Sample records for shows increased evolutionary

  1. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changedmore » over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.« less

  2. Introduction to the special issue: Tree invasions: towards a better understanding of their complex evolutionary dynamics.

    PubMed

    Hirsch, Heidi; Richardson, David M; Le Roux, Johannes J

    2017-05-01

    Many invasive plants show evidence of trait-based evolutionary change, but these remain largely unexplored for invasive trees. The increasing number of invasive trees and their tremendous impacts worldwide, however, illustrates the urgent need to bridge this knowledge gap to apply efficient management. Consequently, an interdisciplinary workshop, held in 2015 at Stellenbosch University in Stellenbosch, South Africa, brought together international researchers to discuss our understanding of evolutionary dynamics in invasive trees. The main outcome of this workshop is this Special Issue of AoB PLANTS . The collection of papers in this issue has helped to identify and assess the evolutionary mechanisms that are likely to influence tree invasions. It also facilitated expansion of the unified framework for biological invasions to incorporate key evolutionary processes. The papers cover a wide range of evolutionary mechanisms in tree genomes (adaptation), epigenomes (phenotypic plasticity) and their second genomes (mutualists), and show how such mechanisms can impact tree invasion processes and management. The special issue provides a comprehensive overview of the factors that promote and mitigate the invasive success of tree species in many parts of the world. It also shows that incorporating evolutionary concepts is crucial for understanding the complex drivers of tree invasions and has much potential to improve management. The contributions of the special issue also highlight many priorities for further work in the face of ever-increasing tree invasions; the complexity of this research needs calls for expanded interdisciplinary research collaborations.

  3. Neuronal boost to evolutionary dynamics.

    PubMed

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-06

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  4. Evolutionary trends in arvicolids and the endemic murid Mikrotia - New data and a critical overview

    NASA Astrophysics Data System (ADS)

    Maul, Lutz C.; Masini, Federico; Parfitt, Simon A.; Rekovets, Leonid; Savorelli, Andrea

    2014-07-01

    The study of evolutionary rates dates back to the work of Simpson and Haldane in the 1940s. Small mammals, especially Plio-Pleistocene arvicolids (voles and lemmings), are particularly suited for such studies because they have an unusually complete fossil record and exhibit significant evolutionary change through time. In recent decades, arvicolids have been the focus of intensive research devoted to the tempo and mode of evolutionary change and the identification of trends in dental evolution that can be used to correlate and date fossil sites. These studies have raised interesting questions about whether voles and lemmings had unique evolutionary trajectories, or show convergent evolutionary patterns with other hypsodont rodents. Here we review evolutionary patterns in selected arvicolid lineages and endemic Messinian murids (Mikrotia spp.) and discuss reasons for convergence in dental morphology in these two groups of hypsodont rodents. The results substantiate previously detected patterns, but the larger dataset shows that some trends are less regular than previous studies have suggested. With the exception of a pervasive and sustained trend towards increased hypsodonty, our results show that other features do not follow consistent patterns in all lineages, exhibiting a mosaic pattern comprising stasis, variable rate evolution and gradual unidirectional change through time. Evidence for higher evolutionary rates is found in lineages apparently undergoing adaptations to new ecological niches. In the case of Mikrotia, Microtus voles and the water vole (Mimomys-Arvicola) lineage, a shift to a fossorial lifestyle appears to have been an important driving force in their evolution. For other characters, different causes can be invoked; for example a shift to a semi-aquatic lifestyle may be responsible for the trend towards increasing size in Arvicola. Biochronological application of the data should take into account the complexity and biases of the data.

  5. Neuronal boost to evolutionary dynamics

    PubMed Central

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  6. On the evolution of specialization with a mechanistic underpinning in structured metapopulations.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2008-03-01

    We analyze the evolution of specialization in resource utilization in a discrete-time metapopulation model using the adaptive dynamics approach. The local dynamics in the metapopulation are based on the Beverton-Holt model with mechanistic underpinnings. The consumer faces a trade-off in the abilities to consume two resources that are spatially heterogeneously distributed to patches that are prone to local catastrophes. We explore the factors favoring the spread of generalist or specialist strategies. Increasing fecundity or decreasing catastrophe probability favors the spread of the generalist strategy and increasing environmental heterogeneity enlarges the parameter domain where the evolutionary branching is possible. When there are no catastrophes, increasing emigration diminishes the parameter domain where the evolutionary branching may occur. Otherwise, the effect of emigration on evolutionary dynamics is non-monotonous: both small and large values of emigration probability favor the spread of the specialist strategies whereas the parameter domain where evolutionary branching may occur is largest when the emigration probability has intermediate values. We compare how different forms of spatial heterogeneity and different models of local growth affect the evolutionary dynamics. We show that even small changes in the resource dynamics may have outstanding evolutionary effects to the consumers.

  7. Changes in transcriptional orientation are associated with increases in evolutionary rates of enterobacterial genes.

    PubMed

    Lin, Chieh-Hua; Lian, Chun-Yi; Hsiung, Chao Agnes; Chen, Feng-Chi

    2011-10-05

    Changes in transcriptional orientation ("CTOs") occur frequently in prokaryotic genomes. Such changes usually result from genomic inversions, which may cause a conflict between the directions of replication and transcription and an increase in mutation rate. However, CTOs do not always lead to the replication-transcription confrontation. Furthermore, CTOs may cause deleterious disruptions of operon structure and/or gene regulations. The currently existing CTOs may indicate relaxation of selection pressure. Therefore, it is of interest to investigate whether CTOs have an independent effect on the evolutionary rates of the affected genes, and whether these genes are subject to any type of selection pressure in prokaryotes. Three closely related enterbacteria, Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium, were selected for comparisons of synonymous (dS) and nonsynonymous (dN) substitution rate between the genes that have experienced changes in transcriptional orientation (changed-orientation genes, "COGs") and those that do not (same-orientation genes, "SOGs"). The dN/dS ratio was also derived to evaluate the selection pressure on the analyzed genes. Confounding factors in the estimation of evolutionary rates, such as gene essentiality, gene expression level, replication-transcription confrontation, and decreased dS at gene terminals were controlled in the COG-SOG comparisons. We demonstrate that COGs have significantly higher dN and dS than SOGs when a series of confounding factors are controlled. However, the dN/dS ratios are similar between the two gene groups, suggesting that the increase in dS can sufficiently explain the increase in dN in COGs. Therefore, the increases in evolutionary rates in COGs may be mainly mutation-driven. Here we show that CTOs can increase the evolutionary rates of the affected genes. This effect is independent of the replication-transcription confrontation, which is suggested to be the major cause of inversion-associated evolutionary rate increases. The real cause of such evolutionary rate increases remains unclear but is worth further explorations.

  8. Ecological and evolutionary consequences of niche construction for its agent.

    PubMed

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  9. Hotspots and the conservation of evolutionary history

    PubMed Central

    Sechrest, Wes; Brooks, Thomas M.; da Fonseca, Gustavo A. B.; Konstant, William R.; Mittermeier, Russell A.; Purvis, Andy; Rylands, Anthony B.; Gittleman, John L.

    2002-01-01

    Species diversity is unevenly distributed across the globe, with terrestrial diversity concentrated in a few restricted biodiversity hotspots. These areas are associated with high losses of primary vegetation and increased human population density, resulting in growing numbers of threatened species. We show that conservation of these hotspots is critical because they harbor even greater amounts of evolutionary history than expected by species numbers alone. We used supertrees for carnivores and primates to estimate that nearly 70% of the total amount of evolutionary history represented in these groups is found in 25 biodiversity hotspots. PMID:11854502

  10. Evolutionary rescue from extinction is contingent on a lower rate of environmental change.

    PubMed

    Lindsey, Haley A; Gallie, Jenna; Taylor, Susan; Kerr, Benjamin

    2013-02-28

    The extinction rate of populations is predicted to rise under increasing rates of environmental change. If a population experiencing increasingly stressful conditions lacks appropriate phenotypic plasticity or access to more suitable habitats, then genetic change may be the only way to avoid extinction. Evolutionary rescue from extinction occurs when natural selection enriches a population for more stress-tolerant genetic variants. Some experimental studies have shown that lower rates of environmental change lead to more adapted populations or fewer extinctions. However, there has been little focus on the genetic changes that underlie evolutionary rescue. Here we demonstrate that some evolutionary trajectories are contingent on a lower rate of environmental change. We allowed hundreds of populations of Escherichia coli to evolve under variable rates of increase in concentration of the antibiotic rifampicin. We then genetically engineered all combinations of mutations from isolates evolved under lower rates of environmental change. By assessing fitness of these engineered strains across a range of drug concentrations, we show that certain genotypes are evolutionarily inaccessible under rapid environmental change. Rapidly deteriorating environments not only limit mutational opportunities by lowering population size, but they can also eliminate sets of mutations as evolutionary options. As anthropogenic activities are leading to environmental change at unprecedented rapidity, it is critical to understand how the rate of environmental change affects both demographic and genetic underpinnings of evolutionary rescue.

  11. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans

    Treesearch

    K.D. Klepzig; A.S. Adams; J. Handelsman; K.F. Raffa

    2009-01-01

    Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological,evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host...

  12. Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans

    Treesearch

    Kier Klepzig; A.S. Adams; J Handelsman; K.F. Raffa

    2009-01-01

    Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological, evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host...

  13. Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes.

    PubMed

    Rendel, Mark D

    2011-01-01

    In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Changes in transcriptional orientation are associated with increases in evolutionary rates of enterobacterial genes

    PubMed Central

    2011-01-01

    Background Changes in transcriptional orientation (“CTOs”) occur frequently in prokaryotic genomes. Such changes usually result from genomic inversions, which may cause a conflict between the directions of replication and transcription and an increase in mutation rate. However, CTOs do not always lead to the replication-transcription confrontation. Furthermore, CTOs may cause deleterious disruptions of operon structure and/or gene regulations. The currently existing CTOs may indicate relaxation of selection pressure. Therefore, it is of interest to investigate whether CTOs have an independent effect on the evolutionary rates of the affected genes, and whether these genes are subject to any type of selection pressure in prokaryotes. Methods Three closely related enterbacteria, Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium, were selected for comparisons of synonymous (dS) and nonsynonymous (dN) substitution rate between the genes that have experienced changes in transcriptional orientation (changed-orientation genes, “COGs”) and those that do not (same-orientation genes, “SOGs”). The dN/dS ratio was also derived to evaluate the selection pressure on the analyzed genes. Confounding factors in the estimation of evolutionary rates, such as gene essentiality, gene expression level, replication-transcription confrontation, and decreased dS at gene terminals were controlled in the COG-SOG comparisons. Results We demonstrate that COGs have significantly higher dN and dS than SOGs when a series of confounding factors are controlled. However, the dN/dS ratios are similar between the two gene groups, suggesting that the increase in dS can sufficiently explain the increase in dN in COGs. Therefore, the increases in evolutionary rates in COGs may be mainly mutation-driven. Conclusions Here we show that CTOs can increase the evolutionary rates of the affected genes. This effect is independent of the replication-transcription confrontation, which is suggested to be the major cause of inversion-associated evolutionary rate increases. The real cause of such evolutionary rate increases remains unclear but is worth further explorations. PMID:22152004

  15. Facilitation can increase the phylogenetic diversity of plant communities.

    PubMed

    Valiente-Banuet, Alfonso; Verdú, Miguel

    2007-11-01

    With the advent of molecular phylogenies the assessment of community assembly processes has become a central topic in community ecology. These processes have focused almost exclusively on habitat filtering and competitive exclusion. Recent evidence, however, indicates that facilitation has been important in preserving biodiversity over evolutionary time, with recent lineages conserving the regeneration niches of older, distant lineages. Here we test whether, if facilitation among distant-related species has preserved the regeneration niche of plant lineages, this has increased the phylogenetic diversity of communities. By analyzing a large worldwide database of species, we showed that the regeneration niches were strongly conserved across evolutionary history. Likewise, a phylogenetic supertree of all species of three communities driven by facilitation showed that nurse species facilitated distantly related species and increased phylogenetic diversity.

  16. Theoretical Foundation of the RelTime Method for Estimating Divergence Times from Variable Evolutionary Rates

    PubMed Central

    Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir

    2018-01-01

    Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954

  17. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  18. Does sex speed up evolutionary rate and increase biodiversity?

    PubMed

    Melián, Carlos J; Alonso, David; Allesina, Stefano; Condit, Richard S; Etienne, Rampal S

    2012-01-01

    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  19. Extrapolating Weak Selection in Evolutionary Games

    PubMed Central

    Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne

    2013-01-01

    In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769

  20. Hsp90 Promotes Kinase Evolution

    PubMed Central

    Lachowiec, Jennifer; Lemus, Tzitziki; Borenstein, Elhanan; Queitsch, Christine

    2015-01-01

    Heat-shock protein 90 (Hsp90) promotes the maturation and stability of its client proteins, including many kinases. In doing so, Hsp90 may allow its clients to accumulate mutations as previously proposed by the capacitor hypothesis. If true, Hsp90 clients should show increased evolutionary rate compared with nonclients; however, other factors, such as gene expression and protein connectivity, may confound or obscure the chaperone’s putative contribution. Here, we compared the evolutionary rates of many Hsp90 clients and nonclients in the human protein kinase superfamily. We show that Hsp90 client status promotes evolutionary rate independently of, but in a small magnitude similar to that of gene expression and protein connectivity. Hsp90’s effect on kinase evolutionary rate was detected across mammals, specifically relaxing purifying selection. Hsp90 clients also showed increased nucleotide diversity and harbored more damaging variation than nonclient kinases across humans. These results are consistent with the central argument of the capacitor hypothesis that interaction with the chaperone allows its clients to harbor genetic variation. Hsp90 client status is thought to be highly dynamic with as few as one amino acid change rendering a protein dependent on the chaperone. Contrary to this expectation, we found that across protein kinase phylogeny Hsp90 client status tends to be gained, maintained, and shared among closely related kinases. We also infer that the ancestral protein kinase was not an Hsp90 client. Taken together, our results suggest that Hsp90 played an important role in shaping the kinase superfamily. PMID:25246701

  1. Genetic diversity, virulence and fitness evolution in an obligate fungal parasite of bees.

    PubMed

    Evison, S E F; Foley, K; Jensen, A B; Hughes, W O H

    2015-01-01

    Within-host competition is predicted to drive the evolution of virulence in parasites, but the precise outcomes of such interactions are often unpredictable due to many factors including the biology of the host and the parasite, stochastic events and co-evolutionary interactions. Here, we use a serial passage experiment (SPE) with three strains of a heterothallic fungal parasite (Ascosphaera apis) of the Honey bee (Apis mellifera) to assess how evolving under increasing competitive pressure affects parasite virulence and fitness evolution. The results show an increase in virulence after successive generations of selection and consequently faster production of spores. This faster sporulation, however, did not translate into more spores being produced during this longer window of sporulation; rather, it appeared to induce a loss of fitness in terms of total spore production. There was no evidence to suggest that a greater diversity of competing strains was a driver of this increased virulence and subsequent fitness cost, but rather that strain-specific competitive interactions influenced the evolutionary outcomes of mixed infections. It is possible that the parasite may have evolved to avoid competition with multiple strains because of its heterothallic mode of reproduction, which highlights the importance of understanding parasite biology when predicting disease dynamics. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  2. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana

    PubMed Central

    Fournier-Level, Alexandre; Perry, Emily O.; Wang, Jonathan A.; Braun, Peter T.; Migneault, Andrew; Cooper, Martha D.; Metcalf, C. Jessica E.; Schmitt, Johanna

    2016-01-01

    Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico “resurrection experiments” showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation. PMID:27140640

  3. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.

    PubMed

    Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna

    2016-05-17

    Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.

  4. Phylogenetic context determines the role of competition in adaptive radiation

    PubMed Central

    Tan, Jiaqi; Slattery, Matthew R.; Yang, Xian; Jiang, Lin

    2016-01-01

    Understanding ecological mechanisms regulating the evolution of biodiversity is of much interest to ecologists and evolutionary biologists. Adaptive radiation constitutes an important evolutionary process that generates biodiversity. Competition has long been thought to influence adaptive radiation, but the directionality of its effect and associated mechanisms remain ambiguous. Here, we report a rigorous experimental test of the role of competition on adaptive radiation using the rapidly evolving bacterium Pseudomonas fluorescens SBW25 interacting with multiple bacterial species that differed in their phylogenetic distance to the diversifying bacterium. We showed that the inhibitive effect of competitors on the adaptive radiation of P. fluorescens decreased as their phylogenetic distance increased. To explain this phylogenetic dependency of adaptive radiation, we linked the phylogenetic distance between P. fluorescens and its competitors to their niche and competitive fitness differences. Competitive fitness differences, which showed weak phylogenetic signal, reduced P. fluorescens abundance and thus diversification, whereas phylogenetically conserved niche differences promoted diversification. These results demonstrate the context dependency of competitive effects on adaptive radiation, and highlight the importance of past evolutionary history for ongoing evolutionary processes. PMID:27335414

  5. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes

    PubMed Central

    Jack, Benjamin R.; Meyer, Austin G.; Echave, Julian; Wilke, Claus O.

    2016-01-01

    Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein–protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes. PMID:27138088

  6. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.

    PubMed

    Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric

    2017-05-05

    Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.

  7. Reinforcement and a cline in mating behaviour evolve in response to secondary contact and hybridization in shield-back katydids (Orthoptera: Tettigoniidae).

    PubMed

    Cole, J A

    2016-09-01

    In a dispersal-limited species that has evolved reproductive character displacement at a contact zone, a cline in mating behaviour may result if gene flow diffuses alleles out of the contact zone into allopatric populations. Prior work has found such a clinal pattern in the shield-back katydid Aglaothorax morsei, in which the male calling songs in a sympatric population have a displaced, short interpulse interval that increases in length with increasing distance from the contact zone. In this study, molecular phylogenetic and female preference data show that (1) sympatric populations result from secondary contact, (2) hybridization in sympatry has resulted in unidirectional mitochondrial introgression and (3) female preferences are consistent with reproductive character displacement and could generate a cline in mating behaviour. These data together suggest a history of reinforcement, generally considered rare in acoustically communicating insects; thus, Aglaothorax represents an important example of a rarely documented evolutionary process. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  8. Stabilization of Large Generalized Lotka-Volterra Foodwebs By Evolutionary Feedback

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; Gallagher, I. D.

    2004-10-01

    Conventional ecological models show that complexity destabilizes foodwebs, suggesting that foodwebs should have neither large numbers of species nor a large number of interactions. However, in nature the opposite appears to be the case. Here we show that if the interactions between species are allowed to evolve within a generalized Lotka-Volterra model such stabilizing feedbacks and weak interactions emerge automatically. Moreover, we show that trophic levels also emerge spontaneously from the evolutionary approach, and the efficiency of the unperturbed ecosystem increases with time. The key to stability in large foodwebs appears to arise not from complexity perse but from evolution at the level of the ecosystem which favors stabilizing (negative) feedbacks.

  9. Stabilization of large generalized Lotka-Volterra foodwebs by evolutionary feedback.

    PubMed

    Ackland, G J; Gallagher, I D

    2004-10-08

    Conventional ecological models show that complexity destabilizes foodwebs, suggesting that foodwebs should have neither large numbers of species nor a large number of interactions. However, in nature the opposite appears to be the case. Here we show that if the interactions between species are allowed to evolve within a generalized Lotka-Volterra model such stabilizing feedbacks and weak interactions emerge automatically. Moreover, we show that trophic levels also emerge spontaneously from the evolutionary approach, and the efficiency of the unperturbed ecosystem increases with time. The key to stability in large foodwebs appears to arise not from complexity per se but from evolution at the level of the ecosystem which favors stabilizing (negative) feedbacks.

  10. Evolution, the loss of diversity and the role of trade-offs.

    PubMed

    Best, Alex; Bowers, Roger; White, Andy

    2015-06-01

    We investigate how the loss of previously evolved diversity in host resistance to disease is dependent on the complexity of the underlying evolutionary trade-off. Working within the adaptive dynamics framework, using graphical tools (pairwise invasion plots, PIPs; trait evolution plots, TEPs) and algebraic analysis we consider polynomial trade-offs of increasing degree. Our focus is on the evolutionary trajectory of the dimorphic population after it has been attracted to an evolutionary branching point. We show that for sufficiently complex trade-offs (here, polynomials of degree three or higher) the resulting invasion boundaries can form closed 'oval' areas of invadability and strategy coexistence. If no attracting singular strategies exist within this region, then the population is destined to evolve outside of the region of coexistence, resulting in the loss of one strain. In particular, the loss of diversity in this model always occurs in such a way that the remaining strain is not attracted back to the branching point but to an extreme of the trade-off, meaning the diversity is lost forever. We also show similar results for a non-polynomial but complex trade-off, and for a different eco-evolutionary model. Our work further highlights the importance of trade-offs to evolutionary behaviour. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Laboratory evolution of the migratory polymorphism in the sand cricket: combining physiology with quantitative genetics.

    PubMed

    Roff, Derek A; Fairbairn, Daphne J

    2007-01-01

    Predicting evolutionary change is the central goal of evolutionary biology because it is the primary means by which we can test evolutionary hypotheses. In this article, we analyze the pattern of evolutionary change in a laboratory population of the wing-dimorphic sand cricket Gryllus firmus resulting from relaxation of selection favoring the migratory (long-winged) morph. Based on a well-characterized trade-off between fecundity and flight capability, we predict that evolution in the laboratory environment should result in a reduction in the proportion of long-winged morphs. We also predict increased fecundity and reduced functionality and weight of the major flight muscles in long-winged females but little change in short-winged (flightless) females. Based on quantitative genetic theory, we predict that the regression equation describing the trade-off between ovary weight and weight of the major flight muscles will show a change in its intercept but not in its slope. Comparisons across generations verify all of these predictions. Further, using values of genetic parameters estimated from previous studies, we show that a quantitative genetic simulation model can account for not only the qualitative changes but also the evolutionary trajectory. These results demonstrate the power of combining quantitative genetic and physiological approaches for understanding the evolution of complex traits.

  12. Evolution of male age-specific reproduction under differential risks and causes of death: males pay the cost of high female fitness.

    PubMed

    Chen, H-Y; Spagopoulou, F; Maklakov, A A

    2016-04-01

    Classic theories of ageing evolution predict that increased extrinsic mortality due to an environmental hazard selects for increased early reproduction, rapid ageing and short intrinsic lifespan. Conversely, emerging theory maintains that when ageing increases susceptibility to an environmental hazard, increased mortality due to this hazard can select against ageing in physiological condition and prolong intrinsic lifespan. However, evolution of slow ageing under high-condition-dependent mortality is expected to result from reallocation of resources to different traits and such reallocation may be hampered by sex-specific trade-offs. Because same life-history trait values often have different fitness consequences in males and females, sexually antagonistic selection can preserve genetic variance for lifespan and ageing. We previously showed that increased condition-dependent mortality caused by heat shock leads to evolution of long-life, decelerated late-life mortality in both sexes and increased female fecundity in the nematode, Caenorhabditis remanei. Here, we used these cryopreserved lines to show that males evolving under heat shock suffered from reduced early-life and net reproduction, while mortality rate had no effect. Our results suggest that heat-shock resistance and associated long-life trade-off with male, but not female, reproduction and therefore sexually antagonistic selection contributes to maintenance of genetic variation for lifespan and fitness in this population. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  13. Bigger testes increase paternity in a simultaneous hermaphrodite, independently of the sperm competition level.

    PubMed

    Vellnow, N; Marie-Orleach, L; Zadesenets, K S; Schärer, L

    2018-02-01

    Hermaphroditic animals face the fundamental evolutionary optimization problem of allocating their resources to their male vs. female reproductive function (e.g. testes and sperm vs. ovaries and eggs), and this optimal sex allocation can be affected by both pre- and post-copulatory sexual selection. For example, local sperm competition (LSC) - the competition between related sperm for the fertilization of a partner's ova - occurs in small mating groups and can favour a female-biased sex allocation, because, under LSC, investment into sperm production is predicted to show diminishing fitness returns. Here, we test whether higher testis investment increases an individual's paternity success under sperm competition, and whether the strength of this effect diminishes when LSC is stronger, as predicted by sex allocation theory. We created two subsets of individuals of the simultaneously hermaphroditic flatworm Macrostomum lignano - by sampling worms from either the highest or lowest quartile of the testis investment distribution - and estimated their paternity success in group sizes of either three (strong LSC) or eight individuals (weak LSC). Specifically, using transgenic focal individuals expressing a dominant green-fluorescent protein marker, we showed that worms with high testis investment sired 22% more offspring relative to those with low investment, corroborating previous findings in M. lignano and other species. However, the strength of this effect was not significantly modulated by the experienced group size, contrasting theoretical expectations of more strongly diminishing fitness returns under strong LSC. We discuss the possible implications for the evolutionary maintenance of hermaphroditism in M. lignano. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  14. Evolutionary speed of species invasions.

    PubMed

    García-Ramos, Gisela; Rodríguez, Diego

    2002-04-01

    Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for ecological changes related to global warming.

  15. Does selection on increased cold tolerance in the adult stage confer resistance throughout development?

    PubMed

    Dierks, A; Kölzow, N; Franke, K; Fischer, K

    2012-08-01

    Artificial selection is a powerful approach to unravel constraints on genetic adaptation. Although it has been frequently used to reveal genetic trade-offs among different fitness-related traits, only a few studies have targeted genetic correlations across developmental stages. Here, we test whether selection on increased cold tolerance in the adult stage increases cold resistance throughout ontogeny in the butterfly Bicyclus anynana. We used lines selected for decreased chill-coma recovery time and corresponding controls, which had originally been set up from three levels of inbreeding (outbred control, one or two full-sib matings). Four generations after having terminated selection, a response to selection was found in 1-day-old butterflies (the age at which selection took place). Older adults showed a very similar although weaker response. Nevertheless, cold resistance did not increase in either egg, larval or pupal stage in the selection lines but was even lower compared to control lines for eggs and young larvae. These findings suggest a cost of increased adult cold tolerance, presumably reducing resource availability for offspring provisioning and thereby stress tolerance during development, which may substantially affect evolutionary trajectories. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  16. Disentangling the benefits of sex.

    PubMed

    Roze, Denis

    2012-01-01

    Understanding the evolutionary advantage of sexual reproduction remains one of the most fundamental questions in evolutionary biology. Most of the current hypotheses rely on the fact that sex increases genetic variation, thereby enhancing the efficiency of natural selection; an important body of theoretical work has defined the conditions under which sex can be favoured through this effect. Over the last decade, experimental evolution in model organisms has provided evidence that sex indeed allows faster rates of adaptation. A new study on facultatively sexual rotifers shows that increased rates of sex can be favoured during adaptation to new environmental conditions and explores the cause of this effect. The results provide support for the idea that the benefits of increasing genetic variation may compensate for the short-term costs of sexual reproduction.

  17. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools.

    PubMed

    Franks, Steven J; Kane, Nolan C; O'Hara, Niamh B; Tittes, Silas; Rest, Joshua S

    2016-08-01

    There is increasing evidence that evolution can occur rapidly in response to selection. Recent advances in sequencing suggest the possibility of documenting genetic changes as they occur in populations, thus uncovering the genetic basis of evolution, particularly if samples are available from both before and after selection. Here, we had a unique opportunity to directly assess genetic changes in natural populations following an evolutionary response to a fluctuation in climate. We analysed genome-wide differences between ancestors and descendants of natural populations of Brassica rapa plants from two locations that rapidly evolved changes in multiple phenotypic traits, including flowering time, following a multiyear late-season drought in California. These ancestor-descendant comparisons revealed evolutionary shifts in allele frequencies in many genes. Some genes showing evolutionary shifts have functions related to drought stress and flowering time, consistent with an adaptive response to selection. Loci differentiated between ancestors and descendants (FST outliers) were generally different from those showing signatures of selection based on site frequency spectrum analysis (Tajima's D), indicating that the loci that evolved in response to the recent drought and those under historical selection were generally distinct. Very few genes showed similar evolutionary responses between two geographically distinct populations, suggesting independent genetic trajectories of evolution yielding parallel phenotypic changes. The results show that selection can result in rapid genome-wide evolutionary shifts in allele frequencies in natural populations, and highlight the usefulness of combining resurrection experiments in natural populations with genomics for studying the genetic basis of adaptive evolution. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  18. Evolution Analysis of Simple Sequence Repeats in Plant Genome.

    PubMed

    Qin, Zhen; Wang, Yanping; Wang, Qingmei; Li, Aixian; Hou, Fuyun; Zhang, Liming

    2015-01-01

    Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1-3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution.

  19. Evolution of egg coats: linking molecular biology and ecology.

    PubMed

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  20. Predator confusion is sufficient to evolve swarming behaviour

    PubMed Central

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2013-01-01

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485

  1. Predator confusion is sufficient to evolve swarming behaviour.

    PubMed

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  2. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants.

    PubMed

    Blanchard, Benjamin D; Moreau, Corrie S

    2017-02-01

    Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  3. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  4. Evolutionary dynamics of imatinib-treated leukemic cells by stochastic approach

    NASA Astrophysics Data System (ADS)

    Pizzolato, Nicola; Valenti, Davide; Adorno, Dominique Persano; Spagnolo, Bernardo

    2009-09-01

    The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-treated leukemic cells are described as a consequence of the efficacy of the different modelled therapies. We show how the patient response to the therapy changes when a high value of the mutation rate from healthy to cancerous cells is present. Our results are in agreement with clinical observations. Unfortunately, development of resistance to imatinib is observed in a fraction of patients, whose blood cells are characterized by an increasing number of genetic alterations. We find that the occurrence of resistance to the therapy can be related to a progressive increase of deleterious mutations.

  5. Epidemiological, evolutionary and co-evolutionary implications of context-dependent parasitism

    PubMed Central

    Vale, Pedro F.; Wilson, Alastair J.; Best, Alex; Boots, Mike; Little, Tom J.

    2013-01-01

    Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster growing parasites do not appear to cause more damage and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa we show how easily an interaction can shift from a severe interaction, i.e. when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modelling pathogen evolution and disease spread under different levels of infection severity, and find that environmental shifts that promote tolerance ultimately result in populations harbouring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus our results suggest two mechanisms that could underlie co-evolutionary hot- and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection. PMID:21460572

  6. Evolutionary change in physiological phenotypes along the human lineage

    PubMed Central

    Vining, Alexander Q.; Nunn, Charles L.

    2016-01-01

    Background and Objectives: Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Conclusions and Implications: Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. PMID:27615376

  7. Perceived consequences of evolution: College students perceive negative personal and social impact in evolutionary theory

    NASA Astrophysics Data System (ADS)

    Brem, Sarah K.; Ranney, Michael; Schindel, Jennifer

    2003-03-01

    Evolutionary science has consequences for individuals and society, ranging from the way we interpret human behavior to our notions of spirituality and the purpose of our existence. Popular portrayals of evolution depict a paradoxical theory, a source of knowledge and human connections, but also a threat to our humanity and freedom. Using quantitative and qualitative methodology, we examined how college-educated adults (n = 135) from diverse ethnic and religious backgrounds perceive the impact of evolutionary theory on individuals and society. We identified a continuum of perspectives, ranging from strong creationist to strong evolutionist. Using the model of knowledge as an ecology (Demastes, Good, & Peebles, Science Education, 79, 637-666, 1995; Nardi & O'Day, Information ecologies: Using technology with heart, MIT Press, Cambridge, MA, 1999), we examined the relationships among participants' beliefs, their perceptions regarding the social and personal impact of evolutionary theory, their prior exposure to and knowledge of evolutionary theory, and their opinions regarding the teaching of evolution. Evolutionists and creationists differed in their prior exposure to evolutionary theory, and their opinions about some aspects of teaching, but showed striking similarities regarding perceived impact. All groups viewed the consequences of accepting evolutionary principles in a way that might be considered undesirable: increased selfishness and racism, decreased spirituality, and a decreased sense of purpose and self-determination. From a science education perspective, this one-sided interpretation is troublesome because it runs counter to the available evidence and theories in evolutionary science, and we consider ways of fostering more balanced presentation and appraisal of evolutionary theory.

  8. Evolutionary conservatism explains increasing relatedness of plant communities along a flooding gradient.

    PubMed

    Tanentzap, Andrew J; Lee, William G

    2017-01-01

    Abiotic filters have been found either to increase or reduce evolutionary relatedness in plant communities, making it difficult to generalize responses of this major feature of biodiversity to future environmental change. Here, we hypothesized that the responses of phylogenetic structure to environmental change ultimately depend on how species have evolved traits for tolerating the resulting abiotic changes. Working within ephemeral wetlands, we tested whether species were increasingly related as flooding duration intensified. We also identified the mechanisms underlying increased relatedness by measuring root aerenchyma volume (RAV), a trait which promotes waterlogging tolerance. We found that species-specific responses to flooding explained most of the variation in occurrence for 63 vascular plant species across 5170 plots. For a subset of 22 species, we attributed these responses to variation in RAV. Large RAV specifically increased occurrence when flooding lasted for longer time periods, because large RAV reduced above-ground biomass loss. As large RAV was evolutionarily conserved within obligate wetland species, communities were more phylogenetically related as flooding increased. Our study shows how reconstructing the evolutionary history of traits that influence the responses of species to environmental change can help to predict future patterns in phylogenetic structure. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  10. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras.

    PubMed

    Eiserhardt, Wolf L; Borchsenius, Finn; Plum, Christoffer M; Ordonez, Alejandro; Svenning, Jens-Christian

    2015-03-01

    When taxa go extinct, unique evolutionary history is lost. If extinction is selective, and the intrinsic vulnerabilities of taxa show phylogenetic signal, more evolutionary history may be lost than expected under random extinction. Under what conditions this occurs is insufficiently known. We show that late Cenozoic climate change induced phylogenetically selective regional extinction of northern temperate trees because of phylogenetic signal in cold tolerance, leading to significantly and substantially larger than random losses of phylogenetic diversity (PD). The surviving floras in regions that experienced stronger extinction are phylogenetically more clustered, indicating that non-random losses of PD are of increasing concern with increasing extinction severity. Using simulations, we show that a simple threshold model of survival given a physiological trait with phylogenetic signal reproduces our findings. Our results send a strong warning that we may expect future assemblages to be phylogenetically and possibly functionally depauperate if anthropogenic climate change affects taxa similarly. © 2015 John Wiley & Sons Ltd/CNRS.

  11. Thermodynamics and evolution.

    PubMed

    Demetrius, L

    2000-09-07

    The science of thermodynamics is concerned with understanding the properties of inanimate matter in so far as they are determined by changes in temperature. The Second Law asserts that in irreversible processes there is a uni-directional increase in thermodynamic entropy, a measure of the degree of uncertainty in the thermal energy state of a randomly chosen particle in the aggregate. The science of evolution is concerned with understanding the properties of populations of living matter in so far as they are regulated by changes in generation time. Directionality theory, a mathematical model of the evolutionary process, establishes that in populations subject to bounded growth constraints, there is a uni-directional increase in evolutionary entropy, a measure of the degree of uncertainty in the age of the immediate ancestor of a randomly chosen newborn. This article reviews the mathematical basis of directionality theory and analyses the relation between directionality theory and statistical thermodynamics. We exploit an analytic relation between temperature, and generation time, to show that the directionality principle for evolutionary entropy is a non-equilibrium extension of the principle of a uni-directional increase of thermodynamic entropy. The analytic relation between these directionality principles is consistent with the hypothesis of the equivalence of fundamental laws as one moves up the hierarchy, from a molecular ensemble where the thermodynamic laws apply, to a population of replicating entities (molecules, cells, higher organisms), where evolutionary principles prevail. Copyright 2000 Academic Press.

  12. Increased genetic variation and evolutionary potential drive the success of an invasive grass.

    PubMed

    Lavergne, Sébastien; Molofsky, Jane

    2007-03-06

    Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination.

  13. Evolution of increased competitiveness in cows trades off with reduced milk yield, fertility and more masculine morphology.

    PubMed

    Sartori, Cristina; Mazza, Serena; Guzzo, Nadia; Mantovani, Roberto

    2015-08-01

    In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade-offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity-conception interval). Fighting ability also showed low but positive genetic correlations with "masculine" morphological traits, and negative correlations with "feminine" traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of "masculinization" counteracting the official selection for milk yield. Similar evolutionary trade-off between success in competition and fitness components may be present in various species experiencing female competition. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  14. Evolutionary change in physiological phenotypes along the human lineage.

    PubMed

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  15. Dynamics of dental evolution in ornithopod dinosaurs.

    PubMed

    Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J; Stubbs, Thomas L

    2016-07-14

    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the 'duck-billed' hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.

  16. Dynamics of dental evolution in ornithopod dinosaurs

    NASA Astrophysics Data System (ADS)

    Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J.; Stubbs, Thomas L.

    2016-07-01

    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.

  17. Stabilizing multicellularity through ratcheting

    PubMed Central

    Libby, Eric; Conlin, Peter L.; Kerr, Ben; Ratcliff, William C.

    2016-01-01

    The evolutionary transition to multicellularity probably began with the formation of simple undifferentiated cellular groups. Such groups evolve readily in diverse lineages of extant unicellular taxa, suggesting that there are few genetic barriers to this first key step. This may act as a double-edged sword: labile transitions between unicellular and multicellular states may facilitate the evolution of simple multicellularity, but reversion to a unicellular state may inhibit the evolution of increased complexity. In this paper, we examine how multicellular adaptations can act as evolutionary ‘ratchets’, limiting the potential for reversion to unicellularity. We consider a nascent multicellular lineage growing in an environment that varies between favouring multicellularity and favouring unicellularity. The first type of ratcheting mutations increase cell-level fitness in a multicellular context but are costly in a single-celled context, reducing the fitness of revertants. The second type of ratcheting mutations directly decrease the probability that a mutation will result in reversion (either as a pleiotropic consequence or via direct modification of switch rates). We show that both types of ratcheting mutations act to stabilize the multicellular state. We also identify synergistic effects between the two types of ratcheting mutations in which the presence of one creates the selective conditions favouring the other. Ratcheting mutations may play a key role in diverse evolutionary transitions in individuality, sustaining selection on the new higher-level organism by constraining evolutionary reversion. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431522

  18. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  19. Emergence and dynamics of self-producing information niches as a step towards pre-evolutionary organization

    PubMed Central

    Carter, Richard J.; Wiesner, Karoline

    2018-01-01

    As a step towards understanding pre-evolutionary organization in non-genetic systems, we develop a model to investigate the emergence and dynamics of proto-autopoietic networks in an interacting population of simple information processing entities (automata). Our simulations indicate that dynamically stable strongly connected networks of mutually producing communication channels emerge under specific environmental conditions. We refer to these distinct organizational steady states as information niches. In each case, we measure the information content by the Shannon entropy, and determine the fitness landscape, robustness and transition pathways for information niches subjected to intermittent environmental perturbations under non-evolutionary conditions. By determining the information required to generate each niche, we show that niche transitions are only allowed if accompanied by an equal or increased level of information production that arises internally or via environmental perturbations that serve as an exogenous source of population diversification. Overall, our simulations show how proto-autopoietic networks of basic information processors form and compete, and under what conditions they persist over time or go extinct. These findings may be relevant to understanding how inanimate systems such as chemically communicating protocells can initiate the transition to living matter prior to the onset of contemporary evolutionary and genetic mechanisms. PMID:29343630

  20. Predicting evolutionary responses to climate change in the sea.

    PubMed

    Munday, Philip L; Warner, Robert R; Monro, Keyne; Pandolfi, John M; Marshall, Dustin J

    2013-12-01

    An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change. © 2013 John Wiley & Sons Ltd/CNRS.

  1. Genomic signatures of evolutionary transitions from solitary to group living

    PubMed Central

    Kapheim, Karen M.; Pan, Hailin; Li, Cai; Salzberg, Steven L.; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M.; Hudson, Matthew E.; Venkat, Aarti; Fischman, Brielle J.; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D.; Kemp, William P.; Bosch, Jordi; Waterhouse, Robert M.; Zdobnov, Evgeny M.; Stolle, Eckart; Kraus, F. Bernhard; Helbing, Sophie; Moritz, Robin F. A.; Glastad, Karl M.; Hunt, Brendan G.; Goodisman, Michael A. D.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D.; Barribeau, Seth M.; Johnson, Reed M.; Massey, Jonathan H.; Southey, Bruce R.; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F.; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J. Spencer; Hanrahan, Shawn J.; Kocher, Sarah D.; Wang, Jun; Robinson, Gene E.; Zhang, Guojie

    2017-01-01

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. PMID:25977371

  2. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living.

    PubMed

    Kapheim, Karen M; Pan, Hailin; Li, Cai; Salzberg, Steven L; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M; Hudson, Matthew E; Venkat, Aarti; Fischman, Brielle J; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D; Kemp, William P; Bosch, Jordi; Waterhouse, Robert M; Zdobnov, Evgeny M; Stolle, Eckart; Kraus, F Bernhard; Helbing, Sophie; Moritz, Robin F A; Glastad, Karl M; Hunt, Brendan G; Goodisman, Michael A D; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D; Barribeau, Seth M; Johnson, Reed M; Massey, Jonathan H; Southey, Bruce R; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J Spencer; Hanrahan, Shawn J; Kocher, Sarah D; Wang, Jun; Robinson, Gene E; Zhang, Guojie

    2015-06-05

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. Copyright © 2015, American Association for the Advancement of Science.

  3. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia

    PubMed Central

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M.

    2016-01-01

    Abstract Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints. PMID:28175287

  4. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia.

    PubMed

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M; Ruiz-Herrera, Aurora

    2016-12-01

    Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints.

  5. Increased genetic variation and evolutionary potential drive the success of an invasive grass

    PubMed Central

    Lavergne, Sébastien; Molofsky, Jane

    2007-01-01

    Despite the increasing biological and economic impacts of invasive species, little is known about the evolutionary mechanisms that favor geographic range expansion and evolution of invasiveness in introduced species. Here, we focus on the invasive wetland grass Phalaris arundinacea L. and document the evolutionary consequences that resulted from multiple and uncontrolled introductions into North America of genetic material native to different European regions. Continental-scale genetic variation occurring in reed canarygrass' European range has been reshuffled and recombined within North American introduced populations, giving rise to a number of novel genotypes. This process alleviated genetic bottlenecks throughout reed canarygrass' introduced range, including in peripheral populations, where depletion of genetic diversity is expected and is observed in the native range. Moreover, reed canarygrass had higher genetic diversity and heritable phenotypic variation in its invasive range relative to its native range. The resulting high evolutionary potential of invasive populations allowed for rapid selection of genotypes with higher vegetative colonization ability and phenotypic plasticity. Our results show that repeated introductions of a single species may inadvertently create harmful invaders with high adaptive potential. Such invasive species may be able to evolve in response to changing climate, allowing them to have increasing impact on native communities and ecosystems in the future. More generally, multiple immigration events may thus trigger future adaptation and geographic spread of a species population by preventing genetic bottlenecks and generating genetic novelties through recombination. PMID:17360447

  6. Bergmann's Rule rules body size in an ectotherm: heat conservation in a lizard along a 2200-metre elevational gradient.

    PubMed

    Zamora-Camacho, F J; Reguera, S; Moreno-Rueda, G

    2014-12-01

    Bergmann's Rule predicts larger body sizes in colder habitats, increasing organisms' ability to conserve heat. Originally formulated for endotherms, it is controversial whether Bergmann's Rule may be applicable to ectotherms, given that larger ectotherms show diminished capacity for heating up. We predict that Bergmann's Rule will be applicable to ectotherms when the benefits of a higher conservation of heat due to a larger body size overcompensate for decreased capacity to heating up. We test this hypothesis in the lizard Psammodromus algirus, which shows increased body size with elevation in Sierra Nevada (SE Spain). We measured heating and cooling rates of lizards from different elevations (from 300 to 2500 m above sea level) under controlled conditions. We found no significant differences in the heating rate along an elevational gradient. However, the cooling rate diminished with elevation and body size: highland lizards, with larger masses, have a higher thermal inertia for cooling, which allows them to maintain heat for more time and keep a high body temperature despite the lower thermal availability. Consequently, the net gaining of heat increased with elevation and body size. This study highlights that the heat conservation mechanism for explaining Bergmann's Rule works and is applicable to ectotherms, depending on the thermal benefits and costs associated with larger body sizes. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. Increased susceptibility to fungal disease accompanies adaptation to drought in Brassica rapa.

    PubMed

    O'Hara, Niamh B; Rest, Joshua S; Franks, Steven J

    2016-01-01

    Recent studies have demonstrated adaptive evolutionary responses to climate change, but little is known about how these responses may influence ecological interactions with other organisms, including natural enemies. We used a resurrection experiment in the greenhouse to examine the effect of evolutionary responses to drought on the susceptibility of Brassica rapa plants to a fungal pathogen, Alternaria brassicae. In agreement with previous studies in this population, we found an evolutionary shift to earlier flowering postdrought, which was previously shown to be adaptive. Here, we report the novel finding that postdrought descendant plants were also more susceptible to disease, indicating a rapid evolutionary shift to increased susceptibility. This was accompanied by an evolutionary shift to increased specific leaf area (thinner leaves) following drought. We found that flowering time and disease susceptibility displayed plastic responses to experimental drought treatments, but that this plasticity did not match the direction of evolution, indicating that plastic and evolutionary responses to changes in climate can be opposed. The observed evolutionary shift to increased disease susceptibility accompanying adaptation to drought provides evidence that even if populations can rapidly adapt in response to climate change, evolution in other traits may have ecological effects that could make species more vulnerable. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  8. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris.

    PubMed

    Moser, Josef W; Prielhofer, Roland; Gerner, Samuel M; Graf, Alexandra B; Wilson, Iain B H; Mattanovich, Diethard; Dragosits, Martin

    2017-03-17

    Pichia pastoris is a widely used eukaryotic expression host for recombinant protein production. Adaptive laboratory evolution (ALE) has been applied in a wide range of studies in order to improve strains for biotechnological purposes. In this context, the impact of long-term carbon source adaptation in P. pastoris has not been addressed so far. Thus, we performed a pilot experiment in order to analyze the applicability and potential benefits of ALE towards improved growth and recombinant protein production in P. pastoris. Adaptation towards growth on methanol was performed in replicate cultures in rich and minimal growth medium for 250 generations. Increased growth rates on these growth media were observed at the population and single clone level. Evolved populations showed various degrees of growth advantages and trade-offs in non-evolutionary growth conditions. Genome resequencing revealed a wide variety of potential genetic targets associated with improved growth performance on methanol-based growth media. Alcohol oxidase represented a mutational hotspot since four out of seven evolved P. pastoris clones harbored mutations in this gene, resulting in decreased Aox activity, despite increased growth rates. Selected clones displayed strain-dependent variations for AOX-promoter based recombinant protein expression yield. One particularly interesting clone showed increased product titers ranging from a 2.5-fold increase in shake flask batch culture to a 1.8-fold increase during fed batch cultivation. Our data indicate a complex correlation of carbon source, growth context and recombinant protein production. While similar experiments have already shown their potential in other biotechnological areas where microbes were evolutionary engineered for improved stress resistance and growth, the current dataset encourages the analysis of the potential of ALE for improved protein production in P. pastoris on a broader scale.

  9. Reverse engineering a gene network using an asynchronous parallel evolution strategy

    PubMed Central

    2010-01-01

    Background The use of reverse engineering methods to infer gene regulatory networks by fitting mathematical models to gene expression data is becoming increasingly popular and successful. However, increasing model complexity means that more powerful global optimisation techniques are required for model fitting. The parallel Lam Simulated Annealing (pLSA) algorithm has been used in such approaches, but recent research has shown that island Evolutionary Strategies can produce faster, more reliable results. However, no parallel island Evolutionary Strategy (piES) has yet been demonstrated to be effective for this task. Results Here, we present synchronous and asynchronous versions of the piES algorithm, and apply them to a real reverse engineering problem: inferring parameters in the gap gene network. We find that the asynchronous piES exhibits very little communication overhead, and shows significant speed-up for up to 50 nodes: the piES running on 50 nodes is nearly 10 times faster than the best serial algorithm. We compare the asynchronous piES to pLSA on the same test problem, measuring the time required to reach particular levels of residual error, and show that it shows much faster convergence than pLSA across all optimisation conditions tested. Conclusions Our results demonstrate that the piES is consistently faster and more reliable than the pLSA algorithm on this problem, and scales better with increasing numbers of nodes. In addition, the piES is especially well suited to further improvements and adaptations: Firstly, the algorithm's fast initial descent speed and high reliability make it a good candidate for being used as part of a global/local search hybrid algorithm. Secondly, it has the potential to be used as part of a hierarchical evolutionary algorithm, which takes advantage of modern multi-core computing architectures. PMID:20196855

  10. Evolutionary Conservation of Divergent Pro-Inflammatory and Homeostatic Responses in Lamprey Phagocytes

    PubMed Central

    Havixbeck, Jeffrey J.; Rieger, Aja M.; Wong, Michael E.; Wilkie, Michael P.; Barreda, Daniel R.

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens. PMID:24465992

  11. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in Lamprey phagocytes.

    PubMed

    Havixbeck, Jeffrey J; Rieger, Aja M; Wong, Michael E; Wilkie, Michael P; Barreda, Daniel R

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens.

  12. Evolution of a genetic polymorphism with climate change in a Mediterranean landscape

    PubMed Central

    Thompson, John; Charpentier, Anne; Bouguet, Guillaume; Charmasson, Faustine; Roset, Stephanie; Buatois, Bruno; Vernet, Philippe; Gouyon, Pierre-Henri

    2013-01-01

    Many species show changes in distribution and phenotypic trait variation in response to climatic warming. Evidence of genetically based trait responses to climate change is, however, less common. Here, we detected evolutionary variation in the landscape-scale distribution of a genetically based chemical polymorphism in Mediterranean wild thyme (Thymus vulgaris) in association with modified extreme winter freezing events. By comparing current data on morph distribution with that observed in the early 1970s, we detected a significant increase in the proportion of morphs that are sensitive to winter freezing. This increase in frequency was observed in 17 of the 24 populations in which, since the 1970s, annual extreme winter freezing temperatures have risen above the thresholds that cause mortality of freezing-sensitive morphs. Our results provide an original example of rapid ongoing evolutionary change associated with relaxed selection (less extreme freezing events) on a local landscape scale. In species whose distribution and genetic variability are shaped by strong selection gradients, there may be little time lag associated with their ecological and evolutionary response to long-term environmental change. PMID:23382198

  13. Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease.

    PubMed

    Feinberg, Andrew P; Irizarry, Rafael A

    2010-01-26

    Neo-Darwinian evolutionary theory is based on exquisite selection of phenotypes caused by small genetic variations, which is the basis of quantitative trait contribution to phenotype and disease. Epigenetics is the study of nonsequence-based changes, such as DNA methylation, heritable during cell division. Previous attempts to incorporate epigenetics into evolutionary thinking have focused on Lamarckian inheritance, that is, environmentally directed epigenetic changes. Here, we propose a new non-Lamarckian theory for a role of epigenetics in evolution. We suggest that genetic variants that do not change the mean phenotype could change the variability of phenotype; and this could be mediated epigenetically. This inherited stochastic variation model would provide a mechanism to explain an epigenetic role of developmental biology in selectable phenotypic variation, as well as the largely unexplained heritable genetic variation underlying common complex disease. We provide two experimental results as proof of principle. The first result is direct evidence for stochastic epigenetic variation, identifying highly variably DNA-methylated regions in mouse and human liver and mouse brain, associated with development and morphogenesis. The second is a heritable genetic mechanism for variable methylation, namely the loss or gain of CpG dinucleotides over evolutionary time. Finally, we model genetically inherited stochastic variation in evolution, showing that it provides a powerful mechanism for evolutionary adaptation in changing environments that can be mediated epigenetically. These data suggest that genetically inherited propensity to phenotypic variability, even with no change in the mean phenotype, substantially increases fitness while increasing the disease susceptibility of a population with a changing environment.

  14. Chemistry in Infrared Dark Cloud Clumps: A Molecular Line Survey at 3 mm

    NASA Astrophysics Data System (ADS)

    Sanhueza, Patricio; Jackson, James M.; Foster, Jonathan B.; Garay, Guido; Silva, Andrea; Finn, Susanna C.

    2012-09-01

    We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22 m ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%) N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N2H+ lines does not depend on the star formation activity. On the other hand, HC3N, HNCO, and SiO are predominantly detected in later stages of evolution. Optical depth calculations show that in IRDC clumps the N2H+ line is optically thin, the C2H line is moderately optically thick, and HNC and HCO+ are optically thick. The HCN hyperfine transitions are blended, and, in addition, show self-absorbed line profiles and extended wing emission. These factors combined prevent the use of HCN hyperfine transitions for the calculation of physical parameters. Total column densities of the different molecules, except C2H, increase with the evolutionary stage of the clumps. Molecular abundances increase with the evolutionary stage for N2H+ and HCO+. The N2H+/HCO+ and N2H+/HNC abundance ratios act as chemical clocks, increasing with the evolution of the clumps.

  15. Can Children Read Evolutionary Trees?

    ERIC Educational Resources Information Center

    Ainsworth, Shaaron; Saffer, Jessica

    2013-01-01

    Representations of the "tree of life" such as cladograms show the history of lineages and their relationships. They are increasingly found in formal and informal learning settings. Unfortunately, there is evidence that these representations can be challenging to interpret correctly. This study explored the question of whether children…

  16. Erasmus Darwin, Herbert Spencer, and the origins of the evolutionary worldview in British provincial scientific culture, 1770-1850.

    PubMed

    Elliott, Paul

    2003-03-01

    The significance of Herbert Spencer's evolutionary philosophy has been generally recognized for over a century, as the familiarity of his phrase "survival of the fittest" indicates, yet accounts of the origins of his system still tend to follow too closely his own description, written many decades later. This essay argues that Spencer's own interpretation of his intellectual development gives an inadequate impression of the debt he owed to provincial scientific culture and its institutions. Most important, it shows that his evolutionism was originally stimulated by his association with the Derby philosophical community, for it was through this group--of which his father, who also appears to have espoused a deistic evolutionary theory, was a member--that he was first exposed to progressive Englightenment social and educational philosophies and to the evolutionary worldview of Erasmus Darwin, the first president of the Derby Philosophical Society. Darwin's scheme was the first to incorporate biological evolution, associationist psychology, evolutionary geology, and cosmological developmentalism. Spencer's own implicit denials of the link with Darwin are shown to be implausible in the face of Darwin's continuing influence on the Derby savants, the product of insecurity in his later years when he feared for his reputation as Lamarckism became increasingly untenable.

  17. Determining Selection across Heterogeneous Landscapes: A Perturbation-Based Method and Its Application to Modeling Evolution in Space.

    PubMed

    Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke

    2017-04-01

    Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.

  18. What affects the predictability of evolutionary constraints using a G-matrix? The relative effects of modular pleiotropy and mutational correlation.

    PubMed

    Chebib, Jobran; Guillaume, Frédéric

    2017-10-01

    Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype-phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix (G-matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G-matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G-matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G-matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Fear and Loving in Las Vegas: Evolution, Emotion, and Persuasion.

    PubMed

    Griskevicius, Vladas; Goldstein, Noah J; Mortensen, Chad R; Sundie, Jill M; Cialdini, Robert B; Kenrick, Douglas T

    2009-06-01

    How do arousal-inducing contexts, such as frightening or romantic television programs, influence the effectiveness of basic persuasion heuristics? Different predictions are made by three theoretical models: A general arousal model predicts that arousal should increase effectiveness of heuristics; an affective valence model predicts that effectiveness should depend on whether the context elicits positive or negative affect; an evolutionary model predicts that persuasiveness should depend on both the specific emotion that is elicited and the content of the particular heuristic. Three experiments examined how fear-inducing versus romantic contexts influenced the effectiveness of two widely used heuristics-social proof (e.g., "most popular") and scarcity (e.g., "limited edition"). Results supported predictions from an evolutionary model, showing that fear can lead scarcity appeals to be counter-persuasive, and that romantic desire can lead social proof appeals to be counter-persuasive. The findings highlight how an evolutionary theoretical approach can lead to novel theoretical and practical marketing insights.

  20. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    PubMed

    Mrowinski, Maciej J; Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica

    2017-01-01

    With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors' workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems.

  1. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms

    PubMed Central

    Alonso, Conchita; Pérez, Ricardo; Bazaga, Pilar; Herrera, Carlos M.

    2015-01-01

    DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value). Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis) and 39.2% (Narcissus). Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages. PMID:25688257

  2. Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems.

    PubMed

    Rogalski, Mary A; Gowler, Camden D; Shaw, Clara L; Hufbauer, Ruth A; Duffy, Meghan A

    2017-01-19

    Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  3. Economic repercussions of fisheries-induced evolution

    PubMed Central

    Eikeset, Anne Maria; Richter, Andries; Dunlop, Erin S.; Dieckmann, Ulf; Stenseth, Nils Chr.

    2013-01-01

    Fish stocks experiencing high fishing mortality show a tendency to mature earlier and at a smaller size, which may have a genetic component and therefore long-lasting economic and biological effects. To date, the economic effects of such ecoevolutionary dynamics have not been empirically investigated. Using 70 y of data, we develop a bioeconomic model for Northeast Arctic cod to compare the economic yield in a model in which life-history traits can vary only through phenotypic plasticity with a model in which, in addition, genetic changes can occur. We find that evolutionary changes toward faster growth and earlier maturation occur consistently even if a stock is optimally managed. However, if a stock is managed optimally, the evolutionary changes actually increase economic yield because faster growth and earlier maturation raise the stock’s productivity. The optimal fishing mortality is almost identical for the evolutionary and nonevolutionary model and substantially lower than what it has been historically. Therefore, the costs of ignoring evolution under optimal management regimes are negligible. However, if fishing mortality is as high as it has been historically, evolutionary changes may result in economic losses, but only if the fishery is selecting for medium-sized individuals. Because evolution facilitates growth, the fish are younger and still immature when they are susceptible to getting caught, which outweighs the increase in productivity due to fish spawning at an earlier age. PMID:23836660

  4. Evolutionary Game Theory in Growing Populations

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Cremer, Jonas; Frey, Erwin

    2010-10-01

    Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in a population while the dynamic behavior of the population size is mostly left unconsidered. We present here a generic stochastic model which combines the growth dynamics of the population and its internal evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify our approach by studying the dilemma of cooperation in growing populations and show that genuinely stochastic events can ease the dilemma by leading to a transient but robust increase in cooperation.

  5. Upon Accounting for the Impact of Isoenzyme Loss, Gene Deletion Costs Anticorrelate with Their Evolutionary Rates.

    PubMed

    Jacobs, Christopher; Lambourne, Luke; Xia, Yu; Segrè, Daniel

    2017-01-01

    System-level metabolic network models enable the computation of growth and metabolic phenotypes from an organism's genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a gene's fitness contribution to an organism "here and now" and the same gene's historical importance as evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call "function-loss cost", which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality.

  6. Viruses and mobile elements as drivers of evolutionary transitions

    PubMed Central

    2016-01-01

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431520

  7. Viruses and mobile elements as drivers of evolutionary transitions.

    PubMed

    Koonin, Eugene V

    2016-08-19

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of 'public goods'. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host-parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Authors.

  8. Evolutionary relationships between miRNA genes and their activity.

    PubMed

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  9. Evolutionary dynamics of social dilemmas in structured heterogeneous populations.

    PubMed

    Santos, F C; Pacheco, J M; Lenaerts, Tom

    2006-02-28

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations.

  10. Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures

    PubMed Central

    Bryson, David M.; Ofria, Charles

    2013-01-01

    We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges. PMID:24376669

  11. Evolution of local facilitation in arid ecosystems.

    PubMed

    Kéfi, Sonia; van Baalen, Minus; Rietkerk, Max; Loreau, Michel

    2008-07-01

    In harsh environments, sessile organisms can make their habitat more hospitable by buffering environmental stress or increasing resource availability. Although the ecological significance of such local facilitation is widely established, the evolutionary aspects have been seldom investigated. Yet addressing the evolutionary aspects of local facilitation is important because theoretical studies show that systems with such positive interactions can exhibit alternative stable states and that such systems may suddenly become extinct when they evolve (evolutionary suicide). Arid ecosystems currently experience strong changes in climate and human pressures, but little is known about the effects of these changes on the selective pressures exerted on the vegetation. Here, we focus on the evolution of local facilitation in arid ecosystems, using a lattice-structured model explicitly considering local interactions among plants. We found that the evolution of local facilitation depends on the seed dispersal strategy. In systems characterized by short-distance seed dispersal, adaptation to a more stressful environment leads to high local facilitation, allowing the population to escape extinction. In contrast, systems characterized by long-distance seed dispersal become extinct under increased stress even when allowed to adapt. In this case, adaptation in response to climate change and human pressures could give the final push to the desertification of arid ecosystems.

  12. The Inevitability of Ethnocentrism Revisited: Ethnocentrism Diminishes As Mobility Increases.

    PubMed

    De, Soham; Gelfand, Michele J; Nau, Dana; Roos, Patrick

    2015-12-08

    Nearly all major conflicts across the globe, both current and historical, are characterized by individuals defining themselves and others by group membership. This existence of group-biased behavior (in-group favoring and out-group hostile) has been well established empirically, and has been shown to be an inevitable outcome in many evolutionary studies. Thus it is puzzling that statistics show violence and out-group conflict declining dramatically over the past few centuries of human civilization. Using evolutionary game-theoretic models, we solve this puzzle by showing for the first time that out-group hostility is dramatically reduced by mobility. Technological and societal advances over the past centuries have greatly increased the degree to which humans change physical locations, and our results show that in highly mobile societies, one's choice of action is more likely to depend on what individual one is interacting with, rather than the group to which the individual belongs. Our empirical analysis of archival data verifies that contexts with high residential mobility indeed have less out-group hostility than those with low mobility. This work suggests that, in fact, group-biased behavior that discriminates against out-groups is not inevitable after all.

  13. The Inevitability of Ethnocentrism Revisited: Ethnocentrism Diminishes As Mobility Increases

    PubMed Central

    De, Soham; Gelfand, Michele J.; Nau, Dana; Roos, Patrick

    2015-01-01

    Nearly all major conflicts across the globe, both current and historical, are characterized by individuals defining themselves and others by group membership. This existence of group-biased behavior (in-group favoring and out-group hostile) has been well established empirically, and has been shown to be an inevitable outcome in many evolutionary studies. Thus it is puzzling that statistics show violence and out-group conflict declining dramatically over the past few centuries of human civilization. Using evolutionary game-theoretic models, we solve this puzzle by showing for the first time that out-group hostility is dramatically reduced by mobility. Technological and societal advances over the past centuries have greatly increased the degree to which humans change physical locations, and our results show that in highly mobile societies, one’s choice of action is more likely to depend on what individual one is interacting with, rather than the group to which the individual belongs. Our empirical analysis of archival data verifies that contexts with high residential mobility indeed have less out-group hostility than those with low mobility. This work suggests that, in fact, group-biased behavior that discriminates against out-groups is not inevitable after all. PMID:26644192

  14. A dynamic parking charge optimal control model under perspective of commuters' evolutionary game behavior

    NASA Astrophysics Data System (ADS)

    Lin, XuXun; Yuan, PengCheng

    2018-01-01

    In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.

  15. Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.

    PubMed

    Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2017-10-01

    While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.

  16. Ecological and evolutionary processes at expanding range margins.

    PubMed

    Thomas, C D; Bodsworth, E J; Wilson, R J; Simmons, A D; Davies, Z G; Musche, M; Conradt, L

    2001-05-31

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change.

  17. The evolution of parasite manipulation of host dispersal

    PubMed Central

    Lion, Sébastien; van Baalen, Minus; Wilson, William G

    2006-01-01

    We investigate the evolution of manipulation of host dispersal behaviour by parasites using spatially explicit individual-based simulations. We find that when dispersal is local, parasites always gain from increasing their hosts' dispersal rate, although the evolutionary outcome is determined by the costs-to-benefits ratio. However, when dispersal can be non-local, we show that parasites investing in an intermediate dispersal distance of their hosts are favoured even when the manipulation is not costly, due to the intrinsic spatial dynamics of the host–parasite interaction. Our analysis highlights the crucial importance of ecological spatial dynamics in evolutionary processes and reveals the theoretical possibility that parasites could manipulate their hosts' dispersal. PMID:16600882

  18. Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Kolsbjerg, E. L.; Peterson, A. A.; Hammer, B.

    2018-05-01

    We show that approximate structural relaxation with a neural network enables orders of magnitude faster global optimization with an evolutionary algorithm in a density functional theory framework. The increased speed facilitates reliable identification of global minimum energy structures, as exemplified by our finding of a hollow Pt13 nanoparticle on an MgO support. We highlight the importance of knowing the correct structure when studying the catalytic reactivity of the different particle shapes. The computational speedup further enables screening of hundreds of different pathways in the search for optimum kinetic transitions between low-energy conformers and hence pushes the limits of the insight into thermal ensembles that can be obtained from theory.

  19. Divergent evolutionary processes associated with colonization of offshore islands.

    PubMed

    Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B

    2013-10-01

    Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.

  20. Phylogenetic estimates of diversification rate are affected by molecular rate variation.

    PubMed

    Duchêne, D A; Hua, X; Bromham, L

    2017-10-01

    Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  1. Evolution of morphology and locomotor performance in anurans: relationships with microhabitat diversification.

    PubMed

    Citadini, J M; Brandt, R; Williams, C R; Gomes, F R

    2018-03-01

    The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post-cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi-aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein-Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi-aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi-aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  2. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    NASA Astrophysics Data System (ADS)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural-/cognitive-focused learning goals. Chapter 5 explores the cognitive effects that "teaching evolution" has on the learner. This chapter examines the effects that a course on evolutionary theory has on university undergraduate students in understanding and applying evolution and how learning the evolutionary toolkit affects critical thinking skills and domain transfer of knowledge. The results demonstrate that a single course on evolutionary theory increases students' acceptance and understanding of evolution and science, and, in effect, increases critical thinking performance.

  3. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    ERIC Educational Resources Information Center

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  4. Influence of different positive emotions on persuasion processing: a functional evolutionary approach.

    PubMed

    Griskevicius, Vladas; Shiota, Michelle N; Neufeld, Samantha L

    2010-04-01

    Much research has found that positive affect facilitates increased reliance on heuristics in cognition. However, theories proposing distinct evolutionary fitness-enhancing functions for specific positive emotions also predict important differences among the consequences of different positive emotion states. Two experiments investigated how six positive emotions influenced the processing of persuasive messages. Using different methods to induce emotions and assess processing, we showed that the positive emotions of anticipatory enthusiasm, amusement, and attachment love tended to facilitate greater acceptance of weak persuasive messages (consistent with previous research), whereas the positive emotions of awe and nurturant love reduced persuasion by weak messages. In addition, a series of mediation analyses suggested that the effects distinguishing different positive emotions from a neutral control condition were best accounted for by different mediators rather than by one common mediator. These findings build upon approaches that link affective valence to certain types of processing, documenting emotion-specific effects on cognition that are consistent with functional evolutionary accounts of discrete positive emotions. Copyright 2010 APA, all rights reserved.

  5. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    PubMed Central

    Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica

    2017-01-01

    With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors’ workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems. PMID:28931033

  6. Evolutionary signals of selection on cognition from the great tit genome and methylome

    PubMed Central

    Laine, Veronika N.; Gossmann, Toni I.; Schachtschneider, Kyle M.; Garroway, Colin J.; Madsen, Ole; Verhoeven, Koen J. F.; de Jager, Victor; Megens, Hendrik-Jan; Warren, Wesley C.; Minx, Patrick; Crooijmans, Richard P. M. A.; Corcoran, Pádraic; Adriaensen, Frank; Belda, Eduardo; Bushuev, Andrey; Cichon, Mariusz; Charmantier, Anne; Dingemanse, Niels; Doligez, Blandine; Eeva, Tapio; Erikstad, Kjell Einar; Fedorov, Slava; Hau, Michaela; Hille, Sabine; Hinde, Camilla; Kempenaers, Bart; Kerimov, Anvar; Krist, Milos; Mand, Raivo; Matthysen, Erik; Nager, Reudi; Norte, Claudia; Orell, Markku; Richner, Heinz; Slagsvold, Tore; Tilgar, Vallo; Tinbergen, Joost; Torok, Janos; Tschirren, Barbara; Yuta, Tera; Sheldon, Ben C.; Slate, Jon; Zeng, Kai; van Oers, Kees; Visser, Marcel E.; Groenen, Martien A. M.

    2016-01-01

    For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species. PMID:26805030

  7. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions

    PubMed Central

    Laine, Elodie; Carbone, Alessandra

    2015-01-01

    Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684

  8. Fear and Loving in Las Vegas: Evolution, Emotion, and Persuasion

    PubMed Central

    Griskevicius, Vladas; Goldstein, Noah J.; Mortensen, Chad R.; Sundie, Jill M.; Cialdini, Robert B.; Kenrick, Douglas T.

    2009-01-01

    How do arousal-inducing contexts, such as frightening or romantic television programs, influence the effectiveness of basic persuasion heuristics? Different predictions are made by three theoretical models: A general arousal model predicts that arousal should increase effectiveness of heuristics; an affective valence model predicts that effectiveness should depend on whether the context elicits positive or negative affect; an evolutionary model predicts that persuasiveness should depend on both the specific emotion that is elicited and the content of the particular heuristic. Three experiments examined how fear-inducing versus romantic contexts influenced the effectiveness of two widely used heuristics—social proof (e.g., “most popular”) and scarcity (e.g., “limited edition”). Results supported predictions from an evolutionary model, showing that fear can lead scarcity appeals to be counter-persuasive, and that romantic desire can lead social proof appeals to be counter-persuasive. The findings highlight how an evolutionary theoretical approach can lead to novel theoretical and practical marketing insights. PMID:19727416

  9. An Evolutionarily Structured Universe of Protein Architecture

    PubMed Central

    Caetano-Anollés, Gustavo; Caetano-Anollés, Derek

    2003-01-01

    Protein structural diversity encompasses a finite set of architectural designs. Embedded in these topologies are evolutionary histories that we here uncover using cladistic principles and measurements of protein-fold usage and sharing. The reconstructed phylogenies are inherently rooted and depict histories of protein and proteome diversification. Proteome phylogenies showed two monophyletic sister-groups delimiting Bacteria and Archaea, and a topology rooted in Eucarya. This suggests three dramatic evolutionary events and a common ancestor with a eukaryotic-like, gene-rich, and relatively modern organization. Conversely, a general phylogeny of protein architectures showed that structural classes of globular proteins appeared early in evolution and in defined order, the α/β class being the first. Although most ancestral folds shared a common architecture of barrels or interleaved β-sheets and α-helices, many were clearly derived, such as polyhedral folds in the all-α class and β-sandwiches, β-propellers, and β-prisms in all-β proteins. We also describe transformation pathways of architectures that are prevalently used in nature. For example, β-barrels with increased curl and stagger were favored evolutionary outcomes in the all-β class. Interestingly, we found cases where structural change followed the α-to-β tendency uncovered in the tree of architectures. Lastly, we traced the total number of enzymatic functions associated with folds in the trees and show that there is a general link between structure and enzymatic function. PMID:12840035

  10. A mixability theory for the role of sex in evolution

    PubMed Central

    Livnat, Adi; Papadimitriou, Christos; Dushoff, Jonathan; Feldman, Marcus W.

    2008-01-01

    The question of what role sex plays in evolution is still open despite decades of research. It has often been assumed that sex should facilitate the increase in fitness. Hence, the fact that it may break down highly favorable genetic combinations has been seen as a problem. Here, we consider an alternative approach. We define a measure that represents the ability of alleles to perform well across different combinations and, using numerical iterations within a classical population-genetic framework, show that selection in the presence of sex favors this ability in a highly robust manner. We also show that the mechanism responsible for this effect has been out of the purview of previous theory, because it operates during the evolutionary transient, and that the breaking down of favorable genetic combinations is an integral part of it. Implications of these results and more to evolutionary theory are discussed. PMID:19073912

  11. A mixability theory for the role of sex in evolution.

    PubMed

    Livnat, Adi; Papadimitriou, Christos; Dushoff, Jonathan; Feldman, Marcus W

    2008-12-16

    The question of what role sex plays in evolution is still open despite decades of research. It has often been assumed that sex should facilitate the increase in fitness. Hence, the fact that it may break down highly favorable genetic combinations has been seen as a problem. Here, we consider an alternative approach. We define a measure that represents the ability of alleles to perform well across different combinations and, using numerical iterations within a classical population-genetic framework, show that selection in the presence of sex favors this ability in a highly robust manner. We also show that the mechanism responsible for this effect has been out of the purview of previous theory, because it operates during the evolutionary transient, and that the breaking down of favorable genetic combinations is an integral part of it. Implications of these results and more to evolutionary theory are discussed.

  12. Host shifts and evolutionary radiations of butterflies

    PubMed Central

    Fordyce, James A.

    2010-01-01

    Ehrlich and Raven proposed a model of coevolution where major host plant shifts of butterflies facilitate a burst of diversification driven by their arrival to a new adaptive zone. One prediction of this model is that reconstructions of historical diversification of butterflies should indicate an increase in diversification rate following major host shifts. Using reconstructed histories of 15 butterfly groups, I tested this prediction and found general agreement with Ehrlich and Raven's model. Butterfly lineages with an inferred major historical host shift showed evidence of diversification rate variation, with a significant acceleration following the host shift. Lineages without an inferred major host shift generally agreed with a constant-rate model of diversification. These results are consistent with the view that host plant associations have played a profound role in the evolutionary history of butterflies, and show that major shifts to chemically distinct plant groups leave a historical footprint that remains detectable today. PMID:20610430

  13. Instability of signaling resolution models of parent–offspring conflict

    PubMed Central

    Rodríguez-Gironés, Miguel A.; Enquist, Magnus; Cotton, Peter A.

    1998-01-01

    Recent signaling resolution models of parent–offspring conflict have provided an important framework for theoretical and empirical studies of communication and parental care. According to these models, signaling of need is stabilized by its cost. However, our computer simulations of the evolutionary dynamics of chick begging and parental investment show that in Godfray’s model the signaling equilibrium is evolutionarily unstable: populations that start at the signaling equilibrium quickly depart from it. Furthermore, the signaling and nonsignaling equilibria are linked by a continuum of equilibria where chicks above a certain condition do not signal and we show that, contrary to intuition, fitness increases monotonically as the proportion of young that signal decreases. This result forces us to reconsider much of the current literature on signaling of need and highlights the need to investigate the evolutionary stability of signaling equilibria based on the handicap principle. PMID:9539758

  14. Global distribution and evolvement of urbanization and PM2.5 (1998-2015)

    NASA Astrophysics Data System (ADS)

    Yang, Dongyang; Ye, Chao; Wang, Xiaomin; Lu, Debin; Xu, Jianhua; Yang, Haiqing

    2018-06-01

    PM2.5 concentrations increased and have been one of the major social issues along with rapid urbanization in many regions of the world in recent decades. The development of urbanization differed among regions, PM2.5 pollution also presented discrepant distribution across the world. Thus, this paper aimed to grasp the profile of global distribution of urbanization and PM2.5 and their evolutionary relationships. Based on global data for the proportion of the urban population and PM2.5 concentrations in 1998-2015, this paper investigated the spatial distribution, temporal variation, and evolutionary relationships of global urbanization and PM2.5. The results showed PM2.5 presented an increasing trend along with urbanization during the study period, but there was a variety of evolutionary relationships in different countries and regions. Most countries in East Asia, Southeast Asia, South Asia, and some African countries developed with the rapid increase in both urbanization and PM2.5. Under the impact of other socioeconomic factors, such as industry and economic growth, the development of urbanization increased PM2.5 concentrations in most Asian countries and some African countries, but decreased PM2.5 concentrations in most European and American countries. The findings of this study revealed the spatial distributions of global urbanization and PM2.5 pollution and provided an interpretation on the evolution of urbanization-PM2.5 relationships, which can contribute to urbanization policies making aimed at successful PM2.5 pollution control and abatement.

  15. Competition between relatives and the evolution of dispersal in a parasitoid wasp

    PubMed Central

    INNOCENT, T. M.; ABE, J.; WEST, S. A.; REECE, S. E.

    2014-01-01

    Evolutionary theory predicts that levels of dispersal vary in response to the extent of local competition for resources and the relatedness between potential competitors. Here, we test these predictions by making use of a female dispersal dimorphism in the parasitoid wasp Melittobia australica. We show that there are two distinct female morphs, which differ in morphology, pattern of egg production, and dispersal behaviour. As predicted by theory, we found that greater competition for resources resulted in increased production of dispersing females. In contrast, we did not find support for the prediction that high relatedness between competitors increases the production of dispersing females in Melittobia. Finally, we exploit the close links between the evolutionary processes leading to selection for dispersal and for biased sex ratios to examine whether the pattern of dispersal can help distinguish between competing hypotheses for the lack of sex ratio adjustment in Melittobia. PMID:20492084

  16. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.

    PubMed

    Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J

    2014-04-02

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.

  17. Measuring, Enabling and Comparing Modularity, Regularity and Hierarchy in Evolutionary Design

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2005-01-01

    For computer-automated design systems to scale to complex designs they must be able to produce designs that exhibit the characteristics of modularity, regularity and hierarchy - characteristics that are found both in man-made and natural designs. Here we claim that these characteristics are enabled by implementing the attributes of combination, control-flow and abstraction in the representation. To support this claim we use an evolutionary algorithm to evolve solutions to different sizes of a table design problem using five different representations, each with different combinations of modularity, regularity and hierarchy enabled and show that the best performance happens when all three of these attributes are enabled. We also define metrics for modularity, regularity and hierarchy in design encodings and demonstrate that high fitness values are achieved with high values of modularity, regularity and hierarchy and that there is a positive correlation between increases in fitness and increases in modularity. regularity and hierarchy.

  18. Primate energy input and the evolutionary transition to energy-dense diets in humans.

    PubMed

    Simmen, Bruno; Pasquet, Patrick; Masi, Shelly; Koppert, Georgius J A; Wells, Jonathan C K; Hladik, Claude Marcel

    2017-06-14

    Humans and other large-brained hominins have been proposed to increase energy turnover during their evolutionary history. Such increased energy turnover is plausible, given the evolution of energy-rich diets, but requires empirical confirmation. Framing human energetics in a phylogenetic context, our meta-analysis of 17 wild non-human primate species shows that daily metabolizable energy input follows an allometric relationship with body mass where the allometric exponent for mass is 0.75 ± 0.04, close to that reported for daily energy expenditure measured with doubly labelled water in primates. Human populations at subsistence level ( n = 6) largely fall within the variation of primate species in the scaling of energy intake and therefore do not consume significantly more energy than predicted for a non-human primate of equivalent mass. By contrast, humans ingest a conspicuously lower mass of food (-64 ± 6%) compared with primates and maintain their energy intake relatively more constantly across the year. We conclude that our hominin hunter-gatherer ancestors did not increase their energy turnover beyond the allometric relationship characterizing all primate species. The reduction in digestive costs due to consumption of a lower mass of high-quality food, as well as stabilization of energy supply, may have been important evolutionary steps enabling encephalization in the absence of significantly raised energy intakes. © 2017 The Author(s).

  19. Exploring Evolutionary Patterns in Genetic Sequence: A Computer Exercise

    ERIC Educational Resources Information Center

    Shumate, Alice M.; Windsor, Aaron J.

    2010-01-01

    The increase in publications presenting molecular evolutionary analyses and the availability of comparative sequence data through resources such as NCBI's GenBank underscore the necessity of providing undergraduates with hands-on sequence analysis skills in an evolutionary context. This need is particularly acute given that students have been…

  20. Practical advantages of evolutionary computation

    NASA Astrophysics Data System (ADS)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  1. Evolutionary domestication in Drosophila subobscura.

    PubMed

    Simões, P; Rose, M R; Duarte, A; Gonçalves, R; Matos, M

    2007-03-01

    The domestication of plants and animals is historically one of the most important topics in evolutionary biology. The evolutionary genetic changes arising from human cultivation are complex because of the effects of such varied processes as continuing natural selection, artificial selection, deliberate inbreeding, genetic drift and hybridization of different lineages. Despite the interest of domestication as an evolutionary process, few studies of multicellular sexual species have approached this topic using well-replicated experiments. Here we present a comprehensive study in which replicated evolutionary trajectories from several Drosophila subobscura populations provide a detailed view of the evolutionary dynamics of domestication in an outbreeding animal species. Our results show a clear evolutionary response in fecundity traits, but no clear pattern for adult starvation resistance and juvenile traits such as development time and viability. These results supply new perspectives on the confounding of adaptation with other evolutionary mechanisms in the process of domestication.

  2. [Morphogenetic foundations for increased evolutionary complexity in the organization of thecate hydroids shoots (Cnidaria, Hydroidomedusa, Leptomedusae)].

    PubMed

    Kosevich, I A

    2012-01-01

    The morphogenetic approach is applied to analyze the diversity of spatial organization of shoots in thecate hydroids (Cnidaria, Hydroidomedusa, Leptomedusae). The main tendencies and constraints of increased evolutionary complexity in thecate hydroids colonies are uncovered.

  3. Regulatory Evolution and Theoretical Arguments in Evolutionary Biology

    ERIC Educational Resources Information Center

    Ioannidis, Stavros

    2013-01-01

    The "cis"-regulatory hypothesis is one of the most important claims of evolutionary developmental biology. In this paper I examine the theoretical argument for "cis"-regulatory evolution and its role within evolutionary theorizing. I show that, although the argument has some weaknesses, it acts as a useful example for the importance of current…

  4. Evolutionary responses to climate change in parasitic systems.

    PubMed

    Chaianunporn, Thotsapol; Hovestadt, Thomas

    2015-08-01

    Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of 'multidimensional' evolutionary responses to climate change. © 2015 John Wiley & Sons Ltd.

  5. The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule.

    PubMed

    Knouft, Jason H; Page, Lawrence M

    2003-03-01

    Change in body size within an evolutionary lineage over time has been under investigation since the synthesis of Cope's rule, which suggested that there is a tendency for mammals to evolve larger body size. Data from the fossil record have subsequently been examined for several other taxonomic groups to determine whether they also displayed an evolutionary increase in body size. However, we are not aware of any species-level study that has investigated the evolution of body size within an extant continental group. Data acquired from the fossil record and data derived from the evolutionary relationships of extant species are not similar, with each set exhibiting both strengths and weaknesses related to inferring evolutionary patterns. Consequently, expectation that general trends exhibited in the fossil record will correspond to patterns in extant groups is not necessarily warranted. Using phylogenetic relationships of extant species, we show that five of nine families of North American freshwater fishes exhibit an evolutionary trend of decreasing body size. These trends result from the basal position of large species and the more derived position of small species within families. Such trends may be caused by the invasion of small streams and subsequent isolation and speciation. This pattern, potentially influenced by size-biased dispersal rates and the high percentage of small streams in North America, suggests a scenario that could result in the generation of the size-frequency distribution of North American freshwater fishes.

  6. From Pleistocene to Holocene: the prehistory of southwest Asia in evolutionary context.

    PubMed

    Watkins, Trevor

    2017-08-14

    In this paper I seek to show how cultural niche construction theory offers the potential to extend the human evolutionary story beyond the Pleistocene, through the Neolithic, towards the kind of very large-scale societies in which we live today. The study of the human past has been compartmentalised, each compartment using different analytical vocabularies, so that their accounts are written in mutually incompatible languages. In recent years social, cognitive and cultural evolutionary theories, building on a growing body of archaeological evidence, have made substantial sense of the social and cultural evolution of the genus Homo. However, specialists in this field of studies have found it difficult to extend their kind of analysis into the Holocene human world. Within southwest Asia the three or four millennia of the Neolithic period at the beginning of the Holocene represents a pivotal point, which saw the transformation of human society in the emergence of the first large-scale, permanent communities, the domestication of plants and animals, and the establishment of effective farming economies. Following the Neolithic, the pace of human social, economic and cultural evolution continued to increase. By 5000 years ago, in parts of southwest Asia and northeast Africa there were very large-scale urban societies, and the first large-scale states (kingdoms). An extension of cultural niche construction theory enables us to extend the evolutionary narrative of the Pleistocene into the Holocene, opening the way to developing a single, long-term, evolutionary account of human history.

  7. Achieving sustainable plant disease management through evolutionary principles.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling.

    PubMed

    Jones, K E; Pierce, S E

    2016-03-01

    Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  9. The evolution of cultural adaptations: Fijian food taboos protect against dangerous marine toxins

    PubMed Central

    Henrich, Joseph; Henrich, Natalie

    2010-01-01

    The application of evolutionary theory to understanding the origins of our species' capacities for social learning has generated key insights into cultural evolution. By focusing on how our psychology has evolved to adaptively extract beliefs and practices by observing others, theorists have hypothesized how social learning can, over generations, give rise to culturally evolved adaptations. While much field research documents the subtle ways in which culturally transmitted beliefs and practices adapt people to their local environments, and much experimental work reveals the predicted patterns of social learning, little research connects real-world adaptive cultural traits to the patterns of transmission predicted by these theories. Addressing this gap, we show how food taboos for pregnant and lactating women in Fiji selectively target the most toxic marine species, effectively reducing a woman's chances of fish poisoning by 30 per cent during pregnancy and 60 per cent during breastfeeding. We further analyse how these taboos are transmitted, showing support for cultural evolutionary models that combine familial transmission with selective learning from locally prestigious individuals. In addition, we explore how particular aspects of human cognitive processes increase the frequency of some non-adaptive taboos. This case demonstrates how evolutionary theory can be deployed to explain both adaptive and non-adaptive behavioural patterns. PMID:20667878

  10. Transgenerational Adaptation to Pollution Changes Energy Allocation in Populations of Nematodes.

    PubMed

    Goussen, Benoit; Péry, Alexandre R R; Bonzom, Jean-Marc; Beaudouin, Rémy

    2015-10-20

    Assessing the evolutionary responses of long-term exposed populations requires multigeneration ecotoxicity tests. However, the analysis of the data from these tests is not straightforward. Mechanistic models allow the in-depth analysis of the variation of physiological traits over many generations, by quantifying the trend of the physiological and toxicological parameters of the model. In the present study, a bioenergetic mechanistic model has been used to assess the evolution of two populations of the nematode Caenorhabditis elegans in control conditions or exposed to uranium. This evolutionary pressure resulted in a brood size reduction of 60%. We showed an adaptation of individuals of both populations to experimental conditions (increase of maximal length, decrease of growth rate, decrease of brood size, and decrease of the elimination rate). In addition, differential evolution was also highlighted between the two populations once the maternal effects had been diminished after several generations. Thus, individuals that were greater in maximal length, but with apparently a greater sensitivity to uranium were selected in the uranium population. In this study, we showed that this bioenergetics mechanistic modeling approach provided a precise, certain, and powerful analysis of the life strategy of C. elegans populations exposed to heavy metals resulting in an evolutionary pressure across successive generations.

  11. Cannibals in space: the coevolution of cannibalism and dispersal in spatially structured populations.

    PubMed

    Rudolf, Volker H W; Kamo, Masashi; Boots, Mike

    2010-05-01

    The propensity for cannibalism varies considerably both within and between species. Currently we have little understanding of both the causes of this variation and its evolutionary consequences for other life-history traits. We examine how different levels of spatial structure affect the evolution of cannibalism and how cannibalism in turn drives the evolution of dispersal. Using pair approximations and simulations, we show that cannibalism can easily evolve in spatially structured populations as long as some dispersal exists. Furthermore, for a wide range of intermediate levels of spatial structure, we find the possibility of evolutionary branching leading to polymorphism in cannibalism. We also show that cannibalism itself can have important evolutionary consequences and select for increased dispersal rates, thus helping to determine the spatial structure of populations. The coevolution of cannibalism and dispersal results in the evolution of various alternative life-history strategies with different dispersal and cannibalism regimes. Which strategy evolves depends on the environmental conditions that determine initial cannibalism rates. Our results therefore suggest that differences in spatial structure could explain variation in the propensity for cannibalism and cannibalistic polyphenism. Furthermore, results emphasize that cannibalism can drive the evolution of other life-history traits and determine the spatial structure of natural populations.

  12. More efficient evolutionary strategies for model calibration with watershed model for demonstration

    NASA Astrophysics Data System (ADS)

    Baggett, J. S.; Skahill, B. E.

    2008-12-01

    Evolutionary strategies allow automatic calibration of more complex models than traditional gradient based approaches, but they are more computationally intensive. We present several efficiency enhancements for evolution strategies, many of which are not new, but when combined have been shown to dramatically decrease the number of model runs required for calibration of synthetic problems. To reduce the number of expensive model runs we employ a surrogate objective function for an adaptively determined fraction of the population at each generation (Kern et al., 2006). We demonstrate improvements to the adaptive ranking strategy that increase its efficiency while sacrificing little reliability and further reduce the number of model runs required in densely sampled parts of parameter space. Furthermore, we include a gradient individual in each generation that is usually not selected when the search is in a global phase or when the derivatives are poorly approximated, but when selected near a smooth local minimum can dramatically increase convergence speed (Tahk et al., 2007). Finally, the selection of the gradient individual is used to adapt the size of the population near local minima. We show, by incorporating these enhancements into the Covariance Matrix Adaption Evolution Strategy (CMAES; Hansen, 2006), that their synergetic effect is greater than their individual parts. This hybrid evolutionary strategy exploits smooth structure when it is present but degrades to an ordinary evolutionary strategy, at worst, if smoothness is not present. Calibration of 2D-3D synthetic models with the modified CMAES requires approximately 10%-25% of the model runs of ordinary CMAES. Preliminary demonstration of this hybrid strategy will be shown for watershed model calibration problems. Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102, Springer Kern, S., N. Hansen and P. Koumoutsakos (2006). Local Meta-Models for Optimization Using Evolution Strategies. In Ninth International Conference on Parallel Problem Solving from Nature PPSN IX, Proceedings, pp.939-948, Berlin: Springer. Tahk, M., Woo, H., and Park. M, (2007). A hybrid optimization of evolutionary and gradient search. Engineering Optimization, (39), 87-104.

  13. Evolutionary allometry of the thoracolumbar centra in felids and bovids.

    PubMed

    Jones, Katrina E

    2015-07-01

    Mammals have evolved a remarkable range of body sizes, yet their overall body plan remains unaltered. One challenge of evolutionary biology is to understand the mechanisms by which this size diversity is achieved, and how the mechanical challenges associated with changing body size are overcome. Despite the importance of the axial skeleton in body support and locomotion, and much interest in the allometry of the appendicular skeleton, little is known about vertebral allometry outside primates. This study compares evolutionary allometry of the thoracolumbar centra in two families of quadrupedal running mammals: Felidae and Bovidae. I test the hypothesis that, as size increases, the thoracolumbar region will resist increasing loads by becoming a) craniocaudally shorter, and b) larger in cross-sectional area, particularly in the sagittal plane. Length, width, and height of the thoracolumbar centra of 23 felid and 34 bovid species were taken. Thoracic, prediaphragmatic, lumbar, and postdiaphragmatic lengths were calculated, and diameters were compared at three equivalent positions: the midthoracic, the diaphragmatic and the midlumbar vertebra. Allometric slopes were calculated using a reduced major axis regression, on both raw and independent contrasts data. Slopes and elevations were compared using an ANCOVA. As size increases the thoracolumbar centra become more robust, showing preferential reinforcement in the sagittal plane. There was less allometric shortening of the thoracic than the lumbar region, perhaps reflecting constraints due to its connection with the respiratory apparatus. The thoracic region was more robust in bovids than felids, whereas the lumbar region was longer and more robust in felids than bovids. Elongation of lumbar centra increases the outlever of sagittal bending at intervertebral joints, increasing the total pelvic displacement during dorsomobile running. Both locomotor specializations and functional regionalization of the axial skeleton appear to have influenced its response to increasing size. © 2015 Wiley Periodicals, Inc.

  14. Limited gene dispersal and spatial genetic structure as stabilizing factors in an ant-plant mutualism.

    PubMed

    Malé, P-J G; Leroy, C; Humblot, P; Dejean, A; Quilichini, A; Orivel, J

    2016-12-01

    Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  15. Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics.

    PubMed

    Hindersin, Laura; Traulsen, Arne

    2015-11-01

    We analyze evolutionary dynamics on graphs, where the nodes represent individuals of a population. The links of a node describe which other individuals can be displaced by the offspring of the individual on that node. Amplifiers of selection are graphs for which the fixation probability is increased for advantageous mutants and decreased for disadvantageous mutants. A few examples of such amplifiers have been developed, but so far it is unclear how many such structures exist and how to construct them. Here, we show that almost any undirected random graph is an amplifier of selection for Birth-death updating, where an individual is selected to reproduce with probability proportional to its fitness and one of its neighbors is replaced by that offspring at random. If we instead focus on death-Birth updating, in which a random individual is removed and its neighbors compete for the empty spot, then the same ensemble of graphs consists of almost only suppressors of selection for which the fixation probability is decreased for advantageous mutants and increased for disadvantageous mutants. Thus, the impact of population structure on evolutionary dynamics is a subtle issue that will depend on seemingly minor details of the underlying evolutionary process.

  16. Female fecundity and offspring survival are not increased through sexual cannibalism in the spider Larinioides sclopetarius.

    PubMed

    Deventer, S A; Herberstein, M E; Mayntz, D; O'Hanlon, J C; Schneider, J M

    2017-12-01

    Many hypotheses explaining the evolution and maintenance of sexual cannibalism incorporate the nutritional aspect of the consumption of males. Most studies have focused on a fecundity advantage through consumption of a male; however, recent studies have raised the intriguing possibility that consumption of a male may also affect offspring quality. In particular, recent studies suggest prolonged survival for offspring from sexually cannibalistic females. Here, we measured the protein and lipid content of males compared to insect prey (crickets), quantified female nutrient intake of both prey types and finally assessed how sexual cannibalism affects female fecundity and spiderling quality in the orb-web spider Larinioides sclopetarius. We found no evidence that sexual cannibalism increased fecundity when compared to a female control group fed a cricket. Contrary to previous studies, spiderlings from females fed a male showed reduced survival under food deprivation compared to spiderlings from the control group. Offspring from females fed a male also tended to begin web construction sooner. The low lipid content of males compared to crickets may have reduced offspring survival duration. Whether additional proteins obtained through consumption of a male translate to enhanced silk production in offspring requires further investigation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. A field reciprocal transplant experiment reveals asymmetric costs of migration between lake and river ecotypes of three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Kaufmann, J; Lenz, T L; Kalbe, M; Milinski, M; Eizaguirre, C

    2017-05-01

    Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three-spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. Evolutionary distances in the twilight zone--a rational kernel approach.

    PubMed

    Schwarz, Roland F; Fletcher, William; Förster, Frank; Merget, Benjamin; Wolf, Matthias; Schultz, Jörg; Markowetz, Florian

    2010-12-31

    Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.

  19. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy

    PubMed Central

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743

  20. Evolution of plasticity and adaptive responses to climate change along climate gradients.

    PubMed

    Kingsolver, Joel G; Buckley, Lauren B

    2017-08-16

    The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).

  1. Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits?

    PubMed Central

    Santos, Mauro; Castañeda, Luis E; Rezende, Enrico L

    2012-01-01

    The potential of populations to evolve in response to ongoing climate change is partly conditioned by the presence of heritable genetic variation in relevant physiological traits. Recent research suggests that Drosophila melanogaster exhibits negligible heritability, hence little evolutionary potential in heat tolerance when measured under slow heating rates that presumably mimic conditions in nature. Here, we study the effects of directional selection for increased heat tolerance using Drosophila as a model system. We combine a physiological model to simulate thermal tolerance assays with multilocus models for quantitative traits. Our simulations show that, whereas the evolutionary response of the genetically determined upper thermal limit (CTmax) is independent of methodological context, the response in knockdown temperatures varies with measurement protocol and is substantially (up to 50%) lower than for CTmax. Realized heritabilities of knockdown temperature may grossly underestimate the true heritability of CTmax. For instance, assuming that the true heritability of CTmax in the base population is h2 = 0.25, realized heritabilities of knockdown temperature are around 0.08–0.16 depending on heating rate. These effects are higher in slow heating assays, suggesting that flawed methodology might explain the apparently limited evolutionary potential of cosmopolitan D. melanogaster. PMID:23170220

  2. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.

    PubMed

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.

  3. The shape of pterosaur evolution: evidence from the fossil record.

    PubMed

    Dyke, G J; McGowan, A J; Nudds, R L; Smith, D

    2009-04-01

    Although pterosaurs are a well-known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon-specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased - this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.

  4. The Evolutionary Economics of Embryonic-Sac Fluids in Squamate Reptiles.

    PubMed

    Bonnet, Xavier; Naulleau, Guy; Shine, Richard

    2017-03-01

    The parchment-shelled eggs of squamate reptiles take up substantial water from the nest environment, enabling the conversion of yolk into neonatal tissue and buffering the embryo against the possibility of subsequent dry weather. During development, increasing amounts of water are stored in the embryonic sacs (i.e., membranes around the embryo: amnion, allantois, and chorion). The evolution of viviparity (prolonged uterine retention of developing embryos) means that embryonic-sac fluid storage now imposes a cost (increased maternal burdening), confers less benefit (because the mother buffers fetal water balance), and introduces a potential conflict among uterine siblings (for access to finite water supplies). Our data on nine species of squamate reptiles and published information on three species show that the embryonic-sac fluids comprise around 33% of neonatal mass in viviparous species versus 94% in full-term eggs of oviparous squamates. Data on parturition in 149 vipers (Vipera aspis, a viviparous species) show that larger offspring store more fluids in their fetal sacs and that an increase in litter size is associated with a decrease in fluid-sac mass per offspring. Overall, the evolutionary transition from oviparity to viviparity may have substantially altered selective forces on offspring packaging and created competition among offspring for access to water reserves during embryonic development.

  5. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    PubMed

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  6. True-Triaxial Experimental Study of the Evolutionary Features of the Acoustic Emissions and Sounds of Rockburst Processes

    NASA Astrophysics Data System (ADS)

    Su, Guoshao; Shi, Yanjiong; Feng, Xiating; Jiang, Jianqing; Zhang, Jie; Jiang, Quan

    2018-02-01

    Rockbursts are markedly characterized by the ejection of rock fragments from host rocks at certain speeds. The rockburst process is always accompanied by acoustic signals that include acoustic emissions (AE) and sounds. A deep insight into the evolutionary features of AE and sound signals is important to improve the accuracy of rockburst prediction. To investigate the evolutionary features of AE and sound signals, rockburst tests on granite rock specimens under true-triaxial loading conditions were performed using an improved rockburst testing system, and the AE and sounds during rockburst development were recorded and analyzed. The results show that the evolutionary features of the AE and sound signals were obvious and similar. On the eve of a rockburst, a `quiescent period' could be observed in both the evolutionary process of the AE hits and the sound waveform. Furthermore, the time-dependent fractal dimensions of the AE hits and sound amplitude both showed a tendency to continuously decrease on the eve of the rockbursts. In addition, on the eve of the rockbursts, the main frequency of the AE and sound signals both showed decreasing trends, and the frequency spectrum distributions were both characterized by low amplitudes, wide frequency bands and multiple peak shapes. Thus, the evolutionary features of sound signals on the eve of rockbursts, as well as that of AE signals, can be used as beneficial information for rockburst prediction.

  7. Upon accounting for the impact of isoenzyme loss, gene deletion costs anticorrelate with their evolutionary rates

    DOE PAGES

    Jacobs, Christopher; Lambourne, Luke; Xia, Yu; ...

    2017-01-20

    Here, system-level metabolic network models enable the computation of growth and metabolic phenotypes from an organism's genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a gene's fitness contribution to an organism "here and now"º and the same gene's historical importance asmore » evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call "function-loss cost", which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality.« less

  8. Upon accounting for the impact of isoenzyme loss, gene deletion costs anticorrelate with their evolutionary rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Christopher; Lambourne, Luke; Xia, Yu

    Here, system-level metabolic network models enable the computation of growth and metabolic phenotypes from an organism's genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a gene's fitness contribution to an organism "here and now"º and the same gene's historical importance asmore » evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call "function-loss cost", which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality.« less

  9. What have humans done for evolutionary biology? Contributions from genes to populations.

    PubMed

    Briga, Michael; Griffin, Robert M; Berger, Vérane; Pettay, Jenni E; Lummaa, Virpi

    2017-11-15

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. © 2017 The Author(s).

  10. What have humans done for evolutionary biology? Contributions from genes to populations

    PubMed Central

    Briga, Michael; Griffin, Robert M.; Berger, Vérane; Pettay, Jenni E.

    2017-01-01

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. PMID:29118130

  11. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    PubMed

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  12. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  13. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  14. Evolutionary principles and their practical application

    PubMed Central

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966

  15. Evolutionary principles and their practical application.

    PubMed

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  16. Evolutionary Technologies: Fundamentals and Applications to Information/Communication Systems and Manufacturing/Logistics Systems

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma

    As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.

  17. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  18. Evolutionary Stability in the Traveler's Dilemma

    ERIC Educational Resources Information Center

    Barker, Andrew T.

    2009-01-01

    The traveler's dilemma is a generalization of the prisoner's dilemma which shows clearly a paradox of game theory. In the traveler's dilemma, the strategy chosen by analysis and theory seems obviously wrong intuitively. Here we develop a measure of evolutionary stability and show that the evolutionarily stable equilibrium is in some sense not very…

  19. No evidence of trade-offs in the evolution of sperm numbers and sperm size in mammals.

    PubMed

    Tourmente, M; Delbarco Trillo, J; Roldan, E R S

    2015-10-01

    Post-copulatory sexual selection, in the form sperm competition, has influenced the evolution of several male reproductive traits. However, theory predicts that sperm competition would lead to trade-offs between numbers and size of spermatozoa because increased costs per cell would result in a reduction of sperm number if both traits share the same energetic budget. Theoretical models have proposed that, in large animals, increased sperm size would have minimal fitness advantage compared with increased sperm numbers. Thus, sperm numbers would evolve more rapidly than sperm size under sperm competition pressure. We tested in mammals whether sperm competition maximizes sperm numbers and size, and whether there is a trade-off between these traits. Our results showed that sperm competition maximizes sperm numbers in eutherian and metatherian mammals. There was no evidence of a trade-off between sperm numbers and sperm size in any of the two mammalian clades as we did not observe any significant relationship between sperm numbers and sperm size once the effect of sperm competition was taken into account. Maximization of both numbers and size in mammals may occur because each trait is crucial at different stages in sperm's life; for example size-determined sperm velocity is a key determinant of fertilization success. In addition, numbers and size may also be influenced by diverse energetic budgets required at different stages of sperm formation. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  1. Hybridisation and diversification in the adaptive radiation of clownfishes.

    PubMed

    Litsios, Glenn; Salamin, Nicolas

    2014-11-30

    The importance of hybridisation during species diversification has long been debated among evolutionary biologists. It is increasingly recognised that hybridisation events occurred during the evolutionary history of numerous species, especially during the early stages of adaptive radiation. We study the effect of hybridisation on diversification in the clownfishes, a clade of coral reef fish that diversified through an adaptive radiation process. While two species of clownfish are likely to have been described from hybrid specimens, the occurrence and effect of hybridisation on the clade diversification is yet unknown. We generate sequences of three mitochondrial genes to complete an existing dataset of nuclear sequences and document cytonuclear discordance at a node, which shows a drastic increase of diversification rate. Then, using a tree-based jack-knife method, we identify clownfish species likely stemming from hybridisation events. Finally, we use molecular cloning and identify the putative parental species of four clownfish specimens that display the morphological characteristics of hybrids. Our results show that consistently with the syngameon hypothesis, hybridisation events are linked with a burst of diversification in the clownfishes. Moreover, several recently diverged clownfish lineages likely originated through hybridisation, which indicates that diversification, catalysed by hybridisation events, may still be happening.

  2. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    PubMed

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-27

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  3. Why don’t you use Evolutionary Algorithms in Big Data?

    NASA Astrophysics Data System (ADS)

    Stanovov, Vladimir; Brester, Christina; Kolehmainen, Mikko; Semenkina, Olga

    2017-02-01

    In this paper we raise the question of using evolutionary algorithms in the area of Big Data processing. We show that evolutionary algorithms provide evident advantages due to their high scalability and flexibility, their ability to solve global optimization problems and optimize several criteria at the same time for feature selection, instance selection and other data reduction problems. In particular, we consider the usage of evolutionary algorithms with all kinds of machine learning tools, such as neural networks and fuzzy systems. All our examples prove that Evolutionary Machine Learning is becoming more and more important in data analysis and we expect to see the further development of this field especially in respect to Big Data.

  4. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles.

    PubMed

    Orozco-terWengel, Pablo; Kapun, Martin; Nolte, Viola; Kofler, Robert; Flatt, Thomas; Schlötterer, Christian

    2012-10-01

    The genomic basis of adaptation to novel environments is a fundamental problem in evolutionary biology that has gained additional importance in the light of the recent global change discussion. Here, we combined laboratory natural selection (experimental evolution) in Drosophila melanogaster with genome-wide next generation sequencing of DNA pools (Pool-Seq) to identify alleles that are favourable in a novel laboratory environment and traced their trajectories during the adaptive process. Already after 15 generations, we identified a pronounced genomic response to selection, with almost 5000 single nucleotide polymorphisms (SNP; genome-wide false discovery rates < 0.005%) deviating from neutral expectation. Importantly, the evolutionary trajectories of the selected alleles were heterogeneous, with the alleles falling into two distinct classes: (i) alleles that continuously rise in frequency; and (ii) alleles that at first increase rapidly but whose frequencies then reach a plateau. Our data thus suggest that the genomic response to selection can involve a large number of selected SNPs that show unexpectedly complex evolutionary trajectories, possibly due to nonadditive effects. © 2012 Blackwell Publishing Ltd.

  5. Bad to the bone: facial structure predicts unethical behaviour.

    PubMed

    Haselhuhn, Michael P; Wong, Elaine M

    2012-02-07

    Researchers spanning many scientific domains, including primatology, evolutionary biology and psychology, have sought to establish an evolutionary basis for morality. While researchers have identified social and cognitive adaptations that support ethical behaviour, a consensus has emerged that genetically determined physical traits are not reliable signals of unethical intentions or actions. Challenging this view, we show that genetically determined physical traits can serve as reliable predictors of unethical behaviour if they are also associated with positive signals in intersex and intrasex selection. Specifically, we identify a key physical attribute, the facial width-to-height ratio, which predicts unethical behaviour in men. Across two studies, we demonstrate that men with wider faces (relative to facial height) are more likely to explicitly deceive their counterparts in a negotiation, and are more willing to cheat in order to increase their financial gain. Importantly, we provide evidence that the link between facial metrics and unethical behaviour is mediated by a psychological sense of power. Our results demonstrate that static physical attributes can indeed serve as reliable cues of immoral action, and provide additional support for the view that evolutionary forces shape ethical judgement and behaviour.

  6. Evo-devo of human adolescence: beyond disease models of early puberty

    PubMed Central

    2013-01-01

    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research. PMID:23627891

  7. Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research

    PubMed Central

    Piperno, Dolores R.

    2017-01-01

    The development of agricultural societies, one of the most transformative events in human and ecological history, was made possible by plant and animal domestication. Plant domestication began 12,000–10,000 y ago in a number of major world areas, including the New World tropics, Southwest Asia, and China, during a period of profound global environmental perturbations as the Pleistocene epoch ended and transitioned into the Holocene. Domestication is at its heart an evolutionary process, and for many prehistorians evolutionary theory has been foundational in investigating agricultural origins. Similarly, geneticists working largely with modern crops and their living wild progenitors have documented some of the mechanisms that underwrote phenotypic transformations from wild to domesticated species. Ever-improving analytic methods for retrieval of empirical data from archaeological sites, together with advances in genetic, genomic, epigenetic, and experimental research on living crop plants and wild progenitors, suggest that three fields of study currently little applied to plant domestication processes may be necessary to understand these transformations across a range of species important in early prehistoric agriculture. These fields are phenotypic (developmental) plasticity, niche construction theory, and epigenetics with transgenerational epigenetic inheritance. All are central in a controversy about whether an Extended Evolutionary Synthesis is needed to reconceptualize how evolutionary change occurs. An exploration of their present and potential utility in domestication study shows that all three fields have considerable promise in elucidating important issues in plant domestication and in agricultural origin and dispersal research and should be increasingly applied to these issues. PMID:28576881

  8. Emerging Concepts of Data Integration in Pathogen Phylodynamics.

    PubMed

    Baele, Guy; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe

    2017-01-01

    Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.

  9. Emerging Concepts of Data Integration in Pathogen Phylodynamics

    PubMed Central

    Baele, Guy; Suchard, Marc A.; Rambaut, Andrew; Lemey, Philippe

    2017-01-01

    Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics. PMID:28173504

  10. Constraining free riding in public goods games: designated solitary punishers can sustain human cooperation

    PubMed Central

    O'Gorman, Rick; Henrich, Joseph; Van Vugt, Mark

    2008-01-01

    Much of human cooperation remains an evolutionary riddle. Unlike other animals, people frequently cooperate with non-relatives in large groups. Evolutionary models of large-scale cooperation require not just incentives for cooperation, but also a credible disincentive for free riding. Various theoretical solutions have been proposed and experimentally explored, including reputation monitoring and diffuse punishment. Here, we empirically examine an alternative theoretical proposal: responsibility for punishment can be borne by one specific individual. This experiment shows that allowing a single individual to punish increases cooperation to the same level as allowing each group member to punish and results in greater group profits. These results suggest a potential key function of leadership in human groups and provides further evidence supporting that humans will readily and knowingly behave altruistically. PMID:18812292

  11. Joint attention and language evolution

    NASA Astrophysics Data System (ADS)

    Kwisthout, Johan; Vogt, Paul; Haselager, Pim; Dijkstra, Ton

    2008-06-01

    This study investigates how more advanced joint attentional mechanisms, rather than only shared attention between two agents and an object, can be implemented and how they influence the results of language games played by these agents. We present computer simulations with language games showing that adding constructs that mimic the three stages of joint attention identified in children's early development (checking attention, following attention, and directing attention) substantially increase the performance of agents in these language games. In particular, the rates of improved performance for the individual attentional mechanisms have the same ordering as that of the emergence of these mechanisms in infants' development. These results suggest that language evolution and joint attentional mechanisms have developed in a co-evolutionary way, and that the evolutionary emergence of the individual attentional mechanisms is ordered just like their developmental emergence.

  12. The brain's Geppetto-microbes as puppeteers of neural function and behaviour?

    PubMed

    Stilling, Roman M; Dinan, Timothy G; Cryan, John F

    2016-02-01

    Research on the microbiome and its interaction with various host organs, including the brain, is increasingly gaining momentum. With more evidence establishing a comprehensive microbiota-gut-brain axis, questions have been raised as to the extent to which microbes influence brain physiology and behaviour. In parallel, there is a growing literature showing active behavioural manipulation in favour of the microbe for certain parasites. However, it seems unclear where the hidden majority of microbes are localised on the parasitism-mutualism spectrum. A long evolutionary history intimately connects host and microbiota, which complicates this classification. In this conceptual minireview, we discuss current hypotheses on host-microbe interaction and argue that novel experimental approaches and theoretical concepts, such as the hologenome theory, are necessary to incorporate transgenerational epigenetic inheritance of the microbiome into evolutionary theories.

  13. Ancient DNA provides new insights into the evolutionary history of New Zealand's extinct giant eagle.

    PubMed

    Bunce, Michael; Szulkin, Marta; Lerner, Heather R L; Barnes, Ian; Shapiro, Beth; Cooper, Alan; Holdaway, Richard N

    2005-01-01

    Prior to human settlement 700 years ago New Zealand had no terrestrial mammals--apart from three species of bats--instead, approximately 250 avian species dominated the ecosystem. At the top of the food chain was the extinct Haast's eagle, Harpagornis moorei. H. moorei (10-15 kg; 2-3 m wingspan) was 30%-40% heavier than the largest extant eagle (the harpy eagle, Harpia harpyja), and hunted moa up to 15 times its weight. In a dramatic example of morphological plasticity and rapid size increase, we show that the H. moorei was very closely related to one of the world's smallest extant eagles, which is one-tenth its mass. This spectacular evolutionary change illustrates the potential speed of size alteration within lineages of vertebrates, especially in island ecosystems.

  14. Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong

    2018-02-01

    The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.

  15. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants

    PubMed Central

    Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.

    2016-01-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206

  16. The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results

    NASA Technical Reports Server (NTRS)

    Belvin, W. K.; Horta, Lucas G.; Elliott, K. B.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics.

  17. The evolution of cooperation by negotiation in a noisy world.

    PubMed

    Ito, K; McNamara, J M; Yamauchi, A; Higginson, A D

    2017-03-01

    Cooperative interactions among individuals are ubiquitous despite the possibility of exploitation by selfish free riders. One mechanism that may promote cooperation is 'negotiation': individuals altering their behaviour in response to the behaviour of others. Negotiating individuals decide their actions through a recursive process of reciprocal observation, thereby reducing the possibility of free riding. Evolutionary games with response rules have shown that infinitely many forms of the rule can be evolutionarily stable simultaneously, unless there is variation in individual quality. This potentially restricts the conditions under which negotiation could maintain cooperation. Organisms interact with one another in a noisy world in which cooperative effort and the assessment of effort may be subject to error. Here, we show that such noise can make the number of evolutionarily stable rules finite, even without quality variation, and so noise could help maintain cooperative behaviour. We show that the curvature of the benefit function is the key factor determining whether individuals invest more or less as their partner's investment increases, investing less when the benefit to investment has diminishing returns. If the benefits of low investment are very small then behavioural flexibility tends to promote cooperation, because negotiation enables cooperators to reach large benefits. Under some conditions, this leads to a repeating cycle in which cooperative behaviour rises and falls over time, which may explain between-population differences in cooperative behaviour. In other conditions, negotiation leads to extremely high levels of cooperative behaviour, suggesting that behavioural flexibility could facilitate the evolution of eusociality in the absence of high relatedness. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  18. Evolutionary history and molecular epidemiology of rabbit haemorrhagic disease virus in the Iberian Peninsula and Western Europe

    PubMed Central

    2010-01-01

    Background Rabbit haemorrhagic disease virus (RHDV) is a highly virulent calicivirus, first described in domestic rabbits in China in 1984. RHDV appears to be a mutant form of a benign virus that existed in Europe long before the first outbreak. In the Iberian Peninsula, the first epidemic in 1988 severely reduced the populations of autochthonous European wild rabbit. To examine the evolutionary history of RHDV in the Iberian Peninsula, we collected virus samples from wild rabbits and sequenced a fragment of the capsid protein gene VP60. These data together with available sequences from other Western European countries, were analyzed following Bayesian Markov chain Monte Carlo methods to infer their phylogenetic relationships, evolutionary rates and demographic history. Results Evolutionary relationships of RHDV revealed three main lineages with significant phylogeographic structure. All lineages seem to have emerged at a common period of time, between ~1875 and ~1976. The Iberian Peninsula showed evidences of genetic isolation, probably due to geographic barriers to gene flow, and was also the region with the youngest MRCA. Overall, demographic analyses showed an initial increase and stabilization of the relative genetic diversity of RHDV, and a subsequent reduction in genetic diversity after the first epidemic breakout in 1984, which is compatible with a decline in effective population size. Conclusions Results were consistent with the hypothesis that the current Iberian RHDV arose from a single infection between 1869 and 1955 (95% HPD), and rendered a temporal pattern of appearance and extinction of lineages. We propose that the rising positive selection pressure observed throughout the history of RHDV is likely mediated by the host immune system as a consequence of the genetic changes that rendered the virus virulent. Consequently, this relationship is suggested to condition RHDV demographic history. PMID:21067589

  19. Women's attractiveness is linked to expected age at menopause.

    PubMed

    Bovet, J; Barkat-Defradas, M; Durand, V; Faurie, C; Raymond, M

    2018-02-01

    A great number of studies have shown that features linked to immediate fertility explain a large part of the variance in female attractiveness. This is consistent with an evolutionary perspective, as men are expected to prefer females at the age at which fertility peaks (at least for short-term relationships) in order to increase their reproductive success. However, for long-term relationships, a high residual reproductive value (the expected future reproductive output, linked to age at menopause) becomes relevant as well. In that case, young age and late menopause are expected to be preferred by men. However, the extent to which facial features provide cues to the likely age at menopause has never been investigated so far. Here, we show that expected age at menopause is linked to facial attractiveness of young women. As age at menopause is heritable, we used the mother's age at menopause as a proxy for her daughter's expected age of menopause. We found that men judged faces of women with a later expected age at menopause as more attractive than those of women with an earlier expected age at menopause. This result holds when age, cues of immediate fertility and facial ageing were controlled for. Additionally, we found that the expected age at menopause was not correlated with any of the other variables considered (including immediate fertility cues and facial ageing). Our results show the existence of a new correlate of women's facial attractiveness, expected age at menopause, which is independent of immediate fertility cues and facial ageing. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. Experimental evolution reveals differences between phenotypic and evolutionary responses to population density.

    PubMed

    McNamara, K B; Simmons, L W

    2017-09-01

    Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  1. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles

    PubMed Central

    Benson, Roger B. J.; Frigot, Rachel A.; Goswami, Anjali; Andres, Brian; Butler, Richard J.

    2014-01-01

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. PMID:24694584

  2. A photometric study of the Orion OB 1 association. 3: Subgroup analyses

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.; Hesser, J. E.

    1977-01-01

    The four principal subgroups of the association were examined in detail using individual distances and reddening values determined for their B type members. Subgroup 1a appeared not to show a spread in age nor did it show a systematic distance increase with right ascension when fainter members were considered. An eastwardly increase in distance was found for subgroup 1b but the reddening law for the east Belt appeared normal. Small subclusterings in the vicinity of the Orion Nebula appeared not to differ in the evolutionary state but their ages were considerably greater than those of stars in the nebulae and its associated cluster.

  3. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome

    PubMed Central

    2011-01-01

    Background The carnivorous plant Utricularia gibba (bladderwort) is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution), and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS). Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey digestion that were previously thought to be encoded by bacteria. Supporting physiological data, global gene expression analysis shows that traps significantly over-express genes involved in respiration and that phosphate uptake might occur mainly in traps, whereas nitrogen uptake could in part take place in vegetative parts. Expression of DNA repair and ROS detoxification enzymes may be indicative of a response to increased respiration. Finally, evidence from the bladderwort transcriptome, direct measurement of ROS in situ, and cross-species comparisons of organellar genomes and multiple nuclear genes supports the hypothesis that increased nucleotide substitution rates throughout the plant may be due to the mutagenic action of amplified ROS production. PMID:21639913

  4. The role of sexual and natural selection in shaping patterns of sexual dichromatism in the largest family of songbirds (Aves: Thraupidae).

    PubMed

    Shultz, Allison J; Burns, Kevin J

    2017-04-01

    Males and females can be under different evolutionary pressures if sexual and natural selection is differentially operating in each sex. As a result, many species have evolved sexual dichromatism, or differences in coloration between sexes. Although sexual dichromatism is often used as an index of the magnitude of sexual selection, sexual dichromatism is a composite trait. Here, we examine the evolution of sexual dichromatism in one of the largest and most ecologically diverse families of birds, the tanagers, using the avian visual perspective and a species-level phylogeny. Our results demonstrate that the evolutionary decreases of sexual dichromatism are more often associated with larger and more frequent changes in male plumage coloration, and evolutionary increases are not more often associated with larger changes in either sex. Furthermore, we show that the crown and ventral plumage regions are correlated with sexual dichromatism in males, and that only male plumage complexity is positively correlated with sexual dichromatism. Finally, we demonstrate that light environment is important in shaping both plumage brilliance and complexity. By conducting a multilevel analysis of plumage evolution in males and females, we show that sexual dichromatism evolves via a mosaic of sexual and natural selection in both sexes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Culture shapes the evolution of cognition.

    PubMed

    Thompson, Bill; Kirby, Simon; Smith, Kenny

    2016-04-19

    A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual-if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption.

  6. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.

    PubMed

    Welch, Allison M; Smith, Michael J; Gerhardt, H Carl

    2014-06-01

    Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants.

    PubMed

    Martorell, Carlos; Ezcurra, Exequiel

    2007-04-01

    Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.

  8. Evolution with Stochastic Fitness and Stochastic Migration

    PubMed Central

    Rice, Sean H.; Papadopoulos, Anthony

    2009-01-01

    Background Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. Methodology/Principal Findings We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. Conclusions/Significance As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory. PMID:19816580

  9. Phylogeny, Traits, and Biodiversity of a Neotropical Bat Assemblage: Close Relatives Show Similar Responses to Local Deforestation.

    PubMed

    Frank, Hannah K; Frishkoff, Luke O; Mendenhall, Chase D; Daily, Gretchen C; Hadly, Elizabeth A

    2017-08-01

    If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.

  10. Evolutionary dynamics of group formation.

    PubMed

    Javarone, Marco Alberto; Marinazzo, Daniele

    2017-01-01

    Group formation is a quite ubiquitous phenomenon across different animal species, whose individuals cluster together forming communities of diverse size. Previous investigations suggest that, in general, this phenomenon might have similar underlying reasons across the interested species, despite genetic and behavioral differences. For instance improving the individual safety (e.g. from predators), and increasing the probability to get food resources. Remarkably, the group size might strongly vary from species to species, e.g. shoals of fishes and herds of lions, and sometimes even within the same species, e.g. tribes and families in human societies. Here we build on previous theories stating that the dynamics of group formation may have evolutionary roots, and we explore this fascinating hypothesis from a purely theoretical perspective, with a model using the framework of Evolutionary Game Theory. In our model we hypothesize that homogeneity constitutes a fundamental ingredient in these dynamics. Accordingly, we study a population that tries to form homogeneous groups, i.e. composed of similar agents. The formation of a group can be interpreted as a strategy. Notably, agents can form a group (receiving a 'group payoff'), or can act individually (receiving an 'individual payoff'). The phase diagram of the modeled population shows a sharp transition between the 'group phase' and the 'individual phase', characterized by a critical 'individual payoff'. Our results then support the hypothesis that the phenomenon of group formation has evolutionary roots.

  11. A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice

    PubMed Central

    White, Michael A.; Ikeda, Akihiro; Payseur, Bret A.

    2012-01-01

    The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2–4 million years ago. Here, we use a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period. PMID:22763584

  12. A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice.

    PubMed

    White, Michael A; Ikeda, Akihiro; Payseur, Bret A

    2012-08-01

    The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2-4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.

  13. The function and evolution of male and female genitalia in Phyllophaga Harris scarab beetles (Coleoptera: Scarabaeidae).

    PubMed

    Richmond, M P; Park, J; Henry, C S

    2016-11-01

    Genitalia diversity in insects continues to fuel investigation of the function and evolution of these dynamic structures. Whereas most studies have focused on variation in male genitalia, an increasing number of studies on female genitalia have uncovered comparable diversity among females, but often at a much finer morphological scale. In this study, we analysed the function and evolution of male and female genitalia in Phyllophaga scarab beetles, a group in which both sexes exhibit genitalic diversity. To document the interaction between male and female structures during mating, we dissected flash-frozen mating pairs from three Phyllophaga species and investigated fine-scale morphology using SEM. We then reconstructed ancestral character states using a species tree inferred from mitochondrial and nuclear loci to elucidate and compare the evolutionary history of male and female genitalia. Our dissections revealed an interlocking mechanism of the female pubic process and male parameres that appears to improve the mechanical fit of the copulatory position. The comparative analyses, however, did not support coevolution of male and female structures and showed more erratic evolution of the female genitalia relative to males. By studying a group that exhibits obvious female genitalic diversity, we were able to demonstrate the relevance of female reproductive morphology in studies of male genital diversity. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    PubMed

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  15. Why flying dogs are rare: A general theory of luck in evolutionary transitions.

    PubMed

    Fleming, Leonore; Brandon, Robert

    2015-02-01

    There is a worry that the 'major transitions in evolution' represent an arbitrary group of events. This worry is warranted, and we show why. We argue that the transition to a new level of hierarchy necessarily involves a nonselectionist chance process. Thus any unified theory of evolutionary transitions must be more like a general theory of fortuitous luck, rather than a rigid formulation of expected events. We provide a systematic account of evolutionary transitions based on a second-order regularity of chance events, as stipulated by the ZFEL (Zero Force Evolutionary Law). And in doing so, we make evolutionary transitions explainable and predictable, and so not entirely contingent after all. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mean-Potential Law in Evolutionary Games

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  17. Diversity Dynamics in Nymphalidae Butterflies: Effect of Phylogenetic Uncertainty on Diversification Rate Shift Estimates

    PubMed Central

    Peña, Carlos; Espeland, Marianne

    2015-01-01

    The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution. PMID:25830910

  18. Diversity dynamics in Nymphalidae butterflies: effect of phylogenetic uncertainty on diversification rate shift estimates.

    PubMed

    Peña, Carlos; Espeland, Marianne

    2015-01-01

    The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.

  19. Virulence evolution in response to anti-infection resistance: toxic food plants can select for virulent parasites of monarch butterflies.

    PubMed

    de Roode, J C; de Castillejo, C Lopez Fernandez; Faits, T; Alizon, S

    2011-04-01

    Host resistance to parasites can come in two main forms: hosts may either reduce the probability of parasite infection (anti-infection resistance) or reduce parasite growth after infection has occurred (anti-growth resistance). Both resistance mechanisms are often imperfect, meaning that they do not fully prevent or clear infections. Theoretical work has suggested that imperfect anti-growth resistance can select for higher parasite virulence by favouring faster-growing and more virulent parasites that overcome this resistance. In contrast, imperfect anti-infection resistance is thought not to select for increased parasite virulence, because it is assumed that it reduces the number of hosts that become infected, but not the fitness of parasites in successfully infected hosts. Here, we develop a theoretical model to show that anti-infection resistance can in fact select for higher virulence when such resistance reduces the effective parasite dose that enters a host. Our model is based on a monarch butterfly-parasite system in which larval food plants confer resistance to the monarch host. We carried out an experiment and showed that this environmental resistance is most likely a form of anti-infection resistance, through which toxic food plants reduce the effective dose of parasites that initiates an infection. We used these results to build a mathematical model to investigate the evolutionary consequences of food plant-induced resistance. Our model shows that when the effective infectious dose is reduced, parasites can compensate by evolving a higher per-parasite growth rate, and consequently a higher intrinsic virulence. Our results are relevant to many insect host-parasite systems, in which larval food plants often confer imperfect anti-infection resistance. Our results also suggest that - for parasites where the infectious dose affects the within-host dynamics - vaccines that reduce the effective infectious dose can select for increased parasite virulence. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  20. Cancer Evolution: Mathematical Models and Computational Inference

    PubMed Central

    Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804

  1. The evolution of a social construction: the case of male homosexuality.

    PubMed

    Adriaens, Pieter R; De Block, Andreas

    2006-01-01

    Male homosexuality has been viewed by evolutionary psychologists as a Darwinian paradox, and by other social scientists as a social construction. We argue that it is better understood as an evolutionary social construction. Male homosexuality as we now know it is an 18th-century invention, but nonexclusive same-sex sexual behavior has a long evolutionary history. According to the alliance-formation hypothesis, same-sex sexuality evolved by natural selection because it created or strengthened male-male alliances and allowed low-status males to reposition themselves in the group hierarchy and thereby increase their reproductive success. This hypothesis makes sense of some odd findings about male homosexuality and helps to explain the rise in exclusive male homosexuality in the 18th century. The sociohistorical conditions around 1700 may have resulted in an increase in same-sex sexual behavior. Cultural responses to same-sex sexuality led to the spread of exclusive homosexual behavior and to the creation of a homosexual identity. Understanding male homosexuality as an evolutionary social construction can help us move beyond the traditionally polarized debate between evolutionary psychologists and social constructionists.

  2. Limited evolutionary rescue of locally adapted populations facing climate change.

    PubMed

    Schiffers, Katja; Bourne, Elizabeth C; Lavergne, Sébastien; Thuiller, Wilfried; Travis, Justin M J

    2013-01-19

    Dispersal is a key determinant of a population's evolutionary potential. It facilitates the propagation of beneficial alleles throughout the distributional range of spatially outspread populations and increases the speed of adaptation. However, when habitat is heterogeneous and individuals are locally adapted, dispersal may, at the same time, reduce fitness through increasing maladaptation. Here, we use a spatially explicit, allelic simulation model to quantify how these equivocal effects of dispersal affect a population's evolutionary response to changing climate. Individuals carry a diploid set of chromosomes, with alleles coding for adaptation to non-climatic environmental conditions and climatic conditions, respectively. Our model results demonstrate that the interplay between gene flow and habitat heterogeneity may decrease effective dispersal and population size to such an extent that substantially reduces the likelihood of evolutionary rescue. Importantly, even when evolutionary rescue saves a population from extinction, its spatial range following climate change may be strongly narrowed, that is, the rescue is only partial. These findings emphasize that neglecting the impact of non-climatic, local adaptation might lead to a considerable overestimation of a population's evolvability under rapid environmental change.

  3. The Evolutionary History of Protein Domains Viewed by Species Phylogeny

    PubMed Central

    Yang, Song; Bourne, Philip E.

    2009-01-01

    Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species. PMID:20041107

  4. Evolutionary inevitability of sexual antagonism.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2014-02-07

    Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.

  5. Replaying evolutionary transitions from the dental fossil record

    PubMed Central

    Harjunmaa, Enni; Seidel, Kerstin; Häkkinen, Teemu; Renvoisé, Elodie; Corfe, Ian J.; Kallonen, Aki; Zhang, Zhao-Qun; Evans, Alistair R.; Mikkola, Marja L.; Salazar-Ciudad, Isaac; Klein, Ophir D.; Jernvall, Jukka

    2014-01-01

    The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character interdependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character state transitions used in evolutionary studies. PMID:25079326

  6. Eco-evolutionary dynamics in a coevolving host-virus system.

    PubMed

    Frickel, Jens; Sieber, Michael; Becks, Lutz

    2016-04-01

    Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.

  7. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution

    PubMed Central

    Mannakee, Brian K.; Gutenkunst, Ryan N.

    2016-01-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265

  8. The Evolution and Expression Pattern of Human Overlapping lncRNA and Protein-coding Gene Pairs.

    PubMed

    Ning, Qianqian; Li, Yixue; Wang, Zhen; Zhou, Songwen; Sun, Hong; Yu, Guangjun

    2017-03-27

    Long non-coding RNA overlapping with protein-coding gene (lncRNA-coding pair) is a special type of overlapping genes. Protein-coding overlapping genes have been well studied and increasing attention has been paid to lncRNAs. By studying lncRNA-coding pairs in human genome, we showed that lncRNA-coding pairs were more likely to be generated by overprinting and retaining genes in lncRNA-coding pairs were given higher priority than non-overlapping genes. Besides, the preference of overlapping configurations preserved during evolution was based on the origin of lncRNA-coding pairs. Further investigations showed that lncRNAs promoting the splicing of their embedded protein-coding partners was a unilateral interaction, but the existence of overlapping partners improving the gene expression was bidirectional and the effect was decreased with the increased evolutionary age of genes. Additionally, the expression of lncRNA-coding pairs showed an overall positive correlation and the expression correlation was associated with their overlapping configurations, local genomic environment and evolutionary age of genes. Comparison of the expression correlation of lncRNA-coding pairs between normal and cancer samples found that the lineage-specific pairs including old protein-coding genes may play an important role in tumorigenesis. This work presents a systematically comprehensive understanding of the evolution and the expression pattern of human lncRNA-coding pairs.

  9. The evolutionary psychology of left and right: costs and benefits of lateralization.

    PubMed

    Vallortigara, Giorgio

    2006-09-01

    Why do the left and right sides of the vertebrate brain play different functions? Having a lateralized brain, in which each hemisphere carries out different functions, is ubiquitous among vertebrates. The different specialization of the left and right side of the brain may increase brain efficiency--and some evidence for that is reported here. However, lateral biases due to brain lateralization (such as preferences in the use of a limb or, in animals with laterally placed eyes, of a visual hemifield) usually occur at the population level, with most individuals showing similar direction of bias. Individual brain efficiency does not require the alignment of lateralization in the population. Why then are not left--and right-type individuals equally common? Not only humans, but most vertebrates show a similar pattern. For instance, in the paper I report evidence that most toads, chickens, and fish react faster when a predator approaches from the left. I argue that invoking individual brain efficiency (lateralization may increase fitness), evolutionary chance or direct genetic mechanisms cannot explain this widespread pattern. Instead, using concepts from mathematical theory of games, I show that alignment of lateralization at the population level may arise as an "evolutionarily stable strategy" when individually asymmetrical organisms must coordinate their behavior with that of other asymmetrical organisms. Thus, the population structure of lateralization may result from genes specifying the direction of asymmetries which have been selected under "social" pressures.

  10. The evolutionary and behavioral modification of consumer responses to environmental change.

    PubMed

    Abrams, Peter A

    2014-02-21

    How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.

  11. The evolution of parasitic and mutualistic plant-virus symbioses through transmission-virulence trade-offs.

    PubMed

    Hamelin, Frédéric M; Hilker, Frank M; Sun, T Anthony; Jeger, Michael J; Hajimorad, M Reza; Allen, Linda J S; Prendeville, Holly R

    2017-09-15

    Virus-plant interactions range from parasitism to mutualism. Viruses have been shown to increase fecundity of infected plants in comparison with uninfected plants under certain environmental conditions. Increased fecundity of infected plants may benefit both the plant and the virus as seed transmission is one of the main virus transmission pathways, in addition to vector transmission. Trade-offs between vertical (seed) and horizontal (vector) transmission pathways may involve virulence, defined here as decreased fecundity in infected plants. To better understand plant-virus symbiosis evolution, we explore the ecological and evolutionary interplay of virus transmission modes when infection can lead to an increase in plant fecundity. We consider two possible trade-offs: vertical seed transmission vs infected plant fecundity, and horizontal vector transmission vs infected plant fecundity (virulence). Through mathematical models and numerical simulations, we show (1) that a trade-off between virulence and vertical transmission can lead to virus extinction during the course of evolution, (2) that evolutionary branching can occur with subsequent coexistence of mutualistic and parasitic virus strains, and (3) that mutualism can out-compete parasitism in the long-run. In passing, we show that ecological bi-stability is possible in a very simple discrete-time epidemic model. Possible extensions of this study include the evolution of conditional (environment-dependent) mutualism in plant viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evolutionary consequences of climate-induced range shifts in insects.

    PubMed

    Sánchez-Guillén, Rosa A; Córdoba-Aguilar, Alex; Hansson, Bengt; Ott, Jürgen; Wellenreuther, Maren

    2016-11-01

    Range shifts can rapidly create new areas of geographic overlap between formerly allopatric taxa and evidence is accumulating that this can affect species persistence. We review the emerging literature on the short- and long-term consequences of these geographic range shifts. Specifically, we focus on the evolutionary consequences of novel species interactions in newly created sympatric areas by describing the potential (i) short-term processes acting on reproductive barriers between species and (ii) long-term consequences of range shifts on the stability of hybrid zones, introgression and ultimately speciation and extinction rates. Subsequently, we (iii) review the empirical literature on insects to evaluate which processes have been studied, and (iv) outline some areas that deserve increased attention in the future, namely the genomics of hybridisation and introgression, our ability to forecast range shifts and the impending threat from insect vectors and pests on biodiversity, human health and crop production. Our review shows that species interactions in de novo sympatric areas can be manifold, sometimes increasing and sometimes decreasing species diversity. A key issue that emerges is that climate-induced hybridisations in insects are much more widespread than anticipated and that rising temperatures and increased anthropogenic disturbances are accelerating the process of species mixing. The existing evidence only shows the tip of the iceberg and we are likely to see many more cases of species mixing following range shifts in the near future. © 2015 Cambridge Philosophical Society.

  13. Functional specialization in regulation and quality control in thermal adaptive evolution.

    PubMed

    Yama, Kazuma; Matsumoto, Yuki; Murakami, Yoshie; Seno, Shigeto; Matsuda, Hideo; Gotoh, Kazuyoshi; Motooka, Daisuke; Nakamura, Shota; Ying, Bei-Wen; Yomo, Tetsuya

    2015-11-01

    Distinctive survival strategies, specialized in regulation and in quality control, were observed in thermal adaptive evolution with a laboratory Escherichia coli strain. The two specialists carried a single mutation either within rpoH or upstream of groESL, which led to the activated global regulation by sigma factor 32 or an increased amount of GroEL/ES chaperonins, respectively. Although both specialists succeeded in thermal adaptation, the common winner of the evolution was the specialist in quality control, that is, the strategy of chaperonin-mediated protein folding. To understand this evolutionary consequence, multilevel analyses of cellular status, for example, transcriptome, protein and growth fitness, were carried out. The specialist in quality control showed less change in transcriptional reorganization responding to temperature increase, which was consistent with the finding of that the two specialists showed the biased expression of molecular chaperones. Such repressed changes in gene expression seemed to be advantageous for long-term sustainability because a specific increase in chaperonins not only facilitated the folding of essential gene products but also saved cost in gene expression compared with the overall transcriptional increase induced by rpoH regulation. Functional specialization offered two strategies for successful thermal adaptation, whereas the evolutionary advantageous was more at the points of cost-saving in gene expression and the essentiality in protein folding. © 2015 The Authors. Genes to Cells published by Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  14. Evolutionary biology: a basic science for medicine in the 21st century.

    PubMed

    Perlman, Robert L

    2011-01-01

    Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.

  15. The Evolution of Different Forms of Sociality: Behavioral Mechanisms and Eco-Evolutionary Feedback

    PubMed Central

    van der Post, Daniel J.; Verbrugge, Rineke; Hemelrijk, Charlotte K.

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from “leader-follower” societies to “fission-fusion” societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality. PMID:25629313

  16. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    PubMed

    van der Post, Daniel J; Verbrugge, Rineke; Hemelrijk, Charlotte K

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality.

  17. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales).

    PubMed

    Neustupa, J

    2016-02-01

    The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  18. More memory under evolutionary learning may lead to chaos

    NASA Astrophysics Data System (ADS)

    Diks, Cees; Hommes, Cars; Zeppini, Paolo

    2013-02-01

    We show that an increase of memory of past strategy performance in a simple agent-based innovation model, with agents switching between costly innovation and cheap imitation, can be quantitatively stabilising while at the same time qualitatively destabilising. As memory in the fitness measure increases, the amplitude of price fluctuations decreases, but at the same time a bifurcation route to chaos may arise. The core mechanism leading to the chaotic behaviour in this model with strategy switching is that the map obtained for the system with memory is a convex combination of an increasing linear function and a decreasing non-linear function.

  19. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. Bone Inner Structure Suggests Increasing Aquatic Adaptations in Desmostylia (Mammalia, Afrotheria)

    PubMed Central

    Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Chiba, Kentaro; Ando, Tatsuro; Sawamura, Hiroshi; Inuzuka, Norihisa; Kaneko, Naotomo; Osaki, Tomohiro

    2013-01-01

    Background The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce. Methodology/Principal Findings We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern. Conclusions/Significance In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history. PMID:23565143

  1. EvolQG - An R package for evolutionary quantitative genetics

    PubMed Central

    Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel

    2016-01-01

    We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352

  2. Mean-Potential Law in Evolutionary Games.

    PubMed

    Nałęcz-Jawecki, Paweł; Miękisz, Jacek

    2018-01-12

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  3. Clonal evolution in myelodysplastic syndromes

    PubMed Central

    da Silva-Coelho, Pedro; Kroeze, Leonie I.; Yoshida, Kenichi; Koorenhof-Scheele, Theresia N.; Knops, Ruth; van de Locht, Louis T.; de Graaf, Aniek O.; Massop, Marion; Sandmann, Sarah; Dugas, Martin; Stevens-Kroef, Marian J.; Cermak, Jaroslav; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; de Witte, Theo; Blijlevens, Nicole M. A.; Muus, Petra; Huls, Gerwin; van der Reijden, Bert A.; Ogawa, Seishi; Jansen, Joop H.

    2017-01-01

    Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5–11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance (TP53) or disease progression (NRAS, KRAS) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions. PMID:28429724

  4. Genealogical evidence for epidemics of selfish genes.

    PubMed

    Ingvarsson, Par K; Taylor, Douglas R

    2002-08-20

    Some genetic elements spread infectiously in populations by increasing their rate of genetic transmission at the expense of other genes in the genome. These so-called selfish genetic elements comprise a substantial portion of eukaryotic genomes and have long been viewed as a potent evolutionary force. Despite this view, little is known about the evolutionary history of selfish genetic elements in natural populations, or their genetic effects on other portions of the genome. Here we use nuclear and chloroplast gene genealogies in two species of Silene to show the historical pattern of selection on a well known selfish genetic element, cytoplasmic male sterility. We provide evidence that evolution of cytoplasmic male sterility has been characterized by frequent turnovers of mutations in natural populations, thus supporting an epidemic model for the evolution of selfish genes, where new mutations repeatedly arise and rapidly sweep through populations.

  5. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    PubMed Central

    Cao, Leilei; Xu, Lihong; Goodman, Erik D.

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  6. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  7. Ancient DNA Provides New Insights into the Evolutionary History of New Zealand's Extinct Giant Eagle

    PubMed Central

    Szulkin, Marta; Lerner, Heather R. L; Barnes, Ian; Shapiro, Beth; Cooper, Alan; Holdaway, Richard N

    2005-01-01

    Prior to human settlement 700 years ago New Zealand had no terrestrial mammals—apart from three species of bats—instead, approximately 250 avian species dominated the ecosystem. At the top of the food chain was the extinct Haast's eagle, Harpagornis moorei. H. moorei (10–15 kg; 2–3 m wingspan) was 30%–40% heavier than the largest extant eagle (the harpy eagle, Harpia harpyja), and hunted moa up to 15 times its weight. In a dramatic example of morphological plasticity and rapid size increase, we show that the H. moorei was very closely related to one of the world's smallest extant eagles, which is one-tenth its mass. This spectacular evolutionary change illustrates the potential speed of size alteration within lineages of vertebrates, especially in island ecosystems. PMID:15660162

  8. Emotional arousal when watching drama increases pain threshold and social bonding

    PubMed Central

    Teasdale, Ben; Thompson, Jackie; Budelmann, Felix; Duncan, Sophie; van Emde Boas, Evert; Maguire, Laurie

    2016-01-01

    Fiction, whether in the form of storytelling or plays, has a particular attraction for us: we repeatedly return to it and are willing to invest money and time in doing so. Why this is so is an evolutionary enigma that has been surprisingly underexplored. We hypothesize that emotionally arousing drama, in particular, triggers the same neurobiological mechanism (the endorphin system, reflected in increased pain thresholds) that underpins anthropoid primate and human social bonding. We show that, compared to subjects who watch an emotionally neutral film, subjects who watch an emotionally arousing film have increased pain thresholds and an increased sense of group bonding. PMID:27703694

  9. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    PubMed Central

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  10. Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello

    2004-01-01

    This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.

  11. Evolutionary dynamics and the phase structure of the minority game

    NASA Astrophysics Data System (ADS)

    Yuan, Baosheng; Chen, Kan

    2004-06-01

    We show that a simple evolutionary scheme, when applied to the minority game (MG), changes the phase structure of the game. In this scheme each agent evolves individually whenever his wealth reaches the specified bankruptcy level, in contrast to the evolutionary schemes used in the previous works. We show that evolution greatly suppresses herding behavior, and it leads to better overall performance of the agents. Similar to the standard nonevolutionary MG, the dependence of the standard deviation σ on the number of agents N and the memory length m can be characterized by a universal curve. We suggest a crowd-anticrowd theory for understanding the effect of evolution in the MG.

  12. Joint evolution of specialization and dispersal in structured metapopulations.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2011-04-21

    We study the joint evolution of dispersal and specialization concerning resource usage in a mechanistically underpinned structured discrete-time metapopulation model. We show that dispersal significantly affects the evolution of specialization and that specialization is a key factor that determines the possibility of evolutionary branching in dispersal propensity. Allowing both dispersal propensity and specialization to evolve as a consequence of natural selection is necessary in order to understand the evolutionary dynamics. The joint evolution of dispersal and specialization forms a natural evolutionary path leading to the coexistence of generalists and specialists. We show that in this process, the number of different patch types and the resource distribution are essential. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Male penile propulsion into spiraled spermathecal ducts of female chrysomelid beetles: A numerical simulation approach.

    PubMed

    Filippov, Alexander; Kovalev, Alexander; Matsumura, Yoko; Gorb, Stanislav N

    2015-11-07

    Genital diversification in animals is an interesting evolutionary phenomenon. Sexual selection is the main driving force behind the diversification. However, evolutionary mechanisms that have established and maintained variations in genitalia shape parameters observed in related species are not well understood. Here, for the first time, we used numerical simulations to test the hypothesis that variations in female spermathecal duct shapes among related beetle species mechanically interfere with penile propulsion in varying ways. Our numerical simulations showed that high curvature of the spiraled spermathecal ducts of the female have effects with a threshold-based interaction on male penile insertion. The relative size of spirals observed in the beetle, Cassida rubiginosa, studied here is not small enough to interfere with penile propulsion. But the model revealed that propulsion is impeded by the presence of reverse turns in spermathecal ducts. This type of morphology leads to an increase in the velocity of the propulsion but also to an increase in the propulsion energy cost for males. Our results showed that quantitative differences in spermathecal duct shape can mediate qualitative differences in penile motion. This explains, in part, the mechanism behind origin and maintenance of genital divergence among closely related species in general. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Consumer-resource interactions and the evolution of migration.

    PubMed

    Drown, Devin M; Dybdahl, Mark F; Gomulkiewicz, Richard

    2013-11-01

    Theoretical studies have demonstrated that selection will favor increased migration when fitnesses vary both temporally and spatially, but it is far from clear how pervasive those theoretical conditions are in nature. Although consumer-resource interactions are omnipresent in nature and can generate spatial and temporal variation, it is unknown even in theory whether these dynamics favor the evolution of migration. We develop a mathematical model to address whether and how migration evolves when variability in fitness is determined at least in part by consumer-resource coevolutionary interactions. Our analyses show that such interactions can drive the evolution of migration in the resource, consumer, or both species and thus supplies a general explanation for the pervasiveness of migration. Over short time scales, we show the direction of change in migration rate is determined primarily by the state of local adaptation of the species involved: rates increase when a species is locally maladapted and decrease when locally adapted. Our results reveal that long-term evolutionary trends in migration rates can differ dramatically depending on the strength or weakness of interspecific interactions and suggest an explanation for the evolutionary divergence of migration rates among interacting species. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  15. Evolutionary adaptation of an RNA bacteriophage to the simultaneous increase in the within-host and extracellular temperatures.

    PubMed

    Lázaro, Ester; Arribas, María; Cabanillas, Laura; Román, Ismael; Acosta, Esther

    2018-05-24

    Bacteriophages are the most numerous biological entities on Earth. They are on the basis of most ecosystems, regulating the diversity and abundance of bacterial populations and contributing to the nutrient and energy cycles. Bacteriophages have two well differentiated phases in their life cycle, one extracellular, in which they behave as inert particles, and other one inside their hosts, where they replicate to give rise to a progeny. In both phases they are exposed to environmental conditions that often act as selective pressures that limit both their survival in the environment and their ability to replicate, two fitness traits that frequently cannot be optimised simultaneously. In this study we have analysed the evolutionary ability of an RNA bacteriophage, the bacteriophage Qβ, when it is confronted with a temperature increase that affects both the extracellular and the intracellular media. Our results show that Qβ can optimise its survivability when exposed to short-term high temperature extracellular heat shocks, as well as its replicative ability at higher-than-optimal temperature. Mutations responsible for simultaneous adaptation were the same as those selected when adaptation to each condition proceeded separately, showing the absence of important trade-offs between survival and reproduction in this virus.

  16. Older fathers' children have lower evolutionary fitness across four centuries and in four populations

    PubMed Central

    Willführ, Kai P.; Frans, Emma M.; Verweij, Karin J. H.; Bürkner, Paul-Christian; Myrskylä, Mikko; Voland, Eckart; Zietsch, Brendan P.; Penke, Lars

    2017-01-01

    Higher paternal age at offspring conception increases de novo genetic mutations. Based on evolutionary genetic theory we predicted older fathers' children, all else equal, would be less likely to survive and reproduce, i.e. have lower fitness. In sibling control studies, we find support for negative paternal age effects on offspring survival and reproductive success across four large populations with an aggregate N > 1.4 million. Three populations were pre-industrial (1670–1850) Western populations and showed negative paternal age effects on infant survival and offspring reproductive success. In twentieth-century Sweden, we found minuscule paternal age effects on survival, but found negative effects on reproductive success. Effects survived tests for key competing explanations, including maternal age and parental loss, but effects varied widely over different plausible model specifications and some competing explanations such as diminishing paternal investment and epigenetic mutations could not be tested. We can use our findings to aid in predicting the effect increasingly older parents in today's society will have on their children's survival and reproductive success. To the extent that we succeeded in isolating a mutation-driven effect of paternal age, our results can be understood to show that de novo mutations reduce offspring fitness across populations and time periods. PMID:28904145

  17. Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients.

    PubMed

    Stegen, James C; Ferriere, Regis; Enquist, Brian J

    2012-03-22

    In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.

  18. Adaptation to fragmentation: evolutionary dynamics driven by human influences.

    PubMed

    Cheptou, Pierre-Olivier; Hargreaves, Anna L; Bonte, Dries; Jacquemyn, Hans

    2017-01-19

    Fragmentation-the process by which habitats are transformed into smaller patches isolated from each other-has been identified as a major threat for biodiversity. Fragmentation has well-established demographic and population genetic consequences, eroding genetic diversity and hindering gene flow among patches. However, fragmentation should also select on life history, both predictably through increased isolation, demographic stochasticity and edge effects, and more idiosyncratically via altered biotic interactions. While species have adapted to natural fragmentation, adaptation to anthropogenic fragmentation has received little attention. In this review, we address how and whether organisms might adapt to anthropogenic fragmentation. Drawing on selected case studies and evolutionary ecology models, we show that anthropogenic fragmentation can generate selection on traits at both the patch and landscape scale, and affect the adaptive potential of populations. We suggest that dispersal traits are likely to experience especially strong selection, as dispersal both enables migration among patches and increases the risk of landing in the inhospitable matrix surrounding them. We highlight that suites of associated traits are likely to evolve together. Importantly, we show that adaptation will not necessarily rescue populations from the negative effects of fragmentation, and may even exacerbate them, endangering the entire metapopulation.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Author(s).

  19. Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Wainwright, P. C.

    2011-06-01

    Zooplanktivory is one of the most distinct trophic niches in coral reef fishes, and a number of skull traits are widely recognized as being adaptations for feeding in midwater on small planktonic prey. Previous studies have concluded that zooplanktivores have larger eyes for sharper visual acuity, reduced mouth structures to match small prey sizes, and longer gill rakers to help retain captured prey. We tested these three traditional hypotheses plus two novel adaptive hypotheses in labrids, a clade of very diverse coral reef fishes that show multiple independent evolutionary origins of zooplanktivory. Using phylogenetic comparative methods with a data set from 21 species, we failed to find larger eyes in three independent transitions to zooplanktivory. Instead, an impression of large eyes may be caused by a size reduction of the anterior facial region. However, two zooplanktivores ( Clepticus parrae and Halichoeres pictus) possess several features interpreted as adaptations to zooplankton feeding, namely large lens diameters relative to eye axial length, round pupil shape, and long gill rakers. The third zooplanktivore in our analysis, Cirrhilabrus solorensis, lacks all above features. It remains unclear whether Cirrhilabrus shows optical specializations for capturing planktonic prey. Our results support the prediction that increased visual acuity is adaptive for zooplanktivory, but in labrids increases in eye size are apparently not part of the evolutionary response.

  20. A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases.

    PubMed

    Cummins, Carla A; McInerney, James O

    2011-12-01

    Current phylogenetic methods attempt to account for evolutionary rate variation across characters in a matrix. This is generally achieved by the use of sophisticated evolutionary models, combined with dense sampling of large numbers of characters. However, systematic biases and superimposed substitutions make this task very difficult. Model adequacy can sometimes be achieved at the cost of adding large numbers of free parameters, with each parameter being optimized according to some criterion, resulting in increased computation times and large variances in the model estimates. In this study, we develop a simple approach that estimates the relative evolutionary rate of each homologous character. The method that we describe uses the similarity between characters as a proxy for evolutionary rate. In this article, we work on the premise that if the character-state distribution of a homologous character is similar to many other characters, then this character is likely to be relatively slowly evolving. If the character-state distribution of a homologous character is not similar to many or any of the rest of the characters in a data set, then it is likely to be the result of rapid evolution. We show that in some test cases, at least, the premise can hold and the inferences are robust. Importantly, the method does not use a "starting tree" to make the inference and therefore is tree independent. We demonstrate that this approach can work as well as a maximum likelihood (ML) approach, though the ML method needs to have a known phylogeny, or at least a very good estimate of that phylogeny. We then demonstrate some uses for this method of analysis, including the improvement in phylogeny reconstruction for both deep-level and recent relationships and overcoming systematic biases such as base composition bias. Furthermore, we compare this approach to two well-established methods for reweighting or removing characters. These other methods are tree-based and we show that they can be systematically biased. We feel this method can be useful for phylogeny reconstruction, understanding evolutionary rate variation, and for understanding selection variation on different characters.

  1. TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS

    PubMed Central

    Jones, Matthew R.; Good, Jeffrey M.

    2016-01-01

    The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993

  2. Evolution of biological complexity

    PubMed Central

    Adami, Christoph; Ofria, Charles; Collier, Travis C.

    2000-01-01

    To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045

  3. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    PubMed

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.

  4. Evolutionary Relationship and Structural Characterization of the EPF/EPFL Gene Family

    PubMed Central

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes. PMID:23755192

  5. Eco-evolutionary effects on population recovery following catastrophic disturbance

    PubMed Central

    Weese, Dylan J; Schwartz, Amy K; Bentzen, Paul; Hendry, Andrew P; Kinnison, Michael T

    2011-01-01

    Fine-scale genetic diversity and contemporary evolution can theoretically influence ecological dynamics in the wild. Such eco-evolutionary effects might be particularly relevant to the persistence of populations facing acute or chronic environmental change. However, experimental data on wild populations is currently lacking to support this notion. One way that ongoing evolution might influence the dynamics of threatened populations is through the role that selection plays in mediating the ‘rescue effect’, the ability of migrants to contribute to the recovery of populations facing local disturbance and decline. Here, we combine experiments with natural catastrophic events to show that ongoing evolution is a major determinant of migrant contributions to population recovery in Trinidadian guppies (Poecilia reticulata). These eco-evolutionary limits on migrant contributions appear to be mediated by the reinforcing effects of natural and sexual selection against migrants, despite the close geographic proximity of migrant sources. These findings show that ongoing adaptive evolution can be a double-edged sword for population persistence, maintaining local fitness at a cost to demographic risk. Our study further serves as a potent reminder that significant evolutionary and eco-evolutionary dynamics might be at play even where the phenotypic status quo is largely maintained generation to generation. PMID:25567978

  6. Is mammalian chromosomal evolution driven by regions of genome fragility?

    PubMed Central

    Ruiz-Herrera, Aurora; Castresana, Jose; Robinson, Terence J

    2006-01-01

    Background A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats. Results Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence. Conclusion These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity. PMID:17156441

  7. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates

    PubMed Central

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.

    2012-01-01

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396

  8. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.

    PubMed

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J

    2012-02-21

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (k(cat)/K(M)) for competing substrates, even though adaptive substitutions may affect K(M) and k(cat) separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities.

  9. Small groups and long memories promote cooperation.

    PubMed

    Stewart, Alexander J; Plotkin, Joshua B

    2016-06-01

    Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists the question is often how group behaviors such as collective action, or decision making that accounts for memories of past experience, can emerge and persist in an evolving system. Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. We construct a coordinate system for memory-m strategies in iterated n-player games that permits us to characterize all cooperative strategies that resist invasion by any mutant strategy, and stabilize cooperative behavior. We show that, especially when groups are small, longer-memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. We also explore the co-evolution of behavior and memory. We find that even when memory has a cost, longer-memory strategies often evolve, which in turn drives the evolution of cooperation, even when the benefits for cooperation are low.

  10. Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity

    PubMed Central

    Marx, Felix G.; Fordyce, R. Ewan

    2015-01-01

    A new, fully dated total-evidence phylogeny of baleen whales (Mysticeti) shows that evolutionary phases correlate strongly with Caenozoic modernization of the oceans and climates, implying a major role for bottom-up physical drivers. The phylogeny of 90 modern and dated fossil species suggests three major phases in baleen whale history: an early adaptive radiation (36–30 Ma), a shift towards bulk filter-feeding (30–23 Ma) and a climate-driven diversity loss around 3 Ma. Evolutionary rates and disparity were high following the origin of mysticetes around 38 Ma, coincident with global cooling, abrupt Southern Ocean eutrophication and the development of the Antarctic Circumpolar Current (ACC). Subsequently, evolutionary rates and disparity fell, becoming nearly constant after approximately 23 Ma as the ACC reached its full strength. By contrast, species diversity rose until 15 Ma and then remained stable, before dropping sharply with the onset of Northern Hemisphere glaciation. This decline coincided with the final establishment of modern mysticete gigantism and may be linked to glacially driven variability in the distribution of shallow habitats or an increased need for long-distance migration related to iron-mediated changes in glacial marine productivity. PMID:26064636

  11. Bad to the bone: facial structure predicts unethical behaviour

    PubMed Central

    Haselhuhn, Michael P.; Wong, Elaine M.

    2012-01-01

    Researchers spanning many scientific domains, including primatology, evolutionary biology and psychology, have sought to establish an evolutionary basis for morality. While researchers have identified social and cognitive adaptations that support ethical behaviour, a consensus has emerged that genetically determined physical traits are not reliable signals of unethical intentions or actions. Challenging this view, we show that genetically determined physical traits can serve as reliable predictors of unethical behaviour if they are also associated with positive signals in intersex and intrasex selection. Specifically, we identify a key physical attribute, the facial width-to-height ratio, which predicts unethical behaviour in men. Across two studies, we demonstrate that men with wider faces (relative to facial height) are more likely to explicitly deceive their counterparts in a negotiation, and are more willing to cheat in order to increase their financial gain. Importantly, we provide evidence that the link between facial metrics and unethical behaviour is mediated by a psychological sense of power. Our results demonstrate that static physical attributes can indeed serve as reliable cues of immoral action, and provide additional support for the view that evolutionary forces shape ethical judgement and behaviour. PMID:21733897

  12. Chaos and the (un)predictability of evolution in a changing environment

    PubMed Central

    Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel

    2018-01-01

    Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. PMID:29235104

  13. Overcoming systemic roadblocks to sustainability: The evolutionary redesign of worldviews, institutions, and technologies

    PubMed Central

    Beddoe, Rachael; Costanza, Robert; Farley, Joshua; Garza, Eric; Kent, Jennifer; Kubiszewski, Ida; Martinez, Luz; McCowen, Tracy; Murphy, Kathleen; Myers, Norman; Ogden, Zach; Stapleton, Kevin; Woodward, John

    2009-01-01

    A high and sustainable quality of life is a central goal for humanity. Our current socio-ecological regime and its set of interconnected worldviews, institutions, and technologies all support the goal of unlimited growth of material production and consumption as a proxy for quality of life. However, abundant evidence shows that, beyond a certain threshold, further material growth no longer significantly contributes to improvement in quality of life. Not only does further material growth not meet humanity's central goal, there is mounting evidence that it creates significant roadblocks to sustainability through increasing resource constraints (i.e., peak oil, water limitations) and sink constraints (i.e., climate disruption). Overcoming these roadblocks and creating a sustainable and desirable future will require an integrated, systems level redesign of our socio-ecological regime focused explicitly and directly on the goal of sustainable quality of life rather than the proxy of unlimited material growth. This transition, like all cultural transitions, will occur through an evolutionary process, but one that we, to a certain extent, can control and direct. We suggest an integrated set of worldviews, institutions, and technologies to stimulate and seed this evolutionary redesign of the current socio-ecological regime to achieve global sustainability. PMID:19240221

  14. Time Clustered Sampling Can Inflate the Inferred Substitution Rate in Foot-And-Mouth Disease Virus Analyses.

    PubMed

    Pedersen, Casper-Emil T; Frandsen, Peter; Wekesa, Sabenzia N; Heller, Rasmus; Sangula, Abraham K; Wadsworth, Jemma; Knowles, Nick J; Muwanika, Vincent B; Siegismund, Hans R

    2015-01-01

    With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined.

  15. Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity.

    PubMed

    Marx, Felix G; Fordyce, R Ewan

    2015-04-01

    A new, fully dated total-evidence phylogeny of baleen whales (Mysticeti) shows that evolutionary phases correlate strongly with Caenozoic modernization of the oceans and climates, implying a major role for bottom-up physical drivers. The phylogeny of 90 modern and dated fossil species suggests three major phases in baleen whale history: an early adaptive radiation (36-30 Ma), a shift towards bulk filter-feeding (30-23 Ma) and a climate-driven diversity loss around 3 Ma. Evolutionary rates and disparity were high following the origin of mysticetes around 38 Ma, coincident with global cooling, abrupt Southern Ocean eutrophication and the development of the Antarctic Circumpolar Current (ACC). Subsequently, evolutionary rates and disparity fell, becoming nearly constant after approximately 23 Ma as the ACC reached its full strength. By contrast, species diversity rose until 15 Ma and then remained stable, before dropping sharply with the onset of Northern Hemisphere glaciation. This decline coincided with the final establishment of modern mysticete gigantism and may be linked to glacially driven variability in the distribution of shallow habitats or an increased need for long-distance migration related to iron-mediated changes in glacial marine productivity.

  16. Large-scale turnover of functional transcription factor bindingsites in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Pollard, Daniel A.; Nix, David A.

    2006-07-14

    The gain and loss of functional transcription-factor bindingsites has been proposed as a major source of evolutionary change incis-regulatory DNA and gene expression. We have developed an evolutionarymodel to study binding site turnover that uses multiple sequencealignments to assess the evolutionary constraint on individual bindingsites, and to map gain and loss events along a phylogenetic tree. Weapply this model to study the evolutionary dynamics of binding sites ofthe Drosophila melanogaster transcription factor Zeste, using genome-widein vivo (ChIP-chip) binding data to identify functional Zeste bindingsites, and the genome sequences of D. melanogaster, D. simulans, D.erecta and D. yakuba to study theirmore » evolution. We estimate that more than5 percent of functional Zeste binding sites in D. melanogaster weregained along the D. melanogaster lineage or lost along one of the otherlineages. We find that Zeste bound regions have a reduced rate of bindingsite loss and an increased rate of binding site gain relative to flankingsequences. Finally, we show that binding site gains and losses areasymmetrically distributed with respect to D. melanogaster, consistentwith lineage-specific acquisition and loss of Zeste-responsive regulatoryelements.« less

  17. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  18. Homophyly/Kinship Model: Naturally Evolving Networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  19. Homophyly/Kinship Model: Naturally Evolving Networks

    PubMed Central

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-01-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network. PMID:26478264

  20. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions

    NASA Astrophysics Data System (ADS)

    Olsson, Lennart; Levit, Georgy S.; Hoßfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of evolution in Russia and is only partly known outside of the Russian-reading world because only one of his many books was translated into English early on. He made many important contributions to evolutionary theory and we point out the important parallels between Schmalhausen’s ideas (stabilizing selection, autonomization) and C. H. Waddington’s (canalization, genetic assimilation). This is one of the many parallels that have contributed to an increased appreciation of the internationality of progress in evolutionary thinking in the first half of the twentieth century. A direct link between German and Russian evolutionary biology is provided by N. V. Timoféeff-Ressovsky, whose work on, e.g., fly genetics in Berlin is a crucial part of the history of evo-devo. To emphasize the international nature of heterochrony research as predecessor to the modern era of EvoDevo, we include Sir G. R. de Beer’s work in the UK. This historical part is followed by a short review of the discovery and importance of homeobox genes and of some of the major concepts that form the core of modern EvoDevo, such as modularity, constraints, and evolutionary novelties. Major trends in contemporary EvoDevo are then outlined, such as increased use of genomics and molecular genetics, computational and bioinformatics approaches, ecological developmental biology (eco-devo), and phylogenetically informed comparative embryology. Based on our survey, we end the review with an outlook on future trends and important issues in EvoDevo.

  1. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions.

    PubMed

    Olsson, Lennart; Levit, Georgy S; Hossfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of evolution in Russia and is only partly known outside of the Russian-reading world because only one of his many books was translated into English early on. He made many important contributions to evolutionary theory and we point out the important parallels between Schmalhausen's ideas (stabilizing selection, autonomization) and C. H. Waddington's (canalization, genetic assimilation). This is one of the many parallels that have contributed to an increased appreciation of the internationality of progress in evolutionary thinking in the first half of the twentieth century. A direct link between German and Russian evolutionary biology is provided by N. V. Timoféeff-Ressovsky, whose work on, e.g., fly genetics in Berlin is a crucial part of the history of evo-devo. To emphasize the international nature of heterochrony research as predecessor to the modern era of EvoDevo, we include Sir G. R. de Beer's work in the UK. This historical part is followed by a short review of the discovery and importance of homeobox genes and of some of the major concepts that form the core of modern EvoDevo, such as modularity, constraints, and evolutionary novelties. Major trends in contemporary EvoDevo are then outlined, such as increased use of genomics and molecular genetics, computational and bioinformatics approaches, ecological developmental biology (eco-devo), and phylogenetically informed comparative embryology. Based on our survey, we end the review with an outlook on future trends and important issues in EvoDevo.

  2. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    PubMed

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  3. Females drive asymmetrical introgression from rare to common species in Darwin's tree finches.

    PubMed

    Peters, K J; Myers, S A; Dudaniec, R Y; O'Connor, J A; Kleindorfer, S

    2017-11-01

    The consequences of hybridization for biodiversity depend on the specific ecological and evolutionary context in which it occurs. Understanding patterns of gene flow among hybridizing species is crucial for determining the evolutionary trajectories of species assemblages. The recently discovered hybridization between two species of Darwin's tree finches (Camarhynchus parvulus and C. pauper) on Floreana Island, Galápagos, presents an exciting opportunity to investigate the mechanisms causing hybridization and its potential evolutionary consequences under conditions of recent habitat disturbance and the introduction of invasive pathogens. In this study, we combine morphological and genetic analysis with pairing observations to explore the extent, direction and drivers of hybridization and to test whether hybridization patterns are a result of asymmetrical pairing preference driven by females of the rarer species (C. pauper). We found asymmetrical introgression from the critically endangered, larger-bodied C. pauper to the common, smaller-bodied C. parvulus, which was associated with a lack of selection against heterospecific males by C. pauper females. Examination of pairing data showed that C. parvulus females paired assortatively, whereas C. pauper females showed no such pattern. This study shows how sex-specific drivers can determine the direction of gene flow in hybridizing species. Furthermore, our results suggest the existence of a hybrid swarm comprised of C. parvulus and hybrid birds. We discuss the influence of interspecific abundance differences and susceptibility to the invasive parasite Philornis downsi on the observed hybridization and recommend that the conservation of this iconic species group should be managed jointly rather than species-specific. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  4. Investigating evolutionary constraints on the detection of threatening stimuli in preschool children.

    PubMed

    Zsido, Andras N; Deak, Anita; Losonci, Adrienn; Stecina, Diana; Arato, Akos; Bernath, Laszlo

    2018-04-01

    Numerous objects and animals could be threatening, and thus, children learn to avoid them early. Spiders and syringes are among the most common targets of fears and phobias of the modern word. However, they are of different origins: while the former is evolutionary relevant, the latter is not. We sought to investigate the underlying mechanisms that make the quick detection of such stimuli possible and enable the impulse to avoid them in the future. The respective categories of threatening and non-threatening targets were similar in shape, while low-level visual features were controlled. Our results showed that children found threatening cues faster, irrespective of the evolutionary age of the cues. However, they detected non-threatening evolutionary targets faster than non-evolutionary ones. We suggest that the underlying mechanism may be different: general feature detection can account for finding evolutionary threatening cues quickly, while specific features detection is more appropriate for modern threatening stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Modelling and strategy optimisation for a kind of networked evolutionary games with memories under the bankruptcy mechanism

    NASA Astrophysics Data System (ADS)

    Fu, Shihua; Li, Haitao; Zhao, Guodong

    2018-05-01

    This paper investigates the evolutionary dynamic and strategy optimisation for a kind of networked evolutionary games whose strategy updating rules incorporate 'bankruptcy' mechanism, and the situation that each player's bankruptcy is due to the previous continuous low profits gaining from the game is considered. First, by using semi-tensor product of matrices method, the evolutionary dynamic of this kind of games is expressed as a higher order logical dynamic system and then converted into its algebraic form, based on which, the evolutionary dynamic of the given games can be discussed. Second, the strategy optimisation problem is investigated, and some free-type control sequences are designed to maximise the total payoff of the whole game. Finally, an illustrative example is given to show that our new results are very effective.

  6. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  7. Evolutionary Nephrology.

    PubMed

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  8. Adaptive evolution toward larger size in mammals

    PubMed Central

    Baker, Joanna; Meade, Andrew; Pagel, Mark; Venditti, Chris

    2015-01-01

    The notion that large body size confers some intrinsic advantage to biological species has been debated for centuries. Using a phylogenetic statistical approach that allows the rate of body size evolution to vary across a phylogeny, we find a long-term directional bias toward increasing size in the mammals. This pattern holds separately in 10 of 11 orders for which sufficient data are available and arises from a tendency for accelerated rates of evolution to produce increases, but not decreases, in size. On a branch-by-branch basis, increases in body size have been more than twice as likely as decreases, yielding what amounts to millions and millions of years of rapid and repeated increases in size away from the small ancestral mammal. These results are the first evidence, to our knowledge, from extant species that are compatible with Cope’s rule: the pattern of body size increase through time observed in the mammalian fossil record. We show that this pattern is unlikely to be explained by several nonadaptive mechanisms for increasing size and most likely represents repeated responses to new selective circumstances. By demonstrating that it is possible to uncover ancient evolutionary trends from a combination of a phylogeny and appropriate statistical models, we illustrate how data from extant species can complement paleontological accounts of evolutionary history, opening up new avenues of investigation for both. PMID:25848031

  9. One-shot genitalia are not an evolutionary dead end - Regained male polygamy in a sperm limited spider species

    PubMed Central

    2011-01-01

    Background Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, Nephila senegalensis. Results Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps. Conclusion By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in Nephila although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies. PMID:21740561

  10. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India.

    PubMed

    Lewnard, Joseph A; Townsend, Jeffrey P

    2016-12-20

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference.

  11. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India

    PubMed Central

    Lewnard, Joseph A.

    2016-01-01

    Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference. PMID:27791071

  12. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift.

    PubMed

    Laarits, T; Bordalo, P; Lemos, B

    2016-08-01

    Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  13. One-shot genitalia are not an evolutionary dead end - regained male polygamy in a sperm limited spider species.

    PubMed

    Schneider, Jutta M; Michalik, Peter

    2011-07-08

    Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, Nephila senegalensis. Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps. By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in Nephila although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies.

  14. Cancer evolution: mathematical models and computational inference.

    PubMed

    Beerenwinkel, Niko; Schwarz, Roland F; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  15. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    PubMed

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  16. Time to Evolve? Potential Evolutionary Responses of Fraser River Sockeye Salmon to Climate Change and Effects on Persistence

    PubMed Central

    Reed, Thomas E.; Schindler, Daniel E.; Hague, Merran J.; Patterson, David A.; Meir, Eli; Waples, Robin S.; Hinch, Scott G.

    2011-01-01

    Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ∼10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and feasibility of considering evolutionary processes, in addition to ecology and demography, when projecting population responses to environmental change. PMID:21738573

  17. Environment determines evolutionary trajectory in a constrained phenotypic space

    PubMed Central

    Fraebel, David T; Mickalide, Harry; Schnitkey, Diane; Merritt, Jason; Kuhlman, Thomas E; Kuehn, Seppe

    2017-01-01

    Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and growth rate constrains the evolution of faster migration. Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution in minimal medium results in fast growth and slow swimming. In each condition parallel genomic evolution drives adaptation through different mutations. We show that the trade-off is mediated by antagonistic pleiotropy through mutations that affect negative regulation. A model of the evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively depend on its environment, which in turn alters its evolutionary trajectory. DOI: http://dx.doi.org/10.7554/eLife.24669.001 PMID:28346136

  18. A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate.

    PubMed

    Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien; Cryer, Nicolai; Faivre, Nicolas; Santoni, Sylvain; Severac, Dany; Mikkelsen, Teis N; Larsen, Klaus S; Beier, Claus; Sørensen, Jesper G; Holmstrup, Martin; Ehlers, Bodil K

    2016-07-01

    Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary response to realistic climate change happening over short-time scale, and calls for incorporating evolution into models predicting future response of species to climate change. It also shows that designed climate change experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  19. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal.

    PubMed

    Turajlic, Samra; Xu, Hang; Litchfield, Kevin; Rowan, Andrew; Horswell, Stuart; Chambers, Tim; O'Brien, Tim; Lopez, Jose I; Watkins, Thomas B K; Nicol, David; Stares, Mark; Challacombe, Ben; Hazell, Steve; Chandra, Ashish; Mitchell, Thomas J; Au, Lewis; Eichler-Jonsson, Claudia; Jabbar, Faiz; Soultati, Aspasia; Chowdhury, Simon; Rudman, Sarah; Lynch, Joanna; Fernando, Archana; Stamp, Gordon; Nye, Emma; Stewart, Aengus; Xing, Wei; Smith, Jonathan C; Escudero, Mickael; Huffman, Adam; Matthews, Nik; Elgar, Greg; Phillimore, Ben; Costa, Marta; Begum, Sharmin; Ward, Sophia; Salm, Max; Boeing, Stefan; Fisher, Rosalie; Spain, Lavinia; Navas, Carolina; Grönroos, Eva; Hobor, Sebastijan; Sharma, Sarkhara; Aurangzeb, Ismaeel; Lall, Sharanpreet; Polson, Alexander; Varia, Mary; Horsfield, Catherine; Fotiadis, Nicos; Pickering, Lisa; Schwarz, Roland F; Silva, Bruno; Herrero, Javier; Luscombe, Nick M; Jamal-Hanjani, Mariam; Rosenthal, Rachel; Birkbak, Nicolai J; Wilson, Gareth A; Pipek, Orsolya; Ribli, Dezso; Krzystanek, Marcin; Csabai, Istvan; Szallasi, Zoltan; Gore, Martin; McGranahan, Nicholas; Van Loo, Peter; Campbell, Peter; Larkin, James; Swanton, Charles

    2018-04-19

    The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance. Copyright © 2018 Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  20. Environmental quality and evolutionary potential: lessons from wild populations

    PubMed Central

    Charmantier, Anne; Garant, Dany

    2005-01-01

    An essential requirement to determine a population's potential for evolutionary change is to quantify the amount of genetic variability expressed for traits under selection. Early investigations in laboratory conditions showed that the magnitude of the genetic and environmental components of phenotypic variation can change with environmental conditions. However, there is no consensus as to how the expression of genetic variation is sensitive to different environmental conditions. Recently, the study of quantitative genetics in the wild has been revitalized by new pedigree analyses based on restricted maximum likelihood, resulting in a number of studies investigating these questions in wild populations. Experimental manipulation of environmental quality in the wild, as well as the use of naturally occurring favourable or stressful environments, has broadened the treatment of different taxa and traits. Here, we conduct a meta-analysis on recent studies comparing heritability in favourable versus unfavourable conditions in non-domestic and non-laboratory animals. The results provide evidence for increased heritability in more favourable conditions, significantly so for morphometric traits but not for traits more closely related to fitness. We discuss how these results are explained by underlying changes in variance components, and how they represent a major step in our understanding of evolutionary processes in wild populations. We also show how these trends contrast with the prevailing view resulting mainly from laboratory experiments on Drosophila. Finally, we underline the importance of taking into account the environmental variation in models predicting quantitative trait evolution. PMID:16011915

  1. The Evolutionary Origin of Female Orgasm.

    PubMed

    Pavličev, Mihaela; Wagner, Günter

    2016-09-01

    The evolutionary explanation of female orgasm has been difficult to come by. The orgasm in women does not obviously contribute to the reproductive success, and surprisingly unreliably accompanies heterosexual intercourse. Two types of explanations have been proposed: one insisting on extant adaptive roles in reproduction, another explaining female orgasm as a byproduct of selection on male orgasm, which is crucial for sperm transfer. We emphasize that these explanations tend to focus on evidence from human biology and thus address the modification of a trait rather than its evolutionary origin. To trace the trait through evolution requires identifying its homologue in other species, which may have limited similarity with the human trait. Human female orgasm is associated with an endocrine surge similar to the copulatory surges in species with induced ovulation. We suggest that the homolog of human orgasm is the reflex that, ancestrally, induced ovulation. This reflex became superfluous with the evolution of spontaneous ovulation, potentially freeing female orgasm for other roles. This is supported by phylogenetic evidence showing that induced ovulation is ancestral, while spontaneous ovulation is derived within eutherians. In addition, the comparative anatomy of female reproductive tract shows that evolution of spontaneous ovulation is correlated with increasing distance of clitoris from the copulatory canal. In summary, we suggest that the female orgasm-like trait may have been adaptive, however for a different role, namely for inducing ovulation. With the evolution of spontaneous ovulation, orgasm was freed to gain secondary roles, which may explain its maintenance, but not its origin. © 2016 Wiley Periodicals, Inc.

  2. Culture shapes the evolution of cognition

    PubMed Central

    Thompson, Bill; Kirby, Simon; Smith, Kenny

    2016-01-01

    A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual—if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption. PMID:27044094

  3. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities

    PubMed Central

    Marshall, Charles R.; Quental, Tiago B.

    2016-01-01

    There is no agreement among palaeobiologists or biologists as to whether, or to what extent, there are limits on diversification and species numbers. Here, we posit that part of the disagreement stems from: (i) the lack of explicit criteria for defining the relevant species pools, which may be defined phylogenetically, ecologically or geographically; (ii) assumptions that must be made when extrapolating from population-level logistic growth to macro-evolutionary diversification; and (iii) too much emphasis being placed on fixed carrying capacities, rather than taking into account the opportunities for increased species richness on evolutionary timescales, for example, owing to increased biologically available energy, increased habitat complexity and the ability of many clades to better extract resources from the environment, or to broaden their resource base. Thus, we argue that a more effective way of assessing the evidence for and against the ideas of bound versus unbound diversification is through appropriate definition of the relevant species pools, and through explicit modelling of diversity-dependent diversification with time-varying carrying capacities. Here, we show that time-varying carrying capacities, either increases or decreases, can be accommodated through changing intrinsic diversification rates (diversity-independent effects), or changing the effects of crowding (diversity-dependent effects). PMID:26977059

  4. Meiotic drive influences the outcome of sexually antagonistic selection at a linked locus.

    PubMed

    Patten, M M

    2014-11-01

    Most meiotic drivers, such as the t-haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex-specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  5. The evolution of senescence through decelerating selection for system reliability.

    PubMed

    Laird, R A; Sherratt, T N

    2009-05-01

    Senescence is a universal phenomenon in organisms, characterized by increasing mortality and decreasing fecundity with advancing chronological age. Most proximate agents of senescence, such as reactive oxygen species and UV radiation, are thought to operate by causing a gradual build-up of bodily damage. Yet most current evolutionary theories of senescence emphasize the deleterious effects of functioning genes in late life, leaving a gap between proximate and ultimate explanations. Here, we present an evolutionary model of senescence based on reliability theory, in which beneficial genes or gene products gradually get damaged and thereby fail, rather than actively cause harm. Specifically, the model allows organisms to evolve multiple redundant copies of a gene product (or gene) that performs a vital function, assuming that organisms can avoid condition-dependent death so long as at least one copy remains undamaged. We show that organisms with low levels of extrinsic mortality, and high levels of genetic damage, tend to evolve high levels of redundancy, and that mutation-selection balance results in a stable population distribution of the number of redundant elements. In contrast to previous evolutionary models of senescence, the mortality curves that emerge from such populations match empirical senescence patterns in three key respects: they exhibit: (1) an initially low, but rapidly increasing mortality rate at young ages, (2) a plateau in mortality at advanced ages and (3) 'mortality compensation', whereby the height of the mortality plateau is independent of the environmental conditions under which different populations evolved.

  6. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups.

    PubMed

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into "species groups". However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.

  7. Comparative Genomics of the Bacterial Genus Streptococcus Illuminates Evolutionary Implications of Species Groups

    PubMed Central

    Gao, Xiao-Yang; Zhi, Xiao-Yang; Li, Hong-Wei; Klenk, Hans-Peter; Li, Wen-Jun

    2014-01-01

    Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups. PMID:24977706

  8. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  9. Modelling the influence of parental effects on gene-network evolution.

    PubMed

    Odorico, Andreas; Rünneburger, Estelle; Le Rouzic, Arnaud

    2018-05-01

    Understanding the importance of nongenetic heredity in the evolutionary process is a major topic in modern evolutionary biology. We modified a classical gene-network model by allowing parental transmission of gene expression and studied its evolutionary properties through individual-based simulations. We identified ontogenetic time (i.e. the time gene networks have to stabilize before being submitted to natural selection) as a crucial factor in determining the evolutionary impact of this phenotypic inheritance. Indeed, fast-developing organisms display enhanced adaptation and greater robustness to mutations when evolving in presence of nongenetic inheritance (NGI). In contrast, in our model, long development reduces the influence of the inherited state of the gene network. NGI thus had a negligible effect on the evolution of gene networks when the speed at which transcription levels reach equilibrium is not constrained. Nevertheless, simulations show that intergenerational transmission of the gene-network state negatively affects the evolution of robustness to environmental disturbances for either fast- or slow-developing organisms. Therefore, these results suggest that the evolutionary consequences of NGI might not be sought only in the way species respond to selection, but also on the evolution of emergent properties (such as environmental and genetic canalization) in complex genetic architectures. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  10. Identification of Microbial Pathogens in Periodontal disease and Diabetic patients of South Indian Population

    PubMed Central

    Chiranjeevi, Tikka; Prasad, Osuru Hari; Prasad, Uppu Venkateswara; Kumar, Avula Kishor; Chakravarthi, Veeraraghavulu Praveen; Rao, Paramala Balaji; Sarma, Potuguchi Venkata Gurunadha Krishna; Reddy, Nagi reddy Raveendra; Bhaskar, Matcha

    2014-01-01

    Periodontitis have been referred to as the sixth complication of diabetes found in high prevalence among diabetic patients than among healthy controls. The aim of the present study was to examine the periodontal disease status among collected dental plaque samples. Chromosomal DNA was isolated and amplified by universal primers. The DNA was sequenced for bacterial confirmation and phylogenetic analysis performed for the evolutionary relationship with other known pathogens. No amplification products were observed in groups labeled non periodontal and non Diabetes (NP&ND) and non Periodontal and Diabetes (NP&D). But in the case of Periodontal and non Diabetes (P&ND) groups 22 amplified products were observed. In case of Periodontal and Diabetes (P&D), 32 amplified products were positive for microbes. Among the four microbial groups, Treponemadenticola, and Tannerella forsythia were found to be prevalent in P&D. The phylogenetic analysis of 16s rRNA of Treponemadenticola showed the relationship with other Treponema oral pathogen species and with the Spirochaetazuelaera. Tannerella forsythia shows its evolutionary relationship only with four oral pathogens (Macellibacteroidesfermentans, Porphyromadaceae bacterium, Parabacteroidesmeredae and Bacillus fosythus). Prevotellaintermedia also showed its evolutionary relationship only with Prevotella Spcs while Fusobacterium revealed close evolutionary relationship only with Porpiromonasgingivalis. PMID:24966528

  11. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants.

    PubMed

    Uricchio, Lawrence H; Zaitlen, Noah A; Ye, Chun Jimmie; Witte, John S; Hernandez, Ryan D

    2016-07-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. © 2016 Uricchio et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Genetic variability in captive populations of the stingless bee Tetragonisca angustula.

    PubMed

    Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C

    2016-08-01

    Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.

  13. Hidden long evolutionary memory in a model biochemical network

    NASA Astrophysics Data System (ADS)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  14. Phylogenics & Tree-Thinking

    ERIC Educational Resources Information Center

    Baum, David A.; Offner, Susan

    2008-01-01

    Phylogenetic trees, which are depictions of the inferred evolutionary relationships among a set of species, now permeate almost all branches of biology and are appearing in increasing numbers in biology textbooks. While few state standards explicitly require knowledge of phylogenetics, most require some knowledge of evolutionary biology, and many…

  15. Metabolic rate and climatic fluctuations shape continental wide pattern of genetic divergence and biodiversity in fishes.

    PubMed

    April, Julien; Hanner, Robert H; Mayden, Richard L; Bernatchez, Louis

    2013-01-01

    Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes.

  16. Metabolic Rate and Climatic Fluctuations Shape Continental Wide Pattern of Genetic Divergence and Biodiversity in Fishes

    PubMed Central

    April, Julien; Hanner, Robert H.; Mayden, Richard L.; Bernatchez, Louis

    2013-01-01

    Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes. PMID:23922969

  17. Genome-Wide Analysis of Germline Signaling Genes Regulating Longevity and Innate Immunity in the Nematode Pristionchus pacificus

    PubMed Central

    Sommer, Ralf J.

    2012-01-01

    Removal of the reproductive system of many animals including fish, flies, nematodes, mice and humans can increase lifespan through mechanisms largely unknown. The abrogation of the germline in Caenorhabditis elegans increases longevity by 60% due to a signal emitted from the somatic gonad. Apart from increased longevity, germline-less C. elegans is also resistant to other environmental stressors such as feeding on bacterial pathogens. However, the evolutionary conservation of this pathogen resistance, its genetic basis and an understanding of genes involved in producing this extraordinary survival phenotype are currently unknown. To study these evolutionary aspects we used the necromenic nematode Pristionchus pacificus, which is a genetic model system used in comparison to C. elegans. By ablation of germline precursor cells and subsequent feeding on the pathogen Serratia marcescens we discovered that P. pacificus shows remarkable resistance to bacterial pathogens and that this response is evolutionarily conserved across the Genus Pristionchus. To gain a mechanistic understanding of the increased resistance to bacterial pathogens and longevity in germline-ablated P. pacificus we used whole genome microarrays to profile the transcriptional response comparing germline ablated versus un-ablated animals when fed S. marcescens. We show that lipid metabolism, maintenance of the proteasome, insulin signaling and nuclear pore complexes are essential for germline deficient phenotypes with more than 3,300 genes being differentially expressed. In contrast, gene expression of germline-less P. pacificus on E. coli (longevity) and S. marcescens (immunity) is very similar with only 244 genes differentially expressed indicating that longevity is due to abundant gene expression also involved in immunity. By testing existing mutants of Ppa-DAF-16/FOXO and the nuclear hormone receptor Ppa-DAF-12 we show a conserved function of both genes in resistance to bacterial pathogens and longevity. This is the first study to show that the influence of the reproductive system on extending lifespan and innate immunity is conserved in evolution. PMID:22912581

  18. Boltzmann, Darwin and Directionality theory

    NASA Astrophysics Data System (ADS)

    Demetrius, Lloyd A.

    2013-09-01

    Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and extinction. We also elucidate the relation between thermodynamic entropy, which pertains to the extent of energy spreading and sharing within inanimate matter, and evolutionary entropy, which refers to the rate of energy appropriation from the environment and allocation within living systems. We show that the entropic principle of thermodynamics is the limit as R→0, M→∞, (where R denote the resource production rate, and M denote population size) of the entropic principle of evolution. We exploit this relation between the thermodynamic and evolutionary tenets to propose a physico-chemical model of the transition from inanimate matter which is under thermodynamic selection, to living systems which are subject to evolutionary selection. Life history variation and the evolution of senescence The evolutionary dynamics of speciation and extinction Evolutionary trends in body size. The origin of sporadic forms of cancer and neurological diseases, and the evolution of cooperation are important recent applications of directionality theory. These applications, which draw from the medical sciences and sociobiology, appeal to methods which lie outside the formalism described in this report. A companion review, Demetrius and Gundlach (submitted for publication), gives an account of these applications.An important aspect of this report pertains to the connection between statistical mechanics and evolutionary theory and its implications towards understanding the processes which underlie the emergence of living systems from inanimate matter-a problem which has recently attracted considerable attention, Morowitz (1992), Eigen (1992), Dyson (2000), Pross (2012).The connection between the two disciplines can be addressed by appealing to certain extremal principles which are considered the mainstay of the respective theories.The extremal principle in statistical mechanics can be stated as follows:

  19. A Bright Future for Evolutionary Methods in Drug Design.

    PubMed

    Le, Tu C; Winkler, David A

    2015-08-01

    Most medicinal chemists understand that chemical space is extremely large, essentially infinite. Although high-throughput experimental methods allow exploration of drug-like space more rapidly, they are still insufficient to fully exploit the opportunities that such large chemical space offers. Evolutionary methods can synergistically blend automated synthesis and characterization methods with computational design to identify promising regions of chemical space more efficiently. We describe how evolutionary methods are implemented, and provide examples of published drug development research in which these methods have generated molecules with increased efficacy. We anticipate that evolutionary methods will play an important role in future drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evolutionary psychology in the modern world: applications, perspectives, and strategies.

    PubMed

    Roberts, S Craig; van Vugt, Mark; Dunbar, Robin I M

    2012-12-20

    An evolutionary approach is a powerful framework which can bring new perspectives on any aspect of human behavior, to inform and complement those from other disciplines, from psychology and anthropology to economics and politics. Here we argue that insights from evolutionary psychology may be increasingly applied to address practical issues and help alleviate social problems. We outline the promise of this endeavor, and some of the challenges it faces. In doing so, we draw parallels between an applied evolutionary psychology and recent developments in Darwinian medicine, which similarly has the potential to complement conventional approaches. Finally, we describe some promising new directions which are developed in the associated papers accompanying this article.

  1. EVOLUTIONARY SYSTEMATICS OF THE CHIMPANZEE: IMMUNODIFFUSION COMPUTER APPROACH.

    DTIC Science & Technology

    man and gorilla, and shows increasingly more marked divergence from orangutan , gibbons, cercopithecoids, and ceboids. The method for constructing...the gibbon branch from the remaining hominoids, while the next most distant common ancestor separates the orangutan from man, chimpanzee, and gorilla...cercopithecoid-hominoid separation as 30 million years, the chimpanzee-man-gorilla separations were dated at about 6 million years, the orangutan at 14 million years, and the gibbon at about 19 million years. (Author)

  2. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket.

    PubMed

    McNamara, K B; van Lieshout, E; Simmons, L W

    2014-06-01

    Trans-generational immune priming is the transmission of enhanced immunity to offspring following a parental immune challenge. Although within-generation increased investment into immunity demonstrates clear costs on reproductive investment in a number of taxa, the potential for immune priming to impact on offspring reproductive investment has not been thoroughly investigated. We explored the reproductive costs of immune priming in a field cricket, Teleogryllus oceanicus. To assess the relative importance of maternal and paternal immune status, mothers and fathers were immune-challenged with live bacteria or a control solution and assigned to one of four treatments in which one parent, neither or both parents were immune-challenged. Families of offspring were reared to adulthood under a food-restricted diet, and approximately 10 offspring in each family were assayed for two measures of immunocompetence. We additionally quantified offspring reproductive investment using sperm viability for males and ovary mass for females. We demonstrate that parental immune challenge has significant consequences for the immunocompetence and, in turn, reproductive investment of their male offspring. A complex interaction between maternal and paternal immune status increased the antibacterial immune response of male offspring. This increased immune response was associated with a reduction in son's sperm viability, implicating a trans-generational resource trade-off between investment into immunocompetence and reproduction. Our data also show that these costs are sexually dimorphic, as daughters did not demonstrate a similar increase in immunity, despite showing a reduction in ovary mass. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  3. Assortment of encounters and evolution of cooperativeness.

    PubMed

    Eshel, I; Cavalli-Sforza, L L

    1982-02-01

    The method of evolutionary stable strategies (ESS), in its current form, is confronted with a difficulty when it tries to explain how some social behaviors initiate their evolution. We show that this difficulty may be removed by changing the assumption made tacitly in game theory (and in ESS) of randomness of meetings or encounters. In reality, such randomness seems to be rare in nature. Family, population and social structure, customs, and habits impose various types of deviation from randomness. Introducing nonrandomness of meeting in a way formally similar to assortative mating, we show that the bar to initial increase of inherited cooperative or altruistic behaviors can be removed, provided there is sufficient assortment of meetings. Family structure may cause contacts predominantly between certain types of relatives, and one can reconstruct some results of classical kin selection in terms of evolutionary stable strategy with assortative meetings. Neighbor effects and group selection might be similarly treated. Assortment need not be a passive consequence of population and social structure, but it can also be actively pursued. Behaviors favoring the choice of cooperative companions will have the effect of favoring the evolution of cooperativeness. It can be shown that discrimination in the choice of companions, especially if combined with assortment, can favor the development of cooperativeness, making initial increase of cooperative behavior possible even at levels of assortment passively imposed which would not be adequate, per se, to guarantee the increase of cooperativeness. It is possible that, in some cases, cooperativeness and behavior favoring some type of assortment are coselected.

  4. SoxB2 in sea urchin development: implications in neurogenesis, ciliogenesis and skeletal patterning.

    PubMed

    Anishchenko, Evgeniya; Arnone, Maria Ina; D'Aniello, Salvatore

    2018-01-01

    Current studies in evolutionary developmental biology are focused on the reconstruction of gene regulatory networks in target animal species. From decades, the scientific interest on genetic mechanisms orchestrating embryos development has been increasing in consequence to the fact that common features shared by evolutionarily distant phyla are being clarified. In 2011, a study across eumetazoan species showed for the first time the existence of a highly conserved non-coding element controlling the SoxB2 gene, which is involved in the early specification of the nervous system. This discovery raised several questions about SoxB2 function and regulation in deuterostomes from an evolutionary point of view. Due to the relevant phylogenetic position within deuterostomes, the sea urchin Strongylocentrotus purpuratus represents an advantageous animal model in the field of evolutionary developmental biology. Herein, we show a comprehensive study of SoxB2 functions in sea urchins, in particular its expression pattern in a wide range of developmental stages, and its co-localization with other neurogenic markers, as SoxB1 , SoxC and Elav . Moreover, this work provides a detailed description of the phenotype of sea urchin SoxB2 knocked-down embryos, confirming its key function in neurogenesis and revealing, for the first time, its additional roles in oral and aboral ectoderm cilia and skeletal rod morphology. We concluded that SoxB2 in sea urchins has a neurogenic function; however, this gene could have multiple roles in sea urchin embryogenesis, expanding its expression in non-neurogenic cells. We showed that SoxB2 is functionally conserved among deuterostomes and suggested that in S. purpuratus this gene acquired additional functions, being involved in ciliogenesis and skeletal patterning.

  5. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    PubMed

    Merker, Matthias; Blin, Camille; Mona, Stefano; Duforet-Frebourg, Nicolas; Lecher, Sophie; Willery, Eve; Blum, Michael G B; Rüsch-Gerdes, Sabine; Mokrousov, Igor; Aleksic, Eman; Allix-Béguec, Caroline; Antierens, Annick; Augustynowicz-Kopeć, Ewa; Ballif, Marie; Barletta, Francesca; Beck, Hans Peter; Barry, Clifton E; Bonnet, Maryline; Borroni, Emanuele; Campos-Herrero, Isolina; Cirillo, Daniela; Cox, Helen; Crowe, Suzanne; Crudu, Valeriu; Diel, Roland; Drobniewski, Francis; Fauville-Dufaux, Maryse; Gagneux, Sébastien; Ghebremichael, Solomon; Hanekom, Madeleine; Hoffner, Sven; Jiao, Wei-wei; Kalon, Stobdan; Kohl, Thomas A; Kontsevaya, Irina; Lillebæk, Troels; Maeda, Shinji; Nikolayevskyy, Vladyslav; Rasmussen, Michael; Rastogi, Nalin; Samper, Sofia; Sanchez-Padilla, Elisabeth; Savic, Branislava; Shamputa, Isdore Chola; Shen, Adong; Sng, Li-Hwei; Stakenas, Petras; Toit, Kadri; Varaine, Francis; Vukovic, Dragana; Wahl, Céline; Warren, Robin; Supply, Philip; Niemann, Stefan; Wirth, Thierry

    2015-03-01

    Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.

  6. The genome sequence of the emerging common midwife toad virus identifies an evolutionary intermediate within ranaviruses.

    PubMed

    Mavian, Carla; López-Bueno, Alberto; Balseiro, Ana; Casais, Rosa; Alcamí, Antonio; Alejo, Alí

    2012-04-01

    Worldwide amphibian population declines have been ascribed to global warming, increasing pollution levels, and other factors directly related to human activities. These factors may additionally be favoring the emergence of novel pathogens. In this report, we have determined the complete genome sequence of the emerging common midwife toad ranavirus (CMTV), which has caused fatal disease in several amphibian species across Europe. Phylogenetic and gene content analyses of the first complete genomic sequence from a ranavirus isolated in Europe show that CMTV is an amphibian-like ranavirus (ALRV). However, the CMTV genome structure is novel and represents an intermediate evolutionary stage between the two previously described ALRV groups. We find that CMTV clusters with several other ranaviruses isolated from different hosts and locations which might also be included in this novel ranavirus group. This work sheds light on the phylogenetic relationships within this complex group of emerging, disease-causing viruses.

  7. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens.

    PubMed

    Kaiser, Marcus; Varier, Sreedevi

    2011-01-01

    Neural networks show a progressive increase in complexity during the time course of evolution. From diffuse nerve nets in Cnidaria to modular, hierarchical systems in macaque and humans, there is a gradual shift from simple processes involving a limited amount of tasks and modalities to complex functional and behavioral processing integrating different kinds of information from highly specialized tissue. However, studies in a range of species suggest that fundamental similarities, in spatial and topological features as well as in developmental mechanisms for network formation, are retained across evolution. 'Small-world' topology and highly connected regions (hubs) are prevalent across the evolutionary scale, ensuring efficient processing and resilience to internal (e.g. lesions) and external (e.g. environment) changes. Furthermore, in most species, even the establishment of hubs, long-range connections linking distant components, and a modular organization, relies on similar mechanisms. In conclusion, evolutionary divergence leads to greater complexity while following essential developmental constraints.

  8. Evolutionary prisoner's dilemma on Newman-Watts social networks with an asymmetric payoff distribution mechanism

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Cao, Xian-Bin; Yang, Han-Xin; Hu, Mao-Bin

    2010-01-01

    In this paper, we introduce an asymmetric payoff distribution mechanism into the evolutionary prisoner's dilemma game (PDG) on Newman-Watts social networks, and study its effects on the evolution of cooperation. The asymmetric payoff distribution mechanism can be adjusted by the parameter α: if α > 0, the rich will exploit the poor to get richer; if α < 0, the rich are forced to offer part of their income to the poor. Numerical results show that the cooperator frequency monotonously increases with α and is remarkably promoted when α > 0. The effects of updating order and self-interaction are also investigated. The co-action of random updating and self-interaction can induce the highest cooperation level. Moreover, we employ the Gini coefficient to investigate the effect of asymmetric payoff distribution on the the system's wealth distribution. This work may be helpful for understanding cooperative behaviour and wealth inequality in society.

  9. A single determinant dominates the rate of yeast protein evolution.

    PubMed

    Drummond, D Allan; Raval, Alpan; Wilke, Claus O

    2006-02-01

    A gene's rate of sequence evolution is among the most fundamental evolutionary quantities in common use, but what determines evolutionary rates has remained unclear. Here, we carry out the first combined analysis of seven predictors (gene expression level, dispensability, protein abundance, codon adaptation index, gene length, number of protein-protein interactions, and the gene's centrality in the interaction network) previously reported to have independent influences on protein evolutionary rates. Strikingly, our analysis reveals a single dominant variable linked to the number of translation events which explains 40-fold more variation in evolutionary rate than any other, suggesting that protein evolutionary rate has a single major determinant among the seven predictors. The dominant variable explains nearly half the variation in the rate of synonymous and protein evolution. We show that the two most commonly used methods to disentangle the determinants of evolutionary rate, partial correlation analysis and ordinary multivariate regression, produce misleading or spurious results when applied to noisy biological data. We overcome these difficulties by employing principal component regression, a multivariate regression of evolutionary rate against the principal components of the predictor variables. Our results support the hypothesis that translational selection governs the rate of synonymous and protein sequence evolution in yeast.

  10. Evolutionary dynamics of the traveler's dilemma and minimum-effort coordination games on complex networks.

    PubMed

    Iyer, Swami; Killingback, Timothy

    2014-10-01

    The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.

  11. Do arms races punctuate evolutionary stasis? Unified insights from phylogeny, phylogeography and microevolutionary processes.

    PubMed

    Toju, Hirokazu; Sota, Teiji

    2009-09-01

    One of the major controversies in evolutionary biology concerns the processes underlying macroevolutionary patterns in which prolonged stasis is disrupted by rapid, short-term evolution that leads species to new adaptive zones. Recent advances in the understanding of contemporary evolution have suggested that such rapid evolution can occur in the wild as a result of environmental changes. Here, we examined a novel hypothesis that evolutionary stasis is punctuated by co-evolutionary arms races, which continuously alter adaptive peaks and landscapes. Based on the phylogeny of long-mouthed weevils in the genus Curculio, likelihood ratio tests showed that the macroevolutionary pattern of the weevils coincides with the punctuational evolution model. A coalescent analysis of a species, Curculio camelliae, the mouthpart of which has diverged considerably among populations because of an arms race with its host plant, further suggested that major evolutionary shifts had occurred within 7000 generations. Through a microevolutionary analysis of the species, we also found that natural selection acting through co-evolutionary interactions is potentially strong enough to drive rapid evolutionary shifts between adaptive zones. Overall, we posit that co-evolution is an important factor driving the history of organismal evolution.

  12. Evolutionary dynamics of the traveler's dilemma and minimum-effort coordination games on complex networks

    NASA Astrophysics Data System (ADS)

    Iyer, Swami; Killingback, Timothy

    2014-10-01

    The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games. Here we study the evolutionary dynamics of both these games in populations with interaction patterns described by a variety of complex network topologies. We investigate the evolutionary dynamics of these games through agent-based simulations on both model and empirical networks. In particular, we study the effects of network clustering and assortativity on the evolutionary dynamics of both games. In general, we show that the evolutionary behavior of the traveler's dilemma and minimum-effort coordination games on complex networks is in good agreement with that observed experimentally. Thus, formulating the traveler's dilemma and the minimum-effort coordination games on complex networks neatly resolves the paradoxical aspects of these games.

  13. Evolutionary genetics of plant adaptation.

    PubMed

    Anderson, Jill T; Willis, John H; Mitchell-Olds, Thomas

    2011-07-01

    Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia.

    PubMed

    Wang, Jiguang; Khiabanian, Hossein; Rossi, Davide; Fabbri, Giulia; Gattei, Valter; Forconi, Francesco; Laurenti, Luca; Marasca, Roberto; Del Poeta, Giovanni; Foà, Robin; Pasqualucci, Laura; Gaidano, Gianluca; Rabadan, Raul

    2014-12-11

    Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination, and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We applied TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors.

  15. A Philosophical Perspective on Evolutionary Systems Biology

    PubMed Central

    Soyer, Orkun S.; Siegal, Mark L.

    2015-01-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB’s progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology. PMID:26085823

  16. Evolutionary disarmament in interspecific competition.

    PubMed

    Kisdi, E; Geritz, S A

    2001-12-22

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.

  17. Evolutionary disarmament in interspecific competition.

    PubMed Central

    Kisdi, E.; Geritz, S. A.

    2001-01-01

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races. PMID:11749715

  18. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    Schade, Franziska M; Shama, Lisa N S; Wegner, K Mathias

    2014-07-26

    Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment. We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions. To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.

  19. Darwin's "Imaginary Illustrations": Creatively Teaching Evolutionary Concepts & the Nature of Science

    ERIC Educational Resources Information Center

    Love, Alan C.

    2010-01-01

    An overlooked feature of Darwin's work is his use of "imaginary illustrations" to show that natural selection is competent to produce adaptive, evolutionary change. When set in the context of Darwin's methodology, these thought experiments provide a novel way to teach natural selection and the nature of science.

  20. The genomic landscape of rapid, repeated evolutionary rescue from toxic pollution in wild fish

    USDA-ARS?s Scientific Manuscript database

    Here we describe evolutionary rescue from intense pollution via multiple modes of selection in killifish populations from 4 urban estuaries of the US eastern seaboard. Comparative transcriptomics and analysis of 384 whole genome sequences show that the functioning of a receptor-based signaling pathw...

  1. Attachment in Middle Childhood: An Evolutionary-Developmental Perspective

    ERIC Educational Resources Information Center

    Del Giudice, Marco

    2015-01-01

    Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an…

  2. The Relationship between College Zoology Students' Beliefs about Evolutionary Theory and Religion.

    ERIC Educational Resources Information Center

    Sinclair, Anne; And Others

    1997-01-01

    Researchers administered surveys to college zoology students prior to, and immediately following a study of evolutionary theory, to assess their understanding and acceptance of evidence supporting the theory. Results showed students had many misconceptions about the theory. Their beliefs interfered with their ability to objectively view scientific…

  3. From Down House Landlord to Brazilian High School Students: What Happened to Evolutionary Knowledge on the Way?

    ERIC Educational Resources Information Center

    Bizzo, Neilo Marco Vincenzo

    1994-01-01

    Reports results of interviews and tests carried out with students after they had been taught the topic of evolution. Different interpretations of Charles Darwin's theories are also analyzed. Results revealed that students show a poor understanding of evolutionary theories. (ZWH)

  4. Adaptive Memory: Young Children Show Enhanced Retention of Fitness-Related Information

    ERIC Educational Resources Information Center

    Aslan, Alp; Bauml, Karl-Heinz T.

    2012-01-01

    Evolutionary psychologists propose that human cognition evolved through natural selection to solve adaptive problems related to survival and reproduction, with its ultimate function being the enhancement of reproductive fitness. Following this proposal and the evolutionary-developmental view that ancestral selection pressures operated not only on…

  5. Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis

    PubMed Central

    Kümpers, Britta M. C.; Smith-Unna, Richard D.; Hibberd, Julian M.

    2014-01-01

    With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by independent C4 lineages are key targets for engineering the C4 pathway into C3 crops such as rice. PMID:24901697

  6. Origin and evolution of TNF and TNF receptor superfamilies

    USDA-ARS?s Scientific Manuscript database

    The tumor necrosis factor superfamily (TNFSF) and the TNF receptor superfamily (TNFRSF) have an ancient evolutionary origin that can be traced back to single copy genes within Arthropods. In humans, 18 TNFSF and 29 TNFRSF genes have been identified. Evolutionary models account for the increase in g...

  7. Evolutionary Psychology: Controversies, Questions, Prospects, and Limitations

    ERIC Educational Resources Information Center

    Confer, Jaime C.; Easton, Judith A.; Fleischman, Diana S.; Goetz, Cari D.; Lewis, David M. G.; Perilloux, Carin; Buss, David M.

    2010-01-01

    Evolutionary psychology has emerged over the past 15 years as a major theoretical perspective, generating an increasing volume of empirical studies and assuming a larger presence within psychological science. At the same time, it has generated critiques and remains controversial among some psychologists. Some of the controversy stems from…

  8. Evolutionary Dynamics of Digitized Organizational Routines

    ERIC Educational Resources Information Center

    Liu, Peng

    2013-01-01

    This dissertation explores the effects of increased digitization on the evolutionary dynamics of organizational routines. Do routines become more flexible, or more rigid, as the mix of digital technologies and human actors changes? What are the mechanisms that govern the evolution of routines? The dissertation theorizes about the effects of…

  9. Invasion fitness for gene-culture co-evolution in family-structured populations and an application to cumulative culture under vertical transmission.

    PubMed

    Mullon, Charles; Lehmann, Laurent

    2017-08-01

    Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the invasion fitness of a mutant allele that influences a deterministic level of cultural information (e.g., amount of knowledge or skill) to which diploid carriers of the mutant are exposed in subsequent generations. We show that the selection gradient on such a mutant, and the concomitant level of cultural information it generates, can be evaluated analytically under the assumption that the cultural dynamic has a single attractor point, thereby making gene-culture co-evolution in family-structured populations with multigenerational effects mathematically tractable. We apply our result to study how genetically determined phenotypes of individual and social learning co-evolve with the level of adaptive information they generate under vertical transmission. We find that vertical transmission increases adaptive information due to kin selection effects, but when information is transmitted as efficiently between family members as between unrelated individuals, this increase is moderate in diploids. By contrast, we show that the way resource allocation into learning trades off with allocation into reproduction (the "learning-reproduction trade-off") significantly influences levels of adaptive information. We also show that vertical transmission prevents evolutionary branching and may therefore play a qualitative role in gene-culture co-evolutionary dynamics. More generally, our analysis of selection suggests that vertical transmission can significantly increase levels of adaptive information under the biologically plausible condition that information transmission between relatives is more efficient than between unrelated individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Modernizing Evolutionary Anthropology : Introduction to the Special Issue.

    PubMed

    Mattison, Siobhán M; Sear, Rebecca

    2016-12-01

    Evolutionary anthropology has traditionally focused on the study of small-scale, largely self-sufficient societies. The increasing rarity of these societies underscores the importance of such research yet also suggests the need to understand the processes by which such societies are being lost-what we call "modernization"-and the effects of these processes on human behavior and biology. In this article, we discuss recent efforts by evolutionary anthropologists to incorporate modernization into their research and the challenges and rewards that follow. Advantages include that these studies allow for explicit testing of hypotheses that explore how behavior and biology change in conjunction with changes in social, economic, and ecological factors. In addition, modernization often provides a source of "natural experiments" since it may proceed in a piecemeal fashion through a population. Challenges arise, however, in association with reduced variability in fitness proxies such as fertility, and with the increasing use of relatively novel methodologies in evolutionary anthropology, such as the analysis of secondary data. Confronting these challenges will require careful consideration but will lead to an improved understanding of humanity. We conclude that the study of modernization offers the prospect of developing a richer evolutionary anthropology, by encompassing ultimate and proximate explanations for behavior expressed across the full range of human societies.

  11. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN

    PubMed Central

    Hohmann, Nora; Wolf, Eva M.

    2015-01-01

    The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization. PMID:26410304

  12. Evolution of density-dependent movement during experimental range expansions.

    PubMed

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  13. A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed

    This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.

  14. Evaluation of Generation Alternation Models in Evolutionary Robotics

    NASA Astrophysics Data System (ADS)

    Oiso, Masashi; Matsumura, Yoshiyuki; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    For efficient implementation of Evolutionary Algorithms (EA) to a desktop grid computing environment, we propose a new generation alternation model called Grid-Oriented-Deletion (GOD) based on comparison with the conventional techniques. In previous research, generation alternation models are generally evaluated by using test functions. However, their exploration performance on the real problems such as Evolutionary Robotics (ER) has not been made very clear yet. Therefore we investigate the relationship between the exploration performance of EA on an ER problem and its generation alternation model. We applied four generation alternation models to the Evolutionary Multi-Robotics (EMR), which is the package-pushing problem to investigate their exploration performance. The results show that GOD is more effective than the other conventional models.

  15. Evolutionary biochemistry: revealing the historical and physical causes of protein properties

    PubMed Central

    Harms, Michael J.; Thornton, Joseph W.

    2014-01-01

    The repertoire of proteins and nucleic acids in the living world is determined by evolution; their properties are determined by the laws of physics and chemistry. Explanations of these two kinds of causality — the purviews of evolutionary biology and biochemistry, respectively — are typically pursued in isolation, but many fundamental questions fall squarely at the interface of fields. Here we articulate the paradigm of evolutionary biochemistry, which aims to dissect the physical mechanisms and evolutionary processes by which biological molecules diversified and to reveal how their physical architecture facilitates and constrains their evolution. We show how an integration of evolution with biochemistry moves us towards a more complete understanding of why biological molecules have the properties that they do. PMID:23864121

  16. The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies

    PubMed Central

    Dworkin, Ian; Wagner, Aaron P.

    2014-01-01

    Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847

  17. The current status of REH theory. [Random Evolutionary Hits in biological molecular evolution

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Jukes, T. H.

    1981-01-01

    A response is made to the evaluation of Fitch (1980) of REH (random evolutionary hits) theory for the evolutionary divergence of proteins and nucleic acids. Correct calculations for the beta hemoglobin mRNAs of the human, mouse and rabbit in the absence and presence of selective constraints are summarized, and it is shown that the alternative evolutionary analysis of Fitch underestimates the total fixed mutations. It is further shown that the model used by Fitch to test for the completeness of the count of total base substitutions is in fact a variant of REH theory. Considerations of the variance inherent in evolutionary estimations are also presented which show the REH model to produce no more variance than other evolutionary models. In the reply, it is argued that, despite the objections raised, REH theory applied to proteins gives inaccurate estimates of total gene substitutions. It is further contended that REH theory developed for nucleic sequences suffers from problems relating to the frequency of nucleotide substitutions, the identity of the codons accepting silent and amino acid-changing substitutions, and estimate uncertainties.

  18. An evolutionary game approach for determination of the structural conflicts in signed networks

    PubMed Central

    Tan, Shaolin; Lü, Jinhu

    2016-01-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581

  19. Prediction of stock markets by the evolutionary mix-game model

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Gou, Chengling; Guo, Xiaoqian; Gao, Jieping

    2008-06-01

    This paper presents the efforts of using the evolutionary mix-game model, which is a modified form of the agent-based mix-game model, to predict financial time series. Here, we have carried out three methods to improve the original mix-game model by adding the abilities of strategy evolution to agents, and then applying the new model referred to as the evolutionary mix-game model to forecast the Shanghai Stock Exchange Composite Index. The results show that these modifications can improve the accuracy of prediction greatly when proper parameters are chosen.

  20. Evolutionary robotics simulations help explain why reciprocity is rare in nature

    PubMed Central

    André, Jean-Baptiste; Nolfi, Stefano

    2016-01-01

    The relative rarity of reciprocity in nature, contrary to theoretical predictions that it should be widespread, is currently one of the major puzzles in social evolution theory. Here we use evolutionary robotics to solve this puzzle. We show that models based on game theory are misleading because they neglect the mechanics of behavior. In a series of experiments with simulated robots controlled by artificial neural networks, we find that reciprocity does not evolve, and show that this results from a general constraint that likely also prevents it from evolving in the wild. Reciprocity can evolve if it requires very few mutations, as is usually assumed in evolutionary game theoretic models, but not if, more realistically, it requires the accumulation of many adaptive mutations. PMID:27616139

  1. A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids.

    PubMed

    McGee, Matthew D; Borstein, Samuel R; Neches, Russell Y; Buescher, Heinz H; Seehausen, Ole; Wainwright, Peter C

    2015-11-27

    Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion. Copyright © 2015, American Association for the Advancement of Science.

  2. Agricultural management affects evolutionary processes in a migratory songbird

    USGS Publications Warehouse

    Perlut, N.G.; Freeman-Gallant, C. R.; Strong, A.M.; Donovan, T.M.; Kilpatrick, C.W.; Zalik, N.J.

    2008-01-01

    Hay harvests have detrimental ecological effects on breeding songbirds, as harvesting results in nest failure. Importantly, whether harvesting also affects evolutionary processes is not known. We explored how hay harvest affected social and genetic mating patterns, and thus, the overall opportunity for sexual selection and evolutionary processes for a ground-nesting songbird, the Savannah sparrow (Passerculus sandwichensis). On an unharvested field, 55% of females were in polygynous associations, and social polygyny was associated with greater rates of extra-pair paternity (EPP). In this treatment, synchrony explained variation in EPP rates, as broods by more synchronous females had more EPP than broods by asynchronous females. In contrast, on a harvested field, simultaneous nest failure caused by haying dramatically decreased the overall incidence of EPP by increasing the occurrence of social monogamy and, apparently, the ability of polygynous males to maintain paternity in their own nests. Despite increased social and genetic monogamy, these haying-mediated changes in mating systems resulted in greater than twofold increase in the opportunity for sexual selection. This effect arose, in part, from a 30% increase in the variance associated with within-pair fertilization success, relative to the unharvested field. This effect was caused by a notable increase (+110%) in variance associated with the quality of social mates following simultaneous nest failure. Because up to 40% of regional habitat is harvested by early June, these data may demonstrate a strong population-level effect on mating systems, sexual selection, and consequently, evolutionary processes. ?? 2008 The Authors.

  3. Using concepts from biology to improve problem-solving methods

    NASA Astrophysics Data System (ADS)

    Goodman, Erik D.; Rothwell, Edward J.; Averill, Ronald C.

    2011-06-01

    Observing nature has been a cornerstone of engineering design. Today, engineers look not only at finished products, but imitate the evolutionary process by which highly optimized artifacts have appeared in nature. Evolutionary computation began by capturing only the simplest ideas of evolution, but today, researchers study natural evolution and incorporate an increasing number of concepts in order to evolve solutions to complex engineering problems. At the new BEACON Center for the Study of Evolution in Action, studies in the lab and field and in silico are laying the groundwork for new tools for evolutionary engineering design. This paper, which accompanies a keynote address, describes various steps in development and application of evolutionary computation, particularly as regards sensor design, and sets the stage for future advances.

  4. Physical properties of high-mass star-forming clumps in different evolutionary stages from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian; Shirley, Yancy; Rosolowsky, Erik; Dunham, Miranda; Ellsworth-Bowers, Timothy; Ginsburg, Adam

    2013-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolutionary sequence for high mass star forming regions is poorly understood. Recent Galactic plane surveys are providing the first systematic view of high-mass star-forming regions in all evolutionary phases across the Milky Way. We present observations of the 22.23 GHz H2O maser transition J(Ka,Kc) = 6(1,6)→5(2,3) transition toward 1398 clumps identified in the Bolocam Galactic Plane Survey using the 100m Green Bank Telescope (GBT). We detect 392 H2O masers, 279 (71%) newly discovered. We show that H2O masers can identify the presence of protostars which were not previously identified by Spitzer/MSX Galactic plane IR surveys: 25% of IR-dark clumps have an H2O maser. We compare the physical properties of the clumps in the Bolocam Galactic Plane Survey (BGPS) with observations of diagnostics of star formation activity: 8 and 24 um YSO candidates, H2O and CH3OH masers, shocked H2, EGOs, and UCHII regions. We identify a sub-sample of 400 clumps with no star formation indicators representing the largest and most robust sample of pre-protocluster candidates from an unbiased survey to date. The different evolutionary stages show strong separations in HCO+ linewidth and integrated intensity, surface mass density, and kinetic temperature. Monte Carlo techniques are applied to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate the distribution of derived quantities for clumps in different evolutionary stages. Surface area and dust mass show weak separations above > 2 pc^2 and > 3x10^3 solar masses. An observed breakdown occurs in the size-linewidth relationship with no differentiation by evolutionary stage. Future work includes adding evolutionary indicators (MIPSGAL, HiGal, MMB) and expanding DPDF priors (HI self-absorption, Galactic structure) for more well-resolved KDAs.

  5. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.

  6. Female promiscuity promotes the evolution of faster sperm in cichlid fishes

    PubMed Central

    Fitzpatrick, John L.; Montgomerie, Robert; Desjardins, Julie K.; Stiver, Kelly A.; Kolm, Niclas; Balshine, Sigal

    2009-01-01

    Sperm competition, the contest among ejaculates from rival males to fertilize ova of a female, is a common and powerful evolutionary force influencing ejaculate traits. During competitive interactions between ejaculates, longer and faster spermatozoa are expected to have an edge; however, to date, there has been mixed support for this key prediction from sperm competition theory. Here, we use the spectacular radiation of cichlid fishes from Lake Tanganyika to examine sperm characteristics in 29 closely related species. We provide phylogenetically robust evidence that species experiencing greater levels of sperm competition have faster-swimming sperm. We also show that sperm competition selects for increases in the number, size, and longevity of spermatozoa in the ejaculate of a male, and, contrary to expectations from theory, we find no evidence of trade-offs among sperm traits in an interspecific analysis. Also, sperm swimming speed is positively correlated with sperm length among, but not within, species. These different responses to sperm competition at intra- and interspecific levels provide a simple, powerful explanation for equivocal results from previous studies. Using phylogenetic analyses, we also reconstructed the probable evolutionary route of trait evolution in this taxon, and show that, in response to increases in the magnitude of sperm competition, the evolution of sperm traits in this clade began with the evolution of faster (thus, more competitive) sperm. PMID:19164576

  7. A Study on the Fundamental Mechanism and the Evolutionary Driving Forces behind Aerobic Fermentation in Yeast

    PubMed Central

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker’s yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125–150 million years ago in the Saccharomyces lineage. The “invention” of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The “invention” of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to “starve” competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently “invented” as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic. PMID:25617754

  8. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    PubMed

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.

  9. Relevance of East African Drill Cores to Human Evolution: the Case of the Olorgesailie Drilling Project

    NASA Astrophysics Data System (ADS)

    Potts, R.

    2016-12-01

    Drill cores reaching the local basement of the East African Rift were obtained in 2012 south of the Olorgesailie Basin, Kenya, 20 km from excavations that document key benchmarks in the origin of Homo sapiens. Sediments totaling 216 m were obtained from two drilling locations representing the past 1 million years. The cores were acquired to build a detailed environmental record spatially associated with the transition from Acheulean to Middle Stone Age technology and extensive turnover in mammalian species. The project seeks precise tests of how climate dynamics and tectonic events were linked with these transitions. Core lithology (A.K. Behrensmeyer), geochronology (A. Deino), diatoms (R.B. Owen), phytoliths (R. Kinyanjui), geochemistry (N. Rabideaux, D. Deocampo), among other indicators, show evidence of strong environmental variability in agreement with predicted high-eccentricity modulation of climate during the evolutionary transitions. Increase in hominin mobility, elaboration of symbolic behavior, and concurrent turnover in mammalian species indicating heightened adaptability to unpredictable ecosystems, point to a direct link between the evolutionary transitions and the landscape dynamics reflected in the Olorgesailie drill cores. For paleoanthropologists and Earth scientists, any link between evolutionary transitions and environmental dynamics requires robust evolutionary datasets pertinent to how selection, extinction, population divergence, and other evolutionary processes were impacted by the dynamics uncovered in drill core studies. Fossil and archeological data offer a rich source of data and of robust environment-evolution explanations that must be integrated into efforts by Earth scientists who seek to examine high-resolution climate records of human evolution. Paleoanthropological examples will illustrate the opportunities that exist for connecting evolutionary benchmarks to the data obtained from drilled African muds. Project members: R. Potts, A.K. Behrensmeyer, E. Beverly, K. Brady, J. Bright, E. Brown, J. Clark, A. Cohen, A. Deino, P. deMenocal, D. Deocampo, R. Dommain, J.T. Faith, J. King, R. Kinyanjui, N. Levin, J. Moerman, V. Muiruri, A. Noren, R.B. Owen, N. Rabideaux, R. Renaut, S. Rucina, J. Russell, J. Scott, M. Stockhecke, K. Uno

  10. The effects of different styles of interaction on the learning of evolutionary theories

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akiko

    This study investigated the effects of different styles of social interaction on the learning of advanced biological knowledge. Recent research has increasingly acknowledged the importance of social interaction for promoting learning and cognitive development. However, there has been a controversy about the optimal style of interaction. Some studies have showed the beneficial effects of symmetrical interactions such as an argument between peers, whereas other studies have found the superiority of asymmetrical interactions in which a novice learn with the guidance of an expert. The reason for the contradictory results may be that different styles of interaction enhance different kinds of learning. The present study focused on the three styles of interaction; (1) Conflicting style, in which two novice students with scientifically wrong but conflicting views argue with one another, (2) Guiding style, in which a novice student is led by a more expert student to an understanding of scientifically appropriate knowledge, (3) Mutual Constructive style, in which an expert student and a novice student jointly solve a scientific problem on an equal footing. Sixty college students with non-biology-majors and 30 students with a biology major participated in this experiment to discuss an evolutionary problem in these three styles of interaction, with the former serving as novices and the latter as experts. Analyses of the Pre- and the Posttest performance and discussion processes in the Interaction session revealed the following. First, the Guiding style and the Mutual Constructive style enhanced the acquisition of the scientific evolutionary conceptual framework more effectively than the Conflicting style. However, some students in the Conflicting style also grasped the scientific evolutionary framework, and many students reconstructed their theories of evolution through discussion, even if the frameworks remained scientifically inappropriate. Second, the students who discussed evolution in the Conflicting style and the Mutual Constructive style tended to become more reflective and flexible than the students in the Guiding style, when solving a new evolutionary problem. Third, analyses of epistemological beliefs and critiques of evolutionary explanations suggested that the Mutual Constructive style and the Conflicting style facilitated the development of critical thinking more than the Guiding style.

  11. Darwinism in quantum systems?

    NASA Astrophysics Data System (ADS)

    Iqbal, A.; Toor, A. H.

    2002-03-01

    We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.

  12. Controlling Tensegrity Robots Through Evolution

    NASA Technical Reports Server (NTRS)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  13. Evolutionary dynamics on graphs: Efficient method for weak selection

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  14. Evolutionary origins of a novel host plant detoxification gene in butterflies.

    PubMed

    Fischer, Hanna M; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2008-05-01

    Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.

  15. Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent-Based Simulation.

    PubMed

    Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A

    2015-09-01

    This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.

  16. Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates

    PubMed Central

    Pereira, Joana; Johnson, Warren E.; O’Brien, Stephen J.; Jarvis, Erich D.; Zhang, Guojie; Gilbert, M. Thomas P.; Vasconcelos, Vitor; Antunes, Agostinho

    2014-01-01

    The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322

  17. Genes mirror geography in Daphnia magna.

    PubMed

    Fields, Peter D; Reisser, Céline; Dukić, Marinela; Haag, Christoph R; Ebert, Dieter

    2015-09-01

    Identifying the presence and magnitude of population genetic structure remains a major consideration in evolutionary biology as doing so allows one to understand the demographic history of a species as well as make predictions of how the evolutionary process will proceed. Next-generation sequencing methods allow us to reconsider previous ideas and conclusions concerning the distribution of genetic variation, and what this distribution implies about a given species evolutionary history. A previous phylogeographic study of the crustacean Daphnia magna suggested that, despite strong genetic differentiation among populations at a local scale, the species shows only moderate genetic structure across its European range, with a spatially patchy occurrence of individual lineages. We apply RAD sequencing to a sample of D. magna collected across a wide swath of the species' Eurasian range and analyse the data using principle component analysis (PCA) of genetic variation and Procrustes analytical approaches, to quantify spatial genetic structure. We find remarkable consistency between the first two PCA axes and the geographic coordinates of individual sampling points, suggesting that, on a continent-wide scale, genetic differentiation is driven to a large extent by geographic distance. The observed pattern is consistent with unimpeded (i.e. no barriers, landscape or otherwise) migration at large spatial scales, despite the fragmented and patchy nature of favourable habitats at local scales. With high-resolution genetic data similar patterns may be uncovered for other species with wide geographic distributions, allowing an increased understanding of how genetic drift and selection have shaped their evolutionary history. © 2015 John Wiley & Sons Ltd.

  18. Aligning science and policy to achieve evolutionarily enlightened conservation.

    PubMed

    Cook, Carly N; Sgrò, Carla M

    2017-06-01

    There is increasing recognition among conservation scientists that long-term conservation outcomes could be improved through better integration of evolutionary theory into management practices. Despite concerns that the importance of key concepts emerging from evolutionary theory (i.e., evolutionary principles and processes) are not being recognized by managers, there has been little effort to determine the level of integration of evolutionary theory into conservation policy and practice. We assessed conservation policy at 3 scales (international, national, and provincial) on 3 continents to quantify the degree to which key evolutionary concepts, such as genetic diversity and gene flow, are being incorporated into conservation practice. We also evaluated the availability of clear guidance within the applied evolutionary biology literature as to how managers can change their management practices to achieve better conservation outcomes. Despite widespread recognition of the importance of maintaining genetic diversity, conservation policies provide little guidance about how this can be achieved in practice and other relevant evolutionary concepts, such as inbreeding depression, are mentioned rarely. In some cases the poor integration of evolutionary concepts into management reflects a lack of decision-support tools in the literature. Where these tools are available, such as risk-assessment frameworks, they are not being adopted by conservation policy makers, suggesting that the availability of a strong evidence base is not the only barrier to evolutionarily enlightened management. We believe there is a clear need for more engagement by evolutionary biologists with policy makers to develop practical guidelines that will help managers make changes to conservation practice. There is also an urgent need for more research to better understand the barriers to and opportunities for incorporating evolutionary theory into conservation practice. © 2016 Society for Conservation Biology.

  19. Evolutionary dynamics of Hepatitis C virus in a chronic HIV co-infected patient and its correlation with the immune status.

    PubMed

    Culasso, Andrés Carlos Alberto; Monzani, María Cecilia; Baré, Patricia; Campos, Rodolfo Hector

    2018-05-04

    The HCV evolutionary dynamics play a key role in the infection onset, maintenance of chronicity, pathogenicity, and drug resistance variants fixation, and are thought to be one of the main caveats in the development of an effective vaccine. Previous studies in HCV/HIV co-infected patients suggest that a decline in the immune status is related with increases in the HCV intra-host genetic diversity. However, these findings are based on single point sequence diversity measures or coalescence analyses in several virus-host interactions. In this work, we describe the molecular evolution of HCV-E2 region in a single HIV-co-infected patient with two clearly defined immune conditions. The phylogenetic analysis of the HCV-1a sequences from the studied patient showed that he was co-infected with three different viral lineages. These lineages were not evenly detected throughout time. The sequence diversity and coalescence analyses of these lineages suggested the action of different evolutionary patterns in different immune conditions: a slow rate, drift-like process in an immunocompromised condition (low levels of CD4+ T lymphocytes); and a fast rate, variant-switch process in an immunocompetent condition (high levels of CD4+ T lymphocytes). Copyright © 2017. Published by Elsevier B.V.

  20. Versatility and Invariance in the Evolution of Homologous Heteromeric Interfaces

    PubMed Central

    Andreani, Jessica; Faure, Guilhem; Guerois, Raphaël

    2012-01-01

    Evolutionary pressures act on protein complex interfaces so that they preserve their complementarity. Nonetheless, the elementary interactions which compose the interface are highly versatile throughout evolution. Understanding and characterizing interface plasticity across evolution is a fundamental issue which could provide new insights into protein-protein interaction prediction. Using a database of 1,024 couples of close and remote heteromeric structural interologs, we studied protein-protein interactions from a structural and evolutionary point of view. We systematically and quantitatively analyzed the conservation of different types of interface contacts. Our study highlights astonishing plasticity regarding polar contacts at complex interfaces. It also reveals that up to a quarter of the residues switch out of the interface when comparing two homologous complexes. Despite such versatility, we identify two important interface descriptors which correlate with an increased conservation in the evolution of interfaces: apolar patches and contacts surrounding anchor residues. These observations hold true even when restricting the dataset to transiently formed complexes. We show that a combination of six features related either to sequence or to geometric properties of interfaces can be used to rank positions likely to share similar contacts between two interologs. Altogether, our analysis provides important tracks for extracting meaningful information from multiple sequence alignments of conserved binding partners and for discriminating near-native interfaces using evolutionary information. PMID:22952442

  1. Evolutionary response when selection and genetic variation covary across environments.

    PubMed

    Wood, Corlett W; Brodie, Edmund D

    2016-10-01

    Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes. © 2016 John Wiley & Sons Ltd/CNRS.

  2. Chaos and the (un)predictability of evolution in a changing environment.

    PubMed

    Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel

    2018-02-01

    Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  3. Evolutionary transitions in enzyme activity of ant fungus gardens.

    PubMed

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  4. Advantages of Task-Specific Multi-Objective Optimisation in Evolutionary Robotics.

    PubMed

    Trianni, Vito; López-Ibáñez, Manuel

    2015-01-01

    The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.

  5. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.

    PubMed

    Hopkins, Melanie J; Smith, Andrew B

    2015-03-24

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis.

  6. Entanglement guarantees emergence of cooperation in quantum prisoner's dilemma games on networks.

    PubMed

    Li, Angsheng; Yong, Xi

    2014-09-05

    It was known that cooperation of evolutionary prisoner's dilemma games fails to emerge in homogenous networks such as random graphs. Here we proposed a quantum prisoner's dilemma game. The game consists of two players, in which each player has three choices of strategy: cooperator (C), defector (D) and super cooperator (denoted by Q). We found that quantum entanglement guarantees emergence of a new cooperation, the super cooperation of the quantum prisoner's dilemma games, and that entanglement is the mechanism of guaranteed emergence of cooperation of evolutionary prisoner's dilemma games on networks. We showed that for a game with temptation b, there exists a threshold arccos √b/b for a measurement of entanglement, beyond which, (super) cooperation of evolutionary quantum prisoner's dilemma games is guaranteed to quickly emerge, giving rise to stochastic convergence of the cooperations, that if the entanglement degree γ is less than the threshold arccos √b/b, then the equilibrium frequency of cooperations of the games is positively correlated to the entanglement degree γ, and that if γ is less than arccos √b/b and b is beyond some boundary, then the equilibrium frequency of cooperations of the games on random graphs decreases as the average degree of the graphs increases.

  7. Convergent evolution as natural experiment: the tape of life reconsidered

    PubMed Central

    Powell, Russell; Mariscal, Carlos

    2015-01-01

    Stephen Jay Gould argued that replaying the ‘tape of life’ would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution—the independent origination of similar biological forms and functions—which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the ‘critique from convergent evolution’ fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life. PMID:26640647

  8. Convergent evolution as natural experiment: the tape of life reconsidered.

    PubMed

    Powell, Russell; Mariscal, Carlos

    2015-12-06

    Stephen Jay Gould argued that replaying the 'tape of life' would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution-the independent origination of similar biological forms and functions-which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the 'critique from convergent evolution' fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life.

  9. Evolutionary stasis in pollen morphogenesis due to natural selection.

    PubMed

    Matamoro-Vidal, Alexis; Prieu, Charlotte; Furness, Carol A; Albert, Béatrice; Gouyon, Pierre-Henri

    2016-01-01

    The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Efficiency of the neighbor-joining method in reconstructing deep and shallow evolutionary relationships in large phylogenies.

    PubMed

    Kumar, S; Gadagkar, S R

    2000-12-01

    The neighbor-joining (NJ) method is widely used in reconstructing large phylogenies because of its computational speed and the high accuracy in phylogenetic inference as revealed in computer simulation studies. However, most computer simulation studies have quantified the overall performance of the NJ method in terms of the percentage of branches inferred correctly or the percentage of replications in which the correct tree is recovered. We have examined other aspects of its performance, such as the relative efficiency in correctly reconstructing shallow (close to the external branches of the tree) and deep branches in large phylogenies; the contribution of zero-length branches to topological errors in the inferred trees; and the influence of increasing the tree size (number of sequences), evolutionary rate, and sequence length on the efficiency of the NJ method. Results show that the correct reconstruction of deep branches is no more difficult than that of shallower branches. The presence of zero-length branches in realized trees contributes significantly to the overall error observed in the NJ tree, especially in large phylogenies or slowly evolving genes. Furthermore, the tree size does not influence the efficiency of NJ in reconstructing shallow and deep branches in our simulation study, in which the evolutionary process is assumed to be homogeneous in all lineages.

  11. Informations in Models of Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Rivoire, Olivier

    2016-03-01

    Biological organisms adapt to changes by processing informations from different sources, most notably from their ancestors and from their environment. We review an approach to quantify these informations by analyzing mathematical models of evolutionary dynamics and show how explicit results are obtained for a solvable subclass of these models. In several limits, the results coincide with those obtained in studies of information processing for communication, gambling or thermodynamics. In the most general case, however, information processing by biological populations shows unique features that motivate the analysis of specific models.

  12. Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots.

    PubMed

    Wang, Wei; Zhou, Hui; Ma, Baiquan; Owiti, Albert; Korban, Schuyler S; Han, Yuepeng

    2016-06-30

    Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots.

  13. Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots

    PubMed Central

    Wang, Wei; Zhou, Hui; Ma, Baiquan; Owiti, Albert; Korban, Schuyler S.; Han, Yuepeng

    2016-01-01

    Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots. PMID:27356489

  14. Body size, performance and fitness in galapagos marine iguanas.

    PubMed

    Wikelski, Martin; Romero, L Michael

    2003-07-01

    Complex organismal traits such as body size are influenced by innumerable selective pressures, making the prediction of evolutionary trajectories for those traits difficult. A potentially powerful way to predict fitness in natural systems is to study the composite response of individuals in terms of performance measures, such as foraging or reproductive performance. Once key performance measures are identified in this top-down approach, we can determine the underlying physiological mechanisms and gain predictive power over long-term evolutionary processes. Here we use marine iguanas as a model system where body size differs by more than one order of magnitude between island populations. We identified foraging efficiency as the main performance measure that constrains body size. Mechanistically, foraging performance is determined by food pasture height and the thermal environment, influencing intake and digestion. Stress hormones may be a flexible way of influencing an individual's response to low-food situations that may be caused by high population density, famines, or anthropogenic disturbances like oil spills. Reproductive performance, on the other hand, increases with body size and is mediated by higher survival of larger hatchlings from larger females and increased mating success of larger males. Reproductive performance of males may be adjusted via plastic hormonal feedback mechanisms that allow individuals to assess their social rank annually within the current population size structure. When integrated, these data suggest that reproductive performance favors increased body size (influenced by reproductive hormones), with an overall limit imposed by foraging performance (influenced by stress hormones). Based on our mechanistic understanding of individual performances we predicted an evolutionary increase in maximum body size caused by global warming trends. We support this prediction using specimens collected during 1905. We also show in a common-garden experiment that body size may have a genetic component in iguanids. This 'performance paradigm' allows predictions about adaptive evolution in natural populations.

  15. Conceptual Ecology of Evolution Acceptance among Greek Education Students: The Contribution of Knowledge Increase

    ERIC Educational Resources Information Center

    Athanasiou, Kyriacos; Katakos, Efstratios; Papadopoulou, Penelope

    2012-01-01

    In this study, we explored the factors related to acceptance of evolutionary theory among students/preservice preschool education teachers using conceptual ecology for biological evolution as a theoretical frame. We aimed to examine the acceptance and understanding of evolutionary theory and also the relationship of acceptance and understanding of…

  16. Gender and Evolutionary Theory in Workplace Health Promotion

    ERIC Educational Resources Information Center

    Björklund, Erika; Wright, Jan

    2017-01-01

    Objective: Ideas from evolutionary theories are increasingly taken up in health promotion. This article seeks to demonstrate how such a trend has the potential to embed essentialist and limiting stereotypes of women and men in health promotion practice. Design: We draw on material gathered for a larger ethnographic study that examined how…

  17. The Evolution of Human Handedness

    PubMed Central

    Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin

    2013-01-01

    There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. PMID:23647442

  18. How similar can co-occurring species be in the presence of competition and ecological drift?

    PubMed

    Capitán, José A; Cuenda, Sara; Alonso, David

    2015-09-06

    If two species live on a single resource, the one with a slight advantage will out-compete the other: complete competitors cannot coexist. This is known as the competitive exclusion principle. If no extinction occurs, it is because evolutionary adaptation to slightly different niches takes place. Therefore, it is widely accepted that ecological communities are assembled by evolutionary differentiation and progressive adaptation of species to different niches. However, some ecologists have recently challenged this classic paradigm highlighting the importance of chance and stochasticity. Using a synthetic framework for community dynamics, here we show that, while deterministic descriptors predict coexistence, species similarity is limited in a more restrictive way in the presence of stochasticity. We analyse the stochastic extinction phenomenon, showing that extinction occurs as competitive overlap increases above a certain threshold well below its deterministic counterpart. We also prove that the extinction threshold cannot be ascribed only to demographic fluctuations around small population sizes. The more restrictive limit to species similarity is, therefore, a consequence of the complex interplay between competitive interactions and ecological drift. As a practical implication, we show that the existence of a stochastic limit to similarity has important consequences in the recovery of fragmented habitats. © 2015 The Author(s).

  19. How similar can co-occurring species be in the presence of competition and ecological drift?

    PubMed Central

    Capitán, José A.; Cuenda, Sara; Alonso, David

    2015-01-01

    If two species live on a single resource, the one with a slight advantage will out-compete the other: complete competitors cannot coexist. This is known as the competitive exclusion principle. If no extinction occurs, it is because evolutionary adaptation to slightly different niches takes place. Therefore, it is widely accepted that ecological communities are assembled by evolutionary differentiation and progressive adaptation of species to different niches. However, some ecologists have recently challenged this classic paradigm highlighting the importance of chance and stochasticity. Using a synthetic framework for community dynamics, here we show that, while deterministic descriptors predict coexistence, species similarity is limited in a more restrictive way in the presence of stochasticity. We analyse the stochastic extinction phenomenon, showing that extinction occurs as competitive overlap increases above a certain threshold well below its deterministic counterpart. We also prove that the extinction threshold cannot be ascribed only to demographic fluctuations around small population sizes. The more restrictive limit to species similarity is, therefore, a consequence of the complex interplay between competitive interactions and ecological drift. As a practical implication, we show that the existence of a stochastic limit to similarity has important consequences in the recovery of fragmented habitats. PMID:26269234

  20. Evidence for rapid evolutionary change in an invasive plant in response to biological control.

    PubMed

    Stastny, M; Sargent, R D

    2017-05-01

    We present evidence that populations of an invasive plant species that have become re-associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half-sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol-exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long-term efficacy of biocontrol programmes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  1. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease

    PubMed Central

    Yang, Sihai; Li, Jing; Zhang, Xiaohui; Zhang, Qijun; Huang, Ju; Chen, Jian-Qun; Hartl, Daniel L.; Tian, Dacheng

    2013-01-01

    We show that the genomes of maize, sorghum, and brachypodium contain genes that, when transformed into rice, confer resistance to rice blast disease. The genes are resistance genes (R genes) that encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains (NBS–LRR proteins). By using criteria associated with rapid molecular evolution, we identified three rapidly evolving R-gene families in these species as well as in rice, and transformed a randomly chosen subset of these genes into rice strains known to be sensitive to rice blast disease caused by the fungus Magnaporthe oryzae. The transformed strains were then tested for sensitivity or resistance to 12 diverse strains of M. oryzae. A total of 15 functional blast R genes were identified among 60 NBS–LRR genes cloned from maize, sorghum, and brachypodium; and 13 blast R genes were obtained from 20 NBS–LRR paralogs in rice. These results show that abundant blast R genes occur not only within species but also among species, and that the R genes in the same rapidly evolving gene family can exhibit an effector response that confers resistance to rapidly evolving fungal pathogens. Neither conventional evolutionary conservation nor conventional evolutionary convergence supplies a satisfactory explanation of our findings. We suggest a unique mechanism termed “constrained divergence,” in which R genes and pathogen effectors can follow only limited evolutionary pathways to increase fitness. Our results open avenues for R-gene identification that will help to elucidate R-gene vs. effector mechanisms and may yield new sources of durable pathogen resistance. PMID:24145399

  2. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  3. Rate of Amino Acid Substitution Is Influenced by the Degree and Conservation of Male-Biased Transcription Over 50 Myr of Drosophila Evolution

    PubMed Central

    Grath, Sonja; Parsch, John

    2012-01-01

    Sex-biased gene expression (i.e., the differential expression of genes between males and females) is common among sexually reproducing species. However, genes often differ in their sex-bias classification or degree of sex bias between species. There is also an unequal distribution of sex-biased genes (especially male-biased genes) between the X chromosome and the autosomes. We used whole-genome expression data and evolutionary rate estimates for two different Drosophilid lineages, melanogaster and obscura, spanning an evolutionary time scale of around 50 Myr to investigate the influence of sex-biased gene expression and chromosomal location on the rate of molecular evolution. In both lineages, the rate of protein evolution correlated positively with the male/female expression ratio. Genes with highly male-biased expression, genes expressed specifically in male reproductive tissues, and genes with conserved male-biased expression over long evolutionary time scales showed the fastest rates of evolution. An analysis of sex-biased gene evolution in both lineages revealed evidence for a “fast-X” effect in which the rate of evolution was greater for X-linked than for autosomal genes. This pattern was particularly pronounced for male-biased genes. Genes located on the obscura “neo-X” chromosome, which originated from a recent X-autosome fusion, showed rates of evolution that were intermediate between genes located on the ancestral X-chromosome and the autosomes. This suggests that the shift to X-linkage led to an increase in the rate of molecular evolution. PMID:22321769

  4. Pollen feeding, resource allocation and the evolution of chemical defence in passion vine butterflies.

    PubMed

    Cardoso, M Z; Gilbert, L E

    2013-06-01

    Evolution of pollen feeding in Heliconius has allowed exploitation of rich amino acid sources and dramatically reorganized life-history traits. In Heliconius, eggs are produced mainly from adult-acquired resources, leaving somatic development and maintenance to larva effort. This innovation may also have spurred evolution of chemical defence via amino acid-derived cyanogenic glycosides. In contrast, nonpollen-feeding heliconiines must rely almost exclusively on larval-acquired resources for both reproduction and defence. We tested whether adult amino acid intake has an immediate influence on cyanogenesis in Heliconius. Because Heliconius are more distasteful to bird predators than close relatives that do not utilize pollen, we also compared cyanogenesis due to larval input across Heliconius species and nonpollen-feeding relatives. Except for one species, we found that varying the amino acid diet of an adult Heliconius has negligible effect on its cyanide concentration. Adults denied amino acids showed no decrease in cyanide and no adults showed cyanide increase when fed amino acids. Yet, pollen-feeding butterflies were capable of producing more defence than nonpollen-feeding relatives and differences were detectable in freshly emerged adults, before input of adult resources. Our data points to a larger role of larval input in adult chemical defence. This coupled with the compartmentalization of adult nutrition to reproduction and longevity suggests that one evolutionary consequence of pollen feeding, shifting the burden of reproduction to adults, is to allow the evolution of greater allocation of host plant amino acids to defensive compounds by larvae. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  5. Human genomic disease variants: a neutral evolutionary explanation.

    PubMed

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  6. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    PubMed

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Role of Evolutionary Biology in Research and Control of Liver Flukes in Southeast Asia

    PubMed Central

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F.; Wilcox, Bruce A.

    2016-01-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. PMID:27197053

  8. Human genomic disease variants: A neutral evolutionary explanation

    PubMed Central

    Dudley, Joel T.; Kim, Yuseob; Liu, Li; Markov, Glenn J.; Gerold, Kristyn; Chen, Rong; Butte, Atul J.; Kumar, Sudhir

    2012-01-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease. PMID:22665443

  9. An evolutionary critique of cultural analysis in sociology.

    PubMed

    Crippen, T

    1992-12-01

    A noteworthy development that has transpired in American sociology in the past quarter century has been the increasingly sophisticated interest in the analysis of human cultural systems. Sadly, however, these analyses reveal that social scientists rarely appreciate the profoundly evolutionary aspects of human culture. The chief purpose of this essay is to address this shortcoming and to offer some tentative suggestions toward its rectification. The essay begins by briefly reviewing recent developments in the analysis of cultural systems, primarily by reference to the influential work of Wuthnow. Second, a common flaw in these approaches is addressed-namely, the absence of any recognition of the value of grounding sociocultural theory in an informed evolutionary framework-and the case is made that this shortcoming is avoidable, even within the context of the intellectual traditions of the social sciences. Third, the evolutionary foundations of human cultural behavior are explored in terms of an analysis of relevant theoretical and empirical developments in the evolutionary neurosciences. Fourth, the value of these insights is illustrated by reference to an evolutionary critique of a recent and thought-provoking contribution to the study of modern political culture-Douglas and Wildavsky's analysis ofRisk and Culture. Finally, the article concludes by emphasizing the value of and the necessity for incorporating evolutionary reasoning into the domain of sociocultural theory.

  10. Evolution of cooperation through adaptive interaction in a spatial prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Pan, Qiuhui; Liu, Xuesong; Bao, Honglin; Su, Yu; He, Mingfeng

    2018-02-01

    In this paper, we study the effect of adaptive interaction on the evolution of cooperation in a spatial prisoner's dilemma game. The connections of players are co-evolutionary with cooperation; whether adjacent players can play the prisoner's dilemma game is associated with the strategies they took in the preceding round. If a player defected in the preceding round, his neighbors will refuse to play the prisoner's dilemma game with him in accordance with a certain probability distribution. We use the disconnecting strength to represent this probability. We discuss the evolution of cooperation with different values of temptation to defect, sucker's payoff and disconnecting strength. The simulation results show that cooperation can be significantly enhanced through increasing the value of the disconnecting strength. In addition, the increase in disconnecting strength can improve the cooperators' ability to resist the increase in temptation and the decrease in reward. We study the parameter ranges for three different evolutionary results: cooperators extinction, defectors extinction, cooperator and defector co-existence. Meanwhile, we recruited volunteers and designed a human behavioral experiment to verify the theoretical simulation results. The punishment of disconnection has a positive effect on cooperation. A higher disconnecting strength will enhance cooperation more significantly. Our research findings reveal some significant insights into efficient mechanisms of the evolution of cooperation.

  11. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis.

    PubMed

    Turchetto-Zolet, Andreia C; Maraschin, Felipe S; de Morais, Guilherme L; Cagliari, Alexandro; Andrade, Cláudia M B; Margis-Pinheiro, Marcia; Margis, Rogerio

    2011-09-20

    Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence.

  12. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis

    PubMed Central

    2011-01-01

    Background Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin. Results We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events. Conclusions In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence. PMID:21933415

  13. Assessing facial attractiveness: individual decisions and evolutionary constraints

    PubMed Central

    Kocsor, Ferenc; Feldmann, Adam; Bereczkei, Tamas; Kállai, János

    2013-01-01

    Background Several studies showed that facial attractiveness, as a highly salient social cue, influences behavioral responses. It has also been found that attractive faces evoke distinctive neural activation compared to unattractive or neutral faces. Objectives Our aim was to design a face recognition task where individual preferences for facial cues are controlled for, and to create conditions that are more similar to natural circumstances in terms of decision making. Design In an event-related functional magnetic resonance imaging (fMRI) experiment, subjects were shown attractive and unattractive faces, categorized on the basis of their own individual ratings. Results Statistical analysis of all subjects showed elevated brain activation for attractive opposite-sex faces in contrast to less attractive ones in regions that previously have been reported to show enhanced activation with increasing attractiveness level (e.g. the medial and superior occipital gyri, fusiform gyrus, precentral gyrus, and anterior cingular cortex). Besides these, females showed additional brain activation in areas thought to be involved in basic emotions and desires (insula), detection of facial emotions (superior temporal gyrus), and memory retrieval (hippocampus). Conclusions From these data, we speculate that because of the risks involving mate choice faced by women during evolutionary times, selection might have preferred the development of an elaborated neural system in females to assess the attractiveness and social value of male faces. PMID:24693356

  14. Universal scaling in the branching of the tree of life.

    PubMed

    Herrada, E Alejandro; Tessone, Claudio J; Klemm, Konstantin; Eguíluz, Víctor M; Hernández-García, Emilio; Duarte, Carlos M

    2008-07-23

    Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.

  15. Reciprocity in spatial evolutionary public goods game on double-layered network

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Yook, Soon-Hyung; Kim, Yup

    2016-08-01

    Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time.

  16. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2017-11-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  17. Beyond the EDGE with EDAM: Prioritising British Plant Species According to Evolutionary Distinctiveness, and Accuracy and Magnitude of Decline

    PubMed Central

    Pearse, William D.; Chase, Mark W.; Crawley, Michael J.; Dolphin, Konrad; Fay, Michael F.; Joseph, Jeffrey A.; Powney, Gary; Preston, Chris D.; Rapacciuolo, Giovanni; Roy, David B.; Purvis, Andy

    2015-01-01

    Conservation biologists have only finite resources, and so must prioritise some species over others. The EDGE-listing approach ranks species according to their combined evolutionary distinctiveness and degree of threat, but ignores the uncertainty surrounding both threat and evolutionary distinctiveness. We develop a new family of measures for species, which we name EDAM, that incorporates evolutionary distinctiveness, the magnitude of decline, and the accuracy with which decline can be predicted. Further, we show how the method can be extended to explore phyogenetic uncertainty. Using the vascular plants of Britain as a case study, we find that the various EDAM measures emphasise different species and parts of Britain, and that phylogenetic uncertainty can strongly affect the prioritisation scores of some species. PMID:26018568

  18. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2018-07-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  19. Reciprocity in spatial evolutionary public goods game on double-layered network

    PubMed Central

    Kim, Jinho; Yook, Soon-Hyung; Kim, Yup

    2016-01-01

    Spatial evolutionary games have mainly been studied on a single, isolated network. However, in real world systems, many interaction topologies are not isolated but many different types of networks are inter-connected to each other. In this study, we investigate the spatial evolutionary public goods game (SEPGG) on double-layered random networks (DRN). Based on the mean-field type arguments and numerical simulations, we find that SEPGG on DRN shows very rich interesting phenomena, especially, depending on the size of each layer, intra-connectivity, and inter-connected couplings, the network reciprocity of SEPGG on DRN can be drastically enhanced through the inter-connected coupling. Furthermore, SEPGG on DRN can provide a more general framework which includes the evolutionary dynamics on multiplex networks and inter-connected networks at the same time. PMID:27503801

  20. Disparity changes in 370 Ma Devonian fossils: the signature of ecological dynamics?

    PubMed

    Girard, Catherine; Renaud, Sabrina

    2012-01-01

    Early periods in Earth's history have seen a progressive increase in complexity of the ecosystems, but also dramatic crises decimating the biosphere. Such patterns are usually considered as large-scale changes among supra-specific groups, including morphological novelties, radiation, and extinctions. Nevertheless, in the same time, each species evolved by the way of micro-evolutionary processes, extended over millions of years into the evolution of lineages. How these two evolutionary scales interacted is a challenging issue because this requires bridging a gap between scales of observation and processes. The present study aims at transferring a typical macro-evolutionary approach, namely disparity analysis, to the study of fine-scale evolutionary variations in order to decipher what processes actually drove the dynamics of diversity at a micro-evolutionary level. The Late Frasnian to Late Famennian period was selected because it is punctuated by two major macro-evolutionary crises, as well as a progressive diversification of marine ecosystem. Disparity was estimated through this period on conodonts, tooth-like fossil remains of small eel-like predators that were part of the nektonic fauna. The study was focused on the emblematic genus of the period, Palmatolepis. Strikingly, both crises affected an already impoverished Palmatolepis disparity, increasing risks of random extinction. The major disparity signal rather emerged as a cycle of increase and decrease in disparity during the inter-crises period. The diversification shortly followed the first crisis and might correspond to an opportunistic occupation of empty ecological niche. The subsequent oriented shrinking in the morphospace occupation suggests that the ecological space available to Palmatolepis decreased through time, due to a combination of factors: deteriorating climate, expansion of competitors and predators. Disparity changes of Palmatolepis thus reflect changes in the structure of the ecological space itself, which was prone to evolve during this ancient period where modern ecosystems were progressively shaped.

  1. Disparity Changes in 370 Ma Devonian Fossils: The Signature of Ecological Dynamics?

    PubMed Central

    Girard, Catherine; Renaud, Sabrina

    2012-01-01

    Early periods in Earth's history have seen a progressive increase in complexity of the ecosystems, but also dramatic crises decimating the biosphere. Such patterns are usually considered as large-scale changes among supra-specific groups, including morphological novelties, radiation, and extinctions. Nevertheless, in the same time, each species evolved by the way of micro-evolutionary processes, extended over millions of years into the evolution of lineages. How these two evolutionary scales interacted is a challenging issue because this requires bridging a gap between scales of observation and processes. The present study aims at transferring a typical macro-evolutionary approach, namely disparity analysis, to the study of fine-scale evolutionary variations in order to decipher what processes actually drove the dynamics of diversity at a micro-evolutionary level. The Late Frasnian to Late Famennian period was selected because it is punctuated by two major macro-evolutionary crises, as well as a progressive diversification of marine ecosystem. Disparity was estimated through this period on conodonts, tooth-like fossil remains of small eel-like predators that were part of the nektonic fauna. The study was focused on the emblematic genus of the period, Palmatolepis. Strikingly, both crises affected an already impoverished Palmatolepis disparity, increasing risks of random extinction. The major disparity signal rather emerged as a cycle of increase and decrease in disparity during the inter-crises period. The diversification shortly followed the first crisis and might correspond to an opportunistic occupation of empty ecological niche. The subsequent oriented shrinking in the morphospace occupation suggests that the ecological space available to Palmatolepis decreased through time, due to a combination of factors: deteriorating climate, expansion of competitors and predators. Disparity changes of Palmatolepis thus reflect changes in the structure of the ecological space itself, which was prone to evolve during this ancient period where modern ecosystems were progressively shaped. PMID:22558396

  2. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem.

    PubMed

    Zamdborg, Leonid; Holloway, David M; Merelo, Juan J; Levchenko, Vladimir F; Spirov, Alexander V

    2015-06-10

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of "genomic parasites", such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts.

  3. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem

    PubMed Central

    Zamdborg, Leonid; Holloway, David M.; Merelo, Juan J.; Levchenko, Vladimir F.; Spirov, Alexander V.

    2015-01-01

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of “genomic parasites”, such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts. PMID:25767296

  4. The morphological state space revisited: what do phylogenetic patterns in homoplasy tell us about the number of possible character states?

    PubMed Central

    Hoyal Cuthill, Jennifer F.

    2015-01-01

    Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales. PMID:26640650

  5. Evidence of varying magma chambers and magmatic evolutionary histories for the Table Mountain Formation in the Carson-Iceberg Wilderness region, Sonora Pass, California

    NASA Astrophysics Data System (ADS)

    Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.

    2012-12-01

    The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving fractionation at shallower depths compared to the Sonora Pass and Grouse Meadows flows, which appear to evolve by clinopyroxene fractionation. These contrasts in the pressures of crystal fractionation may be the result of contrasts in crustal structure or tectonic setting, an issue currently being investigated.

  6. Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms.

    PubMed

    Friedrich, Tobias; Neumann, Frank

    2015-01-01

    Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints, we show that the GSEMO achieves a (1 - 1/e)-approximation in expected polynomial time. For the case of monotone functions where the constraints are given by the intersection of K ≥ 2 matroids, we show that the (1 + 1) EA achieves a (1/k + δ)-approximation in expected polynomial time for any constant δ > 0. Turning to nonmonotone symmetric submodular functions with k ≥ 1 matroid intersection constraints, we show that the GSEMO achieves a 1/((k + 2)(1 + ε))-approximation in expected time O(n(k + 6)log(n)/ε.

  7. Evolutionary suicide through a non-catastrophic bifurcation: adaptive dynamics of pathogens with frequency-dependent transmission.

    PubMed

    Boldin, Barbara; Kisdi, Éva

    2016-03-01

    Evolutionary suicide is a riveting phenomenon in which adaptive evolution drives a viable population to extinction. Gyllenberg and Parvinen (Bull Math Biol 63(5):981-993, 2001) showed that, in a wide class of deterministic population models, a discontinuous transition to extinction is a necessary condition for evolutionary suicide. An implicit assumption of their proof is that the invasion fitness of a rare strategy is well-defined also in the extinction state of the population. Epidemic models with frequency-dependent incidence, which are often used to model the spread of sexually transmitted infections or the dynamics of infectious diseases within herds, violate this assumption. In these models, evolutionary suicide can occur through a non-catastrophic bifurcation whereby pathogen adaptation leads to a continuous decline of host (and consequently pathogen) population size to zero. Evolutionary suicide of pathogens with frequency-dependent transmission can occur in two ways, with pathogen strains evolving either higher or lower virulence.

  8. Competition-Colonization Trade-Offs, Competitive Uncertainty, and the Evolutionary Assembly of Species

    PubMed Central

    Pillai, Pradeep; Guichard, Frédéric

    2012-01-01

    We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics, our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species. PMID:22448253

  9. Neo-Darwinists and Neo-Aristotelians: how to talk about natural purpose.

    PubMed

    Woodford, Peter

    2016-12-01

    This paper examines the points of disagreement between Neo-Darwinian and recent Neo-Aristotelian discussions of the status of purposive language in biology. I discuss recent Neo-Darwinian "evolutionary" treatments and distinguish three ways to deal with the philosophical status of teleological language of purpose: teleological error theory, methodological teleology, and Darwinian teleological realism. I then show how "non-evolutionary" Neo-Aristotelian approaches in the work of Michael Thompson and Philippa Foot differ from these by offering a view of purposiveness grounded in life-cycle patterns, rather than in long-term evolutionary processes or natural selection. Finally, I argue that the crucial difference between Neo-Darwinian and Neo-Aristotelian approaches regards the question of whether or not reproduction deserves the status of an "ultimate" aim of organisms. I offer reasons to reject the concept of an "ultimate" aim in evolutionary biology and to reject the notion that reproduction serves a purpose. I argue that evolutionary biology is not in the position to determine what the "ultimate" explanation of natural purpose is.

  10. Evolutionary characterization of the West Nile Virus complete genome.

    PubMed

    Gray, R R; Veras, N M C; Santos, L A; Salemi, M

    2010-07-01

    The spatial dynamics of the West Nile Virus epidemic in North America are largely unknown. Previous studies that investigated the evolutionary history of the virus used sequence data from the structural genes (prM and E); however, these regions may lack phylogenetic information and obscure true evolutionary relationships. This study systematically evaluated the evolutionary patterns in the eleven genes of the WNV genome in order to determine which region(s) were most phylogenetically informative. We found that while the E region lacks resolution and can potentially result in misleading conclusions, the full NS3 or NS5 regions have strong phylogenetic signal. Furthermore, we show that geographic structure of WNV infection within the US is more pronounced than previously reported in studies that used the structural genes. We conclude that future evolutionary studies should focus on NS3 and NS5 in order to maximize the available sequences while retaining maximal interpretative power to infer temporal and geographic trends among WNV strains. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Variable effects of temperature on insect herbivory

    PubMed Central

    Burkepile, Deron E.; Parker, John D.

    2014-01-01

    Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass. PMID:24860701

  12. The Proposal of a Evolutionary Strategy Generating the Data Structures Based on a Horizontal Tree for the Tests

    NASA Astrophysics Data System (ADS)

    Żukowicz, Marek; Markiewicz, Michał

    2016-09-01

    The aim of the article is to present a mathematical definition of the object model, that is known in computer science as TreeList and to show application of this model for design evolutionary algorithm, that purpose is to generate structures based on this object. The first chapter introduces the reader to the problem of presenting data using the TreeList object. The second chapter describes the problem of testing data structures based on TreeList. The third one shows a mathematical model of the object TreeList and the parameters, used in determining the utility of structures created through this model and in evolutionary strategy, that generates these structures for testing purposes. The last chapter provides a brief summary and plans for future research related to the algorithm presented in the article.

  13. Common evolutionary trends underlie the four-bar linkage systems of sunfish and mantis shrimp.

    PubMed

    Hu, Yinan; Nelson-Maney, Nathan; Anderson, Philip S L

    2017-05-01

    Comparative biomechanics offers an opportunity to explore the evolution of disparate biological systems that share common underlying mechanics. Four-bar linkage modeling has been applied to various biological systems such as fish jaws and crustacean appendages to explore the relationship between biomechanics and evolutionary diversification. Mechanical sensitivity states that the functional output of a mechanical system will show differential sensitivity to changes in specific morphological components. We document similar patterns of mechanical sensitivity in two disparate four-bar systems from different phyla: the opercular four-bar system in centrarchid fishes and the raptorial appendage of stomatopods. We built dynamic linkage models of 19 centrarchid and 36 stomatopod species and used phylogenetic generalized least squares regression (PGLS) to compare evolutionary shifts in linkage morphology and mechanical outputs derived from the models. In both systems, the kinematics of the four-bar mechanism show significant evolutionary correlation with the output link, while travel distance of the output arm is correlated with the coupler link. This common evolutionary pattern seen in both fish and crustacean taxa is a potential consequence of the mechanical principles underlying four-bar systems. Our results illustrate the potential influence of physical principles on morphological evolution across biological systems with different structures, behaviors, and ecologies. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. Climate-related environmental variation in a visual signalling device: the male and female dewlap in Anolis sagrei lizards.

    PubMed

    Driessens, T; Baeckens, S; Balzarolo, M; Vanhooydonck, B; Huyghe, K; Van Damme, R

    2017-10-01

    Animals communicate using a variety of signals that differ dramatically among and within species. The astonishing dewlap diversity in anoles has attracted considerable attention in this respect. Yet, the evolutionary processes behind it remain elusive and have mostly been explored for males only. Here, we considered Anolis sagrei males and females to study signal divergence among populations. First, we assessed the degree of variation in dewlap design (size, pattern and colour) and displays by comparing 17 populations distributed across the Caribbean. Second, we assessed whether the observed dewlap diversity is associated with variation in climate-related environmental conditions. Results showed that populations differed in all dewlap characteristics, with the exception of display rate in females. We further found that males and females occurring in 'xeric' environments had a higher proportion of solid dewlaps with higher UV reflectance. In addition, lizards inhabiting 'mesic' environments had primarily marginal dewlaps showing high reflectance in red. For dewlap display, a correlation with environment was only observed in males. Our study provides evidence for a strong relationship between signal design and prevailing environmental conditions, which may result from differential selection on signal efficacy. Moreover, our study highlights the importance of including females when studying dewlaps in an evolutionary context. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    2016-10-01

    The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.

  16. Non-Evolutionary Algorithms for Scheduling Dependent Tasks in Distributed Heterogeneous Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne F. Boyer; Gurdeep S. Hura

    2005-09-01

    The Problem of obtaining an optimal matching and scheduling of interdependent tasks in distributed heterogeneous computing (DHC) environments is well known to be an NP-hard problem. In a DHC system, task execution time is dependent on the machine to which it is assigned and task precedence constraints are represented by a directed acyclic graph. Recent research in evolutionary techniques has shown that genetic algorithms usually obtain more efficient schedules that other known algorithms. We propose a non-evolutionary random scheduling (RS) algorithm for efficient matching and scheduling of inter-dependent tasks in a DHC system. RS is a succession of randomized taskmore » orderings and a heuristic mapping from task order to schedule. Randomized task ordering is effectively a topological sort where the outcome may be any possible task order for which the task precedent constraints are maintained. A detailed comparison to existing evolutionary techniques (GA and PSGA) shows the proposed algorithm is less complex than evolutionary techniques, computes schedules in less time, requires less memory and fewer tuning parameters. Simulation results show that the average schedules produced by RS are approximately as efficient as PSGA schedules for all cases studied and clearly more efficient than PSGA for certain cases. The standard formulation for the scheduling problem addressed in this paper is Rm|prec|Cmax.,« less

  17. Evolutionary dynamics of a smoothed war of attrition game.

    PubMed

    Iyer, Swami; Killingback, Timothy

    2016-05-07

    In evolutionary game theory the War of Attrition game is intended to model animal contests which are decided by non-aggressive behavior, such as the length of time that a participant will persist in the contest. The classical War of Attrition game assumes that no errors are made in the implementation of an animal׳s strategy. However, it is inevitable in reality that such errors must sometimes occur. Here we introduce an extension of the classical War of Attrition game which includes the effect of errors in the implementation of an individual׳s strategy. This extension of the classical game has the important feature that the payoff is continuous, and as a consequence admits evolutionary behavior that is fundamentally different from that possible in the original game. We study the evolutionary dynamics of this new game in well-mixed populations both analytically using adaptive dynamics and through individual-based simulations, and show that there are a variety of possible outcomes, including simple monomorphic or dimorphic configurations which are evolutionarily stable and cannot occur in the classical War of Attrition game. In addition, we study the evolutionary dynamics of this extended game in a variety of spatially and socially structured populations, as represented by different complex network topologies, and show that similar outcomes can also occur in these situations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Potential Benefit of Albinism in Astyanax Cavefish: Downregulation of the oca2 Gene Increases Tyrosine and Catecholamine Levels as an Alternative to Melanin Synthesis

    PubMed Central

    Parkhurst, Amy; Jeffery, William R.

    2013-01-01

    Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment. PMID:24282555

  19. Estimating rates and patterns of morphological evolution from phylogenies: lessons in limb lability from Australian Lerista lizards

    PubMed Central

    Wiens, John J

    2009-01-01

    Squamates (lizards and snakes) offer an exciting model system for research on the evolution of body form. A new phylogenetic study in BMC Evolutionary Biology of Australian lizards shows remarkable evolutionary lability in digit numbers among closely related species, but also highlights important challenges in this area. PMID:19291259

  20. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    PubMed

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  1. Evolutionary perspectives on ageing.

    PubMed

    Reichard, Martin

    2017-10-01

    From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions.

    PubMed

    Lee, Carol Eunmi; Kiergaard, Michael; Gelembiuk, Gregory William; Eads, Brian Donovan; Posavi, Marijan

    2011-08-01

    Marine to freshwater colonizations constitute among the most dramatic evolutionary transitions in the history of life. This study examined evolution of ionic regulation following saline-to-freshwater transitions in an invasive species. In recent years, the copepod Eurytemora affinis has invaded freshwater habitats multiple times independently. We found parallel evolutionary shifts in ion-motive enzyme activity (V-type H(+) ATPase, Na(+) /K(+) -ATPase) across independent invasions and in replicate laboratory selection experiments. Freshwater populations exhibited increased V-type H(+) ATPase activity in fresh water (0 PSU) and declines at higher salinity (15 PSU) relative to saline populations. This shift represented marked evolutionary increases in plasticity. In contrast, freshwater populations displayed reduced Na(+) /K(+) -ATPase activity across all salinities. Most notably, modifying salinity alone during laboratory selection experiments recapitulated the evolutionary shifts in V-type H(+) ATPase activity observed in nature. Maternal and embryonic acclimation could not account for the observed shifts in enzyme activity. V-type H(+) ATPase function has been hypothesized to be critical for freshwater and terrestrial adaptations, but evolution of this enzyme function had not been previously demonstrated in the context of habitat transitions. Moreover, the speed of these evolutionary shifts was remarkable, within a few generations in the laboratory and a few decades in the wild. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  3. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities.

    PubMed

    Morelli, Federico; Benedetti, Yanina; Mousseau, Timothy A; Møller, Anders Pape

    2018-08-15

    Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Metatheory for Cognitive Development (or "Piaget is Dead" Revisited).

    PubMed

    Bjorklund, David F

    2018-01-16

    In 1997, I argued that with the loss of Piaget's theory as an overarching guide, cognitive development had become disjointed and a new metatheory was needed to unify the field. I suggested developmental biology, particularly evolutionary theory, as a candidate. Here, I examine the increasing emphasis of biology in cognitive development research over the past 2 decades. I describe briefly the emergence of evolutionary developmental psychology and examine areas in which proximal and distal biological causation have been particularly influential. I argue that developmental biology will continue to increasingly influence research and theory in cognitive development and that evolutionary theory is well on its way to becoming a metatheory, not just for cognitive development, but for developmental psychology generally. © 2018 The Authors. Child Development © 2018 Society for Research in Child Development, Inc.

  5. Aspiration dynamics in structured population acts as if in a well-mixed one.

    PubMed

    Du, Jinming; Wu, Bin; Wang, Long

    2015-01-26

    Understanding the evolution of human interactive behaviors is important. Recent experimental results suggest that human cooperation in spatial structured population is not enhanced as predicted in previous works, when payoff-dependent imitation updating rules are used. This constraint opens up an avenue to shed light on how humans update their strategies in real life. Studies via simulations show that, instead of comparison rules, self-evaluation driven updating rules may explain why spatial structure does not alter the evolutionary outcome. Though inspiring, there is a lack of theoretical result to show the existence of such evolutionary updating rule. Here we study the aspiration dynamics, and show that it does not alter the evolutionary outcome in various population structures. Under weak selection, by analytical approximation, we find that the favored strategy in regular graphs is invariant. Further, we show that this is because the criterion under which a strategy is favored is the same as that of a well-mixed population. By simulation, we show that this holds for random networks. Although how humans update their strategies is an open question to be studied, our results provide a theoretical foundation of the updating rules that may capture the real human updating rules.

  6. Emergence of heterogeneity in a noncompetitive resource allocation problem

    NASA Astrophysics Data System (ADS)

    Matzke, Christina; Challet, Damien

    2011-07-01

    Tuning one’s shower in some hotels may turn into a challenging coordination game with imperfect information. The temperature sensitivity increases with the number of agents, making the problem possibly unlearnable. Because there is in practice a finite number of possible tap positions, identical agents are unlikely to reach even approximately their favorite water temperature. We show that a population of agents with homogeneous strategies is evolutionary unstable, which gives insights into the emergence of heterogeneity, the latter being tempting but risky.

  7. Structural symmetry in evolutionary games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-10-06

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be 'evolutionarily equivalent' in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term 'homogeneous' should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. © 2015 The Author(s).

  8. Structural symmetry in evolutionary games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436

  9. From the "Modern Synthesis" to cybernetics: Ivan Ivanovich Schmalhausen (1884-1963) and his research program for a synthesis of evolutionary and developmental biology.

    PubMed

    Levit, Georgy S; Hossfeld, Uwe; Olsson, Lennart

    2006-03-15

    Ivan I. Schmalhausen was one of the central figures in the Russian development of the "Modern Synthesis" in evolutionary biology. He is widely cited internationally even today. Schmalhausen developed the main principles of his theory facing the danger of death in the totalitarian Soviet Union. His great services to evolutionary and theoretical biology are indisputable. However, the received view of Schmalhausen's contributions to evolutionary biology makes an unbiased reading of his texts difficult. Here we show that taking all of his works into consideration (including those only available in Russian) paints a much more dynamic and exciting picture of what he tried to achieve. Schmalhausen pioneered the integration of a developmental perspective into evolutionary thinking. A main tool for achieving this was his approach to living objects as complex multi-level self-regulating systems. Schmalhausen put enormous effort into bringing this idea into fruition during the final stages of his career by combining evolutionary theory with cybernetics. His results and ideas remain thought-provoking, and his texts are of more than just historical interest. Copyright 2006 Wiley-Liss, Inc.

  10. Hierarchical complexity and the size limits of life.

    PubMed

    Heim, Noel A; Payne, Jonathan L; Finnegan, Seth; Knope, Matthew L; Kowalewski, Michał; Lyons, S Kathleen; McShea, Daniel W; Novack-Gottshall, Philip M; Smith, Felisa A; Wang, Steve C

    2017-06-28

    Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases. © 2017 The Author(s).

  11. Short Lesson Plan Associated with Increased Acceptance of Evolutionary Theory and Potential Change in Three Alternate Conceptions of Macroevolution in Undergraduate Students

    ERIC Educational Resources Information Center

    Abraham, Joel K.; Perez, Kathryn E.; Downey, Nicholas; Herron, Jon C.; Meir, Eli

    2012-01-01

    Undergraduates commonly harbor alternate conceptions about evolutionary biology; these alternate conceptions often persist, even after intensive instruction, and may influence acceptance of evolution. We interviewed undergraduates to explore their alternate conceptions about macroevolutionary patterns and designed a 2-h lesson plan to present…

  12. Chromosome rearrangements and the evolution of genome structuring and adaptability.

    PubMed

    Crombach, Anton; Hogeweg, Paulien

    2007-05-01

    Eukaryotes appear to evolve by micro and macro rearrangements. This is observed not only for long-term evolutionary adaptation, but also in short-term experimental evolution of yeast, Saccharomyces cerevisiae. Moreover, based on these and other experiments it has been postulated that repeat elements, retroposons for example, mediate such events. We study an evolutionary model in which genomes with retroposons and a breaking/repair mechanism are subjected to a changing environment. We show that retroposon-mediated rearrangements can be a beneficial mutational operator for short-term adaptations to a new environment. But simply having the ability of rearranging chromosomes does not imply an advantage over genomes in which only single-gene insertions and deletions occur. Instead, a structuring of the genome is needed: genes that need to be amplified (or deleted) in a new environment have to cluster. We show that genomes hosting retroposons, starting with a random order of genes, will in the long run become organized, which enables (fast) rearrangement-based adaptations to the environment. In other words, our model provides a "proof of principle" that genomes can structure themselves in order to increase the beneficial effect of chromosome rearrangements.

  13. Three-week inpatient Cognitive Evolutionary Therapy (CET) for patients with personality disorders: evidence of effectiveness in symptoms reduction and improved treatment adherence.

    PubMed

    Prunetti, Elena; Bosio, Valentina; Bateni, Marco; Liotti, Giovanni

    2013-09-01

    The aim of this study was to evaluate the efficacy of Cognitive Evolutionary Therapy (CET) in an intensive short residential treatment of a wide range of severe personality disorders (PDs) that resulted in a reduction of social functioning and significant personal distress. Each patient was assessed at admission, discharge, and 3 months later in order to determine if there was a reduction in symptoms and an improved adherence to former outpatient programs and to check if patients were undergoing new treatment after discharge. Fifty-one patients participated in this study. The 20-hr weekly program consisted of two individual sessions and various group modules. Outcome measures included: self-reported measures of depression, anxiety, general symptoms, number and duration of inpatient admissions after the programme, and continuation in an outpatient treatment programme. The results show an overall improvement in general psychopathology after the release and in follow-up sessions, a decrease in the number of further hospital admissions, and an increased level of attendance of outpatient therapy. This study shows that intensive short residential treatment is an effective treatment for patients with a wide range of PDs. © 2012 The British Psychological Society.

  14. Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells.

    PubMed

    Bru, Samuel; Samper-Martín, Bàrbara; Quandt, Eva; Hernández-Ortega, Sara; Martínez-Laínez, Joan M; Garí, Eloi; Rafel, Marta; Torres-Torronteras, Javier; Martí, Ramón; Ribeiro, Mariana P C; Jiménez, Javier; Clotet, Josep

    2017-09-01

    Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. On the relationship between phylogenetic diversity and trait diversity.

    PubMed

    Tucker, Caroline M; Davies, T Jonathan; Cadotte, Marc W; Pearse, William D

    2018-05-21

    Niche differences are key to understanding the distribution and structure of biodiversity. To examine niche differences, we must first characterize how species occupy niche space, and two approaches are commonly used in the ecological literature. The first uses species traits to estimate multivariate trait space (so-called functional trait diversity, FD); the second quantifies the amount of time or evolutionary history captured by a group of species (phylogenetic diversity, PD). It is often-but controversially-assumed that these putative measures of niche space are at a minimum correlated and perhaps redundant, since more evolutionary time allows for greater accumulation of trait changes. This theoretical expectation remains surprisingly poorly evaluated, particularly in the context of multivariate measures of trait diversity. We evaluated the relationship between phylogenetic diversity and trait diversity using analytical and simulation-based methods across common models of trait evolution. We show that PD correlates with FD increasingly strongly as more traits are included in the FD measure. Our results indicate that phylogenetic diversity can be a useful surrogate for high-dimensional trait diversity, but we also show that the correlation weakens when the underlying process of trait evolution includes variation in rate and optima. © 2018 by the Ecological Society of America.

  16. Insect immunity shows specificity in protection upon secondary pathogen exposure.

    PubMed

    Sadd, Ben M; Schmid-Hempel, Paul

    2006-06-20

    Immunological memory in vertebrates, conferring lasting specific protection after an initial pathogen exposure, has implications for a broad spectrum of evolutionary, epidemiological, and medical phenomena . However, the existence of specificity in protection upon secondary pathogen exposure in invertebrates remains controversial . To separate this functional phenomenon from a particular mechanism, we refer to it as specific immune priming. We investigate the presence of specific immune priming in workers of the social insect Bombus terrestris. Using three bacterial pathogens, we test whether a prior homologous pathogen exposure gives a benefit in terms of long-term protection against a later challenge, over and above a heterologous combination. With a reciprocally designed initial and second-exposure protocol (i.e., all combinations of bacteria were tested), we demonstrate, even several weeks after the clearance of a first exposure, increased protection and narrow specificity upon secondary exposure. This demonstrates that the invertebrate immune system is functionally capable of unexpectedly specific and durable induced protection. Ultimately, despite general broad differences between vertebrates and invertebrates, the ability of both immune systems to show specificity in protection suggests that their immune defenses have found comparable solutions to similar selective pressures over evolutionary time.

  17. The evolution of life-history variation in fishes, with particular reference to flatfishes

    NASA Astrophysics Data System (ADS)

    Roff, Derek A.

    This paper explores four aspects of the evolution of life-history variation in fish, with particular reference to the flatfishes: 1. genetic variation and evolutionary response; 2. the size and age at first reproduction; 3. adult lifespan and variation in recruitment; 4. the relationship between reproductive effort and age. Evolutionary response may be limited by previous evolutionary pathways (phylogenetic variation) or by lack of genetic variation due to selection for a single trait. Estimates of heritability suggest, as predicted, that selection is stronger on life-history traits than morphological traits; but there is still adequate genetic variation to permit fairly rapid evolutionary changes. Several approaches to the analysis of the optimal age and size at first reproduction are discussed in the light of a general life-history model based on the assumption that natural selection maximizes r or R 0. It is concluded that one of the most important areas of future research is the relationship between reproduction and mortality. Murphy's hypothesis that the reproductive lifespan should increase with variation in spawning success is shown to be incorrect for fish, at least at the level of interspecific comparison. The model of Charlesworth & León predicting the sufficient condition for reproductive effort to increase with age is tested: in 28 of 31 cases the model predicts an increase of reproductive effort with age. These results suggest that, in general, reproductive effort should increase with age in fish. This prediction is confirmed in the 15 species for which adequate data exist.

  18. HIGH RATES OF EVOLUTION PRECEDED THE ORIGIN OF BIRDS

    PubMed Central

    Puttick, Mark N; Thomas, Gavin H; Benton, Michael J; Polly, P David

    2014-01-01

    The origin of birds (Aves) is one of the great evolutionary transitions. Fossils show that many unique morphological features of modern birds, such as feathers, reduction in body size, and the semilunate carpal, long preceded the origin of clade Aves, but some may be unique to Aves, such as relative elongation of the forelimb. We study the evolution of body size and forelimb length across the phylogeny of coelurosaurian theropods and Mesozoic Aves. Using recently developed phylogenetic comparative methods, we find an increase in rates of body size and body size dependent forelimb evolution leading to small body size relative to forelimb length in Paraves, the wider clade comprising Aves and Deinonychosauria. The high evolutionary rates arose primarily from a reduction in body size, as there were no increased rates of forelimb evolution. In line with a recent study, we find evidence that Aves appear to have a unique relationship between body size and forelimb dimensions. Traits associated with Aves evolved before their origin, at high rates, and support the notion that numerous lineages of paravians were experimenting with different modes of flight through the Late Jurassic and Early Cretaceous. PMID:24471891

  19. Analysis and application of opinion model with multiple topic interactions.

    PubMed

    Xiong, Fei; Liu, Yun; Wang, Liang; Wang, Ximeng

    2017-08-01

    To reveal heterogeneous behaviors of opinion evolution in different scenarios, we propose an opinion model with topic interactions. Individual opinions and topic features are represented by a multidimensional vector. We measure an agent's action towards a specific topic by the product of opinion and topic feature. When pairs of agents interact for a topic, their actions are introduced to opinion updates with bounded confidence. Simulation results show that a transition from a disordered state to a consensus state occurs at a critical point of the tolerance threshold, which depends on the opinion dimension. The critical point increases as the dimension of opinions increases. Multiple topics promote opinion interactions and lead to the formation of macroscopic opinion clusters. In addition, more topics accelerate the evolutionary process and weaken the effect of network topology. We use two sets of large-scale real data to evaluate the model, and the results prove its effectiveness in characterizing a real evolutionary process. Our model achieves high performance in individual action prediction and even outperforms state-of-the-art methods. Meanwhile, our model has much smaller computational complexity. This paper provides a demonstration for possible practical applications of theoretical opinion dynamics.

  20. Lower levels of maternal capital in early life predict offspring obesity in adulthood.

    PubMed

    Gillette, Meghan T; Lohman, Brenda J; Neppl, Tricia K

    2017-05-01

    As of 2013, 65% of the world's population lived in countries where overweight/obesity kills more people than being underweight. Evolutionary perspectives provide a holistic understanding of both how and why obesity develops and its long-term implications. To test whether the maternal capital hypothesis, an evolutionary perspective, is viable for explaining the development of obesity in adulthood. Restricted-use data from the National Longitudinal Study of Adolescent Health (Add Health; n = 11 403) was analysed using logistic regressions. The sample included adolescents and their biological mothers. The odds of obesity in adulthood increased by 22% for every standard deviation increase in lack of maternal capital (Exp (B) = 1.22, p < .001). That is, individuals whose mothers were young, of an ethnic minority and had short breastfeeding durations were more likely to be obese in adulthood, even after controlling for other factors in infancy, adolescence and adulthood. The results showed that those whose mothers had lower capital were more prone to later life disease (specifically, obesity). The maternal capital perspective is useful for explaining how and why early life characteristics (including maternal resources) predict obesity in adulthood. Implications of the findings are discussed.

  1. Epidemiological, evolutionary, and coevolutionary implications of context-dependent parasitism.

    PubMed

    Vale, Pedro F; Wilson, Alastair J; Best, Alex; Boots, Mike; Little, Tom J

    2011-04-01

    Abstract Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster-growing parasites do not appear to cause more damage, and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we show how easily an interaction can shift from a severe interaction, that is, when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modeling pathogen evolution and disease spread under different levels of infection severity and found that environmental shifts that promote tolerance ultimately result in populations harboring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus, our results suggest two mechanisms that could underlie coevolutionary hotspots and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection.

  2. General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.

    PubMed

    de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael

    2016-11-01

    Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.

  3. Genetic basis and fitness correlates of dynamic carotenoid-based ornamental coloration in male and female common kestrels Falco tinnunculus.

    PubMed

    Vergara, P; Fargallo, J A; Martínez-Padilla, J

    2015-01-01

    Knowledge of the genetic basis of sexual ornaments is essential to understand their evolution through sexual selection. Although carotenoid-based ornaments have been instrumental in the study of sexual selection, given the inability of animals to synthesize carotenoids de novo, they are generally assumed to be influenced solely by environmental variation. However, very few studies have directly estimated the role of genes and the environment in shaping variation in carotenoid-based traits. Using long-term individual-based data, we here explore the evolutionary potential of a dynamic, carotenoid-based ornament (namely skin coloration), in male and female common kestrels. We first estimate the amount of genetic variation underlying variation in hue, chroma and brightness. After correcting for sex differences, the chroma of the orange-yellow eye ring coloration was significantly heritable (h2±SE=0.40±0.17), whereas neither hue (h2=0) nor brightness (h2=0.02) was heritable. Second, we estimate the strength and shape of selection acting upon chromatic (hue and chroma) and achromatic (brightness) variation and show positive and negative directional selection on female but not male chroma and hue, respectively, whereas brightness was unrelated to fitness in both sexes. This suggests that different components of carotenoid-based signals traits may show different evolutionary dynamics. Overall, we show that carotenoid-based coloration is a complex and multifaceted trait. If we are to gain a better understanding of the processes responsible for the generation and maintenance of variation in carotenoid-based coloration, these complexities need to be taken into account. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  4. Disruptive selection as a driver of evolutionary branching and caste evolution in social insects.

    PubMed

    Planqué, R; Powell, S; Franks, N R; van den Berg, J B

    2016-11-01

    Theory suggests that evolutionary branching via disruptive selection may be a relatively common and powerful force driving phenotypic divergence. Here, we extend this theory to social insects, which have novel social axes of phenotypic diversification. Our model, built around turtle ant (Cephalotes) biology, is used to explore whether disruptive selection can drive the evolutionary branching of divergent colony phenotypes that include a novel soldier caste. Soldier evolution is a recurrent theme in social insect diversification that is exemplified in the turtle ants. We show that phenotypic mutants can gain competitive advantages that induce disruptive selection and subsequent branching. A soldier caste does not generally appear before branching, but can evolve from subsequent competition. The soldier caste then evolves in association with specialized resource preferences that maximize defensive performance. Overall, our model indicates that resource specialization may occur in the absence of morphological specialization, but that when morphological specialization evolves, it is always in association with resource specialization. This evolutionary coupling of ecological and morphological specialization is consistent with recent empirical evidence, but contrary to predictions of classical caste theory. Our model provides a new theoretical understanding of the ecology of caste evolution that explicitly considers the process of adaptive phenotypic divergence and diversification. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  5. Aphid specialization on different summer hosts is associated with strong genetic differentiation and unequal symbiont communities despite a common mating habitat.

    PubMed

    Vorburger, C; Herzog, J; Rouchet, R

    2017-04-01

    Specialization on different host plants can promote evolutionary diversification of herbivorous insects. Work on pea aphids (Acyrthosiphon pisum) has contributed significantly to the understanding of this process, demonstrating that populations associated with different host plants exhibit performance trade-offs across hosts, show adaptive host choice and genetic differentiation and possess different communities of bacterial endosymbionts. Populations specialized on different secondary host plants during the parthenogenetic summer generations are also described for the black bean aphid (Aphis fabae complex) and are usually treated as different (morphologically cryptic) subspecies. In contrast to pea aphids, however, host choice and mate choice are decoupled in black bean aphids, because populations from different summer hosts return to the same primary host plant to mate and lay overwintering eggs. This could counteract evolutionary divergence, and it is currently unknown to what extent black bean aphids using different summer hosts are indeed differentiated. We addressed this question by microsatellite genotyping and endosymbiont screening of black bean aphids collected in summer from the goosefoot Chenopodium album (subspecies A. f. fabae) and from thistles of the genus Cirsium (subspecies A. f. cirsiiacanthoides) across numerous sites in Switzerland and France. Our results show clearly that aphids from Cirsium and Chenopodium exhibit strong and geographically consistent genetic differentiation and that they differ in their frequencies of infection with particular endosymbionts. The dependence on a joint winter host has thus not prevented the evolutionary divergence into summer host-adapted populations that appear to have evolved mechanisms of reproductive isolation within a common mating habitat. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  6. Evolutionary diversification of the auditory organ sensilla in Neoconocephalus katydids (Orthoptera: Tettigoniidae) correlates with acoustic signal diversification over phylogenetic relatedness and life history.

    PubMed

    Strauß, J; Alt, J A; Ekschmitt, K; Schul, J; Lakes-Harlan, R

    2017-06-01

    Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well-developed auditory sensilla, on average 32-35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree–herbivore networks

    PubMed Central

    Robinson, Kathryn M; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R

    2015-01-01

    Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen–herbivore bipartite networks, the role of environmental variations is a dominant constraint. PMID:26306175

  8. Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone.

    PubMed

    Jouiaei, Mahdokht; Sunagar, Kartik; Federman Gross, Aya; Scheib, Holger; Alewood, Paul F; Moran, Yehu; Fry, Bryan G

    2015-06-01

    Despite Cnidaria (sea anemones, corals, jellyfish, and hydroids) being the oldest venomous animal lineage, structure-function relationships, phyletic distributions, and the molecular evolutionary regimes of toxins encoded by these intriguing animals are poorly understood. Hence, we have comprehensively elucidated the phylogenetic and molecular evolutionary histories of pharmacologically characterized cnidarian toxin families, including peptide neurotoxins (voltage-gated Na(+) and K(+) channel-targeting toxins: NaTxs and KTxs, respectively), pore-forming toxins (actinoporins, aerolysin-related toxins, and jellyfish toxins), and the newly discovered small cysteine-rich peptides (SCRiPs). We show that despite long evolutionary histories, most cnidarian toxins remain conserved under the strong influence of negative selection-a finding that is in striking contrast to the rapid evolution of toxin families in evolutionarily younger lineages, such as cone snails and advanced snakes. In contrast to the previous suggestions that implicated SCRiPs in the biomineralization process in corals, we demonstrate that they are potent neurotoxins that are likely involved in the envenoming function, and thus represent the first family of neurotoxins from corals. We also demonstrate the common evolutionary origin of type III KTxs and NaTxs in sea anemones. We show that type III KTxs have evolved from NaTxs under the regime of positive selection, and likely represent a unique evolutionary innovation of the Actinioidea lineage. We report a correlation between the accumulation of episodically adaptive sites and the emergence of novel pharmacological activities in this rapidly evolving neurotoxic clade. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. CROSS-RESISTANCE FOLLOWING ARTIFICIAL SELECTION FOR INCREASED DEFENSE AGAINST PARASITOIDS IN DROSOPHILA MELANOGASTER.

    PubMed

    Fellowes, M D E; Kraaijeveld, A R; Godfray, H C J

    1999-06-01

    An increase in resistance to one natural enemy may result in no correlated change, a positive correlated change, or a negative correlated change in the ability of the host or prey to resist other natural enemies. The type of specificity is important in understanding the evolutionary response to natural enemies and was studied here in a Drosophila-paxasitoid system. Drosophila melanogaster lines selected for increased larval resistance to the endoparasitoid wasps Asobara tabida or Leptopilina boulardi were exposed to attack by A. tabida, L. boulardi and Leptopilina heterotoma at 15°C, 20°C, and 25°C. In general, encapsulation ability increased with temperature, with the exception of the lines selected against L. boulardi, which showed the opposite trend. Lines selected against L. boulardi showed large increases in resistance against all three parasitoid species, and showed similar levels of defense against A. tabida to the lines selected against that parasitoid. In contrast, lines selected against A. tabida showed a large increase in resistance to A. tabida and generally to L. heterotoma, but displayed only a small change in their ability to survive attack by L. boulardi. Such asymmetries in correlated responses to selection for increased resistance to natural enemies may influence host-parasitoid community structure. © 1999 The Society for the Study of Evolution.

  10. Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles.

    PubMed

    Shang, Shuai; Zhong, Huaming; Wu, Xiaoyang; Wei, Qinguo; Zhang, Huanxin; Chen, Jun; Chen, Yao; Tang, Xuexi; Zhang, Honghai

    2018-04-01

    Toll-like receptors (TLRs) encoded by the TLR multigene family play an important role in initial pathogen recognition in vertebrates. Among the TLRs, TLR2 and TLR4 may be of particular importance to reptiles. In order to study the evolutionary patterns and structural characteristics of TLRs, we explored the available genomes of several representative members of reptiles. 25 TLR2 genes and 19 TLR4 genes from reptiles were obtained in this study. Phylogenetic results showed that the TLR2 gene duplication occurred in several species. Evolutionary analysis by at least two methods identified 30 and 13 common positively selected codons in TLR2 and TLR4, respectively. Most positively selected sites of TLR2 and TLR4 were located in the Leucine-rich repeat (LRRs). Branch model analysis showed that TLR2 genes were under different evolutionary forces in reptiles, while the TLR4 genes showed no significant selection pressure. The different evolutionary adaptation of TLR2 and TLR4 among the reptiles might be due to their different function in recognizing bacteria. Overall, we explored the structure and evolution of TLR2 and TLR4 genes in reptiles for the first time. Our study revealed valuable information regarding TLR2 and TLR4 in reptiles, and provided novel insights into the conservation concern of natural populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Neutral polymorphisms in putative housekeeping genes and tandem repeats unravels the population genetics and evolutionary history of Plasmodium vivax in India.

    PubMed

    Prajapati, Surendra K; Joshi, Hema; Carlton, Jane M; Rizvi, M Alam

    2013-01-01

    The evolutionary history and age of Plasmodium vivax has been inferred as both recent and ancient by several studies, mainly using mitochondrial genome diversity. Here we address the age of P. vivax on the Indian subcontinent using selectively neutral housekeeping genes and tandem repeat loci. Analysis of ten housekeeping genes revealed a substantial number of SNPs (n = 75) from 100 P. vivax isolates collected from five geographical regions of India. Neutrality tests showed a majority of the housekeeping genes were selectively neutral, confirming the suitability of housekeeping genes for inferring the evolutionary history of P. vivax. In addition, a genetic differentiation test using housekeeping gene polymorphism data showed a lack of geographical structuring between the five regions of India. The coalescence analysis of the time to the most recent common ancestor estimate yielded an ancient TMRCA (232,228 to 303,030 years) and long-term population history (79,235 to 104,008) of extant P. vivax on the Indian subcontinent. Analysis of 18 tandem repeat loci polymorphisms showed substantial allelic diversity and heterozygosity per locus, and analysis of potential bottlenecks revealed the signature of a stable P. vivax population, further corroborating our ancient age estimates. For the first time we report a comparable evolutionary history of P. vivax inferred by nuclear genetic markers (putative housekeeping genes) to that inferred from mitochondrial genome diversity.

  12. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms.

    PubMed

    Killeen, Joshua; Gougat-Barbera, Claire; Krenek, Sascha; Kaltz, Oliver

    2017-04-01

    Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche. © 2017 John Wiley & Sons Ltd.

  13. The Origin and Evolutionary Consequences of Skeletal Traits Shaped by Embryonic Muscular Activity, from Basal Theropods to Modern Birds.

    PubMed

    Vargas, Alexander O; Ruiz-Flores, Macarena; Soto-Acuña, Sergio; Haidr, Nadia; Acosta-Hospitaleche, Carolina; Ossa-Fuentes, Luis; Muñoz-Walther, Vicente

    2017-12-01

    Embryonic muscular activity (EMA) is involved in the development of several distinctive traits of birds. Modern avian diversity and the fossil record of the dinosaur-bird transition allow special insight into their evolution. Traits shaped by EMA result from mechanical forces acting at post-morphogenetic stages, such that genes often play a very indirect role. Their origin seldom suggests direct selection for the trait, but a side-effect of other changes such as musculo-skeletal rearrangements, heterochrony in skeletal maturation, or increased incubation temperature (which increases EMA). EMA-shaped traits like sesamoids may be inconstant, highly conserved, or even disappear and then reappear in evolution. Some sesamoids may become increasingly influenced in evolution by genetic-molecular mechanisms (genetic assimilation). There is also ample evidence of evolutionary transitions from sesamoids to bony eminences at tendon insertion sites, and vice-versa. This can be explained by newfound similarities in the earliest development of both kinds of structures, which suggest these transitions are likely triggered by EMA. Other traits that require EMA for their formation will not necessarily undergo genetic assimilation, but still be conserved over tens and hundreds of millions of years, allowing evolutionary reduction and loss of other skeletal elements. Upon their origin, EMA-shaped traits may not be directly genetic, nor immediately adaptive. Nevertheless, EMA can play a key role in evolutionary innovation, and have consequences for the subsequent direction of evolutionary change. Its role may be more important and ubiquitous than currently suspected. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems

    PubMed Central

    Thrall, Peter H; Oakeshott, John G; Fitt, Gary; Southerton, Simon; Burdon, Jeremy J; Sheppard, Andy; Russell, Robyn J; Zalucki, Myron; Heino, Mikko; Ford Denison, R

    2011-01-01

    Anthropogenic impacts increasingly drive ecological and evolutionary processes at many spatio-temporal scales, demanding greater capacity to predict and manage their consequences. This is particularly true for agro-ecosystems, which not only comprise a significant proportion of land use, but which also involve conflicting imperatives to expand or intensify production while simultaneously reducing environmental impacts. These imperatives reinforce the likelihood of further major changes in agriculture over the next 30–40 years. Key transformations include genetic technologies as well as changes in land use. The use of evolutionary principles is not new in agriculture (e.g. crop breeding, domestication of animals, management of selection for pest resistance), but given land-use trends and other transformative processes in production landscapes, ecological and evolutionary research in agro-ecosystems must consider such issues in a broader systems context. Here, we focus on biotic interactions involving pests and pathogens as exemplars of situations where integration of agronomic, ecological and evolutionary perspectives has practical value. Although their presence in agro-ecosystems may be new, many traits involved in these associations evolved in natural settings. We advocate the use of predictive frameworks based on evolutionary models as pre-emptive management tools and identify some specific research opportunities to facilitate this. We conclude with a brief discussion of multidisciplinary approaches in applied evolutionary problems. PMID:25567968

  15. Archaeogenetics in evolutionary medicine.

    PubMed

    Bouwman, Abigail; Rühli, Frank

    2016-09-01

    Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.

  16. Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks

    PubMed Central

    Yong, Xi

    2016-01-01

    The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882

  17. Evolution of Swarming Behavior Is Shaped by How Predators Attack.

    PubMed

    Olson, Randal S; Knoester, David B; Adami, Christoph

    2016-01-01

    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of domains of danger. Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.

  18. A Case-by-Case Evolutionary Analysis of Four Imprinted Retrogenes

    PubMed Central

    McCole, Ruth B; Loughran, Noeleen B; Chahal, Mandeep; Fernandes, Luis P; Roberts, Roland G; Fraternali, Franca; O'Connell, Mary J; Oakey, Rebecca J

    2011-01-01

    Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths. PMID:21166792

  19. Evolution of optimal Lévy-flight strategies in human mental searches

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo; Baronchelli, Andrea

    2012-06-01

    Recent analysis of empirical data [Radicchi, Baronchelli, and Amaral, PloS ONE1932-620310.1371/journal.pone.0029910 7, e029910 (2012)] showed that humans adopt Lévy-flight strategies when exploring the bid space in online auctions. A game theoretical model proved that the observed Lévy exponents are nearly optimal, being close to the exponent value that guarantees the maximal economical return to players. Here, we rationalize these findings by adopting an evolutionary perspective. We show that a simple evolutionary process is able to account for the empirical measurements with the only assumption that the reproductive fitness of the players is proportional to their search ability. Contrary to previous modeling, our approach describes the emergence of the observed exponent without resorting to any strong assumptions on the initial searching strategies. Our results generalize earlier research, and open novel questions in cognitive, behavioral, and evolutionary sciences.

  20. Acoustic communication at the water's edge: evolutionary insights from a mudskipper.

    PubMed

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an "exaptation hypothesis", i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes.

  1. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.

    PubMed

    Derrac, Joaquín; Triguero, Isaac; Garcia, Salvador; Herrera, Francisco

    2012-10-01

    Cooperative coevolution is a successful trend of evolutionary computation which allows us to define partitions of the domain of a given problem, or to integrate several related techniques into one, by the use of evolutionary algorithms. It is possible to apply it to the development of advanced classification methods, which integrate several machine learning techniques into a single proposal. A novel approach integrating instance selection, instance weighting, and feature weighting into the framework of a coevolutionary model is presented in this paper. We compare it with a wide range of evolutionary and nonevolutionary related methods, in order to show the benefits of the employment of coevolution to apply the techniques considered simultaneously. The results obtained, contrasted through nonparametric statistical tests, show that our proposal outperforms other methods in the comparison, thus becoming a suitable tool in the task of enhancing the nearest neighbor classifier.

  2. Acoustic Communication at the Water's Edge: Evolutionary Insights from a Mudskipper

    PubMed Central

    Polgar, Gianluca; Malavasi, Stefano; Cipolato, Giacomo; Georgalas, Vyron; Clack, Jennifer A.; Torricelli, Patrizia

    2011-01-01

    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an “exaptation hypothesis”, i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes. PMID:21738663

  3. Evolution of high-level resistance during low-level antibiotic exposure.

    PubMed

    Wistrand-Yuen, Erik; Knopp, Michael; Hjort, Karin; Koskiniemi, Sanna; Berg, Otto G; Andersson, Dan I

    2018-04-23

    It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.

  4. Biogeography-based particle swarm optimization with fuzzy elitism and its applications to constrained engineering problems

    NASA Astrophysics Data System (ADS)

    Guo, Weian; Li, Wuzhao; Zhang, Qun; Wang, Lei; Wu, Qidi; Ren, Hongliang

    2014-11-01

    In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.

  5. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  6. Onymity promotes cooperation in social dilemma experiments

    PubMed Central

    Wang, Zhen; Jusup, Marko; Wang, Rui-Wu; Shi, Lei; Iwasa, Yoh; Moreno, Yamir; Kurths, Jürgen

    2017-01-01

    One of the most elusive scientific challenges for over 150 years has been to explain why cooperation survives despite being a seemingly inferior strategy from an evolutionary point of view. Over the years, various theoretical scenarios aimed at solving the evolutionary puzzle of cooperation have been proposed, eventually identifying several cooperation-promoting mechanisms: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. We report the results of repeated Prisoner’s Dilemma experiments with anonymous and onymous pairwise interactions among individuals. We find that onymity significantly increases the frequency of cooperation and the median payoff per round relative to anonymity. Furthermore, we also show that the correlation between players’ ranks and the usage of strategies (cooperation, defection, or punishment) underwent a fundamental shift, whereby more prosocial actions are rewarded with a better ranking under onymity. Our findings prove that reducing anonymity is a valid promoter of cooperation, leading to higher payoffs for cooperators and thus suppressing an incentive—anonymity—that would ultimately favor defection. PMID:28435860

  7. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification

    PubMed Central

    Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.

    2016-01-01

    The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544

  8. Test scheduling optimization for 3D network-on-chip based on cloud evolutionary algorithm of Pareto multi-objective

    NASA Astrophysics Data System (ADS)

    Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan

    2018-03-01

    In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.

  9. A limited host immune range facilitates the creation and maintenance of diversity in parasite virulence

    PubMed Central

    Best, Alex; Hoyle, Andy

    2013-01-01

    A vast theoretical literature has explored the evolutionary dynamics of parasite virulence. The classic result from this modelling work is that, assuming a saturating transmission–virulence trade-off, there is a single evolutionary optimum where the parasite optimizes the epidemiological R0. However, there are an increasing number of models that have shown how ecological and epidemiological feedbacks to evolution can instead result in the creation and maintenance of multiple parasite strains. Here, we fully explore one such example, where recovered hosts have a limited ‘immune range’ resulting in partial cross-immunity to parasite strains that they have not previously encountered. Taking an adaptive dynamics approach, we show that, provided this immune range is not too wide, high levels of diversity can evolve and be maintained through multiple branching events. We argue that our model provides a more realistic picture of disease dynamics in vertebrate host populations and may be a key explanatory factor in the high levels of parasite diversity seen in natural systems. PMID:24516712

  10. Disentangling the intragroup HI in Compact Groups of galaxies by means of X3D visualization

    NASA Astrophysics Data System (ADS)

    Verdes-Montenegro, Lourdes; Vogt, Frederic; Aubery, Claire; Duret, Laetitie; Garrido, Julián; Sánchez, Susana; Yun, Min S.; Borthakur, Sanchayeeta; Hess, Kelley; Cluver, Michelle; Del Olmo, Ascensión; Perea, Jaime

    2017-03-01

    As an extreme kind of environment, Hickson Compact groups (HCGs) have shown to be very complex systems. HI-VLA observations revealed an intrincated network of HI tails and bridges, tracing pre-processing through extreme tidal interactions. We found HCGs to show a large HI deficiency supporting an evolutionary sequence where gas-rich groups transform via tidal interactions and ISM (interstellar medium) stripping into gas-poor systems. We detected as well a diffuse HI component in the groups, increasing with evolutionary phase, although with uncertain distribution. The complex net of detected HI as observed with the VLA seems hence so puzzling as the missing one. In this talk we revisit the existing VLA information on the HI distribution and kinematics of HCGs by means of X3D visualization. X3D constitutes a powerful tool to extract the most from HI data cubes and a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3-D) diagrams.

  11. Stepping out of the caveman's shadow: nations' gender gap predicts degree of sex differentiation in mate preferences.

    PubMed

    Zentner, Marcel; Mitura, Klaudia

    2012-10-01

    An influential explanation for gender differences in mating strategies is that the sex-specific reproductive constraints faced by human ancestors shaped these differences. Other theorists have emphasized the role of societal factors, hypothesizing, for example, that gender differences in mate preferences should wane in gender-equal societies. However, findings have been ambiguous. Using recent data and a novel measure of gender equality, we revisited the role of gender parity in gender differentiation for mate preferences. In the first study, 3,177 participants from 10 nations with a gradually decreasing Global Gender Gap Index (GGI) provided online ratings of the desirability of mate attributes with reportedly evolutionary origins. In the second study, GGI scores were related to gender differences in mate preferences previously reported for 8,953 participants from 31 nations (Buss, 1989). Both studies show that gender differences in mate preferences with presumed evolutionary roots decline proportionally to increases in nations' gender parity.

  12. Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA.

    PubMed

    Xu, Weijia; Ozer, Stuart; Gutell, Robin R

    2009-01-01

    With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure.

  13. Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA

    PubMed Central

    Xu, Weijia; Ozer, Stuart; Gutell, Robin R.

    2010-01-01

    With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure. PMID:20502534

  14. Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks

    NASA Astrophysics Data System (ADS)

    Wu, Yu'E.; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong

    2017-01-01

    Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world.

  15. ROTATION PERIODS AND AGES OF SOLAR ANALOGS AND SOLAR TWINS REVEALED BY THE KEPLER MISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do Nascimento Jr, J.-D.; Meibom, S.; García, R. A.

    2014-08-01

    A new sample of solar analogs and twin candidates has been constructed and studied, paying particular attention to their light curves from NASA's Kepler mission. This Letter aims to assess their evolutionary status, derive their rotation and ages, and identify those which are solar analogs or solar twin candidates. We separate out the subgiants that compose a large fraction of the asteroseismic sample, and which show an increase in the average rotation period as the stars ascend the subgiant branch. The rotation periods of the dwarfs, ranging from 6 to 30 days and averaging 19 days, allow us to assess their individualmore » evolutionary states on the main sequence and to derive their ages using gyrochronology. These ages are found to be in agreement with a correlation coefficient of r = 0.79 with independent asteroseismic ages, where available. As a result of this investigation, we are able to identify 34 stars as solar analogs and 22 of them as solar twin candidates.« less

  16. Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Mexico from 2003 to 2012

    PubMed Central

    Escalera-Zamudio, Marina; Nelson, Martha I.; Cobián Güemes, Ana Georgina; López-Martínez, Irma; Cruz-Ortiz, Natividad; Iguala-Vidales, Miguel; García, Elvia Rodríguez; Barrera-Badillo, Gisela; Díaz-Quiñonez, Jose Alberto; López, Susana; Arias, Carlos F.; Isa, Pavel

    2014-01-01

    In this work, nineteen influenza A/H3N2 viruses isolated in Mexico between 2003 and 2012 were studied. Our findings show that different human A/H3N2 viral lineages co-circulate within a same season and can also persist locally in between different influenza seasons, increasing the chance for genetic reassortment events. A novel minor cluster was also identified, named here as Korea, that circulated worldwide during 2003. Frequently, phylogenetic characterization did not correlate with the determined antigenic identity, supporting the need for the use of molecular evolutionary tools additionally to antigenic data for the surveillance and characterization of viral diversity during each flu season. This work represents the first long-term molecular epidemiology study of influenza A/H3N2 viruses in Mexico based on the complete genomic sequences and contributes to the monitoring of evolutionary trends of A/H3N2 influenza viruses within North and Central America. PMID:25075517

  17. Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors

    PubMed Central

    Keller, Roberto A; Peeters, Christian; Beldade, Patrícia

    2014-01-01

    The concerted evolution of morphological and behavioral specializations has compelling examples in ant castes. Unique to ants is a marked divergence between winged queens and wingless workers, but morphological specializations for behaviors on the ground have been overlooked. We analyzed thorax morphology of queens and workers in species from 21 of the 25 ant subfamilies. We uncovered unique skeletomuscular modifications in workers that presumably increase power and flexibility of head–thorax articulation, emphasizing that workers are not simply wingless versions of queens. We also identified two distinct types of queens and showed repeated evolutionary associations with strategies of colony foundation. Solitary founding queens that hunt have a more worker-like thorax. Our results reveal that ants invest in the relative size of thorax segments according to their tasks. Versatility of head movements allows for better manipulation of food and objects, which arguably contributed to the ants’ ecological and evolutionary success. DOI: http://dx.doi.org/10.7554/eLife.01539.001 PMID:24399458

  18. Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks

    PubMed Central

    Wu, Yu’e; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong

    2017-01-01

    Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world. PMID:28112276

  19. Cradles and museums of Antarctic teleost biodiversity.

    PubMed

    Dornburg, Alex; Federman, Sarah; Lamb, April D; Jones, Christopher D; Near, Thomas J

    2017-09-01

    Isolated in one of the most extreme marine environments on Earth, teleost fish diversity in Antarctica's Southern Ocean is dominated by one lineage: the notothenioids. Throughout the past century, the long-term persistence of this unique marine fauna has become increasingly threatened by regional atmospheric and, to a lesser extent oceanic, warming. Developing an understanding of how historical temperature shifts have shaped source-sink dynamics for Antarctica's teleost lineages provides critical insight for predicting future demographic responses to climate change. We use a combination of phylogenetic and biogeographic modelling to show that high-latitude Antarctic nearshore habitats have been an evolutionary sink for notothenioid species diversity. Contrary to expectations from island biogeographic theory, lower latitude regions of the Southern Ocean that include the northern Antarctic Peninsula and peripheral island archipelagos act as source areas to continental diversity. These peripheral areas facilitate both the generation of new species and repeated colonization of nearshore Antarctic continental regions. Our results provide historical context to contemporary trends of global climate change that threaten to invert these evolutionary dynamics.

  20. Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae

    PubMed Central

    Brennan, Timothy C. R.; Williams, Thomas C.; Schulz, Benjamin L.; Palfreyman, Robin W.; Nielsen, Lars K.

    2015-01-01

    Monoterpenes are liquid hydrocarbons with applications ranging from flavor and fragrance to replacement jet fuel. Their toxicity, however, presents a major challenge for microbial synthesis. Here we evolved limonene-tolerant Saccharomyces cerevisiae strains and sequenced six strains across the 200-generation evolutionary time course. Mutations were found in the tricalbin proteins Tcb2p and Tcb3p. Genomic reconstruction in the parent strain showed that truncation of a single protein (tTcb3p1-989), but not its complete deletion, was sufficient to recover the evolved phenotype improving limonene fitness 9-fold. tTcb3p1-989 increased tolerance toward two other monoterpenes (β-pinene and myrcene) 11- and 8-fold, respectively, and tolerance toward the biojet fuel blend AMJ-700t (10% cymene, 50% limonene, 40% farnesene) 4-fold. tTcb3p1-989 is the first example of successful engineering of phase tolerance and creates opportunities for production of the highly toxic C10 alkenes in yeast. PMID:25746998

  1. Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors.

    PubMed

    Keller, Roberto A; Peeters, Christian; Beldade, Patrícia

    2014-01-01

    The concerted evolution of morphological and behavioral specializations has compelling examples in ant castes. Unique to ants is a marked divergence between winged queens and wingless workers, but morphological specializations for behaviors on the ground have been overlooked. We analyzed thorax morphology of queens and workers in species from 21 of the 25 ant subfamilies. We uncovered unique skeletomuscular modifications in workers that presumably increase power and flexibility of head-thorax articulation, emphasizing that workers are not simply wingless versions of queens. We also identified two distinct types of queens and showed repeated evolutionary associations with strategies of colony foundation. Solitary founding queens that hunt have a more worker-like thorax. Our results reveal that ants invest in the relative size of thorax segments according to their tasks. Versatility of head movements allows for better manipulation of food and objects, which arguably contributed to the ants' ecological and evolutionary success. DOI: http://dx.doi.org/10.7554/eLife.01539.001.

  2. Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.

  3. Natural Selection in Large Populations

    NASA Astrophysics Data System (ADS)

    Desai, Michael

    2011-03-01

    I will discuss theoretical and experimental approaches to the evolutionary dynamics and population genetics of natural selection in large populations. In these populations, many mutations are often present simultaneously, and because recombination is limited, selection cannot act on them all independently. Rather, it can only affect whole combinations of mutations linked together on the same chromosome. Methods common in theoretical population genetics have been of limited utility in analyzing this coupling between the fates of different mutations. In the past few years it has become increasingly clear that this is a crucial gap in our understanding, as sequence data has begun to show that selection appears to act pervasively on many linked sites in a wide range of populations, including viruses, microbes, Drosophila, and humans. I will describe approaches that combine analytical tools drawn from statistical physics and dynamical systems with traditional methods in theoretical population genetics to address this problem, and describe how experiments in budding yeast can help us directly observe these evolutionary dynamics.

  4. Spatial evolutionary public goods game on complete graph and dense complex networks

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2015-03-01

    We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we find that SEPGG has two stable states depending on the value of multiplication factor r, illustrating how the ``tragedy of the commons'' and ``an anomalous state without any active participants'' occurs in real-life situations. When r is low (), the state with only loners is stable, and the state with only defectors is stable when r is high (). We also derive the exact scaling relation for r*. All of the results are confirmed by numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of participants or the mean degree, , decreases. We also investigate the scaling dependence of the emergence of cooperation on r and . These results show how ``tragedy of the commons'' disappears when cooperation between egoistic individuals without any additional socioeconomic punishment increases.

  5. The initial tolerance to sub-lethal Cd exposure is the same among ten naïve pond populations of Daphnia magna, but their micro-evolutionary potential to develop resistance is very different.

    PubMed

    Messiaen, Marlies; Janssen, Colin Roger; De Meester, Luc; De Schamphelaere, Karel André Clara

    2013-11-15

    Genetic variation complicates predictions of both the initial tolerance and the long-term (micro-evolutionary) response of natural Daphnia populations to chemical stressors from results of standard single-clone laboratory ecotoxicity tests. In order to investigate possible solutions to this problem, we aimed to compare the initial sub-lethal tolerance to Cd of 10 naïve natural pond populations of Daphnia magna as well as their evolutionary potential to develop increased resistance. We did so by measuring reproductive performance of 120 clones, i.e. 12 clones hatched from the recent dormant egg bank of each of 10 populations, both in absence (Cd-free control) and presence of 4.4 μg Cd/L. We show that the initial tolerance, defined as the reproductive performance of individuals of the first generation exposed to Cd relative to that in a Cd-free control was not significantly different among the 10 studied pond populations and averaged 0.82 ± 0.04 over these populations. Moreover, these populations' initial tolerances were also not significantly different from the mean initial tolerance of 0.87 ± 0.08 at 4.0 μg Cd/L measured for a group of 7 often-used laboratory clones, collected from a range of European ecotoxicity testing laboratories. This indicates that the initial response of naïve natural pond populations to sub-lethal Cd can be relatively accurately predicted from ecotoxicity test data from only a handful of laboratory clones. We then used estimates of broad-sense heritability of Cd tolerance (H(2)) - based on the same dataset - as a proxy of these populations' capacities to evolutionarily respond to Cd in terms of the development of increased resistance, which is here defined as the increase with time of the frequency of clones with a higher Cd tolerance in the population (accompanied with an increase of mean Cd-tolerance of the population above the initial tolerance). We show that the populations' estimated H(2) values of Cd-tolerance cover almost the entire theoretically possible range, ranging from not significantly different from zero (for five populations) to between 0.48 and 0.81 (for the five other populations). This indicates that, unlike the initial tolerance to Cd, the (long-term) micro-evolutionary response to Cd may be very different among natural pond populations. Therefore, we conclude that it may be very difficult to predict the long-term response of an unstudied population to chemical stress from tolerance data on a sample of other populations. It is therefore suggested that new methods for forecasting long-term responses should be explored, such as the development of predictive models based on the combination of population-genomic and tolerance time-series data. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Evolutionary considerations in the development of chronic pelvic pain.

    PubMed

    Jarrell, John; Arendt-Nielsen, Lars

    2016-08-01

    Chronic pelvic pain is common among women of reproductive age and is associated with significant morbidity and comorbidities. In this Viewpoint, we explore the evolutionary cause of pelvic pain and summarize evidence that supports a menstruation-related evolutionary cause of chronic visceral pelvic pain: (1) lifetime menstruation has increased; (2) severe dysmenorrhea is common in the chronic pelvic pain population, particularly among those with pain sensitization; and (3) a potential biological mechanism can be identified. Thus, chronic pelvic pain may arise from the mismatch between the slow pace of biological evolution in our bodies and the relatively rapid pace of cultural changes that have resulted in increased menstrual frequency due to earlier menarche, later mortality, and lower fecundity. One possible mechanism that explains the development of persistent pain from repeated episodes of intermittent pain is hyperalgesic priming, a physiological process defined as a long-lasting latent hyperresponsiveness of nociceptors to inflammatory mediators after an inflammatory or neuropathic insult. The repetitive severely painful menstrual episodes may play such a role. From an evolutionary perspective the relatively rapid increase in lifetime menstruation experience in contemporary society may contribute to a mismatch between lifetime menstruation and the physiological pain processes, leading to a maladaptive state of chronic visceral pelvic pain. Our current physiology does not conform to current human needs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis

    PubMed Central

    2010-01-01

    Background Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question. Results We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass) using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of Homo floresiensis, we find a number of scenarios under which the proposed evolution of Homo floresiensis' small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position. Conclusions Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of Homo floresiensis and better body mass estimates are required to confirm the plausibility of the evolution of its small brain mass. We find that for our dataset the Bayesian analysis for ancestral state reconstruction is least affected by inclusion of fossil data suggesting that this approach might be preferable for future studies on other taxa with a poor fossil record. PMID:20105283

  8. Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny

    PubMed Central

    2009-01-01

    Background Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data. Results In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes. Conclusion This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny. PMID:19922605

  9. Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny.

    PubMed

    Singh, Tiratha Raj; Tsagkogeorga, Georgia; Delsuc, Frédéric; Blanquart, Samuel; Shenkar, Noa; Loya, Yossi; Douzery, Emmanuel Jp; Huchon, Dorothée

    2009-11-17

    Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data. In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes. This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny.

  10. BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups—isochronal age determination using magnetic evolutionary models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malo, Lison; Doyon, René; Albert, Loïc

    2014-09-01

    Based on high-resolution optical spectra obtained with ESPaDOnS at Canada-France-Hawaii Telescope, we determine fundamental parameters (T {sub eff}, R, L {sub bol}, log g, and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of Malo et al., which takes into account the position, proper motion, magnitude, color, radial velocity, and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth magnetic evolutionary models and field stars with the goal of constraining the age of our candidates. We find that, in general, low-mass starsmore » in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main-sequence stars. The Dartmouth magnetic evolutionary models show a good fit to observations of field K and M stars, assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of the β Pictoris moving group, we have re-examined the age inconsistency problem between lithium depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increases the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear lithium depletion boundary from which an age of 26 ± 3 Myr is derived, consistent with previous age estimates based on this method.« less

  11. How Many Kinds of Birds Are There and Why Does It Matter?

    PubMed

    Barrowclough, George F; Cracraft, Joel; Klicka, John; Zink, Robert M

    2016-01-01

    Estimates of global species diversity have varied widely, primarily based on variation in the numbers derived from different inventory methods of arthropods and other small invertebrates. Within vertebrates, current diversity metrics for fishes, amphibians, and reptiles are known to be poor estimators, whereas those for birds and mammals are often assumed to be relatively well established. We show that avian evolutionary diversity is significantly underestimated due to a taxonomic tradition not found in most other taxonomic groups. Using a sample of 200 species taken from a list of 9159 biological species determined primarily by morphological criteria, we applied a diagnostic, evolutionary species concept to a morphological and distributional data set that resulted in an estimate of 18,043 species of birds worldwide, with a 95% confidence interval of 15,845 to 20,470. In a second, independent analysis, we examined intraspecific genetic data from 437 traditional avian species, finding an average of 2.4 evolutionary units per species, which can be considered proxies for phylogenetic species. Comparing recent lists of species to that used in this study (based primarily on morphology) revealed that taxonomic changes in the past 25 years have led to an increase of only 9%, well below what our results predict. Therefore, our molecular and morphological results suggest that the current taxonomy of birds understimates avian species diversity by at least a factor of two. We suggest that a revised taxonomy that better captures avian species diversity will enhance the quantification and analysis of global patterns of diversity and distribution, as well as provide a more appropriate framework for understanding the evolutionary history of birds.

  12. Pleistocene evolutionary history of the Clouded Apollo (Parnassius mnemosyne): genetic signatures of climate cycles and a 'time-dependent' mitochondrial substitution rate.

    PubMed

    Gratton, P; Konopiński, M K; Sbordoni, V

    2008-10-01

    Genetic data are currently providing a large amount of new information on past distribution of species and are contributing to a new vision of Pleistocene ice ages. Nonetheless, an increasing number of studies on the 'time dependency' of mutation rates suggest that date assessments for evolutionary events of the Pleistocene might be overestimated. We analysed mitochondrial (mt) DNA (COI) sequence variation in 225 Parnassius mnemosyne individuals sampled across central and eastern Europe in order to assess (i) the existence of genetic signatures of Pleistocene climate shifts; and (ii) the timescale of demographic and evolutionary events. Our analyses reveal a phylogeographical pattern markedly influenced by the Pleistocene/Holocene climate shifts. Eastern Alpine and Balkan populations display comparatively high mtDNA diversity, suggesting multiple glacial refugia. On the other hand, three widely distributed and spatially segregated lineages occupy most of northern and eastern Europe, indicating postglacial recolonization from different refugial areas. We show that a conventional 'phylogenetic' substitution rate cannot account for the present distribution of genetic variation in this species, and we combine phylogeographical pattern and palaeoecological information in order to determine a suitable intraspecific rate through a Bayesian coalescent approach. We argue that our calibrated 'time-dependent' rate (0.096 substitutions/ million years), offers the most convincing time frame for the evolutionary events inferred from sequence data. When scaled by the new rate, estimates of divergence between Balkan and Alpine lineages point to c. 19 000 years before present (last glacial maximum), and parameters of demographic expansion for northern lineages are consistent with postglacial warming (5-11 000 years before present).

  13. Some assembly required: evolutionary and systems perspectives on the mammalian reproductive system.

    PubMed

    Mordhorst, Bethany R; Wilson, Miranda L; Conant, Gavin C

    2016-01-01

    In this review, we discuss the way that insights from evolutionary theory and systems biology shed light on form and function in mammalian reproductive systems. In the first part of the review, we contrast the rapid evolution seen in some reproductive genes with the generally conservative nature of development. We discuss directional selection and coevolution as potential drivers of rapid evolution in sperm and egg proteins. Such rapid change is very different from the highly conservative nature of later embryo development. However, it is not unique, as some regions of the sex chromosomes also show elevated rates of evolutionary change. To explain these contradictory trends, we argue that it is not reproductive functions per se that induce rapid evolution. Rather, it is the fact that biotic interactions, such as speciation events and sexual conflict, have no evolutionary endpoint and hence can drive continuous evolutionary changes. Returning to the question of sex chromosome evolution, we discuss the way that recent advances in evolutionary genomics and systems biology and, in particular, the development of a theory of gene balance provide a better understanding of the evolutionary patterns seen on these chromosomes. We end the review with a discussion of a surprising and incompletely understood phenomenon observed in early embryos: namely the Warburg effect, whereby glucose is fermented to lactate and alanine rather than respired to carbon dioxide. We argue that evolutionary insights, from both yeasts and tumor cells, help to explain the Warburg effect, and that new metabolic modeling approaches are useful in assessing the potential sources of the effect.

  14. The effects of stress and sex on selection, genetic covariance, and the evolutionary response.

    PubMed

    Holman, L; Jacomb, F

    2017-10-01

    The capacity of a population to adapt to selection (evolvability) depends on whether the structure of genetic variation permits the evolution of fitter trait combinations. Selection, genetic variance and genetic covariance can change under environmental stress, and males and females are not genetically independent, yet the combined effects of stress and dioecy on evolvability are not well understood. Here, we estimate selection, genetic (co)variance and evolvability in both sexes of Tribolium castaneum flour beetles under stressful and benign conditions, using a half-sib breeding design. Although stress uncovered substantial latent heritability, stress also affected genetic covariance, such that evolvability remained low under stress. Sexual selection on males and natural selection on females favoured a similar phenotype, and there was positive intersex genetic covariance. Consequently, sexual selection on males augmented adaptation in females, and intralocus sexual conflict was weak or absent. This study highlights that increased heritability does not necessarily increase evolvability, suggests that selection can deplete genetic variance for multivariate trait combinations with strong effects on fitness, and tests the recent hypothesis that sexual conflict is weaker in stressful or novel environments. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Mode and tempo in the evolution of socio-political organization: reconciling 'Darwinian' and 'Spencerian' evolutionary approaches in anthropology.

    PubMed

    Currie, Thomas E; Mace, Ruth

    2011-04-12

    Traditional investigations of the evolution of human social and political institutions trace their ancestry back to nineteenth century social scientists such as Herbert Spencer, and have concentrated on the increase in socio-political complexity over time. More recent studies of cultural evolution have been explicitly informed by Darwinian evolutionary theory and focus on the transmission of cultural traits between individuals. These two approaches to investigating cultural change are often seen as incompatible. However, we argue that many of the defining features and assumptions of 'Spencerian' cultural evolutionary theory represent testable hypotheses that can and should be tackled within a broader 'Darwinian' framework. In this paper we apply phylogenetic comparative techniques to data from Austronesian-speaking societies of Island South-East Asia and the Pacific to test hypotheses about the mode and tempo of human socio-political evolution. We find support for three ideas often associated with Spencerian cultural evolutionary theory: (i) political organization has evolved through a regular sequence of forms, (ii) increases in hierarchical political complexity have been more common than decreases, and (iii) political organization has co-evolved with the wider presence of hereditary social stratification.

  16. Mode and tempo in the evolution of socio-political organization: reconciling ‘Darwinian’ and ‘Spencerian’ evolutionary approaches in anthropology

    PubMed Central

    Currie, Thomas E.; Mace, Ruth

    2011-01-01

    Traditional investigations of the evolution of human social and political institutions trace their ancestry back to nineteenth century social scientists such as Herbert Spencer, and have concentrated on the increase in socio-political complexity over time. More recent studies of cultural evolution have been explicitly informed by Darwinian evolutionary theory and focus on the transmission of cultural traits between individuals. These two approaches to investigating cultural change are often seen as incompatible. However, we argue that many of the defining features and assumptions of ‘Spencerian’ cultural evolutionary theory represent testable hypotheses that can and should be tackled within a broader ‘Darwinian’ framework. In this paper we apply phylogenetic comparative techniques to data from Austronesian-speaking societies of Island South-East Asia and the Pacific to test hypotheses about the mode and tempo of human socio-political evolution. We find support for three ideas often associated with Spencerian cultural evolutionary theory: (i) political organization has evolved through a regular sequence of forms, (ii) increases in hierarchical political complexity have been more common than decreases, and (iii) political organization has co-evolved with the wider presence of hereditary social stratification. PMID:21357233

  17. Laterality and the evolution of the prefronto-cerebellar system in anthropoids.

    PubMed

    Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin

    2013-06-01

    There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. © 2013 New York Academy of Sciences.

  18. Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications

    PubMed Central

    Lankau, Richard A; Strauss, Sharon Y

    2011-01-01

    Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions. PMID:25567977

  19. Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years?

    PubMed Central

    Beerling, David J.

    2012-01-01

    Exciting evidence from diverse fields, including physiology, evolutionary biology, palaeontology, geosciences and molecular genetics, is providing an increasingly secure basis for robustly formulating and evaluating hypotheses concerning the role of atmospheric carbon dioxide (CO2) in the evolution of photosynthetic eukaryotes. Such studies span over a billion years of evolutionary change, from the origins of eukaryotic algae through to the evolution of our present-day terrestrial floras, and have relevance for plant and ecosystem responses to future global CO2 increases. The papers in this issue reflect the breadth and depth of approaches being adopted to address this issue. They reveal new discoveries pointing to deep evidence for the role of CO2 in shaping evolutionary changes in plants and ecosystems, and establish an exciting cross-disciplinary research agenda for uncovering new insights into feedbacks between biology and the Earth system. PMID:22232760

  20. Atmospheric carbon dioxide: a driver of photosynthetic eukaryote evolution for over a billion years?

    PubMed

    Beerling, David J

    2012-02-19

    Exciting evidence from diverse fields, including physiology, evolutionary biology, palaeontology, geosciences and molecular genetics, is providing an increasingly secure basis for robustly formulating and evaluating hypotheses concerning the role of atmospheric carbon dioxide (CO(2)) in the evolution of photosynthetic eukaryotes. Such studies span over a billion years of evolutionary change, from the origins of eukaryotic algae through to the evolution of our present-day terrestrial floras, and have relevance for plant and ecosystem responses to future global CO(2) increases. The papers in this issue reflect the breadth and depth of approaches being adopted to address this issue. They reveal new discoveries pointing to deep evidence for the role of CO(2) in shaping evolutionary changes in plants and ecosystems, and establish an exciting cross-disciplinary research agenda for uncovering new insights into feedbacks between biology and the Earth system.

Top