genomic environment drives abnormal expression of the translocated GIPR allele in adenoma cells. Altogether, our results provide insight into the molecular pathogenesis of GIP-dependent Cushing’s syndrome, occurring through monoallelic transcriptional activation of GIPR driven in some adrenal lesions by structural variations. PMID:28931750
FGF2 cooperates with IL-17 to promote autoimmune inflammation.
Shao, Xinrui; Chen, Siyuan; Yang, Daping; Cao, Mengtao; Yao, Yikun; Wu, Zhengxi; Li, Ningli; Shen, Nan; Li, Xiaoxia; Song, Xinyang; Qian, Youcun
2017-08-01
IL-17 is a pro-inflammatory cytokine implicated a variety of autoimmune diseases. We have recently reported that FGF2 cooperates with IL-17 to protect intestinal epithelium during dextran sodium sulfate (DSS)-induced colitis. Here, we report a pathogenic role of the FGF2-IL-17 cooperation in the pathogenesis of autoimmune arthritis. Combined treatment with FGF2 and IL-17 synergistically induced ERK activation as well as the production of cytokines and chemokines in human synovial intimal resident fibroblast-like synoviocytes (FLS). Furthermore, ectopic expression of FGF2 in mouse joints potentiated IL-17-induced inflammatory cytokine and chemokine production in the tissue. In the collagen-induced arthritis (CIA) model, while ectopic expression of FGF2 in vivo exacerbated tissue inflammation and disease symptom in the wild-type controls, the effect was largely blunted in Il17a -/- mice. Taken together, our study suggests that FGF2 cooperates with IL-17 to promote the pathogenesis of autoimmune arthritis by cooperating with IL-17 to induce inflammatory response.
Tsuchiya, Megumi; Ogawa, Hidesato; Koujin, Takako; Mori, Chie; Osakada, Hiroko; Kobayashi, Shouhei; Hiraoka, Yasushi; Haraguchi, Tokuko
2018-03-01
Autophagy is a bulk degradation pathway, and selective autophagy to remove foreign entities is called xenophagy. The conjugation of ubiquitin to target pathogens is an important process in xenophagy but when and where this ubiquitination occurs remains unclear. Here, we analyzed the temporal sequence and subcellular location of ubiquitination during xenophagy using time-lapse observations, with polystyrene beads mimicking invading pathogens. Results revealed accumulation of a ubiquitination marker around the beads within 3 min after endosome rupture. Recruitment of ubiquitin to the beads was significantly delayed in p62-knockout murine embryonic fibroblast cells, and this delay was rescued by ectopic p62 expression. Ectopic expression of a phosphorylation-mimicking p62 mutated at serine residue 405 (equivalent to human serine residue 403) rescued this delay, but its unphosphorylated form did not. These results indicate that ubiquitination mainly occurs after endosome rupture and suggest that p62, specifically the phosphorylated form, promotes ubiquitin conjugation to target proteins in xenophagy.
Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R
2016-01-19
The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Yafei; Zhang, Teng; Broholm, Suvi K; Tähtiharju, Sari; Mouhu, Katriina; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula
2016-09-01
The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. © 2016 American Society of Plant Biologists. All rights reserved.
Boulay, Gaylor; Awad, Mary E.; Riggi, Nicolo; Archer, Tenley C.; Iyer, Sowmya; Boonseng, Wannaporn E.; Rossetti, Nikki E; Naigles, Beverly; Rengarajan, Shruthi; Volorio, Angela; Kim, James C.; Mesirov, Jill P.; Tamayo, Pablo; Pomeroy, Scott L.; Aryee, Martin J.; Rivera, Miguel N.
2017-01-01
Medulloblastoma is the most frequent malignant pediatric brain tumor and is divided into at least four subgroups known as Wnt, SHH, Group 3 and Group 4. Here we characterized gene regulation mechanisms in the most aggressive subtype, Group 3 tumors, through genome-wide chromatin and expression profiling. Our results show that most active distal sites in these tumors are occupied by the transcription factor OTX2. Highly active OTX2 bound enhancers are often arranged as clusters of adjacent peaks and are also bound by the transcription factor NEUROD1. These sites are responsive to OTX2 and NEUROD1 knockdown and could also be generated de novo upon ectopic OTX2 expression in primary cells, showing that OTX2 cooperates with NEUROD1 and plays a major role in maintaining and possibly establishing regulatory elements as a pioneer factor. Among OTX2 target genes we identified the kinase NEK2, whose knockdown and pharmacological inhibition decreased cell viability. Our studies thus show that OTX2 controls the regulatory landscape of Group 3 medulloblastoma through cooperative activity at enhancer elements and contributes to the expression of critical target genes. PMID:28213356
Ramos-Mejía, Verónica; Montes, Rosa; Bueno, Clara; Ayllón, Verónica; Real, Pedro J.; Rodríguez, René; Menendez, Pablo
2012-01-01
Human induced pluripotent stem cells (hiPSC) have been generated from different tissues, with the age of the donor, tissue source and specific cell type influencing the reprogramming process. Reprogramming hematopoietic progenitors to hiPSC may provide a very useful cellular system for modelling blood diseases. We report the generation and complete characterization of hiPSCs from human neonatal fibroblasts and cord blood (CB)-derived CD34+ hematopoietic progenitors using a single polycistronic lentiviral vector containing an excisable cassette encoding the four reprogramming factors Oct4, Klf4, Sox2 and c-myc (OKSM). The ectopic expression of OKSM was fully silenced upon reprogramming in some hiPSC clones and was not reactivated upon differentiation, whereas other hiPSC clones failed to silence the transgene expression, independently of the cell type/tissue origin. When hiPSC were induced to differentiate towards hematopoietic and neural lineages those hiPSC which had silenced OKSM ectopic expression displayed good hematopoietic and early neuroectoderm differentiation potential. In contrast, those hiPSC which failed to switch off OKSM expression were unable to differentiate towards either lineage, suggesting that the residual expression of the reprogramming factors functions as a developmental brake impairing hiPSC differentiation. Successful adenovirus-based Cre-mediated excision of the provirus OKSM cassette in CB-derived CD34+ hiPSC with residual transgene expression resulted in transgene-free hiPSC clones with significantly improved differentiation capacity. Overall, our findings confirm that residual expression of reprogramming factors impairs hiPSC differentiation. PMID:22545141
Hypoxia-Dependent Modification of Collagen Networks Promotes Sarcoma Metastasis
Eisinger-Mathason, T.S. Karin; Zhang, Minsi; Qiu, Qiong; Skuli, Nicolas; Nakazawa, Michael S.; Karakasheva, Tatiana; Mucaj, Vera; Shay, Jessica E.S.; Stangenberg, Lars; Sadri, Navid; Puré, Ellen; Yoon, Sam S.; Kirsch, David G.; Simon, M. Celeste
2013-01-01
Intratumoral hypoxia and expression of Hypoxia Inducible Factor 1α (HIF1α) correlate with metastasis and poor survival in sarcoma patients. We demonstrate here that hypoxia controls sarcoma metastasis through a novel mechanism wherein HIF1α enhances expression of the intracellular enzyme procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2). We show that loss of HIF1α or PLOD2 expression disrupts collagen modification, cell migration and pulmonary metastasis (but not primary tumor growth) in allograft and autochthonous LSLKrasG12D/+; Trp53fl/fl murine sarcoma models. Furthermore, ectopic PLOD2 expression restores migration and metastatic potential in HIF1α-deficient tumors, and analysis of human sarcomas reveal elevated HIF1α and PLOD2 expression in metastatic primary lesions. Pharmacological inhibition of PLOD enzymatic activity suppresses metastases. Collectively, these data indicate that HIF1α controls sarcoma metastasis through PLOD2-dependent collagen modification and organization in primary tumors. We conclude that PLOD2 is a novel therapeutic target in sarcomas and successful inhibition of this enzyme may reduce tumor cell dissemination. PMID:23906982
Ren, Jian-Wen; Li, Zhang-Jun; Tu, Chen
2015-01-01
Malignant melanoma is the deadliest form of all skin cancers. Recently, microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression by targeted repression of transcription and translation and play essential roles during cancer development. Our study showed that miR-135a is upregulated in malignant melanoma tissues and cell lines by using Real-time PCR assay. Enforced expression of miR-135a in malignant melanoma cells promotes cell proliferation, tumorigenicity, and cell cycle progression, whereas inhibition of miR-135a reverses the function. Additionally, we demonstrated FOXO1 is a direct target of miR-135a and transcriptionally down-regulated by miR-135a. Ectopic expression of miR-135a led to downregulation of the FOXO1 protein, resulting in upregulation of Cyclin D1, and downregulation of P21(Cip1) and P27(Kip1) through AKT pathway. Our findings suggested that miR-135a represents a potential onco-miRNA and plays an important role in malignant melanoma progression by suppressing FOXO1 expression.
Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes.
Youssef, Reham M; MacDonald, Margaret H; Brewer, Eric P; Bauchan, Gary R; Kim, Kyung-Hwan; Matthews, Benjamin F
2013-04-25
The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.
Machado, A. C. S.; Guimarães, E. M. B.; Sakurai, E.; Fioravante, F. C. R.; Amaral, W. N.; Alves, M. F. C.
2007-01-01
Objective. To evaluate serum chlamydia antibody titers (CATs) in tubal occlusion or previous ectopic pregnancy and the associated risk factors.Methods. The study population consisted of 55 women wih tubal damage and 55 parous women. CAT was measured using the whole-cell inclusion immunofluorescence test and cervical chlamydial DNA detected by PCR. Odds ratios were calculated to assess variables associated withC. trachomatis infection.Results. The prevalence of chlamydial antibodies and antibody titers in women with tubal occlusion or previous ectopic pregnancy was significantly higher (P < .01) than in parous women. Stepwise logistic regression analysis showed that chlamydia IgG antibodies were associated with tubal damage and with a larger number of lifetime sexual partners.Conclusions. Chlamydia antibody titers were associated with tubal occlusion, prior ectopic pregnancy, and with sexual behavior, suggesting that a chlamydia infection was the major contributor to the tubal damage in these women. PMID:17541464
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLennan, I.; Keys, H.M.; Evarts, C.M.
1984-01-01
Heterotopic ossification is a complication of total hip arthroplasty in 14 to 30% of patients. Significant functional impairment will occur in up to 28% of patients with ectopic bone. The high risk group includes those with preexisting heterotopic bone in either hip, those suffering from hypertrophic osteoarthritis or ankylosing spondylitis and patients who have had multiple procedures on the hip. Fifty-eight patients (67 hips) were irradiated after surgical removal of ectopic bone (53 hips) or received radiation prophylaxis of heterotopic ossification (14 hips). Ninety-five percent of patients had either no bone visible or insignificant amounts of ectopic bone visible onmore » postoperative hip X-rays. Only 5% of patients showed significant persistence of ectopic bone. Postoperative hip function was dramatically improved compared to preoperative function in all patients treated. The importance of early commencement of irradiation is emphasized.« less
PAF53 is essential in mammalian cells: CRISPR/Cas9 fails to eliminate PAF53 expression.
Rothblum, Lawrence I; Rothblum, Katrina; Chang, Eugenie
2017-05-15
When mammalian cells are nutrient and/or growth factor deprived, exposed to inhibitors of protein synthesis, stressed by heat shock or grown to confluence, rDNA transcription is essentially shut off. Various mechanisms are available to accomplish this downshift in ribosome biogenesis. Muramatsu's laboratory (Hanada et al., 1996) first demonstrated that mammalian PAF53 was essential for specific rDNA transcription and that PAF53 levels were regulated in response to growth factors. While S. cerevisae A49, the homologue of vertebrate PAF53, is not essential for viability (Liljelund et al., 1992), deletion of yA49 results in colonies that grow at 6% of the wild type rate at 25°C. Experiments described by Wang et al. (2015) identified PAF53 as a gene "essential for optimal proliferation". However, they did not discriminate genes essential for viability. Hence, in order to resolve this question, we designed a series of experiments to determine if PAF53 was essential for cell survival. We set out to delete the gene product from mammalian cells using CRISPR/CAS9 technology. Human 293 cells were transfected with lentiCRISPR v2 carrying genes for various sgRNA that targeted PAF53. In some experiments, the cells were cotransfected in parallel with plasmids encoding FLAG-tagged mouse PAF53. After treating the transfected cells with puromycin (to select for the lentiCRISPR backbone), cells were cloned and analyzed by western blots for PAF53 expression. Genomic DNA was amplified across the "CRISPRd" exon, cloned and sequenced to identify mutated PAF53 genes. We obtained cell lines in which the endogenous PAF53 gene was "knocked out" only when we rescued with FLAG-PAF53. DNA sequencing demonstrated that in the absence of ectopic PAF53 expression, cells demonstrated unique means of surviving; including recombination or the utilization of alternative reading frames. We never observed a clone in which one PAF53 gene is expressed, unless there was also ectopic expression In the absence of ectopic gene expression, the gene products of both endogenous genes were expressed, irrespective of whether they were partially mutant proteins or not. Copyright © 2016 Elsevier B.V. All rights reserved.
Segara, Davendra; Biankin, Andrew V; Kench, James G; Langusch, Catherine C; Dawson, Amanda C; Skalicky, David A; Gotley, David C; Coleman, Maxwell J; Sutherland, Robert L; Henshall, Susan M
2005-05-01
Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARalpha, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and PanIN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early PanIN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.
HOXB1 Is a Tumor Suppressor Gene Regulated by miR-3175 in Glioma
Han, Liang; Liu, Dehua; Li, Zhaohui; Tian, Nan; Han, Ziwu; Wang, Guang; Fu, Yao; Guo, Zhigang; Zhu, Zifeng
2015-01-01
The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment. PMID:26565624
SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.
Rybak, Adrian P; Tang, Damu
2013-12-01
SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.
Kwak, Juri; Choi, Jung-Hye; Jang, Kyung Lib
2017-01-01
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to induce p14 expression via promoter hypomethylation to activate the p14-MDM2-p53 pathway, which leads to activation of the p53-dependent apoptotic pathway and subsequent induction of apoptosis in human hepatoma cells. In the present study, we found that hepatitis C virus (HCV) Core derived from ectopic expression or HCV infection overcomes ATRA-induced apoptosis in p53-positive hepatoma cells. For this effect, HCV Core upregulated both protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b and thereby repressed p14 expression via promoter hypermethylation, resulting in inactivation of the pathway leading to p53 accumulation in the presence of ATRA. As a result, HCV Core prevented ATRA from activating several apoptosis-related molecules, including Bax, p53 upregulated modulator of apoptosis, caspase-9, caspase-3, and poly (ADP-ribose) polymerase. In addition, complementation of p14 in the Core-expressing cells by either ectopic expression or treatment with 5-Aza-2′dC almost completely abolished the potential of HCV Core to suppress ATRA-induced apoptosis. Based on these observations, we conclude that HCV Core executes its oncogenic potential by suppressing the p53-dependent apoptosis induced by ATRA in human hepatoma cells. PMID:29156743
Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle
Jones, G.; Meier, T.; Lichtsteiner, M.; Witzemann, V.; Sakmann, B.; Brenner, H. R.
1997-01-01
Two factors secreted from the nerve terminal, agrin and neuregulin, have been postulated to induce localization of the acetylcholine receptors (AChRs) to the subsynaptic membrane in skeletal muscle fibers. The principal function ascribed to neuregulin is induction of AChR subunit gene expression and to agrin is the aggregation of AChRs. Here we report that when myoblasts engineered to secrete an agrin fragment were placed into the nerve-free region of denervated rodent muscle, the host muscle fibers expressed AChR ɛ-subunit gene transcripts, characteristic of the neuromuscular synapse in adult muscle. Transcripts were colocalized with agrin deposits and AChR clusters that were resistant to electrical muscle activity. More directly, single innervated muscle fibers injected intracellularly with agrin expression plasmids in their extrasynaptic region developed a functional ectopic postsynaptic membrane with clusters of adult-type AChR channels and acetylcholinesterase and accumulation of myonuclei. The results demonstrate that agrin is the principal neural signal that induces the formation of the subsynaptic apparatus in the muscle fiber and controls locally, either indirectly or directly, the transcription of AChR subunit genes and the aggregation of AChRs. PMID:9122251
Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M Shawkat; Nabeshima, Yo-ichi
2014-08-01
Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho(-/-) (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl(-/-) mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl(-/-) mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.
Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M. Shawkat; Nabeshima, Yo-ichi
2014-01-01
Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho-/- (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl-/- mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl-/- mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis. PMID:25080854
Somitic disruption of GNAS in chick embryos mimics progressive osseous heteroplasia
Cairns, Dana M.; Pignolo, Robert J.; Uchimura, Tomoya; Brennan, Tracy A.; Lindborg, Carter M.; Xu, Meiqi; Kaplan, Frederick S.; Shore, Eileen M.; Zeng, Li
2013-01-01
Progressive osseous heteroplasia (POH) is a rare developmental disorder of heterotopic ossification (HO) caused by heterozygous inactivating germline mutations in the paternal allele of the GNAS gene. Interestingly, POH lesions have a bewildering mosaic distribution. Using clinical, radiographic, and photographic documentation, we found that most of the 12 individuals studied had a lesional bias toward one side or the other, even showing exclusive sidedness. Most strikingly, all had a dermomyotomal distribution of HO lesions. We hypothesized that somatic mutations in a progenitor cell of somitic origin may act on a background of germline haploinsufficiency to cause loss of heterozygosity at the GNAS locus and lead to the unilateral distribution of POH lesions. Taking advantage of the chick system, we examined our hypothesis by mimicking loss of heterozygosity of GNAS expression using dominant-negative GNAS that was introduced into a subset of chick somites, the progenitors that give rise to dermis and muscle. We observed rapid ectopic cartilage and bone induction at the axial and lateral positions in a unilateral distribution corresponding to the injected somites, which suggests that blocking GNAS activity in a targeted population of progenitor cells can lead to mosaic ectopic ossification reminiscent of that seen in POH. PMID:23863715
Complete adult neurogenesis within a Wallerian degenerating nerve expressed as an ectopic ganglion.
Nakano, Tomonori; Kurimoto, Shigeru; Kato, Shuichi; Asano, Kenichi; Hirata, Takuma; Kiyama, Hiroshi; Hirata, Hitoshi
2018-06-01
Neurogenesis in the adult peripheral nervous system remains to be demonstrated. We transplanted embryonic neural stem cells into a Wallerian degenerating nerve graft and observed development of a nodular structure consisting of neurons, glia, and Schwann cells. Histological analysis revealed a structure loosely resembling the spinal cord, including a synaptic network that formed along the neuron. Furthermore, the new axons reinnervated the paralysed muscle, forming both de novo and revived neuromuscular junctions. Reinnervation of the paralysed muscle resulted in significantly greater mean wet muscle weight and muscle fibre cross-sectional area on the cell transplantation side than on the surgical control side (body weight 0.071 ± 0.011% vs. 0.051 ± 0.007%, p = .006; area 355.6 ± 345.2 vs. 114.0 ± 132.0 μm 2 , p < .001). Electrophysiological experiments demonstrated a functional connection between the neurons and muscle; hence, we identified this nodule as an ectopic ganglion. Surprisingly, in green rat experiments, most of these glial cells, but none of the neurons, expressed enhanced green fluorescent protein, suggesting that the cells constituting the ectopic ganglion were derived from both transplanted stem cells and endogenous stem cells. Such adult neurogenesis in a peripheral nerve related to neural stem cell transplantation has not been reported previously, and these results form the basis for a novel regenerative medicine approach in paralysed muscle. Copyright © 2018 John Wiley & Sons, Ltd.
Li, Huili; Bai, Baoling; Zhang, Qin; Bao, Yihua; Guo, Jin; Chen, Shuyuan; Miao, Chunyue; Liu, Xiaozhen; Zhang, Ting
2015-12-01
Previous studies have highlighted the connections between neural tube defects (NTDs) and both thyroid hormones (TH) and vitamin A. However, whether the two hormonal signaling pathways interact in NTDs has remained unclear. We measured the expression levels of TH signaling genes in human fetuses with spinal NTDs associated with maternal hyperthyroidism as well as levels of retinoic acid (RA) signaling genes in mouse fetuses exposed to an overdose of RA using NanoString or real-time PCR on spinal cord tissues. Interactions between the two signaling pathways were detected by ChIP assays. The data revealed attenuated DIO2/DIO3 switching in fetuses with NTDs born to hyperthyroid mothers. The promoters of the RA signaling genes CRABP1 and RARB were ectopically occupied by increased RXRG and RXRB but displayed decreased levels of inhibitory histone modifications, suggesting that elevated TH signaling abnormally stimulates RA signaling genes. Conversely, in the mouse model, the observed decrease in Dio3 expression could be explained by increased levels of inhibitory histone modifications in the Dio3 promoter region, suggesting that overactive RA signaling may ectopically derepress TH signaling. This study thus raises in vivo a possible abnormal cross-promotion between two different hormonal signals through their common RXRs and the subsequent recruitment of histone modifications, prompting further investigation into their involvement in the etiology of spinal NTDs. Copyright © 2015 Elsevier B.V. All rights reserved.
Nitric oxide inhibits exocytosis of cytolytic granules from lymphokine-activated killer cells
Ferlito, Marcella; Irani, Kaikobad; Faraday, Nauder; Lowenstein, Charles J.
2006-01-01
NO inhibits cytotoxic T lymphocyte killing of target cells, although the precise mechanism is unknown. We hypothesized that NO decreases exocytosis of cytotoxic granules from activated lymphocytes. We now show that NO inhibits lymphokine-activated killer cell killing of K562 target cells. Exogenous and endogenous NO decreases the release of granzyme B, granzyme A, and perforin: all contents of cytotoxic granules. NO inhibits the signal transduction cascade initiated by cross-linking of the T cell receptor that leads to granule exocytosis. In particular, we found that NO decreases the expression of Ras, a critical signaling component within the exocytic pathway. Ectopic expression of Ras prevents NO inhibition of exocytosis. Our data suggest that Ras mediates NO inhibition of lymphocyte cytotoxicity and emphasize that alterations in the cellular redox state may regulate the exocytic signaling pathway. PMID:16857739
Molecular genetic basis of pod corn (Tunicate maize)
Wingen, Luzie U.; Münster, Thomas; Faigl, Wolfram; Deleu, Wim; Sommer, Hans; Saedler, Heinz; Theißen, Günter
2012-01-01
Pod corn is a classic morphological mutant of maize in which the mature kernels of the cob are covered by glumes, in contrast to generally grown maize varieties in which kernels are naked. Pod corn, known since pre-Columbian times, is the result of a dominant gain-of-function mutation at the Tunicate (Tu) locus. Some classic articles of 20th century maize genetics reported that the mutant Tu locus is complex, but molecular details remained elusive. Here, we show that pod corn is caused by a cis-regulatory mutation and duplication of the ZMM19 MADS-box gene. Although the WT locus contains a single-copy gene that is expressed in vegetative organs only, mutation and duplication of ZMM19 in Tu lead to ectopic expression of the gene in the inflorescences, thus conferring vegetative traits to reproductive organs. PMID:22517751
Chai, Zong-Tao; Zhu, Xiao-Dong; Ao, Jian-Yang; Wang, Wen-Quan; Gao, Dong-Mei; Kong, Jian; Zhang, Ning; Zhang, Yuan-Yuan; Ye, Bo-Gen; Ma, De-Ning; Cai, Hao; Sun, Hui-Chuan
2015-05-29
microRNAs (miRNAs) have been reported to modulate macrophage colony-stimulating factor (M-CSF) and macrophages. The aim of this study was to find whether miR-26a can suppress M-CSF expression and the recruitment of macrophages. Hepatocellular carcinoma (HCC) cell lines with decreased or increased expression of miR-26a were established in a previous study. M-CSF expression by tumor cells was measured by enzyme-linked immunosorbent assay, and cell migration assays were used to explore the effect of HCC cell lines on macrophage recruitment in vitro. Real-time PCR measured a panel of mRNAs expressed by macrophages. Xenograft models were used to observe tumor growth. Immunohistochemistry was conducted to study the relation between miR-26a expression and M-CSF expression and macrophage recruitment in patients with HCC. Ectopic expression of miR-26a reduced expression of M-CSF. The conditioned medium (CM) from HepG2 cells that overexpressed miR-26a reduced the migration ability of THP-1 cells stimulated by phorbol myristate acetate (PMA) increased expression of interleukin (IL)-12b or IL-23 mRNA and decreased expression of chemokine (C-C motif) ligand (CCL)22, CCL17, and IL-10 mRNA, in comparison to the medium from the parental HepG2 cells. These effects could be interrupted by the PI3K/Akt pathway inhibitor LY294002. Ectopic expression of miR-26a in HCC cells suppressed tumor growth, M-CSF expression, and infiltration of macrophages in tumors. Similar results were also found when using HCCLM3 cells. Furthermore, the expression of miR-26a was inversely correlated with M-CSF expression and macrophage infiltration in tumor tissues from patients with HCC. miR-26a expression reduced M-CSF expression and recruitment of macrophages in HCC.
A challenging case of an ectopic cushing syndrome.
Menezes Nunes, Joana; Pinho, Elika; Camões, Isabel; Maciel, João; Cabral Bastos, Pedro; Souto de Moura, Conceição; Bettencourt, Paulo
2014-01-01
Bronchopulmonary carcinoids are rare pulmonary neoplasms although they account for most cases of ectopic ACTH syndromes. When feasible, the mainstay treatment is surgical resection of the tumor. We report the case of a 52-year-old woman with signs and symptoms suggestive of hypercortisolism for 12 months, admitted to our department because of community acquired pneumonia. Blood hormone analysis showed increased levels of ACTH and urinary free cortisol and nonsuppressibility to high- and low-dose dexamethasone tests. Pituitary MRI showed no lesion and no central-to-peripheral ACTH gradient was present in bilateral inferior petrosal sinus sampling. CRH stimulation test suggested an ectopic ACTH source. Thoracic CT scan revealed a nodular region measuring 12 mm located in the inferior lingular lobule of the left superior lung with negative uptake by (18)-FDG-PET scan and negative SRS. The patient was successfully treated with an atypical lung resection and histology revealed an atypical bronchial carcinoid tumor with positive ACTH immunoreactivity. This was an interesting case because the patient was admitted due to pneumonia that may have been associated with her untreated and chronic hypercortisolism and a challenging case of ectopic ACTH syndrome due to conflicting results on the diagnostic exams.
Follicular adenoma in ectopic thyroid. A case-report.
Consalvo, Vincenzo; Barbieri, Gerarda; Rossetti, Amalia Rosaria Rita; Romano, Mafalda; Contieri, Rosaria; Tramontano, Salvatore; Rescigno, Carmela; Infranzi, Massimo; Lombardi, Domenico
2017-01-01
The term ectopic thyroid refers to the presence of thyroid tissue located far from its usual anatomic placement and with no vascular connection to the main gland. The presence of swelling in atypical locations is diagnostically differentiated from other pathologies like pleomorphic adenoma or carcinoma, inflammatory lesions like sialadenitis, neurogenic tumors, paraganglioma, fibrolipoma and lymphadenopaties of diverse etiologies. Here we present the case of a submandibular ectopic thyroid in a 67year old woman. She came to our attention for a left submandibular swelling. The anamnesis did not show related pathologies, as well as blood tests. Diagnostic image studies and a FNAC were performed. The mass was surgically removed and histopatology showed a follicular adenoma in the contest of the capsulated lesion. It is important to not underestimate these types of lesions and procede with hematochemical, instrumental tests and above all surgery that can eliminate any diagnostic uncertainty and on the whole be therapeutic. It should not be forgotten that ectopic thyroid tissue can be a site for adenoma or papillary carcinoma and thus any watch and wait strategy should be avoided. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Patterning of leaf vein networks by convergent auxin transport pathways.
Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico
2013-01-01
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.
Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.
Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B
2010-10-01
We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.
crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans.
Fung, Wong Yan; Fat, Ko Frankie Chi; Eng, Cheah Kathryn Song; Lau, Chow King
2007-11-01
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.
Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.
Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio
2015-04-01
Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. © 2015 Institute of Botany, Chinese Academy of Sciences.
Crowther, Lisa M; Wang, Shu-Ching Mary; Eriksson, Natalie A; Myers, Stephen A; Murray, Lauren A; Muscat, George E O
2011-02-24
We demonstrate that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) mRNA is more abundantly expressed (than COUP-TFI mRNA) in skeletal muscle C2C12 cells and in (type I and II) skeletal muscle tissue from C57BL/10 mice. Consequently, we have utilized the ABI TaqMan Low Density Array (TLDA) platform to analyze gene expression changes specifically attributable to ectopic COUP-TFII (relative to vector only) expression in muscle cells. Utilizing a TLDA-based platform and 5 internal controls, we analyze the entire NR superfamily, 96 critical metabolic genes, and 48 important myogenic regulatory genes on the TLDA platform utilizing 5 internal controls. The low density arrays were analyzed by rigorous statistical analysis (with Genorm normalization, Bioconductor R, and the Empirical Bayes statistic) using the (integromics) statminer software. In addition, we validated the differentially expressed patho-physiologically relevant gene (identified on the TLDA platform) glucose transporter type 4 (Glut4). We demonstrated that COUP-TFII expression increased the steady state levels of Glut4 mRNA and protein, while ectopic expression of truncated COUP-TFII lacking helix 12 (COUP-TFΔH12) reduced Glut4 mRNA expression in C2C12 cells. Moreover, COUP-TFII expression trans-activated the Glut4 promoter (-997/+3), and ChIP analysis identified selective recruitment of COUP-TFII to a region encompassing a highly conserved SP1 binding site (in mouse, rat, and human) at nt positions -131/-118. Mutation of the SpI site ablated COUP-TFII mediated trans-activation of the Glut4 promoter. In conclusion, this study demonstrates that in skeletal muscle cells, COUP-TFII regulates several nuclear hormone receptors, and critical metabolic and muscle specific genes.
Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J; Deffit, Sarah N; Zhou, Delu; Blum, Janice S
2016-03-15
Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags. Copyright © 2016 by The American Association of Immunologists, Inc.
Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J.; Deffit, Sarah N.; Zhou, Delu; Blum, Janice S.
2016-01-01
Cells utilize multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein (LAMP)-2 regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA) which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy (MA) and phagocytosis. Yet, far less is known about LAMP-2C function. While LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, ectopic gene expression was used. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact MA. The gene expression of other LAMP2 isoforms as well as the proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins which are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA which can selectively skew MHCII presentation of cytoplasmic Ags. PMID:26856698
Shi, Jun-Wen; Liu, Wei; Zhang, Ting-Ting; Wang, Sheng-Chun; Lin, Xiao-Lin; Li, Jing; Jia, Jun-Shuang; Sheng, Hong-Fen; Yao, Zhi-Fang; Zhao, Wen-Tao; Zhao, Zun-Lan; Xie, Rao-Ying; Yang, Sheng; Gao, Fei; Fan, Quan-Rong; Zhang, Meng-Ya; Yue, Min; Yuan, Jin; Gu, Wei-Wang; Yao, Kai-Tai; Xiao, Dong
2013-04-01
In previous studies from other labs it has been well demonstrated that the ectopic expression of c-Myc in mammary epithelial cells can induce epithelial-mesenchymal transition (EMT), whereas in our pilot experiment, epithelial-like morphological changes were unexpectedly observed in c-Myc-expressing pig fibroblasts [i.e., porcine embryonic fibroblasts (PEFs) and porcine dermal fibroblasts (PDFs)] and pig mesenchymal stem cells, suggesting that the same c-Myc gene is entitled to trigger EMT in epithelial cells and mesenchymal-epithelial transition (MET) in fibroblasts. This prompted us to characterize the existence of a MET in c-Myc-expressing PEFs and PDFs at the molecular level. qRT-PCR, immunofluorescence and western blot analysis illustrated that epithelial-like morphological changes were accompanied by the increased expression of epithelial markers [such as cell adhesion proteins (E-cadherin, α-catenin and Bves), tight junction protein occludin and cytokeratins (Krt8 and Krt18)], the reduced expression of mesenchymal markers [vimentin, fibronectin 1 (FN1), snail1, collagen family of proteins (COL1A1, COL5A2) and matrix metalloproteinase (MMP) family (MMP12 and MMP14)] and the decreased cell motility and increased cell adhesion in c-Myc-expressing PEFs and PDFs. Furthermore, the ectopic expression of c-Myc in pig fibroblasts disrupted the stress fiber network, suppressed the formation of filopodia and lamellipodia, and resulted in RhoA/Rock pathway inactivation, which finally participates in epithelial-like morphological conversion. Taken together, these findings demonstrate, for the first time, that the enforced expression of c-Myc in fibroblasts can trigger MET, to which cytoskeleton depolymerization and RhoA/Rock pathway inactivation contribute.
Ye, Yibiao; Chen, Jie; Zhou, Yu; Fu, Zhiqiang; Zhou, Quanbo; Wang, YingXue; Gao, Wenchao; Zheng, ShangYou; Zhao, Xiaohui; Chen, Tao; Chen, Rufu
2015-04-30
Pancreatic ductal adenocarcinoma (PDAC) is still a lethal malignancy. Long noncoding RNAs (lncRNAs) have been shown to play a critical role in cancer development and progression. Here we identified overexpression of the lncRNA AFAP1-AS1 in PDAC patients and evaluated its prognostic and functional relevance. The global lncRNA expression profile in PDAC was measured by lncRNA microarray. Expression of AFAP1-AS1 was evaluated by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) in 90 PDAC tissue samples and adjacent normal tissues. The impact of AFAP1-AS1 expression on cell proliferation, migration, and invasion were evaluated in vitro using knockdown and ectopic expression strategies. Microarray analysis revealed that up-regulation of AFAP1-AS1 expression in PDAC tissues compared with normal adjacent tissues, which was confirmed by RT-qPCR in 69/90 cases (76.7%). Its overexpression was associated with lymph node metastasis, perineural invasion, and poor survival. When using AFAP1-AS1 as a prognostic marker, the areas under ROC curves were 0.8669 and 0.9370 for predicting tumor progression within 6 months and 1 year, respectively. In vitro functional experiments involving knockdown of AFAP1-AS1 resulted in attenuated PDAC cell proliferation, migration, and invasion. Ectopic expression of AFAP1-AS1 promoted cell proliferation, migration, and invasion. AFAP1-AS1 is a potential novel prognostic marker to predict the clinical outcome of PDAC patients after surgery and may be a rational target for therapy.
MARCH5 RNA promotes autophagy, migration, and invasion of ovarian cancer cells.
Hu, Jianguo; Meng, Ying; Zhang, Zhanqin; Yan, Qiuting; Jiang, Xingwei; Lv, Zilan; Hu, Lina
2017-02-01
MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.
Differential gene expression in Ndph-knockout mice in retinal development.
Schäfer, Nikolaus F; Luhmann, Ulrich F O; Feil, Silke; Berger, Wolfgang
2009-02-01
Mutations in the NDP gene impair angiogenesis in the eyes of patients diagnosed with a type of blindness belonging to the group of exudative vitreoretinopathies. This study was conducted to investigate the differential gene expression caused by the absence of Norrin (the NDP protein) in the developing mouse retina and to elucidate early pathogenic events. A comparative gene expression analysis was performed on postnatal day (p)7 retinas from a knockout mouse model for Norrie disease using gene microarrays. Subsequently, results were verified by quantitative real-time PCR analyses. Immunohistochemistry was performed for the vascular permeability marker plasmalemma vesicle associated protein (Plvap). Our study identified expression differences in Ndph(y/-) versus wild-type mice retinas at p7. Gene transcription of the neutral amino acid transporter Slc38a5, apolipoprotein D (ApoD), and angiotensin II receptor-like 1 (Agtrl1) was decreased in the knockout mouse, whereas transcript levels of adrenomedullin (Adm) and of the plasmalemma vesicle associated protein (Plvap) were increased in comparison to the wild-type. In addition, ectopic expression of Plvap was found in the developing retinal vasculature of Norrin-knockout mice on the protein level. These data provide molecular evidence for a role of Norrin in the development of the retinal vasculature. Expression of two genes, Plvap and Slc38a5, is considerably altered in retinal development of Norrin-knockout mice and may reflect or contribute to the pathogenesis of the disease. In particular, ectopic expression of Plvap is consistent with hallmark disease symptoms in mice and humans.
“Real time” genetic manipulation: a new tool for ecological field studies
Schäfer, Martin; Brütting, Christoph; Gase, Klaus; Reichelt, Michael; Baldwin, Ian; Meldau, Stefan
2014-01-01
Summary Field experiments with transgenic plants often reveal the functional significance of genetic traits important for plant performance in their natural environments. Until now, only constitutive overexpression, ectopic expression and gene silencing methods have been used to analyze gene-related phenotypes in natural habitats. These methods do not allow sufficient control over gene expression to study ecological interactions in real-time, genetic traits playing essential roles in development, or dose-dependent effects. We applied the sensitive dexamethasone (DEX)-inducible pOp6/LhGR expression system to the ecological model plant Nicotiana attenuata and established a lanolin-based DEX application method to facilitate ectopic gene expression and RNAi mediated gene silencing in the field and under challenging conditions (e.g. high temperature, wind and UV radiation). Fully established field-grown plants were used to silence phytoene desaturase and thereby cause photobleaching only in specific plant sectors, and to activate expression of the cytokinin (CK) biosynthesis gene isopentenyl transferase (ipt). We used ipt expression to analyze the role of CK’s in both the glasshouse and field to understand resistance to the native herbivore Tupiocoris notatus, which attack plants at small spatial scales. By spatially restricting ipt expression and elevating CK levels in single leaves, T. notatus damage increased, demonstrating CK’s role in this plant-herbivore interaction at a small scale. As the arena of most ecological interactions is highly constrained in time and space, these tools will advance the genetic analysis of dynamic traits that matter for plant performance in nature. PMID:23906159
Loss of HSulf-1 expression enhances tumorigenicity by inhibiting Bim expression in ovarian cancer.
He, Xiaoping; Khurana, Ashwani; Roy, Debarshi; Kaufmann, Scott; Shridhar, Viji
2014-10-15
The expression of human Sulfatase1 (HSulf-1) is downregulated in the majority of primary ovarian cancer tumors, but the functional consequence of this downregulation remains unclear. Using two different shRNAs (Sh1 and Sh2), HSulf-1 expression was stably downregulated in ovarian cancer OV202 cells. We found that HSulf-1-deficient OV202 Sh1 and Sh2 cells formed colonies in soft agar. In contrast, nontargeting control (NTC) shRNA-transduced OV202 cells did not form any colonies. Moreover, subcutaneous injection of OV202 HSulf-1-deficient cells resulted in tumor formation in nude mice, whereas OV202 NTC cells did not. Also, ectopic expression of HSulf-1 in ovarian cancer SKOV3 cells significantly suppressed tumor growth in nude mice. Here, we show that HSulf-1-deficient OV202 cells have markedly decreased expression of proapoptotic Bim protein, which can be rescued by restoring HSulf-1 expression in OV202 Sh1 cells. Enhanced expression of HSulf-1 in HSulf-1-deficient SKOV3 cells resulted in increased Bim expression. Decreased Bim levels after loss of HSulf-1 were due to increased p-ERK, because inhibition of ERK activity with PD98059 resulted in increased Bim expression. However, treatment with a PI3 kinase/AKT inhibitor, LY294002, failed to show any change in Bim protein level. Importantly, rescuing Bim expression in HSulf-1 knockdown cells significantly retarded tumor growth in nude mice. Collectively, these results suggest that loss of HSulf-1 expression promotes tumorigenicity in ovarian cancer through regulating Bim expression. © 2014 UICC.
... Safe Videos for Educators Search English Español Ectopic Pregnancy KidsHealth / For Parents / Ectopic Pregnancy What's in this ... loss) lower back pain What Causes an Ectopic Pregnancy? An ectopic pregnancy usually happens because a fertilized ...
USDA-ARS?s Scientific Manuscript database
Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and ...
Godoy, Eduardo J.; Lozano, Miguel; Martínez-Mateu, Laura; Atienza, Felipe; Saiz, Javier; Sebastian, Rafael
2017-01-01
Non-invasive localization of continuous atrial ectopic beats remains a cornerstone for the treatment of atrial arrhythmias. The lack of accurate tools to guide electrophysiologists leads to an increase in the recurrence rate of ablation procedures. Existing approaches are based on the analysis of the P-waves main characteristics and the forward body surface potential maps (BSPMs) or on the inverse estimation of the electric activity of the heart from those BSPMs. These methods have not provided an efficient and systematic tool to localize ectopic triggers. In this work, we propose the use of machine learning techniques to spatially cluster and classify ectopic atrial foci into clearly differentiated atrial regions by using the body surface P-wave integral map (BSPiM) as a biomarker. Our simulated results show that ectopic foci with similar BSPiM naturally cluster into differentiated non-intersected atrial regions and that new patterns could be correctly classified with an accuracy of 97% when considering 2 clusters and 96% for 4 clusters. Our results also suggest that an increase in the number of clusters is feasible at the cost of decreasing accuracy. PMID:28704537
DIDO as a Switchboard that Regulates Self-Renewal and Differentiation in Embryonic Stem Cells.
Fütterer, Agnes; de Celis, Jésus; Navajas, Rosana; Almonacid, Luis; Gutiérrez, Julio; Talavera-Gutiérrez, Amaia; Pacios-Bras, Cristina; Bernascone, Ilenia; Martin-Belmonte, Fernando; Martinéz-A, Carlos
2017-04-11
Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. We show that embryonic stem cells (ESCs) mainly express DIDO3 and that their differentiation after leukemia inhibitory factor withdrawal requires DIDO1 expression. C-terminal truncation of DIDO3 (Dido3ΔCT) impedes ESC differentiation while retaining self-renewal; small hairpin RNA-Dido1 ESCs have the same phenotype. Dido3ΔCT ESC differentiation is rescued by ectopic expression of DIDO3, which binds the Dido locus via H3K4me3 and RNA POL II and induces DIDO1 expression. DIDO1, which is exported to cytoplasm, associates with, and is N-terminally phosphorylated by PKCiota. It binds the E3 ubiquitin ligase WWP2, which contributes to cell fate by OCT4 degradation, to allow expression of primitive endoderm (PE) markers. PE formation also depends on phosphorylated DIDO3 localization to centrosomes, which ensures their correct positioning for PE cell polarization. We propose that DIDO isoforms act as a switchboard that regulates genetic programs for ESC transition from pluripotency maintenance to promotion of differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The molecular basis for water taste in Drosophila
Cameron, Peter; Hiroi, Makoto; Ngai, John; Scott, Kristin
2010-01-01
The detection of water and the regulation of water intake are essential for animals to maintain proper osmotic homeostasis1. Drosophila and other insects have gustatory sensory neurons that mediate the recognition of external water sources2-4, but little is known about the underlying molecular mechanism for water taste detection. Here, we identify a member of the Degenerin/Epithelial Sodium Channel family5, ppk28, as an osmosensitive ion channel that mediates the cellular and behavioral response to water. We use molecular, cellular, calcium imaging and electrophysiological approaches to show that ppk28 is expressed in water-sensing neurons and loss of ppk28 abolishes water sensitivity. Moreover, ectopic expression of ppk28 confers water sensitivity to bitter-sensing gustatory neurons in the fly and sensitivity to hypo-osmotic solutions when expressed in heterologous cells. These studies link an osmosensitive ion channel to water taste detection and drinking behavior, providing the framework for examining the molecular basis for water detection in other animals. PMID:20364123
The SCL gene specifies haemangioblast development from early mesoderm.
Gering, M; Rodaway, A R; Göttgens, B; Patient, R K; Green, A R
1998-07-15
The SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of all haematopoietic lineages. SCL is also expressed in endothelial cells, but its function is not essential for specification of endothelial progenitors and the role of SCL in endothelial development is obscure. We isolated the zebrafish SCL homologue and show that it was co-expressed in early mesoderm with markers of haematopoietic, endothelial and pronephric progenitors. Ectopic expression of SCL mRNA in zebrafish embryos resulted in overproduction of common haematopoietic and endothelial precursors, perturbation of vasculogenesis and concomitant loss of pronephric duct and somitic tissue. Notochord and neural tube formation were unaffected. These results provide the first evidence that SCL specifies formation of haemangioblasts, the proposed common precursor of blood and endothelial lineages. Our data also underline the striking similarities between the role of SCL in haematopoiesis/vasculogenesis and the function of other bHLH proteins in muscle and neural development.
The Angiocrine Factor Rspondin3 Is a Key Determinant of Liver Zonation.
Rocha, Ana Sofia; Vidal, Valerie; Mertz, Marjolijn; Kendall, Timothy J; Charlet, Aurelie; Okamoto, Hitoshi; Schedl, Andreas
2015-12-01
Liver zonation, the spatial separation of different metabolic pathways along the liver sinusoids, is fundamental for proper functioning of this organ, and its disruption can lead to the development of metabolic disorders such as hyperammonemia. Metabolic zonation involves the induction of β-catenin signaling around the central veins, but how this patterned activity is established and maintained is unclear. Here, we show that the signaling molecule Rspondin3 is specifically expressed within the endothelial compartment of the central vein. Conditional deletion of Rspo3 in mice disrupts activation of central fate, demonstrating its crucial role in determining and maintaining β-catenin-dependent zonation. Moreover, ectopic expression of Rspo1, a close family member of Rspo3, induces the expression of pericentral markers, demonstrating Rspondins to be sufficient to imprint a more central fate. Thus, Rspo3 is a key angiocrine factor that controls metabolic zonation of liver hepatocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
The Ars insulator facilitates I-SceI meganuclease-mediated transgenesis in the sea urchin embryo.
Ochiai, Hiroshi; Sakamoto, Naoaki; Suzuki, Kenichi; Akasaka, Koji; Yamamoto, Takashi
2008-09-01
For the efficient generation of transgenic sea urchins, we have adopted an I-SceI meganuclease-mediated transgenesis method. Several types of promoter-GFP gene constructs flanked by two I-SceI recognition sequences were co-injected with I-SceI into sea urchin fertilized eggs. Using cell-lineage-specific promoter constructs, the frequency of transgene expression was elevated, and their level of mozaicism was reduced. The addition of the Ars insulator sequence, which is known to block the enhancer activity and protect transgenes from position effects, led to a reduction in ectopic transgene expression and an elevation of transgene expression frequency in this I-SceI-mediated system. However, the magnitude of the effects of the Ars insulator was dependent upon the promoter constructs. QPCR analysis also showed that the Ars insulator increases the transgene copy number. These results suggest that the I-SceI-mediated method using the Ars insulator is advantageous for transgenesis in the sea urchin embryo.
Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H
2015-07-01
Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.
Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.
2015-01-01
Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448
Generation of sensory hair cells by genetic programming with a combination of transcription factors.
Costa, Aida; Sanchez-Guardado, Luis; Juniat, Stephanie; Gale, Jonathan E; Daudet, Nicolas; Henrique, Domingos
2015-06-01
Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration. © 2015. Published by The Company of Biologists Ltd.
Ma, Jiantao; Karlsen, Micaela C.; Chung, Mei; Jacques, Paul F.; Saltzman, Edward; Smith, Caren E.; Fox, Caroline S.
2016-01-01
Context: The effect of added sugar intake on ectopic fat accumulation is a subject of debate. Objective: A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to examine the potential effect of added sugar intake on ectopic fat depots. Data Sources: MEDLINE, CAB Abstracts, CAB Global Health, and EBM (Evidence-Based Medicine) Reviews – Cochrane Central Register of Controlled Trials databases were searched for studies published from 1973 to September 2014. Data Extraction: RCTs with a minimum of 6 days’ duration of added sugar exposure in the intervention group were selected. The dosage of added sugar intake as a percentage of total energy was extracted or calculated. Means and standard deviations of pre- and post-test measurements or changes in ectopic fat depots were collected. Data Synthesis: Fourteen RCTs were included. Most of the studies had a medium to high risk of bias. Meta-analysis showed that, compared with eucaloric controls, subjects who consumed added sugar under hypercaloric conditions likely increased ectopic fat, particularly in the liver (pooled standardized mean difference = 0.9 [95%CI, 0.6–1.2], n = 6) and muscles (pooled SMD = 0.6 [95%CI, 0.2–1.0], n = 4). No significant difference was observed in liver fat, visceral adipose tissue, or muscle fat when isocaloric intakes of different sources of added sugars were compared. Conclusions: Data from a limited number of RCTs suggest that excess added sugar intake under hypercaloric diet conditions likely increases ectopic fat depots, particularly in the liver and in muscle fat. There are insufficient data to compare the effect of different sources of added sugars on ectopic fat deposition or to compare intake of added sugar with intakes of other macronutrients. Future well-designed RCTs with sufficient power and duration are needed to address the role of sugars on ectopic fat deposition. PMID:26518034
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamata, Masakazu, E-mail: masa3k@ucla.edu; Kim, Patrick Y.; Ng, Hwee L.
Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To testmore » this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.« less
Ectopic transgene expression in the retina of four transgenic mouse lines
Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J. Josh
2017-01-01
Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/ Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/ CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR-and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/ CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404
Inoue, Fumitaka; Parvin, Mst Shahnaj; Yamasu, Kyo
2008-04-15
Fgf8 is expressed in the isthmic region of the developing brain, serving an organizing function in vertebrate embryos. We previously identified S4.2 downstream to the zebrafish fgf8 gene as a regulatory region that drives transcription in the anterior hindbrain. Here, we investigated the mechanism of fgf8 regulation by the S4.2 region during development. Reporter analyses in embryos revealed that S4.2 closely recapitulates fgf8 expression in the anteriormost hindbrain during somitogenesis. This region contains a sequence highly conserved in fgf8 of diverse vertebrates. Further analyses of S4.2 revealed a 342-bp core region composed of three subregions (#2, #3, and #4). Regions #3 and #4 drove expression broadly in the brain from the midbrain to r5 of the hindbrain, whereas a 28-bp sequence in #2 repressed ectopic expression in the midbrain and in r2 to r5. The enhancer function of S4.2 was absent in pax2a mutant embryos, while it was activated ectopically by pax2a misexpression in the hindbrain. We identified two sites in the core region that are bound by Pax2a in vitro and in vivo, the disruption of which abrogated the S4.2 activity. Thus, fgf8 expression in the anteriormost hindbrain involves activation and repression, with Pax2a as a pivotal regulator.
Eklund, D Magnus; Thelander, Mattias; Landberg, Katarina; Ståldal, Veronika; Nilsson, Anders; Johansson, Monika; Valsecchi, Isabel; Pederson, Eric R A; Kowalczyk, Mariusz; Ljung, Karin; Ronne, Hans; Sundberg, Eva
2010-04-01
The plant hormone auxin plays fundamental roles in vascular plants. Although exogenous auxin also stimulates developmental transitions and growth in non-vascular plants, the effects of manipulating endogenous auxin levels have thus far not been reported. Here, we have altered the levels and sites of auxin production and accumulation in the moss Physcomitrella patens by changing the expression level of homologues of the Arabidopsis SHI/STY family proteins, which are positive regulators of auxin biosynthesis genes. Constitutive expression of PpSHI1 resulted in elevated auxin levels, increased and ectopic expression of the auxin response reporter GmGH3pro:GUS, and in an increased caulonema/chloronema ratio, an effect also induced by exogenous auxin application. In addition, we observed premature ageing and necrosis in cells ectopically expressing PpSHI1. Knockout of either of the two PpSHI genes resulted in reduced auxin levels and auxin biosynthesis rates in leafy shoots, reduced internode elongation, delayed ageing, a decreased caulonema/chloronema ratio and an increased number of axillary hairs, which constitute potential auxin biosynthesis sites. Some of the identified auxin functions appear to be analogous in vascular and non-vascular plants. Furthermore, the spatiotemporal expression of the PpSHI genes and GmGH3pro:GUS strongly overlap, suggesting that local auxin biosynthesis is important for the regulation of auxin peak formation in non-vascular plants.
Releasing Ski-Smad4 mediated suppression is essential to license Th17 differentiation
Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y.; Serody, Jonathan S.; Chen, Xian; Xu, Xiaojiang; Wade, Paul A.; Cook, Donald N.; Ting, Jenny P.; Wan, Yisong Y.
2017-01-01
Th17 cells are critically involved in host defense, inflammation, and autoimmunity1–5. TGF-β is instrumental in Th17 differentiation by cooperating with IL-66,7. Yet, the mechanism of how TGF-β enables Th17 differentiation remains elusive. Here we reveal that TGF-β licenses Th17 differentiation by releasing Ski-Smad4-complex suppressed RORγt expression. We found serendipitously that, unlike wild-type T cells, Smad4-deficient T cells differentiated into Th17 cells in the absence of TGF-β signaling in a RORγt-dependent manner. Ectopic Smad4 expression suppressed the RORγt expression and Th17 differentiation of Smad4-deficient T cells. Unexpectedly however, TGF-β neutralized Smad4 mediated suppression without affecting Smad4 binding to Rorc locus. Proteomic analysis revealed that Smad4 interacted with Ski, a transcriptional repressor degraded upon TGF-β stimulation. Ski controlled the histone acetylation/de-acetylation of Rorc locus and Th17 differentiation via Smad4 because ectopic Ski expression inhibited H3K9Ac of Rorc locus, Rorc expression and Th17 differentiation in a Smad4-dependent manner. Therefore, TGF-β-induced disruption of Ski releases Ski-Smad4 complex imposed suppression of RORγt to license Th17 differentiation. This study reveals a critical mechanism by which TGF-β controls Th17 differentiation and uncovers Ski-Smad4 axis as a potential therapeutic target for treating Th17 related diseases. PMID:29072299
MYC-induced cancer cell energy metabolism and therapeutic opportunities.
Dang, Chi V; Le, Anne; Gao, Ping
2009-11-01
Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which links altered cellular metabolism to tumorigenesis. c-Myc regulates genes involved in the biogenesis of ribosomes and mitochondria, and regulation of glucose and glutamine metabolism. With E2F1, c-Myc induces genes involved in nucleotide metabolism and DNA replication, and microRNAs that homeostatically attenuate E2F1 expression. With the hypoxia inducible transcription factor HIF-1, ectopic c-Myc cooperatively induces a transcriptional program for hypoxic adaptation. Myc regulates gene expression either directly, such as glycolytic genes including lactate dehydrogenase A (LDHA), or indirectly, such as repression of microRNAs miR-23a/b to increase glutaminase (GLS) protein expression and glutamine metabolism. Ectopic MYC expression in cancers, therefore, could concurrently drive aerobic glycolysis and/or oxidative phosphorylation to provide sufficient energy and anabolic substrates for cell growth and proliferation in the context of the tumor microenvironment. Collectively, these studies indicate that Myc-mediated altered cancer cell energy metabolism could be translated for the development of new anticancer therapies.
Nagel, Stefan; Venturini, Letizia; Meyer, Corinna; Kaufmann, Maren; Scherr, Michaela; Drexler, Hans G; Macleod, Roderick A F
2011-02-01
Myocyte enhancer factor 2C (MEF2C) encodes a transcription factor which is ectopically expressed in T-cell acute lymphoblastic leukemia (T-ALL) cell lines, deregulated directly by ectopically expressed homeodomain protein NKX2-5 or by loss of promoter regions via del(5)(q14). Here, we analyzed the MEF2C 5'-region, thus identifying potential regulatory binding sites for GFI1B, basic helix-loop-helix proteins, STAT5, and HOXA9/HOXA10. Chromatin immunoprecipitation and overexpression analyses demonstrated direct activation by GFI1B and LYL1 and inhibition by STAT5. HOXA9/HOXA10 activated expression of NMYC which in turn mediated MEF2C repression, indicating an indirect mode of regulation via NMYC interactor (NMI) and STAT5. Lacking comma: Chromosomal deletion of the STAT5 binding site in LOUCY cells reduced protein levels of STAT5 in some MEF2C-positve T-ALL cell lines, and the presence of inhibitory IL7-JAK-STAT5 signaling highlighted the repressive impact of this factor in MEF2C regulation. Taken together, our results indicate that the expression of MEF2C in T-ALL cells is principally deregulated via activating leukemic transcription factors GFI1B or NKX2-5 and by escaping inhibitory developmental STAT5 signaling.
Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming
2015-01-01
Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094
Liu, Bao-Qin; Zhang, Song; Li, Si; An, Ming-Xin; Li, Chao; Yan, Jing; Wang, Jia-Mei; Wang, Hua-Qin
2017-07-13
BAG3 is an evolutionarily conserved co-chaperone expressed at high levels and has a prosurvival role in many tumor types. The current study reported that BAG3 was induced under specific floating culture conditions that enrich breast cancer stem cell (BCSC)-like cells in spheres. Ectopic BAG3 overexpression increased CD44 + /CD24 - CSC subpopulations, first-generation and second-generation mammosphere formation, indicating that BAG3 promotes CSC self-renewal and maintenance in breast cancer. We further demonstrated that mechanically, BAG3 upregulated CXCR4 expression at the post-transcriptional level. Further studies showed that BAG3 interacted with CXCR4 mRNA and promoted its expression via its coding and 3'-untranslational regions. BAG3 was also found to be positively correlated with CXCR4 expression and unfavorable prognosis in patients with breast cancer. Taken together, our data demonstrate that BAG3 promotes BCSC-like phenotype through CXCR4 via interaction with its transcript. Therefore, this study establishes BAG3 as a potential adverse prognostic factor and a therapeutic target of breast cancer.
Zhang, Jinrui; Martin, John M.; Beecher, Brian; Lu, Chaofu; Hannah, L. Curtis; Wall, Michael L.; Altosaar, Illimar; Giroux, Michael J.
2014-01-01
Plant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.) with the wheat (Triticum aestivum L.) puroindoline genes (Pina and Pinb) to assess their effects upon seed oil content and quality. Pina and Pinb coding sequences were introduced into corn under the control of a corn Ubiquitin promoter. Three Pina/Pinb expression positive transgenic events were evaluated over two growing seasons. The results showed that Pin expression increased germ size significantly without negatively impacting seed size. Germ yield increased 33.8% while total seed oil content was increased by 25.23%. Seed oil content increases were primarily the result of increased germ size. This work indicates that higher oil content corn hybrids having increased food or feed value could be produced via puroindoline expression. PMID:20725765
A Novel Function of the Fe65 Neuronal Adaptor in Estrogen Receptor Action in Breast Cancer Cells*
Sun, Yuefeng; Kasiappan, Ravi; Tang, Jinfu; Webb, Panida L.; Quarni, Waise; Zhang, Xiaohong; Bai, Wenlong
2014-01-01
Fe65 is a multidomain adaptor with established functions in neuronal cells and neurodegeneration diseases. It binds to the C terminus of the Aβ amyloid precursor protein and is involved in regulating gene transcription. The present studies show that Fe65 is expressed in breast cancer (BCa) cells and acts as an ERα transcriptional coregulator that is recruited by 17β-estradiol to the promoters of estrogen target genes. Deletion analyses mapped the ERα binding domain to the phosphotyrosine binding domain 2 (PTB2). Ectopic Fe65 increased the transcriptional activity of the ERα in a PTB2-dependent manner in reporter assays. Fe65 knockdown decreased, whereas its stable expression increased the transcriptional activity of endogenous ERα in BCa cells and the ability of estrogens to stimulate target gene expression, ERα, and coactivator recruitment to target gene promoters and cell growth. Furthermore, Fe65 expression decreased the antagonistic activity of tamoxifen (TAM), suggesting a role for Fe65 in TAM resistance. Overall, the studies define a novel role for the neuronal adaptor in estrogen actions in BCa cells. PMID:24619425
Albuquerque, Érika V S; Bezerra, Caroline A; Romero, Juan V; Valencia, Jorge W A; Valencia-Jiménez, Arnubio; Pimenta, Lucas M; Barbosa, Aulus E A D; Silva, Maria C M; Meneguim, Ana M; Sá, Maria Eugênia L; Engler, Gilbert; de Almeida-Engler, Janice; Fernandez, Diana; Grossi-de-Sá, Maria F
Genetic transformation of coffee ( Coffea spp.), the second most traded commodity worldwide, is an alternative approach to introducing features that cannot be introgressed by traditional crossings. The transgenic stability, heritability and quantitative and spatial expression patterns of the seed-specific promoter phytohemagglutinin (PHA-L) from Phaseolus vulgaris were characterized in genetically modified C. arabica expressing the α-amylase inhibitor-1 ( α-AI1 ) gene. The α-AI1 inhibitor shows considerable activity toward digestive enzymes of the coffee berry borer (CBB) Hypothenemus hampei . This insect pest expends its life cycle almost entirely in coffee berries. Transgene containment in the fruit is important to meeting food and environmental safety requirements for releasing genetically modified (GM) crops. PCR analysis of T2 coffee plants showed a Mendelian single-copy segregation pattern. Ectopic transgene expression was only detected in coffee grains, as demonstrated by reverse transcription-PCR analysis of different plant tissues. An intense immunocytochemical signal associated with α-AI1 protein expression was localized to endospermic cells. In addition, a delay in the larval development of CBB was observed after challenging transgenic coffee seeds with the insect. These results indicate that the PHA-L promoter might be a useful tool in coffee for the seed-specific expression of genes related to coffee bean productivity, quality and pest protection. The biotechnological applicability of the α-AI1 gene for controlling CBB is also discussed. This work is the first report showing a seed-specific transgene expression in coffee plants.
Fu, Christine T; Sretavan, David W
2012-11-07
Although clinical and experimental observations indicate that the optic nerve head (ONH) is a major site of axon degeneration in glaucoma, the mechanisms by which local retinal ganglion cell (RGC) axons are injured and damage spreads among axons remain poorly defined. Using a laser-induced ocular hypertension (LIOH) mouse model of glaucoma, we found that within 48 h of intraocular pressure elevation, RGC axon segments within the ONH exhibited ectopic accumulation and colocalization of multiple components of the glutamatergic presynaptic machinery including the vesicular glutamate transporter VGLUT2, several synaptic vesicle marker proteins, glutamate, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and active zone cytomatrix components, as well as ultrastructurally identified, synaptophysin-containing vesicles. Ectopic vesicle exocytosis and glutamate release were detected in acute preparations of the LIOH ONH. Immunolocalization and analysis using the ionotropic receptor channel-permeant cation agmatine indicated that ONH axon segments and glia expressed glutamate receptors, and these receptors were more active after LIOH compared with controls. Pharmacological antagonism of glutamate receptors and neuronal activity resulted in increased RGC axon sparing in vivo. Furthermore, in vivo RGC-specific genetic disruption of the vesicular glutamate transporter VGLUT2 or the obligatory NMDA receptor subunit NR1 promoted axon survival in experimental glaucoma. As the inhibition of ectopic glutamate vesicular release or glutamate receptivity can independently modify the severity of RGC axon loss, synaptic release mechanisms may provide useful therapeutic entry points into glaucomatous axon degeneration.
Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi
2013-01-01
Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705
Morphological, diagnostic and surgical features of ectopic thyroid gland: a review of literature.
Guerra, Germano; Cinelli, Mariapia; Mesolella, Massimo; Tafuri, Domenico; Rocca, Aldo; Amato, Bruno; Rengo, Sandro; Testa, Domenico
2014-01-01
Ectopic thyroid tissue remains a rare developmental abnormality involving defective or aberrant embryogenesis of the thyroid gland during its passage from the floor of the primitive foregut to its usual final position in pre-tracheal region of the neck. Its specific prevalence accounts about 1 case per 100.000-300.000 persons and one in 4.000-8.000 patients with thyroid disease show this condition. The cause of this defect is not fully known. Despite genetic factors have been associated with thyroid gland morphogenesis and differentiation, just recently some mutation has been associated with human thyroid ectopy. Lingual region in the most common site of thyroid ectopy but ectopic thyroid tissue were found in other head and neck locations. Nevertheless, aberrant ectopic thyroid tissue has been found in other places distant from the neck region. Ectopic tissue is affected by different pathological changes that occur in the normal eutopic thyroid. Patients may present insidiously or as an emergency. Diagnostic management of thyroid ectopy is performed by radionuclide thyroid imaging, ultrasonography, CT scan, MRI, biopsy and thyroid function tests. Asymptomatic euthyroid patients with ectopic thyroid do not usually require therapy but are kept under observation. For those with symptoms, treatment depends on size of the gland, nature of symptoms, thyroid function status and histological findings. Surgical excision is often required as treatment for this condition. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Fattorini, Laura; Della Rovere, Federica; Andreini, Eleonora; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena
2017-11-21
The role of the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and of the auxin-interacting phytohormone ethylene, on the ectopic formation of primary xylem (xylogenesis in planta) is still little known. In particular, auxin/ethylene-target tissue(s), modality of the xylary process (trans-differentiation vs. de novo formation), and the kind of ectopic elements formed (metaxylem vs. protoxylem) are currently unknown. It is also unclear whether IBA may act on the process independently of conversion into IAA. To investigate these topics, histological analyses were carried out in the hypocotyls of Arabidopsis wild type seedlings and ech2ibr10 and ein3eil1 mutants, which are blocked in IBA-to-IAA conversion and ethylene signalling, respectively. The seedlings were grown under darkness with either IAA or IBA, combined or not with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Adventitious root formation was also investigated because this process may compete with xylogenesis. Our results show that ectopic formation of protoxylem and metaxylem occurred as an indirect process starting from the pericycle periclinal derivatives of the hypocotyl basal part. IAA favoured protoxylem formation, whereas IBA induced ectopic metaxylem with ethylene cooperation through the EIN3EIL1 network. Ectopic metaxylem differentiation occurred independently of IBA-to-IAA conversion as mediated by ECH2 and IBR10, and in the place of IBA-induced adventitious root formation.
Crawford, Nigel P. S.; Yang, Hailiu; Mattaini, Katherine R.; Hunter, Kent W.
2009-01-01
There is accumulating evidence for a role of germ line variation in breast cancer metastasis. We have recently identified a novel metastasis susceptibility gene, Rrp1b (ribosomal RNA processing 1 homolog B). Overexpression of Rrp1b in a mouse mammary tumor cell line induces a gene expression signature that predicts survival in breast cancer. Here we extend the analysis of RRP1B function by demonstrating that the Rrp1b activation gene expression signature accurately predicted the outcome in three of four publicly available breast carcinoma gene expression data sets. In addition, we provide insights into the mechanism of RRP1B. Tandem affinity purification demonstrated that RRP1B physically interacts with many nucleosome binding factors, including histone H1X, poly(ADP-ribose) polymerase 1, TRIM28 (tripartite motif-containing 28), and CSDA (cold shock domain protein A). Co-immunofluorescence and co-immunoprecipitation confirmed these interactions and also interactions with heterochromatin protein-1α and acetyl-histone H4 lysine 5. Finally, we investigated the effects of ectopic expression of an RRP1B allelic variant previously associated with improved survival in breast cancer. Gene expression analyses demonstrate that, compared with ectopic expression of wild type RRP1B in HeLa cells, the variant RRP1B differentially modulates various transcription factors controlled by TRIM28 and CSDA. These data suggest that RRP1B, a tumor progression and metastasis susceptibility candidate gene, is potentially a dynamic modulator of transcription and chromatin structure. PMID:19710015
Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi
2015-01-01
Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1−/− mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0–P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner’s membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1−/− mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. PMID:26084842
Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi
2015-08-01
Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1(-/-) mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0-P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner's membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1(-/-) mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2[W
Varbanova, Marina; Yamaguchi, Shinjiro; Yang, Yue; McKelvey, Katherine; Hanada, Atsushi; Borochov, Roy; Yu, Fei; Jikumaru, Yusuke; Ross, Jeannine; Cortes, Diego; Ma, Choong Je; Noel, Joseph P.; Mander, Lew; Shulaev, Vladimir; Kamiya, Yuji; Rodermel, Steve; Weiss, David; Pichersky, Eran
2007-01-01
Arabidopsis thaliana GAMT1 and GAMT2 encode enzymes that catalyze formation of the methyl esters of gibberellins (GAs). Ectopic expression of GAMT1 or GAMT2 in Arabidopsis, tobacco (Nicotiana tabacum), and petunia (Petunia hybrida) resulted in plants with GA deficiency and typical GA deficiency phenotypes, such as dwarfism and reduced fertility. GAMT1 and GAMT2 are both expressed mainly in whole siliques (including seeds), with peak transcript levels from the middle until the end of silique development. Within whole siliques, GAMT2 was previously shown to be expressed mostly in developing seeds, and we show here that GAMT1 expression is also localized mostly to seed, suggesting a role in seed development. Siliques of null single GAMT1 and GAMT2 mutants accumulated high levels of various GAs, with particularly high levels of GA1 in the double mutant. Methylated GAs were not detected in wild-type siliques, suggesting that methylation of GAs by GAMT1 and GAMT2 serves to deactivate GAs and initiate their degradation as the seeds mature. Seeds of homozygous GAMT1 and GAMT2 null mutants showed reduced inhibition of germination, compared with the wild type, when placed on plates containing the GA biosynthesis inhibitor ancymidol, with the double mutant showing the least inhibition. These results suggest that the mature mutant seeds contained higher levels of active GAs than wild-type seeds. PMID:17220201
Modulating hair follicle size with Wnt10b-DKK1 pair during hair regeneration
Lei, Mingxing; Guo, Haiying; Qiu, Weiming; Lai, Xiangdong; Yang, Tian; Widelitz, Randall B.; Chuong, Cheng-Ming; Lian, Xiaohua; Yang, Li
2015-01-01
Hair follicles have characteristic sizes corresponding to their cycle specific stage. However, how the anagen hair follicle specifies its size remains elusive. Here, we show that in response to prolonged ectopic Wnt10b-mediated β-catenin activation, regenerating anagen hair follicles grow larger in size. In particular, the hair bulb, dermal papilla and hair shaft become enlarged. While the formation of different hair types (Guard, Awl, Auchene, and Zigzag) is unaffected. Interestingly, we found the effect of exogenous WNT10b was mainly on Zigzag and less on the other kinds of hairs. We observed dramatically enhanced proliferation within the matrix, DP and hair shaft of the enlarged AdWnt10b-treated hair follicles compared with those of normal hair follicles at P98. Furthermore, expression of CD34, a specific hair stem cell marker, was increased in its number to the bulge region after AdWnt10b treatment. Ectopic expression of CD34 throughout the ORS region was also observed. Many CD34 positive hair stem cells were actively proliferating in AdWnt10b-induced hair follicles. Importantly, subsequent co-treatment with the Wnt inhibitor, DKK1, reduced hair follicle enlargement, decreased proliferation and maintained proper hair stem cell localization. Moreover, injection of DKK1 during early anagen significantly reduced the width of prospective hairs. Together, these findings strongly suggest that a balance of Wnt10b/DKK1 governs reciprocal signaling between cutaneous epithelium and mesenchyme to regulate proper hair follicle size. PMID:24750467
Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yan; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Yu Lian
The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat bodymore » nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.« less
MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).
Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao
2015-01-02
Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Heckl, Dirk; Wicke, Daniel C; Brugman, Martijn H; Meyer, Johann; Schambach, Axel; Büsche, Guntram; Ballmaier, Matthias; Baum, Christopher; Modlich, Ute
2011-04-07
Thpo/Mpl signaling plays an important role in the maintenance of hematopoietic stem cells (HSCs) in addition to its role in megakaryopoiesis. Patients with inactivating mutations in Mpl develop thrombocytopenia and aplastic anemia because of progressive loss of HSCs. Yet, it is unknown whether this loss of HSCs is an irreversible process. In this study, we used the Mpl knockout (Mpl(-/-)) mouse model and expressed Mpl from newly developed lentiviral vectors specifically in the physiologic Mpl target populations, namely, HSCs and megakaryocytes. After validating lineage-specific expression in vivo using lentiviral eGFP reporter vectors, we performed bone marrow transplantation of transduced Mpl(-/-) bone marrow cells into Mpl(-/-) mice. We show that restoration of Mpl expression from transcriptionally targeted vectors prevents lethal adverse reactions of ectopic Mpl expression, replenishes the HSC pool, restores stem cell properties, and corrects platelet production. In some mice, megakaryocyte counts were atypically high, accompanied by bone neo-formation and marrow fibrosis. Gene-corrected Mpl(-/-) cells had increased long-term repopulating potential, with a marked increase in lineage(-)Sca1(+)cKit(+) cells and early progenitor populations in reconstituted mice. Transcriptome analysis of lineage(-)Sca1(+)cKit(+) cells in Mpl-corrected mice showed functional adjustment of genes involved in HSC self-renewal.
ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.
Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru
2016-03-01
Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.
Knockdown of p62/sequestosome 1 attenuates autophagy and inhibits colorectal cancer cell growth.
Ren, Feng; Shu, Guoshun; Liu, Ganglei; Liu, Dongcai; Zhou, Jiapeng; Yuan, Lianwen; Zhou, Jianping
2014-01-01
p62/sequestosome-1 is a multifunctional adapter protein implicated in selective autophagy, cell signaling pathways, and tumorigenesis, and plays an important role at the crossroad between autophagy and cancer. But, the connection between autophagy and cancer is complex and in some cases contradictory. Human colorectal cancer tissues from patients were analyzed for expression of p62 and Microtubule-associated protein light chain 3 (LC3, an autophagosome marker) using immunostaining, western blotting, real-time PCR, and confocal microscopy. To study the effects of p62 on autophagy and cell growth, shRNA for p62 was applied and cell growth curve was monitored in human colorectal cancer cell. In vivo experiments were done using the mouse xenograft model. We showed that up-regulated expression of p62 and LC3 in colorectal cancer tissues. We also demonstrated that specifically knockdown the expression of p62 showed significantly inhibitory effects not only on autophagy activation, but also on tumor growth both in vitro and xenograft tumors model. The ectopic overexpression of p62 and autophagy activation contributes to colorectal tumorigenesis. p62 and autophagy will be therapy targets for the treatment of colorectal cancer.
Hoxb3 negatively regulates Hoxb1 expression in mouse hindbrain patterning.
Wong, Elaine Y M; Wang, Xing An; Mak, Siu Shan; Sae-Pang, Jearn Jang; Ling, Kam Wing; Fritzsch, Bernd; Sham, Mai Har
2011-04-15
The spatial regulation of combinatorial expression of Hox genes is critical for determining hindbrain rhombomere (r) identities. To address the cross-regulatory relationship between Hox genes in hindbrain neuronal specification, we have generated a gain-of-function transgenic mouse mutant Hoxb3(Tg) using the Hoxb2 r4-specific enhancer element. Interestingly, in r4 of the Hoxb3(Tg) mutant where Hoxb3 was ectopically expressed, the expression of Hoxb1 was specifically abolished. The hindbrain neuronal defects of the Hoxb3(Tg) mutant mice were similar to those of Hoxb1(-/-) mutants. Therefore, we hypothesized that Hoxb3 could directly suppress Hoxb1 expression. We first identified a novel Hoxb3 binding site S3 on the Hoxb1 locus and confirmed protein binding to this site by EMSA, and by in vivo ChIP analysis using P19 cells and hindbrain tissues from the Hoxb3(Tg) mutant. We further showed that Hoxb3 could suppress Hoxb1 transcriptional activity by chick in ovo luciferase reporter assay. Moreover, in E10.5 wildtype caudal hindbrain, where Hoxb1 is not expressed, we showed by in vivo ChIP that Hoxb3 was consistently bound to the S3 site on the Hoxb1 gene. This study reveals a novel negative regulatory mechanism by which Hoxb3 as a posterior gene serves to restrict Hoxb1 expression in r4 by direct transcriptional repression to maintain the rhombomere identity. Copyright © 2011 Elsevier Inc. All rights reserved.
Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer
Li, Hao; Yu, Beiqin; Li, Jianfang; Su, Liping; Yan, Min; Zhu, Zhenggang; Liu, Bingya
2014-01-01
Long non-coding RNAs (lncRNAs) play key roles in the progression and metastasis of some carcinomas. We previously showed that the expression of lncRNA H19 (H19) was higher in gastric cancer (GC) tissues than that in paired noncanerous tissues. However, the underlying mechanisms remain unclear. In this study, H19/miR-675 knockdown models in the MKN45 cell line and ectopic expression models in the SGC7901 cell line were established, and a co-expression network of H19 was generated to identify target genes by RIP and DLR. The results showed that overexpression of H19 promoted the features of GC including proliferation, migration, invasion and metastasis. An H19 co-expression network identified ISM1 as a binding protein of H19, and its expression was positively correlated with that of H19. CALN1 was identified as a target gene of miR-675 and its expression was negatively correlated with that of miR-675. H19 and MiR-675 function in a similar manner. However, H19 RNA actively binds to ISM1 and miR-675 targets CALN1. These differences suggest that H19 plays other roles besides encoding miR-675 in GC. Our results suggest that the effect of H19 in GC is mediated by the direct upregulation of ISM1 and the indirect suppression of CALN1 expression via miR-675. PMID:24810858
Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer.
Li, Hao; Yu, Beiqin; Li, Jianfang; Su, Liping; Yan, Min; Zhu, Zhenggang; Liu, Bingya
2014-04-30
Long non-coding RNAs (lncRNAs) play key roles in the progression and metastasis of some carcinomas. We previously showed that the expression of lncRNA H19 (H19) was higher in gastric cancer (GC) tissues than that in paired noncanerous tissues. However, the underlying mechanisms remain unclear. In this study, H19/miR-675 knockdown models in the MKN45 cell line and ectopic expression models in the SGC7901 cell line were established, and a co-expression network of H19 was generated to identify target genes by RIP and DLR. The results showed that overexpression of H19 promoted the features of GC including proliferation, migration, invasion and metastasis. An H19 co-expression network identified ISM1 as a binding protein of H19, and its expression was positively correlated with that of H19. CALN1 was identified as a target gene of miR-675 and its expression was negatively correlated with that of miR-675. H19 and MiR-675 function in a similar manner. However, H19 RNA actively binds to ISM1 and miR-675 targets CALN1. These differences suggest that H19 plays other roles besides encoding miR-675 in GC. Our results suggest that the effect of H19 in GC is mediated by the direct upregulation of ISM1 and the indirect suppression of CALN1 expression via miR-675.
Peng, Yaoming; Ma, Junyan; Lin, Jun
2018-01-01
The activation of systemic and local inflammatory mechanisms, including elevated levels of chemokines and proinflammatory cytokines in endometriosis progression, is becoming more evident in the recent years. Here, we report the involvement of CXC chemokine 16 (CXCL16) and its sole receptor, CXC chemokine receptor 6 (CXCR6), in pathophysiology of endometriosis. Expression of CXCL16, but not CXCR6, was significantly upregulated in endometriotic lesions when compared to control endometrium. Additionally, serum CXCL16 was significantly elevated in women with endometriosis when compared to control group. Moreover, blockade of the CXCL16/CXCR6 axis by CXCR6 small-interfering RNA reduced the migration and invasion of ectopic endometrial stromal cells (EESCs) followed by decreased phosphorylation of ERK1/2. Furthermore, TNF-α treatment induced the expression of CXCL16 in EESCs. In conclusion, these results suggest that CXCL16/CXCR6 axis, whose expression was enhanced by TNF-α, may be associated with the increased motility of EESCs, through regulation of ERK1/2 signaling, thus contributing to the development of endometriosis. These findings indicate that the CXCL16/CXCR6 axis may contribute to the progression of endometriosis and could be served as a potential target for diagnosis and treatment.
Tao, Wensi; Ayala-Haedo, Juan A; Field, Matthew G; Pelaez, Daniel; Wester, Sara T
2017-12-01
The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.
Tao, Wensi; Ayala-Haedo, Juan A.; Field, Matthew G.; Pelaez, Daniel; Wester, Sara T.
2017-01-01
Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell–specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways. PMID:29214313
Lee, Kyungjin; Back, Kyoungwhan
2017-04-01
While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gerlach, Gary F.; Wingert, Rebecca A.
2014-01-01
The zebrafish pronephros provides an excellent in vivo system to study the mechanisms of vertebrate nephron development. When and how renal progenitors in the zebrafish embryo undergo tubulogenesis to form nephrons is poorly understood, but is known to involve a mesenchymal to epithelial transition (MET) and the acquisition of polarity. Here, we determined the precise timing of these events in pronephros tubulogenesis. As the ternary polarity complex is an essential regulator of epithelial cell polarity across tissues, we performed gene knockdown studies to assess the roles of the related factors atypical protein kinase C iota and zeta (prkcι, prkcζ). We found that prkcι and prkcζ serve partially redundant functions to establish pronephros tubule epithelium polarity. Further, the loss of prkcι or the combined knockdown of prkcι/ζ disrupted proximal tubule morphogenesis and podocyte migration due to cardiac defects that prevented normal fluid flow to the kidney. Surprisingly, tubule cells in prkcι/ζ morphants displayed ectopic expression of the transcription factor pax2a and the podocyte-associated genes wt1a, wt1b, and podxl, suggesting that prkcι/ζ are needed to maintain renal epithelial identity. Knockdown of genes essential for cardiac contractility and vascular flow to the kidney, such as tnnt2a, or elimination of pronephros fluid output through knockdown of the intraflagellar transport gene ift88, was not associated with ectopic pronephros gene expression, thus suggesting a unique role for prkcι/ζ in maintaining tubule epithelial identity separate from the consequence of disruptions to renal fluid flow. Interestingly, knockdown of pax2a, but not wt1a, was sufficient to rescue ectopic tubule gene expression in prkcι/ζ morphants. These data suggest a model in which the redundant activities of prkcι and prkcζ are essential to establish tubule epithelial polarity and also serve to maintain proper epithelial cell type identity in the tubule by inhibiting pax2a expression. These studies provide a valuable foundation for further analysis of MET during nephrogenesis, and have implications for understanding the pathways that affect nephron epithelial cells during kidney disease and regeneration. PMID:25446529
Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.
Yang, Qiaohong; Gupta, Romi
2018-01-19
UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.
The involvement of J-protein AtDjC17 in root development in Arabidopsis
Petti, Carloalberto; Nair, Meera; DeBolt, Seth
2014-01-01
In a screen for root hair morphogenesis mutants in Arabidopsis thaliana L. we identified a T-DNA insertion within a type III J-protein AtDjC17 caused altered root hair development and reduced hair length. Root hairs were observed to develop from trichoblast and atrichoblast cell files in both Atdjc17 and 35S::AtDJC17. Localization of gene expression in the root using transgenic plants expressing proAtDjC17::GUS revealed constitutive expression in stele cells. No AtDJC17 expression was observed in epidermal, endodermal, or cortical layers. To explore the contrast between gene expression in the stele and epidermal phenotype, hand cut transverse sections of Atdjc17 roots were examined showing that the endodermal and cortical cell layers displayed increased anticlinal cell divisions. Aberrant cortical cell division in Atdjc17 is proposed as causal in ectopic root hair formation via the positional cue requirement that exists between cortical and epidermal cell in hair cell fate determination. Results indicate a requirement for AtDJC17 in position-dependent cell fate determination and illustrate an intriguing requirement for molecular co-chaperone activity during root development. PMID:25339971
Delanghe, Sigurd E; Dierick, Jan; Maenhout, Thomas M; Zabeau, Lennart; Tavernier, Jan; Claes, Kathleen; Bleyen, Joris; Delanghe, Joris R
2015-01-01
Hemangioblastomas express erythropoietin and the patients often present with polycythemia. Serum erythropoietin was measured using a commercial immunoassay, a functional erythropoietin assay and iso-electric focusing. Despite the polycythemia, serum erythropoietin remained low, while a functional erythropoietin-assay showed a 4-5 higher activity in serum compared to the immunoassay. Iso-electric focusing of serum erythropoietin indicated overrepresentation of highly sialylated erythropoietin isoforms produced by the tumor. As a result, altered affinity of the monoclonal antibody used in the immunoassay for the hypersialylated isoforms was suggested. Analysis of erythropoietin isoforms may be helpful in distinguishing the ectopic erythropoietin isoforms from normally glycosylated erythropoietin. Copyright © 2014 Elsevier B.V. All rights reserved.
Kagoshima, Hiroshi; Kohara, Yuji
2015-03-15
A wide variety of cells are generated by the expression of characteristic sets of genes, primarily those regulated by cell-specific transcription. To elucidate the mechanism regulating cell-specific gene expression in a highly specialized cell, AFD thermosensory neuron in Caenorhabditis elegans, we analyzed the promoter sequences of guanylyl cyclase genes, gcy-8 and gcy-18, exclusively expressed in AFD. In this study, we showed that AFD-specific expression of gcy-8 and gcy-18 requires the co-expression of homeodomain proteins, CEH-14/LHX3 and TTX-1/OTX1. We observed that mutation of ttx-1 or ceh-14 caused a reduction in the expression of gcy-8 and gcy-18 and that the expression was completely lost in double mutants. This synergy effect was also observed with other AFD marker genes, such as ntc-1, nlp-21and cng-3. Electrophoretic mobility shift assays revealed direct interaction of CEH-14 and TTX-1 proteins with gcy-8 and gcy-18 promoters in vitro. The binding sites of CEH-14 and TTX-1 proteins were confirmed to be essential for AFD-specific expression of gcy-8 and gcy-18 in vivo. We also demonstrated that forced expression of CEH-14 and TTX-1 in AWB chemosensory neurons induced ectopic expression of gcy-8 and gcy-18 reporters in this neuron. Finally, we showed that the regulation of gcy-8 and gcy-18 expression by ceh-14 and ttx-1 is evolutionally conserved in five Caenorhabditis species. Taken together, ceh-14 and ttx-1 expression determines the fate of AFD as terminal selector genes at the final step of cell specification. Copyright © 2015 Elsevier Inc. All rights reserved.
2013-03-01
Deletion analyses mapped the ERα binding domain to the phosphotyrosine binding domain 2. Ectopic Fe65 increased the transcriptional activity of the...ERα in a PTB2 dependent manner in reporter assays. Fe65 knockdown decreased and its stable expression increased the activity of endogenous ERα in...Furthermore, Fe65 expression decreased the antagonistic activity of tamoxifen, suggesting a potential role for Fe65 in tamoxifen resistance. While a role of
2012-10-01
support with our hypothesis, expressions of AR co-repressors (48-50), HDAC1, HDAC3 or SirT1 inhibit the ligand-induced AR activation at different...signaling and androgen-dependent growth. We hypothesis that DACH1/Six1/Eya pathway is an endogenous regulator of AR trans- activation and contributes to...mechanism. Inhibitory function of Eya1 on AR transactivation required a phosphates activity and could be enhanced by ectopic expression of co-repressors
Tang, Xurong; Hou, Anfu; Babu, Mohan; Nguyen, Vi; Hurtado, Lidia; Lu, Qing; Reyes, Jose C.; Wang, Aiming; Keller, Wilfred A.; Harada, John J.; Tsang, Edward W.T.; Cui, Yuhai
2008-01-01
Synthesis and accumulation of seed storage proteins (SSPs) is an important aspect of the seed maturation program. Genes encoding SSPs are specifically and highly expressed in the seed during maturation. However, the mechanisms that repress the expression of these genes in leaf tissue are not well understood. To gain insight into the repression mechanisms, we performed a genetic screen for mutants that express SSPs in leaves. Here, we show that mutations affecting BRAHMA (BRM), a SNF2 chromatin-remodeling ATPase, cause ectopic expression of a subset of SSPs and other embryogenesis-related genes in leaf tissue. Consistent with the notion that such SNF2-like ATPases form protein complexes in vivo, we observed similar phenotypes for mutations of AtSWI3C, a BRM-interacting partner, and BSH, a SNF5 homolog and essential SWI/SNF subunit. Chromatin immunoprecipitation experiments show that BRM is recruited to the promoters of a number of embryogenesis genes in wild-type leaves, including the 2S genes, expressed in brm leaves. Consistent with its role in nucleosome remodeling, BRM appears to affect the chromatin structure of the At2S2 promoter. Thus, the BRM-containing chromatin-remodeling ATPase complex involved in many aspects of plant development mediates the repression of SSPs in leaf tissue. PMID:18508955
FGF signaling is required for brain left-right asymmetry and brain midline formation.
Neugebauer, Judith M; Yost, H Joseph
2014-02-01
Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expressions, and a midline barrier structure. Copyright © 2013 Elsevier Inc. All rights reserved.
Khurana, Satish; Jaiswal, Amit K; Mukhopadhyay, Asok
2010-02-12
Hematopoietic stem cells can directly transdifferentiate into hepatocytes because of cellular plasticity, but the molecular basis of transdifferentiation is not known. Here, we show the molecular basis using lineage-depleted oncostatin M receptor beta-expressing (Lin(-)OSMRbeta(+)) mouse bone marrow cells in a hepatic differentiation culture system. Differentiation of the cells was marked by the expression of albumin. Hepatocyte nuclear factor (HNF)-4alpha was expressed and translocated into the nuclei of the differentiating cells. Suppression of its activation in OSM-neutralized culture medium inhibited cellular differentiation. Ectopic expression of full-length HNF4alpha in 32D myeloid cells resulted in decreased myeloid colony-forming potential and increased expression of hepatocyte-specific genes and proteins. Nevertheless, the neohepatocytes produced in culture expressed active P450 enzyme. The obligatory role of HNF4alpha in hepatic differentiation was confirmed by transfecting Lin(-)OSMRbeta(+) cells with dominant negative HNF4alpha in the differentiation culture because its expression inhibited the transcription of the albumin and tyrosine aminotransferase genes. The loss and gain of functional activities strongly suggested that HNF4alpha plays a central role in the transdifferentiation process. For the first time, this report demonstrates the mechanism of transdifferentiation of hematopoietic cells into hepatocytes, in which HNF4alpha serves as a molecular switch.
Apoptosis and expression of Bcl-2 and Bax in eutopic endometrium from women with endometriosis.
Meresman, G F; Vighi, S; Buquet, R A; Contreras-Ortiz, O; Tesone, M; Rumi, L S
2000-10-01
To evaluate and compare spontaneous apoptosis and Bcl-2 and Bax expression in eutopic endometrium from women with and without endometriosis. Apoptosis and Bcl-2 and Bax expression were examined in eutopic endometrium from women with and without endometriosis. Instituto de Biología y Medicina Experimental-CONICET, Department of Gynecology and Department of Gynecological Pathology, Clínicas University Hospital, Buenos Aires, Argentina. Women with untreated endometriosis (n = 14) and controls (n = 16). Collection of endometrial samples during diagnostic or therapeutic laparoscopy. Apoptotic cells were detected with use of the dUTP nick-end labeling (TUNEL) assay; Bcl-2 and Bax expressions were assessed with use of immunohistochemical techniques. Spontaneous apoptosis was significantly lower in eutopic endometrium from patients with endometriosis, compared with healthy controls (2.26 +/- 0.53 and 9.37 +/- 1.69 apoptotic cells/field, respectively) and was independent of cycle phase. An increased expression of Bcl-2 protein was found in proliferative eutopic endometrium from patients with endometriosis. Bax expression was absent in proliferative endometrium, whereas there was an increase in its expression in secretory endometrium from both patients and controls. Women with endometriosis show decreased number of apoptotic cells in eutopic endometrium. The abnormal survival of endometrial cells may result in their continuing growth into ectopic locations.
GPNMB promotes proliferation of developing eosinophils.
Hwang, Sae Mi; Kang, Jin Hyun; Kim, Bo Kyum; Uhm, Tae Gi; Kim, Hye Jeong; Lee, Hyune-Hwan; Binas, Bert; Chung, Il Yup
2017-08-01
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane protein that is expressed in a wide variety of cell types, including haematopoietic lineages. We previously demonstrated that GPNMB is one of the most highly expressed genes at an early and intermediate stage of eosinophil development. We herein examined GPNMB expression and its possible functional effect using cord blood (CB) CD34+ haematopoietic stem cells differentiating toward eosinophils during a 24-day culture period. Western blot and confocal microscopy analyses showed that GPNMB reached its highest levels at day 12 with most GPNMB-positive cells also expressing major basic protein 1 (MBP1), an eosinophil granule protein. GPNMB declined thereafter, but was still present at an appreciable level at day 24, the time when CB eosinophils most abundantly expressed MBP1 and were thus considered fully differentiated. When the developing CB cells were cultured in the presence of a blocking anti-GPNMB antibody, cell proliferation was significantly reduced. In agreement, ectopic expression of GPNMB in heterologous cells resulted in a significant increase in cell proliferation, while small interfering RNA of GPNMB inhibited the GPNMB-mediated proliferation. Thus, GPNMB is expressed in a temporal manner during eosinophil development and delivers a proliferative signal upon activation. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
FGF Signaling is Required for Brain Left-Right Asymmetry and Brain Midline Formation
Neugebauer, Judith M.; Yost, H. Joseph
2014-01-01
Early disruption of FGF signaling alters left-right (LR) asymmetry throughout the embryo. Here we uncover a role for FGF signaling that specifically disrupts brain asymmetry, independent of normal lateral plate mesoderm (LPM) asymmetry. When FGF signaling is inhibited during mid-somitogenesis, asymmetrically expressed LPM markers southpaw and lefty2 are not affected. However, asymmetrically expressed brain markers lefty1 and cyclops become bilateral. We show that FGF signaling controls expression of six3b and six7, two transcription factors required for repression of asymmetric lefty1 in the brain. We found that Z0-1, atypical PKC (aPKC) and β-catenin protein distribution revealed a midline structure in the forebrain that is dependent on a balance of FGF signaling. Ectopic activation of FGF signaling leads to overexpression of six3b, loss of organized midline adherins junctions and bilateral loss of lefty1 expression. Reducing FGF signaling leads to a reduction in six3b and six7 expression, an increase in cell boundary formation in the brain midline, and bilateral expression of lefty1. Together, these results suggest a novel role for FGF signaling in the brain to control LR asymmetry, six transcription factor expression, and a midline barrier structure. PMID:24333178
Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion
Rennoll-Bankert, Kristen E.; Rahman, M. Sayeedur; Gillespie, Joseph J.; Guillotte, Mark L.; Kaur, Simran J.; Lehman, Stephanie S.; Beier-Sexton, Magda; Azad, Abdu F.
2015-01-01
Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for RalF during infection. Furthermore, our identification of lineage-specific Arf-GEF utilization across some rickettsial species illustrates different pathogenicity factors that define diverse agents of rickettsial diseases. PMID:26291822
Xue, Meng; Fang, Yanfei; Sun, Guoming; Zhuo, Wei; Zhong, Jing; Qian, Cuijuan; Wang, Lan; Wang, Liangjing; Si, Jianmin; Chen, Shujie
2013-01-01
Homeobox D10 (HoxD10) plays important roles in the differentiation of embryonic cells and progression of breast cancer. Our previous report revealed that insulin-like growth factor binding protein-3 (IGFBP3) was regulated by HoxD10 in gastric cancer cells; however, the functional roles and underlying mechanisms of IGFBP3 in gastric cancer remain unclear. Here, we found that the expression of IGFBP3 were upregulated after ectopic expression of HoxD10 in gastric cancer cells. Chromatin immunoprecipitation assay showed that HoxD10 bound to three potential regions of IGFBP3 promoter. Exogenous HoxD10 significantly enhanced the activity of luciferase reporter containing these binding regions in gastric cancer cells. Further data showed that all of these binding sites had Hox binding element "TTAT". Immunohistochemical staining results revealed that IGFBP3 expression was significantly downregulated in 86 gastric adenocarcinomas tissues relative to their adjacent non-cancerous tissues (p<0.001). Moreover, IGFBP3 expression was significantly lower in gastric tumor with lymph node metastasis compared with that without lymph node metastasis (p=0.045). Patients with high expression level of IGFBP3 showed favorable 5 year overall survival (p=0.011). Knockdown of IGFBP3 accelerated gastric cancer cell migration and invasion and induced the expression of invasive factors including MMP14, uPA and uPAR. Thus, our data suggest that HoxD10-targeted gene IGFBP3 may suppress gastric cancer cell invasion and favors the survival of gastric cancer patients.
... An ectopic pregnancy, a miscarriage, or an induced abortion. (An ectopic pregnancy is a pregnancy that starts ... An ectopic pregnancy, a miscarriage, or an induced abortion. (An ectopic pregnancy is a pregnancy that starts ...
Gupta, Ankur; Khaira, Ambar; Lal, Charanjit; Mahajan, Sandeep; Tiwari, Suresh C
2009-10-01
Noonan syndrome is characterised by short stature, typical facial dysmorphology and congenital heart defects. Urogenital abnormalities are reported in 10% of the cases. We present a 14-year-old girl with characteristic features of Noonan syndrome and nephrotic-range proteinuria. She had crossed fused ectopic kidneys. Renal biopsy showed focal segmental glomerulosclerosis. Oral steroids were instituted and she responded well. The case highlights this novel renal presentation of Noonan syndrome.
Clinicopathological Features and Treatment of Ectopic Varices with Portal Hypertension
Sato, Takahiro; Akaike, Jun; Toyota, Jouji; Karino, Yoshiyasu; Ohmura, Takumi
2011-01-01
Bleeding from ectopic varices, which is rare in patients with portal hypertension, is generally massive and life-threatening. Forty-three patients were hospitalized in our ward for gastrointestinal bleeding from ectopic varices. The frequency of ectopic varices was 43/1218 (3.5%) among portal hypertensive patients in our ward. The locations of the ectopic varices were rectal in thirty-two, duodenal in three, intestinal in two, vesical in three, stomal in one, and colonic in two patients. Endoscopic or interventional radiologic treatment was performed successfully for ectopic varices. Hemorrhage from ectopic varices should be kept in mind in patients with portal hypertension presenting with lower gastrointestinal bleeding. PMID:21994879
Valle-Murillo, Miguel A; Perez-Diaz, Ivan
2012-09-01
We report a rare case of an adult with advanced liver failure in the setting of an untreated congenital panhypopituitarism. A 32-years-old man presented with a newly onset seizure episode secondary to hypoglycemia. In the initial exploration, we found eunuchoid habitus, absence of secondary sexual characteristics, ascites, and hepatic encephalopathy. Hormonal evaluation confirmed the absence of anterior hypophyseal hormones and the liver function tests showed derangement of liver function. Magnetic Resonance Imaging (MRI) showed hypoplastic adenohypophysis and ectopic posterior pituitary gland. In the approach to liver disease, no cause was identified, besides the untreated panhypopituitarism.
MMP20 Promotes a Smooth Enamel Surface, a Strong DEJ, and a Decussating Enamel Rod Pattern
Bartlett, John D.; Skobe, Ziedonis; Nanci, Antonio; Smith, Charles E.
2012-01-01
Mutations of the Matrix metalloproteinase-20 (MMP20, enamelysin) gene cause autosomal recessive amelogenesis imperfecta and Mmp20 ablated mice also have malformed dental enamel. Here we show that Mmp20 null mouse secretory stage ameloblasts maintained a columnar shape and were present as a single layer of cells. However, the null maturation stage ameloblasts covered extraneous nodules of ectopic calcified material formed at the enamel surface. Remarkably, nodule formation occurs in null mouse enamel when MMP20 is normally no longer expressed. The malformed enamel in Mmp20 null teeth was loosely attached to the dentin and the entire enamel layer tended to separate from the dentin indicative of a faulty DEJ. The enamel rod pattern was also altered in Mmp20 null mice. Each enamel rod is formed by a single ameloblast and is a mineralized record of the migration path of the ameloblast that formed it. The Mmp20 null mouse enamel rods were grossly malformed or were absent indicating that the ameloblasts do not migrate properly when backing away from the DEJ. Thus, MMP20 is required for ameloblast cell movement necessary to form the decussating enamel rod patterns, for the prevention of ectopic mineral formation, and to maintain a functional DEJ. PMID:22243247
Rac1 Dosage Is Crucial for Normal Endochondral Bone Growth.
Suzuki, Dai; Bush, Jason R; Bryce, Dawn-Marie; Kamijo, Ryutaro; Beier, Frank
2017-10-01
Rac1, a member of the small Rho GTPase family, plays multiple cellular roles. Studies of mice conditionally lacking Rac1 have revealed essential roles for Rac1 in various tissues, including cartilage and limb mesenchyme, where Rac1 loss produces dwarfism and long bone shortening. To gain further insight into the role of Rac1 in skeletal development, we have used transgenic mouse lines to express a constitutively active (ca) Rac1 mutant protein in a Cre recombinase-dependent manner. Overexpression of caRac1 in limb bud mesenchyme or chondrocytes leads to reduced body weight and shorter bones compared with control mice. Histological analysis of growth plates showed that caRac1;Col2-Cre mice displayed ectopic hypertrophic chondrocytes in the proliferative zone and enlarged hypertrophic zones. These mice also displayed a reduced proportion of proliferating cell nuclear antigen-positive cells in the proliferative zone and nuclear β-catenin localization in the ectopic hypertrophic chondrocytes. Importantly, overexpression of caRac1 partially rescued the phenotypes of Rac1fl/fl;Col2-Cre and Rac1fl/fl;Prx1-Cre conditional knockout mice, including body weight, bone length, and growth plate disorganization. These results suggest that tight regulation of Rac1 activity is necessary for normal cartilage development. Copyright © 2017 Endocrine Society.
Du, Jiancan; Hu, Simin; Yu, Qin; Wang, Chongde; Yang, Yunqiang; Sun, Hang; Yang, Yongping; Sun, Xudong
2017-01-01
The teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family is a plant-specific transcription factor that participates in the control of plant development by regulating cell proliferation. However, no report is currently available about this gene family in turnips ( Brassica rapa ssp. rapa ). In this study, a genome-wide analysis of TCP genes was performed in turnips. Thirty-nine TCP genes in turnip genome were identified and distributed on 10 chromosomes. Phylogenetic analysis clearly showed that the family was classified as two clades: class I and class II. Gene structure and conserved motif analysis showed that the same clade genes have similar gene structures and conserved motifs. The expression profiles of 39 TCP genes were determined through quantitative real-time PCR. Most CIN-type BrrTCP genes were highly expressed in leaf. The members of CYC/TB1 subclade are highly expressed in flower bud and weakly expressed in root. By contrast, class I clade showed more widespread but less tissue-specific expression patterns. Yeast two-hybrid data show that BrrTCP proteins preferentially formed heterodimers. The function of BrrTCP2 was confirmed through ectopic expression of BrrTCP2 in wild-type and loss-of-function ortholog mutant of Arabidopsis. Overexpression of BrrTCP2 in wild-type Arabidopsis resulted in the diminished leaf size. Overexpression of BrrTCP2 in triple mutants of tcp2/4/10 restored the leaf phenotype of tcp2/4/10 to the phenotype of wild type. The comprehensive analysis of turnip TCP gene family provided the foundation to further study the roles of TCP genes in turnips.
Goteri, G.; Altobelli, E.; Tossetta, G.; Zizzi, A.; Avellini, C.; Licini, C.; Lorenzi, T.; Castellucci, M.; Ciavattini, A.
2015-01-01
Increasing evidence supports the hypothesis that TGFβ1 signalling may be mediated by high temperature requirement A1 (HtrA1) serine protease, acting on important regulatory mechanisms such as cell proliferation and mobility. Evidence is now accumulating to suggest that HtrA1 is involved in the development and progression of several pathologies. The aim of this study was to evaluate: i) if HtrA1 and TGFβ1 expressions differ in eutopic and ectopic endometrium in women with endometriosis; ii) if HtrA1 correlates to TGFβ1, pSmad and Ki67. This study was carried out including 10 women with ovarian endometriosis (cases) and 10 women with non endometriotic diseases (controls). Endometrial tissue underwent immunohistochemical H-score analysis for HtrA1, TGFβ1, pSmad and Ki67 molecules. Data evaluation was performed by a nonparametric Kruskal-Wallis test and Spearman correlation was applied to evaluate the relationship among the molecules investigated in the epithelial and in the stromal compartment. The HtrA1 was significantly decreased in ectopic and eutopic endometrium of women with endometriosis when compared with control endometrium in epithelial compartment. TGFβ1was significantly increased in eutopic endometrium and decreased in ectopic endometrium in epithelial and stromal compartment. In addition, Ki67 was significantly increased and an increase, but not significant, was detected for pSMAd2 in eutopic and ectopic endometrium compared to control one. In summary, the significant direct correlation between TGFβ1 and pSmad2 as well as between HtrA1 and TGFβ1 and the very significant increase of Ki67 in stromal compartment of eutopic endometrium suggest a possible involvement of HtrA1 in the pathogenesis of endometriosis. PMID:26708185
Song, Guodong; Habibovic, Pamela; Bao, Chongyun; Hu, Jing; van Blitterswijk, Clemens A.; Yuan, Huipin; Chen, Wenchuan; Xu, Hockin H.K.
2013-01-01
Osteoinductive biomaterials are promising for bone repair. There is no direct proof that bone marrow mesenchymal stem cells (BMSCs) home to non-osseous sites and participate in ectopic bone formation induced by osteoinductive bioceramics. The objective of this study was to use a sex-mismatched beagle dog model to investigate BMSC homing via blood circulation to participate in ectopic bone formation via osteoinductive biomaterial. BMSCs of male dogs were injected into female femoral marrow cavity. The survival and stable chimerism of donor BMSCs in recipients were confirmed with polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH). Biphasic calcium phosphate (BCP) granules were implanted in dorsal muscles of female dogs. Y chromosomes were detected in samples harvested from female dogs which had received male BMSCs. At 4 weeks, cells with Y-chromosomes were distributed in the new bone matrix throughout the BCP granule implant. At 6 weeks, cells with Y chromosomes were present in newly mineralized woven bone. TRAP positive osteoclast-like cells were observed in 4-week implants, and the number of such cells decreased from 4 to 6 weeks. These results show that osteoprogenitors were recruited from bone marrow and homed to ectopic site to serve as a cell source for calcium phosphate-induced bone formation. In conclusion, BMSCs were demonstrated to migrate from bone marrow through blood circulation to non-osseous bioceramic implant site to contribute to ectopic bone formation in a canine model. BCP induced new bone in muscles without growth factor delivery, showing excellent osteoinductivity that could be useful for bone tissue engineering. PMID:23298780
Sonoki, Hiroyuki; Tanimae, Asami; Furuta, Takumi; Endo, Satoshi; Matsunaga, Toshiyuki; Ichihara, Kenji; Ikari, Akira
2018-06-01
Claudin-2 is highly expressed in human lung adenocarcinoma cells and involved in the promotion of proliferation. Here, we searched for a compound, which can decrease claudin-2 expression using lung adenocarcinoma A549 cells. In the screening using compounds included in royal jelly and propolis, the protein level of claudin-2 was dose-dependently decreased by caffeic acid phenethyl ester (CAPE), whereas the mRNA level and promoter activity were only decreased by 50 μM CAPE. These results suggest that CAPE down-regulates claudin-2 expression mediated by two different mechanisms. CAPE (50 μM) decreased the level of p-NF-κB, whereas it increased that of IκB. The CAPE-induced decrease in promoter activity of claudin-2 was blocked by the mutation in an NF-κB-binding site. The inhibition of NF-κB may be involved in the decrease in mRNA level of claudin-2. The CAPE (10 μM)-induced decrease in claudin-2 expression was inhibited by chloroquine, a lysosomal inhibitor. CAPE increased the expression and activity of protein phosphatase (PP) 1 and 2A. The CAPE-induced decrease in claudin-2 expression was blocked by cantharidin, a potent PPs inhibitor. The cell proliferation was suppressed by CAPE, which was partially rescued by ectopic expression of claudin-2. In addition, the toxicity and accumulation of doxorubicin in 3D spheroid cells were enhanced by CAPE, which was inhibited by ectopic expression of claudin-2. Taken together, CAPE down-regulates claudin-2 expression at the transcriptional and post-translational levels, and enhances sensitivity of cells to doxorubicin in 3D culture conditions. CAPE may be a useful adjunctive compound in the treatment of lung adenocarcinoma. Copyright © 2018 Elsevier Inc. All rights reserved.
Hung, Kuang-Chen; Lin, Meng-Liang; Hsu, Shih-Wei; Lee, Chuan-Chun; Huang, Ren-Yu; Wu, Tian-Shung; Chen, Shih-Shun
2018-06-15
Targeting cell cycle regulators has been a suggested mechanism for therapeutic cancer strategies. We report here that the bichalcone analog TSWU-CD4 induces S phase arrest of human cancer cells by inhibiting the formation of cyclin A-phospho (p)-cyclin-dependent kinase 2 (CDK2, threonine [Thr] 39) complexes, independent of mutant p53 expression. Ectopic expression of CDK2 (T39E), which mimics phosphorylation of the Thr 39 residue of CDK2, partially rescues the cells from TSWU-CD4-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TSWU-CD4-triggered S phase arrest. Decreased histone deacetylase 3 (HDAC3) expression after TSWU-CD4 treatment was demonstrated, and TSWU-CD4 induced S phase arrest and inhibitory effects on cyclin A expression and CDK2 Thr 39 phosphorylation, while cyclin A-p-CDK2 (Thr 39) complex formation was suppressed by ectopic wild-type HDAC3 expression. The co-transfection of CDK2 (T39E) along with HDAC3 completely restored cyclin A expression, Thr 39-phosphorylated CDK2, cyclin A-p-CDK2 (Thr 39) complex formation, and the S phase population to normal levels. Protein kinase B (Akt) inactivation was required for TSWU-CD4-induced S phase cell cycle arrest, because constitutively active Akt1 blocks the induction of S phase arrest and the suppression of cyclin A and HDAC3 expression, CDK2 Thr 39 phosphorylation, and cyclin A-p-CDK2 (Thr 39) complex formation by TSWU-CD4. Taken together, our results indicate that TSWU-CD4 induces S phase arrest by inhibiting Akt-mediated HDAC3 expression and CDK2 Thr 39 phosphorylation to suppress the formation of cyclin A-p-CDK2 (Thr 39) complexes. Copyright © 2018 Elsevier B.V. All rights reserved.
Tong, Feng; Ying, Youhua; Pan, Haihua; Zhao, Wei; Li, Hongchen; Zhan, Xiaoli
2018-01-17
MicroRNAs (miRNAs) have an important role in the regulation of tumor development and metastasis. In this study, we investigated the clinical and prognostic value as well as biological function of miR-466 in colorectal cancer (CRC). Tumor and adjacent healthy tissues were obtained from 100 patients diagnosed with CRC. miR-466 expression was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). mRNA and protein levels of cyclin D1, apoptosis regulator BAX (BAX), and matrix metalloproteinase-2 (MMP-2) were analyzed by qRT-PCR and Western blot, respectively, in SW-620 CRC cells transfected with miR-466 mimics or negative control miRNA. Effects of miR-466 on SW-620 cell proliferation, cell cycle and apoptosis, and invasion were investigated using CCK-8 assay, flow cytometry and Transwell assay, respectively. miR-466 expression was significantly downregulated in tumor tissues compared to matched adjacent non-tumor tissues. Low expression of miR-466 was significantly correlated with the tumor size, Tumor Node Metastasis stage, lymph node metastasis, and distant metastasis. The overall survival of CRC patients with low miR-466 expression was significantly shorter compared to high-miR-466 expression group (log-rank test: p = 0.0103). Multivariate analysis revealed that low miR-466 expression was associated with poor prognosis in CRC patients. The ectopic expression of miR-466 suppressed cell proliferation and migration/invasion, as well as induced G0/G1 arrest and apoptosis in SW-620 cells. Moreover, the ectopic expression of miR-466 decreased the expression of cyclin D1 and MMP-2, but increased BAX expression in SW-620 cells. In conclusion, our findings demonstrated that miR-466 functions as a suppressor miRNA in CRC and may be used as a prognostic factor in these patients.
Ma, Jiantao; Karlsen, Micaela C; Chung, Mei; Jacques, Paul F; Saltzman, Edward; Smith, Caren E; Fox, Caroline S; McKeown, Nicola M
2016-01-01
The effect of added sugar intake on ectopic fat accumulation is a subject of debate. A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to examine the potential effect of added sugar intake on ectopic fat depots. MEDLINE, CAB Abstracts, CAB Global Health, and EBM (Evidence-Based Medicine) Reviews - Cochrane Central Register of Controlled Trials databases were searched for studies published from 1973 to September 2014. RCTs with a minimum of 6 days' duration of added sugar exposure in the intervention group were selected. The dosage of added sugar intake as a percentage of total energy was extracted or calculated. Means and standard deviations of pre- and post-test measurements or changes in ectopic fat depots were collected. Fourteen RCTs were included. Most of the studies had a medium to high risk of bias. Meta-analysis showed that, compared with eucaloric controls, subjects who consumed added sugar under hypercaloric conditions likely increased ectopic fat, particularly in the liver (pooled standardized mean difference = 0.9 [95%CI, 0.6-1.2], n = 6) and muscles (pooled SMD = 0.6 [95%CI, 0.2-1.0], n = 4). No significant difference was observed in liver fat, visceral adipose tissue, or muscle fat when isocaloric intakes of different sources of added sugars were compared. Data from a limited number of RCTs suggest that excess added sugar intake under hypercaloric diet conditions likely increases ectopic fat depots, particularly in the liver and in muscle fat. There are insufficient data to compare the effect of different sources of added sugars on ectopic fat deposition or to compare intake of added sugar with intakes of other macronutrients. Future well-designed RCTs with sufficient power and duration are needed to address the role of sugars on ectopic fat deposition. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
The monothiol glutaredoxin AtGRXS17 from "Arabidopsis" confers thermotolerance in yeast, "Arabidopsis", and tomato plants. Here, we report that AtGRXS17 also enhances tolerance to chilling stress in tomato and is associated with elevation of antioxidant enzyme activities, which are known to be invol...
Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle.
Chao, Lily C; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F
2007-09-01
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared with oxidative muscle and is responsive to beta-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including glucose transporter 4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including glucose transporter 4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by small hairpin RNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple genes involved in glucose metabolism in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.
Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle
Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.
2008-01-01
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidative muscle and is responsive to β-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including GLUT4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including GLUT4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by shRNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple innervation-dependent genes in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression. PMID:17550977
EBF proteins participate in transcriptional regulation of Xenopus muscle development.
Green, Yangsook Song; Vetter, Monica L
2011-10-01
EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells. Copyright © 2010 Elsevier Inc. All rights reserved.