Productivity in using school's resources: A case study of secondary school in Dumai, Riau Indonesia
NASA Astrophysics Data System (ADS)
Rozamuri, Arif Murti; Suradi, Nur Riza Mohd
2015-09-01
Definition of good school's differs for every individual. The performance of the school's has always been an interesting discussion topic. This situation requires parents to be more selective for choosing the best school's for their child, especially in the efficient management of resources. This study evaluated changes in total productivity, technology, technical efficiency, and scale efficiency among 12 school of Dumai City in Riau Indonesia using DEA Malmquist Index. The inputs include number of teacher's, number of students, and number of classrooms while output is the number of students that passed the national examination. The results show that average efficiency of secondary school in Dumai City from 2011 to 2013 recorded good changes in terms of technical efficiency, pure technical efficiency and scale efficiency. However, technological and total factor productivity change do not show a positive change.
Application of an efficient hybrid scheme for aeroelastic analysis of advanced propellers
NASA Technical Reports Server (NTRS)
Srivastava, R.; Sankar, N. L.; Reddy, T. S. R.; Huff, D. L.
1989-01-01
An efficient 3-D hybrid scheme is applied for solving Euler equations to analyze advanced propellers. The scheme treats the spanwise direction semi-explicitly and the other two directions implicitly, without affecting the accuracy, as compared to a fully implicit scheme. This leads to a reduction in computer time and memory requirement. The calculated power coefficients for two advanced propellers, SR3 and SR7L, and various advanced ratios showed good correlation with experiment. Spanwise distribution of elemental power coefficient and steady pressure coefficient differences also showed good agreement with experiment. A study of the effect of structural flexibility on the performance of the advanced propellers showed that structural deformation due to centrifugal and aero loading should be included for better correlation.
Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal.
Peng, Zihang; Yang, Ye; Luo, Jiyue; Nie, Chuanxiong; Ma, Lang; Cheng, Chong; Zhao, Changsheng
2016-08-16
Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients. However, the currently applied materials suffer from either low removal efficiency or poor blood compatibility. In this study, we report the development of a new class of nanofibrous absorbent that exhibited high bilirubin removal efficiency and good blood compatibility. The Kevlar nanofiber was prepared by dissolving micron-sized Kevlar fiber in proper solvent, and the beads were prepared by dropping Kevlar nanofiber solutions into ethanol. Owing to the nanofiborous structure of the Kevlar nanofiber, the beads displayed porous structures and large specific areas, which would facilitate the adsorption of toxins. In the adsorption test, it was noticed that the beads possessed an adsorption capacity higher than 40 mg g(-1) towards bilirubin. In plasma mimetic solutions, the beads still showed high bilirubin removal efficiency. Furthermore, after incorporating with carbon nanotubes, the beads were found to have increased adsorption capacity for human degradation waste. Moreover, the beads showed excellent blood compatibility in terms of a low hemolysis ratio, prolonged clotting times, suppressed coagulant activation, limited platelet activation, and inhibited blood related inflammatory activation. Additionally, the beads showed good compatibility with endothelial cells. In general, the Kevlar nanofiber beads, which integrated with high adsorption capacity, good blood compatibility and low cytotoxicity, may have great potential for hemoperfusion and some other applications in biomedical fields.
Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng
2017-01-01
Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402
NASA Astrophysics Data System (ADS)
Mensi, Walid; Tiwari, Aviral Kumar; Yoon, Seong-Min
2017-04-01
This paper estimates the weak-form efficiency of Islamic stock markets using 10 sectoral stock indices (basic materials, consumer services, consumer goods, energy, financials, health care, industrials, technology, telecommunication, and utilities). The results based on the multifractal detrended fluctuation analysis (MF-DFA) approach show time-varying efficiency for the sectoral stock markets. Moreover, we find that they tend to show high efficiency in the long term but moderate efficiency in the short term, and that these markets become less efficient after the onset of the global financial crisis. These results have several significant implications in terms of asset allocation for investors dealing with Islamic markets.
Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.
Nishijima, Daisuke
2016-10-01
This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei
2018-03-01
In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.
Efficient Computing Budget Allocation for Finding Simplest Good Designs
Jia, Qing-Shan; Zhou, Enlu; Chen, Chun-Hung
2012-01-01
In many applications some designs are easier to implement, require less training data and shorter training time, and consume less storage than the others. Such designs are called simple designs, and are usually preferred over complex ones when they all have good performance. Despite the abundant existing studies on how to find good designs in simulation-based optimization (SBO), there exist few studies on finding simplest good designs. We consider this important problem in this paper, and make the following contributions. First, we provide lower bounds for the probabilities of correctly selecting the m simplest designs with top performance, and selecting the best m such simplest good designs, respectively. Second, we develop two efficient computing budget allocation methods to find m simplest good designs and to find the best m such designs, respectively; and show their asymptotic optimalities. Third, we compare the performance of the two methods with equal allocations over 6 academic examples and a smoke detection problem in wireless sensor networks. We hope that this work brings insight to finding the simplest good designs in general. PMID:23687404
Topology for efficient information dissemination in ad-hoc networking
NASA Technical Reports Server (NTRS)
Jennings, E.; Okino, C. M.
2002-01-01
In this paper, we explore the information dissemination problem in ad-hoc wirless networks. First, we analyze the probability of successful broadcast, assuming: the nodes are uniformly distributed, the available area has a lower bould relative to the total number of nodes, and there is zero knowledge of the overall topology of the network. By showing that the probability of such events is small, we are motivated to extract good graph topologies to minimize the overall transmissions. Three algorithms are used to generate topologies of the network with guaranteed connectivity. These are the minimum radius graph, the relative neighborhood graph and the minimum spanning tree. Our simulation shows that the relative neighborhood graph has certain good graph properties, which makes it suitable for efficient information dissemination.
Efficient method of image edge detection based on FSVM
NASA Astrophysics Data System (ADS)
Cai, Aiping; Xiong, Xiaomei
2013-07-01
For efficient object cover edge detection in digital images, this paper studied traditional methods and algorithm based on SVM. It analyzed Canny edge detection algorithm existed some pseudo-edge and poor anti-noise capability. In order to provide a reliable edge extraction method, propose a new detection algorithm based on FSVM. Which contains several steps: first, trains classify sample and gives the different membership function to different samples. Then, a new training sample is formed by increase the punishment some wrong sub-sample, and use the new FSVM classification model for train and test them. Finally the edges are extracted of the object image by using the model. Experimental result shows that good edge detection image will be obtained and adding noise experiments results show that this method has good anti-noise.
Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba
2018-01-05
This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba
2018-01-01
This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples.
Zhang, Zhenyu; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue
2017-12-19
Two new four-coordinate organoboron compounds with 2-(2-hydroxyphenyl)imidazole derivatives as the chelating ligands have been synthesized. They possess high thermal stability and are able to form an amorphous glass state. Crystallographic analyses indicate that the differences in ligand structure cause the change of ππ stacking character. The CH 2 Cl 2 solutions and thin films of these compounds display bright blue emission, and these compounds have appropriate HOMO and LUMO energy levels for carrier injection in OLEDs. By utilizing the good thermal and luminescent properties, as well as the proper frontier orbital energy levels, bright non-doped OLEDs with a simple structure have been realized. Notably, these simple devices show deep blue electroluminescence with the Commission Internationale de l'Éclairage (CIE) coordinate of ca. (0.16, 0.08), which is close to the CIE coordinate of (0.14, 0.08) for standard blue defined by the National Television System Committee. In addition, one of the devices exhibits good performance, showing brightness, current efficiency, power efficiency and external quantum efficiency up to 2692 cd m -2 , 2.50 cd A -1 , 1.81 lm W -1 and 3.63%, respectively. This study not only provides good deep-blue emitting OLED materials that are rarely achieved by using four-coordinate organoboron compounds, but also allows a deeper understanding of the structure-property relationship of 2-(2-hydroxyphenyl)imidazole-based boron complexes, which benefits the further structural design of this type of material.
Keshmiri, Mehrdad; Troczynski, Tom; Mohseni, Madjid
2006-02-06
The previously developed composite sol-gel (CSG) process is proposed for the deposition of thick (10-50 microm) porous films of photocatalytic TiO2. The CSG titania was developed by binding pre-calcined TiO2 particles with TiO2 sol. It had relatively high surface area (15-35 m2/g) and good resistance against mechanical stress and abrasion. Photocatalytic activity tests were carried out on trichloroethylene (TCE) and toluene, and compared with those of standard Degussa P-25 titania. The CSG photocatalyst provided good photo-efficiency in removing both pollutants from contaminated air streams. When compared with P-25 titania, the CSG photocatalyst showed a similar photo-efficiency with first-order kinetic rate constants not significantly different from that of P-25. For both photocatalysts the rate of photocatalytic oxidation of TCE was significantly greater than that obtained for toluene. Overall, the combination of better mechanical integrity, resistance against abrasion, and comparable photocatalytic efficiency of the CSG titania versus that of P-25 titania, make the composite sol-gel (CSG) photocatalyst a viable alternative for industrial applications where long term stability, superior mechanical properties, and good photo-efficiency are of critical value.
Fully-resonant, tunable, monolithic frequency conversion as a coherent UVA source.
Zielińska, Joanna A; Zukauskas, Andrius; Canalias, Carlota; Noyan, Mehmet A; Mitchell, Morgan W
2017-01-23
We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.
NASA Astrophysics Data System (ADS)
Zhou, Hai-Tao; Che, Shao-Na; Han, Yu-Hong; Wang, Dan
2018-05-01
In a Λ-type three-level atomic system coupled by an off-resonant standing-wave, the reflected four-wave mixing (FWM) spectrum is studied. It shows that the maximum reflection efficiency occurs when both of the coupling and probe fields are tuned off resonances from the atomic transitions. The essence of enhanced reflection is that the nonlinear efficiency of the FWM based on coherent atoms is improved due to the significant reduction of phase mismatch. The theoretical analysis shows good agreement with the experimental results. Furthermore, the influence of the atomic number density on the coupling frequency detuning of the optimum reflection efficiency and the linewidth are also investigated.
Solar-pumped gas laser development
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1981-01-01
The direct conversion of solar radiation into an inverted population for extraction in an optical cavity holds promise as a relatively simple system design. Broad-band photoabsorption in the visible or near-UV range is required to excite large volumes of gas and to ensure good solar absorption efficiency. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than approximately 10 A. The system should show chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. A search of electronic-vibrational transitions in diatomic molecules satisfying these conditions is now in progress. A photodissociation-pumped atomic iodine laser is now being tested under solar pumping conditions. Photodissociation studies for thallium spin-flip metastable formation will begin in the near future.
Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo
2017-03-01
Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Software Design Strategies for Multidisciplinary Computational Fluid Dynamics
2012-07-01
on the left-hand-side of Figure 3. The resulting unstructured grid system does a good job of representing the flowfield locally around the solid... Laboratory [16–19]. It uses Cartesian block structured grids, which lead to a substantially more efficient computational execution compared to the...including blade sectional lift and pitching moment. These Helios-computed airloads show good agreement with the experimental data. Many of the
Tang, Liang; Zhu, Yongfeng; Fu, Qiang
2017-01-01
Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity. PMID:28468308
Tang, Liang; Zhu, Yongfeng; Fu, Qiang
2017-05-01
Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity.
NASA Astrophysics Data System (ADS)
Gogoi, Nibedita; Borah, Geetika; Gogoi, Pradip K.; Chetia, Tridip Ranjan
2018-01-01
An efficient heterogeneous photocatalyst composed of Au nanoparticle supported on TiO2 (anatase) is prepared by sol-gel method. This prepared nanocomposite showed good catalytic activity in the oxidation of various alcohols to aldehyde and ketone under irradiation of visible light. Various spectroscopic techniques including UV-Visible absorption spectral studies and photoluminescence study are employed to characterize the catalyst. It was also characterized by XRD, TEM, BET, XPS and ICP-AES analysis. In contrast to air and H2O2, use of TBHP as oxidant gave good yield. The reaction conditions with respect to solvent and amount of catalyst are optimized.
Zhang, Xi; Yao, Juan; Zhang, Lihong; Fang, Jianguo; Bian, Fengling
2014-03-15
Poly(ethylene glycol)-conjugated N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride (PHTAC) derivatives were prepared by incorporating PEG molecules onto quaternized chitosan backbone. The copolymers were characterized by FTIR, (1)H NMR and XRD. Agarose gel retardation assay indicated that PHTAC had good plasmid DNA (pDNA) binding capability and the particle sizes of PHTAC/pDNA complexes determined by DLS were about 200 nm. Cytotoxicity assays in HeLa and 293T cells showed that PHTAC had low cytotoxicity. In vitro luciferase assay showed that PHTAC with PEGylation degree of 9% (PHTAC-1) had good transfection efficiency about 5.3-fold higher than quaternized chitosan, which was comparable with PEI (25 kDa). These results suggest that PHTAC-1 is a promising candidate as an efficient nonviral gene vector. Copyright © 2013 Elsevier Ltd. All rights reserved.
Micelles as Delivery Vehicles for Oligofluorene for Bioimaging
Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Meldrum, Deirdre R.
2011-01-01
With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH2) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields. PMID:21915324
Micelles as delivery vehicles for oligofluorene for bioimaging.
Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Meldrum, Deirdre R
2011-01-01
With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH(2)) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.
Åkerstedt, Torbjörn; Schwarz, Johanna; Gruber, Georg; Lindberg, Eva; Theorell-Haglöw, Jenny
2016-10-01
Women complain more about sleep than men, but polysomnography (PSG) seems to suggest worse sleep in men. This raises the question of how women (or men) perceive objective (PSG) sleep. The present study sought to investigate the relation between morning subjective sleep quality and PSG variables in older and younger women. A representative sample of 251 women was analysed in age groups above and below 51.5 years (median). PSG was recorded at home during one night. Perceived poor sleep was related to short total sleep time (TST), long wake within total sleep time (WTSP), low sleep efficiency and a high number of awakenings. The older women showed lower TST and sleep efficiency and higher WTSP for a rating of good sleep than did the younger women. For these PSG variables the values for good sleep in the older group were similar to the values for poor sleep in the young group. It was concluded that women perceive different levels of sleep duration, sleep efficiency and wake after sleep onset relatively well, but that older women adjust their objective criteria for good sleep downwards. It was also concluded that age is an important factor in the relation between subjective and objective sleep. © 2016 European Sleep Research Society.
Investigation of negative permeability metamaterials for wireless power transfer
NASA Astrophysics Data System (ADS)
Xin, Wenhui; Mi, Chunting Chris; He, Fei; Jiang, Meng; Hua, Dengxin
2017-11-01
In order to enhance the transmission efficiency of wireless power transfer (WPT), a negative permeability metamaterials (NPM) with a structure of honeycomb composed by units of hexagon-shaped spirals copper is proposed in this paper. The unit parameters of the NPM are optimized, to make sure the negative permeability at the special frequency. The S-parameters of the designed NPM are measured by a network analyzer and the permeability is extracted, it shows the honeycomb NPM has a negative permeability at 6.43 MHz. A two-coil WPT is setup and the transmission efficiency of WPT embedded with NPM at the different position and with different structure are investigated. The measured results show that the 2-slab honeycomb NPM have a good perform compared with the 1-slab NPM, and the efficiency can be increased up to 51%. The results show that honeycomb NPM embedded in the WPT help to improve the transmission efficiency remarkable.
Solar-pumped gas laser development
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1980-01-01
A survey of gas properties through detailed kinetic models led to the identification of critical gas parameters for use in choosing appropriate gas combinations for solar pumped lasers. Broadband photoabsorption in the visible or near UV range is required to excite large volumes of gas and to insure good solar absorption efficiency. The photoexcitation density is independent of the absorption bandwidth. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than 10 A to insure lasing threshold over reasonable gain lengths. The system should show a high degree of chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. Although photoexcitation of electronic vibrational transitions is considered as a possible system if the emission bands sufficiently narrow, it appears that photodissociation into atomic metastables is more likely to result in a successful solar pumped laser system.
A scalable parallel algorithm for multiple objective linear programs
NASA Technical Reports Server (NTRS)
Wiecek, Malgorzata M.; Zhang, Hong
1994-01-01
This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.
A knowledge infrastructure for occupational safety and health.
van Dijk, Frank J H; Verbeek, Jos H; Hoving, Jan L; Hulshof, Carel T J
2010-12-01
Occupational Safety and Health (OSH) professionals should use scientific evidence to support their decisions in policy and practice. Although examples from practice show that progress has been made in evidence-based decision making, there is a challenge to improve and extend the facilities that support knowledge translation in practice. A knowledge infrastructure that supports OSH practice should include scientific research, systematic reviews, practice guidelines, and other tools for professionals such as well accessible virtual libraries and databases providing knowledge, quality tools, and good learning materials. A good infrastructure connects facilities with each other and with practice. Training and education is needed for OSH professionals in the use of evidence to improve effectiveness and efficiency. New initiatives show that occupational health can profit from intensified international collaboration to establish a good functioning knowledge infrastructure.
The main beam efficiency of corner cube reflectors
NASA Astrophysics Data System (ADS)
Vowinkel, B.
1986-01-01
A computer model for the calculation of the beam pattern and the main beam efficiency of corner cube reflectors used in submillimeter heterodyne systems is described. The model includes possible mismatches at the termination of the wire antenna, the attenuation of the wave along the wire due to emission and the contribution of the wire bend to the antenna pattern. Measurements with a scale model at 15 GHz show good agreement between experiment and theory.
Peng, Yuyang; Choi, Jaeho
2014-01-01
Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system.
Recent Improvements To the Sieve of Eratosthenes.
ERIC Educational Resources Information Center
Quesada, Antonio R.
1997-01-01
Presents recently developed generalizations to the sieve of Eratosthenes, showing the principles underlying these improvements, which increase its efficiency without changing too much of its simplicity. Offers several possibilities to propose good investigations for students to explore, find patterns, and make generalizations. (JRH)
Design of Supersonic Transport Flap Systems for Thrust Recovery at Subsonic Speeds
NASA Technical Reports Server (NTRS)
Mann, Michael J.; Carlson, Harry W.; Domack, Christopher S.
1999-01-01
A study of the subsonic aerodynamics of hinged flap systems for supersonic cruise commercial aircraft has been conducted using linear attached-flow theory that has been modified to include an estimate of attainable leading edge thrust and an approximate representation of vortex forces. Comparisons of theoretical predictions with experimental results show that the theory gives a reasonably good and generally conservative estimate of the performance of an efficient flap system and provides a good estimate of the leading and trailing-edge deflection angles necessary for optimum performance. A substantial reduction in the area of the inboard region of the leading edge flap has only a minor effect on the performance and the optimum deflection angles. Changes in the size of the outboard leading-edge flap show that performance is greatest when this flap has a chord equal to approximately 30 percent of the wing chord. A study was also made of the performance of various combinations of individual leading and trailing-edge flaps, and the results show that aerodynamic efficiencies as high as 85 percent of full suction are predicted.
NASA Astrophysics Data System (ADS)
Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong
2018-04-01
In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.
Cyclen-based lipidic oligomers as potential gene delivery vehicles.
Yi, Wen-Jing; Zhang, Qin-Fang; Zhang, Ji; Liu, Qiang; Ren, Laifeng; Chen, Qian-Ming; Guo, Liandi; Yu, Xiao-Qi
2014-03-01
A series of cyclen-based linear oligomers bearing hydrophobic long chains (lipopolymers Cy-LC, where Cy and LC represent cyclen-based linear backbone and hydrophobic long chain substituents, respectively) were designed and synthesized. The effects of type and degree of substitution (DS) of hydrophobic long chains on the transfection efficiency were systematically studied. The nitrogen atoms with relatively strong basicity on the cyclen ensure their good DNA binding ability, which was confirmed by gel retardation and ethidium bromide exclusion assays. Lipopolyplexes could be formed as nanoparticles with suitable sizes and zeta potentials for gene transfection. In vitro gene delivery experiments revealed that the linoleic acid (LIN) substituted material Cy-LIN has better transfection efficiency than 25 kDa polyethylenimine in the absence or in the presence of serum. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and hemolysis assays showed low cytotoxicity and good biocompatibility of the lipopolyplexes. Fluorescent labeled DNA was used to study the cellular uptake and intracellular distribution of transfected DNA. Flow cytometry results suggested that a long chain is necessary for efficient cellular uptake, and images from confocal laser scanning microscopy showed that after 4h transfection, most of the fluorescent labeled DNA accumulated in the perinuclear region, which was required for efficient gene expression. Moreover, it was also found that the DS of the hydrophobic moiety can adjust the balance between DNA binding ability and dissociation of polyplexes, significantly affecting the transfection efficiency. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Design of crossed planar phase grating for metrology
NASA Astrophysics Data System (ADS)
Tang, Yu; Chen, Xinrong; Li, Chaoming; Wang, Rui; Xu, Haiyan; Cheng, Yushui
2018-01-01
Crossed-grating is widely used as the standard element for metrology in two-dimensional precision positioning system. It has many advantages such as high resolution, compact structure, good environmental adaptability and less Abbe error. In this paper, the design of crossed planar reflecting phase grating used under the Littrow condition with circularly polarized light at 780nm wavelength has been carried out. The aim of the design is to find out the range of structure parameters of crossed-grating that has higher -1st order diffraction efficiency and good efficiency equilibrium for both of TE- and TM-polarized incident lights. By adoption of the Fourier modal method (FMM), the microstructure parameters of the 1200lines/mm crossed grating with the duty cycle range of 10% to 50% and the profile depth of 150nm to 350nm have been searched exactly. The calculation results show that: When the duty cycle range of the grating is 42% to 44% and profile depth is 210nm to 220nm, the -1st diffraction efficiencies of TE- and TM-polarized lights are both above 60% and the efficiency equilibrium is better than 80%.
Intelligence related upper alpha desynchronization in a semantic memory task.
Doppelmayr, M; Klimesch, W; Hödlmoser, K; Sauseng, P; Gruber, W
2005-07-30
Recent evidence shows that event-related (upper) alpha desynchronization (ERD) is related to cognitive performance. Several studies observed a positive, some a negative relationship. The latter finding, interpreted in terms of the neural efficiency hypothesis, suggests that good performance is associated with a more 'efficient', smaller extent of cortical activation. Other studies found that ERD increases with semantic processing demands and that this increase is larger for good performers. Studies supporting the neural efficiency hypothesis used tasks that do not specifically require semantic processing. Thus, we assume that the lack of semantic processing demands may at least in part be responsible for the reduced ERD. In the present study we measured ERD during a difficult verbal-semantic task. The findings demonstrate that during semantic processing, more intelligent (as compared to less intelligent) subjects exhibited a significantly larger upper alpha ERD over the left hemisphere. We conclude that more intelligent subjects exhibit a more extensive activation in a semantic processing system and suggest that divergent findings regarding the neural efficiency hypotheses are due to task specific differences in semantic processing demands.
NASA Astrophysics Data System (ADS)
Toxqui-López, S.; Olivares-Pérez, A.; Fuentes-Tapia, I.; Conde-Cuatzo, María. G.
2017-03-01
Nopal mucilage potentially has certain properties required for the preparation biofilms which can be used as holographic replication recording medium. In this study, mucilage from nopal was extracted and characterized by its ability to form films under different concentration with polyvinyl alcohol. The transmission holographic diffraction gratings (master) were replicated into nopal films. The results showed good diffraction efficiencies. Mucilage from nopal could represent a good option for the development of films to replication holographic, owing to; its low cost and its compatibility with the environmental.
Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje
2016-11-15
Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
Collective navigation of complex networks: Participatory greedy routing.
Kleineberg, Kaj-Kolja; Helbing, Dirk
2017-06-06
Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.
Millimeter-Wave Wireless Power Transfer Technology for Space Applications
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville
2008-01-01
In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.
What currency do bumble bees maximize?
Charlton, Nicholas L; Houston, Alasdair I
2010-08-16
In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency.
What Currency Do Bumble Bees Maximize?
Charlton, Nicholas L.; Houston, Alasdair I.
2010-01-01
In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency. PMID:20808437
Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.
Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R
2018-01-01
Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.
Sharma, Upendra Kumar; Sharma, Nandini; Gupta, Ajai Prakash; Kumar, Vinod; Sinha, Arun Kumar
2007-12-01
A simple, fast and sensitive RP-HPTLC method is developed for simultaneous quantitative determination of vanillin and related phenolic compounds in ethanolic extracts of Vanilla planifolia pods. In addition to this, the applicability of accelerated solvent extraction (ASE) as an alternative to microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and Soxhlet extraction was also explored for the rapid extraction of phenolic compounds in vanilla pods. Good separation was achieved on aluminium plates precoated with silica gel RP-18 F(254S) in the mobile phase of methanol/water/isopropanol/acetic acid (30:65:2:3, by volume). The method showed good linearity, high precision and good recovery of compounds of interest. ASE showed good extraction efficiency in less time as compared to other techniques for all the phenolic compounds. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.
pYEMF, a pUC18-derived XcmI T-vector for efficient cloning of PCR products.
Gu, Jingsong; Ye, Chunjiang
2011-03-01
A 1330-bp DNA sequence with two XcmI cassettes was inserted into pUC18 to construct an efficient XcmI T-vector parent plasmid, pYEMF. The large size of the inserted DNA fragment improved T-vector cleavage efficiency, and guaranteed good separation of the molecular components after restriction digestion. The pYEMF-T-vector generated from parent plasmid pYEMF permits blue/white colony screening; cloning efficiency analysis showed that most white colonies (>75%) were putative transformants which carried the cloning product. The sequence analysis and design approach presented here will facilitate applications in the fields of molecular biology and genetic engineering.
An algorithm for testing the efficient market hypothesis.
Boboc, Ioana-Andreea; Dinică, Mihai-Cristian
2013-01-01
The objective of this research is to examine the efficiency of EUR/USD market through the application of a trading system. The system uses a genetic algorithm based on technical analysis indicators such as Exponential Moving Average (EMA), Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI) and Filter that gives buying and selling recommendations to investors. The algorithm optimizes the strategies by dynamically searching for parameters that improve profitability in the training period. The best sets of rules are then applied on the testing period. The results show inconsistency in finding a set of trading rules that performs well in both periods. Strategies that achieve very good returns in the training period show difficulty in returning positive results in the testing period, this being consistent with the efficient market hypothesis (EMH).
An Algorithm for Testing the Efficient Market Hypothesis
Boboc, Ioana-Andreea; Dinică, Mihai-Cristian
2013-01-01
The objective of this research is to examine the efficiency of EUR/USD market through the application of a trading system. The system uses a genetic algorithm based on technical analysis indicators such as Exponential Moving Average (EMA), Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI) and Filter that gives buying and selling recommendations to investors. The algorithm optimizes the strategies by dynamically searching for parameters that improve profitability in the training period. The best sets of rules are then applied on the testing period. The results show inconsistency in finding a set of trading rules that performs well in both periods. Strategies that achieve very good returns in the training period show difficulty in returning positive results in the testing period, this being consistent with the efficient market hypothesis (EMH). PMID:24205148
De Toffoli, Ana L; Fumes, Bruno H; Lanças, Fernando M
2018-02-22
On-line in-tube solid phase microextraction (in-tube SPME) coupled to high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) was successfully applied to the determination of selected triazines in water samples. The method based on the employment of a packed column containing graphene oxide (GO) supported on aminopropyl silica (Si) showed that the extraction phase has a high potential for triazines extraction aiming to its physical-chemical properties including ultrahigh specific surface area, good mechanical and thermal stability and high fracture strength. Injection volume and loading time were both investigated and optimized. The method validation using Si-GO to extract and concentrate the analytes showed satisfactory results, good sensitivity, good linearity (0.2-4.0 µg L -1 ) and low detection limits (1.1-2.9 ng L -1 ). The high extraction efficiency was determined with enrichment factors ranging from 1.2-2.9 for the lowest level, 1.3-4.9 intermediate level and 1.2-3.0 highest level (n = 3). Although the analytes were not detected in the real samples evaluated, the method has demonstrated to be efficient through its application in the analysis of spiked triazines in ground and mineral water samples.
Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng
2011-11-07
A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl
2018-04-01
In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.
Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs
NASA Astrophysics Data System (ADS)
De Vylder, Jonas; Philips, Wilfried
2011-02-01
This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.
Robust diamond meshes with unique wettability properties.
Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan
2014-03-18
Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.
High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells.
Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang
2014-09-24
Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices.
Process optimization by use of design of experiments: Application for liposomalization of FK506.
Toyota, Hiroyasu; Asai, Tomohiro; Oku, Naoto
2017-05-01
Design of experiments (DoE) can accelerate the optimization of drug formulations, especially complexed formulas such as those of drugs, using delivery systems. Administration of FK506 encapsulated in liposomes (FK506 liposomes) is an effective approach to treat acute stroke in animal studies. To provide FK506 liposomes as a brain protective agent, it is necessary to manufacture these liposomes with good reproducibility. The objective of this study was to confirm the usefulness of DoE for the process-optimization study of FK506 liposomes. The Box-Behnken design was used to evaluate the effect of the process parameters on the properties of FK506 liposomes. The results of multiple regression analysis showed that there was interaction between the hydration temperature and the freeze-thaw cycle on both the particle size and encapsulation efficiency. An increase in the PBS hydration volume resulted in an increase in encapsulation efficiency. Process parameters had no effect on the ζ-potential. The multiple regression equation showed good predictability of the particle size and the encapsulation efficiency. These results indicated that manufacturing conditions must be taken into consideration to prepare liposomes with desirable properties. DoE would thus be promising approach to optimize the conditions for the manufacturing of liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei
2016-09-01
Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.
Dietary choice behavior in Caenorhabditis elegans
Shtonda, Boris Borisovich; Avery, Leon
2005-01-01
Animals have evolved diverse behaviors that serve the purpose of finding food in the environment. We investigated the food seeking strategy of the soil bacteria-eating nematode Caenorhabditis elegans. C. elegans bacterial food varies in quality: some species are easy to eat and support worm growth well, while others do not. We show that worms exhibit dietary choice: they hunt for high quality food and leave hard-to-eat bacteria. This food seeking behavior is enhanced in animals that have already experienced good food. When hunting for good food, worms alternate between two modes of locomotion, known as dwelling: movement with frequent stops and reversals; and roaming: straight rapid movement. On good food, roaming is very rare, while on bad food it is common. Using laser ablations and mutant analysis, we show that the AIY neurons serve to extend roaming periods, and are essential for efficient food seeking. PMID:16354781
Maroni, Fabio; Carbonari, Gilberto; Croce, Fausto; Tossici, Roberto; Nobili, Francesco
2017-12-08
The design of effective supporting matrices to efficiently cycle Si nanoparticles is often difficult to achieve and requires complex preparation strategies. In this work, we present a simple synthesis of low-cost and environmentally benign aAnatase TiO 2 nanoparticles as buffering filler for Si nanoparticles (Si@TiO 2 ). The average anatase TiO 2 crystallite size was approximately 5 nm. A complete structural, morphological, and electrochemical characterization was performed. Electrochemical test results show very good specific capacity values of up to 1000 mAh g -1 and cycling at several specific currents, ranging from 500 to 2000 mA g -1 , demonstrating a very good tolerance to high cycling rates. Postmortem morphological analysis shows very good electrode integrity after 100 cycles at 500 mA g -1 specific current. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Chun-Sen; Sun, Chun-Xiao; Tian, Jia-Yue; Wang, Zhuo-Wei; Ji, Hong-Fei; Song, Ying-Pan; Zhang, Shuai; Zhang, Zhi-Hong; He, Ling-Hao; Du, Miao
2017-05-15
Two unique immunosensors made of aluminum-based metal-organic frameworks (MOFs), namely, 515- and 516-MOFs, with 4,4',4''-nitrilotribenzoic acid (H 3 NTB) were successfully obtained to efficiently assess food safety. The as-prepared 515- and 516-MOFs exhibited superior thermal and physicochemical stability, high electrochemical activity, and good biocompatibility. Among these immunosensors, 516-MOF showed a preferable biosensing ability toward analytes determined by electrochemical techniques. The developed 516-MOF-based electrochemical biosensor not only demonstrated high sensitivity with low detection limits of 0.70 and 0.40pgmL -1 toward vomitoxin and salbutamol, respectively, but also showed good selectivity in the presence of other interferences. Therefore, with the advantages of high sensitivity, good selectivity, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of poisonous and harmful residues in food. Copyright © 2017 Elsevier B.V. All rights reserved.
Phase Transitions and Volunteering in Spatial Public Goods Games
NASA Astrophysics Data System (ADS)
Szabó, György; Hauert, Christoph
2002-08-01
We present a simple yet effective mechanism promoting cooperation under full anonymity by allowing for voluntary participation in public goods games. This natural extension leads to ``rock-scissors-paper''-type cyclic dominance of the three strategies, cooperate, defect, and loner. In spatial settings with players arranged on a regular lattice, this results in interesting dynamical properties and intriguing spatiotemporal patterns. In particular, variations of the value of the public good leads to transitions between one-, two-, and three-strategy states which either are in the class of directed percolation or show interesting analogies to Ising-type models. Although volunteering is incapable of stabilizing cooperation, it efficiently prevents successful spreading of selfish behavior.
NASA Astrophysics Data System (ADS)
Ponce-Lee, E. L.; Olivares-Pérez, A.; Fuentes-Tapia, I.
2004-06-01
Computer holograms made with sugar crystals are reported. This material is well known as a good sweetener; the sugar from sugar cane or sugar beet (sucrose). These sweetener can be applied as honey "water and diluted sugar" easily on any substrate such as plastics or glasses without critical conditions for developed process. This step corresponds only to the cured sucrose as a photopolymer process. The maximum absorption spectra is localized at UV region λ=240 nm. We record with lithographic techniques some gratings, showing a good diffraction efficiency around 45%. This material has good resolution to make diffraction gratings. These properties are attractive because they open the possibility to make phase holograms on candies. Mainly the phase modulation is by refraction index.
RxTerms - a drug interface terminology derived from RxNorm.
Fung, Kin Wah; McDonald, Clement; Bray, Bruce E
2008-11-06
A good interface terminology is an essential component of any Computerized Provider Order Entry system. RxTerms is a drug interface terminology derived from RxNorm. By reorganizing the drug information into two dimensions as prescribers do when writing prescriptions and by eliminating drug names that are less likely to be needed in a prescribing environment, RxTerms helps the user to efficiently enter complete prescription orders. Preliminary evaluation of RxTerms using a list of most commonly prescribed drugs showed that its coverage was very good (99% for both generic and branded drug names). There was significant efficiency gain compared to using the unprocessed RxNorm names. RxTerms fills the gap for a free, up-to-date drug interface terminology that is linked to RxNorm, the U.S. designated standard for clinical drugs.
Simulation of energy- efficient building prototype using different insulating materials
NASA Astrophysics Data System (ADS)
Ouhaibi, Salma; Belouaggadia, Naoual; Lbibb, Rachid; Ezzine, Mohammed
2018-05-01
The objective of this work is to analyze the energetic efficiency of an individual building including an area of 130 m2 multi-zone, located in the region of FEZ which is characterized by a very hot and dry climate in summer and a quite cold one in winter, by incorporating insulating materials. This study was performed using TRNSYS V16 simulation software during a typical year of the FEZ region. Our simulation consists in developing a comparative study of two types of polystyrene and silica-aerogel insulation materials, in order to determine the best thermal performance. The results show that the thermal insulation of the building envelope is among the most effective solutions that give a significant reduction in energy requirements. Similarly, the use of silica-aerogels gives a good thermal performance, and therefore a good energy gain.
Application of Improved APO Algorithm in Vulnerability Assessment and Reconstruction of Microgrid
NASA Astrophysics Data System (ADS)
Xie, Jili; Ma, Hailing
2018-01-01
Artificial Physics Optimization (APO) has good global search ability and can avoid the premature convergence phenomenon in PSO algorithm, which has good stability of fast convergence and robustness. On the basis of APO of the vector model, a reactive power optimization algorithm based on improved APO algorithm is proposed for the static structure and dynamic operation characteristics of microgrid. The simulation test is carried out through the IEEE 30-bus system and the result shows that the algorithm has better efficiency and accuracy compared with other optimization algorithms.
Aerosol Inlet Characterization Experiment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullard, Robert L.; Kuang, Chongai; Uin, Janek
2017-05-01
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.
Lin, Qianming; Yang, Yumeng; Hu, Qian; Guo, Zhong; Liu, Tao; Xu, Jiake; Wu, Jianping; Kirk, Thomas Brett; Ma, Dong; Xue, Wei
2017-02-01
Hydrogels have attracted much attention in cancer therapy and tissue engineering due to their sustained gene delivery ability. To obtain an injectable and high-efficiency gene delivery hydrogel, methoxypolyethylene glycol (MPEG) was used to conjugate with the arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) by click reaction, and then the synthesized MPEG-PLLD-Arg interacted with α-cyclodextrin (α-CD) to form the supramolecular hydrogel by the host-guest interaction. The gelation dynamics, hydrogel strength and shear viscosity could be modulated by α-CD content in the hydrogel. MPEG-PLLD-Arg was confirmed to bind and deliver gene effectively, and its gene transfection efficiency was significantly higher than PEI-25k under its optimized condition. After gelation, MMP-9 shRNA plasmid (pMMP-9) could be encapsulated into the hydrogel matrix in situ and be released from the hydrogels sustainedly, as the release rate was dependent on α-CD content. The released MPEG-PLLD-Arg/pMMP-9 complex still showed better transfection efficiency than PEI-25k and induced sustained tumor cell apoptosis. Also, in vivo assays indicated that this pMMP-9-loaded supramolecular hydrogel could result in the sustained tumor growth inhibition meanwhile showed good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate for long-term gene therapy. To realize the sustained gene delivery for gene therapy, a supramolecular hydrogel with high-efficiency gene delivery ability was prepared through the host-guest interaction between α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron. The obtained hydrogel was injectable and biocompatible with adjustable physicochemical property. More importantly, the hydrogel showed the high-efficiency and sustained gene transfection to our used cells, better than PEI-25k. The supramolecular hydrogel resulted in the sustained tumor growth inhibition meanwhile keep good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate in long-term gene therapy and tissue engineering. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1977-01-01
Low frequency gratings obtainable with present technology, can meet the grating-efficiency design goals for potential space telescope spectrographs. Gratings made with changes in the three specific parameters: the ruling tool profile, the coating material, and the lubricants used during the ruling process were compared. A series of coatings and test gratings were fabricated and were examined for surface smoothness with a Nomarski differential interference microscope and an electron microsocope. Photomicrographs were obtained to show the difference in smoothness of the various coatings and rulings. Efficiency measurements were made for those test rulings that showed good groove characteristics: smoothness, proper ruling depth, and absence of defects (e.g., streaks, feathered edges and rough sides). Higher grating efficiency should be correlated with the degree of smoothness of both the coating and the grating groove.
Machado, A I; Dordio, A; Fragoso, R; Leitão, A E; Duarte, E
2017-12-01
The removal efficiency of LECA and cork granulates as support matrix for pharmaceuticals active compounds in a constructed wetland system was investigated using the diuretic drug Furosemide. Kinetics studies were performed testing three different concentrations of Furosemide in an ultrapure water matrix, along seven days. LECA achieved higher removal values compared to cork granulates. However, cork granulates presented a higher removal in the first 24 h of contact time compared to the other adsorbent. The kinetic studies showed that LECA and cork granulates have different adsorption behaviours for Furosemide which is controlled by different adsorption mechanisms. Both materials showed good removal efficiencies and a combination of the two should be further explored in order to applied both materials as support matrix to cope with different furosemide concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Hua; Cui, Fuyi; Liu, Zhiquan; Fan, Zhenqiang
2009-01-01
A pilot-scale facility was originally designed to control phytoplankton in algae-laden reservoir water characterized by summer cyanobacteria blooms (mainly Microcystis flos-aquae). The system made good use of the different food habits of Daphnia magna and silver carp. Zooplankton (Daphnia magna), filter-feeding fish (silver carp), and zooplankton (Daphnia magna) were stocked in three separated tanks in sequence, respectively. Thus, single-cell phytoplankton and some Microcystis flos-aquae in small size were first grazed by Daphnia magna in the first tank, and in the second tank phytoplankton larger than 10 microm were filtered by silver carp, and the concentration of the remaining phytoplankton was further reduced to a rather low level by Daphnia magna in the third tank. The results showed that the system had good removal efficiencies of phytoplankton and chlorophyll a, 86.85% and 59.41%, respectively, and permanganate consumption (COD(Mn)) and turbidity were lowered as well. A high phytoplankton removal efficiency and low cost indicated that the system had a good advantage in pre-treating algae-laden source water in drinking water works.
Seriously Data-Driven Decision Making
ERIC Educational Resources Information Center
Casserly, Michael D.
2011-01-01
As states approach the funding cliff marking the end of federal stimulus help for education, school districts will be feeling more financial pain than they're experiencing now. But there's good news amid the bad: Big city districts are showing schools nationwide a way to save money and improve efficiency by working together. They've created the…
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2010-01-01
Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…
Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang
2015-07-07
Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less
Awole, Kedija D; Kettlewell, Peter S; Hare, Martin C; Agu, Reginald C; Brosnan, James M; Bringhurst, Thomas A
2012-02-01
Following the Renewable Transport Fuel Obligation (RTFO), there is an increasing demand for wheat grain for liquid biofuel in the UK. In order to enhance productivity of the bioethanol industry, good quality wheat must be used. A total of 84 grain samples comprising 14 varieties collected from 11 sites in two harvest years were analysed for a range of grain quality parameters and ethanol yield (EY). The grain quality parameters studied were starch and protein concentration, specific weight, grain density, packing efficiency, thousand-grain weight (TGW), grain length, width, length/width ratio and hardness index. Regression analysis was used to establish the relationships between grain quality parameters and EY. Apart from grain length and density, all grain parameters had significant relationships with EY. In the order of importance, protein concentration, TGW, packing efficiency and specific weight showed good relationships with EY. All other parameters, including starch concentration, showed a poor correlation with EY. EY and the relationship with the grain parameters were affected more by environment than by variety. Some sites gave consistently higher EY than others. When site and variety were considered with TGW and protein, a good prediction of EY could be made (variance accounted for = 87%). Combining TGW and protein concentration could be a better indicator of EY than the current practice of specific weight and protein. Copyright © 2011 Society of Chemical Industry.
Medium-power diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Guandalini, Annalisa; Lucca, Andrea; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro; dell'Acqua, Stefano
2003-05-01
We report what is to our knowledge the first Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at approximately 804 nm. As much as 2.4 W were obtained with 6.2 W of absorbed pump power, showing efficient operation (51% slope efficiency), excellent beam quality (M2=1.1), and weak thermal lensing. Small intracavity losses (<1%) were measured, indicating both reduced thermally induced aberrations and good optical quality of the laser crystal.
Research directed toward improved echelles for the ultraviolet
NASA Technical Reports Server (NTRS)
1977-01-01
Research was undertaken to demonstrate that improved efficiencies for low frequency gratings are obtainable with the careful application of present technology. The motivation for the study was the desire to be assured that the grating-efficiency design goals for potential Space Telescope spectrographs can be achieved. The work was organized to compare gratings made with changes in the three specific parameters: the ruling tool profile, the coating material, and the lubricants used during the ruling process. A series of coatings and test gratings were fabricated and were examined for surface smoothness with a Nomarski Differential Interference Microscope and an electron microscope. Photomicrographs were obtained to show the difference in smoothness of the various coatings and rulings. Efficiency measurements were made for those test rulings that showed good groove characteristics: smoothness, proper ruling depth, and absence of defects. The intuitive feeling that higher grating efficiency should be correlated with the degree of smoothness of both the coating and the grating is supported by the results.
Efficient logistic regression designs under an imperfect population identifier.
Albert, Paul S; Liu, Aiyi; Nansel, Tonja
2014-03-01
Motivated by actual study designs, this article considers efficient logistic regression designs where the population is identified with a binary test that is subject to diagnostic error. We consider the case where the imperfect test is obtained on all participants, while the gold standard test is measured on a small chosen subsample. Under maximum-likelihood estimation, we evaluate the optimal design in terms of sample selection as well as verification. We show that there may be substantial efficiency gains by choosing a small percentage of individuals who test negative on the imperfect test for inclusion in the sample (e.g., verifying 90% test-positive cases). We also show that a two-stage design may be a good practical alternative to a fixed design in some situations. Under optimal and nearly optimal designs, we compare maximum-likelihood and semi-parametric efficient estimators under correct and misspecified models with simulations. The methodology is illustrated with an analysis from a diabetes behavioral intervention trial. © 2013, The International Biometric Society.
Prediction of Classroom Reverberation Time using Neural Network
NASA Astrophysics Data System (ADS)
Liyana Zainudin, Fathin; Kadir Mahamad, Abd; Saon, Sharifah; Nizam Yahya, Musli
2018-04-01
In this paper, an alternative method for predicting the reverberation time (RT) using neural network (NN) for classroom was designed and explored. Classroom models were created using Google SketchUp software. The NN applied training dataset from the classroom models with RT values that were computed from ODEON 12.10 software. The NN was conducted separately for 500Hz, 1000Hz, and 2000Hz as absorption coefficient that is one of the prominent input variable is frequency dependent. Mean squared error (MSE) and regression (R) values were obtained to examine the NN efficiency. Overall, the NN shows a good result with MSE < 0.005 and R > 0.9. The NN also managed to achieve a percentage of accuracy of 92.53% for 500Hz, 93.66% for 1000Hz, and 93.18% for 2000Hz and thus displays a good and efficient performance. Nevertheless, the optimum RT value is range between 0.75 – 0.9 seconds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.
L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectralmore » analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.« less
Experiment and modeling of paired effect on evacuation from a three-dimensional space
NASA Astrophysics Data System (ADS)
Jun, Hu; Huijun, Sun; Juan, Wei; Xiaodan, Chen; Lei, You; Musong, Gu
2014-10-01
A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation.
Kinetic analysis of the effects of target structure on siRNA efficiency
NASA Astrophysics Data System (ADS)
Chen, Jiawen; Zhang, Wenbing
2012-12-01
RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.
Effect of geometry and operating conditions on spur gear system power loss
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1980-01-01
The results of an analysis of the effects of spur gear size, pitch, width, and ratio on total mesh power loss for a wide range of speeds, torques, and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling, and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine pitched gears had higher peak efficiencies but low part load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full load loss except at low speeds.
Effect of geometry and operating conditions on spur gear system power loss
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1980-01-01
The results of an analysis of the effects of spur gear size, pitch, width and ratio on total mesh power loss for a wide range of speeds, torques and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine-pitched gears had higher peak efficiencies but lower part-load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full-load loss except at low speeds.
Integrated care in the management of chronic diseases: an Italian perspective.
Stefani, Ilario; Scolari, Francesca; Croce, Davide; Mazzone, Antonino
2016-12-01
This letter provides a view on the issue of the organizational model of Primary Care Groups (PCGs), which represent a best practice in continuity and appropriateness of care for chronic patients. Our analysis aimed at estimating the impact of PCGs introduction in terms of efficiency and effectiveness. The results of our study showed a better performance of PCGs compared with the other General Practitioners of Local Health Authority Milano 1, supporting the conclusion that good care cannot be delivered without good organization of care. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Tartaj, Pedro; Amarilla, Jose M
2014-02-28
Porous inorganic nanostructures with colloidal dimensions can be considered as ideal components of electrochemical devices that operate on renewable energy sources. They combine nanoscale properties with good accessibility, a high number of active sites, short diffusion distances and good processability. Herein, we review some of the liquid-phase routes that lead to the controlled synthesis of these nanostructures in the form of non-hollow, hollow or yolk-shell configurations. From solar and fuel cells to batteries and supercapacitors, we put special emphasis on showing how these sophisticated structures can enhance the efficiency of electrochemical energy devices.
Applications and accuracy of the parallel diagonal dominant algorithm
NASA Technical Reports Server (NTRS)
Sun, Xian-He
1993-01-01
The Parallel Diagonal Dominant (PDD) algorithm is a highly efficient, ideally scalable tridiagonal solver. In this paper, a detailed study of the PDD algorithm is given. First the PDD algorithm is introduced. Then the algorithm is extended to solve periodic tridiagonal systems. A variant, the reduced PDD algorithm, is also proposed. Accuracy analysis is provided for a class of tridiagonal systems, the symmetric, and anti-symmetric Toeplitz tridiagonal systems. Implementation results show that the analysis gives a good bound on the relative error, and the algorithm is a good candidate for the emerging massively parallel machines.
Treatment of HMX-production wastewater in an aerobic granular reactor.
Zhang, Jin-Hua; Wang, Min-Hui; Zhu, Xiao-Meng
2013-04-01
Aerobic granules were applied to the treatment of HMX-production wastewater using a gradual domestication method in a SBR. During the process, the granules showed a good settling ability, a high biomass retention rate, and high biological activity. After 40 days of stable operation, aerobic granular sludge performed very effectively in the removal of carbon and nitrogen compounds from HMX-production wastewater. Organic matter removal rates up to 97.57% and nitrogen removal efficiencies up to 80% were achieved during the process. Researchers conclude that using aerobic granules to treat explosive wastewater has good prospects for success.
Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang
2017-11-01
Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of <2200 K under the voltage of 4-6 V, was fabricated successfully. The white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.
How effective is mandatory building energy disclosure program in Australia?
NASA Astrophysics Data System (ADS)
Kim, S.; Lim, B. T. H.
2018-04-01
Mandatory green building regulations are often considered as the most effective tool to promote better energy efficiency and environmental protection. Nevertheless, its effectiveness compared to the voluntary counterpart has not been fully explored yet. In addressing this gap, this study aims to examine the environmental performance of green building stocks affected by the Australian mandatory building energy disclosure program. To this, this study analysed energy savings and carbon reduction efficiencies using the normalisation approach. The result shows that mandatory energy disclosure program did contribute to the reduction in energy usage and carbon emissions from the affected building stocks. More specifically, affected green building stocks showed a good efficiency especially in carbon reductions. The research results inform policymakers the possible improvement required for the mandatory disclosure program to increase the effectiveness towards dealing with the contemporary environmental issues aroused from the building sector, especially in energy savings perspective.
Pricing for scarcity? An efficiency analysis of increasing block tariffs
NASA Astrophysics Data System (ADS)
Monteiro, Henrique; Roseta-Palma, Catarina
2011-06-01
Water pricing schedules often contain significant nonlinearities, such as the increasing block tariff (IBT) structure that is abundantly applied for residential users. The IBT is frequently supported as a good tool for achieving the goals of equity, water conservation, and revenue neutrality but seldom has been grounded on efficiency justifications. In particular, existing literature on water pricing establishes that although efficient schedules will depend on demand and supply characteristics, IBT cannot usually be recommended. In this paper, we consider whether the explicit inclusion of scarcity considerations can strengthen the appeal of IBT. Results show that when both demand and costs react to climate factors, increasing marginal prices may come about as a response to a combination of water scarcity and customer heterogeneity. We derive testable conditions and then illustrate their application through an estimation of Portuguese residential water demand. We show that the recommended tariff schedule hinges crucially on the choice of functional form for demand.
Update on results of SPRE testing at NASA Lewis
NASA Technical Reports Server (NTRS)
Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.
1991-01-01
The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigated the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The impact of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance tests results with HFAST code predictions show good agreement for PV power, but show poor agreement for PV efficiency. Correlations are presented relating the piston midstroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.
ERIC Educational Resources Information Center
Small, Marian
2017-01-01
Now in its Third Edition--expanded with over 100 new tasks and questions--this bestselling resource helps experienced and novice teachers to effectively and efficiently differentiate mathematics instruction in grades K-8. Math education expert Marian Small shows teachers how to get started and become expert at using two powerful and universal…
Sharma, Meena Kumari; Kazmi, Absar Ahmad
2015-01-01
A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.
Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE
NASA Technical Reports Server (NTRS)
Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.
1990-01-01
The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.
Carbon fiber internal pressure vessels
NASA Technical Reports Server (NTRS)
Simon, R. A.
1973-01-01
Internal pressure vessels were designed; the filament was wound of carbon fibers and epoxy resin and tested to burst. The fibers used were Thornel 400, Thornel 75, and Hercules HTS. Additional vessels with type A fiber were made. Polymeric linears were used, and all burst testing was done at room temperature. The objective was to produce vessels with the highest attainable PbV/W efficiencies. The type A vessels showed the highest average efficiency: 2.56 x 10 to the 6th power cm. Next highest efficiency was with Thornel 400 vessels: 2.21 x 10 to the 6th power cm. These values compare favorably with efficiency values from good quality S-glass vessels, but strains averaged 0.97% or less, which is less than 1/3 the strain of S-glass vessels.
Exploring the Photovoltaic Performance of All-Inorganic Ag2PbI4/PbI2 Blends.
Frolova, Lyubov A; Anokhin, Denis V; Piryazev, Alexey A; Luchkin, Sergey Yu; Dremova, Nadezhda N; Troshin, Pavel A
2017-04-06
We present an all-inorganic photoactive material composed of Ag 2 PbI 4 and PbI 2 , which shows unexpectedly good photovoltaic performance in planar junction solar cells delivering external quantum efficiencies of ∼60% and light power conversion efficiencies of ∼3.9%. The revealed characteristics are among the best reported to date for metal halides with nonperovskite crystal structure. Most importantly, the obtained results suggest a possibility of reaching high photovoltaic efficiencies for binary and, probably, also ternary blends of different inorganic semiconductor materials. This approach, resembling the bulk heterojunction concept guiding the development of organic photovoltaics for two decades, opens wide opportunities for rational design of novel inorganic and hybrid materials for efficient and sustainable photovoltaic technologies.
Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kim, Hwan Kyu
2017-01-01
Abstract To fabricate a sustainable lithium‐oxygen (Li‐O2) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO3) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV‐DEMS study confirms that the TMS‐LiNO3 electrolyte efficiently produces NO2 −, which initiates a redox shuttle reaction. Interestingly, this NO2 −/NO2 redox reaction derived from the LiNO3 salt is not very effective in solvents other than TMS. Compared with other common Li‐O2 solvents, TMS seems optimum solvent for the efficient use of LiNO3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO2 −/NO2 redox reaction, which results in a high‐performance Li‐O2 battery. PMID:29051863
Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kang, Yongku; Kim, Hwan Kyu; Kim, Dong Wook
2017-10-01
To fabricate a sustainable lithium-oxygen (Li-O 2 ) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO 3 ) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO 3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV-DEMS study confirms that the TMS-LiNO 3 electrolyte efficiently produces NO 2 - , which initiates a redox shuttle reaction. Interestingly, this NO 2 - /NO 2 redox reaction derived from the LiNO 3 salt is not very effective in solvents other than TMS. Compared with other common Li-O 2 solvents, TMS seems optimum solvent for the efficient use of LiNO 3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO 2 - /NO 2 redox reaction, which results in a high-performance Li-O 2 battery.
Zhou, Shu-Mei; Ma, De-Kun; Zhang, Sheng-Hui; Wang, Wei; Chen, Wei; Huang, Shao-Ming; Yu, Kang
2016-01-21
Developing multifunctional near-infrared (NIR) light-driven photothermal agents is in high demand for efficient cancer therapy. Herein, PEGylated Cu3BiS3 hollow nanospheres (HNSs) with an average diameter of 80 nm were synthesized through a facile ethylene glycol-mediated solvothermal route. The obtained PEGylated Cu3BiS3 HNSs exhibited strong NIR optical absorption with a large molar extinction coefficient of 4.1 × 10(9) cm(-1) M(-1) at 980 nm. Under the irradiation of a 980 nm laser with a safe power density of 0.72 W cm(-2), Cu3BiS3 HNSs produced significant photothermal heating with a photothermal transduction efficiency of 27.5%. The Cu3BiS3 HNSs also showed a good antitumoral drug doxorubicin (DOX) loading capacity and pH- and NIR-responsive DOX release behaviors. At a low dosage of 10 μg mL(-1), HeLa cells could be efficiently killed through a synergistic effect of chemo- and photothermo-therapy respectively based on the DOX release and the photothermal effect of Cu3BiS3 HNSs. In addition, Cu3BiS3 HNSs displayed a good X-ray computed tomography (CT) imaging capability. Furthermore, Cu3BiS3 HNSs could be used for efficient in vivo photothermochemotherapy and X-ray CT imaging of mice bearing melanoma skin cancer. This multifunctional theranostic nanomaterial shows potential promise for cancer therapy.
Arezzini, Beatrice; Ferrali, Marco; Ferrari, Erika; Frassineti, Chiara; Lazzari, Sandra; Marverti, Gaetano; Spagnolo, Ferdinando; Saladini, Monica
2008-11-01
A simple synthetic pathway to obtain glycosilated beta-diketo derivatives is proposed. These compounds show a good iron(III) affinity therefore we may suggest the use of their Fe(3+)-complexes as oral iron supplements in the treatment of anaemia. The glycosilated compounds (6-GlcH, 6-GlcOH and 6-GlcOCH(3)) are characterized by means of spectroscopic (UV, (1)H and (13)C NMR) and potentiometric techniques; they have a good water solubility, are kinetically stable in physiological condition (t(1/2)>100h) and show a low cytotoxicity also in high concentrations (IC(50)>400 microM). They are able to bind Fe(3+) ion in acid condition (pH approximately 2) forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. The iron complexes show also a good kinetic stability both in acidic and physiological pH and have a good lypophilicity (logP>-0.7) that suggests an efficient gastrointestinal absorption in view of their possible use in oral therapy. In addition they demonstrate a poor affinity for competitive biological metal ion such as Ca(2+), and in particular 6-GlcOCH(3) is able to inhibit lipid peroxidation.
Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia
2018-02-01
To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.
Xue, Muyu; Islam, Raisul; Meng, Andrew C; Lyu, Zheng; Lu, Ching-Ying; Tae, Christian; Braun, Michael R; Zang, Kai; McIntyre, Paul C; Kamins, Theodore I; Saraswat, Krishna C; Harris, James S
2017-12-06
In this paper, the integration of metal oxides as carrier-selective contacts for ultrathin crystalline silicon (c-Si) solar cells is demonstrated which results in an ∼13% relative improvement in efficiency. The improvement in efficiency originates from the suppression of the contact recombination current due to the band offset asymmetry of these oxides with Si. First, an ultrathin c-Si solar cell having a total thickness of 2 μm is shown to have >10% efficiency without any light-trapping scheme. This is achieved by the integration of nickel oxide (NiO x ) as a hole-selective contact interlayer material, which has a low valence band offset and high conduction band offset with Si. Second, we show a champion cell efficiency of 10.8% with the additional integration of titanium oxide (TiO x ), a well-known material for an electron-selective contact interlayer. Key parameters including V oc and J sc also show different degrees of enhancement if single (NiO x only) or double (both NiO x and TiO x ) carrier-selective contacts are integrated. The fabrication process for TiO x and NiO x layer integration is scalable and shows good compatibility with the device.
Design of high-efficiency, radiation-hard, GaInP/GaAs solar cells
NASA Technical Reports Server (NTRS)
Kurtz, Sarah R.; Bertness, K. A.; Kibbler, A. E.; Kramer, C.; Olson, J. M.
1994-01-01
In recently years, Ga(0.5)In((0.5)P/GaAs cells have drawn increased attention both because of their high efficiencies and because they are well suited for space applications. They can be grown and processed as two-junction devices with roughly twice the voltage and half the current of GaAs cells. They have low temperature coefficients, and have good potential for radiation hardness. We have previously reported the effects of electron irradiation on test cells which were not optimally designed for space. From those results we estimated that an optimally designed cell could achieve 20 percent after irradiation with 10(exp 15) cm(exp -2) 1 MeV electrons. Modeling studies predicted that slightly higher efficiencies may be achievable. Record efficiencies for EOL performance of other types of cells are significantly lower. Even the best Si and InP cells have BOL efficiencies lower than the EOL efficiency we report here. Good GaAs cells have an EOL efficiency of 16 percent. The InP/Ga(0.5)In(0.5)As two-junction, two-terminal device has a BOL efficiency as high as 22.2 percent, but radiation results for these cells were limited. In this study we use the previous modeling and irradiation results to design a set of Ga(0.5)In(0.5)P/GaAs cells that will demonstrate the importance of the design parameters and result in high-efficiency devices. We report record AMO efficiencies: a BOL efficiency of 25.7 percent for a device optimized for BOL performance and two of different designs with EOL efficiencies of 19.6 percent (at 10(exp 15) cm(exp -2) 1MeV electrons). We vary the bottom-cell base doping and the top-cell thickness to show the effects of these two important design parameters. We get an unexpected result indicating that the dopant added to the bottom-cell base also increases the degradation of the top cell.
Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler
NASA Astrophysics Data System (ADS)
Cao, Weixue; Liu, Fengguo; You, Xue-yi
2018-07-01
Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.
Performance of casting aluminum-silicon alloy condensing heating exchanger for gas-fired boiler
NASA Astrophysics Data System (ADS)
Cao, Weixue; Liu, Fengguo; You, Xue-yi
2018-01-01
Condensing gas boilers are widely used due to their high heat efficiency, which comes from their ability to use the recoverable sensible heat and latent heat in flue gas. The condensed water of the boiler exhaust has strong corrosion effect on the heat exchanger, which restricts the further application of the condensing gas boiler. In recent years, a casting aluminum-silicon alloy (CASA), which boasts good anti-corrosion properties, has been introduced to condensing hot water boilers. In this paper, the heat transfer performance, CO and NOx emission concentrations and CASA corrosion resistance of a heat exchanger are studied by an efficiency bench test of the gas-fired boiler. The experimental results are compared with heat exchangers produced by Honeywell and Beka. The results show that the excess air coefficient has a significant effect on the heat efficiency and CO and NOx emission of the CASA water heater. When the excess air coefficient of the CASA gas boiler is 1.3, the CO and NOx emission concentration of the flue gas satisfies the design requirements, and the heat efficiency of water heater is 90.8%. In addition, with the increase of heat load rate, the heat transfer coefficient of the heat exchanger and the heat efficiency of the water heater are increased. However, when the heat load rate is at 90%, the NOx emission in the exhaust gas is the highest. Furthermore, when the temperature of flue gas is below 57 °C, the condensation of water vapor occurs, and the pH of condensed water is in the 2.5 5.5 range. The study shows that CASA water heater has good corrosion resistance and a high heat efficiency of 88%. Compared with the heat exchangers produced by Honeywell and Beka, there is still much work to do in optimizing and improving the water heater.
NASA Astrophysics Data System (ADS)
Lee, Sunghun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Park, Young-Seo; Kim, Jang-Joo
2013-09-01
We present high efficiency orange emitting OLEDs with low driving voltage and low roll-off of efficiency using an exciplex forming co-host by (1) co-doping of green and red emitting phosphorescence dyes in the host and (2) red and green phosphorescent dyes doped in the host as separate red and green emitting layers. The orange OLEDs achieved a low turn-on voltage of 2.4 V and high external quantum efficiencies (EQE) of 25.0% and 22.8%, respectively. Moreover, the OLEDs showed low roll-off of efficiency with an EQE of over 21% and 19.6% at 10,000 cd/m2, respectively. The devices displayed good orange color with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicated that both energy transfer and direct charge trapping took place in the devices.
Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge
2013-02-01
In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.
Efficient Cache use for Stencil Operations on Structured Discretization Grids
NASA Technical Reports Server (NTRS)
Frumkin, Michael; VanderWijngaart, Rob F.
2001-01-01
We derive tight bounds on the cache misses for evaluation of explicit stencil operators on structured grids. Our lower bound is based on the isoperimetrical property of the discrete octahedron. Our upper bound is based on a good surface to volume ratio of a parallelepiped spanned by a reduced basis of the interference lattice of a grid. Measurements show that our algorithm typically reduces the number of cache misses by a factor of three, relative to a compiler optimized code. We show that stencil calculations on grids whose interference lattice have a short vector feature abnormally high numbers of cache misses. We call such grids unfavorable and suggest to avoid these in computations by appropriate padding. By direct measurements on a MIPS R10000 processor we show a good correlation between abnormally high numbers of cache misses and unfavorable three-dimensional grids.
Rodríguez, C; Anel, L; Alvarez, M; Anel, E; Boixo, J C; Chamorro, C A; de Paz, P
2006-04-01
In vivo ovum pick-up (OPU) in sheep may be improved with a proper choice of aspiration elements (needle and tubing) and aspiration vacuum pressure. In the present study, two experiments were carried out. In Expt 1, visible follicles in ovaries of slaughtered ewes (treated separately according to their diameters: small<3 mm, medium 3-5 mm and large>5 mm) were aspirated using different combinations of the three studied factors such as aspiration flow rate (10, 20, 30, 40 and 50 ml water/min), needle gauge (18 and 20 G) and tubing inner diameter (1, 2 or 3 mm internal diameter). In Expt 2, a study with two 18 G needles of different lengths (18 G: 82 mm; 18 GL: 600 mm) was carried out, using ovaries obtained post-mortem, and performing in vivo laparoscopic follicular aspiration on ewes. We considered good quality oocytes as those with both complete compact cumulus and a homogeneous cytoplasm. Recovery rate, proportion of good quality oocytes (good quality oocytes/100 oocytes recovered) and overall efficiency (good quality oocytes/100 follicles aspirated) were noted. In Expt 1, aspiration flow rate affect remarkable proportion of good quality oocytes (69.5%, 50.5%, 44.8%, 36.5% and 28.3% for flows from 10 to 50 ml/min respectively, p<0.05). Needle gauge did not affect aspiration device efficiency. Thin and intermediate tubings were more effective (overall efficiency rates: 34.9%, 32.3% and 28.1% for 1, 2 and 3 mm respectively, p<0.05). Follicle size did not affect recovery rate, but proportion of good quality oocytes was higher for large (77.9%) and medium (64.4%) follicles (p<0.05). Finally, some combinations of the aspiration device showed greater effectiveness. In Expt 2, needle length did not influence recovery rate, but good quality oocytes rate was significantly modified both post-mortem and in vivo (good quality rate for 18 G vs 18 GL needles: 69.5% vs 47.7% and 58.1% vs 25.4%, post-mortem and in vivo respectively, p<0.05). We conclude that low-aspiration flow rates (10 and 20 ml/min) with thin or intermediate tubings (1 and 2 mm), and any short needle (18 G or 20 G) are the most adequate aspiration factors for OPU in sheep.
Gong, Shaolong; Zhao, Yongbiao; Wang, Meng; Yang, Chuluo; Zhong, Cheng; Qin, Jingui; Ma, Dongge
2010-09-03
Two new bipolar compounds, N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-4,4''-diamine (1) and N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-3,3''-diamine (2), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass-transition temperatures of 109-129 degrees C and thermal decomposition temperatures of 501-531 degrees C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater pi conjugation between the donor and acceptor moieties. A nondoped deep-blue fluorescent organic light-emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A(-1) and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee's blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A(-1) and a maximum power efficiency of 68.3 lm W(-1); whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A(-1), and a maximum power efficiency of 9.8 lm W(-1). The relationship between the molecular structures and optoelectronic properties are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Zhou, Meijuan; Tan, Guoqiang
2015-01-01
Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge–discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both asmore » binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.« less
Fast-responding liquid crystal light-valve technology for color-sequential display applications
NASA Astrophysics Data System (ADS)
Janssen, Peter J.; Konovalov, Victor A.; Muravski, Anatoli A.; Yakovenko, Sergei Y.
1996-04-01
A color sequential projection system has some distinct advantages over conventional systems which make it uniquely suitable for consumer TV as well as high performance professional applications such as computer monitors and electronic cinema. A fast responding light-valve is, clearly, essential for a good performing system. Response speed of transmissive LC lightvalves has been marginal thus far for good color rendition. Recently, Sevchenko Institute has made some very fast reflective LC cells which were evaluated at Philips Labs. These devices showed sub millisecond-large signal-response times, even at room temperature, and produced good color in a projector emulation testbed. In our presentation we describe our highly efficient color sequential projector and demonstrate its operation on video tape. Next we discuss light-valve requirements and reflective light-valve test results.
ERIC Educational Resources Information Center
Brehm, John; Gates, Scott
2008-01-01
The mere word "bureaucracy" brings to mind images of endless lines, piles of paperwork, and frustrating battles over rules and red tape. But some bureaucracies are clearly more efficient and responsive than others. Why? In "Teaching, Tasks, and Trust", distinguished political scientists John Brehm and Scott Gates show that a good part of the…
Quantum versus classical dynamics in the optical centrifuge
NASA Astrophysics Data System (ADS)
Armon, Tsafrir; Friedland, Lazar
2017-09-01
The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.
Kulbak, Michael; Cahen, David; Hodes, Gary
2015-07-02
Hybrid organic-inorganic lead halide perovskite photovoltaic cells have already surpassed 20% conversion efficiency in the few years that they have been seriously studied. However, many fundamental questions still remain unanswered as to why they are so good. One of these is "Is the organic cation really necessary to obtain high quality cells?" In this study, we show that an all-inorganic version of the lead bromide perovskite material works equally well as the organic one, in particular generating the high open circuit voltages that are an important feature of these cells.
Furuta, Etsuko; Ohyama, Ryu-ichiro; Yokota, Shigeaki; Nakajo, Toshiya; Yamada, Yuka; Kawano, Takao; Uda, Tatsuhiko; Watanabe, Yasuo
2014-11-01
The detection efficiencies of tritium samples by using liquid scintillation counter with hydrophilic plastic scintillator (PS) was approximately 48% when the sample of 20 μL was held between 2 PS sheets treated by plasma. The activity and count rates showed a good relationship between 400 Bq to 410 KBq mL(-1). The calculated detection limit of 2 min measurement by the PS was 13 Bq mL(-1) when a confidence was 95%. The plasma method for PS produces no radioactive waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behaghel, B.; Institute of Research and Development on Photovoltaic Energy; NextPV, RCAST and CNRS, The University of Tokyo, Meguro-ku, Tokyo 153-8904
We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.
Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
NASA Astrophysics Data System (ADS)
Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.
2017-06-01
A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.
Perez-Lopez, Áron R; Szalay, Kristóf Z; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter
2015-05-11
Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.
NASA Astrophysics Data System (ADS)
Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter
2015-05-01
Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates.
Perez-Lopez, Áron R.; Szalay, Kristóf Z.; Türei, Dénes; Módos, Dezső; Lenti, Katalin; Korcsmáros, Tamás; Csermely, Peter
2015-01-01
Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks. Colorectal cancer-related proteins were good spreaders and had a high centrality, while type 2 diabetes-related proteins showed an average spreading efficiency and had an average centrality in the human interactome. Moreover, the interactome-distance between drug targets and disease-related proteins was higher in diabetes than in colorectal cancer. Our results may help a better understanding of the network position and dynamics of drug targets and disease-related proteins, and may contribute to develop additional, network-based tests to increase the potential safety of drug candidates. PMID:25960144
A novel hybrid algorithm for the design of the phase diffractive optical elements for beam shaping
NASA Astrophysics Data System (ADS)
Jiang, Wenbo; Wang, Jun; Dong, Xiucheng
2013-02-01
In this paper, a novel hybrid algorithm for the design of a phase diffractive optical elements (PDOE) is proposed. It combines the genetic algorithm (GA) with the transformable scale BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, the penalty function was used in the cost function definition. The novel hybrid algorithm has the global merits of the genetic algorithm as well as the local improvement capabilities of the transformable scale BFGS algorithm. We designed the PDOE using the conventional simulated annealing algorithm and the novel hybrid algorithm. To compare the performance of two algorithms, three indexes of the diffractive efficiency, uniformity error and the signal-to-noise ratio are considered in numerical simulation. The results show that the novel hybrid algorithm has good convergence property and good stability. As an application example, the PDOE was used for the Gaussian beam shaping; high diffractive efficiency, low uniformity error and high signal-to-noise were obtained. The PDOE can be used for high quality beam shaping such as inertial confinement fusion (ICF), excimer laser lithography, fiber coupling laser diode array, laser welding, etc. It shows wide application value.
Krityakierne, Tipaluck; Akhtar, Taimoor; Shoemaker, Christine A.
2016-02-02
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centersmore » from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.« less
Nojima, Takahiko; Lin, Angela C; Fujii, Teruo; Endo, Isao
2005-12-01
An approach in determining the intrinsic termination efficiency (%T) of transcription termination using green fluorescent protein (GFP) mutants was developed. This approach utilizes a cassette vector in which the tested terminator is introduced between two GFP mutant genes: an ultraviolet-optimized mutant (GFPuv: F99S, M153T, V163A) and a blue-shifted mutant (BFP: F64L, S65T, T145F). The ratio of the fluorescence intensity of BFP to GFPuv after transcription and translation represents the termination efficiency of the terminator. E. coli ribosomal RNA operon T1 terminator, phage lambda terminator site R2, E. coli tryptophane attenuater were introduced into the vector, and their transcriptional efficiencies were estimated as 89, 79, and 24%, respectively, showing good agreement with published data.
2010-01-01
An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498
NASA Astrophysics Data System (ADS)
Lang, Ye; Chen, Yanzhong; Liao, Lifen; Guo, Guangyan; He, Jianguo; Fan, Zhongwei
2018-03-01
In high power diode lasers, the input cooling water temperature would affect both output power and output spectrum. In double face pumped slab laser, the spectrum of two laser diode arrays (LDAs) must be optimized for efficiency reason. The spectrum mismatch of two LDAs would result in energy storing decline. In this work, thermal induced efficiency decline due to spectral overlap between high power LDAs and laser medium was investigated. A numerical model was developed to describe the energy storing variation with changing LDAs cooling water temperature and configuration (series/parallel connected). A confirmatory experiment was conducted using a double face pumped slab module. The experiment results show good agreements with simulations.
Removal of both cationic and anionic contaminants by amphoteric starch.
Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei
2016-03-15
A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. Copyright © 2015 Elsevier Ltd. All rights reserved.
Willette-Murphy, Karen; Todero, Catherine; Yeaworth, Rosalee
2006-10-01
This descriptive study examined sleep and mental health variables in 37 older wife caregivers for spouses with dementia compared to 37 age-matched controls. The relationships among selected caregiving variables (behavioral problems, caregiving hours, and years of caregiving), appraisal of burden, self-reported sleep efficiency for the past week, and mental health outcomes were examined. Lazarus and Folkman's stress and coping framework guided the study. Mental health and sleep were poorer for caregivers. Caregiving and appraisal of burden variables showed direct and indirect effects on mental health. However, caregiving and appraisal of burden variables were not significant for predicting sleep efficiency. Sleep efficiency was a good predictor of mental health in this sample of wife caregivers.
Zhang, Weidong; Li, Guoping; Xu, Letian; Zhuo, Yue; Wan, Wenming; Yan, Ni; He, Gang
2018-05-21
The introduction of main group elements into conjugated scaffolds is emerging as a key route to novel optoelectronic materials. Herein, an efficient and versatile way to synthesize polymerizable 9,10-azaboraphenanthrene ( BNP )-containing monomers by aromaticity-driven ring expansion reactions between highly antiaromatic borafluorene and azides is reported, and the corresponding conjugated small molecules and polymers are developed as well. The BNP -containing small molecules and conjugated polymers showed good air/moisture stability and notable fluorescence properties. Addition of fluoride ions to the BNP -based small molecules and polymers induced a rapid change in the emission color from blue to green/yellow, respectively, accompanied by strong intensity changes. The conjugated polymers showed better ratiometric sensing performance than small molecules due to the exciton migration along the conjugated chains. Further experiments showed that the sensing process is fully reversible. The films prepared by solution-deposition of BNP -based compounds in the presence of polycaprolactone also showed good ratiometric sensing for fluoride ions.
da Costa, José Luiz; da Matta Chasin, Alice Aparecida
2004-11-05
This paper describes the development and validation of analytical methodology for the determination of the use of MDMA, MDEA and MDA in urine. After a simple liquid extraction, the analyses were carried out on a high performance liquid chromatography (HPLC) in an octadecyl column, with fluorescence detection. The mobile phase using a sodium dodecyl sulfate ion-pairing reagent allows good separation and efficiency. The method showed good linearity and precision. Recovery was between 85 and 102% and detection limits were 10, 15 and 20 ng/ml for MDA, MDMA and MDEA, respectively. No interfering substances were detected with fluorescence detection.
NASA Astrophysics Data System (ADS)
Su, Yi; Xu, Lei; Liu, Ningning; Huang, Wei; Xu, Xiaojing
2016-10-01
Purpose to find an efficient, non-destructive examining method for showing the disappearing words after writing with automatic disappearance pen. Method Using the imaging spectrometer to show the potential disappearance words on paper surface according to different properties of reflection absorbed by various substances in different bands. Results the disappeared words by using different disappearance pens to write on the same paper or the same disappearance pen to write on different papers, both can get good show results through the use of the spectral imaging examining methods. Conclusion Spectral imaging technology can show the disappearing words after writing by using the automatic disappearance pen.
NASA Astrophysics Data System (ADS)
Indari, E. D.; Wungu, T. D. K.; Hidayat, R.
2017-07-01
Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.
The Efficiency of Split Panel Designs in an Analysis of Variance Model
Wang, Wei-Guo; Liu, Hai-Jun
2016-01-01
We consider split panel design efficiency in analysis of variance models, that is, the determination of the cross-sections series optimal proportion in all samples, to minimize parametric best linear unbiased estimators of linear combination variances. An orthogonal matrix is constructed to obtain manageable expression of variances. On this basis, we derive a theorem for analyzing split panel design efficiency irrespective of interest and budget parameters. Additionally, relative estimator efficiency based on the split panel to an estimator based on a pure panel or a pure cross-section is present. The analysis shows that the gains from split panel can be quite substantial. We further consider the efficiency of split panel design, given a budget, and transform it to a constrained nonlinear integer programming. Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer programming. Moreover, we combine one at time designs and factorial designs to illustrate the algorithm’s efficiency with an empirical example concerning monthly consumer expenditure on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good solution. PMID:27163447
An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.
Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian
2015-04-14
A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.
Thermohydrogel Containing Melanin for Photothermal Cancer Therapy.
Kim, Miri; Kim, Hyun Soo; Kim, Min Ah; Ryu, Hyanghwa; Jeong, Hwan-Jeong; Lee, Chang-Moon
2017-05-01
Melanin is an effective absorber of light and can extend to near infrared (NIR) regions. In this study, a natural melanin is presented as a photothermal therapeutic agent (PTA) because it provides a good photothermal conversion efficiency, shows biodegradability, and does not induce long-term toxicity during retention in vivo. Poloxamer solution containing melanin (Pol-Mel) does not show any precipitation and shows sol-gel transition at body temperature. After irradiation from 808 nm NIR laser at 1.5 W cm -2 for 3 min, the photothermal conversion efficiency of Pol-Mel is enough to kill cancer cells in vitro and in vivo. The tumor growth of mice bearing CT26 tumors treated with Pol-Mel injection and laser irradiation is suppressed completely without recurrence postirradiation. All these results indicate that Pol-Mel can become an attractive PTA for photothermal cancer therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schwyzer, Olivier; Saenger, Nicole
2016-11-01
The Hydraulic Pressure Machine (HPM) is an energy converter to exploit head differences between 0.5 and 2.5 m in small streams and irrigation canals. Previous investigations show that efficiencies above 60% are possible. Several case studies indicate good continuity for aquatic life (e.g. fish) and bed load for the technology. The technology is described as an economically and ecologically viable option for small scale hydropower generation. Primary goal of this research is to improve the HPM blade design regarding its continuity properties by maintaining good efficiency rates. This is done by modifying the blade tip and testing within a large physical model under laboratory condition. Blade tips from steel (conventional - reference case) and a combination of EPDM rubber and steel as sandwich construction (rubber, steel, rubber - adhesive layered) are tested and compared. Both materials reach similar values for hydraulic efficiency (approx. 58%) and mechanical power output (approx. 220 W). The variation of different gap sizes pointed out the importance of small clearance gaps to reach high efficiencies. For assessing the two blade tip materials regarding continuity for aquatic life, fish dummies were led through the wheel. Analysis of slow motion video of dummies hit by the blade show significant advantages for the EPDM blade tip. The EPDM rubber allows to bend and thus reduces the shock and the probability for cuts on the fish dummy. It was shown that blade tips from EPDM have certain advantages regarding continuity compared to standard blade tips from steel. No compromise regarding energy production had to be made. These results from the HPM can be transferred to breast shot water wheel and may be applied for new and retrofitting projects.
A fast and efficient segmentation scheme for cell microscopic image.
Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H
2007-04-27
Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.
de Jesus, Jemmyson Romário; da Silva Fernandes, Rafael; de Souza Pessôa, Gustavo; Raimundo, Ivo Milton; Arruda, Marco Aurélio Zezzi
2017-08-01
The efficiency of three different depletion methods to remove the most abundant proteins, enriching those human serum proteins with low abundance is checked to make more efficient the search and discovery of biomarkers. These methods utilize magnetic nanoparticles (MNPs), chemical reagents (sequential application of dithiothreitol and acetonitrile, DTT/ACN), and commercial apparatus based on immunoaffinity (ProteoMiner, PM). The comparison between methods shows significant removal of abundant protein, remaining in the supernatant at concentrations of 4.6±0.2, 3.6±0.1, and 3.3±0.2µgµL -1 (n=3) for MNPs, DTT/ACN and PM respectively, from a total protein content of 54µgµL -1 . Using GeLC-MS/MS analysis, MNPs depletion shows good efficiency in removing high molecular weight proteins (>80kDa). Due to the synergic effect between the reagents DTT and ACN, DTT/ACN-based depletion offers good performance in the depletion of thiol-rich proteins, such as albumin and transferrin (DTT action), as well as of high molecular weight proteins (ACN action). Furthermore, PM equalization confirms its efficiency in concentrating low-abundant proteins, decreasing the dynamic range of protein levels in human serum. Direct comparison between the treatments reveals 72 proteins identified when using MNP depletion (43 of them exclusively by this method), but only 20 proteins using DTT/ACN (seven exclusively by this method). Additionally, after PM treatment 30 proteins were identified, seven exclusively by this method. Thus, MNPs and DTT/ACN depletion can be simple, quick, cheap, and robust alternatives for immunochemistry-based protein depletion, providing a potential strategy in the search for disease biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.
Computational multicore on two-layer 1D shallow water equations for erodible dambreak
NASA Astrophysics Data System (ADS)
Simanjuntak, C. A.; Bagustara, B. A. R. H.; Gunawan, P. H.
2018-03-01
The simulation of erodible dambreak using two-layer shallow water equations and SCHR scheme are elaborated in this paper. The results show that the two-layer SWE model in a good agreement with the data experiment which is performed by Louvain-la-Neuve Université Catholique de Louvain. Moreover, the parallel algorithm with multicore architecture are given in the results. The results show that Computer I with processor Intel(R) Core(TM) i5-2500 CPU Quad-Core has the best performance to accelerate the computational time. Moreover, Computer III with processor AMD A6-5200 APU Quad-Core is observed has higher speedup and efficiency. The speedup and efficiency of Computer III with number of grids 3200 are 3.716050530 times and 92.9% respectively.
Graphene oxide foams and their excellent adsorption ability for acetone gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yongqiang; School of Science, Tianjin University, Tianjin 300072; Zhang, Nana
2013-09-01
Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed thatmore » the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.« less
High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection
NASA Astrophysics Data System (ADS)
Zhang, Jiameng; Yang, Lan; Li, Linpeng; Zhang, Tong; Li, Haihong; Wang, Qingmin; Hao, Yanan; Lei, Ming; Bi, Ke
2017-07-01
An ultra-wideband polarization conversion metasurface based on S-shaped metallic structure is designed and prepared. The simulation results show that the polarization conversion bandwidth is 14 GHz for linearly polarized normally incident electromagnetic waves and the cross-polarized reflectance is more than 99% in the range of 10.3 GHz-20.5 GHz. On the premise of high reflection efficiency, the reflective phase can be regulated by changing the geometrical parameter of the S-shaped metallic structure. A phase gradient metasurface composed of six periodically arrayed S-shaped unit cells is proposed and further demonstrated both numerically and experimentally. The specular cross-polarization reflection of the phase gradient metasurface is below -10 dB, which shows a good performance on manipulating the direction of the reflected electromagnetic waves.
Hot-melt extrusion microencapsulation of quercetin for taste-masking.
Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai
2017-02-01
Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.
Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha).
Miretzky, Patricia; Muñoz, Carolina; Carrillo-Chávez, Alejandro
2008-03-01
The use of nopal cladodes (Opuntia streptacantha) as raw material for Pb(2+) biosorption was investigated. Batch experiments were carried out to determine Pb(2+) sorption capacity and the efficiency of the sorption process under different pH, initial Pb(2+) and nopal biomass concentrations. The experimental data showed a good fit to Langmuir and Freundlich isotherms models. The maximum adsorption capacity for Pb(2+) was 0.14 mmol g(-1) with an efficiency higher than 94% (pH 5.0 and 2.5 g L(-1) nopal biomass). The Pb(2+) kinetics were best described by the pseudo-second-order rate model. The rate constant, the initial sorption rate and the equilibrium sorption capacity were determined. The practical implication of this study is the development of an effective and economic technology in which the nopal biomass did not undergo any chemical or physical pretreatment, which added to nopal abundance in Mexico and its low cost makes it a good option for Pb(2+) removal from contaminated waters.
NASA Astrophysics Data System (ADS)
Mutta, Geeta R.; Popuri, Srinivasa R.; Wilson, John I. B.; Bennett, Nick S.
2016-11-01
In this work, we aim to develop a viable, inexpensive and non-toxic material for counter electrodes in dye sensitized solar cells (DSSCs). We employed an ultra-simple synthesis process to deposit MoO3 thin films at low temperature by sol-gel spin coating technique. These MoO3 films showed good transparency. It is predicted that there will be 150 times reduction of precursors cost by realizing MoO3 thin films as a counter electrode in DSSCs compared to commercial Pt. We achieved a device efficiency of about 20 times higher than that of the previous reported values. In summary we develop a simple low cost preparation of MoO3 films with an easily scaled up process along with good device efficiency. This work encourages the development of novel and relatively new materials and paves the way for massive reduction of industrial costs which is a prime step for commercialization of DSSCs.
Lessa, Emanuele F; Nunes, Matheus L; Fajardo, André R
2018-06-01
Waste coffee-grounds (WCG), a poorly explored source of biocompounds, were combined with chitosan (Cs) and poly(vinyl alcohol) (PVA) in order to obtain composites. Overall, WCG showed a good interaction with the polymeric matrix and good dispersibility up to 10 wt-%. At 5 wt-% WCG, the composite exhibited a noticeable enhancement (from 10 to 44%) of the adsorption of pharmaceuticals (metamizol (MET), acetylsalicylic acid (ASA), acetaminophen (ACE), and caffeine (CAF)) as compared to the pristine sample. The highest removal efficiency was registered at pH 6 and the removal followed the order ASA > CAF > ACE > MET. For all pharmaceuticals, the adsorption kinetics was found to follow the pseudo-second order model, while the adsorption mechanism was explained by the Freundlich isotherm. Reuse experiments indicated that the WCG-containing composite has an attractive cost-effectiveness since it presented a remarkable reusability in at least five consecutive adsorption/desorption cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lian, Ziru; Wang, Jiangtao
2017-09-15
Gonyautoxins 1,4 (GTX1,4) from Alexandrium minutum samples were isolated selectively and recognized specifically by an innovative and effective extraction procedure based on molecular imprinting technology. Novel molecularly imprinted polymer microspheres (MIPMs) were prepared by double-templated imprinting strategy using caffeine and pentoxifylline as dummy templates. The synthesized polymers displayed good affinity to GTX1,4 and were applied as sorbents. Further, an off-line molecularly imprinted solid-phase extraction (MISPE) protocol was optimized and an effective approach based on the MISPE coupled with HPLC-FLD was developed for selective isolation of GTX1,4 from the cultured A. minutum samples. The separation method showed good extraction efficiency (73.2-81.5%) for GTX1,4 and efficient removal of interferences matrices was also achieved after the MISPE process for the microalgal samples. The outcome demonstrated the superiority and great potential of the MISPE procedure for direct separation of GTX1,4 from marine microalgal extracts. Copyright © 2017. Published by Elsevier Ltd.
Shen, Chongfei; Liu, Hongtao; Xie, Xb; Luk, Keith Dk; Hu, Yong
2007-01-01
Adaptive noise canceller (ANC) has been used to improve signal to noise ratio (SNR) of somsatosensory evoked potential (SEP). In order to efficiently apply the ANC in hardware system, fixed-point algorithm based ANC can achieve fast, cost-efficient construction, and low-power consumption in FPGA design. However, it is still questionable whether the SNR improvement performance by fixed-point algorithm is as good as that by floating-point algorithm. This study is to compare the outputs of ANC by floating-point and fixed-point algorithm ANC when it was applied to SEP signals. The selection of step-size parameter (micro) was found different in fixed-point algorithm from floating-point algorithm. In this simulation study, the outputs of fixed-point ANC showed higher distortion from real SEP signals than that of floating-point ANC. However, the difference would be decreased with increasing micro value. In the optimal selection of micro, fixed-point ANC can get as good results as floating-point algorithm.
Anticorrosion efficiency of ultrasonically deposited silica coatings on titanium
NASA Astrophysics Data System (ADS)
Ertaş, Fatma Sinem; Kaş, Recep; Mikó, Annamária; Birer, Özgür
2013-07-01
We utilized high intensity ultrasound to prepare coatings of silica and organically modified silica composed of multiple layers of densely packed nanoparticles. Ultrasound was used to collide nanoparticles onto an activated titanium surface with high speed. Large areas could be homogeneously coated by this method. These coatings were characterized by spectroscopy and microscopy methods and the anticorrosion efficiency in NaCl solution was evaluated by electrochemical measurements. The results indicated that the composite coatings provided good quality barrier layer on bare titanium and decreased the anodic corrosion rate. It was found that increase in the organic content of the coating shifted the passivation potential towards more positive direction. The comparison of the impedance results recorded at the corrosion potential pointed out that in each case a good quality barrier layer was formed on the titanium surface. The outstanding corrosion resistance of the composite coatings with only ~200 nm thickness shows that ultrasound assisted deposition can be a competitive method to obtain corrosion protective layers.
What are single photons good for?
NASA Astrophysics Data System (ADS)
Sangouard, Nicolas; Zbinden, Hugo
2012-10-01
In a long-held preconception, photons play a central role in present-day quantum technologies. But what are sources producing photons one by one good for precisely? Well, in opposition to what many suggest, we show that single-photon sources are not helpful for point to point quantum key distribution because faint laser pulses do the job comfortably. However, there is no doubt about the usefulness of sources producing single photons for future quantum technologies. In particular, we show how single-photon sources could become the seed of a revolution in the framework of quantum communication, making the security of quantum key distribution device-independent or extending quantum communication over many hundreds of kilometers. Hopefully, these promising applications will provide a guideline for researchers to develop more and more efficient sources, producing narrowband, pure and indistinguishable photons at appropriate wavelengths.
Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent
Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; ...
2015-05-26
A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.
Air-stable n-type semiconductor: core-perfluoroalkylated perylene bisimides.
Li, Yan; Tan, Lin; Wang, Zhaohui; Qian, Hualei; Shi, Yubai; Hu, Wenping
2008-02-21
A series of core-perfluoroalkylated perylene bisimides (PBIs) have been efficiently synthesized by copper-mediated perfluoroalkylation of dibrominated PBIs. Their aromatic cores are highly twisted due to the steric encumbrance in the bay regions as revealed by single-crystal X-ray analysis. The organic field-effect transistors (OFETs) incorporating these new n-type semiconductors show remarkable air-stability and good field effect mobility.
Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui
2015-01-21
The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument.
Local residue coupling strategies by neural network for InSAR phase unwrapping
NASA Astrophysics Data System (ADS)
Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.
1997-12-01
Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.
Regulation the morphology of cationized gold nanoparticles for effective gene delivery.
Zhang, Peng; Li, Bangbang; Du, Jianwei; Wang, Youxiang
2017-09-01
Recent research indicated that the morphology of nanoparticles could result in distinct biological behaviors, thus played an important role in designing efficient gene delivery systems. Among them, gold nanoparticles (AuNPs) with various shapes were widely studied due to the good biocompatibility and easy modification ability. Our recent research indicated that polyethyleneimine-g-bovine serum albumin (BSA-PEI) as non-viral gene vector showed good colloid stability and high transfection efficiency. In this work, BSA-PEI was utilized to modify gold nanospheres (AuNSs) and gold nanorods (AuNRs) to investigate the influence of the morphology on gene delivery. Both AuNS@BSA-PEI and AuNR@BSA-PEI nanoparticles condensed DNA effectively at N/P ratio above 5 and maintained spherical or rod-like morphology respectively. Due to the higher surface charge density at the tips, the rod-like gene complexes were prone to use the tips to contact with cell membrane, which facilitated to be uptaked by HepG2 cells. The endocytosis inhibition experiments showed some differences in the endocytic pathway. Gene transfection experiment showed that the rod-like complexes had almost 100-fold higher of transfection level than that of spherical complexes at the N/P ratio of 20. This work provided a potential strategy for further design of gene vectors with improved transfection results by adjusting the morphology of gene vectors. Copyright © 2017. Published by Elsevier B.V.
Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.
Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi
2017-08-18
Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Impact of the FTSE4Good Index on firm price: an event study.
Martin Curran, M; Moran, Dominic
2007-03-01
This paper examines whether corporate financial performance is affected by public endorsement of environmental and social performance. Event study methodology, which relies on the notion of market efficiency, is used to examine the relationship between positive and negative announcements and changes in share prices or daily returns. Inclusion in and deletion from the FTSE4Good UK Index is used as a proxy measure for good (poor) corporate social responsibility. The abnormal or unexpected daily returns associated with an event are calculated and their significance tested. The results show a trend towards positive and negative announcements having the expected effects on daily returns. But these movements are not significant and the data do not suggest that a firm's presence on the index brings it any significant financial return for signalling its corporate social responsibility.
NASA Astrophysics Data System (ADS)
Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.
2016-09-01
The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.
Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids
2015-01-01
Here, we propose an efficient strategy for enzyme- and hairpin-free nucleic acid detection called an entropy beacon (abbreviated as Ebeacon). Different from previously reported DNA hybridization/displacement-based strategies, Ebeacon is driven forward by increases in the entropy of the system, instead of free energy released from new base-pair formation. Ebeacon shows high sensitivity, with a detection limit of 5 pM target DNA in buffer and 50 pM in cellular homogenate. Ebeacon also benefits from the hairpin-free amplification strategy and zero-background, excellent thermostability from 20 °C to 50 °C, as well as good resistance to complex environments. In particular, based on the huge difference between the breathing rate of a single base pair and two adjacent base pairs, Ebeacon also shows high selectivity toward base mutations, such as substitution, insertion, and deletion and, therefore, is an efficient nucleic acid detection method, comparable to most reported enzyme-free strategies. PMID:26505212
Xu, Peng; Liu, Peng; Li, Yuanyuan; Xu, Bo; Kloo, Lars; Sun, Licheng; Hua, Yong
2018-06-13
Two D-A-D-structured hole-transport materials (YN1 and YN2) have been synthesized and used in perovskite solar cells. The two HTMs have low-lying HOMO levels and impressive mobility. Perovskite-based solar cells (PSCs) fabricated with YN2 showed a power conversion efficiency (PCE) value of 19.27% in ambient air, which is significantly higher than that of Spiro-OMeTAD (17.80%). PSCs based on YN1 showed an inferior PCE of 16.03%. We found that the incorporation of the stronger electron-withdrawing group in the HTM YN2 improves the PCE of PSCs. Furthermore, the YN2-based PSCs exhibit good long-term stability retaining 91.3% of its initial efficiency, whereas PSCs based on Spiro-OMeTAD retained only 42.2% after 1000 h lifetime (dark conditions). These promising results can provide a new strategy for the design of D-A-D HTMs for PSC applications in future.
Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng
2014-02-24
An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Matsushita, Yasuyuki; Imai, Masanori; Iwatsuki, Ayuko; Fukushima, Kazuhiko
2008-05-01
In this study, water-soluble anionic and cationic polymers were prepared from sulfuric acid lignin (SAL), an acid hydrolysis lignin, and the relationship between the surface tension of these polymers and industrial performance was examined. The SAL was phenolized (P-SAL) to enhance its solubility and reactivity. Sulfonation and the Mannich reaction with aminocarboxylic acids produced water-soluble anionic polymers and high-dispersibility gypsum paste. The dispersing efficiency increased as the surface tension decreased, suggesting that the fluidity of the gypsum paste increased with the polymer adsorption on the gypsum particle surface. Water-soluble cationic polymers were prepared using the Mannich reaction with dimethylamine. The cationic polymers showed high sizing efficiency under neutral papermaking conditions; the sizing efficiency increased with the surface tension. This suggests that the polymer with high hydrophilicity spread in the water and readily adhered to the pulp surface and the rosin, showing good retention.
Comparison of animal and plant proteins for young pen-reared bobwhite quail
Nestler, R.B.; Llewellyn, L.M.; Rensberger, M.J.
1945-01-01
Bobwhite quail chicks, when given a choice of balanced diets in which the essential difference was the protein supplement, showed preferences for one diet containing 49 per cent peanut oil meal, another containing a mixture of 9 per cent meat and bone scraps (50% protein) with 38 per cent soybean oil meal, and a third (control) diet containing a mixture of 16 per cent dried buttermilk with 42 per cent soybean oil meal, in contrast to diets containing sardine meal or menhaden fish meal. ....Feeding tests during the first five weeks of life showed that diets containing 14 per cent sardine fish meal consistently gave high live weights, low mortality, and high efficiency of feed utilization. Diets with 9 to 10 per cent menhaden meal produced nearly as good results....Live weights, survival, and efficiency of feed utilization were markedly better on a diet containing 9 per cent meat and bone scrap (50% protein) than on one with 9 per cent meat scrap (55% protein), but not as good as with diets containing fish meal without meat....The chicks grew and survived more successfully on diets containing either soybean oil meal or peanut oil meal as the sole protein supplement, than on diets containing either linseed oil meal, cottonseed oil meal, or dried buttermilk as the sole protein concentrate. None of these was as satisfactory as the diets containing fish meal.....All chicks died on diets containing either linseed oil meal, cottonseed oil meal, or dried buttermilk as the sole source of protein. All three of these concentrates, however, gave satisfactory results, when used as 10 per cent of the diet. In fact, survival and efficiency of feed utilization were nearly as good on a diet containing 10 per cent dried buttermilk, 10 per cent linseed oil meal, 10 per cent peanut oil meal, and 27 per cent soybean oil meal, as on diets containing fish meal.
Migratory fish, a problem of interstate cooperation?
Van Oosten, John; Adams, William C.; Finley, William L.; Westerman, Fred A.
1939-01-01
Bobwhite quail chicks, when given a choice of balanced diets in which the essential difference was the protein supplement, showed preferences for one diet containing 49 per cent peanut oil meal, another containing a mixture of 9 per cent meat and bone scraps (50% protein) with 38 per cent soybean oil meal, and a third (control) diet containing a mixture of 16 per cent dried buttermilk with 42 per cent soybean oil meal, in contrast to diets containing sardine meal or menhaden fish meal. ....Feeding tests during the first five weeks of life showed that diets containing 14 per cent sardine fish meal consistently gave high live weights, low mortality, and high efficiency of feed utilization. Diets with 9 to 10 per cent menhaden meal produced nearly as good results....Live weights, survival, and efficiency of feed utilization were markedly better on a diet containing 9 per cent meat and bone scrap (50% protein) than on one with 9 per cent meat scrap (55% protein), but not as good as with diets containing fish meal without meat....The chicks grew and survived more successfully on diets containing either soybean oil meal or peanut oil meal as the sole protein supplement, than on diets containing either linseed oil meal, cottonseed oil meal, or dried buttermilk as the sole protein concentrate. None of these was as satisfactory as the diets containing fish meal.....All chicks died on diets containing either linseed oil meal, cottonseed oil meal, or dried buttermilk as the sole source of protein. All three of these concentrates, however, gave satisfactory results, when used as 10 per cent of the diet. In fact, survival and efficiency of feed utilization were nearly as good on a diet containing 10 per cent dried buttermilk, 10 per cent linseed oil meal, 10 per cent peanut oil meal, and 27 per cent soybean oil meal, as on diets containing fish meal.
An analytical study of the endoreversible Curzon-Ahlborn cycle for a non-linear heat transfer law
NASA Astrophysics Data System (ADS)
Páez-Hernández, Ricardo T.; Portillo-Díaz, Pedro; Ladino-Luna, Delfino; Ramírez-Rojas, Alejandro; Pacheco-Paez, Juan C.
2016-01-01
In the present article, an endoreversible Curzon-Ahlborn engine is studied by considering a non-linear heat transfer law, particularly the Dulong-Petit heat transfer law, using the `componendo and dividendo' rule as well as a simple differentiation to obtain the Curzon-Ahlborn efficiency as proposed by Agrawal in 2009. This rule is actually a change of variable that simplifies a two-variable problem to a one-variable problem. From elemental calculus, we obtain an analytical expression of efficiency and the power output. The efficiency is given only in terms of the temperatures of the reservoirs, such as both Carnot and Curzon-Ahlborn cycles. We make a comparison between efficiencies measured in real power plants and theoretical values from analytical expressions obtained in this article and others found in literature from several other authors. This comparison shows that the theoretical values of efficiency are close to real efficiency, and in some cases, they are exactly the same. Therefore, we can say that the Agrawal method is good in calculating thermal engine efficiencies approximately.
Raboni, Massimo; Gavasci, Renato; Viotti, Paolo
2015-01-01
Low concentrations of dissolved oxygen (DO) are usually found in biological anoxic pre-denitrification reactors, causing a reduction in nitrogen removal efficiency. Therefore, the reduction of DO in such reactors is fundamental for achieving good nutrient removal. The article shows the results of an experimental study carried out to evaluate the effect of the anoxic reactor hydrodynamic model on both residual DO concentration and nitrogen removal efficiency. In particular, two hydrodynamic models were considered: the single completely mixed reactor and a series of four reactors that resemble plug-flow behaviour. The latter prove to be more effective in oxygen consumption, allowing a lower residual DO concentration than the former. The series of reactors also achieves better specific denitrification rates and higher denitrification efficiency. Moreover, the denitrification food to microrganism (F:M) ratio (F:MDEN) demonstrates a relevant synergic action in both controlling residual DO and improving the denitrification performance.
Viscous investigation of a flapping foil propulsor
NASA Astrophysics Data System (ADS)
Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat
2018-01-01
Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.
Validation of Sleep-Tracking Technology Compared with Polysomnography in Adolescents.
de Zambotti, Massimiliano; Baker, Fiona C; Colrain, Ian M
2015-09-01
To evaluate the accuracy in measuring nighttime sleep of a fitness tracker (Jawbone UP) compared to polysomnography (PSG). Jawbone UP and PSG data were simultaneously collected from adolescents during an overnight laboratory recording. Agreements between Jawbone UP and PSG sleep outcomes were analyzed using paired t tests and Bland-Altman plots. Multiple regressions were used to investigate which PSG sleep measures predicted Jawbone UP "Sound sleep" and "Light sleep." SRI International Human Sleep Laboratory. Sixty-five healthy adolescents (28 females, mean age ± standard deviation [SD]: 15.8 ± 2.5 y). N/A. Outcomes showed good agreements between Jawbone UP and PSG for total sleep time (mean differences ± SD: -10.0 ± 20.5 min), sleep efficiency (mean differences ± SD: -1.9 ± 4.2 %), and wake after sleep onset (WASO) (mean differences ± SD: 10.6 ± 14.7 min). Overall, Jawbone UP overestimated PSG total sleep time and sleep efficiency and underestimated WASO but differences were small and, on average, did not exceed clinically meaningful cutoffs of > 30 min for total sleep time and > 5% for sleep efficiency. Multiple regression models showed that Jawbone UP "Sound sleep" measure was predicted by PSG time in N2 (β = 0.25), time in rapid eye movement (β = 0.29), and arousal index (β = -0.34). Jawbone UP "Light sleep" measure was predicted by PSG time in N2 (β = 0.48), time in N3 (β = 0.49), arousal index (β = 0.38) and awakening index (β = 0.28). Jawbone UP showed a progression from slight overestimation to underestimation of total sleep time and sleep efficiency with advancing age. All relationships were similar in boys and girls. Jawbone UP shows good agreement with polysomnography in measures of total sleep time and wake after sleep onset in adolescent boys and girls. Further validation is needed in other age groups and clinical populations before advocating use of these inexpensive and easy-to-use devices in clinical sleep medicine and research. © 2015 Associated Professional Sleep Societies, LLC.
Poly(methyl methacrylate)-graft-oligoamines as low cytotoxic and efficient nonviral gene vectors.
Wang, Yong-Qiang; Sun, Yun-Xia; Hong, Xin-Lin; Zhang, Xian-Zheng; Zhang, Gao-Yong
2010-01-01
A series of poly(methyl methacrylate)-graft-oligoamines (PMMA-g-oligoamines), including PMMA-g-DETA, PMMA-g-TETA and PMMA-g-TEPA, were synthesized through aminolysis of the PMMA with diethylenetriamine, triethylenetetramine and tetraethylenepentamine. Agarose gel retardation assay indicated that PMMA-g-oligoamines had good binding capability with plasmid DNA, and the binding capability increased with increasing length of oligoamines and content of nitrogen (N%). The results of particle size, zeta potential and morphology observation further showed that the PMMA-g-oligoamines could condense DNA efficiently and the PMMA-g-oligoamine/DNA complexes were uniform nanospheres. The in vitro cell viability indicated that PMMA-g-oligoamines were less toxic than 25 kDa PEI, though the cytotoxicity of PMMA-g-oligoamines increased slightly with increasing length of oligoamines as well as the N% of PMMA-g-oligoamines. The transfection efficiency of PMMA-g-oligoamines/DNA complexes in 293 T and HeLa cells demonstrated that PMMA-g-oligoamines could transfect cells efficiently with increasing the length of oligoamines, especially PMMA-g-TEPA with highest N%, and showed similar transfection capability as 25 kDa PEI. The cellular uptake study showed that the distribution of YOYO-1 labeled DNA in the cytoplasm and nuclei increased gradually with increasing length of oligoamines.
HALBERT, CHRISTINE L.; LAM, SIU-LING; MILLER, A. DUSTY
2014-01-01
The transduction efficiency of adeno-associated virus (AAV) vectors in various somatic tissues has been shown to depend heavily on the AAV type from which the vector capsid proteins are derived. Among the AAV types studied, AAV6 efficiently transduces cells of the airway epithelium, making it a good candidate for the treatment of lung diseases such as cystic fibrosis. Here we have evaluated the effects of various promoter sequences on transduction rates and gene expression levels in the lung. Of the strong viral promoters examined, the Rous sarcoma virus (RSV) promoter performed significantly better than a human cytomegalovirus (CMV) promoter in the airway epithelium. However, a hybrid promoter consisting of a CMV enhancer, β-actin promoter and splice donor, and a β-globin splice acceptor (CAG promoter) exhibited even higher expression than either of the strong viral promoters alone, showing a 38-fold increase in protein expression over the RSV promoter. In addition, we show that vectors containing either the RSV or CAG promoter expressed well in the nasal and tracheal epithelium. Transduction rates in the 90% range were achieved in many airways with the CAG promoter, showing that with the proper AAV capsid proteins and promoter sequences, highly efficient transduction can be achieved. PMID:17430088
NASA Astrophysics Data System (ADS)
Dang, Jie; Chen, Hao
2016-12-01
The methodology and procedures are discussed on designing merchant ships to achieve fully-integrated and optimized hull-propulsion systems by using asymmetric aftbodies. Computational fluid dynamics (CFD) has been used to evaluate the powering performance through massive calculations with automatic deformation algorisms for the hull forms and the propeller blades. Comparative model tests of the designs to the optimized symmetric hull forms have been carried out to verify the efficiency gain. More than 6% improvement on the propulsive efficiency of an oil tanker has been measured during the model tests. Dedicated sea-trials show good agreement with the predicted performance from the test results.
Continuous-time quantum walks on multilayer dendrimer networks
NASA Astrophysics Data System (ADS)
Galiceanu, Mircea; Strunz, Walter T.
2016-08-01
We consider continuous-time quantum walks (CTQWs) on multilayer dendrimer networks (MDs) and their application to quantum transport. A detailed study of properties of CTQWs is presented and transport efficiency is determined in terms of the exact and average return probabilities. The latter depends only on the eigenvalues of the connectivity matrix, which even for very large structures allows a complete analytical solution for this particular choice of network. In the case of MDs we observe an interplay between strong localization effects, due to the dendrimer topology, and good efficiency from the linear segments. We show that quantum transport is enhanced by interconnecting more layers of dendrimers.
Zhang, Wei; Fang, Zhen; Su, Mingjuan; Saeys, Mark; Liu, Bin
2009-09-17
A conjugated polymer containing an electron donating backbone (triphenylamine) and an electron accepting side chain (cyanoacetic acid) with conjugated thiophene units as the linkers has been synthesized. Dye-sensitized solar cells (DSSCs) are fabricated utilizing this material as the dye sensitizer, resulting a typical power conversion efficiency of 3.39% under AM 1.5 G illumination, which represents the highest efficiency for polymer dye-sensitized DSSCs reported so far. The results show the good promise of conjugated polymers as sensitizers for DSSC applications. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum chi-squared and goodness of fit testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temme, Kristan; Verstraete, Frank
2015-01-15
A quantum mechanical hypothesis test is presented for the hypothesis that a certain setup produces a given quantum state. Although the classical and the quantum problems are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. A goodness of fit test for i.i.d quantum states is developed and a max-min characterization for the optimal measurement is introduced. We find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiencies, and determine the associated divergence rates. We discuss the relationship of the quantum goodness of fitmore » test to the problem of estimating multiple parameters from a density matrix. These problems are found to be closely related and we show that the largest error of an optimal strategy, determined by the smallest eigenvalue of the Fisher information matrix, is given by the divergence rate of the goodness of fit test.« less
Punishment Mechanism with Self-Adjusting Rules in Spatial Voluntary Public Goods Games
NASA Astrophysics Data System (ADS)
Wu, Zhong-Wei; Xu, Zhao-Jin; Zhang, Lian-Zhong
2014-11-01
The phenomena of cooperation in animal and human society are ubiquitous, but the selfish outcome that no player contributes to the public good will lead to the “tragedy of the commons”. The recent research shows that high punishment can improve the cooperation of the population. In this paper, we introduce a punishment mechanism into spatial voluntary public goods games with every individual only knowing his own payoff in each round. Using the self-adjusting rules, we find that the different cost for punishment can lead to different effects on the voluntary public goods games. Especially, when the cost for punishment is decreased, a higher contribution region will appear in the case of low r value. It means even for the low r value, individuals can form the contributing groups in large quantities to produce a more efficient outcome than that in moderate r value. In addition, we also find the players' memory can have effects on the average outcome of the population.
Zhang, Aiping; Zhang, Zhe; Shi, Fenghua; Xiao, Chunsheng; Ding, Jianxun; Zhuang, Xiuli; He, Chaoliang; Chen, Li; Chen, Xuesi
2013-09-01
Redox-responsive SCMs based on amphiphilic PBLG-b-dextran with good biocompatibility are synthesized and used for efficient intracellular drug delivery. The molecular structures and SCMs characteristics are characterized by (1) H NMR, FT-IR, TEM, and DLS. The hydrodynamic radius of SCMs increases gradually in PBS due to the cleavage of disulfide bond in micellar shell caused by the presence of GSH. The encapsulation efficiency and release kinetics of DOX are investigated. The fastest DOX release is observed under intracellular-mimicking reductive environments. An MTT assay demonstrates that DOX-loaded SCMs show higher cellular proliferation inhibition against GSH-OEt pretreated HeLa and HepG2 than that of the non-pretreated and BSO-pretreated ones. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes.
Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei
2018-02-09
Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO₂ coated CdTe (CdTe/SiO₂) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446-2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.
Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes
Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei
2018-01-01
Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L. PMID:29425163
Optimization of the multi-turn injection efficiency for a medical synchrotron
NASA Astrophysics Data System (ADS)
Kim, J.; Yoon, M.; Yim, H.
2016-09-01
We present a method for optimizing the multi-turn injection efficiency for a medical synchrotron. We show that for a given injection energy, the injection efficiency can be greatly enhanced by choosing transverse tunes appropriately and by optimizing the injection bump and the number of turns required for beam injection. We verify our study by applying the method to the Korea Heavy Ion Medical Accelerator (KHIMA) synchrotron which is currently being built at the campus of Dongnam Institute of Radiological and Medical Sciences (DIRAMS) in Busan, Korea. First the frequency map analysis was performed with the help of the ELEGANT and the ACCSIM codes. The tunes that yielded good injection efficiency were then selected. With these tunes, the injection bump and the number of turns required for injection were then optimized by tracking a number of particles for up to one thousand turns after injection, beyond which no further beam loss occurred. Results for the optimization of the injection efficiency for proton ions are presented.
A two-stage DEA approach for environmental efficiency measurement.
Song, Malin; Wang, Shuhong; Liu, Wei
2014-05-01
The slacks-based measure (SBM) model based on the constant returns to scale has achieved some good results in addressing the undesirable outputs, such as waste water and water gas, in measuring environmental efficiency. However, the traditional SBM model cannot deal with the scenario in which desirable outputs are constant. Based on the axiomatic theory of productivity, this paper carries out a systematic research on the SBM model considering undesirable outputs, and further expands the SBM model from the perspective of network analysis. The new model can not only perform efficiency evaluation considering undesirable outputs, but also calculate desirable and undesirable outputs separately. The latter advantage successfully solves the "dependence" problem of outputs, that is, we can not increase the desirable outputs without producing any undesirable outputs. The following illustration shows that the efficiency values obtained by two-stage approach are smaller than those obtained by the traditional SBM model. Our approach provides a more profound analysis on how to improve environmental efficiency of the decision making units.
Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol A detection.
Poorahong, Sujittra; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya
2013-01-01
A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated. By this method, the extraction and pre-concentration of BPA in water were carried out in a single step. Under optimum conditions, the system provided a linear dynamic range of 0.1 to 100 μM with a limit of detection of 20 nM (S/N ≥3). A single in-tube microextractor had a good stability of more than 60 consecutive injections for 10.0 μM BPA with a relative standard deviation of less than 4%. Moreover, a good tube-to-tube reproducibility and precision were obtained. The system was applied to detect BPA in water samples from six brands of baby bottles and the results showed good agreement with those obtained from the conventional GC-MS method. Acceptable percentage recoveries from the spiked water samples were obtained, ranging from 83-102% for this new method compared with 73-107% for the GC-MS standard method. This new in-tube CPANI microextractor provided an excellent extraction efficiency and a good reproducibility. In addition, it can also be easily applied for the analysis of other polar organic compounds contaminated in water sample.
Efficient differentially private learning improves drug sensitivity prediction.
Honkela, Antti; Das, Mrinal; Nieminen, Arttu; Dikmen, Onur; Kaski, Samuel
2018-02-06
Users of a personalised recommendation system face a dilemma: recommendations can be improved by learning from data, but only if other users are willing to share their private information. Good personalised predictions are vitally important in precision medicine, but genomic information on which the predictions are based is also particularly sensitive, as it directly identifies the patients and hence cannot easily be anonymised. Differential privacy has emerged as a potentially promising solution: privacy is considered sufficient if presence of individual patients cannot be distinguished. However, differentially private learning with current methods does not improve predictions with feasible data sizes and dimensionalities. We show that useful predictors can be learned under powerful differential privacy guarantees, and even from moderately-sized data sets, by demonstrating significant improvements in the accuracy of private drug sensitivity prediction with a new robust private regression method. Our method matches the predictive accuracy of the state-of-the-art non-private lasso regression using only 4x more samples under relatively strong differential privacy guarantees. Good performance with limited data is achieved by limiting the sharing of private information by decreasing the dimensionality and by projecting outliers to fit tighter bounds, therefore needing to add less noise for equal privacy. The proposed differentially private regression method combines theoretical appeal and asymptotic efficiency with good prediction accuracy even with moderate-sized data. As already the simple-to-implement method shows promise on the challenging genomic data, we anticipate rapid progress towards practical applications in many fields. This article was reviewed by Zoltan Gaspari and David Kreil.
Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knecht, Wolfgang; Mikkelsen, Nils Egil; Clausen, Anders Ranegaard
2009-05-01
Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.
Weighted Components of i-Government Enterprise Architecture
NASA Astrophysics Data System (ADS)
Budiardjo, E. K.; Firmansyah, G.; Hasibuan, Z. A.
2017-01-01
Lack of government performance, among others due to the lack of coordination and communication among government agencies. Whilst, Enterprise Architecture (EA) in the government can be use as a strategic planning tool to improve productivity, efficiency, and effectivity. However, the existence components of Government Enterprise Architecture (GEA) do not show level of importance, that cause difficulty in implementing good e-government for good governance. This study is to explore the weight of GEA components using Principal Component Analysis (PCA) in order to discovered an inherent structure of e-government. The results show that IT governance component of GEA play a major role in the GEA. The rest of components that consist of e-government system, e-government regulation, e-government management, and application key operational, contributed more or less the same. Beside that GEA from other countries analyzes using comparative base on comon enterprise architecture component. These weighted components use to construct i-Government enterprise architecture. and show the relative importance of component in order to established priorities in developing e-government.
A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids.
Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M; Qiao, Shanlei; Spencer, Melanie D; Zeisel, Steven H; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei
2013-08-01
Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and inter-day (within 7 days) precision (< 10%), and good stability (< 20%) within 4 days at room temperature (23-25 °C), or 7 days when stored at -20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistics analysis of the concentrations of these target metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research.
NASA Astrophysics Data System (ADS)
Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei
2015-09-01
Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k
CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Eyley, Samuel; Vandamme, Dries; Lama, Sanjaya; van den Mooter, Guy; Muylaert, Koenraad; Thielemans, Wim
2015-08-01
Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems. Electronic supplementary information (ESI) available: Spectra for all products. See DOI: 10.1039/C5NR03853G
The physician-patient relationship as a game of strategic information transmission.
De Jaegher, K; Jegers, M
2001-10-01
We show that the intuition underlying the supplier-induced demand (SID) hypothesis is reflected in the cheap-talk literature from game theory, and in the credence-good literature from the economics of information. Applying these theories, we conclude that a neoclassical version of the SID hypothesis is only relevant for treatment decisions involving an expensive treatment that is equally effective in curing several states, but efficient in curing only some of these states (in that a cheaper treatment is efficient otherwise). For a simple game involving such a treatment decision, we show that a Nash equilibrium exists where the patient is able to constrain the physician in inducing demand, without the market for the potentially induced treatment failing. This equilibrium allows us to derive comparative statistics and welfare results. Copyright 2001 John Wiley & Sons, Ltd.
Choi, Kyeong-Ok; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon
2016-05-20
The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC) to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.
Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek
2015-02-01
Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lebrini, Mounim; Bentiss, Fouad; Vezin, Hervé; Lagrenée, Michel
2005-11-01
The efficiency of 3,5-bis( n-pyridyl)-1,3,4-oxadiazole ( n-POX, n = 1, 2, 3), as corrosion inhibitors for mild steel in 1 M perchloric acid (HClO 4) have been determined by weight loss measurements and electrochemical studies. The results show that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Comparison of results among those obtained by the studied oxadiazoles shows that 3-POX was the best inhibitor. Polarisation curves indicate that n-pyridyl substituted-1,3,4-oxadiazoles are mixed type inhibitors in 1 M HClO 4. The adsorption of these inhibitors follows a Langmuir isotherm model. The electronic properties of n-POX, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR).
NASA Astrophysics Data System (ADS)
Wee, Seow Ta; Abas, Muhamad Azahar; Mohamed, Sulzakimin; Chen, Goh Kai; Zainal, Rozlin
2017-10-01
The National Solid Waste Management Policy (NSWMP) was introduced in 2007 under the Act 672. The execution of NSWMP involves stakeholders from various government agencies and a collaboration with the private sectors. Despite the initiatives taken by the stakeholders, the objectives of NSWMP failed to materialise. One of the major constraints is weak governance among stakeholders with regards to the NSWMP implementation. This paper will explore the good governance practices implemented by the stakeholders. Identifying the current good governance practices implemented by the stakeholders is crucial as it will serve as a guideline to improve good governance practice in the future. An exploratory research approach is applied in this study through in-depth interviews with several government agencies and concessionaires involved in the NSWMP implementation. A total of six respondents took part in this study. The findings of this study show that there are several good governance practices implemented in policy promotion, participation of stakeholders, and capacity enhancement programme for the staff. This study also proposed some points on good governance practices in the context of policy promotion and staff development. A paradigm shift by the stakeholders is imperative so as to enhance the good governance practice in NSWMP implementation towards an efficient solid waste management in Malaysia.
Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.
Chai, Wei-Ming; Huang, Qian; Lin, Mei-Zhen; Ou-Yang, Chong; Huang, Wen-Yang; Wang, Ying-Xia; Xu, Kai-Li; Feng, Hui-Ling
2018-01-31
In this study, the content, structure, antityrosinase activity, and mechanism of longan bark condensed tannins were evaluated. The findings obtained from mass spectrometry demonstrated that longan bark condensed tannins were mixtures of procyanidins, propelargonidins, prodelphinidins, and their acyl derivatives (galloyl and p-hydroxybenzoate). The enzyme analysis indicated that these mixtures were efficient, reversible, and mixed (competitive is dominant) inhibitor of tyrosinase. What's more, the mixtures showed good inhibitions on proliferation, intracellular enzyme activity and melanogenesis of mouse melanoma cells (B 16 ). From molecular docking, the results showed the interactions between inhibitors and tyrosinase were driven by hydrogen bond, electrostatic, and hydrophobic interactions. In addition, high levels of total phenolic and extractable condensed tannins suggested that longan bark might be a good source of tyrosinase inhibitor. This study would offer theoretical basis for the development of longan bark condensed tannins as novel food preservatives and medicines of skin diseases.
Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.
Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn
2018-01-17
Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in
2015-10-15
Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry.more » It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.« less
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting
Ming-jun, Deng; Shi-ru, Qu
2015-01-01
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting. PMID:26779258
Rewards and the evolution of cooperation in public good games.
Sasaki, Tatsuya; Uchida, Satoshi
2014-01-01
Properly coordinating cooperation is relevant for resolving public good problems, such as clean energy and environmental protection. However, little is known about how individuals can coordinate themselves for a certain level of cooperation in large populations of strangers. In a typical situation, a consensus-building process rarely succeeds, owing to a lack of face and standing. The evolution of cooperation in this type of situation is studied here using threshold public good games, in which cooperation prevails when it is initially sufficient, or otherwise it perishes. While punishment is a powerful tool for shaping human behaviours, institutional punishment is often too costly to start with only a few contributors, which is another coordination problem. Here, we show that whatever the initial conditions, reward funds based on voluntary contribution can evolve. The voluntary reward paves the way for effectively overcoming the coordination problem and efficiently transforms freeloaders into cooperators with a perceived small risk of collective failure.
NASA Astrophysics Data System (ADS)
Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.
2015-02-01
The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.
Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili
2010-08-27
Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 microg cm(-2)), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co(3)O(4) or Mn(2)O(3) nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (approximately 500 F g(-1), including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g(-1) at 155 A g(-1)).
NASA Astrophysics Data System (ADS)
Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili
2010-08-01
Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 µg cm - 2), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co3O4 or Mn2O3 nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (~500 F g - 1, including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g - 1 at 155 A g - 1).
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting.
Deng, Ming-jun; Qu, Shi-ru
2015-01-01
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting.
NASA Astrophysics Data System (ADS)
K, B. Rosalina E. W.; Gravitiani, E.; Raharjo, M.; Mulyaningsih, T.
2018-03-01
Climate change makes the water balance composition being unstable, both quality and quantity. As a company which responsible for water management, Regional Drinking Water Company (abbreviated as PDAM) is often unable to solve the problem. Welfare costs are indicators to evaluate the economic efficiency. This study aims to calculate the welfare cost of the people lost due to the price determination of PDAM Indonesia in region II with deadweight loss (DWL) approach, so it can provide information to pricing regulator, pricing decision makers and for coIDRorate management. DWL is a loss of economic efficiency that can occur when equilibrium for a good or a service is not achieved, caused by monopoly pricing of artificial scarcity, an externality, a tax or subsidy, or a binding price ceiling or price floor such as a minimum wage. Results showed that the pricing rules set by PDAM yielded different DWL, depending on margin set by the company DWL PDAM ranges between IDR 260,485.66/M3 to IDR 127,486,709.86/M3 which is actually shared to improve the welfare of customers, other communities, and PDAM itself. Data analysis used PDAM performance in 2015 that have not Good CoIDRorate Governance Management and Efficiency.
Treatability of stabilize landfill leachate by using pressmud ash as an adsorbent
NASA Astrophysics Data System (ADS)
Azme, N. N. Mohd; Murshed, M. F.
2018-04-01
Leachate is a liquid produced from the landfill that contains high concentration of heavy metals, chemicals and nutrient loading. The treatability of these contaminants are complicated since the current treatment technology are costly and site specific. Therefore, this study was conducted to evaluate the treatability of stabilized landfill leachate by using waste (pressmud ash) as an absorbent. Pressmud ash was prepared by burning at different temperature from 100 to 700 degree Celsius and test at 24 hours shaking time, pH 8, and 4000 rpm. Leachate samples were collected from municipal solid waste (MSW) Pulau Burung Sanitary Landfill (PBSL) and were analyzed for heavy metal, COD, ammonia and colour. This study was performed in two phases i) leachate characteristic, ii) treatability assessment by using pressmud ash. Pressmud was sampled from the sugar mill, Malaysian Sugar Manufacturing (MSM) Sdn Bhd, Seberang Perai, Pulau Pinang. The pressmud with 400°C are highly potential material with a low cost which can be a good adsorbent was capable reducing efficiencies of COD (60.76%), ammonia (64.37%) and colour (35.78%) from real wastewater leachate. Pressmud showed good sorption capability. Surface modification with burning greatly enhanced the reducing efficiency of sugar waste based adsorbent with adsorption efficiency.
Wang, Bailiang; Liu, Huihua; Sun, Lin; Jin, Yingying; Ding, Xiaoxu; Li, Lingli; Ji, Jian; Chen, Hao
2018-01-08
Bacterial infections and biofilm formation on the surface of implants are important issues that greatly affect biomedical applications and even cause device failure. Construction of high drug loading systems on the surface and control of drug release on-demand is an efficient way to lower the development of resistant bacteria and biofilm formation. In the present study, (montmorillonite/hyaluronic acid-gentamicin) 10 ((MMT/HA-GS) 10 ) organic/inorganic hybrid multilayer films were alternately self-assembled on substrates. The loading dosage of GS was as high as 0.85 mg/cm 2 , which could be due the high specific surface area of MMT. The obtained multilayer film with high roughness gradually degraded in hyaluronidase (HAS) solutions or a bacterial infection microenvironment, which caused the responsive release of GS. The release of GS showed dual enzyme and bacterial infection responsiveness, which also indicated good drug retention and on-demand self-defense release properties of the multilayer films. Moreover, the GS release responsiveness to E. coli showed higher sensitivity than that to S. aureus. There was only ∼5 wt % GS release from the film in PBS after 48 h of immersion, and the amount quickly increased to 30 wt % in 10 5 CFU/mL of E. coli. Importantly, the high drug dosage, smart drug release, and film peeling from the surface contributed to the efficient antibacterial properties and long-term biofilm inhibition functions. Both in vitro and in vivo antibacterial tests indicated efficient sterilization function and good mammalian cell and tissue compatibility.
Abdominal fat volume estimation by stereology on CT: a comparison with manual planimetry.
Manios, G E; Mazonakis, M; Voulgaris, C; Karantanas, A; Damilakis, J
2016-03-01
To deploy and evaluate a stereological point-counting technique on abdominal CT for the estimation of visceral (VAF) and subcutaneous abdominal fat (SAF) volumes. Stereological volume estimations based on point counting and systematic sampling were performed on images from 14 consecutive patients who had undergone abdominal CT. For the optimization of the method, five sampling intensities in combination with 100 and 200 points were tested. The optimum stereological measurements were compared with VAF and SAF volumes derived by the standard technique of manual planimetry on the same scans. Optimization analysis showed that the selection of 200 points along with the sampling intensity 1/8 provided efficient volume estimations in less than 4 min for VAF and SAF together. The optimized stereology showed strong correlation with planimetry (VAF: r = 0.98; SAF: r = 0.98). No statistical differences were found between the two methods (VAF: P = 0.81; SAF: P = 0.83). The 95% limits of agreement were also acceptable (VAF: -16.5%, 16.1%; SAF: -10.8%, 10.7%) and the repeatability of stereology was good (VAF: CV = 4.5%, SAF: CV = 3.2%). Stereology may be successfully applied to CT images for the efficient estimation of abdominal fat volume and may constitute a good alternative to the conventional planimetric technique. Abdominal obesity is associated with increased risk of disease and mortality. Stereology may quantify visceral and subcutaneous abdominal fat accurately and consistently. The application of stereology to estimating abdominal volume fat reduces processing time. Stereology is an efficient alternative method for estimating abdominal fat volume.
Photoluminescence Spectra From The Direct Energy Gap of a-SiQDs
NASA Astrophysics Data System (ADS)
Abdul-Ameer, Nidhal M.; Abdulrida, Moafak C.; Abdul-Hakeem, Shatha M.
2018-05-01
A theoretical model for radiative recombination in amorphous silicon quantum dots (a-SiQDs) was developed. In this model, for the first time, the coexistence of both spatial and quantum confinements were considered. Also, it is found that the photoluminescence exhibits significant size dependence in the range (1-4) nm of the quantum dots. a-SiQDs show visible light emission peak energies and high radiative quantum efficiency at room temperature,in contrast to bulk a-Si structures. The quantum efficiency is sensitive to any change in defect density (the volume nonradiative centers density and/or the surface nonradiative centers density) but, with small dots sizes, the quantum efficiency is insensitive to such defects. Our analysis shows that the photoluminescence intensity increases or decreases by the effect of radiative quantum efficiency. By controlling the size of a-SiQDs, we note that the energy of emission can be tuned. The blue shift is attributed to quantum confinement effect. Meanwhile, the spatial confinement effect is clearly observed in red shift in emission spectra. we found a good agreement with the experimental published data. Therefore, we assert that a-SiQDs material is a promising candidate for visible, tunable, and high performance devices of light emitting.
Data decomposition method for parallel polygon rasterization considering load balancing
NASA Astrophysics Data System (ADS)
Zhou, Chen; Chen, Zhenjie; Liu, Yongxue; Li, Feixue; Cheng, Liang; Zhu, A.-xing; Li, Manchun
2015-12-01
It is essential to adopt parallel computing technology to rapidly rasterize massive polygon data. In parallel rasterization, it is difficult to design an effective data decomposition method. Conventional methods ignore load balancing of polygon complexity in parallel rasterization and thus fail to achieve high parallel efficiency. In this paper, a novel data decomposition method based on polygon complexity (DMPC) is proposed. First, four factors that possibly affect the rasterization efficiency were investigated. Then, a metric represented by the boundary number and raster pixel number in the minimum bounding rectangle was developed to calculate the complexity of each polygon. Using this metric, polygons were rationally allocated according to the polygon complexity, and each process could achieve balanced loads of polygon complexity. To validate the efficiency of DMPC, it was used to parallelize different polygon rasterization algorithms and tested on different datasets. Experimental results showed that DMPC could effectively parallelize polygon rasterization algorithms. Furthermore, the implemented parallel algorithms with DMPC could achieve good speedup ratios of at least 15.69 and generally outperformed conventional decomposition methods in terms of parallel efficiency and load balancing. In addition, the results showed that DMPC exhibited consistently better performance for different spatial distributions of polygons.
Dimitriadis, Alexis; Palmer, Antony L; Thomas, Russell A S; Nisbet, Andrew; Clark, Catharine H
2017-06-01
To adapt and validate an anthropomorphic head phantom for use in a cranial radiosurgery audit. Two bespoke inserts were produced for the phantom: one for providing the target and organ at risk for delineation and the other for performing dose measurements. The inserts were tested to assess their positional accuracy. A basic treatment plan dose verification with an ionization chamber was performed to establish a baseline accuracy for the phantom and beam model. The phantom and inserts were then used to perform dose verification measurements of a radiosurgery plan. The dose was measured with alanine pellets, EBT extended dose film and a plastic scintillation detector (PSD). Both inserts showed reproducible positioning (±0.5 mm) and good positional agreement between them (±0.6 mm). The basic treatment plan measurements showed agreement to the treatment planning system (TPS) within 0.5%. Repeated film measurements showed consistent gamma passing rates with good agreement to the TPS. For 2%-2 mm global gamma, the mean passing rate was 96.7% and the variation in passing rates did not exceed 2.1%. The alanine pellets and PSD showed good agreement with the TPS (-0.1% and 0.3% dose difference in the target) and good agreement with each other (within 1%). The adaptations to the phantom showed acceptable accuracies. The presence of alanine and PSD do not affect film measurements significantly, enabling simultaneous measurements by all three detectors. Advances in knowledge: A novel method for thorough end-to-end test of radiosurgery, with capability to incorporate all steps of the clinical pathway in a time-efficient and reproducible manner, suitable for a national audit.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Widodo, T. I.; Nasution, D. M.
2017-01-01
In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.
Laser Induced Hydrogen Generation from Coal in Water
NASA Astrophysics Data System (ADS)
Seyitliyev, Dovletgeldi; Kholikov, Khomidkhodzha; Er, Ali
We report an alternative way of obtaining hydrogen using nanosecond laser pulses and various ranks of coal and coke. SEM-EDS analysis shows the atomic concentrations of elements on each of the powders which also is in good agreement with calorimeter analysis. Coal and coke powders were irradiated with 1064nm IR and 532 nm green Nd:YAG pulsed laser beam for 45 minutes. The volume of the total gas generated after irradiation of each rank was measured using the water displacement method. The amount of gas generated increased when using 532 nm compared to 1064 nm. Post-irradiation SEM images show structural differences with samples before irradiation. The amount of gas generation with respect to laser energy density shows nonlinear correlation. Generated gas concentrations were then analyzed using gas chromatography (GC). Hydrogen and carbon monoxide were the two most highly generated gases, and the efficiency of each rank of coal was determined by analyzing the hydrogen to carbon monoxide ratio. The highest efficiency rank was anthracite, with hydrogen to carbon monoxide ratio of 1.4. GC analysis also showed that the maximum hydrogen generation occurs at 100 mJ/pulse laser energy. The efficiency of each rank of coal was observed to correlate with carbon content. American Chemical Society Petroleum Research Fund.
Lee, Joo Hyung; Oh, Se Young
2014-08-01
In the previous work, we have reported that organic photovoltaic (OPV) cells using DMDCNQI as an n-type second dopant material showed a high power conversion efficiency (PCE). In the present work, we have synthesized a novel DHDCNQI with long alkyl chains to improve the compatibility between the DHDCNQI dopant molecule and host P3HT polymer. We have fabricated OPV cells consisting of ITO/PEDOT:PSS/P3HT:PCBM:DHDCNQI/Al. We have investigated the characteristics of theses OPV cells using DCNQI derivative dopants from the measurements of the incident photon-to-current collection efficiency and photocurrent. The OPV cell using 3 wt% DHDCNQI exhibited a high PCE of 3.29% due to the high charge separation efficiency, good compatibility and low trap site effect.
Monte Carlo simulation of the full energy peak efficiency of an HPGe detector.
Khan, Waseem; Zhang, Qingmin; He, Chaohui; Saleh, Muhammad
2018-01-01
This paper presents a Monte Carlo method to obtain the full energy peak efficiency (FEPE) curve for a High Purity Germanium (HPGe) detector, as it is difficult and time-consuming to measure the FEPE curve experimentally. The Geant4 simulation toolkit was adopted to establish a detector model since detector specifications provided by the nominal manufacturer are usually insufficient to calculate the accurate efficiency of a detector. Several detector parameters were optimized. FEPE curves for a given HPGe detectors over the energy range of 59.50-1836keV were obtained and showed good agreements with those measured experimentally. FEPE dependences on detector parameters and source-detector distances were investigated. A best agreement with experimental result was achieved for a certain detector geometry and source-detector distance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Wanting; Su, Qing; Ju, Pengyao; Guo, Bixuan; Zhou, Hui; Li, Guanghua; Wu, Qiaolin
2017-02-22
A hydrazone-based covalent organic framework (COF) was synthesized by condensation of 2,5-dimethoxyterephthalohydrazide with 1,3,5-triformylbenzene under solvothermal conditions. The COF material exhibits excellent porosity with a BET surface area of up to 1501 m 2 g -1 , high crystallinity, and good thermal and chemical stability. Moreover, it showed efficient photocatalytic activity towards cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and nucleophiles such as nitromethane, acetone, and phenylethyl ketone. The metal-free catalytic system also offers attractive advantages including simplicity of operation, wide substrate adaptability, ambient reaction conditions, and robust recycling capability of the catalyst, thus providing a promising platform for highly efficient and reusable photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diao, Yifei; Yan, Zhikai; Guo, Min; Wang, Xidong
2018-02-15
Magnetic nanoparticles of multi-metal co-doped magnesium ferrite (MgFe 2 O 4 ) were synthesized from saprolite laterite ore by a hydrothermal method, and firstly proposed as a heterogeneous photon-Fenton-like catalyst for degradation of Rhodamine B (RhB). The factors that influence the degradation reaction including pH value, the concentration of H 2 O 2 and the amount of catalyst, were systematically investigated. The doped MgFe 2 O 4 exhibited a degradation efficiency up to 96.8%, and the chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiencies about 85.6% and 68.3%, respectively, under visible light illumination for 180min. The high activity is mainly attributed to the high specific surface area of the catalyst and the synergistic interaction between photo-catalytic oxidation and Fenton-like oxidation. Moreover, the catalyst also showed good stability and recycling performance for degrading RhB. After five consecutive degradation cycles, the activity decayed no more than 10%. Compared to other catalysts prepared from pure chemical agents, the multi-metal co-doped MgFe 2 O 4 is more competitive due to its high activity, good stability, ease of recollection, and especially the use of saprolite laterite ore as precursor. This work may provide a new avenue to synthesize efficient ferrite catalysts for degrading organic pollutants in wastewater by using natural minerals. Copyright © 2017 Elsevier B.V. All rights reserved.
de Farias, Charles C; Allemann, Norma; Gomes, José Á P
2016-04-01
There are few studies comparing different surgical procedures for the treatment of corneal thinning. Lamellar corneal transplantation (LCT) has been reported to be efficient, but its results can be jeopardized by allograft rejection, opacification, or high astigmatism. Amniotic membrane transplantation (AMT) has been considered a good alternative, but it is not as resistant as LCT and the tissue can be reabsorbed after surgery. A prospective, randomized, interventional, and comparative study of consecutive patients with corneal thinning over 6 months was performed. Ophthalmological examination was performed before transplant surgery and then repeated 1, 7, 15, 30, 90, and 180 days after surgery and ultrasound biomicroscopy was performed before and then 30, 90, and 180 days after surgery to assess corneal thinning. Herpes simplex infection was the main cause of corneal thinning (9 eyes), followed by surgery (cataract, glaucoma, 5 cases), rheumatoid arthritis (1), chemical burn (1), perforating trauma (1), previous band keratopathy treatment (1), and Stevens-Johnson syndrome (1). Although all patients showed significant increase in final thickness in the area of thinning, it was higher in those submitted to LCT at 180 days postoperatively. Regardless of the surgical technique, all patients showed epithelialization. Patients undergoing AMT showed an 89% decrease in neovascularization. Final corrected distance visual acuity was better in patients submitted to AMT. LCT proved to be the best option for treating corneal thinning. AMT represents an alternative that allows good visual recovery but does not restore corneal thickness as efficiently as LCT.
Removal of nonylphenol from industrial sludge by using an electron beam
NASA Astrophysics Data System (ADS)
Choi, Jang-Seung; Park, Jun-Hyun; Kim, Yuri; Kim, JinKyu; Jung, SeungTae; Han, Bumsoo; Alkhuraiji, Turki S.
2016-09-01
Endocrine disrupting chemicals (EDCs) and potential EDCs are mostly man-made, found in various materials such as pesticides, additives or contaminants in food, and personal care products. EDCs have been suspected to be associated with altered reproductive function in males and females increased incidence of breast cancer, abnormal growth patterns and neuro-developmental delays in children and changes in immune function. A number of processes were investigated regarding their potential for removing of endocrine disrupters. Those processes are ferric chloride coagulation, powdered activated carbon, magnetic ion exchange combined with microfiltration or ultrafiltration, as well as nanofiltration, and reverse osmosis. They show some good removal of EDCs in aqueous solution, but do not show good efficiency when EDCs are in sludge. High energy ionizing radiation has the ability to remove the EDCs with a very high degree of reliability and in a clean and efficient manner. The ionizing radiation interacts with EDCs both directly and indirectly. Direct interaction takes place with EDCs, and the structure of EDCs is destroyed or changed. During indirect interaction, radiolysis products of water result in the formation of highly reactive intermediates which then react with the target molecules, culminating in structural changes. For confirmation of radiation reduction of EDCs in industrial sludge, a pilot scale experiment up to 50 kGy of electron beam was conducted with samples from the textile dyeing industries. The experimental result showed over a 90% reduction of nonylphenol (NP) at absorbed doses of around 10 kGy.
Discovery of potent and selective CDK8 inhibitors through FBDD approach.
Han, Xingchun; Jiang, Min; Zhou, Chengang; Zhou, Zheng; Xu, Zhiheng; Wang, Lisha; Mayweg, Alexander V; Niu, Rui; Jin, Tai-Guang; Yang, Song
2017-09-15
A fragment library screen was carried out to identify starting points for novel CDK8 inhibitors. Optimization of a fragment hit guided by co-crystal structures led to identification of a novel series of potent CDK8 inhibitors which are highly ligand efficient, kinase selective and cellular active. Compound 16 was progressed to a mouse pharmacokinetic study and showed good oral bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Learning optimal quantum models is NP-hard
NASA Astrophysics Data System (ADS)
Stark, Cyril J.
2018-02-01
Physical modeling translates measured data into a physical model. Physical modeling is a major objective in physics and is generally regarded as a creative process. How good are computers at solving this task? Here, we show that in the absence of physical heuristics, the inference of optimal quantum models cannot be computed efficiently (unless P=NP ). This result illuminates rigorous limits to the extent to which computers can be used to further our understanding of nature.
NASA Astrophysics Data System (ADS)
He, Hui-min; Liu, Feng-man; Xue, Hai-yun; Wu, Peng; Song, Man-gu; Sun, Yu; Cao, Li-qiang
2017-07-01
An optical transceiver with a novel optical subassembly structure is proposed in this paper, which achieves high coupling efficiency and low assembly difficulty. The proposed optical transceiver consumes 0.9 W power and retains a small size of 28 mm×16 mm×3 mm. The fabrication process of the silicon substrate and the assembly process of the optical transceiver are demonstrated in details. Moreover, the optical transceiver is measured in order to verify its transmission performance. The clear eye diagrams and the low bit error rate ( BER) less than 10-13 at 10 Gbit/s per channel show good transmission characteristics of the designed optical transceiver.
NASA Astrophysics Data System (ADS)
Cha, Jae-Ryung; Gong, Myoung-Seon; Lee, Tak Jae; Ha, Tae Hoon; Lee, Chil Won
2018-04-01
The ortho-substituted donor-acceptor molecules 2-(4,6-diphenyl-1, 3, 5-triazin-2-yl)- N,Ndiphenylaniline (DPA- o-Trz) and 2-(4,6-diphenyl-1, 3, 5-triazine-2-yl)- N,N-di- p-tolylaniline (MPA- o-Trz) were designed, synthesized, and found to exhibit green fluorescence characteristics. Notably, the singlet-triplet energy gap was less than 0.1 eV, indicating that reverse intersystem crossing gave rise to thermally activated delayed fluorescence (TADF). The organic light-emitting device performance of MPA- o-Trz showed a high external quantum efficiency of 16.3% and good color stability from 0.1 cd/m2 to 5000 cd/m2.
A Comparison of LBG and ADPCM Speech Compression Techniques
NASA Astrophysics Data System (ADS)
Bachu, Rajesh G.; Patel, Jignasa; Barkana, Buket D.
Speech compression is the technology of converting human speech into an efficiently encoded representation that can later be decoded to produce a close approximation of the original signal. In all speech there is a degree of predictability and speech coding techniques exploit this to reduce bit rates yet still maintain a suitable level of quality. This paper is a study and implementation of Linde-Buzo-Gray Algorithm (LBG) and Adaptive Differential Pulse Code Modulation (ADPCM) algorithms to compress speech signals. In here we implemented the methods using MATLAB 7.0. The methods we used in this study gave good results and performance in compressing the speech and listening tests showed that efficient and high quality coding is achieved.
NASA Astrophysics Data System (ADS)
Bakhmachuk, A.; Gorbatiuk, O.; Rachkov, A.; Dons'koi, B.; Khristosenko, R.; Ushenin, I.; Peshkova, V.; Soldatkin, A.
2017-02-01
The developed surface plasmon resonance (SPR) biosensor based on the recombinant Staphylococcal protein A with an additional cysteine residue (SPA-Cys) used as a biorecognition component showed a good selectivity and sensitivity for the immunoglobulin detection. The developed biosensor with SPA-Cys-based bioselective element can also be used as a first step of immunosensor creation. The successful immobilization of SPA-Cys on the nanolayer gold sensor surface of the SPR spectrometer was performed. The efficiency of blocking nonspecific sorption sites on the sensor surface with milk proteins, gelatin, BSA, and HSA was studied, and a rather high efficiency of using gelatin was confirmed. The SPR biosensor selectively interacted with IgG and did not interact with the control proteins. The linear dependence of the sensor response on the IgG concentration in the range from 2 to 10 μg/ml was shown. Using the calibration curve, the IgG concentration was measured in the model samples. The determined concentrations are in good agreement ( r 2 = 0.97) with the given concentration of IgG.
A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.
NASA Astrophysics Data System (ADS)
Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.
1996-02-01
The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.
Huang, Xiaoyong; Wang, Shaoying; Li, Bin; Sun, Qi; Guo, Heng
2018-03-15
In this work, we reported on high-brightness Eu 3+ -activated Ca 3 Lu(AlO) 3 (BO 3 ) 4 (CLAB) red-emitting phosphors. Under 397 nm excitation, the CLAB:Eu 3+ phosphors showed intense red emissions at around 621 nm with CIE coordinates of (0.657, 0.343). The optimal doping concentration of Eu 3+ ions was found to be 30 mol. %, and the CLAB:0.3Eu 3+ sample possessed high-color purity of 93% and ultra-high internal quantum efficiency as great as 98.5%. Importantly, the CLAB:0.3Eu 3+ also had good thermal stability. Finally, a white-light-emitting diode (WLED) lamp with good color-rendering index was fabricated by using a 365 nm ultraviolet chip and the phosphor blends of CLAB:0.3Eu 3+ red-emitting phosphors, (Ba,Sr) 2 SiO 4 :Eu 2+ green-emitting phosphors, and BaMgAl 10 O 7 :Eu 2+ blue-emitting phosphors.
Support vector machine incremental learning triggered by wrongly predicted samples
NASA Astrophysics Data System (ADS)
Tang, Ting-long; Guan, Qiu; Wu, Yi-rong
2018-05-01
According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.
Azidoimidazolinium Salts: Safe and Efficient Diazo-transfer Reagents and Unique Azido-donors.
Kitamura, Mitsuru
2017-07-01
2-Azido-1,3-dimethylimidazolinium chloride (ADMC) and its corresponding hexafluorophosphate (ADMP) were found to be efficient diazo-transfer reagents to various organic compounds. ADMC was prepared by the reaction of 2-chloro-1,3-dimethylimidazolinium chloride (DMC) and sodium azide. ADMP was isolated as a crystal having good thermal stability and low explosibility. ADMC and ADMP reacted with 1,3-dicarbonyl compounds under mild basic conditions to give 2-diazo-1,3-dicarbonyl compounds in high yields, which were easily isolated in virtue of the high water solubility of the by-products. ADMP showed high diazo-transfer ability to primary amines even in the absence of metal salt such as Cu(II). Using this diazotization approach, various alkyl/aryl azides were directly obtained from their corresponding primary amines in high yields. Furthermore, naphthols reacted with ADMC to give the corresponding diazonaphthoquinones in good to high yields. In addition, 2-azido-1,3-dimethylimidazolinium salts were employed as azide-transfer and migratory amidation reagents. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Menezes, Helvécio Costa; de Barcelos, Stella Maris Resende; Macedo, Damiana Freire Dias; Purceno, Aluir Dias; Machado, Bruno Fernades; Teixeira, Ana Paula Carvalho; Lago, Rochel Monteiro; Serp, Philippe; Cardeal, Zenilda Lourdes
2015-05-11
This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18-80.00 μg L(-1)) and determination coefficient (R(2) > 0.9810). The limit of detection ranged from 0.05 to 0.42 μg L(-1) with limit of quantification from 0.18 to 1.40 μg L(-1). Recovery (n=9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n=9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n=9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil. Copyright © 2015 Elsevier B.V. All rights reserved.
Kessler, Ronald C.; Avenevoli, Shelli; Costello, E. Jane; Green, Jennifer Greif; Gruber, Michael J.; Heeringa, Steven; Merikangas, Kathleen R.; Pennell, Beth-Ellen; Sampson, Nancy A.; Zaslavsky, Alan M.
2009-01-01
An overview is presented of the design and field procedures of the US National Comorbidity Survey Replication Adolescent Supplement (NCS-A), a US face-to-face household survey of the prevalence and correlates of DSM-IV mental disorders. The survey was based on a dual-frame design that included 904 adolescent residents of the households that participated in the US National Comorbidity Survey Replication (85.9% response rate) and 9,244 adolescent students selected from a nationally representative sample of 320 schools (74.7% response rate). After expositing the logic of dual-frame designs, comparisons are presented of sample and population distributions on Census socio-demographic variables and, in the school sample, school characteristics. These document only minor differences between the samples and the population. The results of statistical analysis of the bias-efficiency trade-off in weight trimming are then presented. These show that modest trimming meaningfully reduces mean squared error. Analysis of comparative sample efficiency shows that the household sample is more efficient than the school sample, leading to the household sample getting a higher weight relative to its size in the consolidated sample relative to the school sample. Taken together, these results show that the NCS-A is an efficient sample of the target population with good representativeness on a range of socio-demographic and geographic variables. PMID:19507169
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zhu, Wanyan; Xu, Wutong; Wang, Yan; Li, Ning; Zhang, Tingting; Wang, Hui
2017-12-01
Core-shell structured Fe3O4@PPy microspheres are synthesized successfully through a facile polyol reduction method in combination with a modified Stöber method. We show that the as-prepared Fe3O4@PPy microspheres with high saturation magnetization, superparamagnetism, and good dispersibility have a high efficient adsorption capacity for high efficient removal of Pb(II) ions of up to 391.71 mg g-1 and a fast adsorption equilibrium time of 20 min. Furthermore, the lead-adsorbed Fe3O4@PPy microspheres can be rapidly separated from solution because of the excellent superparamagnetic properties. The composite Fe3O4@PPy microspheres are characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The adsorption data from our experiments show that the adsorption process fits well with the pseudosecond- order kinetic model and the adsorption isotherm follows the Langmuir isotherm model. The thermodynamic studies show that the adsorption of Pb(II) on Fe3O4@PPy microspheres is an endothermic and spontaneous process. Comprehensive comparison among adsorbents for the removal of Pb(II) ions that literature reported, reusability, high adsorption efficiency, fast adsorption equilibrium, and rapid magnetic separation make these Fe3O4@PPy microspheres very promising application for removal of Pb(II) ions from contaminated water.
Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment.
Wang, F; Annaheim, S; Morrissey, M; Rossi, R M
2014-06-01
Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Aji, Wijayanto Setyo; Purwanto; Suherman, S.
2018-02-01
Cassava starch industry is one of the leading small-medium enterprises (SMEs) in Pati Regency. Cassava starch industry released waste that reduces the quantity of final product and potentially contamined the environment. This study was conducted to observe the feasibility of good housekeeping implementation to reduce waste and at the same time improve efficiency of production process. Good housekeeping opportunities are consideration by three aspect, technical, economy and environmental. Good housekeeping opportunities involved water conservation and waste reduction. These included reuse of water in washing process, improving workers awareness in drying section and packaging section. Implementation of these opportunities can reduce water consumption, reduce wastewater and solid waste generation also increased quantity of final product.
A GPU-based mipmapping method for water surface visualization
NASA Astrophysics Data System (ADS)
Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan
2018-03-01
Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.
Ecological models supporting environmental decision making: a strategy for the future
Schmolke, Amelie; Thorbek, Pernille; DeAngelis, Donald L.; Grimm, Volker
2010-01-01
Ecological models are important for environmental decision support because they allow the consequences of alternative policies and management scenarios to be explored. However, current modeling practice is unsatisfactory. A literature review shows that the elements of good modeling practice have long been identified but are widely ignored. The reasons for this might include lack of involvement of decision makers, lack of incentives for modelers to follow good practice, and the use of inconsistent terminologies. As a strategy for the future, we propose a standard format for documenting models and their analyses: transparent and comprehensive ecological modeling (TRACE) documentation. This standard format will disclose all parts of the modeling process to scrutiny and make modeling itself more efficient and coherent.
Backward pumping kilowatt Yb3+-doped double-clad fiber laser
NASA Astrophysics Data System (ADS)
Han, Z. H.; Lin, X. C.; Hou, W.; Yu, H. J.; Zhou, S. Z.; Li, J. M.
2011-09-01
A ytterbium-doped double-clad fiber laser generating up to 1026 W of continuous-wave output power at 1085 nm with a slope efficiency of 74% by single-ended backward pumping configuration is reported. The core diameter was 20 μm with a low numerical aperture of 0.06, and a good beam quality (BPP < 1.8 mm mrad) is achieved without special mode selection methods. No undesirable roll-over was observed in output power with increasing pump power, and the maximum output power was limited by the available pump power. The instability of maximum output power was better than ±0.6%. Different pumping configurations were also compared in experiment, which shows good agreements with theoretical analyses.
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1979-01-01
Several 20 cm diameter silicon ingots, up to 6.3 kg. were cast with good crystallinity. The graphite heat zone can be purified by heating it to high temperatures in vacuum. This is important in reducing costs and purification of large parts. Electroplated wires with 45 um synthetic diamonds and 30 um natural diamonds showed good cutting efficiency and lifetime. During slicing of a 10 cm x 10 cm workpiece, jerky motion occurred in the feed and rocking mechanisms. This problem is corrected and modifications were made to reduce the weight of the bladeheat by 50%.
Characteristics of the annular beam using a single axicon and a pair of lens
NASA Astrophysics Data System (ADS)
Ji, Ke; Lei, Ming; Yao, Baoli; Yan, Shaohui; Yang, Yanlong; Li, Ze; Dan, Dan; Menke, Neimule
2012-10-01
In optical trapping, annular beam as a kind of hollow beam is used to increase the axial trapping efficiency as well as the trapping stability. In this paper, a method for producing an annular beam by a system consisting of a single axicon and a pair of lens is proposed. The generated beam was also used as the optical tweezers. We use the geometrical optics to describe the propagation of light in the system. The calculated intensity distribution in three-dimensional space after the system shows a good agreement with the experimental results. The advantages of this method are simplicity of operation, good stability, and high transmittance, having possible applications in fields like optical microscopic, optical manipulation and electronic acceleration, etc.
A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered
NASA Astrophysics Data System (ADS)
Chao, Chung-Hsing; Shieh, Jenn-Jong
Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.
Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi
2014-04-01
Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000. Copyright © 2014 Elsevier Ltd. All rights reserved.
A sensory-driven controller for quadruped locomotion.
Ferreira, César; Santos, Cristina P
2017-02-01
Locomotion of quadruped robots has not yet achieved the harmony, flexibility, efficiency and robustness of its biological counterparts. Biological research showed that spinal reflexes are crucial for a successful locomotion in the most varied terrains. In this context, the development of bio-inspired controllers seems to be a good way to move toward an efficient and robust robotic locomotion, by mimicking their biological counterparts. This contribution presents a sensory-driven controller designed for the simulated Oncilla quadruped robot. In the proposed reflex controller, movement is generated through the robot's interactions with the environment, and therefore, the controller is solely dependent on sensory information. The results show that the reflex controller is capable of producing stable quadruped locomotion with a regular stepping pattern. Furthermore, it is capable of dealing with slopes without changing the parameters and with small obstacles, overcoming them successfully. Finally, system robustness was verified by adding noise to sensors and actuators and also delays.
Simulated annealing with probabilistic analysis for solving traveling salesman problems
NASA Astrophysics Data System (ADS)
Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan
2013-09-01
Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.
Xiao, Gang; Li, Peifeng; Zhao, Yilin; Xu, Shengnan; Su, Haijia
2018-05-20
Green and efficient procedures are highly required for the chemoselective hydrogenation of functionalized nitroarenes to industrially important anilines. Here, we show that visible-light-driven, chemoselective hydrogenation of functionalized nitroarenes bearing the sensitive groups to anilines can be achieved in good to excellent yields (82-100%) in water under relatively mild conditions, catalyzed by low-cost and recyclable graphitic carbon nitride. It is also applicable in gram-scale reaction with 86% yield of aniline. Mechanism study reveals that visible light induced electrons are responsible for the hydrogenation reactions and thermal energy can also promote the photocatalytic activity. Kinetics study shows that this reaction possibly occurs via one-step hydrogenation or stepwise condensation route. Wide applications can be expected using this green, efficient, and highly selective photocatalysis system in reduction reactions for fine chemical synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thornton, Jason M; Raftery, Daniel
2012-05-01
Undoped and carbon doped cadmium indate (CdIn(2)O(4)) powders were synthesized using a sol-gel pyrolysis method and evaluated for hydrogen generation activity under UV-visible irradiation without the use of a sacrificial reagent. Each catalyst powder was loaded with a platinum cocatalyst in order to increase electron-hole pair separation and promote surface reactions. Carbon-doped indium oxide and cadmium oxide were also prepared and analyzed for comparison. UV-vis diffuse reflectance spectra indicate the band gap for C-CdIn(2)O(4) to be 2.3 eV. C-doped In(2)O(4) showed a hydrogen generation rate approximately double that of the undoped material. When compared to platinized TiO(2) in methanol, which was used as a control material, C-CdIn(2)O(4) showed a 4-fold increase in hydrogen production. The quantum efficiency of the material was calculated at different wavelength intervals and found to be 8.7% at 420-440 nm. The material was capable of hydrogen generation using visible light only and with good efficiency even at 510 nm.
PDF-based heterogeneous multiscale filtration model.
Gong, Jian; Rutland, Christopher J
2015-04-21
Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.
NASA Astrophysics Data System (ADS)
Chaiamornnugool, Phrompak; Tontapha, Sarawut; Phatchana, Ratchanee; Ratchapolthavisin, Nattawat; Kanokmedhakul, Somdej; Sang-aroon, Wichien; Amornkitbamrung, Vittaya
2017-01-01
The low cost DSSCs utilized by crude and pre-concentrated anthocyanins extracted from six anthocyanin-rich samples including mangosteen pericarp, roselle, red cabbage, Thai berry, black rice and blue pea were fabricated. Their photo-to-current conversion efficiencies and stability were examined. Pre-concentrated extracts were obtained by solid phase extraction (SPE) using C18 cartridge. The results obviously showed that all pre-concentrated extracts performed on photovoltaic performances in DSSCs better than crude extracts except for mangosteen pericarp. The DSSC sensitized by pre-concentrated anthocyanin from roselle and red cabbage showed maximum current efficiency η = 0.71% while DSSC sensitized by crude anthocyanin from mangosteen pericarp reached maximum efficiency η = 0.97%. In addition, pre-concentrated extract based cells possess more stability than those of crude extract based cells. This indicates that pre-concentration of anthocyanin via SPE method is very effective for DSSCs based on good photovoltaic performance and stability. The DFT/TDDFT calculations of electronic and photoelectrochemical properties of the major anthocyanins found in the samples are employed to support the experimental results.
Design of quantum efficiency measurement system for variable doping GaAs photocathode
NASA Astrophysics Data System (ADS)
Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang
2008-03-01
To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.
Liu, Mengjia; Li, Jinghong
2016-01-27
The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.
Lee, Kisu; Ryu, Jaehoon; Yu, Haejun; Yun, Juyoung; Lee, Jungsup; Jang, Jyongsik
2017-11-02
We modified phenyl-C61-butyric acid methyl ester (PCBM) for use as a stable, efficient electron transport layer (ETL) in inverted perovskite solar cells (PSCs). PCBM containing a surfactant Triton X-100 acts as the ETL and NiO X nanocrystals act as a hole transport layer (HTL). Atomic force microscopy and scanning electron microscopy images showed that surfactant-modified PCBM (s-PCBM) forms a high-quality, uniform, and dense ETL on the rough perovskite layer. This layer effectively blocks holes and reduces interfacial recombination. Steady-state photoluminescence and electrochemical impedance spectroscopy analyses confirmed that Triton X-100 improved the electron extraction performance of PCBM. When the s-PCBM ETL was used, the average power conversion efficiency increased from 10.76% to 15.68%. This improvement was primarily caused by the increases in the open-circuit voltage and fill factor. s-PCBM-based PSCs also showed good air-stability, retaining 83.8% of their initial performance after 800 h under ambient conditions.
Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie
2016-05-02
We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.
Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model
NASA Astrophysics Data System (ADS)
Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.
2017-12-01
Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nabawy, Mostafa R. A.; Crowther, William J.
2014-01-01
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping. PMID:24554578
Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs) - Hydroponic cultivation
NASA Astrophysics Data System (ADS)
Paradiso, R.; Buonomo, R.; De Micco, V.; Aronne, G.; Palermo, M.; Barbieri, G.; De Pascale, S.
2012-12-01
Four soybean cultivars ('Atlantic', 'Cresir', 'Pr91m10' and 'Regir'), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m-2 s-1, temperature regime 26/20 °C light/dark, relative humidity 65-75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m-1 and 5.5 respectively. The percentage of germination was high (from 86.9% in 'Cresir' to 96.8% in 'Regir')and the MGT was similar for all the cultivars (4.3 days). The growing cycle lasted from 114 in 'Cresir' to 133 days on average in the other cultivars. Differences in plant size were recorded, with 'Pr91m10' plants being the shortest (58 vs 106 cm). Cultivars did not differ significantly in seed yield (12 g plant-1) and in non edible biomass (waste), water consumption and biomass conversion efficiency (water, radiation and acid use indexes). 'Pr91m10' showed the highest protein content in the seeds (35.6% vs 33.3% on average in the other cultivars). Results from the cultivation experiment showed good performances of the four cultivars in hydroponics. The overall analysis suggests that 'Pr91m10' could be the best candidate for the cultivation in a BLSS, coupling the small plant size and the good yield with high resource use efficiency and good seed quality.
Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yun-Sik; Department of Physics, University of Science, Pyongyang, North Korea; Hao, Zuoqiang
A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg,more » and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.« less
Nabawy, Mostafa R A; Crowther, William J
2014-05-06
This paper introduces a generic, transparent and compact model for the evaluation of the aerodynamic performance of insect-like flapping wings in hovering flight. The model is generic in that it can be applied to wings of arbitrary morphology and kinematics without the use of experimental data, is transparent in that the aerodynamic components of the model are linked directly to morphology and kinematics via physical relationships and is compact in the sense that it can be efficiently evaluated for use within a design optimization environment. An important aspect of the model is the method by which translational force coefficients for the aerodynamic model are obtained from first principles; however important insights are also provided for the morphological and kinematic treatments that improve the clarity and efficiency of the overall model. A thorough analysis of the leading-edge suction analogy model is provided and comparison of the aerodynamic model with results from application of the leading-edge suction analogy shows good agreement. The full model is evaluated against experimental data for revolving wings and good agreement is obtained for lift and drag up to 90° incidence. Comparison of the model output with data from computational fluid dynamics studies on a range of different insect species also shows good agreement with predicted weight support ratio and specific power. The validated model is used to evaluate the relative impact of different contributors to the induced power factor for the hoverfly and fruitfly. It is shown that the assumption of an ideal induced power factor (k = 1) for a normal hovering hoverfly leads to a 23% overestimation of the generated force owing to flapping.
Popescu, R A; Magyari, K; Vulpoi, A; Trandafir, D L; Licarete, E; Todea, M; Ştefan, R; Voica, C; Vodnar, D C; Simon, S; Papuc, I; Baia, L
2016-07-19
In the present study our interest is focused on finding the efficiency of 60SiO2·(32 - x)CaO·8P2O5·xCuO (mol%) glass-ceramics, with 0 ≤ x ≤ 4 mol%, in terms of bioactivity, biocompatibility, antibacterial properties and cell viability in order to determine the most appropriate composition for their further use in in vivo trials. The sol-gel synthesized samples show a preponderantly amorphous structure with a few crystallization centers associated with the formation of an apatite and calcium carbonate crystalline phases. The Fourier Transform Infrared (FT-IR) spectra revealed slightly modified absorption bands due to the addition of copper oxide, while the information derived from the measurements performed by transmission electron microscopy, UV-vis and electron paramagnetic resonance spectroscopy showed the presence of ions and metallic copper species. X-Ray photoelectron spectroscopic analysis indicated the presence of copper metallic species, in a reduced amount, only on the sample surface with the highest Cu content. Regarding in vitro assessment of bioactivity, the results obtained by X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy, demonstrated the formation of a calcium phosphate layer on all investigated sample surfaces. The inhibitory effect of the investigated samples was more significant on the Pseudomonas aeruginosa than the Staphylococcus aureus strain, the sample with the lowest concentration of copper oxide (0.5 mol%) being also the most efficient in both bacterial cultures. This sample also exhibits a very good bactericidal activity, for the other samples it was necessary to use a higher quantity to inhibit and kill the bacterial species. The secondary structure of adsorbed albumin presents few minor changes, indicating the biocompatibility of the glass-ceramics. The cell viability assay shows a good proliferation rate on samples with 0.5 and 1.5 mol% CuO, although all glass-ceramic samples exhibited a good in vivo tolerance.
NASA Astrophysics Data System (ADS)
Bolshedvorskii, S. V.; Vorobyov, V. V.; Soshenko, V. V.; Zeleneev, A.; Sorokin, V. N.; Smolyaninov, A. N.; Akimov, A. V.
2018-02-01
Quickly developing application of nitrogen-vacancy color centers in diamond sets demands on cheap and high optical and spin properties nanodiamonds. Among other types, detonation nanodiamonds are easiest for production but often show no NV color centers inside. In this work we show, that aggregates of detonation nanodiamonds could be as good, or even better in terms of brightness and spin properties, than more expensive single crystal nanodiamonds. This way aggregates of detonation nanodiamonds could efficiently serve as cheap and bright source of single photon radiation or sensitive element of biocompatible sensor.
A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids
Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M.; Qiao, Shanlei; Spencer, Melanie D.; Zeisel, Steven H.; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei
2013-01-01
Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and inter-day (within 7 days) precision (< 10%), and good stability (< 20%) within 4 days at room temperature (23–25 °C), or 7 days when stored at −20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistics analysis of the concentrations of these target metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research. PMID:23997757
Sonochemical cleaning efficiencies in dental instruments
NASA Astrophysics Data System (ADS)
Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.
2012-05-01
Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.
Efficient Raman sideband cooling of trapped ions to their motional ground state
NASA Astrophysics Data System (ADS)
Che, H.; Deng, K.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H.
2017-07-01
Efficient cooling of trapped ions is a prerequisite for various applications of the ions in precision spectroscopy, quantum information, and coherence control. Raman sideband cooling is an effective method to cool the ions to their motional ground state. We investigate both numerically and experimentally the optimization of Raman sideband cooling strategies and propose an efficient one, which can simplify the experimental setup as well as reduce the number of cooling pulses. Several cooling schemes are tested and compared through numerical simulations. The simulation result shows that the fixed-width pulses and varied-width pulses have almost the same efficiency for both the first-order and the second-order Raman sideband cooling. The optimized strategy is verified experimentally. A single 25Mg+ ion is trapped in a linear Paul trap and Raman sideband cooled, and the achieved average vibrational quantum numbers under different cooling strategies are evaluated. A good agreement between the experimental result and the simulation result is obtained.
High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun
2008-10-01
This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.
Li, Guangyuan; Zhang, Jiasen
2014-01-01
Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate–metal interface and the first-order SPP resonance at the metal–substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results. PMID:25081812
Li, Guangyuan; Zhang, Jiasen
2014-08-01
Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate-metal interface and the first-order SPP resonance at the metal-substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results.
Arukalam, I O
2014-11-04
The performance of hydroxypropyl methylcellulose (HPMC) as safe corrosion inhibitor for mild steel in aerated 0.5M H2SO4 solution was appraised by weight loss, impedance and polarization measurements. Results indicate that HPMC functions as a good inhibitor in the studied environment and inhibition efficiency increased with increasing concentration of inhibitor and temperature. Time-dependent effect of the inhibition efficiency reveals that inhibition efficiency increased with time up to the fourth day after which it waned, but improved on addition of KI. The synergism parameter evaluated confirmed the synergistic effect of KI and HPMC. Impedance results clearly show that HPMC inhibited the corrosion reaction via adsorption onto the metal/solution interface following Freundlich adsorption isotherm. Polarization results indicate that HPMC acts as a mixed-type inhibitor with predominant cathodic effect. Theoretical study using density functional theory was employed to establish the correlation between the structure (molecular and electronic) and the inhibition efficiency. Copyright © 2014. Published by Elsevier Ltd.
A decision support model for investment on P2P lending platform.
Zeng, Xiangxiang; Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace-Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone.
A decision support model for investment on P2P lending platform
Liu, Li; Leung, Stephen; Du, Jiangze; Wang, Xun; Li, Tao
2017-01-01
Peer-to-peer (P2P) lending, as a novel economic lending model, has triggered new challenges on making effective investment decisions. In a P2P lending platform, one lender can invest N loans and a loan may be accepted by M investors, thus forming a bipartite graph. Basing on the bipartite graph model, we built an iteration computation model to evaluate the unknown loans. To validate the proposed model, we perform extensive experiments on real-world data from the largest American P2P lending marketplace—Prosper. By comparing our experimental results with those obtained by Bayes and Logistic Regression, we show that our computation model can help borrowers select good loans and help lenders make good investment decisions. Experimental results also show that the Logistic classification model is a good complement to our iterative computation model, which motivates us to integrate the two classification models. The experimental results of the hybrid classification model demonstrate that the logistic classification model and our iteration computation model are complementary to each other. We conclude that the hybrid model (i.e., the integration of iterative computation model and Logistic classification model) is more efficient and stable than the individual model alone. PMID:28877234
NASA Astrophysics Data System (ADS)
Tang, Xiaomin; Si, Yang; Ge, Jianlong; Ding, Bin; Liu, Lifang; Zheng, Gang; Luo, Wenjing; Yu, Jianyong
2013-11-01
Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP modification, the pristine hydrophilic PMIA nanofibrous membranes are endowed with promising superhydrophobicity with a water contact angle of 161° and superoleophilicity with an oil contact angle of 0°. This new membrane shows high thermal stability (350 °C) and good repellency to hot water (80 °C), and achieves an excellent mechanical strength of 40.8 MPa. Furthermore, the as-prepared membranes exhibited fast and efficient separation of oil-water mixtures by a solely gravity driven process, which makes them good candidates for industrial oil-polluted water treatments and oil spill cleanup, and also provided new insights into the design and development of functional nanofibrous membranes through F-PBZ modification.Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP modification, the pristine hydrophilic PMIA nanofibrous membranes are endowed with promising superhydrophobicity with a water contact angle of 161° and superoleophilicity with an oil contact angle of 0°. This new membrane shows high thermal stability (350 °C) and good repellency to hot water (80 °C), and achieves an excellent mechanical strength of 40.8 MPa. Furthermore, the as-prepared membranes exhibited fast and efficient separation of oil-water mixtures by a solely gravity driven process, which makes them good candidates for industrial oil-polluted water treatments and oil spill cleanup, and also provided new insights into the design and development of functional nanofibrous membranes through F-PBZ modification. Electronic supplementary information (ESI) available: Detailed synthesis and structural confirmation of BAF-oda, OCA results, Raman spectrum and Movies S1 and S2. See DOI: 10.1039/c3nr03937d
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Jiangwei; Shi, Wenyan; Zhang, Fan
An,electrooxidative direct arylsulfonlylation of yones sulfintc acids via a radical tandem cyclization strategy has been developed for the construction of sulfonated ilicIenones:under oxidant, free conditions. This method provides a simple and efficient approach to prepare various sulfonylindenones in good to,excellent:Tyidds,, demonstrating the tremendous prospect of utilizing electrocatalysis in oxidative coupling, Notably, this reaction could Be easily scaled up with good, efficiency.
Using the entire history in the analysis of nested case cohort samples.
Rivera, C L; Lumley, T
2016-08-15
Countermatching designs can provide more efficient estimates than simple matching or case-cohort designs in certain situations such as when good surrogate variables for an exposure of interest are available. We extend pseudolikelihood estimation for the Cox model under countermatching designs to models where time-varying covariates are considered. We also implement pseudolikelihood with calibrated weights to improve efficiency in nested case-control designs in the presence of time-varying variables. A simulation study is carried out, which considers four different scenarios including a binary time-dependent variable, a continuous time-dependent variable, and the case including interactions in each. Simulation results show that pseudolikelihood with calibrated weights under countermatching offers large gains in efficiency if compared to case-cohort. Pseudolikelihood with calibrated weights yielded more efficient estimators than pseudolikelihood estimators. Additionally, estimators were more efficient under countermatching than under case-cohort for the situations considered. The methods are illustrated using the Colorado Plateau uranium miners cohort. Furthermore, we present a general method to generate survival times with time-varying covariates. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Real time PI-backstepping induction machine drive with efficiency optimization.
Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader
2017-09-01
This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Wu, Yongzhen; Zhu, Wei-Hong; Zakeeruddin, Shaik M; Grätzel, Michael
2015-05-13
The dye-sensitized solar cell (DSSC) is one of the most promising photovoltaic technologies with potential of low cost, light weight, and good flexibility. The practical application of DSSCs requires further improvement in power conversion efficiency and long-term stability. Recently, significant progress has been witnessed in DSSC research owing to the novel concept of the D-A-π-A motif for the molecular engineering of organic photosensitizers. New organic and porphyrin dyes based on the D-A-π-A motif can not only enhance photovoltaic performance, but also improve durability in DSSC applications. This Spotlight on Applications highlights recent advances in the D-A-π-A-based photosensitizers, specifically focusing on the mechanism of efficiency and stability enhancements. Also, we find insight into the additional acceptor as well as the trade-off of long wavelength response. The basic principles are involved in molecular engineering of efficient D-A-π-A sensitizers, providing a clear road map showing how to modulate the energy bands, rationally extending the response wavelength, and optimizing photovoltaic efficiency step by step.
Quantitative evaluation of patient-specific quality assurance using online dosimetry system
NASA Astrophysics Data System (ADS)
Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk
2018-01-01
In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).
The influence of early embryo traits on human embryonic stem cell derivation efficiency.
O'Leary, Thomas; Heindryckx, Björn; Lierman, Sylvie; Van der Jeught, Margot; Menten, Björn; Deforce, Dieter; Cornelissen, Ria; de Sousa Lopes, Susana Chuva; De Sutter, Petra
2011-05-01
Despite its prognostic value in in vitro fertilization, early embryo morphology is not reported on in the derivation of human embryonic stem cell (hESC) lines. Standard hESC derivation does rely on blastocyst development and its efficiency is highly correlated to inner cell mass (ICM) quality. Poor-quality embryos (PQEs) donated for hESC derivation may have a range of cleavage-stage abnormalities that are known to compromise further development. This study was implemented to determine whether specific PQEs traits influence the efficiency of good-quality ICMs to derive new hESC lines. We found that although the types of PQEs investigated were all able to make blastocysts with good-quality ICMs, the ICMs were unequal in their ability to derive hESCs. Good-quality ICMs from embryos with multiple poor-quality traits were unable to generate hESC lines, in contrast to good-quality ICMs from embryos with a single poor-quality trait. In addition, our data suggest a direct correlation between the number of ICM cells present in the blastocyst and its capacity to derive new hESC lines. This study is the first to demonstrate that ICM quality alone is an incomplete indicator of hESC derivation and that application of in vitro fertilization-based early embryo scoring can help predict hESC derivation efficiency. Experiments aiming to quantify, improve upon, or compare hESC derivation efficiency should thus take into consideration early embryo morphology scoring for the comparison of groups with equal developmental competence.
Kobayashi, Yutaka; Ichioka, Maki; Hirose, Tomoyasu; Nagai, Kenichiro; Matsumoto, Atsuko; Matsui, Hidehiro; Hanaki, Hideaki; Masuma, Rokuro; Takahashi, Yoko; Omura, Satoshi; Sunazuka, Toshiaki
2010-10-15
Novel bottromycin derivatives were synthesized from bottromycin A(2) via a hydrazide derivative as a common intermediate. Seventeen derivatives were subjected to in vitro evaluation against drug-resistant gram-positive bacteria. Some compounds showed potent anti-MRSA and anti-VRE activity, as did bottromycin A(2). Notably, a propyl ketone derivative exhibited good antibacterial activity with excellent metabolite stability. Copyright © 2010 Elsevier Ltd. All rights reserved.
Electromagnetic Design of a Radiofrequency Cavity
NASA Astrophysics Data System (ADS)
Montoya Soto, G. R.; Duarte Galvan, Carlos; Monzon, Ildefonso Leon; Podesta Lerma, Pedro Luis manuel; Valerio-Lizarraga, C. A.
2017-10-01
Electromagnetic and mechanical studies have been performed with the aim of build a RF cavity in the S-Band (2998 MHz), the design takes into consideration the relativistic change in the electron velocity through the acceleration cavity. Four cavity cases were considered at different input energies, 50 KeV, 100 KeV, 150 KeV, with output energies of 350 KeV, the designs show good acceleration efficiency and beam coherence comparable to the one created in the cathode.
A Lightweight RFID Mutual Authentication Protocol Based on Physical Unclonable Function.
Xu, He; Ding, Jie; Li, Peng; Zhu, Feng; Wang, Ruchuan
2018-03-02
With the fast development of the Internet of Things, Radio Frequency Identification (RFID) has been widely applied into many areas. Nevertheless, security problems of the RFID technology are also gradually exposed, when it provides life convenience. In particular, the appearance of a large number of fake and counterfeit goods has caused massive loss for both producers and customers, for which the clone tag is a serious security threat. If attackers acquire the complete information of a tag, they can then obtain the unique identifier of the tag by some technological means. In general, because there is no extra identifier of a tag, it is difficult to distinguish an original tag and its clone one. Once the legal tag data is obtained, attackers can be able to clone this tag. Therefore, this paper shows an efficient RFID mutual verification protocol. This protocol is based on the Physical Unclonable Function (PUF) and the lightweight cryptography to achieve efficient verification of a single tag. The protocol includes three process: tag recognition, mutual verification and update. The tag recognition is that the reader recognizes the tag; mutual verification is that the reader and tag mutually verify the authenticity of each other; update is supposed to maintain the latest secret key for the following verification. Analysis results show that this protocol has a good balance between performance and security.
A Lightweight RFID Mutual Authentication Protocol Based on Physical Unclonable Function
Ding, Jie; Zhu, Feng; Wang, Ruchuan
2018-01-01
With the fast development of the Internet of Things, Radio Frequency Identification (RFID) has been widely applied into many areas. Nevertheless, security problems of the RFID technology are also gradually exposed, when it provides life convenience. In particular, the appearance of a large number of fake and counterfeit goods has caused massive loss for both producers and customers, for which the clone tag is a serious security threat. If attackers acquire the complete information of a tag, they can then obtain the unique identifier of the tag by some technological means. In general, because there is no extra identifier of a tag, it is difficult to distinguish an original tag and its clone one. Once the legal tag data is obtained, attackers can be able to clone this tag. Therefore, this paper shows an efficient RFID mutual verification protocol. This protocol is based on the Physical Unclonable Function (PUF) and the lightweight cryptography to achieve efficient verification of a single tag. The protocol includes three process: tag recognition, mutual verification and update. The tag recognition is that the reader recognizes the tag; mutual verification is that the reader and tag mutually verify the authenticity of each other; update is supposed to maintain the latest secret key for the following verification. Analysis results show that this protocol has a good balance between performance and security. PMID:29498684
When Cooperation Was Efficient or Inefficient. Functional Near-Infrared Spectroscopy Evidence
Balconi, Michela; Vanutelli, Maria E.
2017-01-01
Cooperation is a construct within social cognition that requires both self-perception and the comprehension of others' actions. In the case of synchronized activities the adoption of common strategies is crucial, but this process can be strongly influenced by those variables. In fact, self-perceived efficacy within the social exchange can affect the motivational components toward the creation of synergic actions. Thus, what happens when our performance is efficient or inefficient during cooperation? This question was answered in the present study where we compared behavioral performance and neural activation across different conditions where subjects received an external feedback assessing a good or a poor outcome during a cooperative game. The request was to synchronize responses in a way to achieve good cooperation scorings. Results showed that the behavioral performance was affected by feedback valence, since the negative feedback induced a significant worse performance in contrast to the positive one, which significantly increased performance. For what concerns neural activation, data from functional near-infrared spectroscopy (fNIRS) showed a specific lateralization effect with the right DLPFC recruited in the case of negative feedback, and an opposite left-sided effect in the case of a positive feedback. Findings were interpreted by proposing that the inefficient condition could be similar to a competitive context since the perception of a failed joint action could have frustrated the cooperative attitude and the use of joint strategies. PMID:28536508
Validation of Sleep-Tracking Technology Compared with Polysomnography in Adolescents
de Zambotti, Massimiliano; Baker, Fiona C.; Colrain, Ian M.
2015-01-01
Study Objectives: To evaluate the accuracy in measuring nighttime sleep of a fitness tracker (Jawbone UP) compared to polysomnography (PSG). Design: Jawbone UP and PSG data were simultaneously collected from adolescents during an overnight laboratory recording. Agreements between Jawbone UP and PSG sleep outcomes were analyzed using paired t tests and Bland-Altman plots. Multiple regressions were used to investigate which PSG sleep measures predicted Jawbone UP “Sound sleep” and “Light sleep.” Setting: SRI International Human Sleep Laboratory. Participants: Sixty-five healthy adolescents (28 females, mean age ± standard deviation [SD]: 15.8 ± 2.5 y). Interventions: N/A. Measurements and Results: Outcomes showed good agreements between Jawbone UP and PSG for total sleep time (mean differences ± SD: −10.0 ± 20.5 min), sleep efficiency (mean differences ± SD: −1.9 ± 4.2 %), and wake after sleep onset (WASO) (mean differences ± SD: 10.6 ± 14.7 min). Overall, Jawbone UP overestimated PSG total sleep time and sleep efficiency and underestimated WASO but differences were small and, on average, did not exceed clinically meaningful cutoffs of > 30 min for total sleep time and > 5% for sleep efficiency. Multiple regression models showed that Jawbone UP “Sound sleep” measure was predicted by PSG time in N2 (β = 0.25), time in rapid eye movement (β = 0.29), and arousal index (β = −0.34). Jawbone UP “Light sleep” measure was predicted by PSG time in N2 (β = 0.48), time in N3 (β = 0.49), arousal index (β = 0.38) and awakening index (β = 0.28). Jawbone UP showed a progression from slight overestimation to underestimation of total sleep time and sleep efficiency with advancing age. All relationships were similar in boys and girls. Conclusions: Jawbone UP shows good agreement with polysomnography in measures of total sleep time and wake after sleep onset in adolescent boys and girls. Further validation is needed in other age groups and clinical populations before advocating use of these inexpensive and easy-to-use devices in clinical sleep medicine and research. Citation: de Zambotti M, Baker FC, Colrain IM. Validation of sleep-tracking technology compared with polysomnography in adolescents. SLEEP 2015;38(9):1461–1468. PMID:26158896
Liu, Qiang; Su, Rong-Chuan; Yi, Wen-Jing; Zheng, Li-Ting; Lu, Shan-Shan; Zhao, Zhi-Gang
2017-03-31
A series of tocopherol-based cationic lipid 3a-3f bearing a pH-sensitive imidazole moiety in the dipeptide headgroup and a reduction-responsive disulfide linkage were designed and synthesized. Acid-base titration of these lipids showed good buffering capacities. The liposomes formed from 3 and co-lipid 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) could efficiently bind and condense DNA into nanoparticles. Gel binding and HPLC assays confirmed the encapsulated DNA could release from lipoplexes 3 upon addition of 10 mM glutathione (GSH). MTT assays in HEK 293 cells demonstrated that lipoplexes 3 had low cytotoxicity. The in vitro gene transfection studies showed cationic dipeptide headgroups clearly affected the transfection efficiency (TE), and arginine-histidine based dipeptide lipid 3f give the best TE, which was 30.4 times higher than Lipofectamine 3000 in the presence of 10% serum. Cell-uptake assays indicated that basic amino acid containing dipeptide cationic lipids exhibited more efficient cell uptake than serine and aromatic amino acids based dipeptide lipids. Confocal laser scanning microscopy (CLSM) studies corroborated that 3 could efficiently deliver and release DNA into the nuclei of HeLa cells. These results suggest that tocopherol-based dipeptide cationic lipids with pH and reduction dual-sensitive characteristics might be promising non-viral gene delivery vectors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Polyethyleneimine grafted short halloysite nanotubes for gene delivery.
Long, Zheru; Zhang, Jun; Shen, Yan; Zhou, Changren; Liu, Mingxian
2017-12-01
Inorganic nanoparticles have attracted much attentions in gene delivery because of their desirable characteristics including low toxicity, well-controlled characteristics, high gene delivery efficiency, and multi-functionalities. Here, natural occurred halloysite nanotubes (HNTs) were developed as a novel non-viral gene vector. To increase the efficiency of endocytosis, HNTs were firstly shortened into an appropriate size (~200nm). Then polyethyleneimine (PEI) was grafted onto HNTs to bind green fluorescence protein (GFP) labeled pDNA. The structure and physical-chemical properties of PEI grafted HNTs (PEI-g-HNTs) were characterized by various methods. PEI-g-HNTs show lower cytotoxicity than PEI. PEI-g-HNTs are positively charged and can bind DNA tightly at designed N/P ratio from 5:1 to 40:1. PEI-g-HNTs/pDNA complexes show much higher transfection efficiency towards both 293T and HeLa cells compared with PEI/pDNA complexes at the equivalent N/P ratio. The transfection efficiencies of PEI-g-HNTs/pDNA complex towards HeLa cell can reach to 44.4% at N/P ratio of 20. PEI-g-HNTs/pDNA complexes possess a higher GFP protein expression than PEI/pDNA from simple western immunoblots. So, PEI-g-HNTs are potential gene vectors with good biocompatibility and high transfection efficiency, which have promising applications in cancer gene therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Sung-Ho
2009-08-01
Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.
High efficiency ion beam accelerator system
NASA Technical Reports Server (NTRS)
Aston, G.
1981-01-01
An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.
A frequency dependent preconditioned wavelet method for atmospheric tomography
NASA Astrophysics Data System (ADS)
Yudytskiy, Mykhaylo; Helin, Tapio; Ramlau, Ronny
2013-12-01
Atmospheric tomography, i.e. the reconstruction of the turbulence in the atmosphere, is a main task for the adaptive optics systems of the next generation telescopes. For extremely large telescopes, such as the European Extremely Large Telescope, this problem becomes overly complex and an efficient algorithm is needed to reduce numerical costs. Recently, a conjugate gradient method based on wavelet parametrization of turbulence layers was introduced [5]. An iterative algorithm can only be numerically efficient when the number of iterations required for a sufficient reconstruction is low. A way to achieve this is to design an efficient preconditioner. In this paper we propose a new frequency-dependent preconditioner for the wavelet method. In the context of a multi conjugate adaptive optics (MCAO) system simulated on the official end-to-end simulation tool OCTOPUS of the European Southern Observatory we demonstrate robustness and speed of the preconditioned algorithm. We show that three iterations are sufficient for a good reconstruction.
Development of alginate microspheres containing thyme essential oil using ionic gelation.
Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy
2016-08-01
Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oyana, Tonny J; Achenie, Luke E K; Heo, Joon
2012-01-01
The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on the proportional-integral-derivative (PID) controller. Thus, in a typical SOM learning setting, this improvement translates to faster convergence. The basic idea is primarily motivated by the urgent need to develop algorithms with the competence to converge faster and more efficiently than conventional techniques. The MIL-SOM algorithm is tested on four training geographic datasets representing biomedical and disease informatics application domains. Experimental results show that the MIL-SOM algorithm provides a competitive, better updating procedure and performance, good robustness, and it runs faster than Kohonen's SOM.
An efficient method for hybrid density functional calculation with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui
2018-03-01
In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.
NASA Astrophysics Data System (ADS)
Li, Yun; Sniekers, Jeroen; Malaquias, João C.; Van Goethem, Cedric; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F. J.
2018-02-01
A stable and eco-friendly anion-exchange membrane (AEM) was prepared and applied in a non-aqueous all-copper redox flow battery (RFB). The AEM was prepared via a simple procedure, leading to a cross-linked structure containing quaternary ammonium groups without involvement of harmful trimethylamine. A network was thus constructed which ensured both ion transport and solvent resistance. The ion exchange capacity (IEC) of the membrane was tuned from 0.49 to 1.03 meq g-1 by varying the content of the 4, 4‧-bipyridine crosslinking agent. The membrane showed a good anion conductivity and retention of copper ions. As a proof of principle, a RFB single cell with this crosslinked membrane yielded a coulombic efficiency of 89%, a voltage efficiency of 61% and an energy efficiency of 54% at 7.5 mA cm-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Houqiang; Lu, Zhijian; Zhao, Yuji
We study the low efficiency droop characteristics of semipolar InGaN light-emitting diodes (LEDs) using modified rate equation incoporating the phase-space filling (PSF) effect where the results on c-plane LEDs are also obtained and compared. Internal quantum efficiency (IQE) of LEDs was simulated using a modified ABC model with different PSF filling (n{sub 0}), Shockley-Read-Hall (A), radiative (B), Auger (C) coefficients and different active layer thickness (d), where the PSF effect showed a strong impact on the simulated LED efficiency results. A weaker PSF effect was found for low-droop semipolar LEDs possibly due to small quantum confined Stark effect, short carriermore » lifetime, and small average carrier density. A very good agreement between experimental data and the theoretical modeling was obtained for low-droop semipolar LEDs with weak PSF effect. These results suggest the low droop performance may be explained by different mechanisms for semipolar LEDs.« less
A high efficiency PWM CMOS class-D audio power amplifier
NASA Astrophysics Data System (ADS)
Zhangming, Zhu; Lianxi, Liu; Yintang, Yang; Han, Lei
2009-02-01
Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 × 1.52 mm2. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.
Update on results of SPRE testing at NASA Lewis
NASA Technical Reports Server (NTRS)
Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.
1991-01-01
The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigate the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The effects of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance test results with HFAST code predictions show good agreement for PV power but poor agreement for PV efficiency. Correlations are presented relating the piston mid-stroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.
Oyana, Tonny J.; Achenie, Luke E. K.; Heo, Joon
2012-01-01
The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on the proportional-integral-derivative (PID) controller. Thus, in a typical SOM learning setting, this improvement translates to faster convergence. The basic idea is primarily motivated by the urgent need to develop algorithms with the competence to converge faster and more efficiently than conventional techniques. The MIL-SOM algorithm is tested on four training geographic datasets representing biomedical and disease informatics application domains. Experimental results show that the MIL-SOM algorithm provides a competitive, better updating procedure and performance, good robustness, and it runs faster than Kohonen's SOM. PMID:22481977
de Abreu Domingos, Rodrigo; da Fonseca, Fabiana Valéria
2018-05-15
The oil refinery industry seeks solutions to reduce its water uptake and consumption by encouraging the reuse of internal streams and wastewater from treatment systems. After conventional treatment the petroleum refinery wastewater still contains a considerable quantity of recalcitrant organics and the adsorption on activated carbon is currently used in Brazilian refineries, although it is still expensive due to the difficulty of its regeneration. This study evaluated the use of adsorbent and ion exchange resins for the removal of organic matter from refinery wastewater after conventional treatment in order to verify its feasibility, applying successive resin regenerations and comparing the results with those obtained for activated carbon process. Adsorption isotherms experiments were used to evaluate commercial resins, and the most efficient was subjected to column experiments, where absorbance (ABS) and total organic carbon (TOC) removal were measured. The adsorption isotherm of the best resin showed an adsorptive capacity that was 55% lower than that of activated carbon. On the other hand, the column experiments indicated good removal efficiency, and the amount of TOC in the treated wastewater was as good as has been reported in the literature for activated carbon. The regeneration efficiency of the retained organics ranged from 57 to 94%, while regenerant consumption ranged from 12 to 79% above the amount recommended by the resin supplier for the removal of organic material from natural sources, showing the great resistance of these recalcitrant compounds to desorption. Finally, an estimate of the service life of the resin using intermediate regeneration conditions found it to be seven times higher than that of activated carbon when the latter is not regenerated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xie, Lijun; Liu, Shuqin; Han, Zhubing; Jiang, Ruifen; Zhu, Fang; Xu, Weiqin; Su, Chengyong; Ouyang, Gangfeng
2017-09-01
The fiber coating is the key part of the solid-phase microextraction (SPME) technique, and it determines the sensitivity, selectivity, and repeatability of the analytical method. In this work, amine (NH 2 )-functionalized material of Institute Lavoisier (MIL)-53(Al) nanoparticles were successfully synthesized, characterized, and applied as the SPME fiber coating for efficient sample pretreatment owing to their unique structures and excellent adsorption properties. Under optimized conditions, the NH 2 -MIL-53(Al)-coated fiber showed good precision, low limits of detection (LODs) [0.025-0.83 ng L -1 for synthetic musks (SMs) and 0.051-0.97 ng L -1 for organochlorine pesticides (OCPs)], and good linearity. Experimental results showed that the NH 2 -MIL-53(Al) SPME coating was solvent resistant and thermostable. In addition, the extraction efficiencies of the NH 2 -MIL-53(Al) coating for SMs and OCPs were higher than those of commercially available SPME fiber coatings such as polydimethylsiloxane, polydimethylsiloxane-divinylbenzene, and polyacrylate. The reasons may be that the analytes are adsorbed on NH 2 -MIL-53(Al) primarily through π-π interactions, electron donor-electron acceptor interactions, and hydrogen bonds between the analytes and organic linkers of the material. Direct immersion (DI) SPME-gas chromatography-mass spectrometry methods based on NH 2 -MIL-53(Al) were successfully applied for the analysis of tap and river water samples. The recoveries were 80.3-115% for SMs and 77.4-117% for OCPs. These results indicate that the NH 2 -MIL-53(Al) coating may be a promising alternative to SPME coatings for the enrichment of SMs and OCPs.
Performance evaluation of the Abbott CELL-DYN Ruby and the Sysmex XT-2000i haematology analysers.
Leers, M P G; Goertz, H; Feller, A; Hoffmann, J J M L
2011-02-01
Two mid-range haematology analysers (Abbott CELL-DYN Ruby and Sysmex XT-2000i) were evaluated to determine their analytical performance and workflow efficiency in the haematology laboratory. In total 418 samples were processed for determining equivalence of complete blood count (CBC) measurements, and 100 for reticulocyte comparison. Blood smears served for assessing the agreement of the differential counts. Inter-instrument agreement for most parameters was good although small numbers of discrepancies were observed. Systematic biases were found for mean cell volume, reticulocytes, platelets and mean platelet volume. CELL-DYN Ruby WBC differentials were obtained with all samples while the XT-2000i suppressed differentials partially or completely in 13 samples (3.1%). WBC subpopulation counts were otherwise in good agreement with no major outliers. Following first-pass CBC/differential analysis, 88 (21%) of XT-2000i samples required further analyser processing compared to 18 (4.3%) for the CELL-DYN Ruby. Smear referrals for suspected WBC/nucleated red blood cells and platelet abnormalities were indicated for 106 (25.4%) and 95 (22.7%) of the XT-2000i and CELL-DYN Ruby samples respectively. Flagging efficiencies for both analysers were found to be similar. The Sysmex XT-2000i and Abbott CELL-DYN Ruby analysers have broadly comparable analytical performance, but the CELL-DYN Ruby showed superior first-pass efficiency. © 2010 Blackwell Publishing Ltd.
Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector
NASA Astrophysics Data System (ADS)
Olawole, Olukunle C.; De, Dilip Kumar
2018-01-01
Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.
Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio.
Van Den Hende, Sofie; Vervaeren, Han; Saveyn, Hans; Maes, Guy; Boon, Nico
2011-03-01
Microalgal bacterial floc (MaB-floc) reactors have been suggested as a more sustainable secondary wastewater treatment. We investigated whether MaB-flocs could be used as tertiary treatment. Tertiary influent has a high inorganic/organic carbon ratio, depending on the efficiency of the secondary treatment. In this study, the effect of this inorganic/organic carbon ratio on the MaB-flocs performance was determined, using three sequencing batch photobioreactors. The MaB-flocs were fed with synthetic wastewater containing 84, 42, and 0 mg L(-1) C-KHCO(3) supplemented with 0, 42, 84 mg L(-1) C-sucrose, respectively, representing inorganic versus organic carbon. Bicarbonate significantly decreased the autotrophic index of the MaB-flocs and resulted in poorly settling flocs. Moreover, sole bicarbonate addition led to a high pH of 9.5 and significant lower nitrogen removal efficiencies. Sucrose without bicarbonate resulted in good settling MaB-flocs, high nitrogen removal efficiencies and neutral pH levels. Despite the lower chlorophyll a content of the biomass and the lower in situ oxygen concentration, 92-96% of the soluble COD-sucrose was removed. This study shows that the inorganic/organic carbon ratio of the wastewater is of major importance and that organic carbon is requisite to guarantee a good performance of the MaB-flocs for wastewater treatment. Copyright © 2010 Wiley Periodicals, Inc.
Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian
2017-07-06
An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.
Zanchetta, Priscilla Garozi; Heringer, Otávio; Scherer, Rodrigo; Pacheco, Henrique Poltronieri; Gonçalves, Ricardo; Pena, Angelina
2015-10-01
Pharmaceuticals are emerging contaminants and it must be noted that approximately 70 % of them are excreted via urine. Therefore, urine usage implies the risk of transfer of pharmaceutical residues to agricultural fields and environment contamination. Thus, this study aimed on the development and validation of a LC-MS/MS method for D-norgestrel (D-NOR) and progesterone (PRO) determination in human urine, as well as the evaluation of the removal efficiency of two methods (storage and evaporation), and the effects of acidification with sulfuric acid. The storage process was evaluated for 6 weeks, while the evaporation was assessed at three different temperatures (50, 75, and 100 °C). All experiments were done with normal urine (pH = 6.0) and acidified urine (pH = 2.0, with sulfuric acid). The results of validation showed good method efficiency. In the second week of storage, higher hormone degradation was observed. In the evaporation method, both D-NOR and PRO were almost completely degraded when the volume was reduced to the lowermost level. Results also indicate that acidification did not affect degradation. Overall, the results showed that combination of two methods can be employed for more efficient hormone removal in urine.
When is good, good enough? Methodological pragmatism for sustainable guideline development.
Browman, George P; Somerfield, Mark R; Lyman, Gary H; Brouwers, Melissa C
2015-03-06
Continuous escalation in methodological and procedural rigor for evidence-based processes in guideline development is associated with increasing costs and production delays that threaten sustainability. While health research methodologists are appropriately responsible for promoting increasing rigor in guideline development, guideline sponsors are responsible for funding such processes. This paper acknowledges that other stakeholders in addition to methodologists should be more involved in negotiating trade-offs between methodological procedures and efficiency in guideline production to produce guidelines that are 'good enough' to be trustworthy and affordable under specific circumstances. The argument for reasonable methodological compromise to meet practical circumstances is consistent with current implicit methodological practice. This paper proposes a conceptual tool as a framework to be used by different stakeholders in negotiating, and explicitly reporting, reasonable compromises for trustworthy as well as cost-worthy guidelines. The framework helps fill a transparency gap in how methodological choices in guideline development are made. The principle, 'when good is good enough' can serve as a basis for this approach. The conceptual tool 'Efficiency-Validity Methodological Continuum' acknowledges trade-offs between validity and efficiency in evidence-based guideline development and allows for negotiation, guided by methodologists, of reasonable methodological compromises among stakeholders. Collaboration among guideline stakeholders in the development process is necessary if evidence-based guideline development is to be sustainable.
NASA Astrophysics Data System (ADS)
Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann
2013-06-01
In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.
Do humans make good decisions?
Summerfield, Christopher; Tsetsos, Konstantinos
2014-01-01
Human performance on perceptual classification tasks approaches that of an ideal observer, but economic decisions are often inconsistent and intransitive, with preferences reversing according to the local context. We discuss the view that suboptimal choices may result from the efficient coding of decision-relevant information, a strategy that allows expected inputs to be processed with higher gain than unexpected inputs. Efficient coding leads to ‘robust’ decisions that depart from optimality but maximise the information transmitted by a limited-capacity system in a rapidly-changing world. We review recent work showing that when perceptual environments are variable or volatile, perceptual decisions exhibit the same suboptimal context-dependence as economic choices, and propose a general computational framework that accounts for findings across the two domains. PMID:25488076
Ortega, Bienvenido; Sanjuán, Jesús; Casquero, Antonio
2017-12-01
The main aim of this article was to analyze the relationship of income inequality and government effectiveness with differences in efficiency in the use of health inputs to improve the under-five survival rate (U5SR) in developing countries. Robust Data Envelopment Analysis (DEA) and regression analysis were conducted using data for 47 developing countries for the periods 2000-2004, 2005-2009, and 2010-2012. The estimations show that countries with a more equal income distribution and better government effectiveness (i.e. a more competent bureaucracy and good quality public service delivery) may need fewer health inputs to achieve a specific level of the U5SR than other countries with higher inequality and worse government effectiveness.
NASA Astrophysics Data System (ADS)
Johnson, J.; Srineevasan, R.; Sivavishnu, D.
2018-06-01
Centrosymmetric semiorganic crystal 4-dimethylaminopyridine potassium chloride (4-DMAPKC) has been grown successfully by using slow evaporation solution growth technique. Powder x-ray diffraction shows the 4-DMAPKC crystal has good crystalline nature. Single crystal XRD shows that the grown 4-DMAPKC is cubic crystal system with cell parameters a = 3.09 Å, b = 3.09 Å, c = 3.09 Å. Investigation has been carried out to assign the Vibrational frequencies of the grown crystal by FTIR spectral studies. UVsbnd Visible NIR optical absorption spectral studies in the range of 200-1100 nm shows low absorption in UVsbnd Visible region with lower cutoff wave length at 261 nm and optical band gap energy was found as Eg = 5.52 eV. Optically transmittance spectral shows 4-DMAPKC crystal is very good transparency in UV-Visible NIR region. Thermogravimetry and differential thermal (TG-DTA) analysis were carried out. Dielectric studies of as grown crystal sample exhibit low dielectric constant and loss at higher frequencies and attests the nonlinear optical activity. Micro hardness studies of as grown crystal were discussed. Second harmonic generation (SHG) efficiency of the 4-DMAPKC is 0.69 times as that of KDP.
Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Mingjie; Yang, Anping, E-mail: apyang@jsnu.edu.cn; Peng, Yuefeng
2015-10-15
Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissionsmore » centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.« less
Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping
2017-01-06
Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Yajun; Ding, Xiaokang; Qi, Yu; Yu, Bingran; Xu, Fu-Jian
2016-11-01
There is an increasing demand in developing of multifunctional materials with good antibacterial activity, biocompatibility and drug/gene delivery capability for next-generation biomedical applications. To achieve this purpose, in this work series of hydroxyl-rich hyperbranched polyaminoglycosides of gentamicin, tobramycin, and neomycin (HP and SS-HP with redox-responsive disulfide bonds) were readily synthesized via ring-opening reactions in a one-pot manner. Both HP and SS-HP exhibit high antibacterial activity toward Escherichia coli and Staphylococcus aureus. Meanwhile, the hemolysis assay of the above materials shows good biocompatibility. Moreover, SS-HPs show excellent gene transfection efficiency in vitro due to the breakdown of reduction-responsive disulfide bonds. For an in vivo anti-tumor assay, the SS-HP/p53 complexes exhibit potent inhibition capability to the growth of tumors. This study provides a promising approach for the design of next-generation multifunctional biomedical materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using Minimum-Surface Bodies for Iteration Space Partitioning
NASA Technical Reports Server (NTRS)
Frumlin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)
2001-01-01
A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. We study coverings of iteration spaces represented by structured and unstructured grids. For structured grids we introduce a covering based on successive minima tiles of the interference lattice of the grid. We show that the covering has good surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For unstructured grids no cache efficient covering can be guaranteed. We present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.
Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim
2017-10-01
A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.
Smith, Rashelle A; Lack, Leon C; Lovato, Nicole; Wright, Helen
2015-02-01
Those suffering insomnia symptoms generally report daytime impairments. However, research has not assessed whether this relationship holds on a nightly basis, despite the strongly held belief that a night of poor sleep impairs mood and functioning the following day. The objective of this study was to test this relationship in a group of older poor sleepers with insomnia symptoms compared with good sleepers. This study utilized a within-subjects design to investigate day-to-day subjective daytime functioning and its relation to the previous night's sleep. Seventeen older individuals (mean age: 67.5 years) were identified with a retrospective questionnaire and 2 weeks of sleep-wake diary to have poor sleep consistent with insomnia. Seventeen good sleepers (mean age: 67.8 years) were selected using the same measures. Participants reported their beliefs about sleep and daytime functioning on the Dysfunctional Beliefs and Attitudes about Sleep Scale (DBAS-16). One week later they commenced a 14-day period of sleep-wake diaries and concurrent responses to a modified Daytime Insomnia Symptom Scale (DISS). Results showed significant night-to-day covariation between sleep efficiency and daytime functioning for individuals with poor sleep (r = 0.34), but not for good sleepers (r = 0.08). Those poor sleepers who held this covariation belief most strongly were those who subsequently showed this night-to-day relationship the most strongly (r = 0.56). This was not true for good sleepers. For those suffering insomnia, these findings demonstrate their belief that a poor sleep is followed by an impaired daytime, consistent with their experience. © 2014 European Sleep Research Society.
Zhao, Shanshan; Yan, Tingting; Wang, Hui; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong
2016-07-20
In this work, 3D hierarchical carbon architectures (3DHCAs) with micro-, meso-, and macropores were prepared via a simple self-blowing strategy as highly efficient electrodes for a flow-through deionization capacitor (FTDC). The obtained 3DHCAs have a hierarchically porous structure, large accessible specific surface area (2061 m(2) g(-1)), and good wettability. The electrochemical tests show that the 3DHCA electrode has a high specific capacitance and good electric conductivity. The deionization experiments demonstrate that the 3DHCA electrodes possess a high deionization capacity of 17.83 mg g(-1) in a 500 mg L(-1) NaCl solution at 1.2 V. Moreover, the 3DHCA electrodes present a fast deionization rate in 100-500 mg L(-1) NaCl solutions at 0.8-1.4 V. The 3DHCA electrodes also present a good regeneration behavior in the reiterative regeneration test. These above factors render the 3DHCAs a promising FTDC electrode material.
Effect of metal oxide nanoparticles on Godavari river water treatment
NASA Astrophysics Data System (ADS)
Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.
2018-05-01
Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.
Pusch, Andreas; De Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin
2015-01-01
The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. PMID:26639902
Metasurfaced Reverberation Chamber.
Sun, Hengyi; Li, Zhuo; Gu, Changqing; Xu, Qian; Chen, Xinlei; Sun, Yunhe; Lu, Shengchen; Martin, Ferran
2018-01-25
The concept of metasurfaced reverberation chamber (RC) is introduced in this paper. It is shown that by coating the chamber wall with a rotating 1-bit random coding metasurface, it is possible to enlarge the test zone of the RC while maintaining the field uniformity as good as that in a traditional RC with mechanical stirrers. A 1-bit random coding diffusion metasurface is designed to obtain all-direction backscattering under normal incidence. Three specific cases are studied for comparisons, including a (traditional) mechanical stirrer RC, a mechanical stirrer RC with a fixed diffusion metasurface, and a RC with a rotating diffusion metasurface. Simulation results show that the compact rotating diffusion metasurface can act as a stirrer with good stirring efficiency. By using such rotating diffusion metasurface, the test region of the RC can be greatly extended.
Che, Siying; Dao, Rina; Zhang, Weidong; Lv, Xiaoyu; Li, Haoran; Wang, Congmin
2017-03-30
A novel anion-functionalized fluorescent ionic liquid was designed and prepared, which was capable of capturing sulphur dioxide with high capacity and could also be used as a good colorimetric and fluorescent SO 2 sensor. Compared to conventional fluorescent sensors, this fluorescent ionic liquid did not undergo aggregation-caused quenching or aggregation-induced emission, and the fluorescence was quenched when exposed to SO 2 , and the fluorescence would quench when exposed to SO 2 . The experimental absorption, spectroscopic investigation, and quantum chemical calculations indicated that the quenching of the fluorescence originated from SO 2 physical absorption, not chemical absorption. Furthermore, this fluorescent ionic liquid exhibited high selectivity, good quantification, and excellent reversibility for SO 2 detection, and showed potential for an excellent liquid sensor.
Variable-Speed Power-Turbine for the Large Civil Tilt Rotor
NASA Technical Reports Server (NTRS)
Suchezky, Mark; Cruzen, G. Scott
2012-01-01
Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.
[Study on extraction technology of soyasaponins from residual of bean ware].
Lu, Rumei; Zhang, Yizhen; Bi, Yi
2003-04-01
To find out the optimum extraction technology of soyasaponins from residual of bean ware. The optimum extraction conditions were investigated by the orthogonal design, and the content of soyasaponins was determined by UV-spectro-pho-tometry. The optimum extraction technology was A3B1C1, that is adding 7 times and 6 times amount of 70% alcohol and refluxing for two times and each time for 1.0 h. The selected technology showed higher yield of soyasaponins, good stability and high efficient.
Liu, Sangui; Mao, Cuiping; Niu, Yubin; Yi, Fenglian; Hou, Junke; Lu, Shiyu; Jiang, Jian; Xu, Maowen; Li, Changming
2015-11-25
Ultralong cobalt sulfide (CoS(1.097)) nanotube networks are synthesized by a simple one-step solvothermal method without any surfactant or template. A possible formation mechanism for the growth processes is proposed. Owing to the hollow structure and large specific area, the novel CoS(1.097) materials present outstanding electrochemical properties. Electrochemical measurements for supercapacitors show that the as-prepared ultralong CoS(1.097) nanotube networks exhibit high specific capacity, good capacity retention, and excellent Coulombic efficiency.
Yu, Xinzhi; Lu, Bingan; Xu, Zhi
2014-02-01
Nanohoneycomb-like strongly coupled CoMoO4 -3D graphene hybird electrodes are synthesized for supercapacitors which exhibit excellent specific capacitance and superior long-term cycle stability. The supercapacitor device can power a 5 mm-diameter LED efficiently for more than 3 min with a charging time of only 2 s, and shows high energy densities and good cycle stability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation
NASA Astrophysics Data System (ADS)
Goswami, Gunajit; Boruah, Himangshu; Gautom, Trishnamoni; Jyoti Hazarika, Dibya; Barooah, Madhumita; Boro, Robin Chandra
2017-12-01
Silver nanoparticles (AgNPs) have seen a recent spurt of use in varied fields of science. In this paper, we showed a novel application of AgNP as a promising microbial cell-lysis agent for genomic DNA isolation. We utilized chemically synthesized AgNPs for lysing bacterial cells to isolate their genomic DNA. The AgNPs efficiently lysed bacterial cells to yield good quality DNA that could be subsequently used for several molecular biology works.
Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin
2016-10-01
Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
NASA Astrophysics Data System (ADS)
Kraft, Stephan D.; Obst, Lieselotte; Metzkes-Ng, Josefine; Schlenvoigt, Hans-Peter; Zeil, Karl; Michaux, Sylvain; Chatain, Denis; Perin, Jean-Paul; Chen, Sophia N.; Fuchs, Julien; Gauthier, Maxence; Cowan, Thomas E.; Schramm, Ulrich
2018-04-01
We show efficient laser driven proton acceleration up to 14 MeV from a 62 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈350 fs at an energy of 8 J per pulse are directed onto the target. The results are compared to proton spectra from metal and plastic foils with different thicknesses and show a similarly good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine; ...
2018-02-09
We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, Stephan; Obst, Lieselotte; Metzkes-Ng, Josefine
We show efficient laser driven proton acceleration up to 14 MeV from a 50 μm thick cryogenic hydrogen ribbon. Pulses of the short pulse laser ELFIE at LULI with a pulse length of ≈ 350 fs at an energy of 8 J per pulse are directed onto the target. The results were then compared to proton spectra from metal and plastic foils with different thicknesses and show a similar good performance both in maximum energy as well as in proton number. Thus, this target type is a promising candidate for experiments with high repetition rate laser systems.
Improving agricultural commodity supply-chain to promote economic activities in rural area
NASA Astrophysics Data System (ADS)
Padjung, R.
2018-05-01
Long supply chain of agricultural commodities has become concern to governments particularly in large countries such as Indonesia as it causes high price disparity between farm-gate and retailer. Policies to overcome such problem are usually by shortening the chain, by which farmers sell the products directly to retailers. Using an action research in AEDEF (Aceh Economic Development Financing Facilities) Program, conducted in the province of Nangro Aceh Darussalam (NAD) Indonesia, the paper shows that shortening the commodity supply chain is not the best solution to such problem, as it causes loss of jobs in the villages. High price disparity between farm-gate and retailer is not necessary brought about by long supply-chain but by the efficiency of the chain instead. Efficiency of the chain can be improved by creating enabling business environment such that every actors and players work in a fair manner. This can be achieved by transparency in price and quality grade. With development achieved in Information and Communication Technology (ICT), having a good and reliable flow of such information is not difficult. In addition to information flow, the availability and quality of infrastructure to support flow of goods from farm-gate to end-user is of reasonably important.
NASA Astrophysics Data System (ADS)
Supian, L. S.; Ab-Rahman, Mohammad Syuhaimi; Harun, Mohd Hazwan; Gunab, Hadi; Sulaiman, Malik; Naim, Nani Fadzlina
2017-08-01
In visible optical communication over the multimode PMMA fibers, the overall cost of optical network can be reduced by deploying economical splitters for distributing the optical data signals from a point to multipoint in transmission network. The low-cost splitters shall have two main characteristics; good uniformity and high power efficiency. The most cost-effective and environmental friendly optical splitter having those characteristics have been developed. The device material is 100% purely based on the multimode step-index PMMA Polymer Optical Fiber (POF). The region which all fibers merged as single fiber is called as fused-taper POF. This ensures that all fibers are melted and fused properly. The results for uniformity and power efficiency of all splitters have been revealed by injecting red LED transmitter with 650 nm wavelength into input port while each end of output fibers measured by optical power meter. Final analysis shows our fused-taper splitter has low excess loss 0.53 dB and each of the output port has low insertion loss, which the average value is below 7 dB. In addition, the splitter has good uniformity that is 32:37:31% in which it is suitably used for demultiplexer fabrication.
An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions.
Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou
2016-04-22
A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of Nα-benzoyl-l-arginine ethyl ester to Nα-benzoyl-l-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. Copyright © 2016 Elsevier Inc. All rights reserved.
Another way of pumping blood with a rotary but noncentrifugal pump for an artificial heart.
Monties, J R; Mesana, T; Havlik, P; Trinkl, J; Demunck, J L; Candelon, B
1990-01-01
This article describes an alternative mode of pumping blood inside the body. The device is a non centrifugal, valveless, low speed rotary pump, electrically powered, based on Wankel engine principle. The authors developed an implantable electrical actuator resulting in a compact, sealed motor-pump unit with electrical and magnetic components insulated from fluids. The results in the flow curve and in the pumping action show some common points but also some basic differences compared to classical pulsatile pumps or centrifugal pumps. The blood coming from the atrium follows a continuous movement without any stop flow but with variations creating pulsatility. Ejection and filling of the pump are simultaneous. It is always an active filling. Hydraulic efficiency depends on clearance in the pumping chamber and outlet port pressure. A 60 cc device allows flows up to 8-9 liters. The implantable motor is cyclindrical in shape, has a moderate weight (490 grams) and presents a good efficiency (32% for a rotary speed of 90 rpm against a mean aortic pressure of 150 mm of Hg). The authors conclude that their device could be proposed after further experimental studies, as an LVAD for shortterm assistance with a good promise for permanent application.
Multi Agent Reward Analysis for Learning in Noisy Domains
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian K.
2005-01-01
In many multi agent learning problems, it is difficult to determine, a priori, the agent reward structure that will lead to good performance. This problem is particularly pronounced in continuous, noisy domains ill-suited to simple table backup schemes commonly used in TD(lambda)/Q-learning. In this paper, we present a new reward evaluation method that allows the tradeoff between coordination among the agents and the difficulty of the learning problem each agent faces to be visualized. This method is independent of the learning algorithm and is only a function of the problem domain and the agents reward structure. We then use this reward efficiency visualization method to determine an effective reward without performing extensive simulations. We test this method in both a static and a dynamic multi-rover learning domain where the agents have continuous state spaces and where their actions are noisy (e.g., the agents movement decisions are not always carried out properly). Our results show that in the more difficult dynamic domain, the reward efficiency visualization method provides a two order of magnitude speedup in selecting a good reward. Most importantly it allows one to quickly create and verify rewards tailored to the observational limitations of the domain.
[Social and population policy. Considerations on efficiency and equity].
Gomez De Leon Cruces, J
1991-01-01
It is generally accepted that modern governments have a series of obligations and responsibilities to their citizens, and that the modern state should institutionalize its responses to social demands of its citizens in its social policy. Social policy should assure the production of public goods, defined as goods available to all society and distributed equally to all members, whose consumption does not deprive any other individual of similar consumption. Private goods by contrast are those whose benefits are consumed by an individual without providing any benefit to others. Many goods fall between the 2 categories and share characteristics of each. The state should finance and subsidize goods that generate social benefits and should establish rules of operation for the private sector. 2 goals of government participation are that it be efficient and just. Efficiency means that it is clearly oriented to production of public goods, or to the public component of goods that are a mixture of public and private, and that it does not interfere with the "social efficiency" that results from the free development of private institutions. Justice implies equity and equality of opportunities for citizens to promote their personal goals. The specific cases of education and health care demonstrate that efficiency and redistribution may conflict. Although primary and secondary education are recognized as a social good that produces greater social benefits than university education, investment in higher education is frequently greater than that in primary and secondary education, with severe distributive biases. Following the focus of the classic theory of welfare, health expenditures should be concentrated on preventive interventions, increasing the availability of potable water and sanitary facilities, providing basic health services to the least favored groups, and similar actions. But institutionalized medicine in Mexico strongly favors curative services, typically devoting 2% or less of health budgets to prevention. Family planning in Mexico, through subsidies and government participation, is also conceived as a public good. But marked inequalities are observed in the results of Mexico's family planning program in rural and urban areas. Contraceptive coverage in rural areas is only slightly over half that of urban areas, and the decline of rural total fertility rates has amounted to only 2.5 children per woman vs. 4.5 for the nation as a whole. The implications of the differences are disturbing. If current fertility trends continue, the rural growth rate will be 2.3%/year, accentuating rural-urban socioeconomic differentials. As in the cases of health and education, a review is needed of the degree to which population policy is leading to regressive situations counter to the original aims of government intervention.
NASA Astrophysics Data System (ADS)
Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Du Nguyen, Van; Park, Jong-Oh; Park, Sukho
2017-10-01
We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.
Chen, Sheng; Sun, De-zhi; Yu, Guang-lu
2010-03-01
Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.
Determining stability in connected speech in primary progressive aphasia and Alzheimer's disease.
Beales, Ashleigh; Whitworth, Anne; Cartwright, Jade; Panegyres, Peter K; Kane, Robert T
2018-03-08
Using connected speech to assess progressive language disorders is confounded by uncertainty around whether connected speech is stable over successive sampling, and therefore representative of an individual's performance, and whether some contexts and/or language behaviours show greater stability than others. A repeated measure, within groups, research design was used to investigate stability of a range of behaviours in the connected speech of six individuals with primary progressive aphasia and three individuals with Alzheimer's disease. Stability was evaluated, at a group and individual level, across three samples, collected over 3 weeks, involving everyday monologue, narrative and picture description, and analysed for lexical content, fluency and communicative informativeness and efficiency. Excellent and significant stability was found on the majority of measures, at a group and individual level, across all genres, with isolated measures (e.g. nouns use, communicative efficiency) showing good, but greater variability, within one of the three genres. Findings provide evidence of stability on measures of lexical content, fluency and communicative informativeness and efficiency. While preliminary evidence suggests that task selection is influential when considering stability of particular connected speech measures, replication over a larger sample is necessary to reproduce findings.
Fast Transformation of Temporal Plans for Efficient Execution
NASA Technical Reports Server (NTRS)
Tsamardinos, Ioannis; Muscettola, Nicola; Morris, Paul
1998-01-01
Temporal plans permit significant flexibility in specifying the occurrence time of events. Plan execution can make good use of that flexibility. However, the advantage of execution flexibility is counterbalanced by the cost during execution of propagating the time of occurrence of events throughout the flexible plan. To minimize execution latency, this propagation needs to be very efficient. Previous work showed that every temporal plan can be reformulated as a dispatchable plan, i.e., one for which propagation to immediate neighbors is sufficient. A simple algorithm was given that finds a dispatchable plan with a minimum number of edges in cubic time and quadratic space. In this paper, we focus on the efficiency of the reformulation process, and improve on that result. A new algorithm is presented that uses linear space and has time complexity equivalent to Johnson s algorithm for all-pairs shortest-path problems. Experimental evidence confirms the practical effectiveness of the new algorithm. For example, on a large commercial application, the performance is improved by at least two orders of magnitude. We further show that the dispatchable plan, already minimal in the total number of edges, can also be made minimal in the maximum number of edges incoming or outgoing at any node.
Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping
2017-02-01
Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.
Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E
2015-09-02
The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jin; Prezhdo, Oleg V.
Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less
Wang, Huamin; Lu, Weike; Zhang, Junliang
2017-10-04
An efficient ferrocene-derived bifunctional phosphine-catalyzed enantioselective oxa-[4+2] cycloaddition of α-substituted allenones with a broad range of enones is investigated for the preparation of stereodefined dihydropyrans in good to excellent yields (up to 99 %) and excellent enantioselectivity (up to 99 % ee). Furthermore, a series of valuable chiral polyheterocyclic frameworks can be efficiently achieved in good yields with excellent enantioselectivities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul
2011-01-01
A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.
Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul
2011-01-01
A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I–V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems. PMID:22164066
Resource efficiency potential of selected technologies, products and strategies.
Rohn, Holger; Pastewski, Nico; Lettenmeier, Michael; Wiesen, Klaus; Bienge, Katrin
2014-03-01
Despite rising prices for natural resources during the past 30 years, global consumption of natural resources is still growing. This leads to ecological, economical and social problems. So far, however, limited effort has been made to decrease the natural resource use of goods and services. While resource efficiency is already on the political agenda (EU and national resource strategies), there are still substantial knowledge gaps on the effectiveness of resource efficiency improvement strategies in different fields. In this context and within the project "Material Efficiency and Resource Conservation", the natural resource use of 22 technologies, products and strategies was calculated and their resource efficiency potential analysed. In a preliminary literature- and expert-based identification process, over 250 technologies, strategies, and products, which are regarded as resource efficient, were identified. Out of these, 22 subjects with high resource efficiency potential were selected. They cover a wide range of relevant technologies, products and strategies, such as energy supply and storage, Green IT, transportation, foodstuffs, agricultural engineering, design strategies, lightweight construction, as well as the concept "Using Instead of Owning". To assess the life-cycle-wide resource use of the selected subjects, the material footprint has been applied as a reliable indicator. In addition, sustainability criteria on a qualitative basis were considered. The results presented in this paper show significant resource efficiency potential for many technologies, products and strategies. Copyright © 2013. Published by Elsevier B.V.
Baran, D; Kirchartz, T; Wheeler, S; Dimitrov, S; Abdelsamie, M; Gorman, J; Ashraf, R S; Holliday, S; Wadsworth, A; Gasparini, N; Kaienburg, P; Yan, H; Amassian, A; Brabec, C J; Durrant, J R; McCulloch, I
2016-12-01
Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage ( V oc ) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve V oc up to 1.12 V, which corresponds to a loss of only E g / q - V oc = 0.5 ± 0.01 V between the optical bandgap E g of the polymer and V oc . This high V oc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized.
Xu, Ting; Zhang, Ye-Xin; Wang, Bo; Huang, Chen-Chao; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng
2017-01-25
A novel exciplex-forming host is applied so as to design highly simplified reddish orange light-emitting diodes (OLEDs) with low driving voltage, high efficiency, and an extraordinarily low efficiency roll-off, by combining N,N-10-triphenyl-10H-spiro [acridine-9,9'-fluoren]-3'-amine (SAFDPA) with 4,7-diphenyl-1,10-phenanthroline (Bphen) doped with trivalent iridium complex bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate)iridium(III) (Ir(MDQ) 2 (acac)). The reddish orange OLEDs achieve a strikingly high power efficiency (PE) of 31.80 lm/W with an ultralow threshold voltage of 2.24 V which is almost equal to the triplet energy level of the phosphorescent reddish orange emitting dopant. The power efficiency of the device with the exciplex-forming host is enhanced, achieving 36.2% mainly owing to the lower operating voltage by the novel exciplex forming cohost, compared with the reference device (23.54 lm/W). Moreover, the OLEDs show extraordinarily low current efficiency (CE) roll-off to 1.41% at the brightness from 500 to 5000 cd/m 2 with a maximal CE of 32.87 cd/A (EQE max = 11.01%). The devices display a good reddish orange color (CIE of (0.628, 0.372) at 500 cd/m 2 ) nearly without color shift with increasing brightness. Co-host architecture phosphorescent OLEDs show a simpler device structure, lower working voltage, and a better efficiency and stability than those of the reference devices without the cohost architecture, which helps to simplify the OLED structure, lower the cost, and popularize OLED technology.
Zhang, Dongdong; Cai, Minghan; Zhang, Yunge; Zhang, Deqiang; Duan, Lian
2015-12-30
Single-emitting layer hybrid white organic light-emitting diodes (SEL-hybrid-WOLEDs) usually suffer from low efficiency, significant roll-off, and poor color stability, attributed to the incomplete energy transfer from the triplet states of the blue fluorophores to the phosphors. Here, we demonstrate highly efficient SEL-hybrid-WOLEDs with low roll-off and good color-stability utilizing blue thermally activated delayed fluorescence (TADF) materials as the host emitters. The triplet states of the blue TADF host emitter can be up-converted into its singlet states, and then the energy is transferred to the complementary phosphors through the long-range Förster energy transfer, enhancing the energy transfer from the host to the dopant. Simplified SEL-hybrid-WOLEDs achieve the highest forward-viewing external quantum efficiency (EQE) of 20.8% and power efficiency of 51.2 lm/W with CIE coordinates of (0.398, 0.456) at a luminance of 500 cd/m(2). The device EQE only slightly drops to 19.6% at a practical luminance of 1000 cd/m(2) with a power efficiency of 38.7 lm/W. Furthermore, the spectra of the device are rather stable with the raising voltage. The reason can be assigned to the enhanced Förster energy transfer, wide charge recombination zone, as well as the bipolar charge transporting ability of the host emitter. We believe that our work may shed light on the future development of highly efficient SEL-hybrid-WOLEDs with simultaneous low roll-off and good color stability.
2014-01-01
Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 – 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials. PMID:24383578
Synthesis, surface properties and antimicrobial activity of some germanium nonionic surfactants.
Zaki, Mohamed F; Tawfik, Salah M
2014-01-01
Esterification reaction between different fatty acid namely; lauric, stearic, oleic and linoleic acids and polyethylene glycol-400 were performed. The produced polyethylene glycol ester were reacted with p-amine benzoic acid followed by condensation reaction with germanium dioxide in presence of sodium carbonate to form desired germinate surfactants. The chemical structures of the synthesized surfactants were determined using different spectra tools. The surface parameter including: the critical micelle concentration (CMC), effectiveness (π(cmc)), efficiency (Pc20), maximum surface excess (Γ(max)) and minimum surface area (A(min)), were calculated from the surface tension measurements. The synthesized surfactants showed higher surface activity. The thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the synthesized nonionic surfactants showed their tendency towards adsorption at the interfaces and also micellization in the bulk of their solutions. The synthesized surfactants were tested against different strain of bacteria using inhibition zone diameters. The synthesized surfactants showed good antimicrobial activities against the tested microorganisms including Gram positive, Gram negative as well as fungi. The promising inhibition efficiency of these compounds against the sulfate reducing bacteria facilitates them to be applicable as new categories of sulfate reducing bacteria biocides.
Song, Shuang; Rooijakkers, Michael; Harpe, Pieter; Rabotti, Chiara; Mischi, Massimo; van Roermund, Arthur H M; Cantatore, Eugenio
2015-04-01
This paper presents a low-voltage current-reuse chopper-stabilized frontend amplifier for fetal ECG monitoring. The proposed amplifier allows for individual tuning of the noise in each measurement channel, minimizing the total power consumption while satisfying all application requirements. The low-voltage current reuse topology exploits power optimization in both the current and the voltage domain, exploiting multiple supply voltages (0.3, 0.6 and 1.2 V). The power management circuitry providing the different supplies is optimized for high efficiency (peak charge-pump efficiency = 90%).The low-voltage amplifier together with its power management circuitry is implemented in a standard 0.18 μm CMOS process and characterized experimentally. The amplifier core achieves both good noise efficiency factor (NEF=1.74) and power efficiency factor (PEF=1.05). Experiments show that the amplifier core can provide a noise level of 0.34 μVrms in a 0.7 to 182 Hz band, consuming 1.17 μW power. The amplifier together with its power management circuitry consumes 1.56 μW, achieving a PEF of 1.41. The amplifier is also validated with adult ECG and pre-recorded fetal ECG measurements.
An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System
NASA Astrophysics Data System (ADS)
Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.
2013-06-01
Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.
Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu
2015-11-11
Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.
An imperialist competitive algorithm for virtual machine placement in cloud computing
NASA Astrophysics Data System (ADS)
Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza
2017-05-01
Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.
NASA Astrophysics Data System (ADS)
Zunino, Luciano; Bariviera, Aurelio F.; Guercio, M. Belén; Martinez, Lisana B.; Rosso, Osvaldo A.
2016-08-01
In this paper the permutation min-entropy has been implemented to unveil the presence of temporal structures in the daily values of European corporate bond indices from April 2001 to August 2015. More precisely, the informational efficiency evolution of the prices of fifteen sectorial indices has been carefully studied by estimating this information-theory-derived symbolic tool over a sliding time window. Such a dynamical analysis makes possible to obtain relevant conclusions about the effect that the 2008 credit crisis has had on the different European corporate bond sectors. It is found that the informational efficiency of some sectors, namely banks, financial services, insurance, and basic resources, has been strongly reduced due to the financial crisis whereas another set of sectors, integrated by chemicals, automobiles, media, energy, construction, industrial goods & services, technology, and telecommunications has only suffered a transitory loss of efficiency. Last but not least, the food & beverage, healthcare, and utilities sectors show a behavior close to a random walk practically along all the period of analysis, confirming a remarkable immunity against the 2008 financial crisis.
Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.
Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo
2015-08-01
Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.
Zhang, Zixin; Zhang, Wenpeng; Bao, Tao; Chen, Zilin
2015-08-14
Stainless steel wire (SSW) is a good substrate for stir bar sorptive extraction (SBSE). However, it is still a challenge to immobilize commonly used cross-linked polymers onto SSW. In this work, we present a new approach for immobilization of the cross-linked organic polymer onto SSW for jacket-free SBSE. A dopamine derivative was firstly synthesized; by introducing a mussel-inspired polydopamine process, a stable coating layer was finally generated on the surface of SSW. Secondly, the cross-linked polymer was synthesized on the polydopamine-modified SSW by using acetonitrile as the porogen, acrylamide (AA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker and 2,2'-azobis (2-methylpropionitrile) as the initiator. A diluted pre-polymerization solution was carefully prepared to generate a thin layer of the polymer. The prepared poly(EGDMA-AA)-modified stir bar showed high stability and good tolerance toward stirring, ultrasonication, organic solvents, and strong acidic and basic conditions. Morphology and structure characterization of coatings were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The prepared poly(EGDMA-AA)-modified stir bar showed great extraction efficiency toward protoberberines, with enrichment factors of 19-42. An SBSE-HPLC method was also developed for quantitative analysis of protoberberines. The method showed low limits of detection (0.06-0.15 ng mL(-1)), wide linear range (0.5-400 ng mL(-1)), good linearity (R≥0.9980) and good reproducibility (RSD≤3.60% for intra-day, RSD≤4.73% for inter-day). The developed method has been successfully applied to determine protoberberines in herb and rat plasma samples, with recoveries of 88.53-114.61%. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility
NASA Astrophysics Data System (ADS)
Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu
2013-12-01
The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.
Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface.
Liu, Gui-Dong; Zhai, Xiang; Xia, Sheng-Xuan; Lin, Qi; Zhao, Chu-Jun; Wang, Ling-Ling
2017-10-16
In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.
Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath
NASA Astrophysics Data System (ADS)
Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.
2015-05-01
We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.
Nath, Ranjit K; Zain, M F M; Kadhum, Abdul Amir H
2013-01-01
The addition of a photocatalyst to ordinary building materials such as concrete creates environmentally friendly materials by which air pollution or pollution of the surface can be diminished. The use of LiNbO3 photocatalyst in concrete material would be more beneficial since it can produce artificial photosynthesis in concrete. In these research photoassisted solid-gas phases reduction of carbon dioxide (artificial photosynthesis) was performed using a photocatalyst, LiNbO3, coated on concrete surface under illumination of UV-visible or sunlight and showed that LiNbO3 achieved high conversion of CO2 into products despite the low levels of band-gap light available. The high reaction efficiency of LiNbO3 is explained by its strong remnant polarization (70 µC/cm(2)), allowing a longer lifetime of photoinduced carriers as well as an alternative reaction pathway. Due to the ease of usage and good photocatalytic efficiency, the research work done showed its potential application in pollution prevention.
NASA Astrophysics Data System (ADS)
Harahap, S. A. A.; Nazar, A.; Yunita, M.; Pasaribu, RA; Panjaitan, F.; Yanuar, F.; Misran, E.
2018-02-01
Adsorption of β-carotene in crude palm oil (CPO) was studied using activated carbon produced from tea waste (ACTW) an adsorbent. Isothermal studies were carried out at 60 °C with the ratio of activated carbon to CPO were 1:3, 1:4, 1:5, and 1:6, respectively. The ACTW showed excellent performance as the percentage of adsorption of β-carotene from CPO was > 99%. The best percentage removal (R) was achieved at ACTW to CPO ratio equal to 1:3, which was 99.61%. The appropriate isotherm model for this study was Freundlich isotherm model. The combination of Freundlich isotherm equation and mass balance equation showed a good agreement when validated to the experimental data. The equation subsequently executed to predict the removal efficiency under given sets of operating conditions. At a targetted R, CPO volume can be estimated for a certain initial concentration β-carotene in CPO C0 and mass of ACTW adsorbent M used.
Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad
2014-01-01
This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value.
Wagner, Michael E; Spoth, Katherine A; Kourkoutis, Lena F; Rizvi, Syed S H
2016-12-01
Niosomes were prepared using a novel supercritical carbon dioxide based method to simultaneously encapsulate ferrous sulfate and vitamin D3 as hydrophilic and hydrophobic cargo, respectively. Vesicle particle size was determined to be bimodal with peak diameters of 1.44 ± 0.16 μm and 7.21 ± 0.64 μm, with the smaller peak comprising 98.8% of the total niosomal volume. Encapsulation efficiency of ferrous sulfate was 25.1 ± 0.2% and encapsulation efficiency of vitamin D3 was 95.9 ± 1.47%. Physical stability of the produced niosomes was assessed throughout a storage period of 21 days. Niosomes showed good physical stability at 20 °C, but storage at 4 °C showed an initial burst release, indicating possible rupture of the niosomal membrane. The Korsmeyer-Peppas equation was used to model the release of ferrous sulfate over time at both storage temperatures.
Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Xu, Xiaoxiong; Li, Hong; Zhang, Qiang; Cai, Liangting; Hu, Yong-Sheng; Yao, Xiayin
2018-04-18
Nanosized Na 3 PS 4 solid electrolyte with an ionic conductivity of 8.44 × 10 -5 S cm -1 at room temperature is synthesized by a liquid-phase reaction. The resultant all-solid-state FeS 2 /Na 3 PS 4 /Na batteries show an extraordinary high initial Coulombic efficiency of 95% and demonstrate high energy density of 611 Wh kg -1 at current density of 20 mA g -1 at room temperature. The outstanding performances of the battery can be ascribed to good interface compatibility and intimate solid-solid contact at FeS 2 electrode/nanosized Na 3 PS 4 solid electrolytes interface. Meanwhile, excellent cycling stability is achieved for the battery after cycling at 60 mA g -1 for 100 cycles, showing a high capacity of 287 mAh g -1 with the capacity retention of 80%.
NASA Astrophysics Data System (ADS)
You, Lixing; Li, Hao; Zhang, Weijun; Yang, Xiaoyan; Zhang, Lu; Chen, Sijing; Zhou, Hui; Wang, Zhen; Xie, Xiaoming
2017-08-01
The detection efficiency (DE) of superconducting nanowire single-photon detectors (SNSPDs) at 1550 nm has been significantly improved in the past decades as a result of evolution of the optical structure, the materials, and the fabrication process. We discuss the general optical design for a high-efficiency SNSPD based on dielectric optical films that can detect wavelengths from visible to near infrared regions. This structure shows close-to-unity absorption and good insensitivity to the fine wavelength and the incident angle. We demonstrate an SNSPD specifically fabricated for the detection of 1064 nm wavelength with a maximal system DE of 87.4% ± 3.7%. The DEs of the SNSPDs for visible and near infrared wavelengths are also summarized and compared with those of semiconducting detectors.
NASA Astrophysics Data System (ADS)
Jahanshahi, Parivash; Mamaghani, Manouchehr; Haghbin, Fereshteh; Nia, Roghayeh Hossein; Rassa, Mehdi
2018-03-01
Novel (1-methyl-1H-pyrrol-2-yl)-[2,3-d]pyrimidine derivatives were synthesized chemoselectively in good to high yields (81-90%) and short reaction times (7-14 min) by hydroxyapatite-encapsulated-γ-Fe2O3 supported sulfonic acid ([γ-Fe2O3@HAp-SO3H]) catalyzed condensation of 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile, 6-amino-2-(alkylthio)pyrimidin-4(3H)-one and various aromatic aldehydes. The easy work-up of the products, rapidity, high efficiency and recyclability of the catalyst are advantages of this protocol. The antibacterial activity of the newly synthesized products was investigated. Some of the products showed encouraging activity.
Aufderheide, Helge; Rudolf, Lars; Gross, Thilo; Lafferty, Kevin D.
2013-01-01
Recent attempts to predict the response of large food webs to perturbations have revealed that in larger systems increasingly precise information on the elements of the system is required. Thus, the effort needed for good predictions grows quickly with the system's complexity. Here, we show that not all elements need to be measured equally well, suggesting that a more efficient allocation of effort is possible. We develop an iterative technique for determining an efficient measurement strategy. In model food webs, we find that it is most important to precisely measure the mortality and predation rates of long-lived, generalist, top predators. Prioritizing the study of such species will make it easier to understand the response of complex food webs to perturbations.
Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M
1992-08-20
An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.
Illumination of dense urban areas by light redirecting panels.
El-Henawy, Sally I; Mohamed, Mohamed W N; Mashaly, Islam A; Mohamed, Osama N; Galal, Ola; Taha, Iman; Nassar, Khaled; Safwat, Amr M E
2014-05-05
With the high population growth rate, especially in developing countries, and the scarcity of land resources, buildings are becoming so close to each other, depriving the lower floors and the alleys from sunlight and consequently causing health problems. Therefore, there is an urgent need for cost-effective efficient light redirecting panels that guide sun rays into those dim places. In this paper, we address this problem. A novel sine wave based panel is presented to redirect/diverge light downward and enhance the illumination level in those dark places. Simulation results show that the proposed panel improves the illuminance values by more than 200% and 400% in autumn and winter respectively, operates over wide solar altitude ranges, and redirects light efficiently. Experimental and simulation results are in good agreement.
Energy savings and cost-benefit analysis of the new commercial building standard in China
Zhao, Shanguo; Feng, Wei; Zhang, Shicong; ...
2015-10-07
In this study, a comprehensive comparison of the commercial building energy efficiency standard between the previous 2005 version and the new proposed version is conducted, including the energy efficiency analysis and cost-benefit analysis. To better understand the tech-economic performance of the new Chinese standard, energy models were set up based on a typical commercial office building in Chinese climate zones. The building energy standard in 2005 is used as the baseline for this analysis. Key building technologies measures are analyzed individually, including roof, wall, window, lighting and chiller and so on and finally whole building cost-benefit analysis was conducted. Resultsmore » show that the new commercial building energy standard demonstrates good cost-effective performance, with whole building payback period around 4 years.« less
Energy savings and cost-benefit analysis of the new commercial building standard in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shanguo; Feng, Wei; Zhang, Shicong
In this study, a comprehensive comparison of the commercial building energy efficiency standard between the previous 2005 version and the new proposed version is conducted, including the energy efficiency analysis and cost-benefit analysis. To better understand the tech-economic performance of the new Chinese standard, energy models were set up based on a typical commercial office building in Chinese climate zones. The building energy standard in 2005 is used as the baseline for this analysis. Key building technologies measures are analyzed individually, including roof, wall, window, lighting and chiller and so on and finally whole building cost-benefit analysis was conducted. Resultsmore » show that the new commercial building energy standard demonstrates good cost-effective performance, with whole building payback period around 4 years.« less
NASA Astrophysics Data System (ADS)
Hotta, Arto
During recent years, once-through supercritical (OTSC) CFB technology has been developed, enabling the CFB technology to proceed to medium-scale (500 MWe) utility projects such as Łagisza Power Plant in Poland owned by Poludniowy Koncern Energetyczny SA. (PKE), with net efficiency nearly 44%. Łagisza power plant is currently under commissioning and has reached full load operation in March 2009. The initial operation shows very good performance and confirms, that the CFB process has no problems with the scaling up to this size. Also the once-through steam cycle utilizing Siemens' vertical tube Benson technology has performed as predicted in the CFB process. Foster Wheeler has developed the CFB design further up to 800 MWe with net efficiency of ≥45%.
Techniques of EMG signal analysis: detection, processing, classification and applications
Hussain, M.S.; Mohd-Yasin, F.
2006-01-01
Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Ho; Chen, Wei-An; Su, Hung-Ting
2010-01-15
This research coats a commercial TiO{sub 2} nanoparticle Degussa P25 with good roundness and size uniformity on an indium tin oxide (ITO) glass substrate and to be photoelectrical electrode by electrophoresis deposition. It combined with dye N719, electrolyte I{sup -}/ I{sub 3}{sup -} and counter-electrode of Pt layer to produce dye-sensitized solar cells (DSSCs). Through the electrophoretic technique, a multilayer film of an appropriate thickness is deposited in the suspension containing TiO{sub 2} nanoparticles and isopropanol. In this process, electric current, voltage, and the number of deposition cycles are well controlled to obtain a single TiO{sub 2} film of aroundmore » 3.3 {mu}m thick. Stacking is then performed to obtain a multilayer-typed TiO{sub 2} film of around 12 {mu}m thick. As the sintering temperature reaches 400 C, the prepared multilayer TiO{sub 2} film with a good compactness can increase the dye adsorption capability of the thin film and enhance its adsorption percentage. In addition, the heat treatment will transfer a portion of the rutile crystalline into the anatase crystalline, resulting in better material properties for DSSCs application. DSSCs produced are exposed to metal halide lamp and their energy conversion efficiency is measured. The I-V curve of the produced DSSCs shows that it has an excellent energy conversion efficiency of 6.9%. (author)« less
An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.
Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah
2017-03-01
Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Yao; Zhang, Qingtao; Sun, Yuan; Yang, Chengjia
2018-01-01
As a new generation biodiesel feedstock, microalgae have most potential to replace fossil fuel. However, the limited scale and high cost are two bottleneck problems. Efficient microwave-assisted lipid extraction technologies and suitable light conditions for Chlorella Sorokiniana need further study for lowering the cost. In this study, three photoperiod groups(24L:0D, 12L:12D, 0L:24D), three illumination intensity groups (1800 lux, 3600 lux, 5400 lux)and four light spectrum groups (Red, green, blue, and white) were used to culture Chlorella Sorokiniana to investigate those effects on algae growth rate and biomass accumulation. The suitable microwave treatment was also studied to achieve an optimizing quantum fracturing technology. 400 w, 750 w and 1000 w microwave power were set and 60 °C, 75 °C, 90 °C microwave conditions were investigated. The results showed that Chlorella Sorokiniana under 24L:0D photoperiod with 5400 lux white light can achieve better growth rate. The 90 °C / 1000w microwave treatment was identified as the most simple, easy, and effective way for lipid extraction from Chlorella Sorokiniana. As the raw material of biodiesel production, C18:1, C18:2 and C18:3 have accounted for important components of fatty acid in Chlorella Sorokiniana. Therefore, Chlorella Sorokiniana is a good raw material for the production of good quality biodiesel under suitable and efficient technologies.
Mukhopadhyay, N; Bose, P K
2009-10-01
Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.
Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung
2018-01-17
An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.
Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients.
Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A Ryan; Belyanin, Alexey; Raschke, Markus B
2018-05-18
Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2ω_{1}-ω_{2} four-wave mixing response as a function of detuning ω_{1}-ω_{2}, we find up to 10^{-5} conversion efficiency with a gradient-field contribution to χ_{Au}^{(3)} of up to 10^{-19} m^{2}/V^{2}. The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.
Fabrication and efficiency measurement of a Mo/C/Si/C three material system multilayer Laue lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubec, Adam; Maser, J.; Formanek, P.
In this letter we report on the manufacturing of a multilayer Laue lens (MLL) consisting of a multilayer stack with three materials: molybdenum and silicon as absorber and spacer layer, respectively, and carbon as transition layers. The design has four layers per period: Mo/C/Si/C. It yields 6000 zones, and provides an aperture of 50 μm. This allows the MLL structure to accept a large portion of the coherent part of the beam and achieving a small spot size. The MLL deposition was made by magnetron sputtering at the Fraunhofer IWS, the sectioning was done by laser cutting and subsequent focusedmore » ion beam milling to a thickness that provides a good efficiency for a photon energy of 12 keV. The diffraction efficiency as a function of the tilting angle has been measured at beamline 1-BM of the Advanced Photon Source. An efficiency of almost 40% has been achieved. This shows that the material system performs well compared to MLLs made of two-materials and that it is in an excellent agreement with the numerically calculated efficiency for a comparable molybdenum/silicon bilayer system lens. Here, we conclude that the three material system offers high efficiencies and is advantageous for stress reduction in MLLs.« less
Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing
2014-06-01
A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reforming options for hydrogen production from fossil fuels for PEM fuel cells
NASA Astrophysics Data System (ADS)
Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel
PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.
Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients
NASA Astrophysics Data System (ADS)
Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A. Ryan; Belyanin, Alexey; Raschke, Markus B.
2018-05-01
Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2 ω1-ω2 four-wave mixing response as a function of detuning ω1-ω2, we find up to 10-5 conversion efficiency with a gradient-field contribution to χAu(3 ) of up to 10-19 m2/V2 . The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.
Fabrication and efficiency measurement of a Mo/C/Si/C three material system multilayer Laue lens
Kubec, Adam; Maser, J.; Formanek, P.; ...
2017-03-17
In this letter we report on the manufacturing of a multilayer Laue lens (MLL) consisting of a multilayer stack with three materials: molybdenum and silicon as absorber and spacer layer, respectively, and carbon as transition layers. The design has four layers per period: Mo/C/Si/C. It yields 6000 zones, and provides an aperture of 50 μm. This allows the MLL structure to accept a large portion of the coherent part of the beam and achieving a small spot size. The MLL deposition was made by magnetron sputtering at the Fraunhofer IWS, the sectioning was done by laser cutting and subsequent focusedmore » ion beam milling to a thickness that provides a good efficiency for a photon energy of 12 keV. The diffraction efficiency as a function of the tilting angle has been measured at beamline 1-BM of the Advanced Photon Source. An efficiency of almost 40% has been achieved. This shows that the material system performs well compared to MLLs made of two-materials and that it is in an excellent agreement with the numerically calculated efficiency for a comparable molybdenum/silicon bilayer system lens. Here, we conclude that the three material system offers high efficiencies and is advantageous for stress reduction in MLLs.« less
NASA Astrophysics Data System (ADS)
Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.
2017-09-01
Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.
Yu, Zhou; Bai, Yu; Liu, Yuxuan; Zhang, Shimin; Chen, Dandan; Zhang, Naiqing; Sun, Kening
2017-09-20
The development of inexpensive, efficient, and environmentally friendly catalysts for oxygen evolution reaction (OER) is of great significant for green energy utilization. Herein, binary metal oxides (M x Co 3-x O 4 , M = Zn, Ni, and Cu) with yolk-shell polyhedron (YSP) structure were fabricated by facile pyrolysis of bimetallic zeolitic imidazolate frameworks (MCo-ZIFs). Benefiting from the synergistic effects of metal ions and the unique yolk-shell structure, M x Co 3-x O 4 YSP displays good OER catalytic activity in alkaline media. Impressively, Zn x Co 3-x O 4 YSP shows a comparable overpotential of 337 mV at 10 mA cm -2 to commercial RuO 2 and exhibits superior long-term durability. The high activity and good stability reveals its promising application.
NASA Astrophysics Data System (ADS)
Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji
2018-03-01
This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1986-01-01
In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tishina, E.A.; Bel'kevich, P.I.; Churshukov, E.S.
This article reports on an investigation of the protective properties of resinous substances that are waste materials in the production of deresined wax. The protective properties of the resins extracted by BR-2 naphtha at 20/sup 0/C, 0/sup 0/C, and 5/sup 0/C, and also the ethanol-soluble and ethanol-insoluble components of these resins are examined. The results indicate that the peat wax resins do not show any corrosivity with respect to copper. At elevated temperatures, the resins are as good as the commercial additive Akor-1 in protective efficiency, and their alcohol-soluble components are better than the Akor-1. It is concluded that themore » good compatibility of the resins with mineral oils and their high level of protection make them suitable for use in liquid preservative formulations for the temporary corrosion protection of metal items.« less
NASA Astrophysics Data System (ADS)
Behzadi, Hadi; Manzetti, Sergio; Dargahi, Maryam; Roonasi, Payman; Khalilnia, Zahra
2018-01-01
In light of the importance of developing novel corrosion inhibitors, a series of quantum chemical calculations were carried out to evaluate 15N chemical shielding CS tensors as well as aromaticity indexes including NICS, HOMA, FLU, and PDI of three pyrazine derivatives, 2-methylpyrazine (MP), 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP). The NICS parameters have been shown in previous studies to be paramount to the prediction of anti-corrosion properties, and have been combined here with HOMA, FLU and PDI and detailed wavefunction analysis to determine the effects from bromination and methylation on pyrazine. The results show that the electron density around the nitrogens, represented by CS tensors, can be good indicators of anti-corrosion efficiency. Additionally, the NICS, FLU and PDI, as aromaticity indicators of molecule, are well correlated with experimental corrosion inhibition efficiencies of the studied inhibitors. Bader sampling and detailed wavefunction analysis shows that the major effects from bromination on the pyrazine derivatives affect the Laplacian of the electron density of the ring, delocalizing the aromatic electrons of the carbon atoms into lone pairs and increasing polarization of the Laplacian values. This feature is well agreement with empirical studies, which show that ABP is the most efficient anti-corrosion compound followed by AP and MP, a property which can be attributed and predicted by derivation of the Laplacian of the electron density of the ring nuclei. This study shows the importance of devising DFT methods for development of new corrosion inhibitors, and the strength of electronic and nuclear analysis, and depicts most importantly how corrosion inhibitors composed of aromatic moieties may be modified to increase anti-corrosive properties.
Hu, Sihai; Wu, Yaoguo; Yao, Hairui; Lu, Cong; Zhang, Chengjun
2016-01-01
The efficiency of Fenton-like catalysis using nano zerovalent iron (nZVI) is limited by nZVI aggregation and activity loss due to inactive ferric oxide forming on the nZVI surface, which hinders electron transfer. A novel iron-carbon composite catalyst consisting of nZVI and granular activated carbon (GAC), which can undergo internal iron-carbon microelectrolysis spontaneously, was successfully fabricated by the adsorption-reduction method. The catalyst efficiency was evaluated in nitrobenzene (NB) removal via the Fenton-like process (H2O2-nZVI/GAC). The results showed that nZVI/GAC composite was good for dispersing nZVI on the surface of GAC, which permitted much better removal efficiency (93.0%) than nZVI (31.0%) or GAC (20.0%) alone. Moreover, iron leaching decreased from 1.28 to 0.58 mg/L after reaction of 240 min and the oxidation kinetic of the Fenton-like reaction can be described well by the second-order reaction kinetic model (R2=0.988). The composite catalyst showed sustainable catalytic ability and GAC performed as a medium for electron transfer in internal iron-carbon microelectrolysis to promote Fe2+ regeneration and Fe3+/Fe2+ cycles. Therefore, this study represents an important method to design a low cost and high efficiency Fenton-like catalyst in practical application.
Asif, Muhammad; Naqvi, Syed Ali Raza; Sherazi, Tauqir A; Ahmad, Matloob; Zahoor, Ameer Fawad; Shahzad, Sohail Anjum; Hussain, Zaib; Mahmood, Hassan; Mahmood, Nasir
2017-07-01
Natural resources right from the beginning of the human civilization has paved the way to human being to combat different challenges. The big challenge was to safe the human being from diseases and shortage of food. Plants helped the man in both areas very efficiently. No doubt when plants are used as food actually we are also taking lot of compounds of medicinal values in an excellent combination which naturally reduce the risk of diseases. Extraction and purification of several medicinally important compounds also gave the way to develop pharmaceutical industry in addition to its own therapeutic effects against different lethal diseases. Pumpkin is one of the several medicinal important vegetables used in different way on the behalf of its admirable power to combat different diseases. Antioxidant and biological studies showed very important results. A good coherence was found among extraction yield (10.52 to 18.45%), total phenolics (1.13 to 6.78 mg GAE/100g), total flavonoids (0.23 to 0.72mg CE/100g) and antioxidant potential (≻70%). Antibacterial assays of peel and puree extracts advocated good potential to stop the growth and division of pathogenic bacteria. Further biological activity study was carried out using MDBK cancer cell line. The growth inhibitory effect on cancer cell line using MTT assay showed methanol extracts of peel and puree both remained efficient to inhibit growth (≻35%) and cell division of cancer cells. Our results showed that extracts of pumpkin puree and its waste, peel, may be utilize to prepare functional food against pathogenic born diseases and most active compounds may also be extracted, concentrated and converted into tablets or suspension form for therapeutic purposes.
DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.
Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail
2015-12-25
Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.
Yang, Yinhui; Chang, Zhengfeng; Yang, Xiaohong; Qi, Meiling; Wang, Jinliang
2018-08-03
Herein we report a propeller-like hexaphenylbenzene-based hydrocarbon material (denoted as BT) as the stationary phase for capillary gas chromatography (GC). The statically-coated BT capillary column showed a high column efficiency of 4340 plates m -1 and weak polarity. Owing to its unique conformation, π-electron toroidal delocalization and intrinsic microporosity, the BT stationary phase exhibited interesting selectivity for aromatic compounds over alkanes. Compared with the graphene (G) column, the BT column showed much prolonged retention and high selectivity for aromatic isomers, especially methylnaphthalenes, dimethylnaphthalenes and phenanthrene/anthracene, mainly because of its propeller-like conformation with rich intercalation effects. Moreover, it exhibited good column repeatability (intra-day, inter-day) and reproducibility (between-column) with RSD values on the retention times less than 0.08% for intra-day, 0.32% for inter-day and 3.8% for between-column, respectively. Also, it showed good potential for determination of minor isomer impurities in real samples. To the best of our knowledge, this work presents the first example of employing an neat aromatic hydrocarbon material as the GC stationary phase with high selectivity for analytes of a wide ranging polarity. Copyright © 2018 Elsevier B.V. All rights reserved.
Chatterjee, Sudipta; Lee, Dae S; Lee, Min W; Woo, Seung H
2009-06-01
The adsorption of congo red (CR) onto chitosan (CS) beads impregnated by a cationic surfactant (CTAB, cetyl trimethyl ammonium bromide) was investigated. Chitosan beads impregnated at a ratio of 1/20 of CTAB to CS (0.05% of CTAB and 1% of CS) increased the CR adsorption capacity by 2.2 times from 162.3 mg/g (0% CTAB) to 352.5 mg/g (0.05% CTAB). The CR adsorption decreased with an increase in pH of the CR solution from 4.0 to 9.0. The Sips isotherm model showed a good fit with the equilibrium experimental data and the values of the heterogeneity factor (n) indicated heterogeneous adsorption of CR onto CS/CTAB beads, as well as CS beads. The kinetic data showed better fit to the pseudo second-order rate model than to the pseudo first-order rate model. The impregnation of CS beads by cationic surfactants showed the highest adsorption capacities of CR compared to any other adsorbents and would be a good method to increase adsorption efficiency for the removal of anionic dyes in a wastewater treatment process.
Peer punishment promotes enforcement of bad social norms.
Abbink, Klaus; Gangadharan, Lata; Handfield, Toby; Thrasher, John
2017-09-20
Social norms are an important element in explaining how humans achieve very high levels of cooperative activity. It is widely observed that, when norms can be enforced by peer punishment, groups are able to resolve social dilemmas in prosocial, cooperative ways. Here we show that punishment can also encourage participation in destructive behaviours that are harmful to group welfare, and that this phenomenon is mediated by a social norm. In a variation of a public goods game, in which the return to investment is negative for both group and individual, we find that the opportunity to punish led to higher levels of contribution, thereby harming collective payoffs. A second experiment confirmed that, independently of whether punishment is available, a majority of subjects regard the efficient behaviour of non-contribution as socially inappropriate. The results show that simply providing a punishment opportunity does not guarantee that punishment will be used for socially beneficial ends, because the social norms that influence punishment behaviour may themselves be destructive.Punishment by peers can enforce social norms, such as contributing to a public good. Here, Abbink and colleagues show that individuals will enforce norms even when contributions reduce the net benefit of the group, resulting in the maintenance of wasteful contributions.
NASA Astrophysics Data System (ADS)
Park, Jeong-Il; Heo, Jin Hyuck; Park, Sung-Hyun; Hong, Ki Il; Jeong, Hak Gee; Im, Sang Hyuk; Kim, Han-Ki
2017-02-01
We fabricated high-performance flexible CH3NH3PbI3 (MAPbI3) perovskite solar cells with a power conversion efficiency of 15.5% on roll-to-roll sputtered ITO films on 60 μm-thick colourless polyimide (CPI) substrate. Due to the thermal stability of the CPI substrate, an ITO/CPI sample subjected to rapid thermal annealing at 300 °C showed a low sheet resistance of 57.8 Ω/square and high transmittance of 83.6%, which are better values than those of an ITO/PET sample. Outer and inner bending tests demonstrated that the mechanical flexibility of the ITO/CPI was superior to that of the conventional ITO/PET sample owing to the thinness of the CPI substrate. In addition, due to its good mechanical flexibility, the ITO/CPI showed no change in resistance after 10,000 cycle outer and inner dynamic fatigue tests. Flexible perovskite solar cells with the structure of Au/PTAA/MAPbI3/ZnO/ITO/CPI showed a high power conversion efficiency of 15.5%. The successful operation of these flexible perovskite solar cells on ITO/CPI substrate indicated that the ITO film on thermally stable CPI substrate is a promising of flexible substrate for high-temperature processing, a finding likely to advance the commercialization of cost-efficient flexible perovskite solar cells.
Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca
2014-12-01
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
Road safety education: What works?
Assailly, J P
2017-01-01
The objectives of the paper are: METHOD: Seminal papers, collaborative reports from traffic safety research institutes and books from experts have been used as materials. Very diverse fields of application are presented such as: the importance of emotional experience in interaction with traffic experiences; the efficiency of e-learning; the efficiency of simulators to improve hazard perception skills and calibration of one's driving competencies; the efficiency of social norms marketing at changing behaviors by correcting normative misperceptions; the usefulness of parents-based interventions to improve parental supervision; and finally the importance of multi-components programs due to their synergies. Scientific evidence collected in this paper shows that RSE may have some positive effects if good practices are adopted, if it is part of a lifelong learning process and if transmits not only knowledge but also "life-skills" (or psycho-social competences). for practice From each example, we will see the implications of the results for the implementation of RSE. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).
Li, Ran; Duan, Xiaomeng; Li, Xu; He, Wei; Li, Yanling
2018-04-17
Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.
Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics
Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas
2016-01-01
A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu3+ phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu3+ showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu3+ doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu3+ phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour. PMID:27180941
Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu(3+) phosphors and ceramics.
Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas
2016-05-16
A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.
NASA Astrophysics Data System (ADS)
Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.
2012-06-01
A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.
Breeding Increases the Efficacy of Chondrostereum purpureum in the Sprout Control of Birch
Hamberg, Leena; Vartiamäki, Henna; Hantula, Jarkko
2015-01-01
We tested whether the pairing of selected isolates could be used to increase the efficiency of a decay fungus Chondrostereum purpureum (Pers. Ex Fr.) Pouzar to control hardwood sprouting in Finland. We paired C. purpureum strains efficient in sprout control or highly active in laccase production, and tested the efficacy of their progeny in spout control experiments. This procedure resulted in a strain with an efficacy superior to that of the parental strains. The mortality of birch (Betula pendula Roth. and B. pubescens Ehrh.) 1 cm in stump diameter was 78%, 56% and 9% for the best progeny, the best parental strain and the control, respectively. Mortality was only slightly higher for B. pendula than for B. pubescens but no significant differences were found between the number or maximum height of stump sprouts. Our results showed that cross breeding of this decay fungus is a good alternative in attempts to produce efficient biocontrol agents against hardwood sprouting. PMID:25674794
Wu, Su-qing; Chang, Jun-jun; Dai, Yanran; Wu, Zhen-bin; Liang, Wei
2013-06-01
In order to investigate the treatment performance and microorganism mechanism of IVCW for domestic wastewater in central of China, two parallel pilot-scale IVCW systems were built to evaluate purification efficiencies, microbial community structure and enzyme activities. The results showed that mean removal efficiencies were 81.03 % for COD, 51.66 % for total nitrogen (TN), 42.50 % for NH4 (+)-N, and 68.01 % for TP. Significant positive correlations between nitrate reductase activities and TN and NH4 (+)-N removal efficiencies, along with a significant correlation between substrate enzyme activity and operation time, were observed. Redundancy analysis demonstrated gram-negative bacteria were mainly responsible for urease and phosphatase activities, and also played a major role in dehydrogenase and nitrate reductase activities. Meanwhile, anaerobic bacteria, gram-negative bacteria, and saturated FA groups, gram-positive bacteria exhibited good correlations with the removal of COD (p=0.388), N (p=0.236), and TP (p=0.074), respectively. The IVCW system can be used to treat domestic wastewater effectively.
Study of the reaction of atomic oxygen with aerosols
NASA Technical Reports Server (NTRS)
Akers, F. I.; Wightman, J. P.
1975-01-01
The rate of disappearance of atomic oxygen was measured at several pressures in a fast flow pyrex reactor system with its walls treated with (NH4)2SO4 (s), H2SO4 (l), and NH4CL (s). Atomic oxygen, P-3 was generated by dissociation of pure, low pressure oxygen in a microwave discharge. Concentrations of atomic oxygen were measured at several stations in the reactor system using chemiluminescent titration with NO2. Recombination efficiencies calculated from experimentally determined wall recombination rate constants are in good agreement with reported values for clean Pyrex and an H2SO4 coated wall. The recombination efficiency for (NH4)2SO4, results in a slightly lower value than for H2S04. A rapid exothermic reaction between atomic oxygen and the NH4Cl wall coating prevented recombination efficiency determination for this coating. The results show that the technique is highly useful for wall recombination measurements and as a means of extrapolating to the case of free stream aerosol-gas interactions.
Wang, Huei-Tang; Taufany, Fadlilatul; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang
2014-05-01
The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV-visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient "electron-acceptor" which boosts electron-transfer from a -NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.
Wang, Qian; Zhao, Yingyuan; Guan, Lei; Zhang, Yaping; Dang, Qifeng; Dong, Ping; Li, Jing; Liang, Xingguo
2017-07-15
DNA/chitosan co-assemblies were initially used as nanocarriers for efficient astaxanthin encapsulation and delivery. The obtained astaxanthin-loaded DNA/chitosan (ADC) colloidal system was transparent and homogenous, with astaxanthin content up to 65μg/ml. Compared to free astaxanthin, ADC nanoparticles with an astaxanthin concentration as low as 3.35nM still showed a more powerful cytoprotective effect on H 2 O 2 -induced oxidative cell damage, and improved cell viability from 49.9% to 61.9%. The ROS scavenging efficiency of ADC nanoparticles was as high as 54.3%, which was 2-fold higher than that of free astaxanthin. Besides this, ADC nanoparticles were easily engulfed by Caco-2 cells in a short time, indicating that the encapsulated astaxanthin could be absorbed through endocytosis by intestinal epithelial cells. The improved antioxidation capability and facilitated cellular uptake enabled the ADC nanoparticles to be good candidates for efficient delivery and absorption of astaxanthin. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Treatment of Urban Runoff Pollutants by a Multilayer Biofiltration System].
Wang, Xiao-lu; Zuo, Jian-e; Gan, Li-li; Xing, Wei; Miao, Heng-feng; Ruan, Wen-quan
2015-07-01
In order to control the non-point source pollution from road runoff in Wuxi City effectively, a multilayer biofiltration system was designed to remove a variety of pollutants according to the characteristics of road runoff in Wuxi, and the experimental research was carried out to study the effect on rainwater pollution purification. The results show that the system has a good performance on removing suspended solids (SS), organic pollutant (COD), nitrogen and phosphorus: all types of multilayer biofiltration systems have a high removal rate for SS, which can reach 90%. The system with activated carbon (GAC) has higher removal rates for COD and phosphorus. The system with zeolite (ZFM) has a relatively better removal efficiency for nitrogen. The addition of wood chips in the system can significantly improve the system efficiency for nitrogen removal. Between the two configurations of layered and distributed wood chips, configurations of distributed wood chips reach higher COD, phosphorus and nitrogen pollutants removal efficiencies since they can reduce the release of wood chips dissolution.
Tu, Tao; Meng, Kun; Huang, Huoqing; Luo, Huiying; Bai, Yingguo; Ma, Rui; Su, Xiaoyun; Shi, Pengjun; Yang, Peilong; Wang, Yaru; Yao, Bin
2014-12-31
Thermophilic endo-polygalacturonases with high catalytic efficiency are of great interest in the food and feed industries. This study identified an endo-polygalacturonase gene (pg7fn) of glycoside hydrolase family 28 in the thermophilic fungus Thielavia arenaria XZ7. Recombinant PG7fn produced in Pichia pastoris is distinguished from other enzyme counterparts by its high functional temperature (60 °C) and specific activity (34382 ± 351 U/mg toward polygalacturonic acid). The enzyme exhibited good pH stability (pH 3.0-8.0) and resistance to pepsin and trypsin digestion and had a significant effect on disaggregation of soybean meal. Addition of 1 U/g PG7fn increased the pectin bioavailability by 19.33%. The excellent properties described above make PG7fn valuable for applications in the food and feed industries. Furthermore, a comparative study showed that N-glycosylation improved the thermostability and catalytic efficiency of PG7fn.
NASA Astrophysics Data System (ADS)
Jiang, Xue; Jiang, Zhou; Zhao, Jijun
2017-12-01
As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.
A visual tracking method based on improved online multiple instance learning
NASA Astrophysics Data System (ADS)
He, Xianhui; Wei, Yuxing
2016-09-01
Visual tracking is an active research topic in the field of computer vision and has been well studied in the last decades. The method based on multiple instance learning (MIL) was recently introduced into the tracking task, which can solve the problem that template drift well. However, MIL method has relatively poor performance in running efficiency and accuracy, due to its strong classifiers updating strategy is complicated, and the speed of the classifiers update is not always same with the change of the targets' appearance. In this paper, we present a novel online effective MIL (EMIL) tracker. A new update strategy for strong classifier was proposed to improve the running efficiency of MIL method. In addition, to improve the t racking accuracy and stability of the MIL method, a new dynamic mechanism for learning rate renewal of the classifier and variable search window were proposed. Experimental results show that our method performs good performance under the complex scenes, with strong stability and high efficiency.
Breeding increases the efficacy of Chondrostereum purpureum in the sprout control of birch.
Hamberg, Leena; Vartiamäki, Henna; Hantula, Jarkko
2015-01-01
We tested whether the pairing of selected isolates could be used to increase the efficiency of a decay fungus Chondrostereum purpureum (Pers. Ex Fr.) Pouzar to control hardwood sprouting in Finland. We paired C. purpureum strains efficient in sprout control or highly active in laccase production, and tested the efficacy of their progeny in spout control experiments. This procedure resulted in a strain with an efficacy superior to that of the parental strains. The mortality of birch (Betula pendula Roth. and B. pubescens Ehrh.) 1 cm in stump diameter was 78%, 56% and 9% for the best progeny, the best parental strain and the control, respectively. Mortality was only slightly higher for B. pendula than for B. pubescens but no significant differences were found between the number or maximum height of stump sprouts. Our results showed that cross breeding of this decay fungus is a good alternative in attempts to produce efficient biocontrol agents against hardwood sprouting.
Reading Efficiency of Deaf and Hearing People in Spanish.
Moreno-Pérez, Francisco J; Saldaña, David; Rodríguez-Ortiz, Isabel R
2015-10-01
Different studies have showed poor reading performance in the deaf compared to the hearing population. This has overshadowed the fact that a minority of deaf children learns to read successfully and reaches levels similar to their hearing peers. We analyze whether deaf people deploy the same cognitive and learning processes in reading as their hearing peers. For this purpose, we analyzed the relation between phonological processing, speechreading, vocabulary, reading speed, and accuracy with reading efficiency in a sample of deaf people and two control groups respectively matched on chronological age and reading level. The results indicate that deaf people's level of reading efficiency is lower than hearing people's of the same age, but that deafness status in itself is not a good predictor of reading level. The results do not support the idea that deaf people's reading is the result of different processes from the hearing population. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Li, Yi; Xu, Yanting; Liu, Lei; Jiang, Xiaobing; Zhang, Kun; Zheng, Tianling; Wang, Hailei
2016-10-01
Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fiebrandt, Marcel; Hillebrand, Bastian; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina
2018-01-01
Inactivation experiments were performed with Bacillus subtilis spores in a low pressure double inductively coupled plasma (DICP) system. Argon, nitrogen and oxygen at 5 Pa were used as feed gas to change the emission spectrum in the range of 100 nm to 400 nm, as well as between radical and metastable densities. Optical filters were applied, to block particles and selected wavelengths from the spores. By determining absolute photon fluxes, the sporicidal efficiency of various wavelength ranges was evaluated. The results showed good agreement with other plasma experiments, as well as with monochromatic light inactivation experiments from a synchrotron. The findings indicated that the inactivation rate constants of broadband plasma emission and monochromatic light were identical, and that no synergistic effect exists. Furthermore, the influence of radicals, ions and metastables on the inactivation efficiency was of minor importance in the set-up used, and radiation was the main reason for spore inactivation.
Efficient implementation of neural network deinterlacing
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee
2009-02-01
Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.
NASA Astrophysics Data System (ADS)
Balakin, V. V.; Vorobev, N. S.; Berkaev, D. V.; Glukhov, S. A.; Gornostaev, P. B.; Dorokhov, V. L.; Chao, Ma Xiao; Meshkov, O. I.; Nikiforov, D. A.; Shashkov, E. V.; Emanov, F. A.; Astrelina, K. V.; Blinov, M. F.; Borin, V. M.
2018-03-01
The efficiency of injection from a linear accelerator into the damping ring of the BINP injection complex has been experimentally studied. The estimations of the injection efficiency are in good agreement with the experimental results. Our method of increasing the capture efficiency can enhance the productivity of the injection complex by a factor of 1.5-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Changhua; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201; Liu, Yongfu, E-mail: liuyongfu@nimte.ac.cn
Highlights: • A single phase Ba{sub 9}Lu{sub 2}Si{sub 6}O{sub 24}:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor with full-color emission was obtained by solid-state reactions. • Eu{sup 2+}, Ce{sup 3+}, and Mn{sup 2+} acts as blue, green, and red luminescence centers, respectively. • The BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor shows a high quantum efficient of ∼62% and a good color stability. • Combining this single phosphor with a 395 nm NUV-chip, an ideal white LED with a high CRI of 85 and a CCT of 6300 K was obtained. - Abstract: We obtained a single phase BLS:Eu{sup 2+}, Ce{supmore » 3+}, Mn{sup 2+} phosphor by solid-state reactions. Eu{sup 2+}, Ce{sup 3+}, and Mn{sup 2+} gives rise to the blue, green, and red emission, respectively. The Mn{sup 2+} red emission can be effectively enhanced via energy transfers from both Eu{sup 2+} and Ce{sup 3+}. Thus a tunable full color emission from 410 to 750 nm was realized in this single phosphor. The Eu{sup 2+} → Mn{sup 2+} energy transfer mechanism was investigated by the fluorescence decay curves. This single phosphor exhibits an efficient excitation band covering from 390 to 410 nm, which matches well with the emission light of the efficient NUV chips. The optimized BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} phosphor shows a high quantum efficient of ∼62% and a good color stability. When this single phosphor was combined with a 395 nm NUV-chip, an ideal white LED with a high color render index (CRI) of 85 and a correlated color temperature (CCT) of 6300 K was obtained. This demonstrates the promising application of the BLS:Eu{sup 2+}, Ce{sup 3+}, Mn{sup 2+} single phosphor for the NUV-based white LEDs.« less
Sharma, Shikha; Ahmad, Shahzad; Faraz Khan, Mohemmed; Parvez, Suhel; Raisuddin, Sheikh
2018-06-21
Bisphenol A (BPA) is known for endocrine disrupting activity. In order to replace BPA a number of bisphenol analogues have been designed. However, their activity profile is poorly described and little information exists about their endocrine disrupting potential and interactions with nuclear receptors. An understanding of such interaction may unravel mechanism of their molecular action and provide valuable inputs for risk assessment. BPA binds and activates peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) which act as transcription factors and regulate genes involved in glucose, lipid, and cholesterol metabolism and adipogenesis. We studied binding efficiency of 18 bisphenol analogues and BPA with human PPARs and RXRs. Using Maestro Schrodinger 9.4, docking scores of bisphenols were compared with the known endogenous and exogenous ligands of hPPARs and hRXRs. BPA showed good binding efficiency. Several analogues also showed higher binding efficiency than BPA. BPPH which has high tendency to be absorbed in tissues showed the strongest binding with hPPARα, hPPARβ, hPPARγ and hRXRα whereas two of the most toxic bisphenols, BPM and BPAF showed strongest binding with hRXRβ and hRXRγ. Some of the bisphenol analogues showed a stronger binding affinity with PPAR and RXR compared to BPA implying that BPA substitutes may not be fully safe and chemico-biological interactions indicate their toxic potential. These results may also serve to plan further studies for determining safety profile of bisphenol analogues and be helpful in risk characterization.
Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries
Li, Yutao; Zhou, Weidong; Xin, Sen; ...
2016-06-30
A fluorine-doped antiperovskite Li-ion conducto Li 2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li 2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li +/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li 2OHCl. As a result, an all-solid-state Li/LiFePO 4 with F-dope Li 2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles
MATERIALS SCIENCE: New Tigers in the Fuel Cell Tank.
Service, R F
2000-06-16
After decades of incremental advances, a spurt of findings suggests that fuel cells that run on good old fossil fuels are almost ready for prime time. Although conventional ceramic cells, known as solid oxide fuel cells, require expensive heat-resistant materials, a new generation of SOFCs, including one featured on page 2031, converts hydrocarbons directly into electricity at lower temperatures. And a recent demonstration of a system of standard SOFCs large enough to light up more than 200 homes showed that it is the most efficient large-scale electrical generator ever designed.
Scalable UWB photonic generator based on the combination of doublet pulses.
Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José
2014-06-30
We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.
Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Brandon, Jay M.; Morelli, Eugene A.
2012-01-01
Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.
[A quickly methodology for drug intelligence using profiling of illicit heroin samples].
Zhang, Jianxin; Chen, Cunyi
2012-07-01
The aim of the paper was to evaluate a link between two heroin seizures using a descriptive method. The system involved the derivation and gas chromatographic separation of samples followed by a fully automatic data analysis and transfer to a database. Comparisons used the square cosine function between two chromatograms assimilated to vectors. The method showed good discriminatory capabilities. The probability of false positives was extremely slight. In conclusion, this method proved to be efficient and reliable, which appeared suitable for estimating the links between illicit heroin samples.
Measurement system with high accuracy for laser beam quality.
Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming
2015-05-20
Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.
Fine dust filtration using a metal fiber bed.
Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min
2006-08-01
A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.
NASA Astrophysics Data System (ADS)
Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2017-04-01
A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.
Prati, Federica; Zuccotto, Fabio; Fletcher, Daniel; Convery, Maire A; Fernandez-Menendez, Raquel; Bates, Robert; Encinas, Lourdes; Zeng, Jingkun; Chung, Chun-Wa; De Dios Anton, Paco; Mendoza-Losana, Alfonso; Mackenzie, Claire; Green, Simon R; Huggett, Margaret; Barros, David; Wyatt, Paul G; Ray, Peter C
2018-04-06
Our findings reported herein provide support for the benefits of including functional group complexity (FGC) within fragments when screening against protein targets such as Mycobacterium tuberculosis InhA. We show that InhA fragment actives with FGC maintained their binding pose during elaboration. Furthermore, weak fragment hits with functional group handles also allowed for facile fragment elaboration to afford novel and potent InhA inhibitors with good ligand efficiency metrics for optimization. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation
NASA Astrophysics Data System (ADS)
Li, Jia-Wei; Wang, Jiang-Feng
2018-05-01
In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.
NASA Astrophysics Data System (ADS)
Zheng, Genrang; Lin, ZhengChun
The problem of winner determination in combinatorial auctions is a hotspot electronic business, and a NP hard problem. A Hybrid Artificial Fish Swarm Algorithm(HAFSA), which is combined with First Suite Heuristic Algorithm (FSHA) and Artificial Fish Swarm Algorithm (AFSA), is proposed to solve the problem after probing it base on the theories of AFSA. Experiment results show that the HAFSA is a rapidly and efficient algorithm for The problem of winner determining. Compared with Ant colony Optimization Algorithm, it has a good performance with broad and prosperous application.
The simultaneous integration of many trajectories using nilpotent normal forms
NASA Technical Reports Server (NTRS)
Grayson, Matthew A.; Grossman, Robert
1990-01-01
Taylor's formula shows how to approximate a certain class of functions by polynomials. The approximations are arbitrarily good in some neighborhood whenever the function is analytic and they are easy to compute. The main goal is to give an efficient algorithm to approximate a neighborhood of the configuration space of a dynamical system by a nilpotent, explicitly integrable dynamical system. The major areas covered include: an approximating map; the generalized Baker-Campbell-Hausdorff formula; the Picard-Taylor method; the main theorem; simultaneous integration of trajectories; and examples.
Hanson, Frank; Lasher, Mark
2010-06-01
We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.
WE-FG-BRA-12: Research Work of the Radio-Dynamic Treatment Mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Quanshi; Sun, Q.Y; Xiao, G.P.
2016-06-15
Purpose: The finite penetration depth of Laser light has limited clinical applications for PDT. This present work investigates the activation of photosensitizers using Cerenkov light emission from 45MV photon beams produced in an LA45 cancer therapy accelerator. We have named this new treatment technique Radio-Dynamic Therapy (RDT). Methods: Monte Carlo simulations were made on various Cerenkov emission energies and their spectroscopy in excited target areas in order to estimate their photosensitizer inner activation efficiency. The Cerenkov light excitation efficiency used in RDT has been theoretically compared with the exotic excitation efficiency of external Laser light used in PDT. In addition,more » laboratory tests showed the differences of the excitation efficiencies between a patented catalyst coenzyme added as a substrate, and then without the coenzyme. A specific probe of DMA (Singlet Oxygen fluorescent probe-9, 10-dimethylanthracene) was also used to detect singlet oxygen. Finally, we also compared our results with similar previous experimental work reported in the scientific literature. Results: Our Monte Carlo results showed that the Cerenkov light intensity induced with 45MV beams from an LA45 is 8 – 10 times the Cerenkov light intensity induced with 6MV beams from conventional accelerators. Furthermore, the patented catalyst coenzyme enhanced the excitation efficiency of photosensitizers by 3–6 times under different conditions. In clinical situations, the new RDT technique also showed favorable outcomes for early and late stages of specific cancers and it is also good at metastatic cancer treatment. Conclusion: Our results indicated that the process of using the Cerenkov light emission to excite photosensitizers from 45MV photons has a similar process and efficiency as the conventional laser in PDT. Comparing the advantages of RDT with a conventional PDT, the RDT may be developed into a potential treatment modality for a wider range of cancers stages as well as for other diseases.« less
Plasmonic-enhanced graphene flake counter electrodes for dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Kim, Hyun-Young; Lee, Myung Woo; Song, Da Hyun; Yoon, Hyeok Jin; Suh, Jung Sang
2017-06-01
A plasmonic-enhanced graphene flake counter electrode for dye-sensitized solar cells (DSSCs) was fabricated by immobilization of gold nanoparticles (NPs) on fluorine-doped tin oxide (FTO) glass and the deposition of a thin layer of graphene flakes. The graphene flakes, fabricated using a thermal plasma jet system, were very thin and pure and had good crystallinity. Even though their average size is larger than 100 nm, they had great dispersibility in common solvents. Their relatively large size and good crystallinity resulted in good conductivity, and their good dispersibility allowed us to fabricate relatively uniform films. The efficiency of the DSSC with a graphene flake/Au NP/FTO counter electrode was as much as 9.78%, which is higher than that with a conventional Pt/FTO (9.08%) or graphene flake/FTO (8.98%) counter electrode. Using cyclic voltammograms and electrochemical impedance spectroscopy and by measuring the incident photo-conversion efficiency, we proved that by the localized surface plasmon resonance effect of the Au NPs included between the graphene flakes and FTO, the charge-transfer resistance at the electrode/electrolyte interface was decreased. Consequently, the catalytic rate for I- regeneration improved, and the energy conversion efficiency of the DSSC with a graphene flake/Au NP/FTO counter electrode improved.
NASA Astrophysics Data System (ADS)
Ouyang, Ruizhuo; Lei, Jianping; Ju, Huangxian
2010-05-01
This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 × 1018 g - 1, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.
Randomly biased investments and the evolution of public goods on interdependent networks
NASA Astrophysics Data System (ADS)
Chen, Wei; Wu, Te; Li, Zhiwu; Wang, Long
2017-08-01
Deciding how to allocate resources between interdependent systems is significant to optimize efficiency. We study the effects of heterogeneous contribution, induced by such interdependency, on the evolution of cooperation, through implementing the public goods games on two-layer networks. The corresponding players on different layers try to share a fixed amount of resources as the initial investment properly. The symmetry breaking of investments between players located on different layers is able to either prevent investments from, or extract them out of the deadlock. Results show that a moderate investment heterogeneity is best favorable for the evolution of cooperation, and random allocation of investment bias suppresses the cooperators at a wide range of the investment bias and the enhancement effect. Further studies on time evolution with different initial strategy configurations show that the non-interdependent cooperators along the interface of interdependent cooperators also are an indispensable factor in facilitating cooperative behavior. Our main results are qualitatively unchanged even diversifying investment bias that is subject to uniform distribution. Our study may shed light on the understanding of the origin of cooperative behavior on interdependent networks.
Sequeiros, R C P; Neng, N R; Portugal, F C M; Pinto, M L; Pires, J; Nogueira, J M F
2011-04-01
This work describes the development, validation, and application of a novel methodology for the determination of testosterone and methenolone in urine matrices by stir bar sorptive extraction using polyurethane foams [SBSE(PU)] followed by liquid desorption and high-performance liquid chromatography with diode array detection. The methodology was optimized in terms of extraction time, agitation speed, pH, ionic strength and organic modifier, as well as back-extraction solvent and desorption time. Under optimized experimental conditions, convenient accuracy were achieved with average recoveries of 49.7 8.6% for testosterone and 54.2 ± 4.7% for methenolone. Additionally, the methodology showed good precision (<9%), excellent linear dynamic ranges (>0.9963) and convenient detection limits (0.2-0.3 μg/L). When comparing the efficiency obtained by SBSE(PU) and with the conventional polydimethylsiloxane phase [SBSE(PDMS)], yields up to four-fold higher are attained for the former, under the same experimental conditions. The application of the proposed methodology for the analysis of testosterone and methenolone in urine matrices showed negligible matrix effects and good analytical performance.
Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater.
Hou, Xiangyu; Feng, Jing; Liu, Xiaohan; Ren, Yueming; Fan, Zhuangjun; Wei, Tong; Meng, Jian; Zhang, Milin
2011-10-15
Three dimensions (3D) porous NiFe(2)O(4) is synthesized by a sol-gel method using egg white. The obtained NiFe(2)O(4) shows both good ferromagnetic properties and high adsorption capacity. The porous NiFe(2)O(4) shows good adsorption properties for organic dyes (Methylene Blue (138.50 mg/g), Fuchsine Red (14.61 mg/g), Methyl Violet (19.06 mg/g)) and heavy metal ions (Cu (II) (55.83 mg/g), Cr (VI) (36.95 mg/g) and Ni (II) (37.02 mg/g)) due to its 3D interconnected porous structure. The maximum adsorption of Methylene Blue (MB) fit the pseudo-second-order model and Langmuir isotherm equation well. More interestingly, the ferromagnetic NiFe(2)O(4) can be separated under a magnetic field conveniently and keeps high removal efficiency (>97%) during seven reusable cycles. These results suggest that the porous NiFe(2)O(4) is a promising favorable and reusable adsorbent. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoon, Y.; Kim, N.; Puria, S.; Steele, C. R.
2009-02-01
In this work, basilar membrane velocity (VBM), scala tympani intracochlear pressure (PST), and cochlear input impedances (Zc) for gerbil and chinchilla are implemented using a three-dimensional hydro-dynamic cochlear model using 1) time-averaged Lagrangian, 2) push-pull mechanism in active case, and 3) the complex anatomy of cochlear scalae by micro computed tomography (μCT) scanning and 3-D reconstructions of gerbil and chinchilla temporal bones. The objective of this work is to compare the calculations and the physiological measurements of gerbil and chinchilla cochlear such as VBM (Ren and Nuttall [1]), PST (Olson [2]), and ZC (Decraemer et al. [3], Songer and Rosowski [4], Ruggero et al. [5]) with present model. A WKB asymptotic method combined with Fourier series expansions is used to provide an efficient simulation. VBM and PST simulation results for the gerbil cochlea show good agreement both in the magnitude and the phase for the physiological measurements without larger phase excursion. ZC simulation from the gerbil and chinchilla model show reasonably good agreement with measurement.
Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene.
Liu, Yu; Yin, Yongquan; Jia, Xueqing; Cui, Xiangyu; Tian, Canrui; Sang, Yuanhua; Liu, Hong
2016-09-01
A series of nano-BiOBr were prepared by an effective hydrothermal method in the presence of cetyltrimethyl ammonium bromide (CTAB) and ethanol at different calcination temperatures. The as-prepared nano-BiOBr samples were characterized by measuring the specific area (S BET), UV-Vis diffuse reflectance spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results show that the calcination temperature has an important impact on the morphology and microstructure of BiOBr. The nano-BiOBr calcined at 120 °C showed excellent photocatalytic degradation properties for benzene, with photocatalytic degradation rate of 75 % for benzene under UV irradiation for 90 min, and removal efficiency of benzene was significantly enhanced by using nano-BiOBr catalyst compared to UV irradiation alone. BiOBr catalyst possessed good photocatalytic activity even after three consecutive photocatalytic reaction cycles, illustrating its excellent stability. The photocatalytic degradation of benzene followed the first-order kinetics, and the good catalytic capability of nano-BiOBr catalyst can be attributed to its crystalline, hierarchical nanostructure and nanosheet thickness.
Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862
Lipophilization of ascorbic acid: a monolayer study and biological and antileishmanial activities.
Kharrat, Nadia; Aissa, Imen; Sghaier, Manel; Bouaziz, Mohamed; Sellami, Mohamed; Laouini, Dhafer; Gargouri, Youssef
2014-09-17
Ascorbyl lipophilic derivatives (Asc-C2 to Asc-C(18:1)) were synthesized in a good yield using lipase from Staphylococcus xylosus produced in our laboratory and immobilized onto silica aerogel. Results showed that esterification had little effect on radical-scavenging capacity of purified ascorbyl esters using DPPH assay in ethanol. However, long chain fatty acid esters displayed higher protection of target lipids from oxidation. Moreover, compared to ascorbic acid, synthesized derivatives exhibited an antibacterial effect. Furthermore, ascorbyl derivatives were evaluated, for the first time, for their antileishmanial effects against visceral (Leishmania infantum) and cutaneous parasites (Leishmania major). Among all the tested compounds, only Asc-C10, Asc-C12, and Asc-C(18:1) exhibited antileishmanial activities. The interaction of ascorbyl esters with a phospholipid monolayer showed that only medium and unsaturated long chain (Asc-C10 to Asc-C(18:1)) derivative esters were found to interact efficiently with mimetic membrane of leishmania. These properties would make ascorbyl derivatives good candidates to be used in cosmetic and pharmaceutical lipophilic formulations.
Song, Mingming; Pei, Haiyan; Hu, Wenrong; Zhang, Shuo; Ma, Guixia; Han, Lin; Ji, Yan
2014-06-01
The selection of the right strains is of fundamental important to the success of the algae-based oil industry. From the six newly isolated microalgae strains tested for growth, fatty acid methyl ester (FAME) profiles and biodiesel properties, Scenedesmus SDEC-8, with favorable C16:0 fatty acids (73.43%), showed the best combined results. Then, morphological and molecular identification were examined. From the three wastewaters samples, Scenedesmus SDEC-8 showed good ability to yield oil and remove nutrients, which were comparable with other reports. In b artificial wastewater (TN 40 mg L(-1), TP 8 mg L(-1)), Scenedesmus SDEC-8 achieved the highest value of lipid productivity (53.84 mg L(-1) d(-1)), MUFA content (35.35%) and total FAME content (59.57±0.02 mg g(-1) DW), besides higher removal efficiencies of TN (99.18%) and TP (98.86%) helped effluent directly discharge and smaller dilution factor of N, P (3.3 and 9) which was good for lessening water utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robust data enables managers to promote good practice.
Bassett, Sally; Westmore, Kathryn
2012-11-01
This is the third in a series of articles examining the components of good corporate governance. The effective and efficient use of information and sources of information is crucial for good governance. This article explores the ways in which boards and management can obtain and use information to monitor performance and promote good practice, and how boards can be assured about the quality of information on which they rely. The final article in this series will look at the role of accountability in corporate governance.
Design Recovery for Software Library Population
1992-12-01
increase understandability, efficiency, and maintainability of the software and the design. A good representation choice will also aid in...required for a reengineering project. It details the analysis and planning phase and gives good criteria for determining the need for a reengineering...because it deals with all of these issues. With his complete description of the analysis and planning phase, Byrne has a good foundation for
NASA Astrophysics Data System (ADS)
Kharadi, G. J.
2014-01-01
An octahedral complexes of copper with clioquinol(CQ) and substituted terpyridine have been synthesized. The Cu(II) complexes have been characterized by elemental analyses, thermogravimetric analyses, magnetic moment measurements, FT-IR, electronic, 1H NMR and FAB mass spectra. Antimycobacterial screening of ligand and its copper compound against Mycobacterium tuberculosis shows clear enhancement in the antitubercular activity upon copper complexation. Ferric-reducing anti-oxidant power of all complexes were measured. The fluorescence spectra of complexes show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The antimicrobial efficiency of the complexes were tested on five different microorganisms and showed good biological activity.
A fused-ring acceptor unit in d-a copolymers benefits photovoltaic performance.
Zuo, Chuantian; Cao, Jiamin; Ding, Liming
2014-08-01
Pentacyclic lactam acceptor unit TPTI invented by our group is proved to be a good building block for efficient D-A copolymers used in organic solar cells. Here, two D-A copolymers PBTTPTI and PTTTPTI are developed by copolymerizing TPTI with 2,2'-bithiophene (BT) or thieno[3,2-b]thiophene (TT). PBTTPTI and PTTTPTI exhibit good solubility and strong interchain π-π interaction even in dilute solution. They possess deep HOMO levels (ca. -5.3 eV), partial crystallinity, and good hole mobilities. Blending with PC71 BM, PBTTPTI and PTTTPTI give decent power conversion efficiencies (PCE) up to 6.83% and 5.86%, with outstanding fill factors (FF) of 74.3% and 71.3%, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An indirect approach to the extensive calculation of relationship coefficients
Colleau, Jean-Jacques
2002-01-01
A method was described for calculating population statistics on relationship coefficients without using corresponding individual data. It relied on the structure of the inverse of the numerator relationship matrix between individuals under investigation and ancestors. Computation times were observed on simulated populations and were compared to those incurred with a conventional direct approach. The indirect approach turned out to be very efficient for multiplying the relationship matrix corresponding to planned matings (full design) by any vector. Efficiency was generally still good or very good for calculating statistics on these simulated populations. An extreme implementation of the method is the calculation of inbreeding coefficients themselves. Relative performances of the indirect method were good except when many full-sibs during many generations existed in the population. PMID:12270102
Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge
2016-02-10
It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs.
Ma, Xue-Ming; Lin, Zhen; Zhang, Jia-Wei; Sang, Chao-Hui; Qu, Dong-Bin; Jiang, Jian-Ming
2016-03-01
To fabricate a new composite scaffold material as an implant for sustained delivery of rifampicin and evaluate its performance of sustained drug release and biocompatibility. The composite scaffold material was prepared by loading poly(lactic-co-glycolic) acid (PLGA) microspheres that encapsulated rifampicin in a biphasic calcium composite material with a negative surface charge. The in vitro drug release characteristics of the microspheres and the composite scaffold material were evaluated; the in vivo drug release profile of the composite scaffold material implanted in a rat muscle pouch was evaluated using high-performance liquid chromatography. The biochemical parameters of the serum and liver histopathologies of the rats receiving the transplantation were observed to assess the biocompatibility of the composite scaffold material. The encapsulation efficiency and drug loading efficiency of microspheres were (56.05±5.33)% and (29.80±2.88)%, respectively. The cumulative drug release rate of the microspheres in vitro was (94.19±5.4)% at 28 days, as compared with the rate of (82.23±6.28)% of composite scaffold material. The drug-loaded composite scaffold material showed a good performance of in vivo drug release in rats, and the local drug concentration still reached 16.18±0.35 µg/g at 28 days after implantation. Implantation of the composite scaffold material resulted in transient and reversible liver injury, which was fully reparred at 28 days after the implantation. The composite scaffold material possesses a good sustained drug release capacity and a good biocompatibility, and can serve as an alternative approach to conventional antituberculous chemotherapy.
75 FR 63501 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Cambridge Housing Authority for the purchase and installation of energy efficient bathroom exhaust fans and... manufactured goods (energy efficient bathroom exhaust fans and linoleum flooring) are not produced in the U.S...
75 FR 60776 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... Cambridge Housing Authority for the purchase and installation of energy efficient bathroom exhaust fans for... that the relevant manufactured goods, energy efficient bathroom exhaust fans, are not produced in the U...
Crompton, Marcus J; Dunstan, R Hugh
2018-05-01
The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Agreement between sleep diary and actigraphy in a highly educated Brazilian population.
Campanini, Marcela Zambrim; Lopez-Garcia, Esther; Rodríguez-Artalejo, Fernando; González, Alberto Durán; Andrade, Selma Maffei; Mesas, Arthur Eumann
2017-07-01
This study evaluated the agreement between a sleep diary and actigraphy on the assessment of sleep parameters among school teachers from Brazil. A total of 163 teachers (66.3% women; aged 45 ± 9 years) filled out a sleep diary and wore a wrist actigraph device for seven consecutive days. Data were collected from August 2014 to March 2015 in Londrina, a large city in southern Brazil. Intraclass correlation coefficients (ICC) and Pearson correlation coefficients (r) were used to compare self-reported and actigraphic data. Self-reported total sleep time (TST), sleep onset latency (SOL), and sleep efficiency were higher than measured by actigraphy (mean difference: 22.6 ± 46.9 min, 2.6 ± 13.3 min, and 7.3± 5.7%, respectively). Subjective total time in bed (TIB) and wake-up time were lower than measured by actigraphy (mean difference: -10.7 ± 37.6 and -19.7 ± 29.6, respectively). Moderate or good agreement and correlation were found between the sleep diary and the actigraphic data for TST (ICC = 0.70; r = 0.60), TIB (ICC = 0.83; r = 0.73), bedtime (ICC = 0.95; r = 0.91), sleep start time (ICC = 0.94; r = 0.88), and wake-up time (ICC = 0.87; r = 0.78). However, SOL (ICC = 0.49; r = 0.38) and sleep efficiency (ICC = 0.16; r = 0.22) showed only fair or poor agreement and correlation. In this highly educated population, the sleep diary and the actigraphy showed moderate or good agreement to assess several sleep parameters. However, these methods seemed to measure different dimensions of sleep regarding sleep onset latency and efficiency. These findings moderately varied according to the individual's subjective sleep quality. Copyright © 2017 Elsevier B.V. All rights reserved.
N-Alkyl-PEI Functional Iron Oxide Nanocluster for Efficient siRNA Delivery**
Liu, Gang; Xie, Jin; Zhang, Fan; Wang, Zhi-Yong; Luo, Kui; Zhu, Lei; Quan, Qi-Meng; Niu, Gang; Lee, Seulki
2013-01-01
Small interfering RNA (siRNA) is an emerging class of therapeutics, working by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a non-viral nanoparticle gene carrier has been developed and its efficiency for siRNA delivery and transfection has been validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide (IO) and a shell of alkylated PEI2000 (Alkyl-PEI2k). It was found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies showed that the Alkyl-PEI2k-IOs could retard siRNA completely at N/P ratios above 10, protect siRNA from enzymatic degradation in serum and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA loaded nanocarriers was assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant downregulation of luciferase was observed, and unlike the high molecular weight analogs, the Alkyl-PEI2k coated IOs showed a good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy. PMID:21861295
Chen, Bin; Jiang, Yibin; Chen, Long; Nie, Han; He, Bairong; Lu, Ping; Sung, Herman H Y; Williams, Ian D; Kwok, Hoi Sing; Qin, Anjun; Zhao, Zujin; Tang, Ben Zhong
2014-02-10
2,3,4,5-Tetraarylsiloles are a class of important luminogenic materials with efficient solid-state emission and excellent electron-transport capacity. However, those exhibiting outstanding electroluminescence properties are still rare. In this work, bulky 9,9-dimethylfluorenyl, 9,9-diphenylfluorenyl, and 9,9'-spirobifluorenyl substituents were introduced into the 2,5-positions of silole rings. The resulting 2,5-difluorenyl-substituted siloles are thermally stable and have low-lying LUMO energy levels. Crystallographic analysis revealed that intramolecular π-π interactions are prone to form between 9,9'-spirobifluorene units and phenyl rings at the 3,4-positions of the silole ring. In the solution state, these new siloles show weak blue and green emission bands, arising from the fluorenyl groups and silole rings with a certain extension of π conjugation, respectively. With increasing substituent volume, intramolecular rotation is decreased, and thus the emissions of the present siloles gradually improved and they showed higher fluorescence quantum yields (Φ(F) =2.5-5.4%) than 2,3,4,5-tetraphenylsiloles. They are highly emissive in solid films, with dominant green to yellow emissions and good solid-state Φ(F) values (75-88%). Efficient organic light-emitting diodes were fabricated by adopting them as host emitters and gave high luminance, current efficiency, and power efficiency of up to 44,100 cd m(-2), 18.3 cd A(-1), and 15.7 lm W(-1), respectively. Notably, a maximum external quantum efficiency of 5.5% was achieved in an optimized device. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Long-term purification efficiency of a wetland constructed to treat runoff from peat extraction.
Karjalainen, Satu M; Heikkinen, Kaisa; Ihme, Raimo; Kløve, Bjørn
2016-01-01
Peat extraction increases the phosphorus, nitrogen, organic matter, suspended solids, and iron concentrations in runoff, resulting in negative effects on downstream water bodies. Wetlands are commonly used as natural cost-effective solutions to mitigate these negative effects. This study analyzed changes in the quality of runoff water from peat extraction areas and the long-term efficiency of constructed wetlands. The results indicate that the quality of runoff water changed after the initial drainage and during peat extraction. Nitrogen leached at high concentrations in the early stages of peat extraction following drainage, whereas the leaching of iron and phosphorus increased after peat extraction from deeper layers. Comparison of water quality and impurities retained immediately after treatment wetland construction and 14 years later showed that the treatment wetland remained functional, with good retention capacity, over a long period.
NASA Astrophysics Data System (ADS)
Yang, Yuchen; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro
Intertransaction association rules have been reported to be useful in many fields such as stock market prediction, but still there are not so many efficient methods to dig them out from large data sets. Furthermore, how to use and measure these more complex rules should be considered carefully. In this paper, we propose a new intertransaction class association rule mining method based on Genetic Network Programming (GNP), which has the ability to overcome some shortages of Apriori-like based intertransaction association methods. Moreover, a general classifier model for intertransaction rules is also introduced. In experiments on the real world application of stock market prediction, the method shows its efficiency and ability to obtain good results and can bring more benefits with a suitable classifier considering larger interval span.
Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, Sheikh; Aravind, Athulya; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi
2012-03-01
The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.
NASA Astrophysics Data System (ADS)
Fontchastagner, Julien; Lubin, Thierry; Mezani, Smaïl; Takorabet, Noureddine
2018-03-01
This paper presents a design optimization of an axial-flux eddy-current magnetic coupling. The design procedure is based on a torque formula derived from a 3D analytical model and a population algorithm method. The main objective of this paper is to determine the best design in terms of magnets volume in order to transmit a torque between two movers, while ensuring a low slip speed and a good efficiency. The torque formula is very accurate and computationally efficient, and is valid for any slip speed values. Nevertheless, in order to solve more realistic problems, and then, take into account the thermal effects on the torque value, a thermal model based on convection heat transfer coefficients is also established and used in the design optimization procedure. Results show the effectiveness of the proposed methodology.
Gubernator, Jerzy; Lipka, Dominik; Korycińska, Mariola; Kempińska, Katarzyna; Milczarek, Magdalena; Wietrzyk, Joanna; Hrynyk, Rafał; Barnert, Sabine; Süss, Regine; Kozubek, Arkadiusz
2014-01-01
Liposomes act as efficient drug carriers. Recently, epirubicin (EPI) formulation was developed using a novel EDTA ion gradient method for drug encapsulation. This formulation displayed very good stability and drug retention in vitro in a two-year long-term stability experiment. The cryo-TEM images show drug precipitate structures different than ones formed with ammonium sulfate method, which is usually used to encapsulate anthracyclines. Its pharmacokinetic properties and its efficacy in the human breast MDA-MB-231 cancer xenograft model were also determined. The liposomal EPI formulation is eliminated slowly with an AUC of 7.6487, while the free drug has an AUC of only 0.0097. The formulation also had a much higher overall antitumor efficacy than the free drug. PMID:24621591
Wang, Xingmei; Hao, Wenqian; Li, Qiming
2017-12-18
This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.
NASA Astrophysics Data System (ADS)
Pan, S.; Liu, L.; Xu, Y. P.
2017-12-01
Abstract: In physically based distributed hydrological model, large number of parameters, representing spatial heterogeneity of watershed and various processes in hydrologic cycle, are involved. For lack of calibration module in Distributed Hydrology Soil Vegetation Model, this study developed a multi-objective calibration module using Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) and based on parallel computing of Linux cluster for DHSVM (ɛP-DHSVM). In this study, two hydrologic key elements (i.e., runoff and evapotranspiration) are used as objectives in multi-objective calibration of model. MODIS evapotranspiration obtained by SEBAL is adopted to fill the gap of lack of observation for evapotranspiration. The results show that good performance of runoff simulation in single objective calibration cannot ensure good simulation performance of other hydrologic key elements. Self-developed ɛP-DHSVM model can make multi-objective calibration more efficiently and effectively. The running speed can be increased by more than 20-30 times via applying ɛP-DHSVM. In addition, runoff and evapotranspiration can be simulated very well simultaneously by ɛP-DHSVM, with superior values for two efficiency coefficients (0.74 for NS of runoff and 0.79 for NS of evapotranspiration, -10.5% and -8.6% for PBIAS of runoff and evapotranspiration respectively).
NASA Astrophysics Data System (ADS)
Deng, Yuanfu; Xu, Hui; Bai, Zhaowen; Huang, Baoling; Su, Jingyang; Chen, Guohua
2015-12-01
Lithium-sulfur batteries show fascinating potential for advanced energy system due to their high specific capacity, low-cost, and environmental benignity. However, their wide applications have been plagued by low coulombic efficiency, fast capacity fading and poor rate performance. Herein, a facile method for preparation of S@PDA (PDA = polydopamine) composites with core-shell structure and good electrochemical performance as well as the First-Principles calculations on the interactions of PDA and polysulfides are reported. Taking the advantages of the core-shell structure with porous sulfur core, the high mechanical flexibility of PDA for accommodating the volumetric variation during the discharge/charge processes, the good lithium ion conductivity and the strong chemical interactions between the nitrogen/oxygen atoms with lone electron pair and lithium polysulfides for alleviating their dissolution, the S@PDA composites exhibit high discharge capacities at different current densities (1048 and 869 mAh g-1 at 0.2 and 0.8 A g-1, respectively) and excellent capacity retention capability. A capacity decay as low as 0.021% per cycle and an average coulombic efficiency of 98.5% is observed over a long-term cycling of 890 cycles at 0.8 A g-1. The S@PDA electrode has great potential as a low-cost cathode in high energy Li-S batteries.
Xiao, Liangang; Liang, Tianxiang; Gao, Ke; Lai, Tianqi; Chen, Xuebin; Liu, Feng; Russell, Thomas P; Huang, Fei; Peng, Xiaobin; Cao, Yong
2017-09-06
Ternary organic solar cells (OSCs) are very attractive for further enhancing the power conversion efficiencies (PCEs) of binary ones but still with a single active layer. However, improving the PCEs is still challenging because a ternary cell with one more component is more complicated on phase separation behavior. If the two donors or two acceptors have similar chemical structures, good miscibility can be expected to reduce the try-and-error work. Herein, we report ternary devices based on two small molecule donors with the same backbone but different substituents. Whereas both binary devices show PCEs about 9%, the PCE of the ternary cells is enhanced to 10.17% with improved fill factor and short-circuit current values and external quantum efficiencies almost in the whole absorption wavelength region from 440 to 850 nm. The same backbone enables the donors miscible at molecular level, and the donor with a higher HOMO level plays hole relay process to facilitate the charge transportation in the ternary devices. Since side-chain engineering has been well performed to tune the active materials' energy levels in OSCs, our results suggest that their ternary systems are promising for further improving the binary cells' performance although their absorptions are not complementary.
NASA Astrophysics Data System (ADS)
Lacava, C.; Liu, Z.; Thomson, D.; Ke, Li; Fedeli, J. M.; Richardson, D. J.; Reed, G. T.; Petropoulos, P.
2016-02-01
Communication traffic grows relentlessly in today's networks, and with ever more machines connected to the network, this trend is set to continue for the foreseeable future. It is widely accepted that increasingly faster communications are required at the point of the end users, and consequently optical transmission plays a progressively greater role even in short- and medium-reach networks. Silicon photonic technologies are becoming increasingly attractive for such networks, due to their potential for low cost, energetically efficient, high-speed optical components. A representative example is the silicon-based optical modulator, which has been actively studied. Researchers have demonstrated silicon modulators in different types of structures, such as ring resonators or slow light based devices. These approaches have shown remarkably good performance in terms of modulation efficiency, however their operation could be severely affected by temperature drifts or fabrication errors. Mach-Zehnder modulators (MZM), on the other hand, show good performance and resilience to different environmental conditions. In this paper we present a CMOS-compatible compact silicon MZM. We study the application of the modulator to short-reach interconnects by realizing data modulation using some relevant advanced modulation formats, such as 4-level Pulse Amplitude Modulation (PAM-4) and Discrete Multi-Tone (DMT) modulation and compare the performance of the different systems in transmission.
Efficiency analysis of diffusion on T-fractals in the sense of random walks.
Peng, Junhao; Xu, Guoai
2014-04-07
Efficiently controlling the diffusion process is crucial in the study of diffusion problem in complex systems. In the sense of random walks with a single trap, mean trapping time (MTT) and mean diffusing time (MDT) are good measures of trapping efficiency and diffusion efficiency, respectively. They both vary with the location of the node. In this paper, we analyze the effects of node's location on trapping efficiency and diffusion efficiency of T-fractals measured by MTT and MDT. First, we provide methods to calculate the MTT for any target node and the MDT for any source node of T-fractals. The methods can also be used to calculate the mean first-passage time between any pair of nodes. Then, using the MTT and the MDT as the measure of trapping efficiency and diffusion efficiency, respectively, we compare the trapping efficiency and diffusion efficiency among all nodes of T-fractal and find the best (or worst) trapping sites and the best (or worst) diffusing sites. Our results show that the hub node of T-fractal is the best trapping site, but it is also the worst diffusing site; and that the three boundary nodes are the worst trapping sites, but they are also the best diffusing sites. Comparing the maximum of MTT and MDT with their minimums, we find that the maximum of MTT is almost 6 times of the minimum of MTT and the maximum of MDT is almost equal to the minimum for MDT. Thus, the location of target node has large effect on the trapping efficiency, but the location of source node almost has no effect on diffusion efficiency. We also simulate random walks on T-fractals, whose results are consistent with the derived results.
Motivational Techniques for Good Human Relations.
ERIC Educational Resources Information Center
Greene, Betty J.
Negative motivators like threats, intimidation, criticism, denigration, the withholding of information, and the exercise of power produce temporary results but engender resentment and close the door of communication. Good leaders use positive motivators to meet people's needs, enhance efficiency, and improve working relationships. Some of these…
Khan, Zia Ul Haq; Khan, Amjad; Wan, Pingyu; Khan, Arif Ullah; Tahir, Kamran; Muhammad, Nawshad; Khan, Faheem Ullah; Shah, Hidayat Ullah; Khan, Zia Ullah
2018-05-01
Some new pyrimidine derivatives have been synthesised by electrochemical oxidation of catechol (1a) in the existence of 2-mercapto-6-(trifluoromethyl) pyrimidine-4-ol (3) as a nucleophile in aqueous solution using Cyclic Voltammetric and Controlled Potential Coulometry. The catechol has been oxidised to o-quinone through electrochemical method and participative in Michael addition reaction, leading to the development of some new pyrimidine derivatives. The products were achieved in good yield with high pureness. The mechanism of the reaction has been conformed from the Cyclic Voltammetric data and Controlled Potential Coulometry. After purification, the compounds were characterised using modern techniques. The synthesised materials were screened for antimicrobial actions using Gram positive and Gram negative strain of bacteria. These new synthesised pyrimidine derivatives showed very good antimicrobial activity.
Parallel processing of genomics data
NASA Astrophysics Data System (ADS)
Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario
2016-10-01
The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.
Effect of authority figures for pedestrian evacuation at metro stations
NASA Astrophysics Data System (ADS)
Song, Xiao; Zhang, Zenghui; Peng, Gongzhuang; Shi, Guoqiang
2017-01-01
Most pedestrian evacuation literatures are about routing algorithm, human intelligence and behavior etc. Few works studied how to fully explore the function of authority/security figures, who know more of the environment by simply being there every day. To evaluate the effect of authority figure (AF) in complex buildings, this paper fully investigates the AF related factors that may influence the evacuation effect of crowd, such as the number and locations of AFs, their spread of direction, calming effect and distribution strategies etc. Social force based modeling and simulation results show that these factors of AFs play important roles in evacuation efficiency, which means fewer AFs with right guiding strategy can have good evacuation performance. For our case study, Zhichun Avenue station, the conclusion is that deployment of four AFs is a good choice to achieve relatively high evacuation performance yet save cost.
Justification of CT scans using referral guidelines for imaging.
Stanescu, G; Rosca-Fartat, G; Stanescu, D
2015-07-01
This study analyses the efficiency of the justification of individual computed tomography (CT) procedures using the good practice guide. The conformity of the CT scans with guide's recommendations was retrospectively analysed in a paediatric emergency hospital in Romania. The involved patient doses were estimated. The results show that around one-third of the examinations were not prescribed in conformity with the guide's recommendations, but these results are affected by unclear guide provisions, discussed here. The implications of the provisions of the revised International Atomic Energy Agency's Basic Safety Standards and of the Council Directive 2013/59/EURATOM were analysed. The education and training courses for medical doctors disseminating the provisions of the good practice guide should be considered as the main support for the justification of the CT scans at the individual level. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd
2016-12-01
Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.
Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging.
Che, Dongchen; Zhu, Xiaoxu; Wang, Hongzhi; Duan, Yourong; Zhang, Qinghong; Li, Yaogang
2016-02-01
Efficient synthetic methods for near-infrared quantum dots with good biophysical properties as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared AgInSe2-ZnSe quantum dots (QDs) with tunable emissions in aqueous media is reported. This method avoids high temperature and pressure and organic solvents to directly generate water-dispersible AgInSe2-ZnSe QDs. The photoluminescence emission peak of the AgInSe2-ZnSe QDs ranged from 625 to 940nm, with quantum yields up to 31%. The AgInSe2-ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
Gas-liquid flow splitting in T-junction with inclined lateral arm
NASA Astrophysics Data System (ADS)
Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu
2018-02-01
This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.
Goszczyńska, Agata; Kwiecień, Halina; Fijałkowski, Karol
A series of novel Schiff bases and secondary amines were obtained in good yields, as a result of the reductive amination of alkyl 2-(2-formyl-4-nitrophenoxy)alkanoates with both aniline and 4-methoxyaniline under established mild reaction conditions. Sodium triacetoxyborohydride as well as hydrogen in the presence of palladium on carbon were used as efficient reducing agents of the Schiff bases, in both direct and stepwise reductive amination processes. The Schiff bases, amines, and amine hydrochlorides were designed as potential antibacterial agents, and structure-activity relationship could be established following in vitro assays against Gram-positive and Gram-negative bacteria. The minimal inhibitory concentration and zone of inhibition were also determined. In these tests, some of Schiff bases and secondary amine hydrochlorides showed moderate-to-good activity against Gram-positive bacteria, including S. aureus , M. luteus , and S. mutans .
A goodness-of-fit test for capture-recapture model M(t) under closure
Stanley, T.R.; Burnham, K.P.
1999-01-01
A new, fully efficient goodness-of-fit test for the time-specific closed-population capture-recapture model M(t) is presented. This test is based on the residual distribution of the capture history data given the maximum likelihood parameter estimates under model M(t), is partitioned into informative components, and is based on chi-square statistics. Comparison of this test with Leslie's test (Leslie, 1958, Journal of Animal Ecology 27, 84- 86) for model M(t), using Monte Carlo simulations, shows the new test generally outperforms Leslie's test. The new test is frequently computable when Leslie's test is not, has Type I error rates that are closer to nominal error rates than Leslie's test, and is sensitive to behavioral variation and heterogeneity in capture probabilities. Leslie's test is not sensitive to behavioral variation in capture probabilities but, when computable, has greater power to detect heterogeneity than the new test.
NASA Astrophysics Data System (ADS)
Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.
2003-11-01
Network data analysis methods are the only way to properly separate real gravitational wave (GW) transient events from detector noise. They can be divided into two generic classes: the coincidence method and the coherent analysis. The former uses lists of selected events provided by each interferometer belonging to the network and tries to correlate them in time to identify a physical signal. Instead of this binary treatment of detector outputs (signal present or absent), the latter method involves first the merging of the interferometer data and looks for a common pattern, consistent with an assumed GW waveform and a given source location in the sky. The thresholds are only applied later, to validate or not the hypothesis made. As coherent algorithms use more complete information than coincidence methods, they are expected to provide better detection performances, but at a higher computational cost. An efficient filter must yield a good compromise between a low false alarm rate (hence triggering on data at a manageable rate) and a high detection efficiency. Therefore, the comparison of the two approaches is achieved using so-called receiving operating characteristics (ROC), giving the relationship between the false alarm rate and the detection efficiency for a given method. This paper investigates this question via Monte Carlo simulations, using the network model developed in a previous article. Its main conclusions are the following. First, a three-interferometer network such as Virgo-LIGO is found to be too small to reach good detection efficiencies at low false alarm rates: larger configurations are suitable to reach a confidence level high enough to validate as true GW a detected event. In addition, an efficient network must contain interferometers with comparable sensitivities: studying the three-interferometer LIGO network shows that the 2-km interferometer with half sensitivity leads to a strong reduction of performances as compared to a network of three interferometers with full sensitivity. Finally, it is shown that coherent analyses are feasible for burst searches and are clearly more efficient than coincidence strategies. Therefore, developing such methods should be an important goal of a worldwide collaborative data analysis.
3D prostate TRUS segmentation using globally optimized volume-preserving prior.
Qiu, Wu; Rajchl, Martin; Guo, Fumin; Sun, Yue; Ukwatta, Eranga; Fenster, Aaron; Yuan, Jing
2014-01-01
An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.
NASA Astrophysics Data System (ADS)
Hazbehian, Mohammad; Mohammadiun, Mohammad; Maddah, Heydar; Alizadeh, Mostafa
2017-05-01
In the present study, the theoretical and experimental results of the second law analysis on the performance of a uniform heat flux tube using are presented in the laminar flow regime. For this purpose, carbon nanotube/water nanofluids is considered as the base fluid. The experimental investigations were undertaken in the Reynolds number range from 800 to 2600, volume concentrations of 0.1-1 %. Results are verified with well-known correlations. The focus will be on the entrance region under the laminar flow conditions for SWCNT nanofluid. The results showed that the Nu number increased about 90-270 % with the enhancement of nanoparticles volume concentration compared to water. The enhancement was particularly significant in the entrance region. Based on the exergy analysis, the results show that exergetic heat transfer effectiveness is increased by 22-67 % employing nanofluids. The exergetic efficiency is increase with increase in nanoparticles concentration. On the other hand, exergy loss was reduced by 23-43 % employing nanofluids as a heat transfer medium with comparing to conventional fluid. In addition, the empirical correlation for exergetic efficiency has also been developed. The consequential results obtained from the correlation are found to be in good agreement with the experimental results within ±5 % variation.
Liu, Jin; Prezhdo, Oleg V.
2015-10-27
Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron–hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wavemore » functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron–vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.« less
InP shallow-homojunction solar cells
NASA Technical Reports Server (NTRS)
Keavney, Christopher; Spitzer, Mark B.; Vernon, Stanley M.; Haven, Victor E.; Augustine, Godfrey
1989-01-01
Indium phosphide solar cells with very thin n-type emitters have been made by both ion implantation and metalorganic chemical vapor deposition. Air mass zero efficiencies as high as 18.8 percent (NASA measurement) have been achieved. Although calculations show that, as is the case with GaAs, a heterostructure is expected to be required for the highest efficiencies attainable, the material properties of InP give the shallow-homojunction structure a greater potential than in the case of GaAs. The best cells, which were those made by ion implantation, show open-circuit voltage (V sub oc) of 873 mV, short-circuit current of 357 A/sq m (35.7 mA/sq cm), and fill factor of 0.829. Improvements are anticipated in all three of these parameters. Internal quantum efficiency peaks at over 90 percent in the red end of the spectrum, but drops to 54 percent in the blue end. Other cells have achieved 74 percent in the blue end. Detailed modeling of the data indicates that a high front surface recombination velocity is responsible for the low blue response, that the carrier lifetime is high enough to allow good carrier collection from both the base and the emitter, and that the voltage is base-limited.
Zhang, Zulei; Li, Lei
2018-06-01
We developed a facile approach to the construction of bio-recognition sites in silica nanoparticles for efficient separation of bovine hemoglobin based on amino-functionalized silica nanoparticles grafting by 3-aminopropyltriethoxylsilane providing hydrogen bonds with bovine hemoglobin through surface molecularly imprinting technology. The resulting amino-functionalized silica surface molecularly imprinted polymers were characterized using scanning electron microscope, transmission electronic microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Results showed that the as-synthesized imprinted polymers exhibited spherical morphology and favorable thermal stability. The binding adsorption experiments showed that the imprinted polymers can reach equilibrium within 1 h. The Langmuir isotherm and pseudo-second-order kinetic model fitted the adsorption data well. Meanwhile, the imprinted polymers possessed a maximum binding capacity up to 90.3 mg/g and highly selectivity for the recognition of bovine hemoglobin. Moreover, such high binding capacity and selectivity retained after eight cycles, indicating the good stability and reusability of the imprinted polymers. Finally, successful application in the selective recognition of bovine hemoglobin from a real bovine blood sample indicated that the imprinted polymers displayed great potentials in efficient purification and separation of target proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng
A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.
Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method
Xue, Zhehua; Wang, Ting; Chen, Bingdi; Malkoske, Tyler; Yu, Shuili; Tang, Yulin
2015-01-01
BiFeO3 particles (BFO) were prepared by a simple hydrothermal method and characterized. BFO was pure, with a wide particle size distribution, and was visible light responsive. Tetracycline was chosen as the model pollutant in this study. The pH value was an important factor influencing the degradation efficiency. The total organic carbon (TOC) measurement was emphasized as a potential standard to evaluate the visible light photocatalytic degradation efficiency. The photo-Fenton process showed much better degradation efficiency and a wider pH adaptive range than photocatalysis or the Fenton process solely. The optimal residual TOC concentrations of the photocatalysis, Fenton and photo-Fenton processes were 81%, 65% and 21%, while the rate constants of the three processes under the same condition where the best residual TOC was acquired were 9.7 × 10−3, 3.2 × 10−2 and 1.5 × 10−1 min−1, respectively. BFO was demonstrated to have excellent stability and reusability. A comparison among different reported advanced oxidation processes removing tetracycline (TC) was also made. Our findings showed that the photo-Fenton process had good potential for antibiotic-containing waste water treatment. It provides a new method to deal with antibiotic pollution. PMID:28793568
Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.
Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray
2017-07-11
Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.
Symmetric supercapacitor: Sulphurized graphene and ionic liquid.
Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S
2018-10-01
Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.
On the three-quarter view advantage of familiar object recognition.
Nonose, Kohei; Niimi, Ryosuke; Yokosawa, Kazuhiko
2016-11-01
A three-quarter view, i.e., an oblique view, of familiar objects often leads to a higher subjective goodness rating when compared with other orientations. What is the source of the high goodness for oblique views? First, we confirmed that object recognition performance was also best for oblique views around 30° view, even when the foreshortening disadvantage of front- and side-views was minimized (Experiments 1 and 2). In Experiment 3, we measured subjective ratings of view goodness and two possible determinants of view goodness: familiarity of view, and subjective impression of three-dimensionality. Three-dimensionality was measured as the subjective saliency of visual depth information. The oblique views were rated best, most familiar, and as approximating greatest three-dimensionality on average; however, the cluster analyses showed that the "best" orientation systematically varied among objects. We found three clusters of objects: front-preferred objects, oblique-preferred objects, and side-preferred objects. Interestingly, recognition performance and the three-dimensionality rating were higher for oblique views irrespective of the clusters. It appears that recognition efficiency is not the major source of the three-quarter view advantage. There are multiple determinants and variability among objects. This study suggests that the classical idea that a canonical view has a unique advantage in object perception requires further discussion.
A Basic Behavior of CNG DI Combustion in a Spark-Ignited Rapid Compression Machine
NASA Astrophysics Data System (ADS)
Huang, Zuohua; Shiga, Seiichi; Ueda, Takamasa; Jingu, Nobuhisa; Nakamura, Hisao; Ishima, Tsuneaki; Obokata, Tomio; Tsue, Mitsuhiro; Kono, Michikata
A basic characteristics of compressed natural gas direct-injection (CNG DI) combustion was studied by using a rapid compression machine. Results show that comparing with homogeneous mixture, CNG DI has short combustion duration, high pressure rise due to combustion, and high rate of heat release, which are considered to come from the charge stratification and the gas flow generated by the fuel injection. CNG DI can realize extremely lean combustion which reaches 0.03 equivalence ratio, φ. Combustion duration, maximum pressure rise due to combustion and combustion efficiency are found to be insensitive to the injection modes. Unburned methane showed almost the same level as that of homogeneous mixture combustion. CO increased steeply with the increase in φ when φ was greater than 0.8 due to the excessive stratification, and NOx peak value shifted to the region of lower φ. Combustion inefficiency maintains less than 0.08 in the range of φ from 0.1 to 0.9 and increases at very low φ due to bulk quenching and at higher φ due to excessive stratification. The combustion efficiency estimated from combustion products shows good agreement with that of heat release analysis.
Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang
2012-06-01
Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
A sketch planning tool for the appraisal of freight modal investments
DOT National Transportation Integrated Search
2004-04-01
In 1991, with the passage of the Intermodal Surface Transportation Efficiency Act (ISTEA), the U.S. Congress established the objective to develop a national intermodal system to move people and goods efficiently. In the freight sector, exclusive truc...
Suh, Joon Hyuk; Han, Sang Beom; Wang, Yu
2018-02-02
Despite their importance in pivotal signaling pathways due to trace quantities and complex matrices, the analysis of plant hormones is a challenge. Here, to improve this issue, we present an electromembrane extraction technology combined with liquid chromatography-tandem mass spectrometry for determination of acidic plant hormones including jasmonic acid, abscisic acid, salicylic acid, benzoic acid, gibberellic acid and gibberellin A 4 in plant tissues. Factors influencing extraction efficiency, such as voltage, extraction time and stirring rate were optimized using a design of experiments. Analytical performance was evaluated in terms of specificity, linearity, limit of quantification, precision, accuracy, recovery and repeatability. The results showed good linearity (r 2 > 0.995), precision and acceptable accuracy. The limit of quantification ranged from 0.1 to 10 ng mL -1 , and the recoveries were 34.6-50.3%. The developed method was applied in citrus leaf samples, showing better clean-up efficiency, as well as higher sensitivity compared to a previous method using liquid-liquid extraction. Organic solvent consumption was minimized during the process, making it an appealing method. More noteworthy, electromembrane extraction has been scarcely applied to plant tissues, and this is the first time that major plant hormones were extracted using this technology, with high sensitivity and selectivity. Taken together, this work gives not only a novel sample preparation platform using an electric field for plant hormones, but also a good example of extracting complex plant tissues in a simple and effective way. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Ji-Hyun; Kim, Su-Jin; Lee, Sul; Rhee, Jin-Kyu; Lee, Soo Young; Na, Yun-Cheol
2017-09-01
A sensitive and selective capillary electrophoresis-mass spectrometry (CE-MS) method for determination of saturated fatty acids (FAs) was developed by using dicationic ion-pairing reagents forming singly charged complexes with anionic FAs. For negative ESI detection, 21 anionic FAs at pH 10 were separated using ammonium formate buffer containing 40% acetonitrile modifier in normal polarity mode in CE by optimizing various parameters. This method showed good separation efficiency, but the sensitivity of the method to short-chain fatty acids was quite low, causing acetic and propionic acids to be undetectable even at 100 mgL -1 in negative ESI-MS detection. Out of the four dicationic ion-pairing reagents tested, N,N'-dibutyl 1,1'-pentylenedipyrrolidium infused through a sheath-liquid ion source during CE separation was the best reagent regarding improved sensitivity and favorably complexed with anionic FAs for detection in positive ion ESI-MS. The monovalent complex showed improved ionization efficiency, providing the limits of detection (LODs) for 15 FAs ranging from 0.13 to 2.88 μg/mL and good linearity (R 2 > 0.99) up to 150 μg/mL. Compared to the negative detection results, the effect was remarkable for the detection of short- and medium-chain fatty acids. The optimized CE-paired ion electrospray (PIESI)-MS method was utilized for the determination of FAs in cheese and coffee with simple pretreatment. This method may be extended for sensitive analysis of unsaturated fatty acids. Copyright © 2017 Elsevier B.V. All rights reserved.
Somatic embryogenesis for efficient micropropagation of guava (Psidium guajava L.).
Akhtar, Nasim
2013-01-01
Guava (Psidium guajava L.) is well known for edible fruit, environment friendly pharmaceutical and commercial products for both national and international market. The conventional propagation and in vitro organogenesis do not meet the demand for the good quality planting materials. Somatic embryogenesis for efficient micropropagation of guava (P. guajava L.) has been developed to fill up the gap. Somatic embryogenesis and plantlets regeneration are achieved from 10-week post-anthesis zygotic embryo explants by 8-day inductive treatment with different concentrations of 2,4-dichlorophenoxy acetic acid (2,4-D) on MS agar medium containing 5% sucrose. Subsequent development and maturation of somatic embryos occur after 8 days on MS basal medium supplemented with 5% sucrose without plant growth regulator. The process of somatic embryogenesis shows the highest relative efficiency in 8-day treatment of zygotic embryo explants with 1.0 mg L(-1) 2,4-D. High efficiency germination of somatic embryos and plantlet regeneration takes place on half strength semisolid MS medium amended with 3% sucrose within 2 weeks of subculture. Somatic plantlets are grown for additional 2 weeks by subculturing in MS liquid growth medium containing 3% sucrose. Well-grown plantlets from liquid medium have survived very well following 2-4 week hardening process. The protocol of somatic embryogenesis is optimized for high efficiency micropropagation of guava species.
Park, Chul Woo; Hwang, Jungho
2013-01-15
Dielectric barrier discharge (DBD) is a promising method to remove contaminant bioaerosols. The collection efficiency of a DBD reactor is an important factor for determining a reactor's removal efficiency. Without considering collection, simply defining the inactivation efficiency based on colony counting numbers for DBD as on and off may lead to overestimation of the inactivation efficiency of the DBD reactor. One-pass removal tests of bioaerosols were carried out to deduce the inactivation efficiency of the DBD reactor using both aerosol- and colony-counting methods. Our DBD reactor showed good performance for removing test bioaerosols for an applied voltage of 7.5 kV and a residence time of 0.24s, with η(CFU), η(Number), and η(Inactivation) values of 94%, 64%, and 83%, respectively. Additionally, we introduce the susceptibility constant of bioaerosols to DBD as a quantitative parameter for the performance evaluation of a DBD reactor. The modified susceptibility constant, which is the ratio of the susceptibility constant to the volume of the plasma reactor, has been successfully demonstrated for the performance evaluation of different sized DBD reactors under different DBD operating conditions. Our methodology will be used for design optimization, performance evaluation, and prediction of power consumption of DBD for industrial applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Simple single-emitting layer hybrid white organic light emitting with high color stability
NASA Astrophysics Data System (ADS)
Nguyen, C.; Lu, Z. H.
2017-10-01
Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.
NASA Astrophysics Data System (ADS)
Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng
2016-09-01
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.
NASA Astrophysics Data System (ADS)
Prajoon, P.; Anuja Menokey, M.; Charles Pravin, J.; Ajayan, J.; Rajesh, S.; Nirmal, D.
2018-04-01
The advantage of InGaN multiple Quantum well (MQW) Light emitting diode (LED) on a SiC substrate with compositionally step graded GaN/InAlN/GaN multi-layer barrier (MLB) is studied. The Internal quantum efficiency, Optical power, current-voltage characteristics, spontaneous emission rate and carrier distribution profile in the active region are investigated using Sentaurus TCAD simulation. An analytical model is also developed to describe the QW carrier injection efficiency, by including carrier leakage mechanisms like carrier overflow, thermionic emission and tunnelling. The enhanced electron confinement, reduced carrier asymmetry, and suppressed carrier overflow in the active region of the MLB MQW LED leads to render a superior performance than the conventional GaN barrier MQW LED. The simulation result also elucidates the efficiency droop behaviour in the MLB MQW LED, it suggests that the efficiency droop effect is remarkably improved when the GaN barrier is replaced with GaN/InAlN/GaN MLB barrier. The analysis shows a dominating behaviour of carrier escape mechanism due to tunnelling. Moreover, the lower lattice mismatching of SiC substrate with GaN epitaxial layer is attributed with good crystal quality and reduced polarization effect, ultimately enhances the optical performance of the LEDs.
Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.
Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying
2008-03-01
Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.
Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young
2015-10-01
Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.
FAT: The Good, the Bad and the Trans Fat Truth and How it Applies to People with Special Needs
ERIC Educational Resources Information Center
Wallace, Lee Shelly
2007-01-01
This article deals with the good and bad things about body fats as well as the truth behind trans fat. Fat has some important roles in the body. It allows for efficient energy storage and is also important for proper growth and development and maintenance of good health. In this article, the author discusses various categories of food fats and…
Yang, Wen; Huang, Jin-lou; Peng, Hui-qing; Li, Si-tuo
2013-09-01
Attrition scrubbing was used to remediate lead contaminated-site soil, and the main purpose was to remove fine particles and lead contaminants from the surface of sand. The optimal parameters of attrition scrubbing were determined by orthogonal experiment, and three soil samples with different lead concentration were subjected to attrition scrubbing experiments. The results showed that the optimal scrubbing parameters were: a solid ratio of 70% dry matter, a temperature of 25 degrees C, an attrition time of 30 min, and an attrition speed of 1200 r x min(-1). Before attrition scrubbing, the screening and analysis of soil showed that in all three soil samples, lead was mainly enriched on sand and fine particles, and the distribution of lead was highly correlated to the organic matter. After attrition scrubbing, the washing efficiency of the original state lead contaminated sand soil in triplicates was 67.61%, 31.71% and 41.01%, respectively, which indicates that attrition scrubbing can remove part of the fine soil and lead contaminants from the surface of sand, to accomplish the purpose of pollutants enrichment. Scanning electron microscopy (SEM) analysis showed that the sand surface became smooth after attrition scrubbing. The results above show that attrition scrubbing has a good washing effect for the remediation of lead contaminated sand soil.
Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun
2016-03-01
A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.