Dressing effects on the occurrence scattering time retardation and advance in a dusty plasma
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae; Hanyang Plasma Team
2017-10-01
The dressing effects on the occurrence scattering time for the dust-dust interaction are investigated in a complex plasma. The first-order eikonal analysis is applied to obtain the scattering amplitude and the occurrence scattering time for the dust-dust interaction. The result shows that dressing effect enhances the retardation phenomena of the occurrence scattering time in the forward scattering domain. It is shown that the oscillatory behavior of the scaled occurrence scattering time is getting more significant with an increase of the Debye length. It is also found that the retardation domain of the occurrence scattering time increases with a decrease of the Debye length. The variation of the occurrence scattering time retardation and advance due to the dressing effect is also discussed.
Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate.
Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M
2015-10-16
We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments.
Resonant soft X-ray scattering for polymer materials
Liu, Feng; Brady, Michael A.; Wang, Cheng
2016-04-16
Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less
Generalized virial theorem and pressure relation for a strongly correlated Fermi gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shina
2008-12-15
For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, A E; Potapov, V T; Gorshkov, B G
We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorkyan, S. R.; Sissakian, A. N.; Tarasov, A. V.
The Fermi-Watson theorem is generalized to the case of two coupled channels with different masses and applied to final-state interaction inK{sub e4} decays. The impact of the considered effect on the phase of {pi}{pi} scattering is estimated and it is shown that it can be crucial for the scattering length extraction from experimental data on K{sub e4} decays.
Ellipsoidal all-dielectric Fano resonant core-shell metamaterials
NASA Astrophysics Data System (ADS)
Reena, Reena; Kalra, Yogita; Kumar, Ajeet
2018-06-01
In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.
Bose gases near resonance: Renormalized interactions in a condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.
2013-01-15
Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less
Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei
2004-09-01
In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.
NASA Astrophysics Data System (ADS)
Lyuboshitz, V. L.; Lyuboshitz, V. V.
2011-05-01
It is shown that, taking into account the process of neutron radiative capture by the proton and the negative sign of the length of singlet ( np)-scattering ( a s = - f s (0) < 0), the singlet ( np)-scattering amplitude f s has a pole at a complex energy {widetilde{E}_s}, the real part of which is negative ({Re widetilde{E}_s < 0}) and the imaginary part is positive ({Im widetilde{E}_s > 0}). This means that a singlet state of the ( np) system, which would decay into the deuteron in the ground state and the γ quantum ("singlet deuteron") does not exist, and the pole {widetilde{E}_s} corresponds to the virtual but not true quasistationary level.
Numerical solution of acoustic scattering by finite perforated elastic plates
2016-01-01
We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. PMID:27274685
Numerical solution of acoustic scattering by finite perforated elastic plates.
Cavalieri, A V G; Wolf, W R; Jaworski, J W
2016-04-01
We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
NASA Astrophysics Data System (ADS)
Kryzhanovskiĭ, B. V.
1990-04-01
An investigation is made of the serious limitations on the growth of the amplitude of a Stokes wave associated with the optical Stark effect and with the dispersion of the group velocities of the interacting pulses. It is shown that when the distance traversed exceeds a certain length, the gain due to stimulated Raman scattering reaches saturation whereas the spectrum of the scattered light becomes broader and acquires a line structure. Saturation of the scattering is not manifested at pump intensities sufficient to bleach the scattering medium. The gain can be optimized by altering the offset from a resonance.
Smerdova, Olga; Graham, Richard S; Gasser, Urs; Hutchings, Lian R; De Focatiis, Davide S A
2014-05-01
A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with [Formula: see text]. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. [Formula: see text].
Quasi-soliton scattering in quantum spin chains
NASA Astrophysics Data System (ADS)
Vlijm, R.; Ganahl, M.; Fioretto, D.; Brockmann, M.; Haque, M.; Evertz, H. G.; Caux, J.-S.
2015-12-01
The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time-evolution fits on the displacements. The time-evolved block decimation algorithm allows for the study of scattering displacements from spin-block states, showing similar scattering displacement features.
Quasi-soliton scattering in quantum spin chains
NASA Astrophysics Data System (ADS)
Fioretto, Davide; Vljim, Rogier; Ganahl, Martin; Brockmann, Michael; Haque, Masud; Evertz, Hans-Gerd; Caux, Jean-Sébastien
The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time evolution fits on the displacements. The TEBD algorithm allows for the study of scattering displacements from spin-block states, showing similar displacement scattering features.
Bragg scattering of electromagnetic waves by microwave-produced plasma layers
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Zhang, Y. S.
1990-01-01
A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.
NASA Astrophysics Data System (ADS)
Hardacre, Christopher; Holbrey, John D.; Mullan, Claire L.; Youngs, Tristan G. A.; Bowron, Daniel T.
2010-08-01
The presence of local anisotropy in the bulk, isotropic, and ionic liquid phases—leading to local mesoscopic inhomogeneity—with nanoscale segregation and expanding nonpolar domains on increasing the length of the cation alkyl-substituents has been proposed on the basis of molecular dynamics (MD) simulations. However, there has been little conclusive experimental evidence for the existence of intermediate mesoscopic structure between the first/second shell correlations shown by neutron scattering on short chain length based materials and the mesophase structure of the long chain length ionic liquid crystals. Herein, small angle neutron scattering measurements have been performed on selectively H/D-isotopically substituted 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with butyl, hexyl, and octyl substituents. The data show the unambiguous existence of a diffraction peak in the low-Q region for all three liquids which moves to longer distances (lower Q), sharpens, and increases in intensity with increasing length of the alkyl substituent. It is notable, however, that this peak occurs at lower values of Q (longer length scale) than predicted in any of the previously published MD simulations of ionic liquids, and that the magnitude of the scattering from this peak is comparable with that from the remainder of the amorphous ionic liquid. This strongly suggests that the peak arises from the second coordination shells of the ions along the vector of alkyl-chain substituents as a consequence of increasing the anisotropy of the cation, and that there is little or no long-range correlated nanostructure in these ionic liquids.
Propagation of Circularly Polarized Light Through a Two-Dimensional Random Medium
NASA Astrophysics Data System (ADS)
Gorodnichev, E. E.
2017-12-01
The problem of small-angle multiple-scattering of circularly polarized light in a two-dimensional medium with large fiberlike inhomogeneities is studied. The attenuation lengths for elements the density matrix are calculated. It is found that with increasing the sample thickness the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the thickness, the off-diagonal element which is responsible for correlation between the cross-polarized waves dissapears. In the case of very thick samples the scattered field proves to be polarized perpendicular to the fibers. It is shown that the difference in the attenuation lengths of the density matrix elements results in a non-monotonic depth dependence of the degree of polarization.
Unitary limit of two-nucleon interactions in strong magnetic fields
Detmold, William; Orginos, Kostas; Parreño, Assumpta; ...
2016-03-14
In this study, two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of m π ~ 450 and 806 MeV in uniform, time-independent magnetic fields of strength |B| ~ 10 19 – 10 20 Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavymore » ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems.« less
Rough surface scattering based on facet model
NASA Technical Reports Server (NTRS)
Khamsi, H. R.; Fung, A. K.; Ulaby, F. T.
1974-01-01
A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave.
Localization length and intraband scattering of excitons in linear aggregates
NASA Astrophysics Data System (ADS)
Lemaistre, J. P.
1999-07-01
A theoretical model to describe the intraband scattering of excitons in linear aggregates of finite size which exhibit strong intermolecular interactions is presented. From the calculation of the aggregate eigenstates, the localization length of excitons is evaluated for various configurations featuring physical situations like trapping, edge effects, inclusion of diagonal and/or orientational disorders. The intraband scattering is studied by considering the exciton-phonon stochastic coupling induced by the thermal bath. This coupling creates local dynamical fluctuations in the site energies which are characterized by their amplitude ( Δ) and their correlation time ( τc). Expressions of scattering rates are provided and used in a Pauli master equation to calculate the time dependence of the eigenstates populations after initial excitation of the quasi exciton-band. It is shown that the time evolution of the lowest state population as well as the Stokes shift strongly depend on τc. Comparison of the theoretical results to time-resolved experiments performed on triaryl pyrylium salts allows us to interpret the observed Stokes shift and to derive an average value of the exciton-phonon correlation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru
Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few suchmore » scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.« less
Space-time windowing of angle-beam wavefield data to characterize scattering from defects
NASA Astrophysics Data System (ADS)
Weng, Yu; Michaels, Jennifer E.
2018-04-01
The primary focus of ultrasonic nondestructive evaluation is defect detection and characterization. In particular, fatigue cracks emanating from fastener holes are commonly found in aerospace structures. Therefore, scattering of ultrasonic waves from crack-like notches is of practical interest. Here, angle-beam shear waves are used to interrogate notches in aluminum plates. In prior work, notch-scattering was characterized and quantified in the frequency-wavenumber domain, which has the undesirable effect of lumping all scattered shear wave energy from notches into a single energy curve. This present work focuses on developing space-time windowing methods to quantify notch-scattered energy directly in the time-space domain. Two strategies are developed. The first is to indirectly characterize notch-scattering via the change in scattering as compared to the undamaged through-hole. The second strategy is to directly track notch-scattered waves in the time-space domain and then quantify scattered energy by constructing energy-versus-direction curves. Both strategies provide a group of energy difference curves, which show how notch-scattering evolves as time progresses. Notch-scattering quantification results for different notch lengths are shown and discussed.
Signal broadening in the laser Doppler velocimeter.
NASA Technical Reports Server (NTRS)
Angus, J. C.; Edwards, R. V.; Dunning, J. W., Jr.
1971-01-01
Critical review of a recent paper in which Denison, Stevenson, and Fox (1971) discussed the sources of spectral broadening in the laser Doppler velocimeter. It is pointed out that, in their discussion, the above-mentioned authors indicated that the spread in wave vectors of the incident and detected fields and the finite length of time a scattering center stayed in the sample volume each contributed separately and independently to the observed spectral width of the scattered radiation. This statement is termed incorrect, and it is shown that the two effects are one and the same.
Characterizing Feshbach resonances in ultracold scattering calculations
NASA Astrophysics Data System (ADS)
Frye, Matthew D.; Hutson, Jeremy M.
2017-10-01
We describe procedures for converging on and characterizing zero-energy Feshbach resonances that appear in scattering lengths for ultracold atomic and molecular collisions as a function of an external field. The elastic procedure is appropriate for purely elastic scattering, where the scattering length is real and displays a true pole. The regularized scattering length procedure is appropriate when there is weak background inelasticity, so that the scattering length is complex and displays an oscillation rather than a pole, but the resonant scattering length ares is close to real. The fully complex procedure is appropriate when there is substantial background inelasticity and the real and imaginary parts of ares are required. We demonstrate these procedures for scattering of ultracold 85Rb in various initial states. All of them can converge on and provide full characterization of resonances, from initial guesses many thousands of widths away, using scattering calculations at only about ten values of the external field.
Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris
2011-06-08
The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.
RCS of resonant scatterers with attached wires
NASA Astrophysics Data System (ADS)
Trueman, C. W.; Mishra, S. R.; Kubina, S. J.; Larose, C. L.
1993-03-01
Some aircraft carry wire antennas for HF communication. This paper investigates the effect of such wires on the radar cross section (RCS) at HF frequencies by comparing the RCS of a strip, a cylinder, and a rod with and without an attached wire. The RCS is found for broadside incidence and for end-on incidence of the plane wave for scatterer lengths from 0.4 to 3.8 wavelengths, typical of aircraft size at HF frequencies. It is shown that the RCS of such fuselage-like targets with a wire 'antenna' is quite different from that of the targets without the wire. For broadside incidence, the wire contributes a sharp peak-and-trough to the RCS at the wire's fundamental resonant frequency. For end-on incidence the wire considerably enhances the RCS at frequencies making its length odd multiples of the quarter-wave.
Vien, Benjamin Steven; Rose, Louis Raymond Francis; Chiu, Wing Kong
2017-07-01
Reliable and quantitative non-destructive evaluation for small fatigue cracks, in particular those in hard-to-inspect locations, is a challenging problem. Guided waves are advantageous for structural health monitoring due to their slow geometrical decay of amplitude with propagating distance, which is ideal for rapid wide-area inspection. This paper presents a 3D laser vibrometry experimental and finite element analysis of the interaction between an edge-guided wave and a small through-thickness hidden edge crack on a racecourse shaped hole that occurs, in practice, as a fuel vent hole. A piezoelectric transducer is bonded on the straight edge of the hole to generate the incident wave. The excitation signal consists of a 5.5 cycle Hann-windowed tone burst of centre frequency 220 kHz, which is below the cut-off frequency for the first order Lamb wave modes (SH1). Two-dimensional fast Fourier transformation (2D FFT) is applied to the incident and scattered wave field along radial lines emanating from the crack mouth, so as to identify the wave modes and determine their angular variation and amplitude. It is shown experimentally and computationally that mid-plane symmetric edge waves can travel around the hole's edge to detect a hidden crack. Furthermore, the scattered wave field due to a small crack length, a , (compared to the wavelength λ of the incident wave) is shown to be equivalent to a point source consisting of a particular combination of body-force doublets. It is found that the amplitude of the scattered field increases quadratically as a function of a/λ , whereas the scattered wave pattern is independent of crack length for small cracks a < λ . This study of the forward scattering problem from a known crack size provides a useful guide for the inverse problem of hidden crack detection and sizing.
Coupling between absorption and scattering in disordered colloids
NASA Astrophysics Data System (ADS)
Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.
We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.
NASA Astrophysics Data System (ADS)
Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin
2017-10-01
The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.
Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities
NASA Astrophysics Data System (ADS)
Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.
A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).
NASA Astrophysics Data System (ADS)
Karlsen, P.; Shuba, M. V.; Beckerleg, C.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Ksenevich, V.; Viet, Ho; Nasibulin, A. G.; Tenne, R.; Hendry, E.
2018-01-01
We measure the conductivity spectra of thin films comprising bundled single-walled carbon nanotubes (CNTs) of different average lengths in the frequency range 0.3-1000 THz and temperature interval 10-530 K. The observed temperature-induced changes in the terahertz conductivity spectra are shown to depend strongly on the average CNT length, with a conductivity around 1 THz that increases/decreases as the temperature increases for short/long tubes. This behaviour originates from the temperature dependence of the electron scattering rate, which we obtain from Drude fits of the measured conductivity in the range 0.3-2 THz for 10 μm length CNTs. This increasing scattering rate with temperature results in a subsequent broadening of the observed THz conductivity peak at higher temperatures and a shift to lower frequencies for increasing CNT length. Finally, we show that the change in conductivity with temperature depends not only on tube length, but also varies with tube density. We record the effective conductivities of composite films comprising mixtures of WS2 nanotubes and CNTs versus CNT density for frequencies in the range 0.3-1 THz, finding that the conductivity increases/decreases for low/high density films as the temperature increases. This effect arises due to the density dependence of the effective length of conducting pathways in the composite films, which again leads to a shift and temperature dependent broadening of the THz conductivity peak.
Inhibition of electron thermal conduction by electromagnetic instabilities. [in stellar coronas
NASA Technical Reports Server (NTRS)
Levinson, Amir; Eichler, David
1992-01-01
Heat flux inhibition by electromagnetic instabilities in a hot magnetized plasma is investigated. Low-frequency electromagnetic waves become unstable due to anisotropy of the electron distribution function. The chaotic magnetic field thus generated scatters the electrons with a specific effective mean free path. Saturation of the instability due to wave-wave interaction, nonlinear scattering, wave propagation, and collisional damping is considered. The effective mean free path is found self-consistently, using a simple model to estimate saturation level and scattering, and is shown to decrease with the temperature gradient length. The results, limited to the assumptions of the model, are applied to astrophysical systems. For some interstellar clouds the instability is found to be important. Collisional damping stabilizes the plasma, and the heat conduction can be dominated by superthermal electrons.
Characterization of random scattering media and related information retrieval
NASA Astrophysics Data System (ADS)
Wang, Zhenyu
There has been substantial interest in optical imaging in and through random media in applications as diverse as environmental sensing and tumor detection. The rich scatter environment also leads to multiple paths or channels, which may provide higher capacity for communication. Coherent light passing through random media produces an intensity speckle pattern when imaged, as a result of multiple scatter and the imaging optics. When polarized coherent light is used, the speckle pattern is sensitive to the polarization state, depending on the amount of scatter, and such measurements provide information about the random medium. This may form the basis for enhanced imaging of random media and provide information on the scatterers themselves. Second and third order correlations over laser scan frequency are shown to lead to the ensemble averaged temporal impulse response, with sensitivity to the polarization state in the more weakly scattering regime. A new intensity interferometer is introduced that provides information about two signals incident on a scattering medium. The two coherent beams, which are not necessarily overlapping, interfere in a scattering medium. A sinusoidal modulation in the second order intensity correlation with laser scan frequency is shown to be related to the relative delay of the two incident beams. An intensity spatial correlation over input position reveals that decorrelation occurs over a length comparable to the incident beam size. Such decorrelation is also related to the amount of scatter. Remarkably, with two beams incident at different angles, the intensity correlation over the scan position has a sinusoidal modulation that is related to the incidence angle difference between the two input beams. This spatial correlation over input position thus provides information about input wavevectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K.; Yoshida, E.; Sugawa, T.
1995-08-01
It is shown for the first time to our knowledge that short-pulse amplification in high-power erbium-doped fiber amplifiers, simultaneously accompanied by stimulated Raman scattering, generates a broadband optical spectrum at high output power (270 mW). At 20 dB down from the peak the continuum extended over 329 nm, from 1427 to 1756 nm. The FWHM bandwidth was 125 nm, centered at 1650 nm. The coherence was measured to be 15 fringes, which corresponds to a 25-{mu}m coherence length. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.
2016-04-01
polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are...The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are reported. The technique is demonstrated...cell filled with polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image
NASA Astrophysics Data System (ADS)
Abraham, Mathew C.; Ram, Rajeev J.; Gossard, A. C.
2003-03-01
A small group of experiments have been conducted over the past decade that explore the fact that even though electron-electron (e-e) scattering in a 2DEG is momentum conserving, its interplay with electron-impurity (e-i)and electron-boundary (e-b) scattering can change the resistance of bulk and mesoscopic devices respectively. The interplay between e-e and e-i scattering in a bulk sample has been shown to cause a fall in the resistivity as a function of electron temperature in the regime where the scattering length l_ee > l_ei and a rise when l_ee < l_ei. In contrast, the interplay between e-e and e-b scattering has been demonstrated to raise the resistivity of a mesoscopic sized wire as a function of electron temperature in the regime l_ee > lb and a fall when l_ee < l_b. We attempt to present a comprehensive picture of these two apparently competing effects by studying devices that are affected by both phenomena simultaneously.
NASA Astrophysics Data System (ADS)
Bizheva, Kostadinka K.; Siegel, Andy M.; Boas, David A.
1998-12-01
We used low coherence interferometry to measure Brownian motion within highly scattering random media. A coherence gate was applied to resolve the optical path-length distribution and to separate ballistic from diffusive light. Our experimental analysis provides details on the transition from single scattering to light diffusion and its dependence on the system parameters. We found that the transition to the light diffusion regime occurs at shorter path lengths for media with higher scattering anisotropy or for larger numerical aperture of the focusing optics.
Small-Angle Scatter Measurement.
NASA Astrophysics Data System (ADS)
Wein, Steven Jay
The design, analysis, and performance of a small -angle scatterometer are presented. The effects of the diffraction background, geometrical aberrations and system scatter at the small-angles are separated. Graphs are provided that quantify their contribution. The far-field irradiance distributions of weakly truncated and untruncated Gaussian beams are compared. The envelope of diffraction ringing is shown to decrease proportionately with the level of truncation in the pupil. Spherical aberration and defocus are shown to have little effect on the higher-order diffraction rings of Gaussian apertures and as such will have a negligible effect on most scatter measurements. A method is presented for determining the scattered irradiance level for a given BRDF in relation to the peak irradiance of the point spread function. A method of Gaussian apodization is presented and tested that allows the level of diffraction ringing to become a design parameter. Upon sufficient reduction of the diffraction background, the scattered light from the scatterometers' primary mirror is seen to be the limiting component of the small-angle instrument profile. The scatterometer described was able to make a meaningful measurement close enough to the specular direction at 0.6328mum in order to observe the characteristic height and width of the scatter function. This allowed the rms roughness and autocorrelation length of the surface to be determined from the scatter data at this wavelength. The inferred rms roughness agreed well with an independent optical profilometer measurement of the surface. The BRDF of the samples were also measured at 10.6mum. The rms roughness inferred from this scatter data did not agree with the other measurements. The BRDF did not scale in accordance with the scaler diffraction theory of microrough surfaces. The scattering in the visible was dominated by the effects of surface roughness whereas the scattering in the far-infrared was apparently dominated by the effects of contaminants and surface defects. The model for the surface statistics is investigated. A K_0 (modified Bessel function) autocorrelation function is shown to predict the scattered light distribution of these samples much better than the conventional negative -exponential function. Additionally, a sampling theory is developed that addresses the negative-exponentially correlated output of lock-in amplifiers, detectors, and electronic circuits in general. It is shown that the optimum sampling rate is approximately one sample per time constant and at this rate the improvement in SNR is sqrt {N/2} where N is the number of measurements.
Watt-level short-length holmium-doped ZBLAN fiber lasers at 1.2 μm.
Zhu, Xiushan; Zong, Jie; Wiersma, Kort; Norwood, R A; Prasad, Narasimha S; Obland, Michael D; Chavez-Pirson, Arturo; Peyghambarian, N
2014-03-15
In-band core-pumped Ho3+-doped ZBLAN fiber lasers at the 1.2 μm region were investigated with different gain fiber lengths. A 2.4 W 1190 nm all-fiber laser with a slope efficiency of 42% was achieved by using a 10 cm long gain fiber pumped at a maximum available 1150 nm pump power of 5.9 W. A 1178 nm all-fiber laser was demonstrated with an output power of 350 mW and a slope efficiency of 6.5%. High Ho3+ doping in ZBLAN is shown to be effective in producing single-frequency fiber lasers and short-length fiber amplifiers immune from stimulated Brillouin scattering.
Exploiting Universality in Atoms with Large Scattering Lengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braaten, Eric
2012-05-31
The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.
Atom-dimer scattering in a heteronuclear mixture with a finite intraspecies scattering length
NASA Astrophysics Data System (ADS)
Gao, Chao; Zhang, Peng
2018-04-01
We study the three-body problem of two ultracold identical bosonic atoms (denoted by B ) and one extra atom (denoted by X ), where the scattering length aB X between each bosonic atom and atom X is resonantly large and positive. We calculate the scattering length aad between one bosonic atom and the shallow dimer formed by the other bosonic atom and atom X , and investigate the effect induced by the interaction between the two bosonic atoms. We find that even if this interaction is weak (i.e., the corresponding scattering length aB B is of the same order of the van der Waals length rvdW or even smaller), it can still induce a significant effect for the atom-dimer scattering length aad. Explicitly, an atom-dimer scattering resonance can always occur when the value of aB B varies in the region with | aB B|≲ rvdW . As a result, both the sign and the absolute value of aad, as well as the behavior of the aad-aB X function, depends sensitively on the exact value of aB B. Our results show that, for a good quantitative theory, the intraspecies interaction is required to be taken into account for this heteronuclear system, even if this interaction is weak.
Gorodnichev, E E
2018-04-01
The problem of multiple scattering of polarized light in a two-dimensional medium composed of fiberlike inhomogeneities is studied. The attenuation lengths for the density matrix elements are calculated. For a highly absorbing medium it is found that, as the sample thickness increases, the intensity of waves polarized along the fibers decays faster than the other density matrix elements. With further increase in the sample thickness, the off-diagonal elements which are responsible for correlations between the cross-polarized waves disappear. In the asymptotic limit of very thick samples the scattered light proves to be polarized perpendicular to the fibers. The difference in the attenuation lengths between the density matrix elements results in a nonmonotonic depth dependence of the degree of polarization. In the opposite case of a weakly absorbing medium, the off-diagonal element of the density matrix and, correspondingly, the correlations between the cross-polarized fields are shown to decay faster than the intensity of waves polarized along and perpendicular to the fibers.
One-proton emission from the Li6Λ hypernucleus
NASA Astrophysics Data System (ADS)
Oishi, Tomohiro
2018-02-01
One-proton (1 p ) radioactive emission under the influence of the Λ0-hyperon inclusion is discussed. I investigate the hyper-1 p emitter, Li6Λ, with a time-dependent three-body model. Two-body interactions for α -proton and α -Λ0 subsystems are determined consistently to their resonant and bound energies, respectively. For a proton-Λ0 subsystem, a contact interaction, which can be linked to the vacuum-scattering length of the proton-Λ0 scattering, is employed. A noticeable sensitivity of the 1 p -emission observables to the scattering length of the proton-Λ0 interaction is shown. The Λ0-hyperon inclusion leads to a remarkable fall of the 1 p -resonance energy and width from the hyperonless α -proton resonance. For some empirical values of the proton-Λ0 scattering length, the 1 p -resonance width is suggested to be of the order of 0.1 -0.01 MeV. Thus, the 1 p emission from Li6Λ may occur in the time scale of 10-20-10-21 seconds, which is sufficiently shorter than the self-decay lifetime of Λ0,10-10 seconds. By taking the spin-dependence of the proton-Λ0 interaction into account, a remarkable split of the Jπ=1- and 2- 1 p -resonance states is predicted. It is also suggested that, if the spin-singlet proton-Λ0 interaction is sufficiently attractive, the 1 p emission from the 1- ground state is forbidden. From these results, I conclude that the 1 p emission can be a suitable phenomenon to investigate the basic properties of the hypernuclear interaction, for which a direct measurement is still difficult.
Characteristics of color optical shutter with dye-doped polymer network liquid crystal.
Lee, G H; Hwang, K Y; Jang, J E; Jin, Y W; Lee, S Y; Jung, J E
2011-03-01
The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.
Photoinduced surface plasmon switching at VO2/Au interface.
Kumar, Nardeep; Rúa, Armando; Aldama, Jennifer; Echeverría, Karla; Fernández, Félix E; Lysenko, Sergiy
2018-05-28
Angle-resolved reflection, light scattering and ultrafast pump-probe spectroscopy combined with a surface plasmon-polariton (SPP) resonance technique in attenuated total reflection geometry was used to investigate the light-induced plasmonic switching in a photorefractive VO 2 /Au hybrid structure. Measurements of SPP scattering and reflection shows that the optically-induced formation of metallic state in a vanadium dioxide layer deposited on a gold film significantly alters the electromagnetic field enhancement and SPP propagation length at the VO 2 /Au interface. The ultrafast optical manipulation of SPP resonance is shown on a picosecond timescale. Obtained results demonstrate high potential of photorefractive vanadium oxides as efficient plasmonic modulating materials for ultrafast optoelectronic devices.
High frequency estimation of 2-dimensional cavity scattering
NASA Astrophysics Data System (ADS)
Dering, R. S.
1984-12-01
This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.
Some considerations in the evaluation of Seasat-A scatterometer /SASS/ measurements
NASA Technical Reports Server (NTRS)
Halberstam, I.
1980-01-01
A study is presented of the geophysical algorithms relating the Seasat-A scatterometer (SASS) backscatter measurements with a wind parameter. Although these measurements are closely related to surface features, an identification with surface layer parameters such as friction velocity or the roughness length is difficult. It is shown how surface truth in the form of wind speeds and coincident stability can be used to derive friction velocity or the equivalent neutral wind at an arbitrary height; it is also shown that the derived friction velocity values are sensitive to contested formulations relating friction velocity to the roughness length, while the derived values of the equivalent neutral wind are not. Examples of geophysical verification are demonstrated using values obtained from the Gulf of Alaska Seasat Experiment; these results show very little sensitivity to the type of wind parameter employed, suggesting that this insensitivity is mainly due to a large scatter in the SASS and surface truth data.
Application of electrically invisible antennas to the modulated scatterer technique
NASA Astrophysics Data System (ADS)
Crocker, Dylan Andrew
The Modulated Scatterer Technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers consist of dipole antennas centrally loaded with a lumped element capable of modulation (commonly a PIN diode). By modulating the load element, the signal scattered from the MST scatterer is also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve the modulation depth of scatterers commonly used in MST, the concept of electrically invisible antennas is applied to the design of these scatterers and is the focus of this work. Electrical invisibility of linear antennas, such as loaded dipoles, can be achieved by loading a scatterer in such a way that, when illuminated by an electromagnetic wave, the integral of the current induced along the length of the scatterer (and hence the scattered field as well) approaches zero. By designing a scatterer to be capable of modulation between visible (scattering) and invisible (minimum scattering) states, the modulation depth may be improved. This thesis presents simulations and measurements of new MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (i.e., a PIN diode). Further, the scattering during the forward bias state remains the same as that of a traditional MST scatterer, resulting in an increase in modulation depth. This new MST scatterer design technique may also have application in improving the performance of similar sensors such as radio frequency identification (RFID) tags.
Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; ...
2014-09-25
Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO 2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated usingmore » the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.« less
Pretransitional diffuse neutron scattering in the mixed perovskite relaxor K1-xLixTaO3
NASA Astrophysics Data System (ADS)
Yong, Grace; Toulouse, Jean; Erwin, Ross; Shapiro, Stephen M.; Hennion, Bernard
2000-12-01
Several previous studies of K1-xLixTaO3 (KLT) have revealed the presence, above the structural transition, of polar nanoregions. Recently, these have been shown to play an essential role in the relaxor behavior of KLT. In order to characterize these regions, we have performed a neutron-scattering study of KLT crystals with different lithium concentrations, both above and below the critical concentration. This study reveals the existence of diffuse scattering that appears upon formation of these regions. The rodlike distribution of the diffuse scattering along cubic directions indicates that the regions form in the shape of discs in the various cubic planes. From the width of the diffuse scattering we extract values for a correlation length or size of the regions as a function of temperature. Finally, on the basis of the reciprocal lattice points around which the diffuse scattering is most intense, we conclude that the regions have tetragonal symmetry. The large increase in Bragg intensities at the first-order transition suggests that the polar regions freeze to form large structural domains and the transition is triggered by the percolation of strain fields through the crystals.
NASA Astrophysics Data System (ADS)
Al-Asadi, H. A.
2013-02-01
We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.
Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei
2013-01-14
Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).
NASA Astrophysics Data System (ADS)
Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm
2018-03-01
We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.
Anisotropy enhanced X-ray scattering from solvated transition metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biasin, Elisa; van Driel, Tim B.; Levi, Gianluca
Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV–Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolvedmore » X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. Here it is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute,i.e.the change in Pt—Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.« less
Anisotropy enhanced X-ray scattering from solvated transition metal complexes
Biasin, Elisa; van Driel, Tim B.; Levi, Gianluca; ...
2018-02-13
Time-resolved X-ray scattering patterns from photoexcited molecules in solution are in many cases anisotropic at the ultrafast time scales accessible at X-ray free-electron lasers (XFELs). This anisotropy arises from the interaction of a linearly polarized UV–Vis pump laser pulse with the sample, which induces anisotropic structural changes that can be captured by femtosecond X-ray pulses. In this work, a method for quantitative analysis of the anisotropic scattering signal arising from an ensemble of molecules is described, and it is demonstrated how its use can enhance the structural sensitivity of the time-resolved X-ray scattering experiment. This method is applied on time-resolvedmore » X-ray scattering patterns measured upon photoexcitation of a solvated di-platinum complex at an XFEL, and the key parameters involved are explored. Here it is shown that a combined analysis of the anisotropic and isotropic difference scattering signals in this experiment allows a more precise determination of the main photoinduced structural change in the solute,i.e.the change in Pt—Pt bond length, and yields more information on the excitation channels than the analysis of the isotropic scattering only. Finally, it is discussed how the anisotropic transient response of the solvent can enable the determination of key experimental parameters such as the instrument response function.« less
Precision measurement of the n-3He incoherent scattering length using neutron interferometry.
Huber, M G; Arif, M; Black, T C; Chen, W C; Gentile, T R; Hussey, D S; Pushin, D A; Wietfeldt, F E; Yang, L
2009-05-22
We report the first measurement of the low-energy neutron-(3)He incoherent scattering length using neutron interferometry: b_{i};{'} = (-2.512 +/- 0.012 stat +/- 0.014 syst) fm. This is in good agreement with a recent calculation using the AV18 + 3N potential. The neutron-(3)He scattering lengths are important for testing and developing nuclear potential models that include three-nucleon forces, effective field theories for few-body nuclear systems, and neutron scattering measurements of quantum excitations in liquid helium. This work demonstrates the first use of a polarized nuclear target in a neutron interferometer.
Engineering Nanowire n-MOSFETs at L_{g}<8 nm
NASA Astrophysics Data System (ADS)
Mehrotra, Saumitra R.; Kim, SungGeun; Kubis, Tillmann; Povolotskyi, Michael; Lundstrom, Mark S.; Klimeck, Gerhard
2013-07-01
As metal-oxide-semiconductor field-effect transistors (MOSFET) channel lengths (Lg) are scaled to lengths shorter than Lg<8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be engineered using strain and crystal orientation engineering. Full-band extended device atomistic quantum transport simulations are performed for nanowire MOSFETs at Lg<8 nm in both ballistic and incoherent scattering regimes. In conclusion, a heavier transport mass can indeed be advantageous in improving ON state currents in ultra scaled nanowire MOSFETs.
’Head-On’ Scattering of a Tubular Cylinder of Finite Length for Radar Target Identification Purposes
1985-03-01
environment. The anechoic chamber is enclosed with aluminium plates and internally lined with a radio frequency absorbing material. The absorbing material...provides the necessary attenuation to the reflections from the walls, floor and ceiling, and the aluminium surface provides protection against external...inch aluminium sphere is used. Some measurements are taken with a cylinder with fins attached .The description of the cylinder with fins is shown in
s -wave scattering length of a Gaussian potential
NASA Astrophysics Data System (ADS)
Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim
2018-04-01
We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.
Large momentum part of a strongly correlated Fermi gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shina
2008-12-15
It is well known that the momentum distribution of the two-component Fermi gas with large scattering length has a tail proportional to 1/k{sup 4} at large k. We show that the magnitude of this tail is equal to the adiabatic derivative of the energy with respect to the reciprocal of the scattering length, multiplied by a simple constant. This result holds at any temperature (as long as the effective interaction radius is negligible) and any large scattering length; it also applies to few-body cases. We then show some more connections between the 1/k{sup 4} tail and various physical quantities, includingmore » the pressure at thermal equilibrium and the rate of change of energy in a dynamic sweep of the inverse scattering length.« less
Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
Williams, S P; Langmore, J P
1991-01-01
Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522
Stimulated Brillouin Scattering Phase Conjugation in Fiber Optic Waveguides
2008-07-01
61] The discrepancy is reduced since the effective length of the interaction may be limited by the coherence length of the signal laser as in Eq...these cases, the coherence length of the pulsed laser typically limits the effective length of the Brillouin scattering interaction. Long... coherence length lasers with long fiber SBS media have been used to reduce threshold energy, but as indicated at the end of Chapter 2, this has produced
Determination of the pion-nucleon coupling constant and scattering lengths
NASA Astrophysics Data System (ADS)
Ericson, T. E.; Loiseau, B.; Thomas, A. W.
2002-07-01
We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.
Universal dimer–dimer scattering in lattice effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean
We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less
Universal dimer–dimer scattering in lattice effective field theory
Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean; ...
2017-03-14
We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less
Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potentialmore » composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.« less
2014-07-01
into a building ....149 Figure 5.52: Effect of infiltration at 1 mm/hr for 24 hours on vapor signals in sandy clay loam scenario...shown above, there will also likely be large diameter sanitary sewers running the length of each street. Each house on the street will have a sewer...permeability, a discontinuous clay layer system, and a system with scattered obstacles (e.g. utilities). The layered systems indicated that the sequence of
Numerical investigation of electron localization in polymer chains
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Stafström, Sven
1998-01-01
Using finite-size scaling, we have calculated the localization-delocalization phase diagrams for electronic wave functions in different disordered polymeric systems. The disorder considered here simulates finite polymer chain lengths, breaks in the conjugation, and disorder in an external potential. It is shown that a system of interacting chains, even at rather weak interchain interactions, allows for enough flexibility for the scattered waves to avoid dephasing and localization. Localization and the metal-insulator transition in highly conducting polymers are discussed in view of these results.
Speckle suppression by doubly scattering systems.
Li, Dayan; Kelly, Damien P; Sheridan, John T
2013-12-10
Speckle suppression in a two-diffuser system is examined. An analytical expression for the speckle space-time correlation function is derived, so that the speckle suppression mechanism can be investigated statistically. The grain size of the speckle field illuminating the second diffuser has a major impact on the speckle contrast after temporal averaging. It is shown that, when both the diffusers are rotating, the one with the lower rotating speed determines the period of the speckle correlation function. The coherent length of the averaged speckle intensity is shown to equal the mean speckle size of the individual speckle pattern before averaging. Numerical and experimental results are presented to verify our analysis in the context of speckle reduction.
Spatial resolution study and power calibration of the high-k scattering system on NSTX.
Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C
2008-10-01
NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.
A phenomenological π-p scattering length from pionic hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
2004-07-01
We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length ah extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α2logα using an extended charge distribution. A hadronic πN scattering length ahπ-p=0.0870(5)mπ-1 is deduced leading to a πNN coupling constant from the GMO relation gc2/(4π)=14.04(17).
Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius
2014-01-13
Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm.
Precision calculation of threshold πd scattering, πN scattering lengths, and the GMO sum rule
NASA Astrophysics Data System (ADS)
Baru, V.; Hanhart, C.; Hoferichter, M.; Kubis, B.; Nogga, A.; Phillips, D. R.
2011-12-01
We use chiral perturbation theory (ChPT) to calculate the πd scattering length with an accuracy of a few percent, including isospin-violating corrections in both the two- and three-body sectors. In particular, we provide the technical details of a recent letter (Baru et al., 2011) [1], where we used data on pionic deuterium and pionic hydrogen atoms to extract the isoscalar and isovector pion-nucleon scattering lengths a and a. We study isospin-breaking contributions to the three-body part of a due to mass differences, isospin violation in the πN scattering lengths, and virtual photons. This last class of effects is ostensibly infrared enhanced due to the smallness of the deuteron binding energy. However, we show that the leading virtual-photon effects that might undergo such enhancement cancel, and hence the standard ChPT counting provides a reliable estimate of isospin violation in a due to virtual photons. Finally, we discuss the validity of the Goldberger-Miyazawa-Oehme sum rule in the presence of isospin violation, and use it to determine the charged-pion-nucleon coupling constant.
Microwave studies of weak localization and antilocalization in epitaxial graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drabińska, Aneta; Kamińska, Maria; Wołoś, Agnieszka
2013-12-04
A microwave detection method was applied to study weak localization and antilocalization in epitaxial graphene sheets grown on both polarities of SiC substrates. Both coherence and scattering length values were obtained. The scattering lengths were found to be smaller for graphene grown on C-face of SiC. The decoherence rate was found to depend linearly on temperature, showing the electron-electron scattering mechanism.
Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels
NASA Astrophysics Data System (ADS)
Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik
2002-11-01
The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.
NASA Astrophysics Data System (ADS)
Oelze, Michael L.; O'Brien, William D.
2004-11-01
Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .
Evaluation of very long baseline interferometry atmospheric modeling improvements
NASA Technical Reports Server (NTRS)
Macmillan, D. S.; Ma, C.
1994-01-01
We determine the improvement in baseline length precision and accuracy using new atmospheric delay mapping functions and MTT by analyzing the NASA Crustal Dynamics Project research and development (R&D) experiments and the International Radio Interferometric Surveying (IRIS) A experiments. These mapping functions reduce baseline length scatter by about 20% below that using the CfA2.2 dry and Chao wet mapping functions. With the newer mapping functions, average station vertical scatter inferred from observed length precision (given by length repeatabilites) is 11.4 mm for the 1987-1990 monthly R&D series of experiments and 5.6 mm for the 3-week-long extended research and development experiment (ERDE) series. The inferred monthly R&D station vertical scatter is reduced by 2 mm or by 7 mm is a root-sum-square (rss) sense. Length repeatabilities are optimum when observations below a 7-8 deg elevation cutoff are removed from the geodetic solution. Analyses of IRIS-A data from 1984 through 1991 and the monthly R&D experiments both yielded a nonatmospheric unmodeled station vertical error or about 8 mm. In addition, analysis of the IRIS-A exeriments revealed systematic effects in the evolution of some baseline length measurements. The length rate of change has an apparent acceleration, and the length evolution has a quasi-annual signature. We show that the origin of these effects is unlikely to be related to atmospheric modeling errors. Rates of change of the transatlantic Westford-Wettzell and Richmond-Wettzell baseline lengths calculated from 1988 through 1991 agree with the NUVEL-1 plate motion model (Argus and Gordon, 1991) to within 1 mm/yr. Short-term (less than 90 days) variations of IRIS-A baseline length measurements contribute more than 90% of the observed scatter about a best fit line, and this short-term scatter has large variations on an annual time scale.
Schoen, K; Snow, W M; Kaiser, H; Werner, S A
2005-01-01
The neutron index of refraction is generally derived theoretically in the Fermi approximation. However, the Fermi approximation neglects the effects of the binding of the nuclei of a material as well as multiple scattering. Calculations by Nowak introduced correction terms to the neutron index of refraction that are quadratic in the scattering length and of order 10(-3) fm for hydrogen and deuterium. These correction terms produce a small shift in the final value for the coherent scattering length of H2 in a recent neutron interferometry experiment.
Use of cylindrical diffusing fibers as detectors for interstitial tissue spectroscopy
NASA Astrophysics Data System (ADS)
Baran, Timothy M.; Foster, Thomas H.
2015-03-01
Interstitial photodynamic therapy (iPDT) describes the use of implanted optical fibers for delivery of treatment light to activate photosensitizer in regions that can be located deep within the body. Since sensitive healthy structures are often located nearby, this requires careful treatment planning that is dependent on tissue optical properties. Determination of these values usually involves the insertion of additional fibers into the volume, or the use of flat-cleaved optical fibers as both treatment sources and detectors. The insertion of additional fibers is undesirable, and cylindrical diffusers have been shown to offer superior treatment characteristics compared to flat-cleaved fibers. Using cylindrical diffusers as detectors for spectroscopic measurement is therefore attractive. We describe the determination of the detection profile for a particular cylindrical diffuser design and derive the scatterer concentration gradient within the diffuser core. This detection profile is compared to previously characterized diffusers, and is shown to be dependent on the diffuser design. For diffusers with a constant scatterer concentration and distal mirror, the detection profile is localized to the proximal end of the diffusing region. For diffusers with variable scattering concentration along their length and no distal mirror, the detection profile is shown to be more uniform along the diffusing region. We also present preliminary results showing the recovery of optical properties using arrays of cylindrical diffusing fibers as sources and detectors, with a mean error of 4.4% in the determination of μeff. The accuracy of these results is comparable to those obtained with other methods of optical property recovery.
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.
Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang
2015-07-01
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.
Scattering models for some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Antar, Y. M. M.
1987-01-01
The Helmholtz integral equation is presently derived for a scatterer of arbitrary shape, and reduced in order to obtain the far zone-scattered field in terms of the field within the scatterer. Attention is given to the effect of different approaches to field estimation within the scatterer on the backscattering cross section, as illustrated numerically by the cases of a circular disk, a needle, and a finite-length cylinder. A comparison is made of the results obtained by modeling a leaf by means of a circular disk within the Shifrin approximation, and a tree branch by means of a finite-length cylinder, with measurements from a single leaf and a single branch.
Quasiparticle trapping and the density of states in superconducting proximity structures
NASA Astrophysics Data System (ADS)
Warburton, P. A.; Blamire, M. G.
1994-08-01
An experimental study of quasiparticle trapping in epitaxial and polycrystalline Ta films on epitaxial Nb is presented using three-terminal double tunnel junction devices. It is shown that polycrystalline Ta is a more effective trap than epitaxial Ta. The experimentally measured tunneling density of states is used to calculate the inelastic quasiparticle scattering rates in the two types of Ta using the standard theory of Kaplan et a. (1976).The agreement of this calculation with the experimental results shows that the tunneling density of states may be used to determine scattering rates in proximitized superconducting films whose thickness is greater than the coherence length. This result is important since no existing theory satisfactorily describes the density of states in such proximity structures, which are currently being developed for use in high-resolution particle spectrometers.
Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD
NASA Astrophysics Data System (ADS)
Giudicotti, L.; Pasqualotto, R.; Fassina, A.
2014-11-01
In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature Te, the electron density ne and the relative calibration coefficients of spectral channels sensitivity Ci were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual-angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible.
Inverse design engineering of all-silicon polarization beam splitters
NASA Astrophysics Data System (ADS)
Frandsen, Lars H.; Sigmund, Ole
2016-03-01
Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as ~2 μm2 while performing experimentally with a polarization splitting loss lower than ~0.82 dB and an extinction ratio larger than ~15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature size constraint in the optimization is shown to affect the performance negatively and reveals the necessity for light to scatter on a sub-wavelength scale to obtain functionalities in compact photonic devices.
Kirchhoff's rule for quantum wires
NASA Astrophysics Data System (ADS)
Kostrykin, V.; Schrader, R.
1999-01-01
We formulate and discuss one-particle quantum scattering theory on an arbitrary finite graph with n open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with n channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for incoming plane waves of energy E>0 is given explicitly in terms of the boundary conditions and the lengths of the internal lines. It is shown to be unitary, which may be viewed as the quantum version of Kirchhoff's law. We exhibit covariance and symmetry properties. It is symmetric if the boundary conditions are real. Also there is a duality transformation on the set of boundary conditions and the lengths of the internal lines such that the low-energy behaviour of one theory gives the high-energy behaviour of the transformed theory. Finally, we provide a composition rule by which the on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its subgraphs. All proofs use only known facts from the theory of self-adjoint extensions, standard linear algebra, complex function theory and elementary arguments from the theory of Hermitian symplectic forms.
NASA Astrophysics Data System (ADS)
Pradhan, Prabhakar; John Park, Daniel; Capoglu, Ilker; Subramanian, Hariharan; Damania, Dhwanil; Cherkezyan, Lusik; Taflove, Allen; Backman, Vadim
2017-06-01
Statistical properties of light waves reflected from a one-dimensional (1D) disordered optical medium [n(x) = n0+ dn(x),
Quantifying adsorption-induced deformation of nanoporous materials on different length scales
Morak, Roland; Braxmeier, Stephan; Ludescher, Lukas; Hüsing, Nicola; Reichenauer, Gudrung
2017-01-01
A new in situ setup combining small-angle neutron scattering (SANS) and dilatometry was used to measure water-adsorption-induced deformation of a monolithic silica sample with hierarchical porosity. The sample exhibits a disordered framework consisting of macropores and struts containing two-dimensional hexagonally ordered cylindrical mesopores. The use of an H2O/D2O water mixture with zero scattering length density as an adsorptive allows a quantitative determination of the pore lattice strain from the shift of the corresponding diffraction peak. This radial strut deformation is compared with the simultaneously measured macroscopic length change of the sample with dilatometry, and differences between the two quantities are discussed on the basis of the deformation mechanisms effective at the different length scales. It is demonstrated that the SANS data also provide a facile way to quantitatively determine the adsorption isotherm of the material by evaluating the incoherent scattering contribution of H2O at large scattering vectors. PMID:29021735
LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean
2011-04-21
It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn; Zhang, Zhenyu; Liu, Qian
2015-07-15
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and therebymore » the energy resolution of the detector.« less
Extracting the σ-term from low-energy pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.
2018-02-01
We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.
Analytical fitting model for rough-surface BRDF.
Renhorn, Ingmar G E; Boreman, Glenn D
2008-08-18
A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.
Novel cylindrical illuminator tip for ultraviolet light delivery
NASA Astrophysics Data System (ADS)
Shangguan, HanQun; Haw, Thomas E.; Gregory, Kenton W.; Casperson, Lee W.
1993-06-01
The design, processing, and sequential testing of a novel cylindrical diffusing optical fiber tip for ultraviolet light delivery is described. This device has been shown to uniformly (+/- 15%) illuminate angioplasty balloons, 20 mm in length, that are used in an experimental photochemotherapeutic treatment of swine intimal hyperplasia. Our experiments show that uniform diffusing tips of < 400 micron diameter can be reliably constructed for this and other interstitial applications. Modeling results indicate that this design is scalable to smaller diameters. The diffusing tips are made by stripping the protective buffer and etching away the cladding over a length of 20 mm from the fiber tip and replacing it with a thin layer of optical epoxy mixed with Al2O3 powder. To improve the uniformity and ease of fabrication, we have evaluated a new device configuration where the tip is etched into a modified conical shape, and the distal end face is polished and then coated with an optically opaque epoxy. This is shown to uniformly scatter approximately 70% of the light launched into the fiber without forward transmission.
Correlational latent heat by nonlocal quantum kinetic theory
NASA Astrophysics Data System (ADS)
Morawetz, K.
2018-05-01
A kinetic equation of nonlocal and noninstantaneous character unifies the achievements of transport in dense quantum gases with the Landau theory of quasiclassical transport in Fermi systems. Large cancellations in the off-shell motion appear, which are usually hidden in non-Markovian behaviors. The remaining corrections are expressed in terms of shifts in space and time that characterize the nonlocality of the scattering process. In this way, it is possible to recast quantum transport into a quasiclassical picture. In addition to the quasiparticle, the balance equations for density, momentum, energy, and entropy also include correlated two-particle contributions beyond the Landau theory. The medium effects on binary collisions are shown to mediate the latent heat, i.e., an energy conversion between correlation and thermal energy. For Maxwellian particles with time-dependent s -wave scattering, the correlated parts of the observables are calculated and a sign change of the latent heat is reported at a universal ratio of scattering length to the thermal de Broglie wavelength. This is interpreted as a change from correlational heating to cooling.
Precision determination of the πN scattering lengths and the charged πNN coupling constant
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.
2000-01-01
We critically evaluate the isovector GMO sumrule for the charged πNN coupling constant using recent precision data from π-p and π-d atoms and with careful attention to systematic errors. From the π-d scattering length we deduce the pion-proton scattering lengths 1/2(aπ-p + aπ-n) = (-20 +/- 6(statistic)+/-10 (systematic) .10-4m-1πc and 1/2(aπ-p - aπ-n) = (903 +/- 14) . 10-4m-1πc. From this a direct evaluation gives g2c(GMO)/4π = 14.20 +/- 0.07 (statistic)+/-0.13(systematic) or f2c/4π = 0.0786 +/- 0.0008.
NASA Technical Reports Server (NTRS)
Rohrbaugh, J. L.
1972-01-01
A correlation study was made of the variations of the exospheric temperature extrema with various combinations of the monthly mean and daily values of the 2800 MHz and Ca:2 solar indices. The phase and amplitude of the semi-annual component and the term dependent on Kp were found to remain almost the same for the maximum and minimum temperature. The term dependent on the 27 day component of the solar activity was found to be about four times as large for the diurnal maximum as for the minimum. Measurements at Arecibo have shown that temperature gradient changes at 125 km are consistent with the phase difference between the neutral temperature and density maxima. This is used to develop an empirical model which is compatible with both the satellite measurements and the available incoherent scatter measurements. A main feature of this model is that day length is included as a major model parameter.
Directional detection of dark matter in universal bound states
Laha, Ranjan
2015-10-06
It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angularmore » recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.« less
Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering
Mamontov, Eugene
2016-09-24
In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less
Transmission of light in deep sea water at the site of the ANTARES neutrino telescope
NASA Astrophysics Data System (ADS)
ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; Bland, R. W.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Bugeon, F.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Croquette, J.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Dispau, G.; Drougou, J.-F.; Druillole, F.; Engelen, J.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Gournay, J.-F.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Michel, J.-L.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Moscoso, L.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Payre, P.; Petta, C.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Ripani, M.; Roca-Blay, V.; Romeyer, A.; Rollin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Saouter, S.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Suvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Usik, A.; Valdy, P.; Vallage, B.; Vaudaine, G.; Vernin, P.; Virieux, J.; Vladimirsky, E.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zavatarelli, S.; de Zornoza, J. D.; Zúñiga, J.
2005-02-01
The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length λabs and an effective scattering length λscteff. The values for blue (UV) light are found to be λabs ≃ 60(26) m, λscteff≃265(122)m, with significant (˜15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented.
Brillouin Scattering of Picosecond Laser Pulses in Preformed, Short-Scale-Length Plasmas
NASA Astrophysics Data System (ADS)
Gaeris, A. C.; Fisher, Y.; Delettrez, J. A.; Meyerhofer, D. D.
1996-11-01
Brillouin scattering (BS) has been studied in short-scale-length, preformed plasmas. The backscattered and specularly reflected light resulting from the interaction of high-power picosecond pulses with preformed silicon plasmas has been measured. A first laser pulse forms a short-scale-length plasma -- without significant BS -- while a second delayed pulse interacts with an expanded, drifting underdense region of the plasma with density scale length (0 <= Ln <= 600 λ _L). The pulses are generated at λ L = 1054 nm, with intensities up to 10^16 W/cm^2. The backscattered light spectra, threshold intensities, and enhanced reflectivities have been determined for different plasma-density scale lengths and are compared to Liu, Rosenbluth, and White's(C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).) WKB treatment of stimulated Brillouin scattering in inhomogeneous drifting plasmas. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.
Thermal management in inertial fusion energy slab amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, S.B.; Albrecht, G.F.
As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, coolingmore » flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, the authors introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.« less
A Thermal Model for Carbon Nanotube Interconnects
Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay
2013-01-01
In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters. PMID:28348333
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efimov, V.; Tkachenko, E.G.
It is shown that the well-known correlation between the triton binding energy and the nd doublet scattering length (the so-called Phillips line), which is observed in calculations, can be explained by smallness of the characteristic energies of the problem: the binding energies of the triton and deuteron: on the energy scale of nuclear forces. Equivalently, the Phillips line is a consequence of the diffuse structure of the triton and deuteron. These conclusions are obtained on the basis of qualitative consideration of the problem, calculation of the above correlation in the zero and linear approximation, and comparison of the calculated resultsmore » with the Phillips line.« less
The Morphology of Titanium Dioxide Aerogels
NASA Astrophysics Data System (ADS)
Zhu, Zhu
The morphology of titanium dioxide TiO _2 aerogels has been characterized by four major techniques. This work will discuss these complementary techniques such as nitrogen adsorption, X-ray powder diffraction (XRD), electron microscopies (EM- TEM, SEM), and small angle neutron scattering (SANS). The results of these characterizations have shown that the morphology of titanium dioxide TiO_2 aerogels can be characterized in terms of two length scales: 5 nm diameter, crystalline nanoparticles of anatase closely packed into mesoaggregates about 50 nm in size. The mesoaggregates are, in turn, packed into a loosely linked structure with an overall porosity of 80%.
Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Yaroslav; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kolb, Bryan; Kovalchuk, Olga
2016-01-01
Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders). While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way. PMID:27375442
Length scales involved in decoherence of trapped bosons by buffer-gas scattering
NASA Astrophysics Data System (ADS)
Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.
2014-05-01
We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.
Classification of rice grain varieties arranged in scattered and heap fashion using image processing
NASA Astrophysics Data System (ADS)
Bhat, Sudhanva; Panat, Sreedath; N, Arunachalam
2017-03-01
Inspection and classification of food grains is a manual process in many of the food grain processing industries. Automation of such a process is going to be beneficial for industries facing shortage of skilled workforce. Machine Vision techniques are some of the popular approaches for developing such automations. Most of the existing works on the topic deal with identification of the rice variety by analyzing images of well separated and isolated rice grains from which a lot of geometrical features can be extracted. This paper proposes techniques to estimate geometrical parameters from the images of scattered as well as heaped rice grains where the grain boundaries are not clearly identifiable. A methodology based on convexity is proposed to separate touching rice grains in the scattered rice grain images and get their geometrical parameters. And in case of heaped arrangement a Pixel-Distance Contribution Function is defined and is used to get points inside rice grains and then to find the boundary points of rice grains. These points are fit with the equation of an ellipse to estimate their lengths and breadths. The proposed techniques are applied on images of scattered and heaped rice grains of different varieties. It is shown that each variety gives a unique set of results.
Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giudicotti, L., E-mail: leonardo.giudicotti@unipd.it; Department of Industrial Engineering, Padova University, Via Gradenigo 6/a, 35131 Padova; Pasqualotto, R.
2014-11-15
In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature T{sub e}, the electron density n{sub e} and the relative calibration coefficients of spectralmore » channels sensitivity C{sub i} were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual‑angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible.« less
Stimulated scattering in Ag nanoparticle colloids
NASA Astrophysics Data System (ADS)
Averyushkin, A. S.; Bulychev, N. A.; Efimkov, V. F.; Erokhin, A. I.; Kazaryan, M. A.; Mikhailov, S. I.; Saraeva, I. N.; Zubarev, I. G.
2017-05-01
A number of features of stimulated thermal Rayleigh scattering (STRS) in pure liquids and nanoparticle solutions are investigated in this work. It is shown that scattering efficiency is not reduced in the case of wide spectral bandwidth pump radiation. It is shown experimentally that the frequency shift of the scattered signal relative to the pump frequency greatly exceeds the theoretical value. It is also shown theoretically that the frequency shift value does not depend on the linewidth of the pump.
Fluorinated diglucose detergents for membrane-protein extraction.
Boussambe, Gildas Nyame Mendendy; Guillet, Pierre; Mahler, Florian; Marconnet, Anaïs; Vargas, Carolyn; Cornut, Damien; Soulié, Marine; Ebel, Christine; Le Roy, Aline; Jawhari, Anass; Bonneté, Françoise; Keller, Sandro; Durand, Grégory
2018-05-29
Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25°C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichiacoli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Smetanin, S. N.
2014-11-01
Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO4)2 (high dispersion) and Ba(NO3)2 (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes - anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes - anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium.
Laser speckle imaging in the spatial frequency domain
Mazhar, Amaan; Cuccia, David J.; Rice, Tyler B.; Carp, Stefan A.; Durkin, Anthony J.; Boas, David A.; Choi, Bernard; Tromberg, Bruce J.
2011-01-01
Laser Speckle Imaging (LSI) images interference patterns produced by coherent addition of scattered laser light to map subsurface tissue perfusion. However, the effect of longer path length photons is typically unknown and poses a limitation towards absolute quantification. In this work, LSI is integrated with spatial frequency domain imaging (SFDI) to suppress multiple scattering and absorption effects. First, depth sensitive speckle contrast is shown in phantoms by separating a deep source (4 mm) from a shallow source (2 mm) of speckle contrast by using a high spatial frequency of illumination (0.24 mm−1). We develop an SFD adapted correlation diffusion model and show that with high frequency (0.24 mm−1) illumination, doubling of absorption contrast results in only a 1% change in speckle contrast versus 25% change using a planar unmodulated (0 mm−1) illumination. Similar absorption change is mimicked in vivo imaging a finger occlusion and the relative speckle contrast change from baseline is 10% at 0.26 mm−1 versus 60% at 0 mm−1 during a finger occlusion. These results underscore the importance of path length and optical properties in determining speckle contrast. They provide an integrated approach for simultaneous mapping of blood flow (speckle contrast) and oxygenation (optical properties) which can be used to inform tissue metabolism. PMID:21698018
Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir
2014-06-28
Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that the supported samples yield consistently lower values of κ and that the phonon-boundary scattering remains dominant at large lengths, with L = 0.4 μm structures exhibiting a third of the periodic result. We finally characterize the effect of shape in CNTs and fullerenes on κ, showing the angular components of conductivity in CNTs and icosahedral fullerenes are similar for a given circumference.
Measurement of the magneto-optical correlation length in turbid media
NASA Astrophysics Data System (ADS)
Lenke, Ralf; Eisenmann, Christoph; Reinke, Daniel; Maret, Georg
2002-11-01
In multiple light scattering media, magnetic field induced circular birefringence (Faraday effect) influences interference effects such as speckle pattern or coherent backscattering. It was predicted that in the diffusive regime the relevant correlation length with respect to the Faraday rotation l*F differs, in general, from the transport mean free path l*. We have experimentally verified the prediction that the ratio l*F/l scr>* equals 2 for Rayleigh scattering and decreases to 1 with increasing scatterer size. We also discuss the influence of the structure factor on l*F.
NASA Technical Reports Server (NTRS)
Sovers, O. J.; Lanyi, G. E.
1994-01-01
To compare the validity of current algorithms that map zenith tropospheric delay to arbitrary elevation angles, 10 different tropospheric mapping functions are used to analyze the current data base of Deep Space Network Mark 3 intercontinental very long baseline interferometric (VLBI) data. This analysis serves as a stringent test because of the high proportion of low-elevation observations necessitated by the extremely long baselines. Postfit delay and delay-rate residuals are examined, as well as the scatter of baseline lengths about the time-linear model that characterizes tectonic motion. Among the functions that utilize surface meteorological data as input parameters, the Lanyi 1984 mapping shows the best performance both for residuals and baselines, through the 1985 Davis function is statistically nearly identical. The next best performance is shown by the recent function of Niell, which is based on an examination of global atmospheric characteristics as a function of season and uses no weather data at the time of the measurements. The Niell function shows a slight improvement in residuals relative to Lanyi, but also an increase in baseline scatter that is significant for the California-Spain baseline. Two variants of the Chao mapping function, as well as the Chao tables used with the interpolation algorithm employed in the Orbit Determination Program software, show substandard behavior for both VLBI residuals and baseline scatter. The length of the California-Australia baseline (10,600 km) in the VLBI solution can vary by as much as 5 to 10 cm for the 10 mapping functions.
Kirkwood, R. K.; Michel, P.; London, R.; ...
2011-05-26
To optimize the coupling to indirect drive targets in the National Ignition Campaign (NIC) at the National Ignition Facility, a model of stimulated scattering produced by multiple laser beams is used. The model has shown that scatter of the 351 nm beams can be significantly enhanced over single beam predictions in ignition relevant targets by the interaction of the multiple crossing beams with a millimeter scale length, 2.5 keV, 0.02 - 0.05 x critical density, plasma. The model uses a suite of simulation capabilities and its key aspects are benchmarked with experiments at smaller laser facilities. The model has alsomore » influenced the design of the initial targets used for NIC by showing that both the stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) can be reduced by the reduction of the plasma density in the beam intersection volume that is caused by an increase in the diameter of the laser entrance hole (LEH). In this model, a linear wave response leads to a small gain exponent produced by each crossing quad of beams (<~1 per quad) which amplifies the scattering that originates in the target interior where the individual beams are separated and crosses many or all other beams near the LEH as it exits the target. As a result all 23 crossing quads of beams produce a total gain exponent of several or greater for seeds of light with wavelengths in the range that is expected for scattering from the interior (480 to 580 nm for SRS). This means that in the absence of wave saturation, the overall multi-beam scatter will be significantly larger than the expectations for single beams. The potential for non-linear saturation of the Langmuir waves amplifying SRS light is also analyzed with a two dimensional, vectorized, particle in cell code (2D VPIC) that is benchmarked by amplification experiments in a plasma with normalized parameters similar to ignition targets. The physics of cumulative scattering by multiple crossing beams that simultaneously amplify the same SBS light wave is further demonstrated in experiments that benchmark the linear models for the ion waves amplifying SBS. Here, the expectation from this model and its experimental benchmarks is shown to be consistent with observations of stimulated Raman scatter in the first series of energetic experiments with ignition targets, confirming the importance of the multi-beam scattering model for optimizing coupling.« less
Electromagnetic wave scattering from some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.
1988-01-01
For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.
Observation of long phase-coherence length in epitaxial La-doped CdO thin films
NASA Astrophysics Data System (ADS)
Yun, Yu; Ma, Yang; Tao, Songsheng; Xing, Wenyu; Chen, Yangyang; Su, Tang; Yuan, Wei; Wei, Jian; Lin, Xi; Niu, Qian; Xie, X. C.; Han, Wei
2017-12-01
The search for long electron phase-coherence length, which is the length that an electron can keep its quantum wavelike properties, has attracted considerable interest in the last several decades. Here, we report the long phase-coherence length of ˜3.7 μm in La-doped CdO thin films at 2 K. Systematical investigations of the La doping and the temperature dependences of the electron mobility and the electron phase-coherence length reveal contrasting scattering mechanisms for these two physical properties. Furthermore, these results show that the oxygen vacancies could be the dominant scatters in CdO thin films that break the electron phase coherence, which would shed light on further investigation of phase-coherence properties in oxide materials.
Poirier, B; Ville, J M; Maury, C; Kateb, D
2009-09-01
An analytical three dimensional bicylindrical model is developed in order to take into account the effects of the saddle-shaped area for the interface of a n-Herschel-Quincke tube system with the main duct. Results for the scattering matrix of this system deduced from this model are compared, in the plane wave frequency domain, versus experimental and numerical data and a one dimensional model with and without tube length correction. The results are performed with a two-Herschel-Quincke tube configuration having the same diameter as the main duct. In spite of strong assumptions on the acoustic continuity conditions at the interfaces, this model is shown to improve the nonperiodic amplitude variations and the frequency localization of the minima of the transmission and reflection coefficients with respect to one dimensional model with length correction and a three dimensional model.
Quantifying Fish Backscattering using SONAR Instrument and Kirchhoff Ray Mode (KRM) Model
NASA Astrophysics Data System (ADS)
Manik, Henry M.
2016-08-01
Sonar instrument was used to study backscattering from tuna fish. Extraction of target strength, incidence angle, and frequency dependence of the backscattered signal for individual scatterer was important for biological information. For this purpose, acoustic measurement of fish backscatter was conducted in the laboratory. Characteristics and general trends of the target strength of fish with special reference to tuna fish were investigated by using a Kirchhoff Ray Mode (KRM) model. Backscattering strength were calculated for the KRM having typical morphological and physical parameters of actual fish. Those backscattering amplitudes were shown as frequency, body length, backscattering patterns, the density and sound speed dependences, and orientation dependence. These results were compared with experimentally measured target strength data and good agreement was found. Measurement and model showed the target strength from the fish are depend on the presence of swimbladder. Target Strength increase with increasing the frequency and fish length.
Nanoscopic length scale dependence of hydrogen bonded molecular associates’ dynamics in methanol
Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.
2017-01-01
In a recent paper [C. E. Bertrand et al., J. Chem. Phys. 145, 014502 (2016)], we have shown that the collective dynamics of methanol shows a fast relaxation process related to the standard density-fluctuation heat mode and a slow non-Fickian mode originating from the hydrogen bonded molecular associates. Here we report on the length scale dependence of this slow relaxation process. Using quasielastic neutron scattering and molecular dynamics simulations, we show that the dynamics of the slow process is affected by the structuring of the associates, which is accessible through polarized neutron diffraction experiments. Using a series of partially deuterated samples, the dynamics of the associates is investigated and is found to have a similar time scale to the lifetime of hydrogen bonding in the system. Both the structural relaxation and the dynamics of the associates are thermally activated by the breaking of hydrogen bonding. PMID:28527447
Scattering length of composite bosons in the three-dimensional BCS-BEC crossover
NASA Astrophysics Data System (ADS)
Salasnich, L.; Bighin, G.
2015-03-01
We study the zero-temperature grand potential of a three-dimensional superfluid made of ultracold fermionic alkali-metal atoms in the BCS-BEC crossover. In particular, we analyze the zero-point energy of both fermionic single-particle excitations and bosonic collective excitations. The bosonic elementary excitations, which are crucial to obtain a reliable equation of state in the Bose-Einstein condensate regime, are obtained with a low-momentum expansion up to the forth order of the quadratic (Gaussian) action of the fluctuating pairing field. By performing a cutoff regularization and renormalization of Gaussian fluctuations, we find that the scattering length aB of composite bosons, bound states of fermionic pairs, is given by aB=(2 /3 ) aF , where aF is the scattering length of fermions.
3D reconstruction of carbon nanotube networks from neutron scattering experiments
Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa; ...
2015-09-03
Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first stepmore » in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.« less
3D reconstruction of carbon nanotube networks from neutron scattering experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa
Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first stepmore » in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmons, Samuel B.; Kang, Daekyoung; Acharya, Bijaya
2017-09-08
Here, we study the recombination process of three atoms scattering into an atom and diatomic molecule in heteronuclear mixtures of ultracold atomic gases with large and positive interspecies scattering length at finite temperature. We calculate the temperature dependence of the three-body recombination rates by extracting universal scaling functions that parametrize the energy dependence of the scattering matrix. We compare our results to experimental data for the 40K– 87Rb mixture and make a prediction for 6Li– 87Rb. We find that contributions from higher partial wave channels significantly impact the total rate and, in systems with particularly large mass imbalance, can evenmore » obliterate the recombination minima associated with the Efimov effect.« less
Composition dependence of charge and magnetic length scales in mixed valence manganite thin films
Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.
2016-01-01
Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1−yPry)1−xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1−xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties. PMID:27461993
Braun, Birgit; Dorgan, John R; Chandler, John P
2008-04-01
Mathematical treatment of light scattering within the Rayleigh-Gans-Debye limit for spheroids with polydispersity in both length and diameter is developed and experimentally tested using cellulosic nanowhiskers (CNW). Polydispersity indices are obtained by fitting the theoretical formfactor to experimental data. Good agreement is achieved using a polydispersity of 2.3 for the length, independent of the type of acid used. Diameter polydispersities are 2.1 and 3.0 for sulfuric and hydrochloric acids, respectively. These polydispersities allow the determination of average dimensions from the z-average mean-square radius (z) and the weight-average molecular weight (M w) easily obtained from Berry plots. For cotton linter hydrolyzed by hydrochloric acid, the average length and diameter are 244 and 22 nm. This compares to average length and diameter of 272 and 13 nm for sulfuric acid. This study establishes a new light-scattering methodology as a quick and robust tool for size characterization of polydisperse spheroidal nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Yu.V., E-mail: yutarasov@ire.kharkov.ua; Shostenko, L.D.
A unified theory for the conductance of an infinitely long multimode quantum wire whose finite segment has randomly rough lateral boundaries is developed. It enables one to rigorously take account of all feasible mechanisms of wave scattering, both related to boundary roughness and to contacts between the wire rough section and the perfect leads within the same technical frameworks. The rough part of the conducting wire is shown to act as a mode-specific randomly modulated effective potential barrier whose height is governed essentially by the asperity slope. The mean height of the barrier, which is proportional to the average slopemore » squared, specifies the number of conducting channels. Under relatively small asperity amplitude this number can take on arbitrary small, up to zero, values if the asperities are sufficiently sharp. The consecutive channel cut-off that arises when the asperity sharpness increases can be regarded as a kind of localization, which is not related to the disorder per se but rather is of entropic or (equivalently) geometric origin. The fluctuating part of the effective barrier results in two fundamentally different types of guided wave scattering, viz., inter- and intramode scattering. The intermode scattering is shown to be for the most part very strong except in the cases of (a) extremely smooth asperities, (b) excessively small length of the corrugated segment, and (c) the asperities sharp enough for only one conducting channel to remain in the wire. Under strong intermode scattering, a new set of conducting channels develops in the corrugated waveguide, which have the form of asymptotically decoupled extended modes subject to individual solely intramode random potentials. In view of this fact, two transport regimes only are realizable in randomly corrugated multimode waveguides, specifically, the ballistic and the localized regime, the latter characteristic of one-dimensional random systems. Two kinds of localization are thus shown to coexist in waveguide-like systems with randomly corrugated boundaries, specifically, the entropic localization and the one-dimensional Anderson (disorder-driven) localization. If the particular mode propagates across the rough segment ballistically, the Fabry–Pérot-type oscillations should be observed in the conductance, which are suppressed for the mode transferred in the Anderson-localized regime.« less
Spin Hall effect originated from fractal surface
NASA Astrophysics Data System (ADS)
Hajzadeh, I.; Mohseni, S. M.; Movahed, S. M. S.; Jafari, G. R.
2018-05-01
The spin Hall effect (SHE) has shown promising impact in the field of spintronics and magnonics from fundamental and practical points of view. This effect originates from several mechanisms of spin scatterers based on spin–orbit coupling (SOC) and also can be manipulated through the surface roughness. Here, the effect of correlated surface roughness on the SHE in metallic thin films with small SOC is investigated theoretically. Toward this, the self-affine fractal surface in the framework of the Born approximation is exploited. The surface roughness is described by the k-correlation model and is characterized by the roughness exponent H , the in-plane correlation length ξ and the rms roughness amplitude δ. It is found that the spin Hall angle in metallic thin film increases by two orders of magnitude when H decreases from H = 1 to H = 0. In addition, the source of SHE for surface roughness with Gaussian profile distribution function is found to be mainly the side jump scattering while that with a non-Gaussian profile suggests both of the side jump and skew scatterings are present. Our achievements address how details of the surface roughness profile can adjust the SHE in non-heavy metals.
NASA Technical Reports Server (NTRS)
Weaver, W. R.; Meador, W. E.
1977-01-01
Photometric data from the bright desert areas of Mars were used to determine the dependence of the three photometric parameters of the photometric function on wavelength and to provide qualitative predictions about the physical properties of the surface. Knowledge of the parameters allowed the brightness of these areas of Mars to be determined for any scattering geometry in the wavelength range of 0.45 to 0.70 micron. The changes that occur in the photometric parameters due to changes in wavelength were shown to be consistent with their physical interpretations, and the predictions of surface properties were shown to be consistent with conditions expected to exist in these regions of Mars. The photometric function was shown to have potential as a diagnostic tool for the qualitative determination of surface properties, and the consistency of the behavior of the photometric parameters was considered to be support for the validity of the photometric function.
Scalar and vector Keldysh models in the time domain
NASA Astrophysics Data System (ADS)
Kiselev, M. N.; Kikoin, K. A.
2009-04-01
The exactly solvable Keldysh model of disordered electron system in a random scattering field with extremely long correlation length is converted to the time-dependent model with extremely long relaxation. The dynamical problem is solved for the ensemble of two-level systems (TLS) with fluctuating well depths having the discrete Z 2 symmetry. It is shown also that the symmetric TLS with fluctuating barrier transparency may be described in terms of the vector Keldysh model with dime-dependent random planar rotations in xy plane having continuous SO(2) symmetry. Application of this model to description of dynamic fluctuations in quantum dots and optical lattices is discussed.
Influence of Scattering on Ballistic Nanotransistor Design
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Svizhenko, Alexei; Biegel, Bryan, A. (Technical Monitor)
2002-01-01
Importance of this work: (1) This is the first work to model electron-phonon scattering within a quantum mechanical approach to nanotransistors. The simulations use the non equilibrium Green's function method. (2) A simple equation which captures the importance of scattering as a function of the spatial location from source to drain is presented. This equation helps interpret the numerical simulations. (3) We show that the resistance per unit length in the source side is much larger than in the drain side. Thus making scattering in the source side of the device much more important than scattering in the drain side. Numerical estimates of ballisticity for 10nm channel length devices in the presence of of electron-phonon scattering are given. Based on these calculations, we propose that to achieve a larger on-current in nanotransistors, it is crucial to keep the highly doped source extension region extremely small, even if this is at the cost of making the highly doped drain extension region longer.
Geometrical-optics approximation of forward scattering by gradient-index spheres.
Li, Xiangzhen; Han, Xiang'e; Li, Renxian; Jiang, Huifen
2007-08-01
By means of geometrical optics we present an approximation method for acceleration of the computation of the scattering intensity distribution within a forward angular range (0-60 degrees ) for gradient-index spheres illuminated by a plane wave. The incident angle of reflected light is determined by the scattering angle, thus improving the approximation accuracy. The scattering angle and the optical path length are numerically integrated by a general-purpose integrator. With some special index models, the scattering angle and the optical path length can be expressed by a unique function and the calculation is faster. This method is proved effective for transparent particles with size parameters greater than 50. It fails to give good approximation results at scattering angles whose refractive rays are in the backward direction. For different index models, the geometrical-optics approximation is effective only for forward angles, typically those less than 60 degrees or when the refractive-index difference of a particle is less than a certain value.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Diffusing-wave spectroscopy in a standard dynamic light scattering setup
NASA Astrophysics Data System (ADS)
Fahimi, Zahra; Aangenendt, Frank J.; Voudouris, Panayiotis; Mattsson, Johan; Wyss, Hans M.
2017-12-01
Diffusing-wave spectroscopy (DWS) extends dynamic light scattering measurements to samples with strong multiple scattering. DWS treats the transport of photons through turbid samples as a diffusion process, thereby making it possible to extract the dynamics of scatterers from measured correlation functions. The analysis of DWS data requires knowledge of the path length distribution of photons traveling through the sample. While for flat sample cells this path length distribution can be readily calculated and expressed in analytical form; no such expression is available for cylindrical sample cells. DWS measurements have therefore typically relied on dedicated setups that use flat sample cells. Here we show how DWS measurements, in particular DWS-based microrheology measurements, can be performed in standard dynamic light scattering setups that use cylindrical sample cells. To do so we perform simple random-walk simulations that yield numerical predictions of the path length distribution as a function of both the transport mean free path and the detection angle. This information is used in experiments to extract the mean-square displacement of tracer particles in the material, as well as the corresponding frequency-dependent viscoelastic response. An important advantage of our approach is that by performing measurements at different detection angles, the average path length through the sample can be varied. For measurements performed on a single sample cell, this gives access to a wider range of length and time scales than obtained in a conventional DWS setup. Such angle-dependent measurements also offer an important consistency check, as for all detection angles the DWS analysis should yield the same tracer dynamics, even though the respective path length distributions are very different. We validate our approach by performing measurements both on aqueous suspensions of tracer particles and on solidlike gelatin samples, for which we find our DWS-based microrheology data to be in good agreement with rheological measurements performed on the same samples.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime
NASA Astrophysics Data System (ADS)
Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.
2018-04-01
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.
Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M
2018-04-13
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak
NASA Astrophysics Data System (ADS)
Ruta, B.; Baldi, G.; Scarponi, F.; Fioretto, D.; Giordano, V. M.; Monaco, G.
2012-12-01
We report a detailed analysis of the dynamic structure factor of glassy sorbitol by using inelastic X-ray scattering and previously measured light scattering data [B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, Philos. Mag. 88, 3939 (2008), 10.1080/14786430802317586]. The thus obtained knowledge on the density-density fluctuations at both the mesoscopic and macroscopic length scale has been used to address two debated topics concerning the vibrational properties of glasses. The relation between the acoustic modes and the universal boson peak (BP) appearing in the vibrational density of states of glasses has been investigated, also in relation with some recent theoretical models. Moreover, the connection between the elastic properties of glasses and the slowing down of the structural relaxation process in supercooled liquids has been scrutinized. For what concerns the first issue, it is here shown that the wave vector dependence of the acoustic excitations can be used, in sorbitol, to quantitatively reproduce the shape of the boson peak, supporting the relation between BP and acoustic modes. For what concerns the second issue, a proper study of elasticity over a wide spatial range is shown to be fundamental in order to investigate the relation between elastic properties and the slowing down of the dynamics in the corresponding supercooled liquid phase.
Neutron Scattering Studies on Large Length Scale Sample Structures
NASA Astrophysics Data System (ADS)
Feng, Hao
Neutron scattering can be used to study structures of matter. Depending on the interested sample properties, different scattering techniques can be chosen. Neutron reflectivity is more often used to detect in-depth profile of layered structures and the interfacial roughness while transmission is more sensitive to sample bulk properties. Neutron Reflectometry (NR) technique, one technique in neutron reflectivity, is first discussed in this thesis. Both specular reflectivity and the first order Bragg intensity were measured in the NR experiment with a diffraction grating in order to study the in-depth and the lateral structure of a sample (polymer) deposited on the grating. However, the first order Bragg intensity solely is sometimes inadequate to determine the lateral structure and high order Bragg intensities are difficult to measure using traditional neutron scattering techniques due to the low brightness of the current neutron sources. Spin Echo Small Angle Neutron Scattering (SESANS) technique overcomes this resolution problem by measuring the Fourier transforms of all the Bragg intensities, resulting in measuring the real-space density correlations of samples and allowing the accessible length scale from few-tens of nanometers to several microns. SESANS can be implemented by using two pairs of magnetic Wollaston prims (WP) and the accessible length scale is proportional to the magnetic field intensity in WPs. To increase the magnetic field and thus increase the accessible length scale, an apparatus named Superconducting Wollaston Prisms (SWP) which has a series of strong, well-defined shaped magnetic fields created by superconducting coils was developed in Indiana University in 2016. Since then, various kinds of optimization have been implemented, which are addressed in this thesis. Finally, applications of SWPs in other neutron scattering techniques like Neutron Larmor Diffraction (NLD) are discussed.
Light scattering properties of spheroidal particles
NASA Technical Reports Server (NTRS)
Asano, S.
1979-01-01
In the present paper, the light scattering characteristics of spheroidal particles are evaluated within the framework of a scattering theory developed for a homogeneous isotropic spheroid. This approach is shown to be well suited for computing the scattering quantities of spheroidal particles of fairly large sizes (up to a size parameter of 30). The effects of particle size, shape, index of refraction, and orientation on the scattering efficiency factors and the scattering intensity functions are studied and interpreted physically. It is shown that, in the case of oblique incidence, the scattering properties of a long slender prolate spheroid resemble those of an infinitely long circular cylinder.
The effect of blood acceleration on the ultrasound power Doppler spectrum
NASA Astrophysics Data System (ADS)
Matchenko, O. S.; Barannik, E. A.
2017-09-01
The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.
Hughes, J; Clarke, F; Purslow, P; Warner, R
2018-05-18
Beef meat colour is impacted by both myoglobin status and the light scattering properties of the muscle, and the specific causative scattering elements of the latter are still unknown. We hypothesize that stretching muscles during rigor will generate a structure which favours light scattering, by increasing the length of the I-band (longer sarcomeres) and that a high rigor temperature will cause protein reconfiguration, changing the muscle structure and promoting light scattering. Muscle fibre fragments were isolated from four beef M. sternomandibularis and subjected to stretching (plus, minus) and three incubation temperatures (5, 15, 35 °C). Reflectance confocal laser scanning microscopy (rCLSM) revealed sarcomere stretching alone was not solely responsible for light scattering development. A high rigor temperature (35 °C) was more favourable for light scattering. Stretching and taking muscle into rigor at 35 °C promoted transverse shrinkage of muscle fibres and increased light scattering and could be applied post-mortem (PM) to reduce the occurrence of problematic dark meat. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
2015-01-15
The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less
Murphy, Ryan J.; Weigandt, Katie M.; Uhrig, David; ...
2015-11-30
The demand for lower cost and flexible electronics has driven industry to develop alternative transparent electrode (TE) materials to replace indium tin oxide (ITO). ITO is the benchmark TE on the market, but its high cost and low flexibility limit it for use in future technologies. Recent work has shown the combination of the conducting polymer poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate (PEDOT:PSS) with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM:TCB) is a viable ITO replacement. This study investigates the nature of the interaction between PEDOT:PSS and EMIM:TCB in the solution state. A combination of scattering methods is used to illustrate a novel, multilength scale modelmore » of this system. At length scales larger than 300nm PEODT:PSS adopts a microgel-like structure, and below ~300nm the system adopts an entangled polyelectrolyte mesh structure. As EMIM:TCB is added, the microgel interior adopts a more neutral polymer mesh structure as EMIM:TCB concentration is increased.« less
Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths
NASA Technical Reports Server (NTRS)
Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.
2016-01-01
This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.
Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.
van den Berg, Thomas J T P
2018-01-01
Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (<1°), whereas light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This obviates proper judgement of the functional importance of absorption, and hinders the appreciation of the Rayleigh nature of what is seen in the slit lamp image. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Optical scattering lengths in large liquid-scintillator neutrino detectors.
Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J
2010-05-01
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.
Optical scattering lengths in large liquid-scintillator neutrino detectors
NASA Astrophysics Data System (ADS)
Wurm, M.; von Feilitzsch, F.; Göger-Neff, M.; Hofmann, M.; Lachenmaier, T.; Lewke, T.; Undagoitia, T. Marrodán; Meindl, Q.; Möllenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Traunsteiner, C.; Winter, J.
2010-05-01
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.
Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile
2016-01-25
The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smetanin, S N
2014-11-30
Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourthmore » Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes – anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes – anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)« less
Atom loss resonances in a Bose-Einstein condensate.
Langmack, Christian; Smith, D Hudson; Braaten, Eric
2013-07-12
Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.
A three-dimensional He-CO potential energy surface with improved long-range behavior
NASA Astrophysics Data System (ADS)
McBane, George C.
2016-12-01
A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.
Faddeev-chiral unitary approach to the K-d scattering length
NASA Astrophysics Data System (ADS)
Mizutani, T.; Fayard, C.; Saghai, B.; Tsushima, K.
2013-03-01
Our earlier Faddeev three-body study in the K--deuteron scattering length, AK-d, is revisited here in light of the recent developments on two fronts: (i) the improved chiral unitary approach to the theoretical description of the coupled K¯N related channels at low energies, and (ii) the new and improved measurement from SIDDHARTA Collaboration of the strong interaction energy shift and width in the lowest K--hydrogen atomic level. Those two, in combination, have allowed us to produce a reliable two-body input to the three-body calculation. All available low-energy K-p observables are well reproduced and predictions for the K¯N scattering lengths and amplitudes, (πΣ)∘ invariant-mass spectra, as well as for AK-d are put forward and compared with results from other sources. The findings of the present work are expected to be useful in interpreting the forthcoming data from CLAS, HADES, LEPS, and SIDDHARTA Collaborations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torok, Aaron
The {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} scattering lengths were calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks was used to perform the chiral extrapolations. To NNLO in the three-flavor chiral expansion, the kaon-baryon processes that were investigated show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be a{sub {pi}}{sup +}{sub {Sigma}}{sup +} = -0.197{+-}0.017more » fm, and a{sub {pi}}{sup +}{sub {Xi}}{sup 0} = -0.098{+-}0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.« less
NASA Astrophysics Data System (ADS)
Karlsson, E. B.; Hartmann, O.; Chatzidimitriou-Dreismann, C. A.; Abdul-Redah, T.
2016-08-01
No consensus has been reached so far about the hydrogen anomaly problem in Compton scattering of neutrons, although strongly reduced H cross-sections were first reported almost 20 years ago. Over the years, this phenomenon has been observed in many different hydrogen-containing materials. Here, we use yttrium hydrides as test objects, YH2, YH3, YD2 and YD3, Y(H x D1-x )2 and Y(H x D1-x )3, for which we observe H anomalies increasing with transferred momentum q. We also observe reduced deuteron cross-sections in YD2 and YD3 and have followed those up to scattering angles of 140° corresponding to high momentum transfers. In addition to data taken using the standard Au-197 foils for neutron energy selection, the present work includes experiments with Rh-103 foils and comparisons were also made with data from different detector setups. The H and D anomalies are discussed in terms of the different models proposed for their interpretation. The ‘electron loss model’ (which assumes energy transfer to excited electrons) is contradicted by the present data, but it is shown here that exchange effects in scattering from two or more protons (or deuterons) in the presence of large zero-point vibrations, can explain quantitatively the reduction of the cross-sections as well as their q-dependence. Decoherence processes also play an essential role. In a scattering time representation, shake-up processes can be followed on the attosecond scale. The theory also shows that large anomalies can appear only when the neutron coherence lengths (determined by energy selection and detector geometry) are about the same size as the distance between the scatterers.
Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu
2016-04-01
Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.
NASA Technical Reports Server (NTRS)
Goggans, Paul M.; Shumpert, Thomas H.
1991-01-01
Transverse electric (TE) and transverse magnetic (TM) scattering from dielectric-filled, cavity-backed apertures in two-dimensional bodies are treated using the method of moments technique to solve a set of combined-field integral equations for the equivalent induced electric and magnetic currents on the exterior of the scattering body and on the associated aperture. Results are presented for the backscatter radar cross section (RCS) versus the electrical size of the scatterer for two different dielectric-filled cavity-backed geometries. The first geometry is a circular cylinder of infinite length which has an infinite length slot aperture along one side. The cavity inside the cylinder is dielectric filled and is also of circular cross section. The two cylinders (external and internal) are of different radii and their respective longitudinal axes are parallel but not collocated. The second is a square cylinder of infinite length which has an infinite length slot aperture along one side. The cavity inside the square cylinder is dielectric-filled and is also of square cross section.
NASA Astrophysics Data System (ADS)
Madsen, A.; Als-Nielsen, J.; Hallmann, J.; Roth, T.; Lu, W.
2016-07-01
β -brass exhibits an archetypical example of an order-disorder transition with a critical behavior that was previously investigated by neutron scattering. The data were well described by the three-dimensional (3d) Ising model but the relatively crude experimental resolution prevented an in-depth examination of the single-length scaling hypothesis, a cornerstone in the theory of critical phenomena. With the development of synchrotron x-ray experiments, high-resolution data could be recorded and surprisingly it was found that the single-length scaling did not hold in most critical systems, possibly due to strain originating from surface defects and/or impurities. In this paper we demonstrate single-length critical behavior using high-resolution x-ray scattering in β -brass. The investigations confirm that β -brass behaves like a 3d Ising system over a wide range of length scales comprising correlated clusters of millions of atoms. To vary the surface sensitivity, experiments have been performed both in Bragg reflection and Laue transmission geometries but without any substantial differences observed in the scaling and critical behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.
2015-06-10
To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energeticmore » protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA.« less
Singh, Surendra; Freeland, J. W.; Fitzsimmons, Michael R.; ...
2016-07-27
Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La 1-yPr y) 1-xCaxMnO 3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La 0.4Pr 0.6) 1-xCaxMnO3 films with x = 0.33 and 0.375, across themore » MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.« less
Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.
NASA Astrophysics Data System (ADS)
Shindler, Joseph Daniel
X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.
Nonperturbative NN scattering in {sup 3}S{sub 1}–{sup 3}D{sub 1} channels of EFT(⁄π)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji-Feng, E-mail: jfyang@phy.ecnu.edu.cn
2013-12-15
The closed-form T matrices in the {sup 3}S{sub 1}–{sup 3}D{sub 1} channels of EFT(⁄π) for NN scattering with the potentials truncated at order O(Q{sup 4}) are presented with the nonperturbative divergences parametrized in a general manner. The stringent constraints imposed by the closed form of the T matrices are exploited in the underlying theory perspective and turned into virtues in the implementation of subtractions and the manifestation of power counting rules in nonperturbative regimes, leading us to the concept of EFT scenario. A number of scenarios of the EFT description of NN scattering are compared with PSA data in termsmore » of effective range expansion and {sup 3}S{sub 1} phase shifts, showing that it is favorable to proceed in a scenario with conventional EFT couplings and sophisticated renormalization in order to have large NN scattering lengths. The informative utilities of fine tuning are demonstrated in several examples and naturally interpreted in the underlying theory perspective. In addition, some of the approaches adopted in the recent literature are also addressed in the light of EFT scenario. -- Highlights: •Closed-form unitary T matrices for NN scattering are obtained in EFT(⁄π). •Nonperturbative properties inherent in such closed-form T matrices are explored. •Nonperturbative renormalization is implemented through exploiting these properties. •Unconventional power counting of couplings is shown to be less favored by PSA data. •The ideas about nonperturbative renormalization here might have wider applications.« less
Controlling the scattering properties of thin, particle-doped coatings
NASA Astrophysics Data System (ADS)
Rogers, William; Corbett, Madeleine; Manoharan, Vinothan
2013-03-01
Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.
The GMO Sumrule and the πNN Coupling Constant
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.
The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
A scattering model for defoliated vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1986-01-01
A scattering model for defoliated vegetation is conceived as a layer of dielectric, finite-length cylinders with specified size and orientation distributions above an irregular ground surface. The scattering phase matrix of a single cylinder is computed, then the radiative transfer technique is applied to link volume scattering from vegetation to surface scattering from the soil surface. Polarized and depolarized scattering are computed and the effects of the cylinder size and orientation distributions are illustrated. It is found that size and orientation distributions have significant effects on the backscattered signal. The model is compared with scattering from defoliated trees and agricultural crops.
Remarks on the pion-nucleon σ-term
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2016-09-01
The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.
NASA Astrophysics Data System (ADS)
Cannavacciuolo, Luigi; Skov Pedersen, Jan; Schurtenberger, Peter
2002-03-01
Results of an extensive Monte Carlo (MC) study on both single and many semiflexible charged chains with excluded volume (EV) are summarized. The model employed has been tailored to mimic wormlike micelles in solution. Simulations have been performed at different ionic strengths of added salt, charge densities, chain lengths and volume fractions Φ, covering the dilute to concentrated regime. At infinite dilution the scattering functions can be fitted by the same fitting functions as for uncharged semiflexible chains with EV, provided that an electrostatic contribution bel is added to the bare Kuhn length. The scaling of bel is found to be more complex than the Odijk-Skolnick-Fixman predictions, and qualitatively compatible with more recent variational calculations. Universality in the scaling of the radius of gyration is found if all lengths are rescaled by the total Kuhn length. At finite concentrations, the simple model used is able to reproduce the structural peak in the scattering function S(q) observed in many experiments, as well as other properties of polyelectrolytes (PELs) in solution. Universal behaviour of the forward scattering S(0) is established after a rescaling of Φ. MC data are found to be in very good agreement with experimental scattering measurements with equilibrium PELs, which are giant wormlike micelles formed in mixtures of nonionic and ionic surfactants in dilute aqueous solution, with added salt.
2017-03-16
stimulated Brillouin scattering [SBS]) due to the large intensity times length product. Efforts to raise the power threshold include 1) reducing the...ARL-TR-7979 ● MAR 2017 US Army Research Laboratory Stimulated Brillouin Scattering (SBS) Suppression and Long Delivery Fibers at...return it to the originator. ARL-TR-7979 ● MAR 2017 US Army Research Laboratory Stimulated Brillouin Scattering (SBS
Small Angle Neutron Scattering Observation of Chain Retraction after a Large Step Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.; Heinrich, M.; Pyckhout-Hintzen, W.
The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model. Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective constraint release, using parameters obtained mainly from linear rheology. The theory captures the full range of scattering vectors once the crossover to fluctuations on length scales belowmore » the tube diameter is accounted for.« less
Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions
Chu, Benjamin; Fang, Dufei; Mao, Yimin
2015-01-01
The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340
Deviations from Rayleigh statistics in ultrasonic speckle.
Tuthill, T A; Sperry, R H; Parker, K J
1988-04-01
The statistics of speckle patterns in ultrasound images have potential for tissue characterization. In "fully developed speckle" from many random scatterers, the amplitude is widely recognized as possessing a Rayleigh distribution. This study examines how scattering populations and signal processing can produce non-Rayleigh distributions. The first order speckle statistics are shown to depend on random scatterer density and the amplitude and spacing of added periodic scatterers. Envelope detection, amplifier compression, and signal bandwidth are also shown to cause distinct changes in the signal distribution.
How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Hengxiao; Wang Junxian; Cai Zhenyi
Studies have shown that UV/optical light curves of quasars can be described using the prevalent damped random walk (DRW) model, also known as the Ornstein–Uhlenbeck process. A white noise power spectral density (PSD) is expected at low frequency in this model; however, a direct observational constraint to the low-frequency PSD slope is difficult due to the limited lengths of the light curves available. Meanwhile, quasars show scatter in their DRW parameters that is too large to be attributed to uncertainties in the measurements and dependence on the variation of known physical factors. In this work we present simulations showing that,more » if the low-frequency PSD deviates from the DRW, the red noise leakage can naturally produce large scatter in the variation parameters measured from simulated light curves. The steeper the low-frequency PSD slope, the larger scatter we expect. Based on observations of SDSS Stripe 82 quasars, we find that the low-frequency PSD slope should be no steeper than −1.3. The actual slope could be flatter, which consequently requires that the quasar variabilities should be influenced by other unknown factors. We speculate that the magnetic field and/or metallicity could be such additional factors.« less
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-10-01
The influence of Kohn singularity on the occurrence scattering time for the electron-ion interaction is investigated in degenerate quantum collisional plasmas. The first-order eikonal analysis is used to obtain the scattering amplitude and the occurrence scattering time. The result shows that the Friedel oscillation due to the Kohn singularity suppresses the advance phenomena of occurrence scattering time in both forward and backward scattering domains. It is shown that the increase of plasmon energy would reduce the time advance for both forward and backward scattering domains. However, the increase of Fermi energy would enhance the phenomena of time advance. It is also found that the time advance with high collision frequency is larger than that with low collision frequency for the forward scattering domain and vice versa for the backward scattering domain. We have shown that the time advance is stronger in general for the forward scattering domain than that for the backward scattering domain.
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Pritchett, P. L.
1988-01-01
Beam-plasma interactions associated with the cross-field and field-aligned injection of electron beams from spacecraft were investigated using a two-dimensional (three velocity component) electrostatic particle simulations. It is shown that the beam properties and plasma response can be characterized well by the ratio between the stagnation time and the plasma response time, which depends on the ratio of the ambient plasma density to the beam density, the beam width, the beam energy, and the spacecraft length. It was found that the beams injected across the field lines tend to lose their coherence after about one or two gyrations due to space-charge oscillations induced by the beam, irrespective of the spacecraft charging. These oscillations scatter the beam electrons into a hollow cylinder of a radius equal to a beam electron gyroradius and thickness of the order of two beam Debye lengths. Parallel injected beams are subjected to similar oscillations, which cause the beam to expand to fill a solid cylinder of a comparable thickness.
Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M
2015-05-04
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stevens, Joanna S.; Gainar, Adrian; Suljoti, Edlira; ...
2015-03-18
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO–LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs andmore » σ* shape resonances in the NEXAFS spectra. Finally, this provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute–solvent interactions.« less
Correlating morphology to dc conductivity in polymerized ionic liquids
NASA Astrophysics Data System (ADS)
Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James
Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.
Spectral effects in the propagation of chirped laser pulses in uniform underdense plasma
NASA Astrophysics Data System (ADS)
Pathak, Naveen; Zhidkov, Alexei; Hosokai, Tomonao; Kodama, Ryosuke
2018-01-01
Propagation of linearly chirped and linearly polarized, powerful laser pulses in uniform underdense plasma with their duration exceeding the plasma wave wavelength is examined via 3D fully relativistic particle-in-cell simulations. Spectral evolution of chirped laser pulses, determined by Raman scattering, essentially depends on the nonlinear electron evacuation from the first wake bucket via modulation of the known parameter /n e ( r ) ω0 2 γ . Conversely, the relative motion of different spectral components inside a pulse changes the evolution of the pulse length and, therefore, the ponderomotive forces at the pulse rear. Such longitudinal dynamics of the pulse length provoke a parametric resonance in the laser wake with continuous electron self-injection for any chirped pulses. However, the total charge of accelerated electrons and their energy distribution essentially depends on the chirp. Besides, negatively chirped laser pulses are shown to be useful for spatially resolved measurements of the plasma density profiles and for rough estimations of the laser pulse intensity evolution in underdense plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590
2013-06-15
The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with anmore » increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, David B.; Gibbons, Steven J.; Rodgers, Arthur J.
In this approach, small scale-length medium perturbations not modeled in the tomographic inversion might be described as random fields, characterized by particular distribution functions (e.g., normal with specified spatial covariance). Conceivably, random field parameters (scatterer density or scale length) might themselves be the targets of tomographic inversions of the scattered wave field. As a result, such augmented models may provide processing gain through the use of probabilistic signal sub spaces rather than deterministic waveforms.
Harris, David B.; Gibbons, Steven J.; Rodgers, Arthur J.; ...
2012-05-01
In this approach, small scale-length medium perturbations not modeled in the tomographic inversion might be described as random fields, characterized by particular distribution functions (e.g., normal with specified spatial covariance). Conceivably, random field parameters (scatterer density or scale length) might themselves be the targets of tomographic inversions of the scattered wave field. As a result, such augmented models may provide processing gain through the use of probabilistic signal sub spaces rather than deterministic waveforms.
Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 to 2 GHz
NASA Technical Reports Server (NTRS)
Tan, Shurun; Aksoy, Mustafa; Brogioni, Marco; Macelloni, Giovanni; Durand, Michael; Jezek, Kenneth C.; Wang, Tian-Lin; Tsang, Leung; Johnson, Joel T.; Drinkwater, Mark R.;
2015-01-01
We investigate physical effects influencing 0.5-2 GHz brightness temperatures of layered polar firn to support the Ultra Wide Band Software Defined Radiometer (UWBRAD) experiment to be conducted in Greenland and in Antarctica. We find that because ice particle grain sizes are very small compared to the 0.5-2 GHz wavelengths, volume scattering effects are small. Variations in firn density over cm- to m-length scales, however, cause significant effects. Both incoherent and coherent models are used to examine these effects. Incoherent models include a 'cloud model' that neglects any reflections internal to the ice sheet, and the DMRT-ML and MEMLS radiative transfer codes that are publicly available. The coherent model is based on the layered medium implementation of the fluctuation dissipation theorem for thermal microwave radiation from a medium having a nonuniform temperature. Density profiles are modeled using a stochastic approach, and model predictions are averaged over a large number of realizations to take into account an averaging over the radiometer footprint. Density profiles are described by combining a smooth average density profile with a spatially correlated random process to model density fluctuations. It is shown that coherent model results after ensemble averaging depend on the correlation lengths of the vertical density fluctuations. If the correlation length is moderate or long compared with the wavelength (approximately 0.6x longer or greater for Gaussian correlation function without regard for layer thinning due to compaction), coherent and incoherent model results are similar (within approximately 1 K). However, when the correlation length is short compared to the wavelength, coherent model results are significantly different from the incoherent model by several tens of kelvins. For a 10-cm correlation length, the differences are significant between 0.5 and 1.1 GHz, and less for 1.1-2 GHz. Model results are shown to be able to match the v-pol SMOS data closely and predict the h-pol data for small observation angles.
Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness
NASA Astrophysics Data System (ADS)
Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A.; García-Loureiro, Antonio J.; Seoane, Natalia; Kalna, Karol
2018-04-01
Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando’s and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height (Δ_RMS ). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando’s model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with <1 1 0> channel orientation are affected more by the IRS than those with the <1 0 0> crystal orientation. Finally, Λ and Δ_RMS are shown to affect the device performance similarly. A change in values by 30% (Λ) or 20% (Δ_RMS ) results in an increase (decrease) of up to 13% in the drive current.
Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness.
Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A; García-Loureiro, Antonio J; Seoane, Natalia; Kalna, Karol
2018-04-11
Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando's and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height ([Formula: see text]). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando's model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with [Formula: see text] channel orientation are affected more by the IRS than those with the [Formula: see text] crystal orientation. Finally, Λ and [Formula: see text] are shown to affect the device performance similarly. A change in values by 30% (Λ) or [Formula: see text] ([Formula: see text]) results in an increase (decrease) of up to [Formula: see text] in the drive current.
High-Energy Density science at the Linac Coherent Light Source
NASA Astrophysics Data System (ADS)
Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.
2016-03-01
The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. In recent experiments we have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. This technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.
High-Energy Density science at the Linac Coherent Light Source
Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.
2016-04-01
The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on amore » scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.« less
Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams
Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael
2017-01-01
Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nanostructured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all lithographically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint. PMID:28875030
Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams.
Pflüger, Mika; Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael
2017-07-01
Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano-structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho-graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint.
Plasmons in graphene nanoribbons
Karimi, F.; Knezevic, I.
2017-09-12
We calculate the dielectric function and plasmonic response of armchair (aGNRs) and zigzag (zGNRs) graphene nanoribbons using the self-consistent-field approach within the Markovian master equation formalism (SCF-MMEF). We accurately account for electron scattering with phonons, ionized impurities, and line-edge roughness and show that electron scattering with surface optical phonons is much more prominent in GNRs than in graphene. We calculate the loss function, plasmon dispersion, and the plasmon propagation length in supported GNRs. Midinfrared plasmons in supported (3N+2)-aGNRs can propagate as far as several microns at room temperature, with 4–5-nm-wide ribbons having the longest propagation length. In other types ofmore » aGNRs and in zGNRs, the plasmon propagation length seldom exceeds 100 nm. Plasmon propagation lengths are much longer on nonpolar (e.g., diamondlike carbon) than on polar substrates (e.g., SiO 2 or hBN), where electrons scatter strongly with surface optical phonons. In conclusion, we also show that the aGNR plasmon density is nearly uniform across the ribbon, while in zGNRs, because of the highly localized edge states, plasmons of different spin polarization are accumulated near the opposite edges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br; Garcia, Amauri; Spinelli, José E.
Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be themore » most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag content and Ṫ{sub L}. • Rappaz-Boettinger model reasonably estimated the experimental scatter of λ{sub 2}.« less
Progress in long scale length laser plasma interactions
NASA Astrophysics Data System (ADS)
Glenzer, S. H.; Arnold, P.; Bardsley, G.; Berger, R. L.; Bonanno, G.; Borger, T.; Bower, D. E.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S. C.; Campbell, K.; Chrisp, M. P.; Cohen, B. I.; Constantin, C.; Cooper, F.; Cox, J.; Dewald, E.; Divol, L.; Dixit, S.; Duncan, J.; Eder, D.; Edwards, J.; Erbert, G.; Felker, B.; Fornes, J.; Frieders, G.; Froula, D. H.; Gardner, S. D.; Gates, C.; Gonzalez, M.; Grace, S.; Gregori, G.; Greenwood, A.; Griffith, R.; Hall, T.; Hammel, B. A.; Haynam, C.; Heestand, G.; Henesian, M.; Hermes, G.; Hinkel, D.; Holder, J.; Holdner, F.; Holtmeier, G.; Hsing, W.; Huber, S.; James, T.; Johnson, S.; Jones, O. S.; Kalantar, D.; Kamperschroer, J. H.; Kauffman, R.; Kelleher, T.; Knight, J.; Kirkwood, R. K.; Kruer, W. L.; Labiak, W.; Landen, O. L.; Langdon, A. B.; Langer, S.; Latray, D.; Lee, A.; Lee, F. D.; Lund, D.; MacGowan, B.; Marshall, S.; McBride, J.; McCarville, T.; McGrew, L.; Mackinnon, A. J.; Mahavandi, S.; Manes, K.; Marshall, C.; Menapace, J.; Mertens, E.; Meezan, N.; Miller, G.; Montelongo, S.; Moody, J. D.; Moses, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Ng, E.; Niemann, C.; Nikitin, A.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rekow, V.; Rinnert, R.; Riordan, B.; Rhodes, M.; Roberts, V.; Robey, H.; Ross, G.; Sailors, S.; Saunders, R.; Schmitt, M.; Schneider, M. B.; Shiromizu, S.; Spaeth, M.; Stephens, A.; Still, B.; Suter, L. J.; Tietbohl, G.; Tobin, M.; Tuck, J.; Van Wonterghem, B. M.; Vidal, R.; Voloshin, D.; Wallace, R.; Wegner, P.; Whitman, P.; Williams, E. A.; Williams, K.; Winward, K.; Work, K.; Young, B.; Young, P. E.; Zapata, P.; Bahr, R. E.; Seka, W.; Fernandez, J.; Montgomery, D.; Rose, H.
2004-12-01
The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 × 1015 W cm-2. The targets were filled with 1 atm of CO2 producing up to 7 mm long homogeneously heated plasmas with densities of ne = 6 × 1020 cm-3 and temperatures of Te = 2 keV. The high energy in an NIF quad of beams of 16 kJ, illuminating the target from one direction, creates unique conditions for the study of laser-plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x-rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ~1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 3% for the smallest length (~2 mm), increasing to 10-12% for ~7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modelling of the laser-plasma interactions at ignition-size scale lengths.
Yadav, P Jaya Prakash; Ghosh, Goutam; Maiti, Biswajit; Aswal, Vinod K; Goyal, P S; Maiti, Pralay
2008-04-17
Thermoreversible gelation of poly(vinylidene fluoride) (PVDF) has been studied in a new series of solvents (phthalates), for example, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and dihexyl phthalate (DHP) as a function of temperature and polymer concentration, both by test tube tilting and dynamic light scattering (DLS) method. The effect of aliphatic chain length (n) of diesters on the gelation kinetics, structure/microstructure and morphology of PVDF gels has been examined. Gelation rate was found to increase with increasing aliphatic chain length of diester. DLS results indicate that the sol-gel transformation proceeds via two-steps: first, microgel domains were formed, and then the infinite three-dimensional (3D) network is established by connecting microgels through polymer chains. The crystallites are responsible for 3D network for gelation in phthalates, and alpha-polymorph is formed during gelation producing higher amount of crystallinity with increasing aliphatic chain length of diester. Morphology of the networks of dried gels in different phthalates showed that fibril thickness and lateral dimensions decrease with higher homologues of phthalates. The scattering intensity is fitted with Debye-Bueche model in small-angle neutron scattering and suggested that both the correlation length and interlamellar spacing increases with n. A model has been proposed, based on electronic structure calculations, to explain the conformation of PVDF chain in presence of various phthalates and their complexes, which offer the cause of higher gelation rate for longer aliphatic chain length.
Simulation, Measurements and Image Processing for Capillary Optical Digital Mammography
2000-07-01
is the length of the optic. For a point P on the film, scattered radiation could come from any direction in the solid angle Qpatient , which is the...optic p .’optic - N, = T + npatient (13) where Ns-optic is the number of scattered x rays with the optic, N, is the number of scattered x rays without
Raman scattering in a whispering mode optical waveguide
Kurnit, Norman A.
1982-01-01
A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.
NASA Astrophysics Data System (ADS)
Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.
2018-04-01
The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.
Multiple scattering induced negative refraction of matter waves
Pinsker, Florian
2016-01-01
Starting from fundamental multiple scattering theory it is shown that negative refraction indices are feasible for matter waves passing a well-defined ensemble of scatterers. A simple approach to this topic is presented and explicit examples for systems of scatterers in 1D and 3D are stated that imply negative refraction for a generic incoming quantum wave packet. Essential features of the effective scattering field, densities and frequency spectrum of scatterers are considered. Additionally it is shown that negative refraction indices allow perfect transmission of the wave passing the ensemble of scatterers. Finally the concept of the superlens is discussed, since it is based on negative refraction and can be extended to matter waves utilizing the observations presented in this paper which thus paves the way to ‘untouchable’ quantum systems in analogy to cloaking devices for electromagnetic waves. PMID:26857266
Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning.
Kupriyanova, Natalia S; Netchvolodov, Kirill K; Sadova, Anastasia A; Cherepanova, Marina D; Ryskov, Alexei P
2015-11-10
Ribosomal DNA (rDNA) in the human genome is represented by tandem repeats of 43 kb nucleotide sequences that form nucleoli organizers (NORs) on each of five pairs of acrocentric chromosomes. RDNA-similar segments of different lengths are also present on (NOR)(-) chromosomes. Many of these segments contain nucleotide substitutions, supplementary microsatellite clusters, and extended deletions. Recently, it was shown that, in addition to ribosome biogenesis, nucleoli exhibit additional functions, such as cell-cycle regulation and response to stresses. In particular, several stress-inducible loci located in the ribosomal intergenic spacer (rIGS) produce stimuli-specific noncoding nucleolus RNAs. By mapping the 5'/3' ends of the rIGS segments scattered throughout (NOR)(-) chromosomes, we discovered that the bonds in the rIGS that were most often susceptible to disruption in the rIGS were adjacent to, or overlapped with stimuli-specific inducible loci. This suggests the interconnection of the two phenomena - nucleoli functioning and the scattering of rDNA-like sequences on (NOR)(-) chromosomes. Copyright © 2015 Elsevier B.V. All rights reserved.
Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirakawa, Evan; Pitarka, Arben; Mellors, Robert
One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less
Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media
Hirakawa, Evan; Pitarka, Arben; Mellors, Robert
2016-07-19
One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less
Concentric layered Hermite scatterers
NASA Astrophysics Data System (ADS)
Astheimer, Jeffrey P.; Parker, Kevin J.
2018-05-01
The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.
Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering
NASA Astrophysics Data System (ADS)
Engle, B. J.; Roberts, R. A.; Grandin, R. J.
2018-04-01
This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.
NASA Astrophysics Data System (ADS)
Hammer, H.-W.
2018-07-01
Few-body systems with large scattering length display universal properties which are independent of the details of short-distance dynamics. These features include universal correlations between few-body observables and a geometric spectrum of three- and higher-body bound states. They can be observed in a wide range of systems from ultracold atoms to hadrons and nuclei. In this contribution, we review universality in nuclei dominated by few-body physics. In particular, we discuss halo nuclei and the description of light nuclei in a strict expansion around the unitary limit of infinite scattering length.
a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.; Wycech, S.
A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).
A model for attenuation and scattering in the Earth's crust
NASA Astrophysics Data System (ADS)
Toksöz, M. Nafi; Dainty, Anton M.; Reiter, Edmund; Wu, Ru-Shan
1988-03-01
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda waves Rg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1 10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constant Q), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedo B 0=0.8 0.9 and a scattering extinction length of 17 32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. The Rg results indicate that Q increases with depth in the upper kilometer or two of the crust, at least in New England. Coda Q appears to be equivalent to intrinsic (anelastic) Q and indicates that this Q increases with frequency as Q=Q o f n , where n is in the range of 0.2 0.9. The intrinsic attenuation in the crust can be explained by a high constant Q (500≤ Q o≤2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence ( Q≃ Q o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms. Q is low near the surface and high in the body of the crust.
Whittaker, Jasmin L; Balu, Rajkamal; Knott, Robert; de Campo, Liliana; Mata, Jitendra P; Rehm, Christine; Hill, Anita J; Dutta, Naba K; Roy Choudhury, Namita
2018-07-15
Regenerated Bombyx mori silk fibroin (RSF) is a widely recognized protein for biomedical applications; however, its hierarchical gel structure is poorly understood. In this paper, the hierarchical structure of photocrosslinked RSF and RSF-based hybrid hydrogel systems: (i) RSF/Rec1-resilin and (ii) RSF/poly(N-vinylcaprolactam (PVCL) is reported for the first time using small-angle scattering (SAS) techniques. The structure of RSF in dilute to concentrated solution to fabricated hydrogels were characterized using small angle X-ray scattering (SAXS), small angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques. The RSF hydrogel exhibited three distinctive structural characteristics: (i) a Porod region in the length scale of 2 to 3nm due to hydrophobic domains (containing β-sheets) which exhibits sharp interfaces with the amorphous matrix of the hydrogel and the solvent, (ii) a Guinier region in the length scale of 4 to 20nm due to hydrophilic domains (containing turns and random coil), and (iii) a Porod-like region in the length scale of few micrometers due to water pores/channels exhibiting fractal-like characteristics. Addition of Rec1-resilin or PVCL to RSF and subsequent crosslinking systematically increased the nanoscale size of hydrophobic and hydrophilic domains, whereas decreased the homogeneity of pore size distribution in the microscale. The presented results have implications on the fundamental understanding of the structure-property relationship of RSF-based hydrogels. Copyright © 2018. Published by Elsevier B.V.
A covariant multiple scattering series for elastic projectile-target scattering
NASA Technical Reports Server (NTRS)
Gross, Franz; Maung-Maung, Khin
1989-01-01
A covariant formulation of the multiple scattering series for the optical potential is presented. The case of a scalar nucleon interacting with a spin zero isospin zero A-body target through meson exchange, is considered. It is shown that a covariant equation for the projectile-target t-matrix can be obtained which sums the ladder and crossed ladder diagrams efficiently. From this equation, a multiple scattering series for the optical potential is derived, and it is shown that in the impulse approximation, the two-body t-matrix associated with the first order optical potential is the one in which one particle is kept on mass-shell. The meaning of various terms in the multiple scattering series is given. The construction of the first-order optical potential for elastic scattering calculations is described.
Softening of the stiffness of bottle-brush polymers by mutual interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolisetty, S.; Airaud, C.; Rosenfeldt, S.
2007-04-15
We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380 nm and a persistence length of 17.5 nm.more » An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration (40.59 g/l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.« less
NASA Technical Reports Server (NTRS)
Kuehn, C. E.; Himwich, W. E.; Clark, T. A.; Ma, C.
1991-01-01
The internal consistency of the baseline-length measurements derived from analysis of several independent VLBI experiments is an estimate of the measurement precision. The paper investigates whether the inclusion of water vapor radiometer (WVR) data as an absolute calibration of the propagation delay due to water vapor improves the precision of VLBI baseline-length measurements. The paper analyzes 28 International Radio Interferometric Surveying runs between June 1988 and January 1989; WVR measurements were made during each session. The addition of WVR data decreased the scatter of the length measurements of the baselines by 5-10 percent. The observed reduction in the scatter of the baseline lengths is less than what is expected from the behavior of the formal errors, which suggest that the baseline-length measurement precision should improve 10-20 percent if WVR data are included in the analysis. The discrepancy between the formal errors and the baseline-length results can be explained as the consequence of systematic errors in the dry-mapping function parameters, instrumental biases in the WVR and the barometer, or both.
Proximity effects in ferromagnet-superconductor structures
NASA Astrophysics Data System (ADS)
Halterman, Klaus Byron
I present an extensive theoretical investigation of the proximity effects that occur in ferromagnet/superconductor systems. I use a numerical method to solve self consistently the Bogoliubov-de Gennes equations in the continuum. I obtain the pair amplitude and the local density of states (DOS), and use these results to extract the relevant lengths characterizing both the leakage of superconductivity into the magnet and to study spin splitting induced in the superconductor. These phenomena are investigated as a function of parameters such as temperature, magnet polarization, interfacial scattering, sample size and Fermi wave vector mismatch, all of which turn out to have an important influence on the results. These comprehensive results should help characterize and analyze future data, and are shown to be in agreement with existing experiments.
Soft x-ray speckle from rough surfaces
NASA Astrophysics Data System (ADS)
Porter, Matthew Stanton
Dynamic light scattering has been of great use in determining diffusion times for polymer solutions. At the same time, polymer thin films are becoming of increasing importance, especially in the semiconductor industry where they are used as photoresists and interlevel dielectrics. As the dimensions of these devices decrease we will reach a point where lasers will no longer be able to probe the length scales of interest. Current laser wavelengths limit the size of observable diffusion lengths to 180-700 nm. This dissertation will discuss attempts at pushing dynamic fight scattering experiments into the soft x-ray region so that we can examine fluctuations in polymer thin films on the molecular length scale. The dissertation explores the possibility of carrying out a dynamic light scattering experiment in the soft x-ray regime. A detailed account of how to meet the basic requirements for a coherent scattering experiment in the soft x-ray regime win be given. In addition, a complete description of the chamber design will be discussed. We used our custom designed scattering chamber to collect reproducible coherent soft x-ray scattering data from etched silicon wafers and from polystyrene coated silicon wafers. The data from the silicon wafers followed the statistics for a well-developed speckle pattern while the data from the polystyrene films exhibited Poisson statistics. We used the data from both the etched wafers and the polystyrene coated wafers to place a lower limit of ~20 Å on the RMS surface roughness of samples which will produce well defined speckle patterns for the current detector setup. Future experiments which use the criteria set forth in this dissertation have the opportunity to be even more successful than this dissertation project.
Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors
NASA Astrophysics Data System (ADS)
Sánchez-Gil, José A.; Maradudin, Alexei A.
2005-06-01
The scattering of surface-plasmon polaritons (SPP) by finite arrays of one-dimensional nanodefects on metal surfaces is theoretically investigated on the basis of the reduced Rayleigh equation. Numerical calculations are carried out that rigorously account for all the scattering channels: SPP reflection and transmission, and radiative leakage. We analyze the range of parameters (defect size and number) for which high SPP reflection efficiency (low radiative losses) is achieved within a SPP band gap (negligible SPP transmission), neglecting ohmic losses (justified for array lengths significantly shorter than the SPP inelastic length): Smaller defects play better as SPP mirrors (e.g., efficiency >90% at λ ˜650nm for Gaussian ridges/grooves with sub-30nm height and half-width) than larger defects, since the latter yield significant radiative losses.
Bauerschmidt, S T; Novoa, D; Russell, P St J
2015-12-11
In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers.
Strategies for Multi-Modal Analysis
NASA Astrophysics Data System (ADS)
Hexemer, Alexander; Wang, Cheng; Pandolfi, Ronald; Kumar, Dinesh; Venkatakrishnan, Singanallur; Sethian, James; Camera Team
This section on soft materials will be dedicated to discuss the extraction of the chemical distribution and spatial arrangement of constituent elements and functional groups at multiple length scales and, thus, the examination of collective dynamics, transport, and electronic ordering phenomena. Traditional measures of structure in soft materials have relied heavily on scattering and imaging based techniques due to their capacity to measure nanoscale dimensions and their capacity to monitor structure under conditions of dynamic stress loading. Special attentions are planned to focus on the application of resonant x-ray scattering, contrast-varied neutron scattering, analytical transmission electron microscopy, and their combinations. This session aims to bring experts in both scattering and electron microscope fields to discuss recent advances in selectively characterizing structural architectures of complex soft materials, which have often multi-components with a wide range of length scales and multiple functionalities, and thus hopes to foster novel ideas to decipher a higher level of structural complexity in soft materials in future. CAMERA, Early Career Award.
NASA Astrophysics Data System (ADS)
Rogers, Jeremy D.
2016-03-01
Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.
Speckle-field propagation in 'frozen' turbulence: brightness function approach
NASA Astrophysics Data System (ADS)
Dudorov, Vadim V.; Vorontsov, Mikhail A.; Kolosov, Valeriy V.
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
Speckle-field propagation in 'frozen' turbulence: brightness function approach.
Dudorov, Vadim V; Vorontsov, Mikhail A; Kolosov, Valeriy V
2006-08-01
Speckle-field long- and short-exposure spatial correlation characteristics for target-in-the-loop (TIL) laser beam propagation and scattering in atmospheric turbulence are analyzed through the use of two different approaches: the conventional Monte Carlo (MC) technique and the recently developed brightness function (BF) method. Both the MC and the BF methods are applied to analysis of speckle-field characteristics averaged over target surface roughness realizations under conditions of 'frozen' turbulence. This corresponds to TIL applications where speckle-field fluctuations associated with target surface roughness realization updates occur within a time scale that can be significantly shorter than the characteristic atmospheric turbulence time. Computational efficiency and accuracy of both methods are compared on the basis of a known analytical solution for the long-exposure mutual correlation function. It is shown that in the TIL propagation scenarios considered the BF method provides improved accuracy and requires significantly less computational time than the conventional MC technique. For TIL geometry with a Gaussian outgoing beam and Lambertian target surface, both analytical and numerical estimations for the speckle-field long-exposure correlation length are obtained. Short-exposure speckle-field correlation characteristics corresponding to propagation in 'frozen' turbulence are estimated using the BF method. It is shown that atmospheric turbulence-induced static refractive index inhomogeneities do not significantly affect the characteristic correlation length of the speckle field, whereas long-exposure spatial correlation characteristics are strongly dependent on turbulence strength.
NASA Astrophysics Data System (ADS)
Konik, Arda; Madsen, Mark T.; Sunderland, John J.
2012-10-01
In human emission tomography, combined PET/CT and SPECT/CT cameras provide accurate attenuation maps for sophisticated scatter and attenuation corrections. Having proven their potential, these scanners are being adapted for small animal imaging using similar correction approaches. However, attenuation and scatter effects in small animal imaging are substantially less than in human imaging. Hence, the value of sophisticated corrections is not obvious for small animal imaging considering the additional cost and complexity of these methods. In this study, using GATE Monte Carlo package, we simulated the Inveon small animal SPECT (single pinhole collimator) scanner to find the scatter fractions of various sizes of the NEMA-mouse (diameter: 2-5.5 cm , length: 7 cm), NEMA-rat (diameter: 3-5.5 cm, length: 15 cm) and MOBY (diameter: 2.1-5.5 cm, length: 3.5-9.1 cm) phantoms. The simulations were performed for three radionuclides commonly used in small animal SPECT studies:99mTc (140 keV), 111In (171 keV 90% and 245 keV 94%) and 125I (effective 27.5 keV). For the MOBY phantoms, the total Compton scatter fractions ranged (over the range of phantom sizes) from 4-10% for 99mTc (126-154 keV), 7-16% for 111In (154-188 keV), 3-7% for 111In (220-270 keV) and 17-30% for 125I (15-45 keV) including the scatter contributions from the tungsten collimator, lead shield and air (inside and outside the camera heads). For the NEMA-rat phantoms, the scatter fractions ranged from 10-15% (99mTc), 17-23% 111In: 154-188 keV), 8-12% (111In: 220-270 keV) and 32-40% (125I). Our results suggest that energy window methods based on solely emission data are sufficient for all mouse and most rat studies for 99mTc and 111In. However, more sophisticated methods may be needed for 125I.
Single Crystal Diffuse Neutron Scattering
Welberry, Richard; Whitfield, Ross
2018-01-11
Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less
Single Crystal Diffuse Neutron Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welberry, Richard; Whitfield, Ross
Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less
Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity
NASA Astrophysics Data System (ADS)
Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.
2018-03-01
The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.
Phononic Origins of Friction in Carbon Nanotube Oscillators.
Prasad, Matukumilli V D; Bhattacharya, Baidurya
2017-04-12
Phononic coupling can have a significant role in friction between nanoscale surfaces. We find frictional dissipation per atom in carbon nanotube (CNT) oscillators to depend significantly on interface features such as contact area, commensurability, and by end-capping of the inner core. We perform large-scale phonon wavepacket MD simulations to study phonon coupling between a 250 nm long (10,10) outer tube and inner cores of four different geometries. Five different phonon polarizations known to have dominant roles in thermal transport are selected, and transmission coefficient plots for a range of phonon energies along with phonon scattering dynamics at specific energies are obtained. We find that the length of interface affects friction only through LA phonon scattering and has a significant nonlinear effect on total frictional force. Incommensurate contact does not always give rise to superlubricity: the net effect of two competing interaction mechanisms shown by longitudinal and transverse phonons decides the role of commensurability. Capping of the core has no effect on acoustic phonons but destroys the coherence of transverse optical phonons and creates diffusive scattering. In contrast, the twisting and radial breathing phonon modes have perfect transmission at all energies and can be deemed as the enablers of ultralow friction in CNT oscillators. Our work suggests that tuning of interface geometries can give rise to desirable friction properties in nanoscale devices.
Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Eliot D; Ma, Jie; Delaire, Olivier A
2015-01-01
Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.
Novel measuring strategies in neutron interferometry
NASA Astrophysics Data System (ADS)
Bonse, Ulrich; Wroblewski, Thomas
1985-04-01
Angular misalignment of a sample in a single crystal neutron interferometer leads to systematic errors of the effective sample thickness and in this way to errors in the determination of the coherent scattering length. The misalignment can be determined and the errors can be corrected by a second measurement at a different angular sample position. Furthermore, a method has been developed which allows supervision of the wavelength during the measurements. These two techniques were tested by determining the scattering length of copper. A value of bc = 7.66(4) fm was obtained which is in excellent agreement with previous measurements.
Pair-correlation function of a metastable helium Bose-Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz
2004-02-01
The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
A scattering model for defoliated vegetation is developed by treating a layer of defoliated vegetation as a collection of randomly oriented dielectric cylinders of finite length over an irregular ground surface. Both polarized and depolarized backscattering are computed and their behavior versus the volume fraction, the incidence angle, the frequency, the angular distribution and the cylinder size are illustrated. It is found that both the angular distribution and the cylinder size have significant effects on the backscattered signal. The present theory is compared with measurements from defoliated vegetations.
Three-body approach to the K-d scattering length in particle basis
NASA Astrophysics Data System (ADS)
Bahaoui, A.; Fayard, C.; Mizutani, T.; Saghai, B.
2002-11-01
We report on the first calculation of the scattering length AK-d based on a relativistic three-body approach where the K¯N coupled channel two-body input amplitudes have been obtained with the chiral SU(3) constraint, but with isospin symmetry breaking effects taken into account. Results are compared with a recent calculation applying a similar set of two-body amplitudes, based on the fixed center approximation, and for which we find significant deviations from the three-body results. Effects of the deuteron D-wave component, pion-nucleon, and hyperon-nucleon interactions are also evaluated.
Intermediate scattering function of an anisotropic active Brownian particle
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-01-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations. PMID:27830719
Intermediate scattering function of an anisotropic active Brownian particle.
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-10
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Intermediate scattering function of an anisotropic active Brownian particle
NASA Astrophysics Data System (ADS)
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Electron scattering in graphene with adsorbed NaCl nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał
2015-01-07
In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The mainmore » inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that themore » renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.« less
Coherent scattering of a spherical wave from an irregular surface. [antenna pattern effects
NASA Technical Reports Server (NTRS)
Fung, A. K.
1983-01-01
The scattering of a spherical wave from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna pattern can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane wave incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna pattern and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.
Light scattering from an atomic gas under conditions of quantum degeneracy
NASA Astrophysics Data System (ADS)
Porozova, V. M.; Gerasimov, L. V.; Havey, M. D.; Kupriyanov, D. V.
2018-05-01
Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green's function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a nondegenerate atomic sample of the same density and size.
NASA Astrophysics Data System (ADS)
Travelet, Christophe; Stemmelen, Mylène; Lapinte, Vincent; Dubreuil, Frédéric; Robin, Jean-Jacques; Borsali, Redouane
2013-06-01
The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters ( D h) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C19 to 19.2 nm for C57). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D h-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445-1458, 2013)].
Spectral peculiarities of electromagnetic wave scattering by Veselago's cylinders
NASA Astrophysics Data System (ADS)
Sukhov, S. V.; Shevyakhov, N. S.
2006-03-01
The results are presented of spectral calculations of extinction cross-section for scattering of E- and H-polarized electromagnetic waves by cylinders made of Veselago material. The insolvency of previously developed models of scattering is demonstrated. It is shown that correct description of scattering requires separate consideration of both electric and magnetic subsystems.
Spectral peculiarities of electromagnetic wave scattered by Veselago's cylinders
NASA Astrophysics Data System (ADS)
Sukhov, S. V.; Shevyakhov, N. S.
2005-09-01
The results are presented of spectral calculations of extinction cross-section for scattering of E- and H-polarized electromagnetic waves by cylinders made of Veselago material. The insolvency of previously developed models of scattering is demonstrated. It is shown that correct description of scattering requires separate consideration of both electric and magnetic subsystems.
Brillouin characterisation of optical microfibers
NASA Astrophysics Data System (ADS)
Farhan, Kazi Tasneem
The sleek shape of microfiber helps it to confine the light tightly and generate high nonlinear effect, which is 1000 times higher than the standard fiber. This project focuses on fabricating microfiber samples with different taper lengths and different waist diameter from three different kinds of fiber, single mode fiber (SMF), Gedoped and Ga-doped. All the samples were characterised in terms of Brillouin scattering and Brillouin gain and Brillouin lasing, and compared to each other and to the SMF fiber. Stimulated Brillouin scattering (SBS) has been demonstrated for short microfibers of length less than 10cm. The nonlinear effects of long tapers have not been reported yet. The theoretical perspective related to microfibers indicate the possibility of generation of stronger signals and newer frequencies. Among the many nonlinear effects Brillouin scattering is the easiest to observe and has not been studied using long microfibers until now. In this project microfibers of different lengths and waist diameter are fabricated. The microfibers were made from three different kinds of fiber: SMF, Germanium doped (Ge-doped) and Gallium doped (Ga-doped). The shapes of the fabricated samples are profiled to match the shape with the numerically simulated shape. The power performances are studied so that samples with minimum losses are used for Brillouin characterisation. The first experiment uses the microfiber samples for testing and recording the changes in Stokes generation for the different dimensions of each sample in a Brillouin scattering setup. These microfibers are tested in s second experiment of Brillouin laser setup to explore their possibilities of lasing. In the third experiment the microfibers are used in a pump probe technique setup to spatially measure the Brillouin gain along the length of each sample.
NASA Astrophysics Data System (ADS)
Tanzid, Mehbuba; Hogan, Nathaniel J.; Robatjazi, Hossein; Veeraraghavan, Ashok; Halas, Naomi J.
2018-05-01
Imaging through scattering media can be improved with the addition of absorbers, since multiply-scattered photons, with their longer path length, are absorbed with a higher probability than ballistic photons. The image resolution enhancement is substantially greater when imaging through isotropic scatterers than when imaging through an ensemble of strongly forward-scattering particles. However, since the angular scattering distribution is determined by the size of the scatterers with respect to the wavelength of incident light, particles that are forward scatterers at visible wavelengths can be isotropic scatterers at infrared (IR) wavelengths. Here, we show that substantial image resolution enhancement can be achieved in the near-infrared wavelength regime for particles that are forward scattering at visible wavelengths using carbon black nanoparticles as a broadband absorber. This observation provides a new strategy for image enhancement through scattering media: by selecting the appropriate wavelength range for imaging, in this case the near-IR, the addition of absorbers more effectively enhances the image resolution.
{rho}-{omega} mixing and spin dependent charge-symmetry violating potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.
2008-10-15
We construct the charge symmetry violating (CSV) nucleon-nucleon potential induced by the {rho}{sup 0}-{omega} mixing due to the neutron-proton mass difference driven by the NN loop. Analytical expression for the two-body CSV potential is presented containing both the central and noncentral NN interaction. We show that the {rho}NN tensor interaction can significantly enhance the charge symmetry violating NN interaction even if the momentum dependent off-shell {rho}{sup 0}-{omega} mixing amplitude is considered. It is also shown that the inclusion of form factors removes the divergence arising out of the contact interaction. Consequently, we see that the precise size of the computedmore » scattering length difference depends on how the short-range aspects of the CSV potential are treated.« less
Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors
NASA Astrophysics Data System (ADS)
Bitter, M.; Milner, V.
2016-09-01
The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum—the hallmark of dynamical localization—is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.
Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors.
Bitter, M; Milner, V
2016-09-30
The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum-the hallmark of dynamical localization-is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.
Halouzka, Vladimir; Halouzkova, Barbora; Jirovsky, David; Hemzal, Dusan; Ondra, Peter; Siranidi, Eirini; Kontos, Athanassios G; Falaras, Polycarpos; Hrbac, Jan
2017-04-01
Miniature Surface Enhanced Raman Scattering (SERS) sensors were fabricated by coating the carbon fiber microelectrodes with copper nanowires. The coating procedure, based on anodizing the copper wire in ultrapure water followed by cathodic deposition of the anode-derived material onto carbon fiber electrodes, provides a "clean" copper nanowire network. The developed miniature (10µm in diameter and 2mm in length) and nanoscopically rough SERS substrates are applicable in drug sensing, as shown by the detection and resolving of a range of seized designer drugs in trace amounts (microliter volumes of 10 -10 -10 -12 M solutions). The copper nanowire modified carbon microfiber substrates could also find further applications in biomedical and environmental sensing. Copyright © 2016 Elsevier B.V. All rights reserved.
Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests
NASA Technical Reports Server (NTRS)
Freeman, Anthony
2007-01-01
Two simple scattering mechanisms are fitted to polarimetric synthetic aperture radar (SAR) observations of forests. The mechanisms are canopy scatter from a reciprocal medium with azimuthal symmetry and a ground scatter term that can represent double-bounce scatter from a pair of orthogonal surfaces with different dielectric constants or Bragg scatter from a moderately rough surface, which is seen through a layer of vertically oriented scatterers. The model is shown to represent the behavior of polarimetric backscatter from a tropical forest and two temperate forest sites by applying it to data from the National Aeronautic and Space Agency/Jet Propulsion Laboratory's Airborne SAR (AIRSAR) system. Scattering contributions from the two basic scattering mechanisms are estimated for clusters of pixels in polarimetric SAR images. The solution involves the estimation of four parameters from four separate equations. This model fit approach is justified as a simplification of more complicated scattering models, which require many inputs to solve the forward scattering problem. The model is used to develop an understanding of the ground-trunk double-bounce scattering that is present in the data, which is seen to vary considerably as a function of incidence angle. Two parameters in the model fit appear to exhibit sensitivity to vegetation canopy structure, which is worth further exploration. Results from the model fit for the ground scattering term are compared with estimates from a forward model and shown to be in good agreement. The behavior of the scattering from the ground-trunk interaction is consistent with the presence of a pseudo-Brewster angle effect for the air-trunk scattering interface. If the Brewster angle is known, it is possible to directly estimate the real part of the dielectric constant of the trunks, a key variable in forward modeling of backscatter from forests. It is also shown how, with a priori knowledge of the forest height, an estimate for the attenuation coefficient of the canopy can be obtained directly from the multi-incidence-angle polarimetric observations. This attenuation coefficient is another key variable in forward models and is generally related to the canopy density.
Intense laser pulse propagation in ionizing gases
NASA Astrophysics Data System (ADS)
Bian, Zhigang
2003-10-01
There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The intensity on the inner wall of the capillary is monitored to assure realistic simulations, consistent with optical breakdown of the waveguide material. Generally speaking the intensity on the wall increases with gas pressure due to the scattering of the lowest order capillary mode. Finally, the high order harmonic generation (HHG) in a capillary is investigated. The phase matching condition is studied to increase the conversion efficiency for high order harmonics generation. The phase matching occurs as a balance of the dispersion of the neutral gas, plasma and the waveguide.
On twin density and resistivity of nanometric Cu thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmak, Katayun; Liu, Xuan; Darbal, Amith
2016-08-14
Crystal orientation mapping in the transmission electron microscope was used to quantify the twin boundary length fraction per unit area for five Ta{sub 38}Si{sub 14}N{sub 48}/SiO{sub 2} encapsulated Cu films with thicknesses in the range of 26–111 nm. The length fraction was found to be higher for a given twin-excluded grain size for these films compared with previously investigated SiO{sub 2} and Ta/SiO{sub 2} encapsulated films. The quantification of the twin length fraction per unit area allowed the contribution of the twin boundaries to the size effect resistivity to be assessed. It is shown that the increased resistivity of the Ta{submore » 38}Si{sub 14}N{sub 48} encapsulated Cu films compared with the SiO{sub 2} and Ta/SiO{sub 2} encapsulated films is not a result of increased surface scattering, but it is a result of the increase in the density of twin boundaries. With twin boundaries included in the determination of grain size as a mean-intercept length, the resistivity data are well described by 2-parameter Matthiessen's rule summation of the Fuchs-Sondheimer and Mayadas Shatzkes models, with p and R parameters that are within experimental error equal to those in prior reports and are p = 0.48(+0.33/−0.31) and R = 0.27 ± 0.03.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinke, I.; Lehmkühler, F., E-mail: felix.lehmkuehler@desy.de; Schroer, M. A.
2016-06-15
In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less
Invariance property of wave scattering through disordered media
Pierrat, Romain; Ambichl, Philipp; Gigan, Sylvain; Haber, Alexander; Carminati, Rémi; Rotter, Stefan
2014-01-01
A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the system's boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed. PMID:25425671
NASA Astrophysics Data System (ADS)
Keen, David A.; Keeble, Dean S.; Bennett, Thomas D.
2018-04-01
The structure of fully hydrated grossular, or katoite, contains an unusual arrangement of four O-H bonds within each O4 tetrahedra. Neutron and X-ray total scattering from a powdered deuterated sample have been measured to investigate the local arrangement of this O4D4 cluster. The O-D bond length determined directly from the pair distribution function is 0.954 Å, although the Rietveld-refined distance between average O and D positions was slightly smaller. Reverse Monte Carlo refinement of supercell models to the total scattering data show that other than the consequences of this correctly determined O-D bond length, there is little to suggest that the O4D4 structure is locally significantly different from that expected based on the average structure determined solely from Bragg diffraction.
Steinke, I.; Walther, M.; Lehmkühler, F.; ...
2016-06-01
In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less
Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V.; Kuklin, A. I.
2016-01-15
Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantialmore » contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.« less
NASA Astrophysics Data System (ADS)
Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.
2017-06-01
We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.
NASA Technical Reports Server (NTRS)
Miller, L. S.
1977-01-01
A number of GEOS-3 passes over the Atlantic Ocean and Southeastern U.S. are examined. Surface-truth and radar altimeter data comparisons are given in terms of surface correlation length, signal fluctuation characteristics, and altitude tracker dynamic response. Detailed analyses are given regarding spatial resolution and its dependency on angular backscatter behavior. These analyses include data from passes over ocean (diffuse scatter), land (large body scatter), and mirror-like inland water areas (pseudo-specular scatter). Altimeter data are examined for a pass over a large reservoir and marsh area of differing water levels; this geometry represents a stepchange in altitude which is usable in determination of the transient response of the tracker. The extent to which pulse-length limited operation pertains over-land is examined. A Wiener filter altitude algorithm is discussed which permits specification of tracker variance and geoidal spectral characteristics during operation.
Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...
2014-10-29
We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.
Filamentation of ultrashort light pulses in a liquid scattering medium
NASA Astrophysics Data System (ADS)
Jukna, V.; Tamošauskas, G.; Valiulis, G.; Aputis, M.; Puida, M.; Ivanauskas, F.; Dubietis, A.
2009-01-01
We have studied filamentation of 1-ps laser pulses in a scattering medium (aqueous suspension of 2-μm polystyrene microspheres) and compared filamentation dynamics to that in pure water. Our results indicate that light scattering does not alter filamentation dynamics in general, but rather results in farther position of the nonlinear focus, shorter filament length, and the development of speckle structure in the peripheral part of the beam. The experimental observations are qualitatively reproduced by the numerical model which accounts for diffraction, self-focusing, multiphoton absorption, and light scattering introduced through a stochastic diffusion and diffraction term.
Physical scales in the Wigner-Boltzmann equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedjalkov, M., E-mail: mixi@iue.tuwien.ac.at; Selberherr, S.; Ferry, D.K.
2013-01-15
The Wigner-Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner-Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. Itmore » is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner-Boltzmann evolution is demonstrated. - Highlights: Black-Right-Pointing-Pointer Dimensionless parameters determine the ratio of quantum or classical WB evolution. Black-Right-Pointing-Pointer The scaling theorem evaluates the decoherence effect due to scattering. Black-Right-Pointing-Pointer Evolution processes are grouped into classes of equivalence.« less
Amylopectin molecular structure reflected in macromolecular organization of granular starch.
Vermeylen, Rudi; Goderis, Bart; Reynaers, Harry; Delcour, Jan A
2004-01-01
For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches. Results indicate a more specific hydrolysis of amorphous lamellae in such starches. Small-angle X-ray scattering showed a more intense 9-nm scattering peak for native amylose-deficient A-type starches than for their regular or B-type analogues. The experimental evidence indicates a lower contrasting density within the "crystalline" shells of the latter starches. A higher density in the amorphous lamellae, envisaged by the lamellar helical model, explains the relative acid resistance of linear amylopectin chains with DP > 20, observed in lintners of B-type starches. Because amylopectin chain length distributions were similar for regular and amylose-deficient starches of the same crystal type, we deduce that the more dense (and ordered) packing of double helices into lamellar structures in amylose-deficient starches is due to a different amylopectin branching pattern.
New light-shielding technique for shortening the baffle length of a star sensor
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sato, Yukio; Mitani, Kenji; Kanai, Hiroshi; Hama, Kazumori
2002-10-01
We have developed a star sensor with a short baffle of 140 mm. Our baffle provides a Sun rejection angle of 35 degrees with stray light attenuation less than the intensity level of a visual magnitude of Mv = +5 for a wide field of view lens of 13x13 degrees. The application of a new light shielding technique taking advantage of total internal reflection phenomena enables us to reduce the baffle length to about three fourths that of the conventional two-stage baffle. We have introduced two ideas to make the baffle length shorter. The one is the application of a nearly half sphere convex lens as the first focusing lens. The bottom surface reflects the scattering rays with high incident angles of over 50 degrees by using the total internal reflection phenomena. The other is the painting of the surface of the baffle with not frosted but gloss black paint. The gloss black paint enables most of the specular reflection rays to go back to outer space without scattering. We confirm the baffle performance mentioned above by scattering ray tracing simulation and a light attenuation experiment in a darkroom on the ground.
Recent progress in distributed fiber optic sensors.
Bao, Xiaoyi; Chen, Liang
2012-01-01
Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.
Recent Progress in Distributed Fiber Optic Sensors
Bao, Xiaoyi; Chen, Liang
2012-01-01
Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V.
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold–silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron–surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron–surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron–surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances—approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron–surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping. PMID:18846243
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold-silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron-surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron-surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron-surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances-approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron-surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Levine, Lyle E.; Allen, Andrew J.
The precipitate structure and precipitation kinetics in an Al-Cu-Mg alloy (AA2024) aged at 190 °C, 208 °C, and 226 °C have been studied using ex situ Transmission Electron Microscopy (TEM) and in situ synchrotron-based, combined ultra-small angle X-ray scattering, small angle X-ray scattering (SAXS), and wide angle X-ray scattering (WAXS) across a length scale from sub-Angstrom to several micrometers. TEM brings information concerning the nature, morphology, and size of the precipitates while SAXS and WAXS provide qualitative and quantitative information concerning the time-dependent size and volume fraction evolution of the precipitates at different stages of the precipitation sequence. Within themore » experimental time resolution, precipitation at these ageing temperatures involves dissolution of nanometer-sized small clusters and formation of the planar S phase precipitates. Using a three-parameter scattering model constructed on the basis of TEM results, we established the temperature-dependent kinetics for the cluster-dissolution and S-phase formation processes simultaneously. These two processes are shown to have different kinetic rates, with the cluster-dissolution rate approximately double the S-phase formation rate. We identified a dissolution activation energy at (149.5 ± 14.6) kJ mol-1, which translates to (1.55 ± 0.15) eV/atom, as well as an activation energy for the formation of S precipitates at (129.2 ± 5.4) kJ mol-1, i.e. (1.33 ± 0.06) eV/atom. Importantly, the SAXS/WAXS results show the absence of an intermediate Guinier-Preston Bagaryatsky 2 (GPB2)/S" phase in the samples under the experimental ageing conditions. These results are further validated by precipitation simulations that are based on Langer-Schwartz theory and a Kampmann-Wagner numerical method.« less
Stimulated Brillouin scattering in the field of a two-dimensionally localized pumping wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solikhov, D. K., E-mail: davlat56@mail.ru; Dvinin, S. A., E-mail: dvinin@phys.msu.ru
2016-06-15
Stimulated Brillouin scattering of electromagnetic waves in the field of a two-dimensionally localized pump wave at arbitrary scattering angles in the regime of forward scattering is analyzed. Spatial variations in the amplitudes of interacting waves are studied for different values of the pump field and different dimensions of the pump wave localization region. The intensity of scattered radiation is determined as a function of the scattering angle and the dimensions of the pump wave localization region. It is shown that the intensity increases with increasing scattering angle.
Weak scattering of scalar and electromagnetic random fields
NASA Astrophysics Data System (ADS)
Tong, Zhisong
This dissertation encompasses several studies relating to the theory of weak potential scattering of scalar and electromagnetic random, wide-sense statistically stationary fields from various types of deterministic or random linear media. The proposed theory is largely based on the first Born approximation for potential scattering and on the angular spectrum representation of fields. The main focus of the scalar counterpart of the theory is made on calculation of the second-order statistics of scattered light fields in cases when the scattering medium consists of several types of discrete particles with deterministic or random potentials. It is shown that the knowledge of the correlation properties for the particles of the same and different types, described with the newly introduced pair-scattering matrix, is crucial for determining the spectral and coherence states of the scattered radiation. The approach based on the pair-scattering matrix is then used for solving an inverse problem of determining the location of an "alien" particle within the scattering collection of "normal" particles, from several measurements of the spectral density of scattered light. Weak scalar scattering of light from a particulate medium in the presence of optical turbulence existing between the scattering centers is then approached using the combination of the Born's theory for treating the light interaction with discrete particles and the Rytov's theory for light propagation in extended turbulent medium. It is demonstrated how the statistics of scattered radiation depend on scattering potentials of particles and the power spectra of the refractive index fluctuations of turbulence. This theory is of utmost importance for applications involving atmospheric and oceanic light transmission. The second part of the dissertation includes the theoretical procedure developed for predicting the second-order statistics of the electromagnetic random fields, such as polarization and linear momentum, scattered from static media. The spatial distribution of these properties of scattered fields is shown to be substantially dependent on the correlation and polarization properties of incident fields and on the statistics of the refractive index distribution within the scatterers. Further, an example is considered which illustrates the usefulness of the electromagnetic scattering theory of random fields in the case when the scattering medium is a thin bio-tissue layer with the prescribed power spectrum of the refractive index fluctuations. The polarization state of the scattered light is shown to be influenced by correlation and polarization states of the illumination as well as by the particle size distribution of the tissue slice.
Diffraction-controlled backscattering threshold and application to Raman gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Harvey A.; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Mounaix, Philippe
2011-04-15
In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more stronglymore » than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.« less
Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce
2008-03-01
This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.
A scattering model for forested area
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1988-01-01
A forested area is modeled as a volume of randomly oriented and distributed disc-shaped, or needle-shaped leaves shading a distribution of branches modeled as randomly oriented finite-length, dielectric cylinders above an irregular soil surface. Since the radii of branches have a wide range of sizes, the model only requires the length of a branch to be large compared with its radius which may be any size relative to the incident wavelength. In addition, the model also assumes the thickness of a disc-shaped leaf or the radius of a needle-shaped leaf is much smaller than the electromagnetic wavelength. The scattering phase matrices for disc, needle, and cylinder are developed in terms of the scattering amplitudes of the corresponding fields which are computed by the forward scattering theorem. These quantities along with the Kirchoff scattering model for a randomly rough surface are used in the standard radiative transfer formulation to compute the backscattering coefficient. Numerical illustrations for the backscattering coefficient are given as a function of the shading factor, incidence angle, leaf orientation distribution, branch orientation distribution, and the number density of leaves. Also illustrated are the properties of the extinction coefficient as a function of leaf and branch orientation distributions. Comparisons are made with measured backscattering coefficients from forested areas reported in the literature.
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
1977-01-01
circumstances for determining the onset with light scattering is that in which the laser is so powerful and/or the detector so sensitive that the...sec Boltzmann’s constant 1.38 x 10~16 ergs/mole, wave number length of detector window latent heat of vaporisation mass flow rate of steam In...constant, distance from light scattering volume to detector S supersaturation ratio, p /p t time T local temperature of vapor T temperature in
Hybrid Theory of Electron-Hydrogenic Systems Elastic Scattering
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
2007-01-01
Accurate electron-hydrogen and electron-hydrogenic cross sections are required to interpret fusion experiments, laboratory plasma physics and properties of the solar and astrophysical plasmas. We have developed a method in which the short-range and long-range correlations can be included at the same time in the scattering equations. The phase shifts have rigorous lower bounds and the scattering lengths have rigorous upper bounds. The phase shifts in the resonance region can be used to calculate very accurately the resonance parameters.
Intracavity brillouin scattering from passive Q-spoiling cells.
Wick, R V; Guenther, A H
1968-01-01
Stimulated Brillouin scattering from the methanol solvent used in conjunction with cryptocyanine bleachable dye in a ruby laser cavity has been observed at low megawatt output powers. The frequency shifts of the Brillouin scattered radiation produced within the laser cavity are slightly less than frequency shifts produced in an external methanol cell. The Brillouin radiation was eliminated even at output power levels in excess of 250 MW when a 3-mm length cell was used in place of the 25.4-mm commercial cell.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2018-04-01
The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.
Electromagnetic scattering laws in Weyl systems.
Zhou, Ming; Ying, Lei; Lu, Ling; Shi, Lei; Zi, Jian; Yu, Zongfu
2017-11-09
Wavelength determines the length scale of the cross section when electromagnetic waves are scattered by an electrically small object. The cross section diverges for resonant scattering, and diminishes for non-resonant scattering, when wavelength approaches infinity. This scattering law explains the colour of the sky as well as the strength of a mobile phone signal. We show that such wavelength scaling comes from the conical dispersion of free space at zero frequency. Emerging Weyl systems, offering similar dispersion at non-zero frequencies, lead to new laws of electromagnetic scattering that allow cross sections to be decoupled from the wavelength limit. Diverging and diminishing cross sections can be realized at any target wavelength in a Weyl system, providing the ability to tailor the strength of wave-matter interactions for radiofrequency and optical applications.
Comparison of excitation wavelengths for in vivo deep imaging of mouse brain
NASA Astrophysics Data System (ADS)
Wang, Mengran; Wu, Chunyan; Li, Bo; Xia, Fei; Sinefeld, David; Xu, Chris
2018-02-01
The attenuation of excitation power reaching the focus is the main issue that limits the depth penetration of highresolution imaging of biological tissue. The attenuation is caused by a combination of tissue scattering and absorption. Theoretical model of the effective attenuation length for in vivo mouse brain imaging has been built based on the data of the absorption of water and blood and the Mie scattering of a tissue-like phantom. Such a theoretical model has been corroborated at a number of excitation wavelengths, such as 800 nm, 1300 nm , and 1700 nm ; however, the attenuation caused by absorption is negligible when compared to tissue scattering at all these wavelength windows. Here we performed in vivo three-photon imaging of Texas Red-stained vasculature in the same mouse brain with different excitation wavelengths, 1700 nm, 1550 nm, 1500 nm and 1450 nm. In particular, our studies include the wavelength regime where strong water absorption is present (i.e., 1450 nm), and the attenuation by water absorption is predicted to be the dominant contribution in the excitation attenuation. Based on the experimental results, we found that the effective attenuation length at 1450 nm is significantly shorter than those at 1700 nm and 1300 nm. Our results confirm that the theoretical model based on tissue scattering and water absorption is accurate in predicting the effective attenuation lengths for in vivo imaging. The optimum excitation wavelength windows for in vivo mouse brain imaging are at 1300 nm and 1700 nm.
Electron Effective-Attenuation-Length Database
National Institute of Standards and Technology Data Gateway
SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge) This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).
2014-09-30
exercises, the most abundant species by biomass is Pacific hake, Merluccius productus, a fish with an air-filled swimbladder that averages 50 cm in length...its type of prey) may affect the scattering characteristics of the animal especially if the animal has eaten hard- shelled mollusc prey. Figure 7
NASA Astrophysics Data System (ADS)
Chomaz, L.; Baier, S.; Petter, D.; Mark, M. J.; Wächtler, F.; Santos, L.; Ferlaino, F.
2016-10-01
In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s -wave scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 ×104 atoms . Based on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite scattering length.
NASA Astrophysics Data System (ADS)
Shih, Marian Pei-Ling
The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.
Chain length effects of p-oligophenyls with comparison of benzene by Raman scattering
NASA Astrophysics Data System (ADS)
Zhang, Kai; Chen, Xiao-Jia
2018-02-01
Raman scattering measurements are performed on benzene and a number of p-oligophenyls including biphenyl, p-terphenyl, p-quaterphenyl, p-quinquephenyl, and p-sexiphenyl at ambient conditions. The vibrational modes of the intra- and intermolecular terms in these materials are analyzed and compared. Chain length effects on the vibrational properties are examined for the C-H in-plane bending mode and the inter-ring C-C stretching mode at around 1200 cm-1 and 1280 cm-1, respectively, and the C-C stretching modes at around 1600 cm-1. The complex and fluctuating properties of these modes result in an imprecise estimation of the chain length of these molecules. Meanwhile, the obtained ratio of the intensities of the 1200 cm-1 mode and 1280 cm-1 mode is sensitive to the applied lasers. A librational motion mode with the lowest energy is found to have a monotonous change with the increase in the chain length. This mode is simply relevant to the c axis of the unit cell. Such an obvious trend makes it a better indicator for determining the chain length effects on the physical and chemical properties in these molecules.
Assessing Telomere Length Using Surface Enhanced Raman Scattering
NASA Astrophysics Data System (ADS)
Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping
2014-11-01
Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.
NASA Astrophysics Data System (ADS)
Scheffold, Frank
2014-08-01
To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.
The multiple Coulomb scattering of very heavy charged particles.
Wong, M; Schimmerling, W; Phillips, M H; Ludewigt, B A; Landis, D A; Walton, J T; Curtis, S B
1990-01-01
An experiment was performed at the Lawrence Berkeley Laboratory BEVALAC to measure the multiple Coulomb scattering of 650-MeV/A uranium nuclei in 0.19 radiation lengths of a Cu target. Differential distributions in the projected multiple scattering angle were measured in the vertical and horizontal planes using silicon position-sensitive detectors to determine particle trajectories before and after target scattering. The results were compared with the multiple Coulomb scattering theories of Fermi and Molière, and with a modification of the Fermi theory, using a Monte Carlo simulation. These theories were in excellent agreement with experiment at the 2 sigma level. The best quantitative agreement is obtained with the Gaussian distribution predicted by the modified Fermi theory.
Propagation of single-cycle terahertz pulses in random media.
Pearce, J; Mittleman, D M
2001-12-15
We describe what are to our knowledge the first measurements of the propagation of coherent, single-cycle pulses of terahertz radiation in a scattering medium. By measuring the transmission as a function of the length L of the medium, we extract the scattering mean free path l(s)(omega) over a broad bandwidth. We observe variations in l(s) ranging over nearly 2 orders of magnitude and covering the entire thin sample regime from L/l(s)<1 to L/l(s)~10 . We also observe scattering-induced dispersive effects, which can be attributed to the additional path traveled by photons scattered at small angles.
NASA Astrophysics Data System (ADS)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.
Propagation of laser beams in scattering media.
Zuev, V E; Kabanov, M V; Savelev, B A
1969-01-01
Experimental investigations have been undertaken of some aspects of the propagation of helium-neon gas laser radiation at lambda = 0.63 micro for different scattering media (artificial water fogs, wood smokes, model media). It has been shown that the attenuation coefficients practically coincide when coherent and incoherent radiation is scattered. The applicability limits of Bouguer-Beer's law for describing the attenuation of radiation in scattering media are investigated and the intensity of multiple forward-scattered light for different geometrical parameters of the source and radiation receiver are measured. The applicability of single scattering theory formulas for describing forward-scattered light intensity are discussed.
Ultrasound attenuation estimation using backscattered echoes from multiple sources.
Bigelow, Timothy A
2008-08-01
The objective of this study was to devise an algorithm that can accurately estimate the attenuation along the propagation path (i.e., the total attenuation) from backscattered echoes. It was shown that the downshift in the center frequency of the backscattered ultrasound echoes compared to echoes obtained in a water bath was calculated to have the form Deltaf=mf(o)+b after normalizing with respect to the source bandwidth where m depends on the correlation length, b depends on the total attenuation, and f(o) is the center frequency of the source as measured from a reference echo. Therefore, the total attenuation can be determined independent of the scatterer correlation length by measuring the downshift in center frequency from multiple sources (i.e., different f(o)) and fitting a line to the measured shifts versus f(o). The intercept of the line gives the total attenuation along the propagation path. The calculations were verified using computer simulations of five spherically focused sources with 50% bandwidths and center frequencies of 6, 8, 10, 12, and 14 MHz. The simulated tissue had Gaussian scattering structures with effective radii of 25 mum placed at a density of 250 mm(3). The attenuation of the tissue was varied from 0.1 to 0.9 dB / cm-MHz. The error in the attenuation along the propagation path ranged from -3.5+/-14.7% for a tissue attenuation of 0.1 dB / cm-MHz to -7.0+/-3.1% for a tissue attenuation of 0.9 dB / cm-MHz demonstrating that the attenuation along the propagation path could be accurately determined using backscattered echoes from multiple sources using the derived algorithm.
NASA Astrophysics Data System (ADS)
Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A.; Weber, H.
2018-07-01
Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.
Large-scale fluctuations in the diffusive decomposition of solid solutions
NASA Astrophysics Data System (ADS)
Karpov, V. G.; Grimsditch, M.
1995-04-01
The concept of an instability in the classic Ostwald ripening theory with respect to compositional fluctuations is suggested. We show that small statistical fluctuations in the precipitate phase lead to gigantic Coulomb-like fluctuations in the solute concentration which in turn affect the ripening. As a result large-scale fluctuations in both the precipitate and solute concentrations appear. These fluctuations are characterized by amplitudes of the order of the average values of the corresponding quantities and by a space scale L~(na)-1/2 which is considerably greater than both the average nuclear radius and internuclear distance. The Lifshitz-Slyozov theory of ripening is shown to remain locally applicable, over length scales much less than L. The implications of these findings for elastic light scattering in solid solutions that have undergone Ostwald ripening are considered.
On the measurement of Rayleigh scattering by gases at 6328A
NASA Technical Reports Server (NTRS)
SHARDANAND; Gupta, S. K.
1973-01-01
The problem of laboratory measurements of Rayleigh scattering and depolarization ratio for atoms and molecules in the gaseous state is described. It is shown that, if the scattered radiation measurements are made at two angles, the normal depolarization ratio cannot be determined meaningfully. However, from scattering measurements, the Rayleigh scattering cross sections can be determined accurately. The measurements of Raleigh scattering from He, H2, Ar, O2, and N2 for unpolarized radiation at 6328A are reported and compared with similar measurements at 6943 and 1215.7A.
Weatherbee, Andrew; Sugita, Mitsuro; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex
2016-06-15
The distribution of backscattered intensities as described by the probability density function (PDF) of tissue-scattered light contains information that may be useful for tissue assessment and diagnosis, including characterization of its pathology. In this Letter, we examine the PDF description of the light scattering statistics in a well characterized tissue-like particulate medium using optical coherence tomography (OCT). It is shown that for low scatterer density, the governing statistics depart considerably from a Gaussian description and follow the K distribution for both OCT amplitude and intensity. The PDF formalism is shown to be independent of the scatterer flow conditions; this is expected from theory, and suggests robustness and motion independence of the OCT amplitude (and OCT intensity) PDF metrics in the context of potential biomedical applications.
Ye, Yiyang; Chen, Tupei; Zhen, Juyuan; Xu, Chen; Zhang, Jun; Li, Huakai
2018-02-01
The ability to selectively scatter green light is essential for an RGB transparent projection display, and this can be achieved by a silver-core, titania-shell nanostructure (Ag@TiO 2 ), based on the metallic nanoparticle's localized surface plasmon resonance. The ability to selectively scatter green light is shown in a theoretical design, in which structural optimization is included, and is then experimentally verified by characterization of a transparent film produced by dispersing such nanoparticles in a polymer matrix. A visual assessesment indicates that a high-quality green image can be clearly displayed on the transparent film. For completeness, a theoretical design for selective scattering of red light based on Ag@TiO 2 is also shown.
2015-07-01
lph s iS k k here match the formulations from Karam et al.17 (Note that there are typographical errors in Eq. 25 of that journal article.17) 3...mixed-species forests. IEEE Trans Geosci Rem Sens. 2005;43(11):2612–2626. 17. Karam MA, Fung AK, Antar YMM. Electromagnetic wave scattering from some
Roy-Steiner-equation analysis of pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2016-04-01
We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.
NASA Astrophysics Data System (ADS)
Gangopadhyay, A. K.; Kelton, K. F.
2018-05-01
Previous studies reported a number of anomalies when estimates of linear thermal expansion coefficients of metallic liquids and glasses from x-ray scattering experiments were compared with direct measurements of volume/length changes with temperature. In most cases, the first peak of the pair correlation function showed a contraction, while the structure factor showed an expansion, but both at rates much different from those expected from the direct volume measurements. In addition, the relationship between atomic volume and the characteristic lengths obtained from the structure factor from scattering experiments was found to have a fractional exponent instead of one equal to three, as expected from the Ehrenfest relation. This has led to the speculation that the atomic packing in liquids and glasses follow a fractal behavior. These issues are revisited in this study using more in-depth analysis of recent higher resolution data and some new ideas suggested in the literature. The main conclusion is that for metallic alloys, at least to a large extent, most of these anomalies arise from complicated interplays of the temperature dependences of the various partial structure factors, which contribute to the total intensities of the scattering peaks.
Forward scattering in two-beam laser interferometry
NASA Astrophysics Data System (ADS)
Mana, G.; Massa, E.; Sasso, C. P.
2018-04-01
A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.
NASA Astrophysics Data System (ADS)
Powell, C. J.; Jablonski, A.; Werner, W. S. M.; Smekal, W.
2005-01-01
We describe two NIST databases that can be used to characterize thin films from Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) measurements. First, the NIST Electron Effective-Attenuation-Length Database provides values of effective attenuation lengths (EALs) for user-specified materials and measurement conditions. The EALs differ from the corresponding inelastic mean free paths on account of elastic-scattering of the signal electrons. The database supplies "practical" EALs that can be used to determine overlayer-film thicknesses. Practical EALs are plotted as a function of film thickness, and an average value is shown for a user-selected thickness. The average practical EAL can be utilized as the "lambda parameter" to obtain film thicknesses from simple equations in which the effects of elastic-scattering are neglected. A single average practical EAL can generally be employed for a useful range of film thicknesses and for electron emission angles of up to about 60°. For larger emission angles, the practical EAL should be found for the particular conditions. Second, we describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to be released in 2004. This database provides data for many parameters needed in quantitative AES and XPS (e.g., excitation cross-sections, electron-scattering cross-sections, lineshapes, fluorescence yields, and backscattering factors). Relevant data for a user-specified experiment are automatically retrieved by a small expert system. In addition, Auger electron and photoelectron spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra, and thus, provide more detailed characterizations of multilayer thin-film materials. SESSA can also provide practical EALs, and we compare values provided by the NIST EAL database and SESSA for hafnium dioxide. Differences of up to 10% were found for film thicknesses less than 20 Å due to the use of different physical models in each database.
Determination of the self-adjoint matrix Schrödinger operators without the bound state data
NASA Astrophysics Data System (ADS)
Xu, Xiao-Chuan; Yang, Chuan-Fu
2018-06-01
(i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.
All-dielectric cylindrical nanoantennas in the visible range
NASA Astrophysics Data System (ADS)
Dalal, Reena; Shankhwar, Nishant; Kalra, Yogita; Kumar, Ajeet; Sinha, R. K.
2017-08-01
All-dielectric nanoparticles have attained a lot of attention owing to the lesser loss and better quality than their metallic counterparts. As a result, they perceive applications in the field of nanoantennas, photovoltaics and nanolasers. In the dielectric nanoparticles, the electric and magnetic dipoles are created in dielectric nanoparticles when they interact with the light of a particular frequency. Kerker's type scattering is obtained where electric and magnetic dipoles interfere. In our design, Silicon cylindrical nanoparticles having radius of 70 nm and length 120 nm have been considered. The propagation of light is taken along the length of the cylinder. The scattering cross section has been obtained and plotted with respect to the wavelength. At the peaks of scattering spectra, electric and magnetic dipoles are created at the wavelengths of 510 nm and 600 nm, respectively. Both dipoles interfere at the wavelengths of 550 nm and 645 nm. At these wavelengths, far field scattering pattern has been calculated. At the wavelength 645 nm, forward scattering takes place because electric and magnetic dipoles are in phase at this wavelength. Further, directivity is enhanced by taking the planar array of the nanoparticles. It has been observed that directivity increases by increasing the size of the array. Also, there is an increase in the directivity by increasing the gap between the nanoparticles. This enhancement of directivity can lead to the design of all dielectric cylindrical nanoantennas.
The global short-period wavefield modelled with a Monte Carlo seismic phonon method
Shearer, Peter M.; Earle, Paul
2004-01-01
At high frequencies (∼1 Hz), much of the seismic energy arriving at teleseismic distances is not found in the main phases (e.g. P, PP, S, etc.) but is contained in the extended coda that follows these arrivals. This coda results from scattering off small-scale velocity and density perturbations within the crust and mantle and contains valuable information regarding the depth dependence and strength of this heterogeneity as well as the relative importance of intrinsic versus scattering attenuation. Most analyses of seismic coda to date have concentrated on S-wave coda generated from lithospheric scattering for events recorded at local and regional distances. Here, we examine the globally averaged vertical-component, 1-Hz wavefield (>10° range) for earthquakes recorded in the IRIS FARM archive from 1990 to 1999. We apply an envelope-function stacking technique to image the average time–distance behavior of the wavefield for both shallow (≤50 km) and deep (≥500 km) earthquakes. Unlike regional records, our images are dominated by P and P coda owing to the large effect of attenuation on PPand S at high frequencies. Modelling our results is complicated by the need to include a variety of ray paths, the likely contributions of multiple scattering and the possible importance of P-to-S and S-to-P scattering. We adopt a stochastic, particle-based approach in which millions of seismic phonons are randomly sprayed from the source and tracked through the Earth. Each phonon represents an energy packet that travels along the appropriate ray path until it is affected by a discontinuity or a scatterer. Discontinuities are modelled by treating the energy normalized reflection and transmission coefficients as probabilities. Scattering probabilities and scattering angles are computed in a similar fashion, assuming random velocity and density perturbations characterized by an exponential autocorrelation function. Intrinsic attenuation is included by reducing the energy contained in each particle as an appropriate function of traveltime. We find that most scattering occurs in the lithosphere and upper mantle, as previous results have indicated, but that some lower-mantle scattering is likely also required. A model with 3 to 4 per cent rms velocity heterogeneity at 4-km scale length in the upper mantle and 0.5 per cent rms velocity heterogeneity at 8-km scale length in the lower mantle (with intrinsic attenuation of Qα= 450 above 200 km depth andQα= 2500 below 200 km) provides a reasonable fit to both the shallow- and deep-earthquake observations, although many trade-offs exist between the scale length, depth extent and strength of the heterogeneity.
Near-resonance scattering from arrays of artificial fish swimbladders.
Nero, R W; Feuillade, C; Thompson, C H; Love, R H
2007-01-01
The air-filled swimbladders of fish resonate like damped air bubbles, and are very efficient acoustic scatterers at low to mid frequencies (typically <20 kHz). Scattering experiments were performed on an artificial "fish school" constructed from polyethylene bubbles. A mathematical model, developed to describe near-resonance backscattering from schooling fish [J. Acoust. Soc. Am. 99, 196-208 (1996)], was used to analyze the physical behavior for three different arrays of these bubbles. The measurements gave excellent agreement with the model, showing that coupled-resonance and interference effects cause the frequency response of tightly packed arrays, with spacing corresponding to the order of a body length for fish, to differ significantly from those of more dispersed arrays. As the array spacing is increased to the equivalent of several body lengths, these effects rapidly diminish. The results of this comparison demonstrate that, at low to mid frequencies, coupled resonance and interference effects are likely in schooling fish, and need to be considered in applications of underwater acoustic methods to the study of fish populations.
Schwinger-variational-principle theory of collisions in the presence of multiple potentials
NASA Astrophysics Data System (ADS)
Robicheaux, F.; Giannakeas, P.; Greene, Chris H.
2015-08-01
A theoretical method for treating collisions in the presence of multiple potentials is developed by employing the Schwinger variational principle. The current treatment agrees with the local (regularized) frame transformation theory and extends its capabilities. Specifically, the Schwinger variational approach gives results without the divergences that need to be regularized in other methods. Furthermore, it provides a framework to identify the origin of these singularities and possibly improve the local frame transformation. We have used the method to obtain the scattering parameters for different confining potentials symmetric in x ,y . The method is also used to treat photodetachment processes in the presence of various confining potentials, thereby highlighting effects of the infinitely many closed channels. Two general features predicted are the vanishing of the total photoabsorption probability at every channel threshold and the occurrence of resonances below the channel thresholds for negative scattering lengths. In addition, the case of negative-ion photodetachment in the presence of uniform magnetic fields is also considered where unique features emerge at large scattering lengths.
Effects of nonmagnetic disorder on the energy of Yu-Shiba-Rusinov states
NASA Astrophysics Data System (ADS)
Kiendl, Thomas; von Oppen, Felix; Brouwer, Piet W.
2017-10-01
We study the sensitivity of Yu-Shiba-Rusinov states, bound states that form around magnetic scatterers in superconductors, to the presence of nonmagnetic disorder in both two and three dimensional systems. We formulate a scattering approach to this problem and reduce the effects of disorder to two contributions: disorder-induced normal reflection and a random phase of the amplitude for Andreev reflection. We find that both of these are small even for moderate amounts of disorder. In the dirty limit in which the disorder-induced mean free path is smaller than the superconducting coherence length, the variance of the energy of the Yu-Shiba-Rusinov state remains small in the ratio of the Fermi wavelength and the mean free path. This effect is more pronounced in three dimensions, where only impurities within a few Fermi wavelengths of the magnetic scatterer contribute. In two dimensions the energy variance is larger by a logarithmic factor because impurities contribute up to a distance of the order of the superconducting coherence length.
Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au
NASA Astrophysics Data System (ADS)
Graham, G. A.; Rae, I. J.; Owen, C. J.; Walsh, A. P.
2018-03-01
Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimating the distance traveled by the strahl along the interplanetary magnetic field (IMF). We do this by implementing methods developed in previous studies, which make use of the onset of solar energetic particles at ∼1 au. Thus, we are able to obtain average strahl broadening in relation to electron energy and distance, while also taking into account the general effect of IMF topology and adiabatic focusing experienced by strahl. We find that average strahl width broadens with distance traveled along the IMF, which suggests that strahl width is related to the path length taken by the strahl from the Sun to 1 au. We also find that strahl pitch-angle width broadening per au along the IMF length increased with strahl energy, which suggests that the dominant strahl pitch-angle scattering mechanism likely has an inherent energy relation. Our pitch-angle broadening results provide a testable energy relation for the upcoming Parker Solar Probe and Solar Orbiter missions, which are both set to provide unprecedented new observations within 1 au.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunkin, N F; Shkirin, A V; Burkhanov, I S
Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)
Digital all-sky polarization imaging of partly cloudy skies.
Pust, Nathan J; Shaw, Joseph A
2008-12-01
Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.
Cloaks for suppression or enhancement of scattering of diffuse photon density waves
NASA Astrophysics Data System (ADS)
Renthlei, Lalruatfela; Ramakrishna, S. Anantha; Wanare, Harshawardhan
2018-07-01
Enhancement of wave-like characteristics of heavily damped diffuse photon density waves in a random medium by amplification can induce strongly localised resonances. These resonances can be used to either suppress or enhance scattering from an inhomogeneity in the random medium by cloaking the inhomogeneous region by a shell of random medium with the correct levels of absorption or amplification. A spherical core-shell structure consisting of a shell of a random amplifying medium is shown to enhance or suppress specific resonant modes. A shell with an absorbing random medium is also shown to suppress scattering which can also be used for cloaking the core region.
Quark-hadron duality in lepton scattering off nucleons
NASA Astrophysics Data System (ADS)
Graczyk, Krzysztof M.
2010-03-01
Quark-hadron (QH) duality in lepton scattering off nucleons is studied with the resonance quark model. It is shown that in the case of neutrino scattering off an isoscalar target the duality is simultaneously observed for charged and neutral currents xF1νN, F2νN, and xF3νN weak structure functions. We demonstrate that the QH duality can be a useful property for modeling structure functions in the so-called resonance region. As an example it is shown that combining relativistic quark model predictions with duality arguments allows a construction of the inclusive resonance F2ep structure function.
Inelastic scattering in planetary atmospheres. I - The Ring effect, without aerosols
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Young, A. T.; Humphreys, T. J.
1981-01-01
The contribution of inelastic molecular scattering (Rayleigh-Brillouin and rotational Raman scattering) to the filling-in of Fraunhofer lines in the light of the blue sky is studied. Aerosol fluorescence is shown to be negligible, and aerosol scattering is ignored. The angular and polarization dependences of the filling-in detail for single scattering are discussed. An approximate treatment of multiple scattering, using a backward Monte Carlo technique, makes it possible to investigate the effects of the ground albedo. As the molecular scatterings alone produce more line-filling than is observed, it seems likely that aerosols dilute the effect by contributing unaltered sunlight to the observed spectra.
Axial deformity correction in children via distraction osteogenesis.
Antoci, Valentin; Ono, Craig M; Antoci, Valentin; Raney, Ellen M
2006-08-01
We performed a retrospective analysis of the results of 62 tibial and 54 femoral lengthenings in 88 consecutive patients. The patients mean age was 13.5 years and mean follow-up was four years. There was a significant difference between metaphyseal (27+/-1.2 days/cm) and diaphyseal (39.4+/-1.7 days/cm), tibial (34+/-1.7 days/cm) and femoral (31+/-1.4 days/cm) lengthening (P<0.05), but no significant difference among the lengthening indexes when treating one-, two-, or three-dimensional deformities, congenital (34+/-2.4 days/cm) and acquired (32+/-1.0 days/cm) limb length discrepancy (LLD) (P>0.05). The lengthening index was 33+/-1.1 days/cm, distraction regenerate length 6+/-0.4 cm, and lengthening percentage 21+/-2.1. The scatter plots of new regenerate length against time and the scatter plots of neurological complication, residual deformities, broken pins, joint contractures, and hypertension rate against lengthening percentage showed a positive linear relationship (r=0.8). We found the correlations between quantitative and qualitative parameters that should help to predict the treatment outcomes. Lengthening index depends on the amount of length gained. Higher length of new bone regenerate leads to a decrease in lengthening index. Expected gain in bone length can aid in estimating the duration of treatment. The lengthening percentage correlates very well with the complication rate and can be used to predict the complication rate.
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
2015-11-04
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
A scattering model for rain depolarization
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Stutzman, W. L.; Bostian, C. W.
1973-01-01
A method is presented for calculating the amount of depolarization caused by precipitation for a propagation path. In the model the effects of each scatterer and their interactions are accounted for by using a series of simplifying steps. It is necessary only to know the forward scattering properties of a single scatterer. For the case of rain the results of this model for attenuation, differential phase shift, and cross polarization agree very well with the results of the only other model available, that of differential attenuation and differential phase shift. Calculations presented here show that horizontal polarization is more sensitive to depolarization than is vertical polarization for small rain drop canting angle changes. This effect increases with increasing path length.
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Theory of waves incoherently scattered
NASA Technical Reports Server (NTRS)
Bauer, P.
1974-01-01
Electromagnetic waves impinging upon a plasma at frequencies larger than the plasma frequency, suffer weak scattering. The scattering arises from the existence of electron density fluctuations. The received signal corresponds to a particular spatial Fourier component of the fluctuations, the wave vector of which is a function of the wavelength of the radiowave. Wavelengths short with respect to the Debye length of the medium relate to fluctuations due to non-interacting Maxwellian electrons, while larger wavelengths relate to fluctuations due to collective Coulomb interactions. In the latter case, the scattered signal exhibits a spectral distribution which is characteristic of the main properties of the electron and ion gases and, therefore, provides a powerful diagnosis of the state of the ionosphere.
Antihydrogen-hydrogen elastic scattering at thermal energies using an atomic-orbital technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Prabal K.; Chaudhuri, Puspitapallab; Ghosh, A.S.
2003-05-01
In view of the recent interest in the trapping of antihydrogen atom H(bar sign), at very low temperatures, H-bar-H scattering has been investigated at low incident energies using a close-coupling model with the basis set H-bar(1s,2s,2p-bar)+H(1s,2s,2p-bar). The predicted s-wave elastic phase shifts, scattering length, and effective range are in a good agreement with the other recent predictions of Jonsell et al. and of Armour and Chamberlain. The results indicate that the atomic orbital expansion model is suitable to study the H-bar-H scattering at ultracold temperatures.
Diffraction scattering computed tomography: a window into the structures of complex nanomaterials
Birkbak, M. E.; Leemreize, H.; Frølich, S.; Stock, S. R.
2015-01-01
Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials. PMID:26505175
NASA Astrophysics Data System (ADS)
Velten, Andreas
2017-05-01
Light scattering is a primary obstacle to optical imaging in a variety of different environments and across many size and time scales. Scattering complicates imaging on large scales when imaging through the atmosphere when imaging from airborne or space borne platforms, through marine fog, or through fog and dust in vehicle navigation, for example in self driving cars. On smaller scales, scattering is the major obstacle when imaging through human tissue in biomedical applications. Despite the large variety of participating materials and size scales, light transport in all these environments is usually described with very similar scattering models that are defined by the same small set of parameters, including scattering and absorption length and phase function. We attempt a study of scattering and methods of imaging through scattering across different scales and media, particularly with respect to the use of time of flight information. We can show that using time of flight, in addition to spatial information, provides distinct advantages in scattering environments. By performing a comparative study of scattering across scales and media, we are able to suggest scale models for scattering environments to aid lab research. We also can transfer knowledge and methodology between different fields.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes
NASA Astrophysics Data System (ADS)
O'Brien, S. A.; Harvey, A.; Griffin, A.; Donnelly, T.; Mulcahy, D.; Coleman, J. N.; Donegan, J. F.; McCloskey, D.
2017-11-01
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter—the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
Light scattering and random lasing in aqueous suspensions of hexagonal boron nitride nanoflakes.
O'Brien, S A; Harvey, A; Griffin, A; Donnelly, T; Mulcahy, D; Coleman, J N; Donegan, J F; McCloskey, D
2017-11-24
Liquid phase exfoliation allows large scale production of 2D materials in solution. The particles are highly anisotropic and strongly scatter light. While spherical particles can be accurately and precisely described by a single parameter-the radius, 2D nanoflakes, however, cannot be so easily described. We investigate light scattering in aqueous solutions of 2D hexagonal boron nitride nanoflakes in the single and multiple scattering regimes. In the single scattering regime, the anisotropic 2D materials show a much stronger depolarization of light when compared to spherical particles of similar size. In the multiple scattering regime, the scattering as a function of optical path for hexagonal boron nitride nanoflakes of a given lateral length was found to be qualitatively equivalent to scattering from spheres with the same diameter. We also report the presence of random lasing in high concentration suspensions of aqueous h-BN mixed with Rhodamine B dye. The h-BN works as a scattering agent and Rhodamine B as a gain medium for the process. We observed random lasing at 587 nm with a threshold energy of 0.8 mJ.
NASA Astrophysics Data System (ADS)
Higginson, Drew P.
2017-11-01
We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.
NASA Astrophysics Data System (ADS)
Liu, Yan; Lin, Zhaojun; Zhao, Jingtao; Yang, Ming; Shi, Wenjing; Lv, Yuanjie; Feng, Zhihong
2016-04-01
The electron mobility for the prepared AlGaN/AlN/GaN heterostructure field-effect transistor (HFET) with the ratio of the gate length to the drain-to-source distance being less than 1/2 has been studied by comparing the measured electron mobility with the theoretical value. The measured electron mobility is derived from the measured capacitance-voltage (C-V) and current-voltage (I-V) characteristics, and the theoretical mobility is determined by using Matthiessen's law, involving six kinds of important scattering mechanisms. For the prepared device at room temperature, longitudinal optical phonon scattering (LO scattering) was found to have a remarkable effect on the value of the electron mobility, and polarization Coulomb field scattering (PCF scattering ) was found to be important to the changing trend of the electron mobility versus the two-dimensional electron gas (2DEG) density.
Scattering Properties of Ground-State 23Na Vapor Using Generalized Scattering Theory
NASA Astrophysics Data System (ADS)
Al-Harazneh, A. A.; Sandouqa, A. S.; Joudeh, B. R.; Ghassib, H. B.
2018-04-01
The scattering properties of ground-state 23Na vapor are investigated within the framework of the Galitskii-Migdal-Feynman formalism. Viewed as a generalized scattering theory, this formalism is used to calculate the medium phase shifts. The scattering properties of the system—the total, viscosity, spin-exchange, and average cross sections—are then computed using these phase shifts according to standard recipes. The total cross section is found to exhibit the Ramsauer-Townsend effect as well as resonance peaks. These peaks are caused by the large difference between the potentials for electronic spin-singlet and spin-triplet states. They represent quasi-bound states in the system. The results obtained for the complex spin-exchange cross sections are particularly highlighted because of their importance in the spectroscopy of the Na2 dimer. So are the results for the scattering lengths pertaining to both singlet and triplet states. Wherever possible, comparison is made with other published results.
On the optimum polarizations of incoherently reflected waves
NASA Technical Reports Server (NTRS)
Van Zyl, Jakob J.; Elachi, Charles; Papas, Charles H.
1987-01-01
The Stokes scattering operator is noted to be the most useful characterization of incoherent scattering in radar imaging; the polarization that would yield an optimum amount of power received from the scatterer is obtained by assuming a knowledge of the Stokes scattering operator instead of the 2x2 scattering matrix with complex elements. It is thereby possible to find the optimum polarizations for the case in which the scatterers can only be fully characterized by their Stokes scattering operator, and the case in which the scatterer can be fully characterized by the complex 2x2 scattering matrix. It is shown that the optimum polarizations reported in the literature form the solution for a subset of a more general class of problems, so that six optimum polarizations can exist for incoherent scattering.
Nucleon-nucleon scattering from fully dynamical lattice QCD.
Beane, S R; Bedaque, P F; Orginos, K; Savage, M J
2006-07-07
We present results of the first fully dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1S0 channel and 3S1 - 3D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with a lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions.
NASA Astrophysics Data System (ADS)
Ceperley, Daniel Peter
This thesis presents a Finite-Difference Time-Domain simulation framework as well as both scientific observations and quantitative design data for emerging optical devices. These emerging applications required the development of simulation capabilities to carefully control numerical experimental conditions, isolate and quantifying specific scattering processes, and overcome memory and run-time limitations on large device structures. The framework consists of a new version 7 of TEMPEST and auxiliary tools implemented as Matlab scripts. In improving the geometry representation and absorbing boundary conditions in TEMPEST from v6 the accuracy has been sustained and key improvements have yielded application specific speed and accuracy improvements. These extensions include pulsed methods, PML for plasmon termination, and plasmon and scattered field sources. The auxiliary tools include application specific methods such as signal flow graphs of plasmon couplers, Bloch mode expansions of sub-wavelength grating waves, and back-propagation methods to characterize edge scattering in diffraction masks. Each application posed different numerical hurdles and physical questions for the simulation framework. The Terrestrial Planet Finder Coronagraph required accurate modeling of diffraction mask structures too large for solely FDTD analysis. This analysis was achieved through a combination of targeted TEMPEST simulations and full system simulator based on thin mask scalar diffraction models by Ball Aerospace for JPL. TEMPEST simulation showed that vertical sidewalls were the strongest scatterers, adding nearly 2lambda of light per mask edge, which could be reduced by 20° undercuts. TEMPEST assessment of coupling in rapid thermal annealing was complicated by extremely sub-wavelength features and fine meshes. Near 100% coupling and low variability was confirmed even in the presence of unidirectional dense metal gates. Accurate analysis of surface plasmon coupling efficiency by small surface features required capabilities to isolate these features and cleanly illuminate them with plasmons and plane-waves. These features were shown to have coupling cross-sections up to and slightly exceeding their physical size. Long run-times for TEMPEST simulations of finite length gratings were overcome with a signal flow graph method. With these methods a plasmon coupler with over a 10lambda 100% capture length was demonstrated. Simulation of 3D nano-particle arrays utilized TEMPEST v7's pulsed methods to minimize the number of multi-day simulations. These simulations led to the discovery that interstitial plasmons were responsible for resonant absorption and transmission but not reflection. Simulation of a sub-wavelength grating mirror using pulsed sources to map resonant spectra showed that neither coupled guided waves nor coupled isolated resonators accurately described the operation. However, a new model based on vertical propagation of lateral Bloch modes with zero phase progression efficiently characterized the device and provided principles for designing similar devices at other wavelengths.
NASA Astrophysics Data System (ADS)
Duran, Sean Patrick Hynes
A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to allow probing of the sprays three dimensional structure. The test matrix included two nozzle diameters, 160 and 320 microns, and two fuels dodecane and methyl oleate. Results are presented comparing the fuels and the effects of nozzle diameter. A mathematical interpretation of the results is also presented.
Monte-Carlo Simulation of 3H(γ, pn)n and 3He(γ, pp)n Experiments at HIγS★
NASA Astrophysics Data System (ADS)
Han, Z.; Friesen, F. Q. L.; Howell, C. R.; Ahmed, M. W.; Crowe, B. J.; Crowell, A. S.; Cumberbatch, L. C.; Fallin, B.; Ticehurst, D.; Tornow, W.; Witała, H.
2016-03-01
We are developing an experiment to measure the two and three-body (γ, p) differential cross sections (DCS) for 3H and 3He. These data will be used to determine the 1S0 nn scattering length (ann) and np scattering length (anp) respectively. This paper describes features of the Monte-Carlo (MC) simulation that will aid in the optimization of the experimental design and the data analysis approach. This work is supported in part by the U.S. Department of Energy under grant Nos. DE-FG02-97ER41033 and DE-SC0005367 and by the Polish National Science Center under Grant No.DEC-2013/10/M/ST2/00420.
Radiative transport equation for the Mittag-Leffler path length distribution
NASA Astrophysics Data System (ADS)
Liemert, André; Kienle, Alwin
2017-05-01
In this paper, we consider the radiative transport equation for infinitely extended scattering media that are characterized by the Mittag-Leffler path length distribution p (ℓ ) =-∂ℓEα(-σtℓα ) , which is a generalization of the usually assumed Lambert-Beer law p (ℓ ) =σtexp(-σtℓ ) . In this context, we derive the infinite-space Green's function of the underlying fractional transport equation for the spherically symmetric medium as well as for the one-dimensional string. Moreover, simple analytical solutions are presented for the prediction of the radiation field in the single-scattering approximation. The resulting equations are compared with Monte Carlo simulations in the steady-state and time domain showing, within the stochastic nature of the simulations, an excellent agreement.
Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A
2010-10-11
We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.
NASA Astrophysics Data System (ADS)
Hauenstein, F.; Borodina, E.; Clement, H.; Doroshkevich, E.; Dzhygadlo, R.; Ehrhardt, K.; Eyrich, W.; Gast, W.; Gillitzer, A.; Grzonka, D.; Haidenbauer, J.; Hanhart, C.; Jowzaee, S.; Kilian, K.; Klaja, P.; Kober, L.; Krapp, M.; Mertens, M.; Moskal, P.; Ritman, J.; Roderburg, E.; Röder, M.; Schroeder, W.; Sefzick, T.; Wintz, P.; Wüstner, P.; COSY-TOF Collaboration
2017-03-01
The p ⃗p →p K+Λ reaction has been measured with the COSY-TOF detector at a beam momentum of 2.7 GeV /c . The polarized proton beam enables the measurement of the beam analyzing power by the asymmetry of the produced kaon (ANK). This observable allows the p Λ spin triplet scattering length to be extracted for the first time model independently from the final state interaction in the reaction. The obtained value is at=(-2 .55-1.39+0.72stat .±0 .6syst .±0 .3theo .) fm . This value is compatible with theoretical predictions and results from model-dependent analyses.
NASA Astrophysics Data System (ADS)
Gaeris, Andres Claudio
The Stimulated Brillouin Scattering (SBS) instability is studied in moderately short scale-length plasmas. The backscattered and specularly reflected light resulting from the interaction of a pair of high power picosecond duration laser pulses with solid Silicon, Gold and Parylene-N (CH) strip targets was spectrally resolved. The first, weaker laser pulse forms a short scale-length plasma while the second delayed one interacts with the isothermally expanded, underdense region of the plasma. The pulses are generated by the Table Top Terawatt (TTT) laser operating at 1054 nm (infrared) with intensities up to 5.10 16 W/cm2. Single laser pulses only show Lambertian scattering on the target critical surface. Pairs of pulses with high intensity in the second pulse show an additional backscattered, highly blueshifted feature, associated with SBS. Increasing this second pulse intensity even more leads to the appearance of a third feature, even more blueshifted than the second, resulting from the Brillouin sidescattering of the laser pulse reflected on the critical surface. The SBS threshold intensities and enhanced reflectivities for P-polarized light are determined for different plasma density scale-lengths. These measurements agree with the convective thresholds predicted by the SBS theory of Liu, Rosenbluth, and White using plasma profiles simulated by the LILAC code. The spectral position of the Brillouin back- and sidescattered features are determined. The SBS and Doppler shifts are much too small to explain the observed blueshifts. The refractive index shift is of the right magnitude, although more detailed verification is required in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkowski, M.; Ciurylo, R.; Julienne, P. S.
2010-10-29
We study theoretically the properties of photoassociation spectra near the {sup 1}S{sub 0}-{sup 3}P{sub 1} inter-combination line of bosonic ytterbium. We construct a mass scaled model of the excited state interaction potential that well describes bound state energies obtained in a previous photoassociation experiment. We then use it to calculate theoretical photoassociation spectra in a range of ultracold temperatures using semianalytical theory developed by Bohn and Julienne.Photoassociation spectra not only give us the energies of excited bound states, but also provide information about the behavior of the ground state wavefunction. In fact, it can be shown that within the so-calledmore » reflection approximation the line intensity is proportional to the ground state wavefunction at the transition's Condon point. We show that in the case of ytterbium, the rotational structure of the photoassociation spectra depends heavily on the behavior of the ground-state wavefunction. The change of the scattering length from one isotope to another and the resulting occurence of shape resonances in higher partial waves determines the appearance and disapperance of rotational components, especially in the deeper lying states, whose respective Condon points lie near the ground state centrifugal barrier. Thus, photoassociation spectra differ qualitatively between isotopes.« less
Are metastable, precrystallisation, density-fluctuations a universal phenomena?
Heeley, Ellen L; Poh, C Kit; Li, Wu; Maidens, Anna; Bras, Wim; Dolbnya, Igor P; Gleeson, Anthony J; Terrill, Nicolas J; Fairclough, J Patrick A; Olmsted, Peter D; Ristic, Rile I; Hounslow, Micheal J; Ryan, Anthony J
2003-01-01
In-situ observations of crystallisation in minerals and organic polymers have been made by simultaneous, time-resolved small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) techniques. In isotactic polypropylene slow quiescent crystallisation shows the onset of large scale ordering prior to crystal growth. Rapid crystallisations studied by melt extrusion indicate the development of well resolved oriented SAXS patterns associated with long range order before the development of crystalline peaks in the WAXS region. Block copolymers self-assemble into mesophases in polymer melts above a critical chain length (or above a critical temperature) and this self-assembly process is shown to be susceptible to an incipient crystallisation. Mesophase formation is observed at anomalously high temperatures in ethylene-oxide containing block copolymers below the normal melting point of the polyoxy ethylene chains. Formation of calcium carbonate from aqueous solutions of sodium carbonate and calcium nitrate is observed to be a two-stage process and precipitation proceeds by the production of an amorphous metastable phase. This phase grows until it is volume filling and leads to the formation of the two polymorphs Calcite and Vaterite. These three sets of results suggest pre-nucleation density fluctuations, leading to a metastable phase, play an integral role in all three classes of crystallisation. In due course, this phase undergoes transformation to "normal" crystals.
The exact solution of a four-body Coulomb problem
NASA Astrophysics Data System (ADS)
Ray, Hasi
2018-03-01
The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps-Ps, Ps-Mu, Ps-H, Ps-D, Ps-T, Mu-Mu, Mu-H, Mu-D, Mu-T, H-H, H-D, H-T, D-D, D-T, T-T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)-H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
Small-angle x-ray scattering investigations of extrudates
NASA Astrophysics Data System (ADS)
Pikus, Stanislaw; Jamroz, Jerzy
1997-02-01
The small-angle X-ray scattering investigations of the extrudes are presented. The investigations of the different samples of starch by means of the SAXS indicate the new possibilities for using this method for extrudates examination. Results obtained by SAXS method of close dependance between intensity SAXS scattering and characteristic parameters of the extrudates were shown.
Scattering from phase-separated vesicles. I. An analytical form factor for multiple static domains
Heberle, Frederick A.; Anghel, Vinicius N. P.; Katsaras, John
2015-08-18
This is the first in a series of studies considering elastic scattering from laterally heterogeneous lipid vesicles containing multiple domains. Unique among biophysical tools, small-angle neutron scattering can in principle give detailed information about the size, shape and spatial arrangement of domains. A general theory for scattering from laterally heterogeneous vesicles is presented, and the analytical form factor for static domains with arbitrary spatial configuration is derived, including a simplification for uniformly sized round domains. The validity of the model, including series truncation effects, is assessed by comparison with simulated data obtained from a Monte Carlo method. Several aspects ofmore » the analytical solution for scattering intensity are discussed in the context of small-angle neutron scattering data, including the effect of varying domain size and number, as well as solvent contrast. Finally, the analysis indicates that effects of domain formation are most pronounced when the vesicle's average scattering length density matches that of the surrounding solvent.« less
Interior radiances in optically deep absorbing media. III Scattering from Haze L
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.
1975-01-01
The interior radiances are calculated within an optically deep absorbing medium scattering according to the Haze L phase function. The dependence on the solar zenith angle, the single scattering albedo, and the optical depth within the medium is calculated by the matrix operator method. The development of the asymptotic angular distribution of the radiance in the diffusion region is illustrated through a number of examples; it depends only on the single scattering albedo and on the phase function for single scattering. The exact values of the radiance in the diffusion region are compared with values calculated from the approximate equations proposed by Van de Hulst. The variation of the radiance near the lower boundary of an optically thick medium is illustrated with examples. The attenuation length is calculated for various single scattering albedos and compared with the corresponding values for Rayleigh scattering. The ratio of the upward to the downward flux is found to be remarkably constant within the medium.
NASA Astrophysics Data System (ADS)
Abratenko, P.; Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2017-10-01
We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation, we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks.
Abratenko, P.
2017-10-18
Here, we discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation,more » we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abratenko, P.
Here, we discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Using simulation,more » we have shown that the standard Highland formula should be re-tuned specifically for scattering in liquid argon, which significantly improves the bias and resolution of the momentum measurement. With the tuned formula, we find agreement between data and simulation for contained tracks, with a small bias in the momentum reconstruction and with resolutions that vary as a function of track length, improving from about 10% for the shortest (one meter long) tracks to 5% for longer (several meter) tracks. For simulated exiting muons with at least one meter of track contained, we find a similarly small bias, and a resolution which is less than 15% for muons with momentum below 2 GeV/c. Above 2 GeV/c, results are given as a first estimate of the MCS momentum measurement capabilities of MicroBooNE for high momentum exiting tracks.« less
Effects of Orthographic and Phonological Word Length on Memory for Lists Shown at RSVP and STM Rates
ERIC Educational Resources Information Center
Coltheart, Veronika; Mondy, Stephen; Dux, Paul E.; Stephenson, Lisa
2004-01-01
This article reports 3 experiments in which effects of orthographic and phonological word length on memory were examined for short lists shown at rapid serial visual presentation (RSVP) and short-term memory (STM) rates. Only visual-orthographic length reduced RSVP serial recall, whereas both orthographic and phonological length lowered recall for…
Variation of the distribution of crack lengths during corrosion fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, S.; Miyao, K.; Shiozawa, K.
1984-07-01
The detailed initiation and growth behaviour of distributed cracks on a specimen surface was investigated during corrosion fatigue. It can be clarified that the changes of the distribution of crack lengths with stress cycling reflect the behaviour of initiation and growth of distributed cracks. The distribution of crack lengths for certain stress cycles could be explained by a statistical calculation which takes into account both the variation of number of cracks during stress cycling and the scatter of crack growth rate.
NASA Astrophysics Data System (ADS)
Burov, V. A.; Morozov, S. A.
2001-11-01
Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.
Three dimensional scattering center imaging techniques
NASA Technical Reports Server (NTRS)
Younger, P. R.; Burnside, W. D.
1991-01-01
Two methods to image scattering centers in 3-D are presented. The first method uses 2-D images generated from Inverse Synthetic Aperture Radar (ISAR) measurements taken by two vertically offset antennas. This technique is shown to provide accurate 3-D imaging capability which can be added to an existing ISAR measurement system, requiring only the addition of a second antenna. The second technique uses target impulse responses generated from wideband radar measurements from three slightly different offset antennas. This technique is shown to identify the dominant scattering centers on a target in nearly real time. The number of measurements required to image a target using this technique is very small relative to traditional imaging techniques.
Wave multiple scattering by a finite number of unclosed circular cylinders
NASA Technical Reports Server (NTRS)
Veliyev, E. I.; Veremey, V. V.
1984-01-01
The boundary value problem of plane H-polarized electromagnetic wave multiple scattering by a finite number of unclosed circular cylinders is solved. The solution is obtained by two different methods: the method of successive scattering and the method of partial matrix inversion for simultaneous dual equations. The advantages of the successive scattering method are shown. Computer calculations of the suface currents and the total cross section are presented for the structure of two screens.
Resolving 3D magnetism in nanoparticles using polarization analyzed SANS
NASA Astrophysics Data System (ADS)
Krycka, K. L.; Booth, R.; Borchers, J. A.; Chen, W. C.; Conlon, C.; Gentile, T. R.; Hogg, C.; Ijiri, Y.; Laver, M.; Maranville, B. B.; Majetich, S. A.; Rhyne, J. J.; Watson, S. M.
2009-09-01
Utilizing a polarized 3He cell as an analyzer we were able to perform a full polarization analysis on small-angle neutron scattering (SANS) data from an ensemble of 7 nm magnetite nanoparticles. The results led to clear separation of magnetic and nuclear scattering plus a 3D vectorial decomposition of the magnetism observed. At remanence variation in long-range magnetic correlation length was found to be highly dependent on temperature from 50 to 300 K. Additionally, we were able to compare the magnetic scattering from moments along and perpendicular to an applied field at saturation and in remanence.
Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range
NASA Astrophysics Data System (ADS)
Tajima, Hiroyuki
2018-04-01
We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.
Physical scales in the Wigner–Boltzmann equation
Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.
2013-01-01
The Wigner–Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner–Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner–Boltzmann evolution is demonstrated. PMID:23504194
Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films.
Geldmeier, Jeffrey; Rile, Lexy; Yoon, Young Jun; Jung, Jaehan; Lin, Zhiqun; Tsukruk, Vladimir V
2017-12-19
A new method for enhancing photoluminescence from quantum dot (QD)/polymer nanocomposite films is proposed. Poly(lauryl methacrylate) (PLMA) thin films containing embedded QDs are intentionally allowed to undergo dewetting on substrates by exposure to a nonsolvent vapor. After controlled dewetting, films exhibited typical dewetting morphologies with increased amounts of scattering that served to outcouple photoluminescence from the film and reduce internal light propagation within the film. Up to a 5-fold enhancement of the film emission was achieved depending on material factors such as the initial film thickness and QD concentration within the film. An increase in initial film thickness was shown to increase the dewetted maximum feature size and its characteristic length until a critical thickness was reached where dewetting became inhibited. A unique light exposure-based photopatterning method is also presented for the creation of high contrast emissive patterns as guided by spatially controlled dewetting.
Finite temperature static charge screening in quantum plasmas
NASA Astrophysics Data System (ADS)
Eliasson, B.; Akbari-Moghanjoughi, M.
2016-07-01
The shielding potential around a test charge is calculated, using the linearized quantum hydrodynamic formulation with the statistical pressure and Bohm potential derived from finite temperature kinetic theory, and the temperature effects on the force between ions is assessed. The derived screening potential covers the full range of electron degeneracy in the equation of state of the plasma electrons. An attractive force between shielded ions in an arbitrary degenerate plasma exists below a critical temperature and density. The effect of the temperature on the screening potential profile qualitatively describes the ion-ion bound interaction strength and length variations. This may be used to investigate physical properties of plasmas and in molecular-dynamics simulations of fermion plasma. It is further shown that the Bohm potential including the kinetic corrections has a profound effect on the Thomson scattering cross section in quantum plasmas with arbitrary degeneracy.
Four-dimensional modeling of recent vertical movements in the area of the southern California uplift
Vanicek, Petr; Elliot, Michael R.; Castle, Robert O.
1979-01-01
This paper describes an analytical technique that utilizes scattered geodetic relevelings and tide-gauge records to portray Recent vertical crustal movements that may have been characterized by spasmodic changes in velocity. The technique is based on the fitting of a time-varying algebraic surface of prescribed degree to the geodetic data treated as tilt elements and to tide-gauge readings treated as point movements. Desired variations in time can be selected as any combination of powers of vertical movement velocity and episodic events. The state of the modeled vertical displacement can be shown for any number of dates for visual display. Statistical confidence limits of the modeled displacements, derived from the density of measurements in both space and time, line length, and accuracy of input data, are also provided. The capabilities of the technique are demonstrated on selected data from the region of the southern California uplift.
Approximating the Helium Wavefunction in Positronium-Helium Scattering
NASA Technical Reports Server (NTRS)
DiRienzi, Joseph; Drachman, Richard J.
2003-01-01
In the Kohn variational treatment of the positronium- hydrogen scattering problem the scattering wave function is approximated by an expansion in some appropriate basis set, but the target and projectile wave functions are known exactly. In the positronium-helium case, however, a difficulty immediately arises in that the wave function of the helium target atom is not known exactly, and there are several ways to deal with the associated eigenvalue in formulating the variational scattering equations to be solved. In this work we will use the Kohn variational principle in the static exchange approximation to d e t e e the zero-energy scattering length for the Ps-He system, using a suite of approximate target functions. The results we obtain will be compared with each other and with corresponding values found by other approximation techniques.
Biomembranes research using thermal and cold neutrons
Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John
2015-08-01
In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, impartingmore » sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.« less
Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.
Sakadzić, Sava; Wang, Lihong V
2006-04-28
We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.
NASA Astrophysics Data System (ADS)
Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.
2016-05-01
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
NASA Astrophysics Data System (ADS)
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly
NASA Astrophysics Data System (ADS)
Boulenguez, J.; Berthier, S.; Leroy, F.
2012-03-01
The iridescence of Morpho rhetenor butterfly is known to result from a photonic structure on wing scales, where multilayer interference and grating diffraction occur simultaneously. We characterize the disorder at the photonic structure length scale and at the butterfly scale. We measure the scattering pattern of the wing. Through RCWA and 1st Born approximation models, we link the different disorders to different features in the scattering patterns.
Hydrometeor Size Distribution Measurements by Imaging the Attenuation of a Laser Spot
NASA Technical Reports Server (NTRS)
Lane, John
2013-01-01
The optical extinction of a laser due to scattering of particles is a well-known phenomenon. In a laboratory environment, this physical principle is known as the Beer-Lambert law, and is often used to measure the concentration of scattering particles in a fluid or gas. This method has been experimentally shown to be a usable means to measure the dust density from a rocket plume interaction with the lunar surface. Using the same principles and experimental arrangement, this technique can be applied to hydrometeor size distributions, and for launch-pad operations, specifically as a passive hail detection and measurement system. Calibration of a hail monitoring system is a difficult process. In the past, it has required comparison to another means of measuring hydrometeor size and density. Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through hail (or dust in the rocket case) yields an estimate of the second moment of the particle cloud, and hydrometeor size distribution in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rain and hail fall make indirect measurements of the drop-size distribution. Instruments that scatter microwaves off of hydrometeors, such as the WSR-88D (Weather Surveillance Radar 88 Doppler), vertical wind profilers, and microwave disdrometers, measure the sixth moment of the drop size distribution (DSD). By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain and hail yield a measurement of the DSD's second moment by way of the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required. Depending on the intensity of the hail fall rate for moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. For hail fall only, the laser path may be shorter because of greater scattering due to the properties of hailstones versus raindrops. A photodetector may replace the camera in automated installations. Laser-based rain and hail measurement systems are available, but they are based on measuring the interruption of a thin laser beam, thus counting individual hydrometeors. These systems are true disdrometers since they also measure size and velocity. The method reported here is a simple method, requiring far less processing, but it is not a disdrometer.
Effect of enzymatic hydrolysis on native starch granule structure.
Blazek, Jaroslav; Gilbert, Elliot Paul
2010-12-13
Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline growth rings.
Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum
NASA Astrophysics Data System (ADS)
Chassé, A.; Niebergall, L.; Kucherenko, Yu.
2002-04-01
The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.
NASA Technical Reports Server (NTRS)
Yang, P.; Gao, B.-C.; Wiscombe, W. J.; Mishchenko, M. I.; Platnick, S.; Huang, H.-L.; Baum, B. A.; Hu, Y. X.; Winkler, D,; Tsay, S.-C.;
2001-01-01
The conventional Lorenz-Mie formalism is extended to the scattering process associated with a coated sphere embedded in an absorbing medium. It is shown that apparent and inherent scattering cross sections of a scattering particle, which are identical in the case of transparent host medium, are different if the host medium is absorptive. Here the inherent single-scattering properties are derived from the near-field information whereas the corresponding apparent counterparts are derived from the far-field asymptotic form of the scattered wave with scaling of host absorption that is assumed to be in an exponential form. The formality extinction and scattering efficiencies defined in the same manner as in the conventional sense can be unbounded. For a nonabsorptive particle embedded in an absorbing medium, the effect of host absorption on the phase matrix elements associated with polarization is significant. This effect, however, is largely reduced for strongly absorptive particles such as soot. For soot particles coated with water, the impurity can substantially reduce the single-scattering albedo of the particle if the size parameter is small. For water-coating soot and hollow ice spheres, it is shown that the phase matrix elements -P(sub 12)/P(sub 11) and P(sub 33)/P(sub 11) are unique if the shell is thin, as compared with the case for thick shell. Furthermore, the radiative transfer equation regarding a multidisperse particle system in an absorbing medium is discussed. It is illustrated that the conventional computation algorithms can be applied to solve the multiple scattering process if the scaled apparent single-scattering properties are applied.
Electron residual energy due to stochastic heating in field-ionized plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalilzadeh, Elnaz; The Plasma Physics and Fusion Research School, Tehran; Yazdanpanah, Jam, E-mail: jamal.yazdan@gmail.com
2015-11-15
The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed inmore » order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.« less
Energy spectra of small bosonic clusters having a large two-body scattering length
NASA Astrophysics Data System (ADS)
Gattobigio, M.; Kievsky, A.; Viviani, M.
2012-10-01
In this work we investigate small clusters of bosons using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 particles interacting through a soft interparticle potential. In order to make contact with a real system, we use an attractive Gaussian potential that reproduces the values of the dimer binding energy and the atom-atom scattering length obtained with one of the most widely used 4He-4He interactions, the LM2M2 potential of Aziz and Slaman. The intensity of the potential is varied in order to explore the clusters’ spectra in different regions with large positive and large negative values of the two-body scattering length. In addition, we include a repulsive three-body force to reproduce the trimer binding energy. With this model, consisting in the sum of a two- and three-body potential, we have calculated the spectrum of the four-, five-, and six-particle systems. In all the regions explored, we have found that these systems present two states, one deep and one shallow close to the A-1 threshold. Some universal relations between the energy levels are extracted; in particular, we have estimated the universal ratios between thresholds of the three-, four-, and five-particle continua using the two-body Gaussian potential. They agree with recent measurements and theoretical predictions.
Electronic confining effects in Sierpiński triangle fractals
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhang, Xue; Jiang, Zhuoling; Wang, Yongfeng; Hou, Shimin
2018-03-01
Electron confinement in fractal Sierpiński triangles (STs) on Ag(111) is investigated using scanning tunneling spectroscopy and theoretically simulated by employing an improved two-dimensional (2D) multiple scattering theory in which the energy-dependent phase shifts are explicitly calculated from the electrostatic potentials of the molecular building block of STs. Well-defined bound surface states are observed in three kinds of triangular cavities with their sides changing at a scale factor of 2. The decrease in length of the cavities results in an upshift of the resonances that deviates from an expected inverse quadratic dependence on the cavity length due to the less efficient confinement of smaller triangular cavities. Differential conductance maps at some specific biases present a series of alternative bright and dark rounded triangles preserving the symmetry of the boundary. Our improved 2D multiple scattering model reproduces the characteristics of the standing wave patterns and all features in the differential conductance spectra measured in experiments, illustrating that the elastic loss boundary scattering dominates the resonance broadening in these ST quantum corrals. Moreover, the self-similar structure of STs, that a larger central cavity is surrounded by three smaller ones with a half side length, gives rise to interactions of surface states confined in neighboring cavities, which are helpful for the suppression of the linewidth in differential conductance spectra.
NASA Astrophysics Data System (ADS)
Custo, Anna; Wells, William M., III; Barnett, Alex H.; Hillman, Elizabeth M. C.; Boas, David A.
2006-07-01
An efficient computation of the time-dependent forward solution for photon transport in a head model is a key capability for performing accurate inversion for functional diffuse optical imaging of the brain. The diffusion approximation to photon transport is much faster to simulate than the physically correct radiative transport equation (RTE); however, it is commonly assumed that scattering lengths must be much smaller than all system dimensions and all absorption lengths for the approximation to be accurate. Neither of these conditions is satisfied in the cerebrospinal fluid (CSF). Since line-of-sight distances in the CSF are small, of the order of a few millimeters, we explore the idea that the CSF scattering coefficient may be modeled by any value from zero up to the order of the typical inverse line-of-sight distance, or approximately 0.3 mm-1, without significantly altering the calculated detector signals or the partial path lengths relevant for functional measurements. We demonstrate this in detail by using a Monte Carlo simulation of the RTE in a three-dimensional head model based on clinical magnetic resonance imaging data, with realistic optode geometries. Our findings lead us to expect that the diffusion approximation will be valid even in the presence of the CSF, with consequences for faster solution of the inverse problem.
Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.; ...
2017-12-29
Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.
Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Ross, Kate A.; Krizan, Jason W.; Nilsen, Gøran J.; Wildes, Andrew R.; Cava, Robert J.; Birgeneau, Robert J.; Billinge, Simon J. L.
2017-12-01
We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2F7 and NaSrCo2F7 , which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing an opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.
Symmetry considerations in the scattering of identical composite bodies
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.
1986-01-01
Previous studies of the interactions between composite particles were extended to the case in which the composites are identical. The form of the total interaction potential matrix elements was obtained, and guidelines for their explicit evaluation were given. For the case of elastic scattering of identical composites, the matrix element approach was shown to be equivalent to the scattering amplitude method.
The Toda lattice as a forced integrable system
NASA Technical Reports Server (NTRS)
Hansen, P. J.; Kaup, D. J.
1985-01-01
The analytic properties of the Jost functions for the inverse scattering transform associated with the forced Toda lattice are shown to determine the time evolution of this particular boundary value problem. It is suggested that inverse scattering methods may be used generally to analyze forced integrable systems. Thus an extension of the applicability of the inverse scattering transform is indicated.
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.
THERMOS. 30-Group ENDF/B Scattered Kernels
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrosson, F.J.; Finch, D.R.
1973-12-01
These data are 30-group THERMOS thermal scattering kernels for P0 to P5 Legendre orders for every temperature of every material from s(alpha,beta) data stored in the ENDF/B library. These scattering kernels were generated using the FLANGE2 computer code. To test the kernels, the integral properties of each set of kernels were determined by a precision integration of the diffusion length equation and compared to experimental measurements of these properties. In general, the agreement was very good. Details of the methods used and results obtained are contained in the reference. The scattering kernels are organized into a two volume magnetic tapemore » library from which they may be retrieved easily for use in any 30-group THERMOS library.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shedlock, Daniel; Dugan, Edward T.; Jacobs, Alan M.
X-ray backscatter radiography by selective detection (RSD) is a field tested and innovative approach to non-destructive evaluation (NDE). RSD is an enhanced single-side x-ray Compton backscatter imaging (CBI) technique which selectively detects scatter components to improve image contrast and quality. Scatter component selection is accomplished through a set of specially designed detectors with fixed and movable collimators. Experimental results have shown that this NDE technique can be used to detect boric acid deposition on a metallic plate through steel foil reflective insulation commonly covering reactor pressure vessels. The current system is capable of detecting boric acid deposits with sub-millimeter resolution,more » through such insulating materials. Industrial systems have been built for Lockheed Martin Space Co. and NASA. Currently the x-ray backscatter RSD scanning systems developed by the University of Florida are being used to inspect the spray-on foam insulation (SOFI) used on the external tank of the space shuttle. RSD inspection techniques have found subsurface cracking in the SOFI thought to be responsible for the foam debris which separated from the external tank during the last shuttle launch. These industrial scanning systems can be customized for many applications, and a smaller, lighter, more compact unit design is being developed. The smaller design is approximately four inches wide, three inches high, and about 12 inches in length. This smaller RSD system can be used for NDE of areas that cannot be reached with larger equipment. X-ray backscatter RSD is a proven technology that has been tested on a wide variety of materials and applications. Currently the system has been used to inspect materials such as aluminum, plastics, honeycomb laminates, reinforced carbon composites, steel, and titanium. The focus of RSD is for one-sided detection for applications where conventional non-destructive examination methods either will not work or give poor results. Acquired images have clearly shown, for a variety of conditions, that proper selection of x-ray field scatter components leads to a significant improvement in image quality and contrast. Improvements are significant enough in some cases that objects not visible to conventional CBI or transmission radiography become readily discernable with RSD. (authors)« less
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Buck, Warren W.; Maung, Khin M.
1989-01-01
Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Across-horizon scattering and information transfer
NASA Astrophysics Data System (ADS)
Emelyanov, V. A.; Klinkhamer, F. R.
2018-06-01
We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, Drew P.
Here, we describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event.more » We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10 -3 to 0.3–0.7; the upper limit corresponds to Coulomb logarithm of 20–2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.« less
Higginson, Drew P.
2017-08-12
Here, we describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event.more » We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10 -3 to 0.3–0.7; the upper limit corresponds to Coulomb logarithm of 20–2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.« less
Surface and mass fractals in vapor-phase aggregates
NASA Astrophysics Data System (ADS)
Hurd, Alan J.; Schaefer, Dale W.; Martin, James E.
1987-03-01
Several types of fumed-silica aggregates with differing surface areas were studied over a wide range of spatial resolution by employing both light and neutron scattering. At intermediate length scales, between 100 and 1000 Å, the aggregates are mass fractals with Dm~=1.7-2.0, in basic agreement with simulations of aggregating clusters. At short length scales below 100 Å where the nature of the surfaces of the primary particles dominates the scattering, some of the samples appear to be fractally rough. In particular, a higher surface area seems to be correlated not with smaller primary particles in the aggregates, as previously assumed, but with fractally rough surfaces having Ds as high as 2.5. These may be the first materials discovered to have both mass and surface fractal structure.
Stability of a Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Fletcher, Richard J.; Gaunt, Alexander L.; Navon, Nir; Smith, Robert P.; Hadzibabic, Zoran
2013-09-01
We study the stability of a thermal K39 Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length a exceeds the thermal wavelength λ. We measure the general scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive a≪λ we find agreement with three-body theory. However, for a<0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, L3∝λ4, is 3 times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes K39 particularly promising for studies of many-body physics in a unitary Bose gas.
Feshbach resonance management for Bose-Einstein condensates.
Kevrekidis, P G; Theocharis, G; Frantzeskakis, D J; Malomed, Boris A
2003-06-13
An experimentally realizable scheme of periodic sign-changing modulation of the scattering length is proposed for Bose-Einstein condensates similar to dispersion-management schemes in fiber optics. Because of controlling the scattering length via the Feshbach resonance, the scheme is named Feshbach-resonance management. The modulational-instability analysis of the quasiuniform condensate driven by this scheme leads to an analog of the Kronig-Penney model. The ensuing stable localized structures are found. These include breathers, which oscillate between the Thomas-Fermi and Gaussian configuration, or may be similar to the 2-soliton state of the nonlinear Schrödinger equation, and a nearly static state ("odd soliton") with a nested dark soliton. An overall phase diagram for breathers is constructed, and full stability of the odd solitons is numerically established.
Structure Formation in Salt-Free Solutions of Amphiphilic Sulfonated Polyelectrolytes
NASA Astrophysics Data System (ADS)
Bockstaller, Michael; Koehler, Werner
2000-03-01
Self-assembled systems have long attracted attention due to their practical importance in many technical and biological fields. Dodecyl-substituted poly(para-phenylen)sulfonates (abbreviated PPPS) are highly charged polyelectrolytes which in the uncharged state have been investigated extensively and an intrinsic persistence length of 15 nm has been reported. Due to their hydrophobic side chains, PPPS are compatible with water only as micellar aggregates and tend to form supramolecular structures even at concentrations as low as 10-5mol_mon.units/l. Because of the rodlike conformation of PPPS, this self-assembly leads to aggregates of anisotropic shape. Therefore, depolarized light scattering was employed to yield complementary information about structure and dynamics of these complex fluids. Aqueous solutions of PPPS at room temperature undergo a structural transition at a critical concentration of c_crit.=0.016 g/l. This transition is characterized by a strong increase of scattered intensity in forward direction and dynamic depolarized scattering. Above c_crit. the cylindrical micelles (L=310 nm, d=3.1 nm, N_radial=12) self assembly into large ellipsoidal clusters of size in the μ m range. Due to the strong increase of depolarized scattered intensity there has to be a preferential orientation of the micelles inside those clusters, which thus represent a lyotropic mesophase. By combining static and dynamic light scattering for the low q-range as well as small angle x-ray scattering for the higher q-range it is possible to determine size and shape of each aggregation step. Decreasing the molecular weight of the PPPS has profound influence on the micellar length and hence on c_crit. which is close to the overlap concentration (c ~ 1/L^3) allowing for the observation of the polyelectrolyte effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couturier, Laurent, E-mail: laurent.couturier55@ho
The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniquesmore » is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.« less
NASA Astrophysics Data System (ADS)
Uegaki, Shin; Yoshida, Akihiro; Hosoito, Nobuyoshi
2015-03-01
We investigated induced spin polarization of 4p conduction electrons in Cu layers of antiferromagnetically (AFM) and ferromagnetically (FM) coupled Co/Cu(111) metallic superlattices by resonant X-ray magnetic scattering at the Cu K absorption edge. Magnetic reflectivity profiles of the two superlattices were measured in the magnetic saturation state with circularly polarized synchrotron radiation X-rays at 8985 eV. Depth profiles of the resonant magnetic scattering length of Cu, which corresponds to the induced spin polarization of Cu, were evaluated in the two Co/Cu superlattices by analyzing the observed magnetic reflectivity profiles. We demonstrated that the spin polarization induced in the Cu layer was distributed around the Co/Cu interfaces with an attenuation length of several Å in both AFM and FM coupled superlattices. The uniform component, which exists in Au layers of Fe/Au(001) superlattices, was not found in the depth distribution of induced magnetic polarization in the Cu layers of Co/Cu(111) superlattices.
Densitometry and temperature measurement of combustion gas by X-ray Compton scattering
Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu
2016-01-01
Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction. PMID:26917151
On measuring the scattering coefficient in a nondiffuse sound field
NASA Astrophysics Data System (ADS)
Kanev, N. G.
2017-11-01
The laws of sound decay in a cubic room, one wall of which is absorbing and the other scattering, are obtained. It is shown that under certain conditions, sound decay in a room occurs nonexponentially and the shape of the decay curve depends on the scattering coefficient of the walls. This makes it possible to suggest a method for measuring the scattering coefficient by the analysis the decay curve when the walls have sound-scattering materials and structures. Expressions are obtained for approximating the measured decay curve, and the boundaries of the method's applicability are determined.
Densitometry and temperature measurement of combustion gas by X-ray Compton scattering.
Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu
2016-03-01
Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction.
NASA Astrophysics Data System (ADS)
Puchkov, V. A.
2016-09-01
Aspect sensitive scattering of multi-frequency probe signals by artificial, magnetic field aligned density irregularities (with transverse size ∼ 1- 10 m) generated in the ionosphere by powerful radio waves is considered. Fluctuations of received signals depending on stochastic properties of the irregularities are calculated. It is shown that in the case of HF probe waves two mechanisms may contribute to the scattered signal fluctuations. The first one is due to the propagation of probe waves in the ionospheric plasma as in a randomly inhomogeneous medium. The second one lies in non-stationary stochastic behavior of irregularities which satisfy the Bragg conditions for the scattering geometry and therefore constitute centers of scattering. In the probe wave frequency band of the order of 10-100 MHz the second mechanism dominates which delivers opportunity to recover some properties of artificial irregularities from received signals. Correlation function of backscattered probe waves with close frequencies is calculated, and it is shown that detailed spatial distribution of irregularities along the scattering vector can be found experimentally from observations of this correlation function.
Time-of-flight direct recoil ion scattering spectrometer
Krauss, A.R.; Gruen, D.M.; Lamich, G.J.
1994-09-13
A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.
The scattering of low energy positrons by helium
NASA Technical Reports Server (NTRS)
Humberston, J. W.
1973-01-01
Kohn's variational method is used to calculate the positron-helium scattering length and low energy S-wave phase shifts for a quite realistic Hylleraas type of helium function containing an electron-electron correlation term. The zero energy wavefunction is used to calculate the value of the annihilation rate parameter Z sub eff. All the results are significantly different from those for Drachman's helium model B, but are in better agreement with the available experimental data.
Light scattering measurement of sodium polyacrylate products
NASA Astrophysics Data System (ADS)
Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie
2015-03-01
In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.
Accuracy improvement of interferometric Rayleigh scattering diagnostic
NASA Astrophysics Data System (ADS)
Yan, Bo; Chen, Li; Yin, Kewei; Chen, Shuang; Yang, Furong; Tu, Xiaobo
2017-10-01
Cavity structure is used to increase the Interferometric Rayleigh scattering signal intensity. By using ZEMAX method, we simulate a special cavity mode comprising two spherical reflectors with different size, including the focal length and the diameter. The simulations suggest that the parallel beam can reflect repeatedly in the resonant cavity and concentrate on the focus. Besides, the reflection times and the ray width can reach about 50 and 2.1 cm after some feasible solutions.
Pinhole-type two-dimensional ultra-small-angle X-ray scattering on the micrometer scale
Kishimoto, Hiroyuki; Shinohara, Yuya; Suzuki, Yoshio; Takeuchi, Akihisa; Yagi, Naoto; Amemiya, Yoshiyuki
2014-01-01
A pinhole-type two-dimensional ultra-small-angle X-ray scattering set-up at a so-called medium-length beamline at SPring-8 is reported. A long sample-to-detector distance, 160.5 m, can be used at this beamline and a small-angle resolution of 0.25 µm−1 was thereby achieved at an X-ray energy of 8 keV. PMID:24365910
Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.
1993-01-01
Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.
Scattering and bound states of spinless particles in a mixed vector-scalar smooth step potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, M.G.; Castro, A.S. de
2009-11-15
Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schroedinger-like equation with an effective Rosen-Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and moremore » efficient problem of solving an irrational algebraic equation.« less
A determination of relativistic shock jump conditions using Monte Carlo techniques
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Reynolds, Stephen P.
1991-01-01
Monte Carlo techniques are used, assuming isotropic elastic scattering of all particles, to calculate jump conditions in parallel relativistic collisionless shocks in the absence of Fermi acceleration. The shock velocity and compression ratios are shown for arbitrary flow velocities and for any upstream temperature. Both single-component electron-positron plasma and two-component proton-electron plasmas are considered. It is shown that protons and electrons must share energy, directly or through the mediation of plasma waves, in order to satisfy the basic conservation conditions, and the electron and proton temperatures are determined for a particular microscopic, kinetic-theory model, namely, that protons always scatter elastically. The results are directly applicable to shocks in which waves of scattering superthermal particles are absent.
Light atom quantum oscillations in UC and US
Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; ...
2016-01-19
High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreementmore » with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Tim; Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln; Schwab, Tobias
A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDsmore » by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.« less
NASA Astrophysics Data System (ADS)
Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren
2012-04-01
Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.
Method and apparatus for aerosol particle absorption spectroscopy
Campillo, Anthony J.; Lin, Horn-Bond
1983-11-15
A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. Themore » occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.« less
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, Jin AU; Yueh, Herng-Aung
1990-01-01
The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The vegetation canopy is modeled as an anisotropic random medium containing nonspherical scatterers with preferred alignment. The underlying medium is considered as a homogeneous half space. The scattering effect of the vegetation canopy are characterized by 3-D correlation functions with variances and correlation lengths respectively corresponding to the fluctuation strengths and the physical geometries of the scatterers. The strong fluctuation theory is used to calculate the anisotropic effective permittivity tensor of the random medium and the distorted Born approximation is then applied to obtain the covariance matrix which describes the fully polarimetric scattering properties of the vegetation field. This model accounts for all the interaction processes between the boundaries and the scatterers and includes all the coherent effects due to wave propagation in different directions such as the constructive and destructive interferences. For a vegetation canopy with low attenuation, the boundary between the vegetation and the underlying medium can give rise to significant coherent effects.
Incorporation of a two metre long PET scanner in STIR
NASA Astrophysics Data System (ADS)
Tsoumpas, C.; Brain, C.; Dyke, T.; Gold, D.
2015-09-01
The Explorer project aims to investigate the potential benefits of a total-body 2 metre long PET scanner. The following investigation incorporates this scanner in STIR library and demonstrates the capabilities and weaknesses of existing reconstruction (FBP and OSEM) and single scatter simulation algorithms. It was found that sensible images are reconstructed but at the expense of high memory and processing time demands. FBP requires 4 hours on a core; OSEM: 2 hours per iteration if ran in parallel on 15-cores of a high performance computer. The single scatter simulation algorithm shows that on a short scale, up to a fifth of the scanner length, the assumption that the scatter between direct rings is similar to the scatter between the oblique rings is approximately valid. However, for more extreme cases this assumption is not longer valid, which illustrates that consideration of the oblique rings within the single scatter simulation will be necessary, if this scatter correction is the method of choice.
Scattering of massless fermions by Schwarzschild and Reissner-Nordström black holes
NASA Astrophysics Data System (ADS)
Sporea, Ciprian A.
2017-12-01
We study the scattering of massless Dirac fermions by Schwarzschild and Reissner-Nordström black holes. This is done by applying partial wave analysis to the scattering modes obtained after solving the massless Dirac equation in the asymptotic regions of the two black hole geometries. We successfully obtain analytic phase shifts, with the help of which the scattering cross section is computed. The glory and spiral scattering phenomena are shown to be present, as in the case of massive fermion scattering by black holes. Supported by a grant of the Ministry of National Education and Scientific Research, RDI Programme for Space Technology and Advanced Research - STAR, project number 181/20.07.2017
Microcavity Enhanced Raman Scattering
NASA Astrophysics Data System (ADS)
Petrak, Benjamin J.
Raman scattering can accurately identify molecules by their intrinsic vibrational frequencies, but its notoriously weak scattering efficiency for gases presents a major obstacle to its practical application in gas sensing and analysis. This work explores the use of high finesse (≈50 000) Fabry-Perot microcavities as a means to enhance Raman scattering from gases. A recently demonstrated laser ablation method, which carves out a micromirror template on fused silica--either on a fiber tip or bulk substrates-- was implemented, characterized, and optimized to fabricate concave micromirror templates ˜10 mum diameter and radius of curvature. The fabricated templates were coated with a high-reflectivity dielectric coating by ion-beam sputtering and were assembled into microcavities ˜10 mum long and with a mode volume ˜100 mum 3. A novel gas sensing technique that we refer to as Purcell enhanced Raman scattering (PERS) was demonstrated using the assembled microcavities. PERS works by enhancing the pump laser's intensity through resonant recirculation at one longitudinal mode, while simultaneously, at a second mode at the Stokes frequency, the Purcell effect increases the rate of spontaneous Raman scattering by a change to the intra-cavity photon density of states. PERS was shown to enhance the rate of spontaneous Raman scattering by a factor of 107 compared to the same volume of sample gas in free space scattered into the same solid angle subtended by the cavity. PERS was also shown capable of resolving several Raman bands from different isotopes of CO2 gas for application to isotopic analysis. Finally, the use of the microcavity to enhance coherent anti-Stokes Raman scattering (CARS) from CO2 gas was demonstrated.
Ballistic phonon transmission in quasiperiodic acoustic nanocavities
NASA Astrophysics Data System (ADS)
Mo, Yuan; Huang, Wei-Qing; Huang, Gui-Fang; Chen, Yuan; Hu, Wangyu; Wang, Ling-Ling; Pan, Anlian
2011-04-01
Ballistic phonon transport is investigated in acoustic nanocavities modulated in a quasiperiodic manner at low temperatures. Two different types of quasiperiodic acoustic nanocavities are considered: the lengths of nanocavities (QPL) and the lengths of the bridges (QPD) connecting two successive nanocavities are modulated according to the Fibonacci rule. We demonstrate that the transmission spectra and thermal conductance in both systems are similar, which is more prominent in QPD than in QPL. The transmission and thermal conductance of QPD are larger than those of QPL due to the fact that constant nanocavity length in QPD would strengthen ballistic phonon resonant transport, while varying nanocavity length in QPL lead to strong phonon scattering.
NASA Astrophysics Data System (ADS)
Soszka, W.
1992-09-01
Energy spectra of 5 keV Ne+ and He+ ions backscattered from the cold (100) nickel surface for chosen values of the incidence angles were measured. It was found that the occurrence of the isotope structure of the so-called "single-scattering" peak as well as its position on the energy scale depend on the incidence angle and the target temperature. In comparison to the case of room temperature the "ICISS curve" (the intensity of the single-scattering peak versus the incidence angle) at low temperatures increases up to relatively large angles. The curve in its part shows some structure which is not observed at room temperatures. It has been shown [E.S. Parilis et al., Atomic Collisions in Gases and on Solid Surfaces (FAN, Tashkent, 1988) in Russian] that the doubly scattered ions can have the same energy and exit angle as the singly scattered ions and both components create the quasi-single-scattering peak. The double-scattering component depends in a complex manner on the incidence angle and the target temperature. It is shown that at low temperatures (below 80 K) the intensity of the single-scattering component decreases (a decrease of thermal cross section), and the intensity of the double-scattering component relatively increases. This determines the behaviour of the ICISS curve, which, for low temperatures and light projectiles cannot be treated as a real ICISS curve.
Wang, Wenhao; Yu, Peng; Zhong, Zhiqin; Tong, Xin; Liu, Tianji; Li, Yanbo; Ashalley, Eric; Chen, Huanyang; Wu, Jiang; Wang, Zhiming
2018-08-31
Au nanobipyramids (NBPs) with sharp tips and narrow plasmon linewidths are ideal candidates for plasmonic applications. In this paper, we investigated the influencing factors of longitudinal plasmon resonance wavelength (LPRW) and scattering properties of single Au NBP by simulation. Compared with the volume, we establish the aspect ratio (length/width) as the dominant factor that affects the LPRW of Au NBPs. Plasmonic nanoparticles have been widely used for light-trapping enhancement in photovoltaics. To give a profound understanding of the superior light harvesting properties of Au NBPs, the near-field localization effect and far-field scattering mechanism of Au NBPs were investigated. Under the light injection at LPRW, the tip area shows near-field enhancement and the maximum scattering intensity appears on the side area of the waist owing to the remarkable optical absorption near the tips. Additionally, we confirm the fraction of light scattered into the substrate and angular distribution of the light scattered by the Au NBPs. The fraction of light scattered into the substrate reaches up to 97% from 400-1100 nm and preserves a broadband spectrum. This suggests that the NBP has a predominant forward scattering and reduced backward scattering. The excellent plasmonic scattering properties of Au NBPs are promising in photovoltaic devices and photothermal therapy.
Persistence length of collagen molecules based on nonlocal viscoelastic model.
Ghavanloo, Esmaeal
2017-12-01
Persistence length is one of the most interesting properties of a molecular chain, which is used to describe the stiffness of a molecule. The experimentally measured values of the persistence length of the collagen molecule are widely scattered from 14 to 180 nm. Therefore, an alternative approach is highly desirable to predict the persistence length of a molecule and also to explain the experimental results. In this paper, a nonlocal viscoelastic model is developed to obtain the persistence length of the collagen molecules in solvent. A new explicit formula is proposed for the persistence length of the molecule with the consideration of the small-scale effect, viscoelastic properties of the molecule, loading frequency, and viscosity of the solvent. The presented model indicates that there exists a range of molecule lengths in which the persistence length strongly depends on the frequency and spatial mode of applied loads, small-scale effect, and viscoelastic properties of the collagen.
NASA Astrophysics Data System (ADS)
Steiniger, Klaus; Albach, Daniel; Debus, Alexander; Loeser, Markus; Pausch, Richard; Roeser, Fabian; Schramm, Ulrich; Siebold, Matthias; Bussmann, Michael
2017-05-01
Traveling-Wave Thomson-Scattering (TWTS) allows for the realization of optical free-electron lasers (OFELs) from the interaction of short, high-power laser pulses with brilliant relativistic electron bunches. The laser field provides the optical undulator which is traversed by the electrons. In order to achieve coherent amplification of radiation through electron microbunching the interaction between electrons and laser must be maintained over hundreds to thousands of undulator periods. Traveling-Wave Thomson-Scattering is the only scattering geometry so far allowing for the realization of optical undulators of this length which is at the same time scalable from extreme ultraviolet to X-ray photon energies. TWTS is also applicable for the realization of incoherent high peak brightness hard X-ray to gamma-ray sources which can provide orders of magnitude higher photon output than classic head-on Thomson sources. In contrast to head-on Thomson sources TWTS employs a side-scattering geometry where laser and electron propagation direction of motion enclose an angle. Tilting the laser pulse front with respect to the wave front by half of this interaction angle optimizes electron and laser pulse overlap. In the side-scattering geometry the tilt of the pulse-front compensates the spatial offset between electrons and laser pulse-front which would be present otherwise for an electron bunch far from the interaction point where it overlaps with the laser pulse center. Thus the laser pulse-front tilt ensures continuous overlap between laser pulse and electrons while these traverse the laser pulse cross-sectional area. This allows to control the interaction distance in TWTS by the laser pulse width rather than laser pulse duration as is the case for head-on Thomson scattering. Utilizing petawatt class laser pulses with millimeter to centimeter scale width allows for the realization of compact optical undulators with thousands of periods. When laser pulses for TWTS are prepared, care has to be taken of laser dispersion. Especially for scenarios featuring interaction angles of several ten to over one hundred degree the angular dispersion originating from laser pulse-front tilt can significantly prolong the pulse duration during the interaction which leads to a decrease in optical undulator amplitude and eventually terminates the interaction long before the target interaction distance is reached. In the talk it is shown how a pair of two gratings can be used to first generate the pulse-front tilt and second control and compensate dispersion during the interaction by utilizing the plane of optimum compression. Furthermore an experimental setup strategy is presented allowing for an interaction outside the laser pulse focus. This is a necessity for TWTS OFELs requiring focusing to reach optical undulator strengths on the order of unity since the centimeter scale laser pulse width at the interaction point result in turn in Rayleigh lengths on the order of one hundred meter and thus in laser focusing distances of several hundred meter. The talk shows how an out-of-focus interaction geometry utilizing strong focusing of the incident laser pulse needs to be designed in order to regain compactness by reducing the focusing distance by one to two orders of magnitude.
Device and method for noresonantly Raman shifting ultraviolet radiation
Loree, Thomas R.; Barker, Dean L.
1979-01-01
A device and method for nonresonantly Raman shifting broad band uv excimer laser radiation, which enhances preselected Stokes signals by varying the pressure of the Raman scattering medium, the focal interaction length of the incident radiation within the Raman scattering medium and its power density level. Gaseous molecular H.sub.2, D.sub.2, CH.sub.4 (methane), HD and mixes thereof, and liquid N.sub.2 are used as the Raman scattering medium to frequency shift the outputs of high power KrF and ArF lasers. A cable fed discharge with an unstable resonant cavity configuration is utilized to produce the output laser power levels required for operation.
Stochastic treatment of electron multiplication without scattering in dielectrics
NASA Technical Reports Server (NTRS)
Lin, D. L.; Beers, B. L.
1981-01-01
By treating the emission of optical phonons as a Markov process, a simple analytic method is developed for calculating the electronic ionization rate per unit length for dielectrics. The effects of scattering from acoustic and optical phonons are neglected. The treatment obtains universal functions in recursive form, the theory depending on only two dimensionless energy ratios. A comparison of the present work with other numerical approaches indicates that the effect of scattering becomes important only when the electric potential energy drop in a mean free path for optical-phonon emission is less than about 25% of the ionization potential. A comparison with Monte Carlo results is also given for Teflon.
On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons
Marquardt, Drew; Heberle, Frederick A.; Nickels, Jonathan D.; ...
2015-09-21
In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Finally, recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.
Low-energy pion-nucleon scattering
NASA Astrophysics Data System (ADS)
Gibbs, W. R.; Ai, Li; Kaufmann, W. B.
1998-02-01
An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.
Three-dimensional generalization of the Van Cittert-Zernike theorem to wave and particle scattering
NASA Astrophysics Data System (ADS)
Zarubin, Alexander M.
1993-07-01
Coherence properties of primary partially coherent radiations (light, X-rays and particles) elastically scattered from a 3D object consisting of a collection of electrons and nuclei are analyzed in the Fresnel diffraction region and in the far field. The behaviour of the cross-spectral density of the scattered radiation transverse and along to the local direction of propagation is shown to be described by respectively the 3D Fourier and Fresnel transform of the generalized radiance function of a scattering secondary source associated with the object. A relativistic correct expression is derived for the mutual coherence function of radiation which takes account of the dispersive propagation of particle beams in vacuum. An effect of the spatial coherence of radiation on the temporal one is found; in the Fresnel diffraction region, in distinction to the field, both the longitudinal spatial coherence and the spectral width of radiation affect the longitudinal coherence. A solution of the 3D inverse scattering problem for partially coherent radiation is presented. It is shown that squared modulus of the scattering potential and its 2D projections can be reconstructed from measurements of the modulus and phase of the degree of transverse spatial coherence of the scattered radiation. The results provide a theoretical basis for new methods of image formation and structure analysis in X-ray, electron, ion, and neutron optics.
Direct Measurement of Scattered Light Effect on the Sensitivity in TAMA300
NASA Astrophysics Data System (ADS)
Takahashi, R.; Arai, Koji; Kawamaru, Seiji; Smith, Michael R.
2003-07-01
Laser interferometer gravitational wave detectors need vacuum tubes through which the laser beams pass. The light scattered from the arm cavity mirrors will make multiple reflections from the inside wall of the polished tube back onto the mirrors causing phase noise on the interferometer output beam. The TAMA300 has two 300-m length arms enclosed by vacuum tubes. By vibrating one of the tubes of the TAMA300, we directly observed the effect of scattered light on the displacement sensitivity. It was found that a tube vibration amplitude of 5.6 µm at 776.5 Hz increased the mirror displacement noise to 1.2 × 10-17 m. This noise level is consistent with the calculated noise due to the scattered light effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholamrezaie, Fatemeh; Meskers, Stefan C. J., E-mail: s.c.j.meskers@tue.nl; Leeuw, Dago M. de
Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extractedmore » coherence length of the Frenkel exciton is discussed.« less
Applicability of modified effective-range theory to positron-atom and positron-molecule scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idziaszek, Zbigniew; Karwasz, Grzegorz; Instytut Fizyki, Uniwersytet Mikolaja Kopernika, 87-100 Torun
2006-06-15
We analyze low-energy scattering of positrons on Ar atoms and N{sub 2} molecules using the modified effective-range theory (MERT) developed by O'Malley, et al. [J. Math. Phys. 2, 491 (1961)]. We use the formulation of MERT based on exact solutions of the Schroedinger equation with polarization potential rather than low-energy expansions of phase shifts into momentum series. We show that MERT describes the experimental data well, provided that effective-range expansion is performed both for s- and p-wave scattering, which dominate in the considered regime of positron energies (0.4-2 eV). We estimate the values of the s-wave scattering length and themore » effective range for e{sup +}-Ar and e{sup +}-N{sub 2} collisions.« less
Transport properties of random media: A new effective medium theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, K.; Soukoulis, C.M.
We present a new method for efficient, accurate calculations of transport properties of random media. It is based on the principle that the wave energy density should be uniform when averaged over length scales larger than the size of the scatterers. This scheme captures the effects of resonant scattering of the individual scatterer exactly, as well as the multiple scattering in a mean-field sense. It has been successfully applied to both ``scalar`` and ``vector`` classical wave calculations. Results for the energy transport velocity are in agreement with experiment. This approach is of general use and can be easily extended tomore » treat different types of wave propagation in random media. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.« less
Coherent X-ray Scattering from Liquid-Air Interfaces
NASA Astrophysics Data System (ADS)
Shpyrko, Oleg
Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.
Line transport in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Nikoghossian, Artur
We consider the spectral line transfer in turbulent atmospheres with a spatially correlated velocity field. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. New approach proposed in solving this problem is based on invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity and the line width on the mean correlation length and average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulent one occurs within a comparatively narrow range of variation in the correlation length. The diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere is examined. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.
Line Transport in Turbulent Atmospheres
NASA Astrophysics Data System (ADS)
Nikoghossian, A. G.
2017-07-01
The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.
Willey, Carson L; Simonetti, Francesco
2016-06-01
Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered.
NASA Astrophysics Data System (ADS)
de Visscher, Sebastiaan A. H. J.; Witjes, Max J. H.; Kaščáková, Slávka; Sterenborg, Henricus J. C. M.; Robinson, Dominic J.; Roodenburg, Jan L. N.; Amelink, Arjen
2012-06-01
In vivo measurement of photosensitizer concentrations may optimize clinical photodynamic therapy (PDT). Fluorescence differential path-length spectroscopy (FDPS) is a non-invasive optical technique that has been shown to accurately quantify the concentration of Foscan® in rat liver. As a next step towards clinical translation, the effect of two liposomal formulations of mTHPC, Fospeg® and Foslip®, on FDPS response was investigated. Furthermore, FDPS was evaluated in target organs for head-and-neck PDT. Fifty-four healthy rats were intravenously injected with one of the three formulations of mTHPC at 0.15 mg kg-1. FDPS was performed on liver, tongue, and lip. The mTHPC concentrations estimated using FDPS were correlated with the results of the subsequent harvested and chemically extracted organs. An excellent goodness of fit (R2) between FDPS and extraction was found for all formulations in the liver (R2=0.79). A much lower R2 between FDPS and extraction was found in lip (R2=0.46) and tongue (R2=0.10). The lower performance in lip and in particular tongue was mainly attributed to the more layered anatomical structure, which influences scattering properties and photosensitizer distribution.
Gravitational scattering of electromagnetic radiation
NASA Technical Reports Server (NTRS)
Brooker, J. T.; Janis, A. I.
1980-01-01
The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.
Surface roughness scattering of electrons in bulk mosfets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuverink, Amanda Renee
2015-11-01
Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less
Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Filonov, Dmitry; Steinberg, Ben Z.; Ginzburg, Pavel
2017-06-01
Electromagnetic scattering from moving bodies, being an inherently time-dependent phenomenon, gives rise to a generation of new frequencies, which can be used to characterize the motion. Whereas an ordinary motion along a linear path produces a constant Doppler shift, an accelerated scatterer can generate a micro-Doppler frequency comb. The spectra produced by rotating objects were studied and observed in a bistatic lock-in detection scheme. The internal geometry of a scatterer was shown to determine the spectrum, and the degree of structural asymmetry was suggested to be identified via signatures in the micro-Doppler comb. In particular, hybrid magnetoelectric particles, showing an ultimate degree of asymmetry in forward and backward scattering directions, were investigated. It was shown that the comb in the backward direction has signatures at the fundamental rotation frequency and its odd harmonics, whereas the comb of the forward scattered field has a prevailing peak at the doubled frequency and its multiples. Additional features of the comb were shown to be affected by the dimensions of the particle and by the strength of the magnetoelectric coupling. Experimental verification was performed with a printed circuit board antenna based on a wire and a split ring, while the structure was illuminated at a 2 GHz carrier frequency. Detailed analysis of micro-Doppler combs enables remote detection of asymmetric features of distant objects and could find use in a span of applications, including stellar radiometry and radio identification.
Nondestructive Method For Measuring The Scattering Coefficient Of Bulk Material
NASA Astrophysics Data System (ADS)
Groenhuis, R. A. J.; ten Bosch, J. J.
1981-05-01
During demineralization and remineralization of dental enamel its structure changes resulting in a change of the absorption and scattering coefficients of the enamel. By measuring these coefficients during demineralization and remineralization these processes can be monitored in a non-destructive way. For this purpose an experimental arrangement was made: a fibre illuminates a spot on the sample with monochromatic light with a wave-length between 400 nm and 700 nm; a photomultiplier measures the luminance of the light back-scattered by the sample as a function of the distance from the measuring snot to the spot of illumination. In a Monte Carlo-model this luminance is simulated using the same geometry given the scattering and absorption coefficients in a sample. Then the scattering and absorption coefficients in the sample are determined by selecting the theoretical curve fitting the experimental one. Scattering coefficients below 10 mm-1 and absorption coefficients obtained with this method on calibration samples correspond well with those obtained with another method. Scattering coefficients above 10 mm-1 (paper samples) were measured ton low. This perhaps is caused by the anisotropic structure of paper sheets. The method is very suitable to measure the scattering and absorption coefficients of bulk materials.
NASA Astrophysics Data System (ADS)
Zhou, Xin
1990-03-01
For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.
P(P bar)P elastic scattering and cosmic ray data
NASA Technical Reports Server (NTRS)
FAZAL-E-ALEEM; Saleem, M.
1985-01-01
It is shown that the total cross section for pp elastic scattering at cosmic ray energies, as well as the total cross section, the slope parameter b(s,t) and the differential cross section for small momentum transfer at ISR and collider energies for p(p)p elastic scattering can be simultaneously fitted by using a simple Regge pole model. The results of this theory is discussed in detail.
Investigating the real translucency of the endodontic fiber posts
NASA Astrophysics Data System (ADS)
Camilotti, Fernando; Bonardi, Cláudia; Somer, Aloisi; Novatski, Andressa; Szesz, Anna Luiza; Loguércio, Alessandro Dourado; Kniphoff da Cruz, Gerson
2018-02-01
Researchers have been investigating the light intensity scattered by a translucent fiber post with application in dentistry by different methods. In this work, we introduce a new system capable to record a light scattered profile, step-by-step, as a function of the length of the translucent fiber post. To support our studies, an extensive characterization of the system was carried out and this is presented and discussed here. The system was implemented using the phase sensitive detection. The equipment measures the light scattered without the need of any preparing parts and the fiber post is fixed directly in the fiber post holder becoming ready for measurement. Measures can be recorded with a spatial resolution smaller than 0.01 mm throughout the length of the fiber post being investigated. The system was implemented by using a photomultiplier tube that improves sensitivity for the optical detection. The recorded result is a signal directly proportional to the scattered light and it allows us to obtain a normalized profile that can be used as a map of the scattered light of the fiber post in study. Furthermore, we are able to demonstrate a low intensity of light in the tip region of the fiber post, along with the dependency of the light attenuation with the fiber post body volume and shape. This new system will certainly contribute to achieve better results in fiber post designing and in restoration of endodontic treated teeth because it provides a more well-founded choice of the fiber post to be used, and of the time of exposure to the curing light.
Scattering of Internal Tides by Irregular Bathymetry of Large Extent
NASA Astrophysics Data System (ADS)
Mei, C.
2014-12-01
We present an analytic theory of scattering of tide-generated internal gravity waves in a continuously stratified ocean with a randomly rough seabed. Based on the linearized approximation, the idealized case of constant mean sea depth and Brunt-Vaisala frequency is considered. The depth fluctuation is assumed to be a stationary random function of space characterized by small amplitude and correlation length comparable to the typical wavelength. For both one- and two-dimensional topography the effects of scattering on wave phase over long distances are derived explicitly by the method of multiple scales. For one-dimensional topography, numerical results are compared with Buhler-& Holmes-Cerfon(2011) computed by the method of characteristics. For two-dimensional topography, new results are presented for both statistically isotropic and anisotropic cases. In thi talk we shall apply the perturbation technique of multiple scales to treat analytically the random scattering of internal tides by gently sloped bathymetric irregularities.The basic assumptions are: incompressible fluid, infinitestimal wave amplitudes, constant Brunt-Vaisala frequency, and constant mean depth. In addition, the depth disorder is assumed to be a stationary random function of space with zero mean and small root-mean-square amplitude. The correlation length can be comparable in order of magnitude as the dominant wavelength. Both one- and two-dimensional disorder will be considered. Physical effects of random scattering on the mean wave phase i.e., spatial attenuation and wavenumber shift will be calculated and discussed for one mode of incident wave. For two dimensional topographies, statistically isotropic and anisotropic examples will be presented.
Two Point Space-Time Correlation of Density Fluctuations Measured in High Velocity Free Jets
NASA Technical Reports Server (NTRS)
Panda, Jayanta
2006-01-01
Two-point space-time correlations of air density fluctuations in unheated, fully-expanded free jets at Mach numbers M(sub j) = 0.95, 1.4, and 1.8 were measured using a Rayleigh scattering based diagnostic technique. The molecular scattered light from two small probe volumes of 1.03 mm length was measured for a completely non-intrusive means of determining the turbulent density fluctuations. The time series of density fluctuations were analyzed to estimate the integral length scale L in a moving frame of reference and the convective Mach number M(sub c) at different narrow Strouhal frequency (St) bands. It was observed that M(sub c) and the normalized moving frame length scale L*St/D, where D is the jet diameter, increased with Strouhal frequency before leveling off at the highest resolved frequency. Significant differences were observed between data obtained from the lip shear layer and the centerline of the jet. The wave number frequency transform of the correlation data demonstrated progressive increase in the radiative part of turbulence fluctuations with increasing jet Mach number.
Role of spin polarization in FM/Al/FM trilayer film at low temperature
NASA Astrophysics Data System (ADS)
Lu, Ning; Webb, Richard
2014-03-01
Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.
In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale
Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.; ...
2017-04-07
Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2017-10-01
We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.
In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.
Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less
Time-of-flight direct recoil ion scattering spectrometer
Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.
1994-01-01
A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).
Dyakonov-Shur instability across the ballistic-to-hydrodynamic crossover
NASA Astrophysics Data System (ADS)
Mendl, Christian B.; Lucas, Andrew
2018-03-01
We numerically solve semiclassical kinetic equations and compute the growth rate of the Dyakonov-Shur instability of a two-dimensional Fermi liquid in a finite length cavity. When electron-electron scattering is fast, we observe the well-understood hydrodynamic instability and its disappearance due to viscous dissipation. When electron-electron scattering is negligible, we find that the instability re-emerges for certain boundary conditions but not for others. We discuss the implications of these findings for experiments.
Dyakonov-Shur instability across the ballistic-to-hydrodynamic crossover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendl, Christian B.; Lucas, Andrew
Here, we numerically solve semiclassical kinetic equations and compute the growth rate of the Dyakonov-Shur instability of a two-dimensional Fermi liquid in a finite length cavity. When electron-electron scattering is fast, we observe the well-understood hydrodynamic instability and its disappearance due to viscous dissipation. When electron-electron scattering is negligible, we find that the instability re-emerges for certain boundary conditions but not for others. We discuss the implications of these findings for experiments.
Dyakonov-Shur instability across the ballistic-to-hydrodynamic crossover
Mendl, Christian B.; Lucas, Andrew
2018-03-19
Here, we numerically solve semiclassical kinetic equations and compute the growth rate of the Dyakonov-Shur instability of a two-dimensional Fermi liquid in a finite length cavity. When electron-electron scattering is fast, we observe the well-understood hydrodynamic instability and its disappearance due to viscous dissipation. When electron-electron scattering is negligible, we find that the instability re-emerges for certain boundary conditions but not for others. We discuss the implications of these findings for experiments.
Lithospheric structure of the southern French Alps inferred from broadband analysis
NASA Astrophysics Data System (ADS)
Bertrand, E.; Deschamps, A.
2000-11-01
Broadband receiver functions analysis is commonly used to evaluate the fine-scale S-velocity structure of the lithosphere. We analyse teleseismic P-waves and their coda from 30 selected teleseismic events recorded at three seismological stations of to the French TGRS network in the Alpes Maritimes. Receiver functions are computed in the time domain using an SVD matrix inversion method. Dipping Moho and lateral heterogeneities beneath the array are inferred from the amplitude, arrival time and polarity of locally-generated PS phases. We propose that the Moho dips 11° towards 25°±10°N below station CALF, in the outer part of the Alpine belt. At this station, we determine a Moho depth of about 20±2 km; the same depth is suggested below SAOF station also located in the fold-trust belt. Beneath station STET located in the inner part of the Alpine belt, the Moho depth increases to 30 km and dips towards the N-NW. Moreover, 1D-modelling of summed receiver function from STET station constrains a crustal structure significantly different from that observed at stations located in the outer part of the Alps. Indeed, beneath CALF and SAOF stations we need a 2 km thick shallow low velocity layer to fit best the observed receiver functions whereas this layer seems not to be present beneath STET station. Because recent P-coda studies have shown that near-receiver scattering can dominate teleseismic P-wave recordings in tectonically complicated areas, we account for effect of scattering energy in our records from array measurements. As the array aperture is wide relative to the heterogeneity scale length in the area, the array analysis produces only smooth imaging of scatterers beneath the stations.
Gaussian basis functions for highly oscillatory scattering wavefunctions
NASA Astrophysics Data System (ADS)
Mant, B. P.; Law, M. M.
2018-04-01
We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.
Light scattering by tenuous particles - A generalization of the Rayleigh-Gans-Rocard approach
NASA Technical Reports Server (NTRS)
Acquista, C.
1976-01-01
We consider scattering by arbitrarily shaped particles that satisfy two conditions: (1) that the polarizability of the particle relative to the ambient medium be small compared to 1 and (2) that the phase shift introduced by the particle be less than 2. We solve the integro-differential equation proposed by Shifrin by using the method of successive iterations and then applying a Fourier transform. For the second iteration, results are presented that accurately describe scattering by a broad class of particles. The phase function and other elements of the scattering matrix are shown to be in excellent agreement with Mie theory for spherical scatterers.
Mach wave properties in the presence of source and medium heterogeneity
NASA Astrophysics Data System (ADS)
Vyas, J. C.; Mai, P. M.; Galis, M.; Dunham, Eric M.; Imperatori, W.
2018-06-01
We investigate Mach wave coherence for kinematic supershear ruptures with spatially heterogeneous source parameters, embedded in 3D scattering media. We assess Mach wave coherence considering: 1) source heterogeneities in terms of variations in slip, rise time and rupture speed; 2) small-scale heterogeneities in Earth structure, parameterized from combinations of three correlation lengths and two standard deviations (assuming von Karman power spectral density with fixed Hurst exponent); and 3) joint effects of source and medium heterogeneities. Ground-motion simulations are conducted using a generalized finite-difference method, choosing a parameterization such that the highest resolved frequency is ˜5 Hz. We discover that Mach wave coherence is slightly diminished at near fault distances (< 10 km) due to spatially variable slip and rise time; beyond this distance the Mach wave coherence is more strongly reduced by wavefield scattering due to small-scale heterogeneities in Earth structure. Based on our numerical simulations and theoretical considerations we demonstrate that the standard deviation of medium heterogeneities controls the wavefield scattering, rather than the correlation length. In addition, we find that peak ground accelerations in the case of combined source and medium heterogeneities are consistent with empirical ground motion prediction equations for all distances, suggesting that in nature ground shaking amplitudes for supershear ruptures may not be elevated due to complexities in the rupture process and seismic wave-scattering.
SU-F-J-48: Effect of Scan Length On Magnitude of Imaging Dose in KV CBCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, S; Naidu, S; Sutar, A
Purpose: To study effect of scan length on magnitude of imaging dose deposition in Varian kV CBCT for head & neck and pelvis CBCT. Methods: To study effect of scan length we measured imaging dose at depth of 8 cm for head and neck Cone Beam Computed Tomography (CBCT) acquisition ( X ray beam energy is used 100kV and 200 degree of gantry rotation) and at 16 cm depth for pelvis CBCT acquisition ( X ray beam energy used is 125 kV and 360 degree of gantry rotation) in specially designed phantom. We used farmer chamber which was calibrated inmore » kV X ray range for measurements .Dose was measured with default field size, and reducing field size along y direction to 10 cm and 5 cm. Results: As the energy of the beam decreases the scattered radiation increases and this contributes significantly to the dose deposited in the patient. By reducing the scan length to 10 Cm from default 20.6 cm we found a dose reduction of 14% for head and neck CBCT protocol and a reduction of 26% for pelvis CBCT protocol. Similarly for a scan length of 5cm compared to default the dose reduction in head and neck CBCT protocol is 36% while in the pelvis CBCT protocol the dose reduction is 50%. Conclusion: By limiting the scan length we can control the scatter radiation generated and hence the dose to the patient. However the variation in dose reduction for same length used in two protocols is because of the scan geometry. The pelvis CBCT protocol uses a full rotation and head and neck CBCT protocol uses partial rotation.« less
Current-controlled light scattering and asymmetric plasmon propagation in graphene
NASA Astrophysics Data System (ADS)
Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe
2018-02-01
We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.
NASA Astrophysics Data System (ADS)
Sze, M. W. C.; Sykes, A. G.; Blume, D.; Bohn, J. L.
2018-03-01
We study the ground-state properties of a system of N harmonically trapped bosons of mass m interacting with two-body contact interactions, from small to large scattering lengths. This is accomplished in a hyperspherical coordinate system that is flexible enough to describe both the overall scale of the gas and two-body correlations. By adapting the lowest-order constrained-variational method, we are able to semiquantitatively attain Bose-Einstein condensate ground-state energies even for gases with infinite scattering length. In the large-particle-number limit, our method provides analytical estimates for the energy per particle E0/N ≈2.5 N1 /3ℏ ω and two-body contact C2/N ≈16 N1 /6√{m ω /ℏ } for a Bose gas on resonance, where ω is the trap frequency.
Isotopic orientational order in acetyl salicylic acid
NASA Astrophysics Data System (ADS)
Schiebel, P.; Prandl, W.; Papoular, R.; Paulus, W.; Detken, A.; Haeberlen, U.; Zimmermann, H.
2000-03-01
Isotopically mixed methyl groups CD xH 3- x with zero averaged deuteron/hydrogen scattering length 0=< a>= xaD+(3- x) aH are expected to be invisible in a neutron diffraction experiment. We find, indeed, in the scattering length density of aspirin-CD xH 3- x, reconstructed by maximum-entropy methods, at room temperature only three very week minima. At 10 K, however, one positive and two negative extrema are visible: unique evidence for orientational isotopic order. From a combination of 1-d-Fourier and algebraic methods we deconvolute < a> and derive the orientational distribution function f( φ) which has three equivalent maxima/minima at 300 K and loses this 3 φ periodicity at 10 K. f( φ) is the basis for the determination of the hindrance potential with cos( φ) as the leading term.
Hadron-Hadron Interactions from Nf=2 +1 +1 lattice QCD: Isospin-1 K K scattering length
NASA Astrophysics Data System (ADS)
Helmes, C.; Jost, C.; Knippschild, B.; Kostrzewa, B.; Liu, L.; Urbach, C.; Werner, M.; ETM Collaboration
2017-08-01
We present results for the interaction of two kaons at maximal isospin. The calculation is based on Nf=2 +1 +1 flavor gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing. The elastic scattering length a0I =1 is calculated at several values of the bare strange and light quark masses. We find MKa0=-0.385 (16 )stat(+0/-12)ms(+0/-5)ZP(4 )rf as the result of a combined extrapolation to the continuum and to the physical point, where the first error is statistical, and the three following are systematical. This translates to a0=-0.154 (6 )stat(-5+0)ms(-2+0)ZP(2 )rf fm .
Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.
Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh
2017-08-14
Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.
NASA Astrophysics Data System (ADS)
Xu, Tao; Liao, Jingjuan
2014-11-01
In order to reveal more deeply the scattering characteristics of wetland vegetation and determine the microwave scattering model suitable for the inversion of wetland vegetation parameters, the comparison and analysis between microwave coherent and incoherent scattering models for wetland vegetation in Poyang Lake area were performed in this paper. In the research, we proposed a coherent scattering model exclusive for wetland vegetation, in which, Generalized Rayleigh-Gans (GRG) approach and infinite-length dielectric cylinder were used to calculate single-scattering matrices of wetland vegetation leaves and stalks. In addition, coherent components produced from interaction among the scattering mechanisms and different scatterers were also considered and this coherent model was compared with Michigan Microwave Canopy Scattering (MIMICS) model. The measured data collected in 2011 in Poyang Lake wetland were used as the input parameters of the coherent and incoherent models. We simulated backscattering coefficients of VV, VH and HH polarization at C band and made a comparison between the simulation results and C-band data from the Radarsat-2 satellite. For both coherent and incoherent scattering model, simulation results for HH and VV polarization were better than the simulation results for HV polarization. In addition, comparisons between coherent and incoherent scattering models proved that the coherence triggered by the scattering mechanism and different scatterers can't be ignored. In the research, we analyzed differences between coherent and incoherent scattering models with change of incident angle. In most instances, the difference between coherent and incoherent scattering models is of the order of several dB.
SU-E-I-16: Scan Length Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakalyar, D; McKenney, S; Feng, W
Purpose: The area-averaged dose in the central plane of a long cylinder following a CT scan depends upon the radial dose distribution and the length of the scan. The ICRU/TG200 phantom, a polyethylene cylinder 30 cm in diameter and 60 cm long, was the subject of this study. The purpose was to develop an analytic function that could determine the dose for a scan length L at any point in the central plane of this phantom. Methods: Monte Carlo calculations were performed on a simulated ICRU/TG200 phantom under conditions of cylindrically symmetric conditions of irradiation. Thus, the radial dose distributionmore » function must be an even function that accounts for two competing effects: The direct beam makes its weakest contribution at the center while the scatter begins abruptly at the outer radius and grows as the center is approached. The scatter contribution also increases with scan length with the increase approaching its limiting value at the periphery faster than along the central axis. An analytic function was developed that fit the data and possessed these features. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the ICRU/TG200 phantom. The relative depth of the minimum decreases as the scan length grows and an absolute maximum can occur between the center and outer edge of the cylinders. As the scan length grows, the relative dip in the center decreases so that for very long scan lengths, the dose profile is relatively flat. Conclusion: An analytic function characterizes the radial and scan length dependency of dose for long cylindrical phantoms. The function can be integrated with the results expressed in closed form. One use for this is to help determine average dose distribution over the central cylinder plane for any scan length.« less
WE-AB-207A-10: Transmission Characteristics of a Two Dimensional Antiscatter Grid Prototype for CBCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altunbas, C; Kavanagh, B; Miften, M
2016-06-15
Purpose: Scattered radiation remains to be a major contributor to image quality degradation in CBCT. To address the scatter problem, a focused, 2D antiscatter grid (2DASG) prototype was designed, and fabricated using additive manufacturing processes. Its scatter and primary transmission properties were characterized using a linac mounted CBCT system. Methods: The prototype 2DASG was composed of rectangular grid holes separated by tungsten septa, and has a grid pitch of 2.91 mm, grid ratio of 8, and a septal thickness of 0.1 mm. Each grid hole was aligned or focused towards the x-ray source in half-fan (i.e. offset detector) geometry ofmore » the Varian TrueBeam CBCT system. Scatter and primary transmission experiments were performed by using acrylic blocks and the beam-stop method. Transmission properties of a radiographic ASG (1DASG) (grid ratio of 10) was also performed by using the identical setup. Results: At 30 cm phantom thickness, scatter to primary ratio (SPR) was 4.51 without any ASG device. SPR was reduced to 1.28 with 1DASG, and it was further reduced to 0.28 with 2DASG. Scatter transmission fraction (Ts) of 1DASG was 21%, and Ts was reduced to 5.8% with 2DASG. The average primary transmission fraction (Tp) of 1DASG was 70.6%, whereas Tp increased to 85.1% with 2DASG. Variation of Tp across 40 cm length (the long axis of flat panel detector) was 2.6%. Conclusion: When compared to conventional ASGs, the focused 2DASG can vastly improve scatter suppression and primary transmission performance. Due to precise alignment of 2DASG’s grid holes with respect to beam divergence, high degree of primary transmission through the 2DASG was maintained across the full length of the prototype. We strongly believe that robust scatter rejection and primary transmission characteristics of our 2DASG can translate into both improved quantitative accuracy and soft tissue resolution in linac mounted CBCT systems.« less
Intermediate energy proton-deuteron elastic scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1973-01-01
A fully symmetrized multiple scattering series is considered for the description of proton-deuteron elastic scattering. An off-shell continuation of the experimentally known twobody amplitudes that retains the exchange symmeteries required for the calculation is presented. The one boson exchange terms of the two body amplitudes are evaluated exactly in this off-shell prescription. The first two terms of the multiple scattering series are calculated explicitly whereas multiple scattering effects are obtained as minimum variance estimates from the 146-MeV data of Postma and Wilson. The multiple scattering corrections indeed consist of low order partial waves as suggested by Sloan based on model studies with separable interactions. The Hamada-Johnston wave function is shown consistent with the data for internucleon distances greater than about 0.84 fm.
NASA Astrophysics Data System (ADS)
Bu, H.; Roux, C. D.; Rabalais, J. W.
The adsorption site of hydrogen on the Ni{110}-p(1 × 2)-H surface resulting from saturation exposure to H 2 at ˜ 310-350 K has been investigated by time-of-flight scattering and recoiling spectrometry (TOF-SARS). The recoiled neutral plus ion hydrogen atom flux resulting from 2-5 keV Ar + or Ne + pulsed ion beams incident on the surface was monitored as a function of crystal azimuthal angle and beam incidence angle. From classical trajectory calculations and shadowing and blocking analyses, it is concluded that hydrogen atoms are localized at the pseudo-three-fold sites on the (1 × 2) missing-row (MR) reconstructed Ni{110} surface; the (1 × 2) MR reconstruction is induced by hydrogen adsorption shown elsewhere [Surf. Sci. 259 (1991) 253]. Only the pseudo-three-fold site is consistent with all of the experimental data. The coordinates of the hydrogen adsorption site with respect to the nickel lattice were determined. The lateral distance of hydrogen from the 1st-layer Ni <1 overline10> rows is 1.56 ± 0.12 Å and the vertical distance above the substrate is 0.21 ± 0.12 Å, providing NiH bond lengths of 2.0 Å to the two-layer Ni atoms and 1.5 Å to the 2nd-layer Ni atom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpunin, V. V., E-mail: karpuninvv@mail.ru; Margulis, V. A., E-mail: theorphysics@mrsu.ru
2016-06-15
An analytical expression for the coefficient of absorption of electromagnetic radiation by electrons in a quantum wire in a magnetic field is derived. The case of a magnetic field transverse with respect to the wire axis is considered. The resonance character of absorption is shown, and the resonance frequencies as functions of the field are determined. The effect of the scattering of electrons at optical phonons is studied, and it is shown that scattering is responsible for additional resonance absorption peaks.
Flame surface statistics of constant-pressure turbulent expanding premixed flames
NASA Astrophysics Data System (ADS)
Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.
2014-04-01
In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.
NASA Technical Reports Server (NTRS)
Perliski, Lori M.; Solomon, Susan
1993-01-01
The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.
NASA Astrophysics Data System (ADS)
Pan, J.; Durand, M. T.; Sandells, M. J.; Lemmetyinen, J.; Kim, E. J.
2013-12-01
Application of passive microwave (PM) brightness temperature for snow water equivalent retrieval requires deep understanding of snow emission models, not only for their performance to reproduce in-situ PM observations, but also for their theoretical differences to approximate radiative transfer theory. In this paper, differences between the multiple-layer HUT (or TKK) model and the Microwave Emission Model of Layered Snowpacks (MEMLS) were listed, and the two models were compared with snow ground-based PM observations at Streamboat Springs, Colorado, USA; Churchill, Canada; and Sodankyla, Finland. The two models were chosen for their multiple-layer schemes are close to actual layer-by-layer snow measurements. Both the two models are semi-empirical models; whereas the HUT model uses the mean snow grain size, MEMLS uses the correlation length to relate the snow microstructure with the scattering coefficients. The two parameters are related according to previous studies. The Specific Surface Area (SSA) was measured at three test sites to derive the correlation length, while the mean snow grain sizes was available at Stream Springs and Sodankyla. It was shown that with different apparent forms of radiative transfer equations, the different parts of the two models have one-to-one correspondence however, and intermediate parameters are comparable. Regarding the multiple-layer structure of the models, it was found that the HUT model considers the internal reflectivity of each snow layer to be zero. The two-flux radiative transfer equations of the two models were compared, and the correspondence of the semi-empirical parameter q in the HUT model was found in the MEMLS. The effect of consideration of transverse radiation scattered into the direction under consideration via the six-flux approximation in MEMLS is compared. Based on model comparisons, we analyzed the differences of TB predictions at the three test sites.
Alpha particle condensation in {sup 12}C and nuclear rainbow scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, S.; Hirabayashi, Y.
2008-05-12
It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.
2014-06-20
zooplankton models (Lavery et al, 2007) have shown that the predicted scattering from zooplankton is dominated by copepods, amphipods, and pteropods ...which there is significant salinity gradient, the predicted scattering from the seasonal pycnocline during SW06 was not able to account for the...has focused on echoes from relatively small zooplankton, such as pteropods or copepods, potentially in the presence of microstructure or in mixed
NASA Astrophysics Data System (ADS)
Kanevskii, V. I.; Rozenbaum, V. M.
2014-08-01
Applicability of the Rayleigh-Gans-Debye (RGD) approximation for describing light scattering by nanoparticles with large dielectric losses (such as carbon nanotubes) is analyzed. By a comparison of the approximate results with exact ones, it is shown that the presence of dielectric losses expands the range of applicability of the RGD approximation. This conclusion is illustrated by a differential cross-section diagram of scattering by a multiwall carbon nanotube.
Simulation of multiple scattering in a medium with an anisotropic scattering pattern
NASA Astrophysics Data System (ADS)
Kuzmin, V. L.; Val'kov, A. Yu.
2017-03-01
Multiple backscattering from layers with various thicknesses, including the case of half-space, is numerically simulated and a comparative analysis is performed for systems with the anisotropy of scattering described by the Henyey-Greenstein and Rayleigh-Gans phase functions. It is shown that the intensity of backscattering depends on the form of the phase function; the difference between the intensities obtained within the two models increases with anisotropy.
Energy conservation - A test for scattering approximations
NASA Technical Reports Server (NTRS)
Acquista, C.; Holland, A. C.
1980-01-01
The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.
VLBI geodesy - 2 parts-per-billion precision in length determinations for transcontinental baselines
NASA Technical Reports Server (NTRS)
Davis, J. L.; Herring, T. A.; Shapiro, I. I.
1988-01-01
VLBI was to make twenty-two independent measurements, between September 1984 and December 1986, of the length of the 3900-km baseline between the Mojave site in California and the Haystack/Westford site in Massachusetts. These experiments differ from the typical geodetic VLBI experiments in that a large fraction of observations is obtained at elevation angles between 4 and 10 deg. Data from these low elevation angles allow the vertical coordinate of site position, and hence the baseline length, to be estimated with greater precision. For the sixteen experiments processed thus far, the weighted root-mean-square scatter of the estimates of the baseline length is 8 mm.
Branching, Chain Scission, and Solution Stability of Worm-Like Micelles
NASA Astrophysics Data System (ADS)
Beaucage, Greg; Vogtt, Karsten; Jiang, Hanqui
As salt is added to a simple micelle solution such as SDS or SLES, the zero shear rate specific viscosity rises rapidly followed by a maximum and decay. The rapid rise in viscosity is associated with formation of elliptical and extended chain worm-like micelles, WLMs. Entanglement of these long chain micelles leads to the viscoelastic behavior we associate with shampoo and body wash. The plateau and drop in viscosity at high salt concentrations is caused by a special type of topological branching where the branch points have no energy penalty to motion along the chain according to Cates theory. These have some similarity to catenane crosslinks. Predictive dynamic theories for WLMs rely on structural details; the diameter, persistence length, contour length, branch length, segment length between branch points, and mesh size. Further, since the contour length and other large scale features are in kinetic equilibrium, with frequent chain breakage and formation, the thermodynamics of these long chain structures are of interest both in terms of chain scission as well as in terms of the stability of the colloidal solution as a whole. Recent structural studies of WLMs using static neutron scattering based on new scattering models will be presented demonstrating that these input parameters for dynamic models of complex topological systems are quantitatively and directly available. In this context it is important to consider a comparison between dynamic features, for instance entanglement, and their static analogs, chain overlap.
Further Examination of a Simplified Model for Positronium-Helium Scattering
NASA Technical Reports Server (NTRS)
DiRienzi, J.; Drachman, Richard J.
2012-01-01
While carrying out investigations on Ps-He scattering we realized that it would be possible to improve the results of a previous work on zero-energy scattering of ortho-positronium by helium atoms. The previous work used a model to account for exchange and also attempted to include the effect of short-range Coulomb interactions in the close-coupling approximation. The 3 terms that were then included did not produce a well-converged result but served to give some justification to the model. Now we improve the calculation by using a simple variational wave function, and derive a much better value of the scattering length. The new result is compared with other computed values, and when an approximate correction due to the van der Waals potential is included the total is consistent with an earlier conjecture.
Scattering properties of electromagnetic waves from metal object in the lower terahertz region
NASA Astrophysics Data System (ADS)
Chen, Gang; Dang, H. X.; Hu, T. Y.; Su, Xiang; Lv, R. C.; Li, Hao; Tan, X. M.; Cui, T. J.
2018-01-01
An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.
Model-independent description of quartet nd scattering at low energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinyuk, B.E.; Simenog, I.V.; Sitnichenko, A.I.
1984-02-01
Asymptotic expansions are obtained for the scattering length a/sub 3//sub ///sub 2/ and the effective range r/sub 3//sub ///sub 2/ for the quartet state of three nucleons in the form of series in powers of the two-nucleon triplet effective range r/sub 0t/. This allows a model-independent description of these parameters and of the quartet phase shift of nd scattering in the effective-range approximation. Correlations between the parameters of three- and two-nucleon scattering are proposed and explained; these correlations allow the systematization of numerical calculations of a/sub 3//sub ///sub 2/ and r/sub 3//sub ///sub 2/ for different forms of interaction potentials.more » The influence of the energy dependence of the interaction on a/sub 3//sub ///sub 2/ is also considered.« less
Connected and disconnected contractions in pion-pion scattering
NASA Astrophysics Data System (ADS)
Acharya, Neramballi Ripunjay; Guo, Feng-Kun; Meißner, Ulf-G.; Seng, Chien-Yeah
2017-09-01
We show that the interplay of chiral effective field theory and lattice QCD can be used in the evaluation of so-called disconnected diagrams, which appear in the study of the isoscalar and isovector channels of pion-pion scattering and have long been a major challenge for the lattice community. By means of partially-quenched chiral perturbation theory, we distinguish and analyze the effects from different types of contraction diagrams to the pion-pion scattering amplitude, including its scattering lengths and the energy-dependence of its imaginary part. Our results may be used to test the current degree of accuracy of lattice calculation in the handling of disconnected diagrams, as well as to set criteria for the future improvement of relevant lattice computational techniques that may play a critical role in the study of other interesting QCD matrix elements.
Sugita, Mitsuro; Weatherbee, Andrew; Bizheva, Kostadinka; Popov, Ivan; Vitkin, Alex
2016-07-01
The probability density function (PDF) of light scattering intensity can be used to characterize the scattering medium. We have recently shown that in optical coherence tomography (OCT), a PDF formalism can be sensitive to the number of scatterers in the probed scattering volume and can be represented by the K-distribution, a functional descriptor for non-Gaussian scattering statistics. Expanding on this initial finding, here we examine polystyrene microsphere phantoms with different sphere sizes and concentrations, and also human skin and fingernail in vivo. It is demonstrated that the K-distribution offers an accurate representation for the measured OCT PDFs. The behavior of the shape parameter of K-distribution that best fits the OCT scattering results is investigated in detail, and the applicability of this methodology for biological tissue characterization is demonstrated and discussed.
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1983-01-01
A general theory of intensity scattering from small particles of arbitrary shape has been developed based on the radiative transfer theory. Upon permitting the particles to orient in accordance with any prescribed distribution, scattering models can be derived. By making an appropriate choice of the particle size, the scattering model may be used to estimate scattering from media such as snow, vegetation and sea ice. For the purpose of illustration only comparisons with measurements from a vegetated medium are shown. The difference in scattering between elliptic- and circular-shaped leaves is demonstrated. In the low-frequency limit, the major factors on backscattering from vegetation are found to be the depth of the vegetation layer and the orientation distribution of the leaves. The shape of the leaf is of secondary importance.
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1984-01-01
A general theory of intensity scattering from small particles of arbitrary shape was developed based on the radiative transfer theory. Upon permitting the particles to orient in accordance with any prescribed distribution, scattering models can be derived. By making an appropriate choice of the particle size, the scattering model may be used to estimate scattering from media such as snow, vegetation and sea ice. For the purpose of illustration only comparisons with measurements from a vegetated medium are shown. The difference in scattering between elliptic and circular shaped leaves is demonstrated. In the low frequency limit, the major factors on backscattering from vegetation are found to be the depth of the vegetation layer and the orientation distribution of the leaves. The shape of the leaf is of secondary importance.
Size Determination of Y2O3 Crystallites in MgO Composite Using Mie Scattering
2017-11-07
particle size, and the path length through the material to generate an expected light transmission spectrum. These calculated curves were compared to...materials. In the current work, light transmission data are compared to the theoretical curves generated by the Mie scattering model in an attempt to...Since the authors wanted to compare the model’s predictions to the experimental %T values, it seemed logical to start with Beer’s Law: )exp()1( 2
Light scattering measurements supporting helical structures for chromatin in solution.
Campbell, A M; Cotter, R I; Pardon, J F
1978-05-01
Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.
Coherent backscattering of singular beams
NASA Astrophysics Data System (ADS)
Schwartz, Chaim; Dogariu, Aristide
2006-02-01
The phenomenon of coherent backscattering depends on both the statistical characteristics of a random scattering medium and the correlation features of the incident field. Imposing a wavefront singularity on the incident field offers a unique and very attractive way to modify the field correlations in a deterministic manner. The field correlations are found to act as a path-length filter which modifies the distribution of different contributions to the enhancement cone. This effect is thoroughly discussed and demonstrated experimentally for the case of single scale scattering systems.
Time-Dependent Modeling of Brillouin Scattering in Optical Fibers Excited by a Chirped Diode Laser
2012-10-31
backscattering. To demonstrate this effect, we simulated an ytterbium -cladding- doped fiber with length L = 18 m and modal radius r = 13.75 μm at a...The resulting SBS suppression is well described by an adiabatic model and agrees with experimental results. For an 18-m active fiber pumped at 1.06...8] R. B. Jenkins, R. M. Sova, and R. I. Joseph, “Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers
Experimental Approaches for Solution X-Ray Scattering and Fiber Diffraction
Irving, T. C.
2008-01-01
X-ray scattering and diffraction from non-crystalline systems have gained renewed interest in recent years, as focus shifts from the structural chemistry information gained by high-resolution studies to the context of structural physiology at larger length scales. Such techniques permit the study of isolated macromolecules as well as highly organized macromolecular assemblies as a whole under near-physiological conditions. Time-resolved approaches, made possible by advanced synchrotron instrumentation, add a critical dimension to many of these investigations. This article reviews experimental approaches in non-crystalline x-ray scattering and diffraction that may be used to illuminate important scientific questions such as protein/nucleic acid folding and structure-function relationships in large macromolecular assemblies. PMID:18801437
Analysis of 4He+40Ca and 4He+44Ti scattering using different optical model potentials
NASA Astrophysics Data System (ADS)
Ibraheem, Awad A.
2016-09-01
Elastic scattering of 4He+40Ca and 4He+44Ti reactions at backward angles has been analyzed using two differentmodels, microscopic and semimicroscopic folding potentials. The derived real potentials supplemented with phenomenological Woods-Saxon imaginary potentials, provide good agreement with the experimental data at energy E c.m. = 21.8 MeV without need to renormalize the potentials. Coupledchannels calculations are used to extract the inelastic scattering cross section to the low-lying state 2+ (1.083 MeV) of 44Ti. The deformation length is obtained and compared with the electromagnetic measurement values as well as those obtained from previous studies.
Observation of optically induced feshbach resonances in collisions of cold atoms
Fatemi; Jones; Lett
2000-11-20
We have observed optically induced Feshbach resonances in a cold ( <1 mK) sodium vapor. The optical coupling of the ground and excited-state potentials changes the scattering properties of an ultracold gas in much the same way as recently observed magnetically induced Feshbach resonances, but allows for some experimental conveniences associated with using lasers. The scattering properties can be varied by changing either the intensity or the detuning of a laser tuned near a photoassociation transition to a molecular state in the dimer. In principle this method allows the scattering length of any atomic species to be altered. A simple model is used to fit the dispersive resonance line shapes.
A laboratory investigation into microwave backscattering from sea ice. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bredow, Jonathan W.
1989-01-01
The sources of scattering of artificial sea ice were determined, backscatter measurements semi-quantitatively were compared with theoretical predictions, and inexpensive polarimetric radars were developed for sea ice backscatter studies. A brief review of the dielectric properties of sea ice and of commonly used surface and volume scattering theories is presented. A description is provided of the backscatter measurements performed and experimental techniques used. The development of inexpensive short-range polarimetric radars is discussed. The steps taken to add polarimetric capability to a simple FM-W radar are considered as are sample polarimetric phase measurements of the radar. Ice surface characterization data and techniques are discussed, including computation of surface rms height and correlation length and air bubble distribution statistics. A method is also presented of estimating the standard deviation of rms height and correlation length for cases of few data points. Comparisons were made of backscatter measurements and theory. It was determined that backscatter from an extremely smooth saline ice surface at C band cannot be attributed only to surface scatter. It was found that snow cover had a significant influence on backscatter from extremely smooth saline ice at C band.
Suits, Michael D L; Pluvinage, Benjamin; Law, Adrienne; Liu, Yan; Palma, Angelina S; Chai, Wengang; Feizi, Ten; Boraston, Alisdair B
2014-09-26
For a subset of pathogenic microorganisms, including Streptococcus pneumoniae, the recognition and degradation of host hyaluronan contributes to bacterial spreading through the extracellular matrix and enhancing access to host cell surfaces. The hyaluronate lyase (Hyl) presented on the surface of S. pneumoniae performs this role. Using glycan microarray screening, affinity electrophoresis, and isothermal titration calorimetry we show that the N-terminal module of Hyl is a hyaluronan-specific carbohydrate-binding module (CBM) and the founding member of CBM family 70. The 1.2 Å resolution x-ray crystal structure of CBM70 revealed it to have a β-sandwich fold, similar to other CBMs. The electrostatic properties of the binding site, which was identified by site-directed mutagenesis, are distinct from other CBMs and complementary to its acidic ligand, hyaluronan. Dynamic light scattering and solution small angle x-ray scattering revealed the full-length Hyl protein to exist as a monomer/dimer mixture in solution. Through a detailed analysis of the small angle x-ray scattering data, we report the pseudoatomic solution structures of the monomer and dimer forms of the full-length multimodular Hyl. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Structure, rheology and shear alignment of Pluronic block copolymer mixtures.
Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J
2009-01-01
The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.
Superparamagnetic enhancement of thermoelectric performance.
Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang; Zhang, Qingjie; Wei, Ping; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; He, Danqi; Ji, Pengxia; Zhu, Wanting; Nie, Xiaolei; Su, Xianli; Tang, Xinfeng; Shen, Baogen; Dong, Xiaoli; Yang, Jihui; Liu, Yong; Shi, Jing
2017-09-13
The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.
Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.
Barako, Michael T; Sood, Aditya; Zhang, Chi; Wang, Junjie; Kodama, Takashi; Asheghi, Mehdi; Zheng, Xiaolin; Braun, Paul V; Goodson, Kenneth E
2016-04-13
Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.
Propagation of a dark soliton in a disordered Bose-Einstein condensate.
Bilas, Nicolas; Pavloff, Nicolas
2005-09-23
We consider the propagation of a dark soliton in a quasi-1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well-defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.
Propagation of a Dark Soliton in a Disordered Bose-Einstein Condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilas, Nicolas; Pavloff, Nicolas
2005-09-23
We consider the propagation of a dark soliton in a quasi-1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well-defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.
Stimulated Brillouin Scattering: its Generation and Applications in Optical Fibre
NASA Astrophysics Data System (ADS)
Culverhouse, David
1992-01-01
Available from UMI in association with The British Library. In the work presented in this thesis, the generation of stimulated Brillouin scattering and its applications in optical fibres is theoretically and experimentally investigated. The study pursues three special cases: (i) Backward stimulated Brillouin scattering in long fibre lengths; (ii) Backward stimulated Brillouin scattering in high finesse all fibre ring resonators; (iii) Forward stimulated Brillouin scattering in dual moded single core fibres. Stimulated Brillouin scattering (SBS) occurs for relatively low input powers in monomode optical fibres, as the power density is very high because of the relatively small core size. For applications such as optical communications, SBS is seen as a potentially deleterious effect because it can limit the maximum optical power transmitted by the fibre and hence decrease the distance between repeaters. SBS, however, can also be used to advantage in optical fibres, for example to produce amplification. In this thesis the comprehensive study of SBS in relation to other non-linear scattering mechanisms in optical fibres leads to the derivation of explicit definitions for the Brillouin gain and the Brillouin threshold. The study of SBS in high finesse all fibre ring resonators also demonstrates how threshold powers can be reduced, typically, from milliwatts observed in long fibre lengths to microwatts. Because Brillouin scattering is primarily a result of the interaction of the incident optical beam with spontaneously generated (thermal) fluctuations in the density of the medium, the spectral features show a considerable variation with temperature thus providing a mechanism with sufficient sensitivity to realise tunable microwave generation and frequency shifting devices. Finally, the observation of stimulated Brillouin scattering in a forward direction (FSBS) in dual moded single-core fibre is also reported. Frequency shifts in the order of 17MHz are observed in optical fibre supporting LP_ {01} and LP_{11} modes at 514.5nm. The phenomenon is examined here in detail and the governing differential equations of the three wave parametric process (involving pump/laser, Brillouin signal and acoustic flexural wave phonon) is derived and solved. FSBS is possible because, although the overlap integral between a fibre flexural mode and the light is small, the phonon lifetime is much longer than in conventional SBS. FSBS may also be the first example of a non-linear effect which is enhanced by increasing the optical mode area at constant pump power.
Design of a new Nd:YAG Thomson scattering system for MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannell, R.; Walsh, M. J.; Carolan, P. G.
2008-10-15
A new infrared Thomson scattering system has been designed for the MAST tokamak. The system will measure at 120 spatial points with {approx_equal}10 mm resolution across the plasma. Eight 30 Hz 1.6 J Nd:YAG lasers will be combined to produce a sampling rate of 240 Hz. The lasers will follow separate parallel beam paths to the MAST vessel. Scattered light will be collected at approximately f/6 over scattering angles ranging from 80 deg. to 120 deg. The laser energy and lens size, relative to an existing 1.2 J f/12 system, greatly increases the number of scattered photons collected per unitmore » length of laser beam. This is the third generation of this polychromator to be built and a number of modifications have been made to facilitate mass production and to improve performance. Detected scattered signals will be digitized at a rate of 1 GS/s by 8 bit analog to digital converters (ADCs.) Data may be read out from the ADCs between laser pulses to allow for real-time analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, C. T.; Shaw, J. M.; Nembach, H. T.
2015-06-14
We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicabilitymore » of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.« less
How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar
2012-03-26
We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures.more » Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.« less
LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis
NASA Astrophysics Data System (ADS)
Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.
2002-11-01
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.
NASA Technical Reports Server (NTRS)
Claassen, J. P.; Fung, A. K.
1977-01-01
The radar equation for incoherent scenes is derived and scattering coefficients are introduced in a systematic way to account for the complete interaction between the incident wave and the random scene. Intensity (power) and correlation techniques similar to that for coherent targets are proposed to measure all the scattering parameters. The sensitivity of the intensity technique to various practical realizations of the antenna polarization requirements is evaluated by means of computer simulated measurements, conducted with a scattering characteristic similar to that of the sea. It was shown that for scenes satisfying reciprocity one must admit three new cross-correlation scattering coefficients in addition to the commonly measured autocorrelation coefficients.
Nonlinear resonance scattering of femtosecond X-ray pulses on atoms in plasmas
NASA Astrophysics Data System (ADS)
Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.; Moroz, N. N.
2017-11-01
It is shown that for sufficiently short pulses the resonance scattering probability becomes a nonlinear function of the pulse duration. For fs X-ray pulses scattered on atoms in plasmas maxima and minima develop in the nonlinear regime whereas in the limit of long pulses the probability becomes linear and turns over into the standard description of the electromagnetic pulse scattering. Numerical calculations are carried out in terms of a generalized scattering probability for the total time of pulse duration including fine structure splitting and ion Doppler broadening in hot plasmas. For projected X-ray monocycles, the generalized nonlinear approach differs by 1-2 orders of magnitude from the standard theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aseeva, N. V., E-mail: vtyutin@hse.ru; Gromov, E. M.; Tyutin, V. V.
2015-12-15
The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.
Tissue structure characterization of biotissue phantom by use of the speckle-correlometric technique
NASA Astrophysics Data System (ADS)
Isaeva, A. A.; Isaeva, E. A.; Zimnyakov, D. A.; Pantyukov, A. V.; Agapova, Y. V.; Macheyev, M. A.
2017-03-01
Speckle correlometry gives the possibilities to visualize tissue scattering structure analyzing the correlation characteristics of speckle-modulated images. In this work, the inhomogeneous multiple scattering medium with the "dynamic" long inclusions was investigated like a blood vessels in living tissue. The scattering media is 0.28% weight fraction of gelatin dissolved in water and 1 gram per liter (gL-1) and 100 mg per liter (gL-1) of TiO2 for optical scattering. The movement of fluid (distilled water) in the cylindrical hole with given radius simulate a blood motion in the vessel. It was shown the possibility to determinate the depth location of dynamic inhomogeneities inside a scattering medium.
Backscattering from a randomly rough dielectric surface
NASA Technical Reports Server (NTRS)
Fung, Adrian K.; Li, Zongqian; Chen, K. S.
1992-01-01
A backscattering model for scattering from a randomly rough dielectric surface is developed based on an approximate solution of a pair of integral equations for the tangential surface fields. Both like and cross-polarized scattering coefficients are obtained. It is found that the like polarized scattering coefficients contain two types of terms: single scattering terms and multiple scattering terms. The single scattering terms in like polarized scattering are shown to reduce the first-order solutions derived from the small perturbation method when the roughness parameters satisfy the slightly rough conditions. When surface roughnesses are large but the surface slope is small, only a single scattering term corresponding to the standard Kirchhoff model is significant. If the surface slope is large, the multiple scattering term will also be significant. The cross-polarized backscattering coefficients satisfy reciprocity and contain only multiple scattering terms. The difference between vertical and horizontal scattering coefficients is found to increase with the dielectric constant and is generally smaller than that predicted by the first-order small perturbation model. Good agreements are obtained between this model and measurements from statistically known surfaces.